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ABSTRACT 16 

Malaria and iron deficiency are major global health problems with extensive epidemiological overlap. 17 

Iron deficiency-induced anaemia can protect the host from malaria by limiting parasite growth. On the 18 

other hand, iron deficiency can significantly disrupt immune cell function. However, the impact of host 19 

cell iron scarcity beyond anaemia remains elusive in malaria. To address this, we employed a transgenic 20 

mouse model carrying a mutation in the transferrin receptor (TfrcY20H/Y20H), which limits the ability of 21 

cells to internalise iron from plasma. At homeostasis TfrcY20H/Y20H mice appear healthy and are not 22 

anaemic. However, TfrcY20H/Y20H mice infected with Plasmodium chabaudi chabaudi AS showed 23 

significantly higher peak parasitaemia and body weight loss. We found that TfrcY20H/Y20H mice displayed 24 

a similar trajectory of malaria-induced anaemia as wild-type mice, and elevated circulating iron did not 25 

increase peak parasitaemia. Instead, P. chabaudi infected TfrcY20H/Y20H mice had an impaired innate and 26 

adaptive immune response, marked by decreased cell proliferation and cytokine production. 27 

Moreover, we demonstrated that these immune cell impairments were cell-intrinsic, as ex vivo iron 28 

supplementation fully recovered CD4 T cell and B cell function. Despite the inhibited immune response 29 

and increased parasitaemia, TfrcY20H/Y20H mice displayed mitigated liver damage, characterised by 30 

decreased parasite sequestration in the liver and an attenuated hepatic immune response. Together, these 31 

results show that host cell iron scarcity inhibits the immune response but prevents excessive hepatic 32 

tissue damage during malaria infection. These divergent effects shed light on the role of iron in the 33 

complex balance between protection and pathology in malaria. 34 
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INTRODUCTION 35 

Malaria is a major global health problem that causes significant morbidity and mortality worldwide (1). 36 

It is caused by Plasmodium species parasites, which have a complex life cycle and are transmitted 37 

between humans by Anopheles mosquitos. In the human host, multiple cycles of asexual parasite 38 

replication inside red blood cells (RBC) result in extensive RBC destruction, immune activation, and 39 

microvascular obstruction (2). This blood stage of infection gives rise to symptoms such as fever, chills, 40 

headache, and malaise. In severe cases, it can also cause life-threatening complications such as acute 41 

anaemia, coma, respiratory distress, and organ failure (2).  42 

There is a complex relationship between host iron status and malaria. Iron is an essential micronutrient 43 

that is required by most living organisms to maintain physiological and biochemical processes, such as 44 

oxygen transport and storage, cellular metabolism, and reduction-oxidation reactions (3,4). Despite the 45 

importance of iron, iron deficiency is exceedingly common in humans, and iron deficiency anaemia is 46 

estimated to affect a sixth of the world’s population (5,6). In the context of human malaria infection, 47 

iron deficiency can decrease the risk of disease, severe disease, and mortality (7–9). The protective 48 

effect of iron deficiency is at least partly mediated by anaemia, as RBCs isolated from anaemic 49 

individuals are less amenable to malaria parasite growth (10).  50 

Meanwhile, oral iron supplementation is a risk factor for malaria in areas with limited access to 51 

preventative measures and treatment (11,12). This effect can to some extent be explained by iron 52 

supplementation stimulating erythropoiesis and increasing the proportion of reticulocytes and young 53 

erythrocytes, which are preferred targets for invasion by P. falciparum parasites (10). Malaria and iron 54 

deficiency also often disproportionally affect the same populations (e.g. young children in the WHO 55 

African Region) (1,6), in part, because malaria causes iron deficiency (13).  56 

Anaemia is the primary and most profound consequence of iron deficiency. However, iron deficiency 57 

can also have other negative impacts on human health. Immune cells with high proliferative and 58 

anabolic capacities appear to be particularly sensitive to iron deficiency. As such, decreased iron 59 

availability can impair the proliferation and maturation of lymphocytes and neutrophils (14–16). 60 
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Neutrophils and macrophages also require iron for enzymes involved in microbial killing (16–19). In 61 

animal models of iron deficiency, lymphocyte function is severely impaired, and the immune response 62 

to immunisation and viral infection is inhibited (20,21). Similarly, iron deficiency decreases 63 

inflammation and improves outcomes in mouse models of autoimmune disease (22–25). In humans, 64 

associations between iron deficiency and attenuated responses to some vaccines have been observed 65 

(20,21,26–28). Moreover, patients with a rare mutation in transferrin receptor-1 (TfR1), the primary 66 

receptor for iron uptake in cells, present with lymphocyte dysfunction and combined immunodeficiency 67 

(29,30).  68 

Controlling a malaria infection requires two distinct but complementary immune responses. An early 69 

cell-mediated response, primarily driven by interferon- (IFN-) producing CD4+ T cells, prevents 70 

uncontrolled exponential parasite growth (31–35). Meanwhile, a humoral response is required to 71 

prevent recrudescence and to clear the infection (36,37). Excessive production of pro-inflammatory 72 

immune cells and cytokines can lead to sepsis-like complications and cause collateral damage to tissues 73 

and organs (38,39). Thus, the pro-inflammatory anti-parasite response must be balanced by 74 

immunoregulatory and tissue-protective responses to prevent immunopathology (40–43).  75 

Although it is known that host iron deficiency influences malaria infection, the mechanisms that affect 76 

host health or Plasmodium virulence remain largely unknown. In particular, the effects of iron 77 

deficiency aside from anaemia, have scarcely been explored. Moreover, any effects on malaria 78 

immunity have not been investigated beyond a few observational studies that found associations 79 

between iron deficiency and attenuated antibody responses to malaria in children (7,44,45). 80 

In this study, we aspired to deepen our understanding of how malaria infection is affected by host iron 81 

deficiency. To this end, we employed a genetic mouse model of cellular iron deficiency based on a rare 82 

mutation in TfR1 (TfrcY20H/Y20H), which causes combined immunodeficiency in humans (29,30). We 83 

found that decreasing host cellular iron levels increased peak malaria parasitaemia in mice infected with 84 

P. chabaudi. While P. chabaudi-induced anaemia and RBC invasion remained unaffected, the immune 85 

response to P. chabaudi was drastically inhibited. Interestingly, mice with cellular iron deficiency also 86 

had attenuated P. chabaudi-induced liver damage, suggesting reduced immunopathology. Hence, host 87 
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cellular iron deficiency attenuated the immune response to malaria, leading to increased pathogen 88 

burden and mitigated liver pathology. 89 

RESULTS 90 

Decreased cellular iron uptake increases P. chabaudi pathogen burden 91 

To investigate the effects of cellular iron availability on the host’s response to malaria, we utilised a 92 

transgenic mouse with a mutation in the cellular iron transporter TfR1. The TfrcY20H/Y20H mutation 93 

decreases receptor internalisation by approximately 50%, resulting in decreased cellular iron uptake 94 

(29). The effects of the TfrcY20H/Y20H mutation in erythroid cells are minimised due to a STEAP3-95 

mediated compensatory mechanism (29). At homeostasis, adult TfrcY20H/Y20H mice are healthy, normal-96 

sized, and not anaemic (Figure S1A-B). However, they have microcytic RBCs, compensated for by an 97 

increase in RBCs (Figure S1C-D), and mildly suppressed liver and serum iron levels (Figure S1E-F).  98 

TfrcY20H/Y20H and wild-type mice were infected with a recently mosquito-transmitted rodent malaria 99 

strain, P. chabaudi chabaudi AS, which constitutively expresses GFP (hereafter referred to as P. 100 

chabaudi) (46,47) (Figure 1A). Recently mosquito-transmitted parasites were used to mimic a natural 101 

infection more closely, as vector transmission is known to regulate Plasmodium virulence and alter the 102 

host’s immune response (48-50). Consequently, parasitaemia is expected to be significantly lower upon 103 

infection with recently mosquito-transmitted parasites, compared to infection with serially blood-104 

passaged parasites that are more virulent (47,48).  105 

Strikingly, mice with decreased cellular iron uptake had significantly higher peak parasitaemia and 106 

higher peak infected red blood cell (iRBC) counts (Figure 1B-C). The higher pathogen burden coincided 107 

with more severe weight loss than wild-type mice (Figure 1D). This phenotype contrasts previous 108 

studies, in which nutritional iron deficiency resulted in lower parasitaemia and increased survival of 109 

malaria infected mice (49,50). Hence, our findings highlight a distinct role for cellular iron in malaria 110 

pathology, which acts inversely to the protective effect of anaemia. This prompted us to investigate the 111 

cause of the higher parasite burden observed in our model. 112 
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TfrcY20H/Y20H and wild-type mice have comparable malaria-induced RBC loss and anaemia 113 

Anaemia-associated alterations of RBC physiology can affect malaria infection and have been put 114 

forward as the main cause of both the protective effect of iron deficiency and the increased risk 115 

associated with iron supplementation (10). We therefore monitored RBCs in wild-type and TfrcY20H/Y20H 116 

mice infected with P. chabaudi. Both genotypes displayed similar levels of malaria-induced RBC loss 117 

and RBC recovery (Figure 1E). Moreover, TfrcY20H/Y20H and wild-type mice were equally severely 118 

anaemic at the nadir of RBC loss, eight days post infection (dpi) (Figure 1F). At the chronic stage of 119 

infection (20 dpi), however, wild-type mice showed improved recovery from anaemia compared to 120 

TfrcY20H/Y20H mice (Figure 1G), consistent with a decreased ability of the TfrcY20H/Y20H cells to incorporate 121 

iron.  122 

While anaemia and RBC counts were comparable between both genotypes during infection, it was 123 

nevertheless possible that differences in RBC physiology could alter the course of infection. 124 

Consequently, we performed an in vitro invasion assay to determine whether TfrcY20H/Y20H RBCs were 125 

more susceptible to P. chabaudi invasion. Fluorescently labelled wild-type or TfrcY20H/Y20H RBCs were 126 

incubated in vitro with RBCs from a P. chabaudi infected wild-type mouse. Upon completion of one 127 

asexual replication cycle, invasion was assessed, and the susceptibility index was calculated (Figure 128 

1H). The RBC susceptibility indices of both genotypes were comparable (Figure 1I), thus indicating 129 

that the higher parasite burden in TfrcY20H/Y20H mice was not due to a higher susceptibility of their RBCs 130 

to P. chabaudi invasion.  131 

Hyperferremia does not substantially alter P. chabaudi infection 132 

In addition to anaemia, it has been suggested that that variations in host iron levels could affect blood-133 

stage Plasmodium parasite growth (51,52). Consequently, non-haem liver iron and serum iron was 134 

measured in wild-type and TfrcY20H/Y20H mice upon P. chabaudi infection. At the peak of infection, both 135 

genotypes had elevated liver and serum iron levels compared to homeostasis (Figure S1E-F & Figure 136 

1J-K). Infected wild-type and TfrcY20H/Y20H mice had equivalent liver iron levels (Figure 1J), but serum 137 

iron levels were higher in TfrcY20H/Y20H mice (Figure 1K).  138 
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The elevated serum iron observed in infected TfrcY20H/Y20H mice was consistent with their restricted 139 

capacity to take up circulating transferrin-bound iron into tissues. However, we decided to investigate 140 

whether this supraphysiological serum iron (i.e., hyperferremia) could alter P. chabaudi parasite 141 

growth. To do this, we treated wild-type mice with a recombinant monoclonal anti-BMP6 IgG antibody 142 

(αBMP6) or an isotype control (Figure S2A). αBMP6 treatment suppresses hepcidin expression and 143 

elevates serum iron, as a consequence of unregulated release of iron from cellular stores (53) (Figure 144 

S2A). P. chabaudi infected mice treated with αBMP6 had higher serum iron than isotype control-treated 145 

mice on days 9 and 21 after infection (Figure S2B). Nevertheless, mice treated with αBMP6 and isotype 146 

had comparable peak parasitaemia and peak iRBC counts, although αBMP6 treated mice appeared to 147 

clear the parasites slightly more efficiently (Figure S2C-D). In addition, αBMP6 treatment did not 148 

significantly alter weight loss (Figure S2E). Taken together, this data indicates that hyperferremia, as 149 

observed in infected TfrcY20H/Y20H mice, does not increase peak parasitaemia. Accordingly, these findings 150 

further indicate that iron uptake by non-erythropoietic cells is decisive in the host response to malaria. 151 

Decreased cellular iron uptake attenuates the immune response to P. chabaudi 152 

The immune response to malaria exerts control of parasitaemia, and the spleen is the main site of the 153 

immune response to blood-stage malaria (39,54). Therefore, we assessed the splenic immune response 154 

to P. chabaudi during the acute stage of infection (8 dpi). Interestingly, TfrcY20H/Y20H mice had attenuated 155 

splenomegaly during acute P. chabaudi infection (Figure 2A-B), suggesting a disrupted splenic 156 

response.  157 

Malaria infection leads to an influx of mononuclear phagocytes (MNP) into the spleen, where they are 158 

involved in cytokine production, antigen presentation, and phagocytosis of iRBCs (34,35,43). Upon P. 159 

chabaudi infection, fewer MNPs were detected in the spleen of TfrcY20H/Y20H mice (Figure 2C). This 160 

applied both to CD11b+ Ly6C+ MNPs (resembling inflammatory monocytes and/or monocyte-derived 161 

macrophages) and to CD11c+ MHCII+ MNPs (resembling dendritic cells) (Figure 2D-E & Figure S3A).  162 

In malaria infection, some MNPs can produce IFNγ that facilitates naïve CD4+ T cell activation and 163 

polarisation (34). Consequently, splenocytes from infected mice were cultured ex vivo with a protein 164 

transport inhibitor, and intracellular cytokine staining was performed. Interestingly, fewer MNPs from 165 
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TfrcY20H/Y20H mice produced IFNγ compared to MNPs from wild-type mice (Figure 2F-G). Infected wild-166 

type and TfrcY20H/Y20H mice had comparable splenic neutrophil, eosinophil and NK cell numbers during 167 

acute infection (8 dpi) (Figure S3B-D). Thus, mice with decreased cellular iron uptake had an attenuated 168 

MNP response to P. chabaudi infection.  169 

Cellular iron deficiency impairs the CD4+ T cell response to P. chabaudi 170 

T cells, particularly CD4+ T cells, are a critical component of the immune response to blood-stage 171 

malaria (55). Therefore, we assessed the splenic T cell response to acute P. chabaudi infection. The 172 

total splenic CD4+ T cell count was comparable in both genotypes eight days after infection (Figure 173 

3A). However, mice with decreased cellular iron uptake had a decreased proportion of effector CD4+ T 174 

cells (Figure 3B), and, consequently, fewer total splenic effector CD4+ T cells than wild-type mice 175 

(Figure 3C). In addition, the proportion of antigen-experienced CD44+ and PD1+ CD4+ T cells was also 176 

reduced in TfrcY20H/Y20H mice, re-enforcing their less activated state (Figure 3D-E). Moreover, fewer 177 

TfrcY20H/Y20H CD4+ T cells were actively dividing, based on the proliferation marker KI-67 (Figure 3F). 178 

This suggests a functional impairment of the CD4+ T cell response to P. chabaudi in mice with 179 

decreased cellular iron uptake.  180 

Similarly, the total CD8+ T cell count did not differ between genotypes (Figure S4A), but P. chabaudi 181 

infected TfrcY20H/Y20H mice had fewer effector CD8+ T cells eight days after infection (Figure S4B-C). 182 

However, there was no difference in the percentage of antigen-experienced (CD44+ or PD-1+) (Figure 183 

S4D-E), proliferating (KI-67+) (Figure S4F) or IFNγ producing (Figure S4G) CD8+ T cells. Hence the 184 

CD8+ T cell response to P. chabaudi infection was also attenuated, albeit to a lesser degree than CD4+ 185 

T cells. 186 

T helper 1 (Th1) cells and other T helper subsets that express IFNγ are particularly important for malaria 187 

immunity (55). Interestingly, the proportion of CD4+ T cells that expressed the Th1 transcription factor 188 

T-BET was lower in mice with decreased cellular iron uptake (Figure 3G). Furthermore, fewer CD4 T 189 

cells from TfrcY20H/Y20H mice produced IFNγ upon ex vivo restimulation (Figure 3H-I). Thus, further 190 

strengthening the evidence of functional CD4+ T cell impairment in TfrcY20H/Y20H mice during P. 191 

chabaudi infection. 192 
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To determine whether these impairments were T cell intrinsic and iron-dependent, we utilized naïve 193 

CD4+ T cells isolated from uninfected wild-type and TfrcY20H/Y20H mice. The cells were cultured in vitro 194 

under Th1 polarising conditions for four days, in standard or iron-supplemented culture media (Figure 195 

4A). TfrcY20H/Y20H lymphocytes can acquire iron under conditions where transferrin is hyper-saturated 196 

and sufficient quantities of free iron are likely to be generated (29,56). Proliferation was significantly 197 

impaired in TfrcY20H/Y20H CD4+ T cells but could be rescued in a dose-dependent manner by iron 198 

supplementation (Figure 4B-C). In addition, very few TfrcY20H/Y20H CD4+ T cells cultured in standard 199 

media produced IFNγ. However, iron supplementation completely rescued IFNγ production (Figure 200 

4D-F). Hence, the CD4+ T cell deficiencies observed in TfrcY20H/Y20H mice during P. chabaudi infection 201 

were replicated in vitro and could be rescued by iron supplementation. These observations confirm that 202 

host cell iron scarcity disrupts CD4+ T cell function, leading to an inhibited CD4+ T cell response to P. 203 

chabaudi infection. 204 

Decreased cellular iron uptake disrupts the germinal centre response to P. chabaudi 205 

An efficient germinal centre (GC) response is required to generate high-affinity antibodies that enable 206 

malaria clearance (36,37). In light of the impaired CD4+ T cell response to P. chabaudi in TfrcY20H/Y20H 207 

mice, we further examined the B cell supporting T follicular helper cell (Tfh) response. During the acute 208 

stage of infection, a smaller proportion of CD4+ T cells from TfrcY20H/Y20H mice expressed B cell co-209 

stimulation receptor ICOS (Figure 5A). ICOS is essential in malaria infection, as it is required to 210 

maintain the Tfh cell response and sustain antibody production (57). In line with this, TfrcY20H/Y20H mice 211 

had fewer Tfh cells, both during the acute (8 dpi) and chronic (20 dpi) stages of infection (Figure 5B-212 

C). Tfh cells support the activation, differentiation, and selection of high-affinity GC B cells, and are 213 

an essential component of the humoral immune response to malaria (37). Therefore, we next sought to 214 

assess the B cell response to P. chabaudi infection in TfrcY20H/Y20H and wild-type mice.  215 

We observed no difference between genotypes in the total number of splenic B cells at the acute stage 216 

of infection (8 dpi) (Figure 5D). However, mice with decreased cellular iron uptake had severely 217 

impaired B cell activation and fewer antibody-secreting effector B cells (Figure 5E-F). Additionally, 218 

TfrcY20H/Y20H mice had fewer GC B cells during acute infection (8 dpi) (Figure 5G). This effect remained 219 
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in the chronic stage of infection (20 dpi) (Figure 5H-I), indicating a prolonged immune inhibition caused 220 

by restricted cellular iron availability. 221 

Cellular iron deficiency impairs B cell function 222 

To determine if the TfrcY20H/Y20H mutation also had cell-intrinsic and iron-dependent effects on B cells, 223 

their functionality was further investigated in vitro. B cells were isolated from uninfected TfrcY20H/Y20H 224 

and wild-type mice, activated, and cultured in standard or iron-supplemented media for three days 225 

(Figure 6A). Expression of the B cell activation marker LAT-1 was lower on TfrcY20H/Y20H B cells than 226 

wild-type (Figure 6B). However, LAT-1 expression was rescued by iron supplementation, indicating 227 

improved B cell activation (Figure 6B). TfrcY20H/Y20H B cell proliferation was also severely impaired 228 

compared to wild-type cells, but was rescued by iron supplementation in a dose-dependent manner 229 

(Figure 6C-D). Iron scarcity also inhibited the potential of TfrcY20H/Y20H B cells to differentiate into 230 

antibody-secreting and class-switched cells (Figure 6E-G). This impairment was fully restored upon 231 

iron supplementation (Figure 6E-G). Overall, our data clearly show that the activation, proliferation, 232 

and differentiation of TfrcY20H/Y20H B cells were impaired, demonstrating that cellular iron deficiency 233 

causes cell-intrinsic B cell dysfunction. 234 

Decreased cellular iron uptake ameliorates P. chabaudi-induced liver pathology 235 

TfrcY20H/Y20H mice experienced higher P. chabaudi parasitaemia and an inhibited immune response. 236 

However, the precise consequences of this disease phenotype remained unclear. Aspects of the immune 237 

response, such as the cytokine profile and the balance between pro-inflammatory and 238 

immunoregulatory responses, can tip the scales toward protection or pathology in malaria (39). Hence, 239 

an attenuated immune response could cause hyperparasitaemia, but it may also be crucial in limiting 240 

immunopathology. We therefore set out to characterise key indicators of malaria disease severity. 241 

We first measured circulating levels of angiopoietin-2 (ANG-2) and alanine transferase (ALT). ANG-242 

2 is a marker of endothelial activation that correlates with malaria disease severity and mortality in 243 

humans (58,59). Liver damage is also indicative of severe malaria (60), and ALT is a standard marker 244 

of liver damage. There was a trend towards lower ANG-2 and significantly decreased ALT in 245 

TfrcY20H/Y20H mice eight days after P. chabaudi infection, suggesting milder pathology (Figure 7A-B). 246 
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Considering the substantial difference in serum ALT between genotypes, we further examined the 247 

malaria induced liver pathology. TfrcY20H/Y20H mice had lower expression of the tissue-damage and 248 

inflammation-induced acute phase protein genes Saa1 and Fga (Figure S5A-B). Furthermore, while 249 

both genotypes developed malaria-induced hepatomegaly, there was a trend toward less severe 250 

hepatomegaly in TfrcY20H/Y20H mice (Figure S5C).  251 

Histological analysis revealed hepatic pathology in all P. chabaudi infected mice, characterised by 252 

hepatocellular necrosis, sinusoidal dilatation, glycogen depletion, and infiltration by mononuclear 253 

immune cells (Figure 7C-D & Figure S5D-E). Interestingly, no polymorphonuclear immune cell 254 

infiltration was observed. All infected wild-type mice developed confluent necrosis (areas of lobular 255 

disarray, eosinophilia, and loss of glycogen deposits, score ≥3), and most individuals (8 out of 11) also 256 

displayed bridging necrosis (areas of confluent necrosis extending across multiple lobules, score=4) 257 

(Figure 7E & Figure S5F). In contrast, severe focal necrosis or confluent necrosis (score ≥3) was 258 

detected in just over half (6 out of 10) infected TfrcY20H/Y20H mice, and only four individuals developed 259 

bridging necrosis (Figure 7E & Figure S5F). Hence, the proportion of mice that developed severe 260 

hepatic necro-inflammation (score ≥3) upon P. chabaudi infection was significantly smaller in 261 

TfrcY20H/Y20H than in wild-type mice (Figure 7E). 262 

Excess reactive liver iron and haem are known to cause liver damage in malaria (61,62). However, we 263 

observed no differences in total non-haem liver iron (Figure 1I) or liver lipid peroxidation, which 264 

correlates with ROS levels (Figure S5G). Hence, it is unlikely that tissue level variations in hepatic 265 

reactive iron or haem can explain the difference in liver damage. In addition, we measured the 266 

expression of two genes that are known to have a hepatoprotective effect in the context of iron loading 267 

in malaria: Hmox1 (encodes haemoxygenase-1 (HO-1)) and Fth1 (encodes ferritin heavy chain). Liver 268 

gene expression of Hmox1 was higher in TfrcY20H/Y20H mice, while the expression of Fth1 did not differ 269 

between genotypes, eight days after infection (Figure S5H-I). Thus, the higher expression of Hmox1 270 

may have contributed to a hepatoprotective effect in TfrcY20H/Y20H mice.  271 

During malaria infection, endothelial activation leads to increased adhesion and sequestration of iRBCs, 272 

resulting in hepatic vascular occlusions and hypoxia that cause damage (2,63). Fewer sequestration, 273 
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rosetting, and vascular occlusion events were detected in liver sections from TfrcY20H/Y20H mice eight 274 

days after P. chabaudi infection (Figure 7F). Together with the trend toward lower ANG-2 levels in 275 

TfrcY20H/Y20H mice (Figure 7A), this indicates that decreased endothelial activation and iRBC 276 

sequestration contributed to the attenuated liver pathology observed in TfrcY20H/Y20H mice.  277 

Inflammation also causes severe disease and liver pathology in malaria (39,61,64). Hence, hepatic 278 

inflammation was approximated by measuring the expression of genes encoding pro-inflammatory 279 

cytokines IFNγ, TNFα, and IL-1β. We observed no difference in the expression of Ifng or Tnf, but Il1b 280 

expression was lower in TfrcY20H/Y20H mice eight days after P. chabaudi infection (Figure S5J-L). 281 

Moreover, immunohistochemistry staining showed reduced infiltration of leukocytes (CD45+ cells) in 282 

livers of TfrcY20H/Y20H mice (Figure 7G-H). Additionally, a smaller proportion of liver leukocytes 283 

(CD45+) were effector immune cells such as dendritic cells, CD44+ CD4+ T cells, and CD44+ CD8+ T 284 

cells (Figure 7I-L). Taken together, this data shows that host cell iron scarcity leads to an attenuated 285 

hepatic immune response during P. chabaudi infection. 286 

 DISCUSSION 287 

Iron deficiency impacts malaria infection in humans (7–9), but beyond the effects of anaemia (10), little 288 

is known about how host iron deficiency influences malaria infection. Here we investigated how 289 

restricted cellular iron acquisition influenced P. chabaudi infection in mice. TfrcY20H/Y20H mice developed 290 

comparable malaria-induced anaemia to wild-type mice, and RBC susceptibility to parasite invasion 291 

did not differ between genotypes. This therefore allowed us to largely decouple the effects of anaemia 292 

from other effects of iron on the host response to malaria. Strikingly, TfrcY20H/Y20H mice displayed an 293 

attenuated P. chabaudi induced splenic and hepatic immune response. This immune inhibition was 294 

associated with increased parasitaemia and mitigated liver pathology. Hence, for the first time, we show 295 

a role for host cellular iron acquisition via TfR1 in modulating the immune response to malaria, with 296 

downstream effects on both pathogen control and host fitness.  297 

On first inspection, the higher parasite burden observed in TfrcY20H/Y20H mice may appear to be a severe 298 

consequence of cellular iron deficiency. In humans, however, high parasitaemia is not sufficient to 299 
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cause severe disease (65). Moreover, the risk of severe malarial disease decreases significantly after 300 

only one or two exposures, whereas anti-parasite immunity is only acquired after numerous repeated 301 

exposures (2,66). It follows that mitigating immunopathology may be more important than restricting 302 

parasite growth for host survival. As previously noted, the TfrcY20H/Y20H mutation has relatively mild 303 

consequences for erythropoietic parameters compared to other haematopoietic lineages (29,30). 304 

However, in humans with normal TfR1-mediated iron uptake, iron deficiency sufficient to cause 305 

immune cell iron scarcity also normally causes anaemia (67). In such circumstances, parasite growth 306 

would likely be limited by anaemia, with the final result that iron deficiency may be protective overall, 307 

if it also minimises aspects of immunopathology. 308 

Previous work has demonstrated the importance of regulating tissue haem and iron levels to prevent 309 

organ damage in malaria (61,62,68,69). For example, HO-1 plays an important role in detoxifying free 310 

haem that occurs as a result of haemolysis during malaria infection, thus preventing liver damage due 311 

to tissue iron overload, ROS and inflammation (61). Interestingly, infected TfrcY20H/Y20H mice had higher 312 

expression of Hmox1, but levels of liver iron and ROS comparable to that of wild-type mice. 313 

Consequently, this may be indicative of increased haem processing that could have a tissue protective 314 

effect. In humans, there is a correlation between transferrin saturation and ALT levels in patients with 315 

symptomatic malaria (62,70), suggesting that iron status may be linked to malaria-induced liver 316 

pathology in humans. However, it can be difficult to interpret measures of iron status in malaria infected 317 

individuals, since those parameters can be altered by inflammation and RBC destruction. Our findings 318 

reveal additional dimensions through which host iron status impacts malaria-induced tissue damage. 319 

The mitigated liver damage that we observed in P. chabaudi infected TfrcY20H/Y20H mice can likely be 320 

explained by a combination of factors; increased expression of hepatoprotective HO-1, decreased 321 

immune mediated endothelial activation, iRBC sequestration, and hepatic vascular occlusion, as well 322 

as, inhibited hepatic inflammation.  323 

The pro-inflammatory immune response to malaria has downstream effects on cytoadherence, as pro-324 

inflammatory cytokines activate endothelial cells, leading to higher expression of receptors for 325 

cytoadherence (2). As a consequence, P. chabaudi infected mice that lack adaptive immunity or IFN-326 
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receptor signalling, have substantially decreased sequestration of iRBCs in the liver, and no detectable 327 

liver damage (as measured by ALT) (63). Endothelial cells can also be activated by direct interactions 328 

with iRBCs (2), and in humans, ANG-2 correlates with estimated parasite biomass (59). However, 329 

although P. chabaudi infected TfrcY20H/Y20H mice had higher peak parasitaemia, they had fewer hepatic 330 

sequestration, rosetting, and vascular occlusion events and lower ANG-2 levels. The attenuated innate 331 

and adaptive immune response is the most probable cause of decreased endothelial activation and 332 

hepatic microvascular obstruction in TfrcY20H/Y20H mice. This, in turn, likely contributed to the clearly 333 

mitigated liver pathology, in spite of the higher parasitaemia.  Upon P. chabaudi infection, we observed 334 

extensive infiltration of mononuclear leukocytes into the liver, but this response was repressed in 335 

TfrcY20H/Y20H mice. Specifically, infected TfrcY20H/Y20H mice had fewer effector-like immune cells in the 336 

liver. Hepatic immune cells can contribute to liver damage in malaria, for example, by producing pro-337 

inflammatory cytokines or through bystander killing of hepatocytes (71). Consequently, a weaker 338 

hepatic pro-inflammatory immune response likely limited immunopathology and ameliorated malaria-339 

induced liver damage in mice with cellular iron deficiency. 340 

We have previously shown that hepcidin mediated hypoferremia inhibits the immune response to 341 

influenza infection in mice (21). In influenza, cellular iron scarcity exacerbated pulmonary tissue 342 

damage, because failed adaptive immunity led to an exacerbated inflammatory response and poor 343 

pathogen control (21). In contrast, we observed that decreased cellular iron acquisition inhibited both 344 

the innate and adaptive immune response to malaria, ultimately mitigating malaria-induced hepatic 345 

tissue damage and inflammation. This highlights the complex effects of iron deficiency on the immune 346 

system and underscores the need to consider its effect on different infectious diseases in a pathogen-347 

specific manner. A better understanding of how host iron status affects immunity to infection could 348 

benefit the development of improved antimicrobial therapies and increase the safety of iron deficiency 349 

therapies. 350 

The inhibited innate immune response to P. chabaudi in TfrcY20H/Y20H mice likely contributed to both the 351 

increased pathogen burden and the decreased liver pathology. Splenic MNPs are important for 352 

controlling parasitaemia (34,35,72), but MNPs are also vital for maintaining tissue homeostasis and 353 
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preventing tissue damage in malaria (43,73).  Although other innate cells, such as neutrophils, NK cells 354 

and γδT cells are an important part of the immune response to malaria, only the MNP response was 355 

distinctly impaired in  TfrcY20H/Y20H mice. Notably, neutrophils are known to be sensitive to iron 356 

deficiency (16,74) and to affect both immunity and pathology in malaria (75,76). However, in the 357 

context of recently mosquito-transmitted P. chabaudi it appears that monocytes and macrophages, 358 

rather than granulocytes, may be particularly important for parasite control and tissue homeostasis 359 

(43,72). 360 

CD4+ T cells and B cells become cell intrinsically dysfunctional during iron scarcity, as we have 361 

demonstrated in vitro. However, such cell-intrinsic effects are likely further aggravated by interactions 362 

with other iron-depleted cells in vivo. For example, CD4+ T cells support the B cell response to malaria 363 

(37,77), and the repressed CD4+ T cell response to P. chabaudi in TfrcY20H/Y20H mice presumably further 364 

constrained the B cell response. Proliferation is an aspect of immune cell function that appears to be 365 

particularly sensitive to iron deficiency (14,20,21). Unsurprisingly, we also see the most significant 366 

inhibitory effect on immune cell populations that expand greatly during P. chabaudi infection. In 367 

addition, proliferation is often required for lymphocyte differentiation and effector function (78), and 368 

the differentiation of Tfh and Th1 cells in malaria depends on a highly proliferative precursor CD4+ T 369 

cell subset (79). T cells from TfrcY20H/Y20H mice also had decreased KI-67 expression, further confirming 370 

impaired proliferation as a critical mechanism of immune inhibition under conditions of cellular iron 371 

scarcity. CD4+ T cells that produce pro-inflammatory cytokine are also sensitive to iron restriction, as 372 

we have shown for IFNγ, and as has been shown previously for IL-2 and IL-17 (80,81). Interestingly, 373 

iron overload can also alter CD4+ T cell cytokine production, and excess iron can have an inhibitory 374 

effect on IFNγ production (22,82). These observations underline that iron imbalance at either extreme 375 

can disturb immune cell function. 376 

Despite the higher peak parasitaemia in TfrcY20H/Y20H mice, both genotypes were able to clear P. chabaudi 377 

parasites at a comparable rate and prevent recrudescence. It follows that even a weakened humoral 378 

immune response appears to be sufficient to control P. chabaudi infection. However, our study did not 379 

investigate the effects of immune cell iron deficiency on the formation of long-term immunity, which 380 
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may have been more severely affected. The impaired GC response, in particular, suggests that iron 381 

deficiency could counteract the formation of efficient immune memory to subsequent malaria 382 

infections. This is in line with human observational studies that have found a link between iron 383 

deficiency and weak antibody responses to P. falciparum (7,44,45). In humans, anti-parasite immunity 384 

forms very slowly and only after numerous repeated exposures to malaria infection (2). Some have 385 

suggested that this effect could be explained by impaired immune cell function in malaria (83,84), and 386 

future studies should consider whether inhibited immunity as a result of iron deficiency could contribute 387 

to this phenomenon. Moreover, the extensive geographical and epidemiological overlap of iron 388 

deficiency and malaria (1,6,13) makes this concept particularly relevant for further research. 389 

It remains to be seen what the broader importance of cellular iron is in human malaria infection, in 390 

particular within the diverse genetic context of both humans and parasites, found in malaria endemic 391 

regions. Murine models of malaria are useful in providing hypothesis-generating results, but such 392 

findings ultimately ought to be confirmed and developed further through studies in human populations. 393 

This study revealed that decreased host cell iron acquisition inhibits the immune response to malaria 394 

and ameliorates hepatic damage, despite a higher parasite load and similar degree of anaemia, in mice. 395 

Altogether, our data highlight a previously underappreciated role for host cell iron in the trade-off 396 

between pathogen control and immunopathology, and add to our understanding of the complex 397 

interactions between iron deficiency and malaria. Hence, these findings have important implications for 398 

these two widespread and urgent global health problems. 399 

METHODS 400 

Mice 401 

TfrcY20H/Y20H mice were initially provided by Professor Raif Geha, Boston Children’s Hospital/Harvard 402 

Medical School (29), and they were subsequently bred in-house at the University of Oxford. Control 403 

wild-type C57BL/6JOlaHsd mice were purchased from Envigo and co-housed with TfrcY20H/Y20H mice 404 

for 2-3 weeks prior to P. chabaudi infection. All mice were housed in individually ventilated specific-405 

pathogen-free cages under normal light conditions (light 07.00-19.00, dark 19.00-07.00) and fed 406 

standard chow containing 188 ppm iron (SDS Dietex Services, diet 801161) ad-libitum. Age-matched, 407 
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8-13 week-old female mice were used for experiments. Females were exclusively utilised to prevent 408 

loss of animals due to fighting, and to minimise the risk of severe adverse events from P. chabaudi 409 

infection, which is higher in males (85). Euthanasia was performed through suffocation by rising CO2 410 

concentrations, and death was confirmed by cervical dislocation. 411 

Ethics 412 

All animal experiments were approved by the University of Oxford Animal Welfare and Ethical Review 413 

Board and performed following the U.K. Animals (Scientific Procedures) Act 1986, under project 414 

licence P5AC0E8C9. 415 

Parasites and infection  416 

Transgenic recently mosquito-transmitted P. chabaudi chabaudi AS parasites expressing GFP (46,47) 417 

were obtained from the European Malaria Reagent Repository at the University of Edinburgh. To 418 

generate iRBCs for blood-stage P. chabaudi infections,  frozen parasite stocks were rapidly thawed by 419 

hand and injected intraperitoneally (i.p.) into a single wild-type mouse. Once ascending parasitaemia 420 

reached 0.5-2%, the animal was euthanised and exsanguinated through cardiac puncture. Subsequent 421 

experimental infections were immediately initiated from the collected blood, by intravenously (i.v.) 422 

injecting 105 iRBCs in 100 uL Alsever’s solution. Uninfected control mice received Alsever’s solution 423 

only. 424 

To monitor P. chabaudi infection, blood was collected through micro-sampling from the tail vein of 425 

infected mice. Parasitaemia, iRBC count and RBC count was measured by flow cytometry, as 426 

previously described (46).  Briefly, 2 μL of blood was diluted in 500 μL Alsever’s solution immediately 427 

after collection. The solution was further diluted 1:10 in PBS before acquisition on an Attune NxT Flow 428 

Cytometer (Thermo Fisher Scientific). A fixed volume of each sample was acquired, thus allowing for 429 

the enumeration of total RBCs and iRBCs per μL of blood.  430 

αBMP6 treatment 431 

In order to experimentally raise serum iron levels, an αBMP6 human IgG monoclonal blocking antibody 432 

that cross-reacts with murine BMP6 (53) was administered. Control mice received a human IgG4 433 
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isotype control antibody. Both antibodies were diluted in 100 μL PBS and injected i.p at a dose of 434 

approximately 10 mg/kg body weight.  435 

Tissue processing 436 

Organs and tissues were harvested shortly after euthanasia and kept cold until further analysis could be 437 

performed. Liver and spleen indices were calculated as the mass of the respective organs relative to 438 

mouse body weight. Blood was collected into appropriate blood collection tubes (BD Microtainer 439 

K2EDTA for whole blood or BD Microtainer SST/Sarstedt Microvette 100 Serum for serum), either by 440 

tail vein sampling or by cardiac puncture after euthanasia. Serum was prepared by centrifugation of the 441 

collection tubes at 10,000 x g for 5 min, and stored at -80° C.  442 

Blood analysis 443 

RBC count, haemoglobin, and mean cell volume was measured from whole blood using an automatic 444 

KX-21N Haematology Analyser (Sysmex). Serum levels of ANG-2 and ALT were measured according 445 

to the producers’ instructions, using the Mouse ALT ELISA Kit (ab282882, Abcam) and the Mouse/Rat 446 

Angiopoietin-2 Quantikine ELISA Kit  (MANG20, R&D Systems), respectively. Serum cytokines were 447 

measured using the LEGENDplex Mouse Inflammation Panel (740446, BioLegend) bead-based 448 

immunoassay. The assay was performed according to the manufacturer’s instructions, except that the 449 

protocol was adapted to use half-volumes. 450 

In vitro P. chabaudi invasion assay  451 

To assess the susceptibility of wild-type and TfrcY20H/Y20H RBCs to P. chabaudi invasion, blood was 452 

collected from a P. chabaudi infected wild-type mouse during ascending parasitaemia (donor RBCs/Y), 453 

and from uninfected wild-type and TfrcY20H/Y20H mice (target RBCs/X). To remove leukocytes, the blood 454 

was passed through a cellulose (C6288, Merck) packed column, as previously described (86). The target 455 

RBCs were fluorescently labelled with 1 μM CellTrace Far Red (C34572, Thermo Fisher Scientific) in 456 

PBS, by diluting blood 1:10 with CellTrace solution and incubating in the dark for 15 min at 37° C, 457 

mixing the samples every 5 min. Afterward, the cells were washed twice in R10 media (RPMI-1640 458 

with 10% FBS, 2 mM glutamine (G7513, Merck), 1% penicillin-streptomycin (P0781, Merck), 50 μM 459 

2-Mercaptoethanol (31350, Thermo Fisher Scientific)) and resuspended in R10 media supplemented 460 
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with 0.5 mM sodium pyruvate (1136007050, Thermo Fisher Scientific). 2 x 107 donor RBCs and 2 x 461 

107 fluorescently labelled target RBCs were plated in the same well of a 96-well plate, and incubated 462 

overnight (~16 h) in a candle jar at 37° C, to allow sufficient time for schizonts to develop and release 463 

merozoites. Invasion was measured as GFP+ RBCs and compared by calculating the susceptibility 464 

index, as previously described (87). 465 

SI =  

X RBC
X iRBC
Y RBC
Y iRBC

 466 

X = fluorescently labelled target wild-type or TfrcY20H/Y20H RBCs 467 

Y = donor derived wild-type RBCs 468 

 Iron measurements 469 

Serum iron measurements were performed on an Abbott Architect c16000 automated analyser by 470 

Oxford University Hospitals Clinical Biochemistry staff using the MULTIGENT Iron Kit (Abbott), or 471 

using a Pentra C400 automated analyser with the Iron CP ABX Pentra Kit (HORIBA Medical). 472 

Non-haem liver iron measurements were performed as previously described (88). In short, pieces of 473 

liver tissue were collected, snap-frozen, and stored at -80° C. The tissue was dried at 100º C for ~6 h, 474 

weighed, and then digested in 10% trichloroacetic acid / 30% hydrochloric acid in water for ~20 hours 475 

at 65ºC. Subsequently, a chromogen reagent containing 0.1% bathophenanthrolinedisulphonic acid 476 

(Sigma, 146617) / 0.8% thioglycolic acid (Sigma, 88652) / 11% sodium acetate in water was added, 477 

and the absorbance at 535 nm measured. The iron content was determined by comparing the samples 478 

against a standard curve of serially diluted ammonium ferric citrate (F5879, Merck). 479 

Flow cytometry  480 

Single cell suspensions for flow cytometry were prepared through mechanical and enzymatic 481 

dissociation. Spleens were passed through 70 μM cell strainers, incubated with 120 Kunitz U/mL 482 

deoxyribonuclease I (DN25, Merck) in R10 for 15 min with agitation, and passed through 40 μM cell 483 

strainers. Livers were perfused with PBS with 10% FBS prior to harvest. To prepare single cell 484 

suspensions, the livers were disrupted with scissors, incubated with 0.5 mg/mL collagenase IV (C5138, 485 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2023.02.05.527208doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.05.527208
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Merck) and 120 Kunitz U/mL DNAse I in R10 for 45 min with agitation, and passed through 70 μM 486 

cell strainers. RBC lysis was subsequently performed by resuspending pelleted cells in tris-buffered 487 

ammonium chloride buffer (0.017 M Tris / 0.14 M NH4Cl, adjusted to pH 7.2 with HCl) and incubating 488 

for ~5 min on ice before washing with R10.  489 

Immune cells were isolated from livers by Percoll (17-08-91, GE Healthcare) separation. Single-cell 490 

suspensions were gently overlayed onto 33% Percoll and centrifuged for 25 min at 800 x g. After 491 

centrifugation, the supernatant was discarded and the remaining leukocytes were washed twice with 492 

R10.  493 

For intracellular cytokine staining, splenocytes were cultured ex vivo in R10 at 5-2 x 105 cells/mL, in 494 

round-bottom tissue culture treated 96-well plates, with protein transport inhibitor Brefeldin A for 4-6 495 

h at 37° C, 5% CO2. To activate T cells, 0.5 μg/mL anti-mouse CD3 (100201, BioLegend) was added 496 

to splenocytes from P. chabaudi infected mice. 497 

Cells were counted using a CASY Cell Counter and Analyser (BOKE), and 1-5 x 106 cells were stained 498 

for flow cytometry. The cells were washed in PBS, blocked with TruStain FcX (101319, BioLegend), 499 

and stained with a viability dye (NIR Fixable Viability Kit (42301/5, BioLegend) or LIVE/DEAD 500 

Fixable Near-IR Dead Cell Stain Kit (L34975, Thermo Fisher Scientific)) for ~10 min at 4° C in the 501 

dark. Next, fluorophore-conjugated antibodies were added to the cells and incubated for ~20 min. The 502 

cells were washed twice in PBS and fixed by incubating with Fixation Buffer (420801, BioLegend) for 503 

~10 min at 4° C in the dark. Alternatively, the cells were fixed and permeabilised using eBioscience 504 

FOXP3/Transcription Factor Staining Buffer Set (00-5523-00, Thermo Fisher Scientific), and 505 

transcription factor staining was performed, according to the manufacturer’s instructions. Intracellular 506 

cytokine staining was performed after permeabilization with Intracellular Staining Permeabilization 507 

Wash Buffer (421002, BioLegend) for ~30 min, according to the manufacturer’s protocol. The samples 508 

were acquired on an Attune NxT or BD LSR Fortessa X-20 (BD) flow cytometer.  509 
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In vitro culture of primary immune cells  510 

Naïve CD4+  T cells and B cells were isolated according to the manufacturer’s instructions from mixed 511 

splenocyte and lymph node single-cell suspensions using the EasySep Mouse Naïve CD4+ T Cell 512 

Isolation Kit (19765, STEMCELL), or from splenocyte single-cell suspensions using the EasySep 513 

Mouse B Cell Isolation Kit (19854, STEMCELL). The isolated cells were fluorescently labelled with 5 514 

μM CellTrace Violet (C34571, Thermo Fisher Scientific) in PBS for 8 min at 37° C and washed twice 515 

in R10 media. Cell counting was performed with a CASY Cell Counter and Analyser. 516 

For CD4+ T cells, flat-bottom tissue culture treated 96-well plates were pre-coated with 5 μg/mL anti-517 

mouse CD3 and the cells were seeded at 5 x 105 cells/mL. They were cultured in Th1-polarising media 518 

consisting of R10 with 1 μg/mL anti-mouse CD28 (102101, BioLegend), 5 μg/mL anti-mouse IL-4 519 

(504102, BioLegend), 10 ng/mL IL-12 (505201, BioLegend), 25 U/mL IL-2 (575404, BioLegend) and 520 

50 μM 2-Mercaptoethanol. The media was replaced after 48 h of culture. To iron supplement the culture 521 

medium, iron sulphate heptahydrate (F8633, Merck) was added at the previously specified 522 

concentrations.  523 

B cells were cultured at 7.5 x 105 cells/mL in flat-bottom tissue culture treated 96-well plates, in R10 524 

media with 1% MEM amino acids (11130, Thermo Fisher Scientific), 2 μg/mL LPS (tlrl-peklps, 525 

InvivoGen), 10 ng/mL IL-4 (574302, BioLegend), 10 ng/mL IL-5 (581502, BioLegend) and 50 μM 2-526 

Mercaptoethanol. Ammonium ferric citrate was added at the specified concentrations to iron 527 

supplement the media.  528 

CD4+ T cells were cultured for 96 h and B cells for 72 h at 37° C, 5% CO2, before flow cytometry 529 

staining. The type of iron used to supplement the culture media was chosen to optimise cell viability. 530 

Gene expression analysis  531 

Gene expression analysis by quantitative real-time PCR, was performed on liver samples preserved in 532 

RNAlater Stabilization Solution and stored at -80° C (AM7020, Thermo Fisher Scientific). The tissue 533 

was homogenised with a TissueRuptor II (9002725, QIAGEN) before total RNA was extracted using 534 

the RNeasy Plus Mini Kit (74136, QIAGEN), according to the manufacturer’s protocols. cDNA was 535 
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synthesised using the High-Capacity RNA-to-cDNA Kit (4387406, Thermo Fisher Scientific) and 536 

subsequent gene expression analysis was performed on 1-5 ng/mL cDNA, using TaqMan Gene 537 

Expression Master Mix (4369016, Thermo Fisher Scientific) and the TaqMan Gene Expression Assays 538 

(Thermo Fisher Scientific) listed in Table 1, all according to the manufacturers’ instructions. An 539 

Applied Biosystems 6500 Fast Real-Time PCR System (Thermo Fisher Scientific) instrument was used 540 

to run the samples, and the relative gene expression was calculated through the 2-ΔCT method (89). 541 

Table 1. List of TaqMan Gene Expression Assays. 542 

Protein  Gene  Assay code  

Fibrinogen alpha chain Fga Mm00802584_m1 

Hypoxanthine-guanine phosphoribosyltransferase  Hprt Mm01545399_m1  

Interferon γ Ifng Mm01168134_m1 

Interleukin 1β Il1b Mm00434228_m1 

Serum amyloid A1 Saa1 Mm00656927_g1 

Tumour necrosis factor α Tnf Mm00443258_m1 

 543 

Liver histology 544 

Liver samples were fixed with 4% paraformaldehyde in PBS and embedded in paraffin. Following 545 

deparaffinization with xylene and hydration by a passage through a grade of alcohols, 3 µm-thick 546 

sections were stained with haematoxylin-eosin, and Periodic Acid-Schiff, before and after diastase 547 

digestion, at IPATIMUP Diagnostics, Portugal, using standard procedures.  548 

Histopathology scores for lobular necro-inflammatory activity were assigned using the criteria of 549 

Scheuer (90) for the grading of chronic hepatitis. In short, the scores were assigned as follows, 0 = 550 

inflammation absent, 1 = inflammation but no hepatocellular death, 2 = focal necrosis (one or a few 551 

necrotic hepatocytes/acidophil bodies), 3 = severe focal death, confluent necrosis without bridging, and 552 

4 = damage includes bridging necrosis. Sections were scored independently by two investigators with 553 

experience in liver histopathology who were blinded to the experimental groups. The total numbers of 554 

RBC endothelial cytoadherence (sequestration), rosetting and vascular occlusion events were counted 555 
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blindly in random high-power (×400 magnification) fields of liver sections. Images were captured using 556 

an Olympus BX50 photomicroscope. 557 

For the immunohistochemical detection of CD45+ cells, liver sections were subjected to antigen 558 

retrieval with citrate buffer, endogenous peroxidases were blocked with 0.6% H2O2 and non-specific 559 

antigens were blocked with 5 % bovine serum albumin. Samples were incubated with goat anti-mouse 560 

CD45 antibody (1:50, AF114, R&D Systems, MN, USA) followed by horseradish peroxidase-561 

conjugated rabbit anti-goat IgG (1:250, R-21459, ThermoFisher Scientific). Immunoreactivity was 562 

visualized using 3,3’-diaminobenzidine. Quantification was performed by counting positive cells in 5 563 

random fields per liver at 200× magnification using QuPath Open Software for Bioimage Analysis 564 

(version 0.4.0). 565 

Thiobarbaturic acid reactive substances assay 566 

Liver ROS/lipid peroxidation was appreciated by quantifying malondialdehyde, using the TBARS 567 

Assay Kit (700870, Cayman Chemical) as described by the manufacturer. Briefly, tissue homogenates 568 

were prepared from snap-frozen liver tissue by adding 1 mL RIPA buffer per 100 mg of tissue, and 569 

lysing using Precellys soft tissue homogenising tubes (KT03961-1-003.2, Bertin Instruments) 570 

according to manufacturers instruction. The lysates were allowed to react with thiobarbaturic acid at 571 

95° C for 1 h, cooled on ice, and centrifuged for 10 min at 1,600 x g at 4° C. Subsequently, the 572 

absorbance of the lysates at 530 nm was measured. 573 

Software and statistical analysis  574 

All flow cytometry data analysis was performed using FlowJo analysis software (BD). Graphs were 575 

generated using GraphPad Prism (GraphPad Software).  576 

Statistical analysis was also performed in GraphPad Prism and differences were considered statistically 577 

different when p<0.05 (* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001). The D’Agostino-Pearson 578 

omnibus normality test was used to determine normality/lognormality. Parametric statistical tests (e.g. 579 

Welch’s t-test) were used for normally distributed data. For lognormal distributions, the data was log-580 

transformed prior to statistical analysis. Where data did not have a normal or lognormal distribution, or 581 
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too few data points were available for normality testing, a nonparametric test (e.g. Mann-Whitney test) 582 

was applied. A t-test (or a comparable nonparametric test) was used to compare the means of two 583 

groups. As a rule, t-tests were performed with Welch’s correction, as it corrects for unequal standard 584 

deviations but does not introduce error when standard deviations are equal. Two-way ANOVA was 585 

used for analysis with two categorical variables and one continuous variable. The applied statistical test 586 

and sample size (n) is indicated in each figure legend.  587 
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 844 

FIGURE LEGENDS 845 

Figure 1: Decreased cellular iron uptake increases the P. chabaudi pathogen burden.  846 

A) C57BL/6 (WT) and TfrcY20H/Y20H (TfR) mice were infected by intravenous (i.v.) injection of 105 847 

recently mosquito-transmitted P. chabaudi infected red blood cells (iRBC).  848 

B-E) Parasitaemia (B), iRBC count (C), body weight change (D) and RBC count (E) measured 849 

throughout the course of infection. Mean ± SEM, mixed-effects analysis (B, C, E) or repeated measures 850 

two-way ANOVA (D), with Sidak’s multiple comparisons test, n=7-9.  851 

F-G) Haemoglobin measured 8 (F) and 20 (G) days after infection. Welch’s t-test, n=6-9.  852 

H-I) A mix of unlabelled WT RBC and iRBC were incubated with fluorescently labelled WT or TfR 853 

RBC and the invasion susceptibility index (SI) was determined after completion of a new invasion 854 

cycle. Mean, Welch’s t-test, n=3.  855 

J-K) Liver iron and serum iron levels measured 8 days after infection. Mean, Welch’s t-test, n=9. 856 

Figure 2: Decreased cellular iron uptake impairs the splenic MNP response to P. chabaudi. Splenic 857 

immune response to P.chabaudi in C57BL/6 (WT) and TfrcY20H/Y20H (TfR) mice at 8 dpi.  858 
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A) Representative picture of spleens from naïve and P. chabaudi infected mice.  859 

B) Spleen index of spleens from naïve and P. chabaudi infected mice. Mean, Welch’s t-test n=9.  860 

C-E) Absolute numbers of CD11b+ CD11c+ mononuclear phagocytes (MNPs) (C), Ly6Chi CD11b+ 861 

monocytes/macrophages (D) and MHCII+ CD11c+ dendritic cells (E) in spleens from naïve and P. 862 

chabaudi infected mice . Mean, Welch’s t-test on untransformed (C) or log transformed data (D, E) 863 

n=9-11.  864 

F) Representative flow cytometry plot of interferon-γ (IFNγ) production of CD11b+ CD11c+ MNPs.  865 

G) Proportion of IFNγ-producing MNPs, detected by intracellular cytokine staining. Mean, Welch’s t-866 

test n=9-11.  867 

Dotted line represents uninfected mice. 868 

Figure 3: Decreased cellular iron uptake disrupts the effector CD4+ T cell response to P. chabaudi. 869 

Conventional CD4+ T cells (FOXP3-) in the spleen of P. chabaudi infected C57BL/6 (WT) and 870 

TfrcY20H/Y20H (TfR) mice, 8 dpi.  871 

A) Absolute number of CD4+ T cells in the spleen of P. chabaudi infected WT and TfR mice. Mean, 872 

Welch’s t-test, n=9-11. 873 

B) Proportions of naïve (CD44- CD62L+), effector (CD62L- CD127-) and memory (CD44+ CD127+) 874 

CD4+ T cells in the spleen of P. chabaudi infected WT and TfR mice. Mean, two-way ANOVA with 875 

Sidak’s multiple comparisons test, n=9-11.  876 

C) Absolute number of effector CD4+ T cells in the spleen of P. chabaudi infected WT and TfR mice. 877 

Mean, Mann-Whitney test, n=9-11. 878 

D-E) Proportions of CD4+ T cells expressing markers of antigen experience CD44+ (D) and PD-1+ (E) 879 

in the spleen of P. chabaudi infected WT and TfR mice. Mean, Welch’s t-test n=9-11 880 

F) Proportion of proliferating (KI-67+) CD4+ T cells in the spleen of P. chabaudi infected WT and TfR 881 

mice. Mean, Welch’s t-test n=9-11 882 
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G) Proportion of T helper 1 (TBET+) CD4+ T cells in the spleen of P. chabaudi infected WT and TfR 883 

mice. Mean, Welch’s t-test n=9-11 884 

H) Representative flow cytometry plot of IFNγ producing CD4+ T cells in the spleen of P. chabaudi 885 

infected WT and TfR mice.  886 

I) Proportion of IFNγ producing CD4+ T cells, detected by intracellular cytokine staining, in the spleen 887 

of P. chabaudi infected WT and TfR mice. Mean, Welch’s t-test n=10-11. 888 

Dotted line represents uninfected mice. 889 

Figure 4. In vitro T helper 1 (Th1) polarised TfrcY20H/Y20H CD4+ T cells have impaired proliferation 890 

and effector function, which can be rescued by iron supplementation.  891 

A) Naïve CD4+ T cells were isolated from uninfected C57BL/6 (WT) and TfrcY20H/Y20H (TfR) mice, and 892 

cultured for 96 h in Th1 polarising media, with varying concentrations of iron sulfate (FeSO4).  893 

B) Representative flow cytometry plot of CD4+ T cell proliferation, quantified using CellTrace Violet.  894 

C) Proportion of CD4+ T cells that have divided more than two times (> 2X). Mean, two-way ANOVA, 895 

Sidak’s multiple comparisons test, n=3. 896 

D) Representative flow cytometry plot of IFNγ producing CD4+ T cell in the absence or presence of 897 

FeSO4.  898 

E-F) Proportion of IFNγ producing CD4 T cells (E) and IFNγ production per cell (F). Mean, two-way 899 

ANOVA, Sidak’s multiple comparisons test, n=3. 900 

Figure 5. Decreased cellular iron uptake disrupts the germinal centre response to P. chabaudi. 901 

Splenic immune response of P. chabaudi infected C57BL/6 (WT) and TfrcY20H/Y20H (TfR) mice.  902 

A) Proportion of CD4+ T cells expressing B cell co-stimulatory receptor ICOS in the spleen of of P. 903 

chabaudi infected WT and TfR mice, 8 dpi. Mean, Welch’s t-test, n=10-11. 904 

B) Proportion of T follicular helper (Tfh) cells in the spleen of of P. chabaudi infected WT and TfR 905 

mice, 8 dpi. Mean, Welch’s t-test, n=9. 906 
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C) Proportion of Tfh cells in the spleen of of P. chabaudi infected WT and TfR mice, 20 dpi. Mean, 907 

Welch’s t-test, n=6-7. 908 

D-F) Absolute total number of splenic B cells (D) and proportion of activated (E) and antibody secreting 909 

(F) splenic B cells in the spleen of of P. chabaudi infected WT and TfR mice, 8 dpi. Mean, Welch’s t-910 

test, n=9. 911 

G) Proportion of germinal centre B cells in the spleen of of P. chabaudi infected WT and TfR mice, 8 912 

dpi. Mean, Welch’s t-test, n=9. 913 

H) Representative flow cytometry plot of germinal centre B cells in the spleen of of P. chabaudi 914 

infected WT and TfR mice, 20 dpi.  915 

I) Proportion of germinal centre B cells in the spleen of of P. chabaudi infected WT and TfR mice, 20 916 

dpi. Mean, Welch’s t-test on log transformed data, n=6-9. 917 

Dotted line represents uninfected mice. 918 

Figure 6. In vitro cultured TfrcY20H/Y20H B cells display impaired activation, proliferation and 919 

differentiation, which can be rescued by iron supplementation.  920 

A) B cells were isolated from uninfected C57BL/6 (WT) and TfrcY20H/Y20H (TfR) mice and cultured for 921 

96 h in B cell activating media, with varying concentrations of ammonium ferric citrate (AFeC).  922 

B) Large neutral amino acid transporter-1 (LAT-1/CD98) expression on divided B cells. Mean, two-923 

way ANOVA, Sidak’s multiple comparisons test, n=3. 924 

C) Representative flow cytometry plot of proliferating B cells, quantified using CellTrace Violet.  925 

D) Proportion of proliferating B cells (CTVlow). Mean, two-way ANOVA, Sidak’s multiple 926 

comparisons test, n=3. 927 

E) Representative flow cytometry plots of antibody secreting (CD138+) and class-switched (IgG+) 928 

divided B cells. 929 
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F-G) Proportion of antibody secreting (F) and class-switched (G) divided B cells. Mean, two-way 930 

ANOVA, Sidak’s multiple comparisons test, n=3. 931 

Figure 7. Decreased cellular iron uptake mitigates P. chabaudi liver pathology. Liver pathology of 932 

P. chabaudi infected C57BL/6 (WT) and TfrcY20H/Y20H (TfR) mice, 8 dpi.  933 

A-B) Serum levels of angiopoietin-2 (A) and alanine transaminase (B). Mean, Welch’s t-test, n=15-16. 934 

Dotted line represents uninfected mice 935 

C-D) Haematoxylin and eosin (C), and periodic acid–Schiff (D) staining of representative liver sections. 936 

Labels indicate central veins (CV), portal triads (PT), and areas of focal (black arrows) and bridging 937 

(white arrows) necrosis. Original magnification 40X, scale bar 100 µm.  938 

E) Quantification of severe hepatic necrosis (score ≧ 3) as measured by histological scoring. Count, 939 

Fisher’s exact test, n=10-11.  940 

F) Number of hepatic red blood cell sequestration, rosetting and vascular occlusion events per randomly 941 

imaged high-power field (HPF). Mean, Welch’s t-test, n=10-11. 942 

G) Immunohistochemistry staining of liver leukocytes (CD45+) in representative liver sections. 943 

Original magnification 20X, scale bar 100 µm.  944 

H) Quantification of CD45+ leukocytes in liver sections identified by immunohistochemistry staining. 945 

n= 9-11 946 

I-L) Hepatic monocytes/macrophages (I), dendritic cells (J), CD44+ CD4+ T cells (K) and CD44+ 947 

CD8+ T cells (L). Mean, Welch’s t-test, n=7-12. 948 

Figure S1: TfrcY20H/Y20H mice have mild microcytosis and decreased iron levels at homeostasis. 949 

Uninfected 8–12-week-old C57BL/6 (WT) and TfrcY20H/Y20H (TfR) mice were used for characterization. 950 

A) Body weight at homeostasis. Mean, Welch’s t-test, n=9-10. 951 

B-D) Haemoglobin (B), mean RBC volume (C) and RBC count (D) at homeostasis. Mean, Welch’s t-952 

test, n=7. 953 
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E-F) Liver iron (E) and serum iron (F) at homeostasis. Mean, Welch’s t-test, n=8-10. 954 

Figure S2. Hyperferremia does not increase P. chabaudi parasitaemia.  955 

A) C57BL/6 mice were infected by intravenous (i.v.) injection of 105 P. chabaudi infected red blood 956 

cells (iRBC). A monoclonal anti-BMP-6 antibody (αBMP6) or an isotype control antibody (Iso) was 957 

administered 2, 12 and 16 days after infection.  958 

B) Serum iron measured 9 and 21 dpi in mice treated with anti-BMP6 or Iso. At day 9 post-infection, 959 

serum samples, collected through tail bleeding, were pooled for each experimental group to obtain 960 

sufficient sample for the quantification. At day 21 post-infection, mice were sacrificed, and serum 961 

samples collected through cardiac puncture. Mean, Welch’s t-test, n=6-8.  962 

C-E) Parasitaemia (C), iRBC count (D) and relative change in body weight (E) were measured 963 

throughout the course of infection. Mean ± SEM, two-way ANOVA with Sidak’s multiple comparisons 964 

test, n=6-8. 965 

Figure S3: Mononuclear phagocyte gating scheme and innate immune response to P. chabaudi 966 

infection. Splenic immune response of P. chabaudi infected C57BL/6 (WT) and TfrcY20H/Y20H (TfR) 967 

mice, 8 dpi.  968 

A) Gating strategy for mononuclear phagocytes (MNP), monocytes/macrophages (Mo/Mac) and 969 

dendritic cells (DC). 970 

B-D) Absolute number of splenic neutrophils (B), eosinophils (C) and NK cells (D) of WT and TfR 971 

mice at 8dpi. Mean, Welch’s t-test, n = 6-8. 972 

Figure S4: Decreased cellular iron uptake attenuates the effector CD8+ T cell response to P. 973 

chabaudi.  CD8+ T cells in the spleen of P. chabaudi infected C57BL/6 (WT) and TfrcY20H/Y20H (TfR) 974 

mice, 8 dpi.  975 

A) Absolute numbers of splenic CD8+ T cells of P. chabaudi infected WT and TfR mice. Mean, Welch’s 976 

t-test, n=9-10. 977 
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B) Proportion of naïve (CD44- CD62L+), effector (CD62L- CD127-) and memory (CD44+ CD127+) 978 

splenic CD8+ T cells of P. chabaudi infected WT and TfR mice. Mean, two-way ANOVA with Sidak’s 979 

multiple comparisons test, n=9-11.  980 

C) Absolute number of effector CD8+ T cells of spleens from P. chabaudi infected WT and TfR mice. 981 

Mean, Mann-Whitney test, n=9-11. 982 

D-E) Proportion of splenic CD8+ T cells expressing markers of antigen experience CD44+ (D) and PD-983 

1+ (E) of P. chabaudi infected WT and TfR mice. Mean, Welch’s t-test n=10 984 

F) Proportion of proliferating (KI-67+) splenic CD8+ T cells of P. chabaudi infected WT and TfR mice. 985 

Mean, Welch’s t-test n=9-11 986 

G) Proportion of IFNγ producing splenic CD8+ T cells, detected by intracellular cytokine staining of P. 987 

chabaudi infected WT and TfR mice. Mean, Welch’s t-test n=10-11. 988 

Dotted line represents uninfected mice. 989 

Figure S5. Decreased cellular iron uptake attenuates P. chabaudi induced liver damage. Hepatic 990 

response of P. chabaudi infected C57BL/6 (WT) and TfrcY20H/Y20H (TfR) mice, 8 dpi.  991 

A-B) Liver gene expression of Saa1 (A) and Fga (B) of P. chabaudi infected WT and TfR mice. Mean, 992 

Welch’s t-test, n=12. 993 

C) Liver index of P. chabaudi infected WT and TfR mice. Mean, Welch’s t-test, n=10-11. 994 

D-E) Higher magnification depiction of H&E (D) and PAS (E) stained liver sections from a 995 

representative P. chabaudi infected WT mouse. The arrowheads indicate areas of confluent necrosis, 996 

featuring lobular disarray, lympho-histiocytic inflammation, acidophil body formation, and glycogen 997 

depletion. Original magnification 200×, scale bar 20µm.  998 

F) Blinded scoring of lobular necro-inflammatory activity. Mann-Whitney test, n=10-11. 999 
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G) Hepatic malondialdehyde (MDA), quantified as an indirect measurement or ROS, using a 1000 

thiobarbituric acid reactive substances assay in P. chabaudi infected WT and TfR mice. Mean, Welch’s 1001 

t-test, n=10-12. 1002 

H-J) Liver gene expression of Tnf (H), Ifn (I) and Il1b (J). Mean, Welch’s t-test on untransformed 1003 

(H&J) or log transformed data (I), n=12. 1004 

 1005 
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