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Highlights12

• We develop an all-optical technique that enables simultaneous whole brain imaging and optogenetic13

manipulation of selective brain regions in freely behaving larval zebrafish.14

• A combination of a genetically encoded calcium indicator and a long Stokes-shift red fluorescence15

protein, together with the adaptive filter algorithm, enables us to reliably distinguish calcium activity from16

motion-induced signal contamination.17

• Rapid 3D image reconstruction and registration enables real-time targeted optogenetic stimulation of distinct18

brain regions in a freely swimming larval zebrafish.19

Summary20

We introduce an all-optical technique that enables volumetric imaging of brain-wide calcium activity and21

targeted optogenetic stimulation of specific brain regions in freely swimming larval zebrafish. The system22

consists of three main components: a 3D tracking module, a dual color fluorescence imaging module,23

and a real-time activity manipulation module. Our approach uses a sensitive genetically encoded calcium24

indicator in combination with a long Stokes shift red fluorescence protein as a reference channel, allowing25

the extraction of Ca2+ activity from signals contaminated by motion artifacts. The method also incorporates26

rapid 3D image reconstruction and registration, facilitating real-time selective optogenetic stimulation of27

different regions of the brain. By demonstrating that selective light activation of the midbrain regions in28

larval zebrafish could reliably trigger biased turning behavior and changes of brain-wide neural activity, we29

present a valuable tool for investigating the causal relationship between distributed neural circuit dynamics30

and naturalistic behavior.31
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1 Introduction34

One of the central questions in systems neuroscience is understanding how distributed neural activity over space35

and time gives rise to animal behaviors (1, 2). This relationship is confounded by recent recordings in several36

model organisms, which reveal that brain-wide activity is pervaded by behavior-related signals (3–7). All-optical37

interrogation, which enables simultaneous optical read-out and manipulation of activity in brain circuits, opens a new38

avenue to investigate neural dynamics that are causally related to behaviors and neural representation of behaviors39

that are involved in different cognitive processes (8–11).40

41
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2.1 Tracking system

All-optical neurophysiology has been successfully applied to probe the functional connectivity of neural circuit42

in vivo and the impact of genetically or functionally defined group of neurons on the behaviors of head-fixed animals43

(12–14). Here we extend this technique to freely swimming larval zebrafish, which allows simultaneous targeted44

stimulation of the brain region of interest and read-out of whole brain Ca2+ activity during naturalistic behavior, such45

that all sensorimotor loops remain intact and active. Our approach leverages recent advancements in volumetric46

imaging and machine learning: (1) with the advent of light-field microscope (LFM), brain-wide neural activity can be47

captured rapidly and simultaneously; (2) deep neural network-based image detection and registration algorithms48

enable robust real-time tracking and brain region selection for activity manipulation.49

50

There have been several reports on whole brain imaging of freely swimming zebrafish (15–20). However, a51

serious problem can hinder the wide use of this technique: swimming itself causes substantial fluctuations in the52

brightness of the neural activity indicator. These fluctuations can interfere with the accurate interpretation of true53

neural activity in zebrafish (19). In an effort to overcome this issue, we have integrated an imaging channel designed54

for simultaneous panneuronal imaging of a long Stokes shift and activity-independent red fluorescence protein55

(Fig. S1). This protein shares the same excitation laser as the Ca2+ indicator. The incorporation of a reference56

channel, alongside the implementation of an adaptive filter algorithm, enables us to correct activity signals tainted57

by motion artifacts resulting from the zebrafish’s swift movements.58

59

Fig. 1 shows a schematic of our system that integrated tracking, dual color volumetric fluorescence imaging60

and optogenetic manipulation. We performed simultaneous brain-wide Ca2+ signal and reference signal recording61

using the fast eXtended Light Field Microscope (XLFM) (16). An optogenetic module was incorporated into the62

imaging system to enable real-time activity manipulation in defined brain regions in a freely swimming larval63

zebrafish.64

2 Results65

2.1 Tracking system66

To reliably maintain the head of a swimming fish within the field of view (FoV) of the microscope, we redesigned67

our high-speed tracking system (16) with two major changes. First, to correctly identify the position of the fish head68

and yolk from a complex background, we replaced the conventional computer vision algorithms for object detection69

(that is, background modeling and adaptive threshold) with a U-Net (21) image processing module (Methods). This70

approach greatly improves the accuracy and robustness of the tracking in a complex environment while ensuring a71

high image detection speed (< 3 ms). Second, we combined the current position of the fish and its historical motion72

trajectory (17) to predict fish’s motion (Fig. 2a). This allows the system to preemptively adjust the stage position to73

keep the fish in view, even when it is swimming quickly.74

75

76

To quantify the tracking performance, we define the tracking error as the distance between the center of the fish77

head and the center of the microscope FoV (Fig. 2b right). The FoV of the XLFM is 800 µm in diameter, and the78

size of brain along the rostrocaudal axis is about 600 µm. Therefore, a tracking error less than 100 µm is sufficient79

to capture the image of the entire brain. We tested our tracking system in several experimental paradigms, including80

spontaneous behavior, swimming in the presence of water flow, and during optogenetic stimulation. We found that81

about 92.6% of the frames were within 100 µm tracking error at all times (a total of 13,801,838 frames, Fig. 2c).82

During locomotion, 58.69% of the frames were within this range of tracking error (n = 26,930 bouts, 2,293,25883

frames).84

85

Fig. 2d-g shows the performance of the tracking system when a water flow stimulus was applied to the fish.86

On this occasion, a large bubble appeared in the microfluidic chamber (Fig. 2f, top). Despite a distracting87

background, the image detection module was still able to accurately identify the position of the fish and keep the88

head of the fish within the microscope FoV (Fig. 2f, bottom). Taken together, these results demonstrate that our89

tracking system is highly reliable and can be used in a variety of behavior experiments.90

2.2 Dual color volumetric image alignment91

Two-color fluorescence imaging (Fig. 1) enables us to use a reference signal (Fig. S1) to correct for Ca2+ signal92

artifacts caused by zebrafish movements. Fig. 3a shows each step in the image processing pipeline. Briefly, the93

reconstructed 3D volumetric image frames of the activity-independent red channel were registered and aligned94

with a template. The pairwise transformation matrix was then applied to the 3D images of the green channel. The95
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2.2 Dual color volumetric image alignment
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Figure 1. Schematics of the dual color whole brain imaging and optogenetic system. The system integrated tracking, dual
color light-field imaging, and optogenetic stimulation. A convolutional neural network (CNN) was used to detect the positions of
fish head from dark-field images captured by the near-infrared (NIR) tracking camera. A tracking model converted the real-time
positional information into analog signals to drive the high-speed motorized stage and compensate for fish movement. The neural
activity-dependent green fluorescence signal and the activity-independent red fluorescence signal were split into two beams by
a dichroic mirror before entering the two sCMOS cameras separately. The dichroic mirror was placed just before the micro-lens
array. Both the red and green fluorophore can be excited by a blue laser (488 nm). An x-y galvo system deflected a yellow laser
(588 nm) to a user-defined ROI in the fish brain for real-time optogenetic manipulation with the aid of fast whole-brain image
reconstruction and registration algorithm.
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2.2 Dual color volumetric image alignment
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Figure 2. Tracking system. a. Flowchart of the tracking system. b. A near-infrared (NIR) image captured by the tracking
camera, with the tracking error highlighted. The cyan circle indicates the field of view (FoV) of the XLFM. The tracking error is
the distance between the center of the fish head and the center of the FoV. The scale bar is 2.5 mm (left) and 1 mm (right). c.
The cumulative distribution of the tracking error, based on all time points or when the fish was in motion. "In motion" is defined as
a tracking error that lasts for at least 30 ms and exceeds 50 µm in maximum magnitude. The data comes from 34 fish, each of
which was tracked for more than 10 minutes. The red dashed line is the maximum tolerable error, the distance beyond which the
fish brain is not completely visible in the FoV. d-g Tracking example of a freely swimming larval zebrafish stimulated by water flow.
d. Swimming distance during example trajectory. e. The example trajectory. The yellow line indicates the example trajectory of
the fish, and the gray lines indicate all other movements in the microfluidic chip. f. Top, NIR tracking video images. The scale bar
is 2.5 mm. Bottom, reconstructed whole brain fluorescence images obtained during this trajectory. Scale bar, 300 µm. g. Tracking
error during this example trajectory. Note that the applied water flow (arrow in e) forced the fish to move backward (VideoS1),
an unexpected movement pattern for the motion prediction model. As a result, the system shows a larger tracking error in the
blue-shaded period.
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2.3 Motion artifact correction

aligned green channel images were segmented into region of interest (ROI) based on the spatiotemporal correlation96

of the intensity of the voxel (Methods), and the Ca2+ signal in each ROI was extracted and corrected.97

98

Aligning whole brain image frames is one of the critical steps in extracting the Ca2+ signal accurately. However, the99

brain regions could deform significantly and the fluorescence intensity of most ROIs could change significantly in100

swimming zebrafish. These factors make whole-brain image registration a challenging task.101

102

Here we used CMTK toolkit (22) and imregdemons function in MATLAB (23) to complete the rigid and103

non-rigid registration of a 3D image, respectively (Methods). To test our alignment algorithm, we injected the104

Tol2-elavl3:h2b-EGFP plasmid into fertilized eggs of elavl3:h2b-LSSmCrimson zebrafish. Due to the uneven105

distribution of the plasmid in the eggs, EGFP did not achieve whole brain neuronal expression in this generation of106

zebrafish, but rather showed expression patterns with different degrees of sparseness. We selected zebrafish with107

moderately sparse expression of EGFP at 6 dpf and recorded their dual-channel images during fish movement. Due108

to the sparse expression of EGFP, individual neurons randomly distributed in different brain regions can be seen in109

the 3D reconstructed images. After registering red channel frames with pan-neuronal expression of LSSmCrimson110

(Fig. 3a), we applied the same transformation to the sparse EGFP images (Fig. 3b). This allowed us to view111

the alignment results for each neuron in the green channel (Methods) (VideoS2), and to test and optimize our112

registration algorithm.113

114

Fig. 3c represents the aligned EGFP multi-frame images (Fig. 3b) in different colors, overlaid to visualize the115

alignment effect. Whiter colors indicate better alignment (Fig. 3c). The sparsity of EGFP expression allows us to116

track about 160 neurons over time according to the spatiotemporal continuity of an object (Methods and Fig. S2).117

We quantified the root-mean-square displacement (RMSD), namely
√

⟨∥∆r⃗∥2⟩, of the center of mass of a neuron118

relative to its coordinates in the reference frame (Fig. 3d), where the blue line indicates an average over all the119

neurons whose correspondents could be identified. The RMSD (Fig. 3d) is much smaller than the ROI size (8.8-18.3120

µm, 25% - 75% quantile) resulting from our segmentation algorithm (Methods). Together, these results suggest that121

our data processing pipeline is effective in aligning whole brain images of larval zebrafish and thus can extract Ca2+
122

signals from most ROIs accurately.123

2.3 Motion artifact correction124

Rapid movements of larval zebrafish (translation and tilt) within FoV can cause significant changes in fluorescence125

intensity in both green and red channels, even when neural activity does not change (19). Here, we introduce126

an adaptive filter (AF) algorithm (Fig. 4a) to correct for motion artifacts (Methods). We use the AF algorithm to127

dynamically predict the green signal ĝ(n) from the signal in the red channel so that the difference between the128

predicted and the actual green signal in the current time frame n, e(n) = ĝ(n) − g(n), is as small as possible. In129

the absence of neural activity, e(n) is expected to fluctuate around 0. When there is neural activity, the resulting130

Ca2+ signal would rise rapidly and e(n) would have a large positive value. We identified the predicted ĝ(n) as the131

time-dependent baseline of the signal in the green channel due to zebrafish movements. The Ca2+ activity was132

inferred from the normalized signal difference
(
g(n)− ĝ(n)

)
/ĝ(n).133

134

The AF algorithm uses the history-dependent correlation between the green fluorescence signals (jGCaMP8s135

(24)) and the red fluorescence signals (LSSmCrimson) to correct for changes in motion-induced signals. These136

changes are caused by two major factors.137

• Inhomogeneous light field. When a larval zebrafish moves, the intensity of the excitation light varies across138

the FoV. In this case, the change of fluorescence intensity in the green channel and that in the red channel139

differ by a proportionality constant, namely δg(n) = α · δr(n). A simple ratiometric division (25, 26) between140

the green and red channels can largely correct for this effect.141

• Scattering and attenuation. When the larval zebrafish tilts its body, the fluorescence emitted from the same142

neuron is scattered and obscured by brain tissues and body pigments. This complicated time-varying process143

is likely to have a chromatic difference, leading to disproportionate changes in the intensity between the green144

and red signals. The latter effect cannot be easily corrected for by a direct division.145

The history dependence of the signal comes from the observation that motion-induced fluorescence changes can146

persist over multiple frames.147

148

To verify the effectiveness of the motion correction algorithm, we constructed a transgenic zebrafish line with149

pan-neuronal nucleus expression of EGFP and LSSmCrimson. We then simultaneously recorded the green and150
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2.3 Motion artifact correction
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Figure 3. Dual-color image registration. a. Dual-color image processing pipeline (Methods) . The flow chart highlights the
following steps: 3D light-field reconstruction; multi-scale image alignment; region of interest (ROI) segmentation; and Ca2+ signal
extraction and correction. The black arrows indicate that identical operations can be directly applied to a different channel.
b. Aligned images of sparsely labelled EGFP zebrafish, guided by the reference channel (VideoS2). c. 3D visualization of
the alignment of b. d. The root-mean-square displacement (RMSD) of neuronal center of mass positions across time. This
displacement was measured in relation to their coordinates within a specified reference frame and was averaged across all
neurons that could be matched within a frame; the shaded region indicates SD. The red curve shows the instantaneous swimming
speed of larval zebrafish.
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2.4 Real-time optogenetic manipulation of freely swimming larval zebrafish

red fluorescence signals in a freely swimming larval zebrafish. LSSmCrimson was used to remove the fluctuation of151

the EGFP signal caused by animal movements. The ideal corrected EGFP signal, which does not change due to152

neural activity, would be close to 0. Fig. 4b shows representative fluorescence signals from an ROI before and after153

correction. The AF algorithm significantly reduced the motion-induced green fluorescence change compared to the154

ratiometric method. The improvement over the conventional method was quantified by plotting the distribution of the155

corrected signal fluctuation (i.e., the standard deviation) across all ROIs (Fig. 4c).156

157

After demonstrating that our dual-channel motion correction algorithm can largely eliminate signal changes158

due to animal movements, we next show that the same algorithm can extract true Ca2+ signal due to neural159

activity. First, we overlay computer-generated randomly timed neural activity on EGFP signals (Fig. 4d, top), namely160

g′(n) = g(n)(1 + a(n)), where a(n) is synthetic neural activity. We then asked whether the AF algorithm could161

correctly identify these synthetic signals (Fig. 4d, bottom) by examining the correlation coefficient r between a(n)162

and the inferred signal. We identified three factors that contribute to the precision of the AF algorithm (Fig. S5):163

a higher amplitude of Ca2+ activity, a higher correlation between the green and red channel signals, and a lower164

coefficient of variation (CV) of the red channel signal. We established a criteria (see Methods) for screening ROIs165

using the two-channel signal correlation and the CV of the LSSmCrimson signal, such that the inferred signal and166

the synthetic signal would exhibit a high correlation. Inferred results from brain regions that met this criterion were167

considered reliable and used for further analysis.168

169

Second, we wanted to investigate whether we could identify brain regions with similar stimulus-triggered170

Ca2+ activity patterns in freely swimming larval zebrafish and in the same animal that was immobilized in agarose.171

We decided to use a spatially invariant external stimulus: the blue excitation laser (488 nm, Fig. 1). In other words,172

we suddenly turned on the blue excitation light when the zebrafish was in the dark, thus inducing brain activity.173

The main advantage of this approach is that the blue excitation light bathes on the zebrafish head in a cylindrical174

shape, so the blue laser remains a relatively invariant stimulus for the animal even if its body orientation changes.175

Furthermore, the sudden onset of blue light in the dark is a powerful stimulus that can easily trigger brain activity.176

177

Fig. 5a shows the procedure of our blue light stimulation experiment. First, we presented a freely-swimming178

larval zebrafish with a 20-second blue-light stimulation (1 ms pulsed illumination at 25 Hz) followed by a 30-second179

dark period. The same animal was then immobilized with agarose and the same visual stimuli were applied.180

Brain-wide Ca2+ activity was recorded in both trials. We identified ROIs in immobilized zebrafish that showed181

prominent activity in response to the onset of repeated blue light stimulation (Fig. 5b, right). We then examined182

neural responses in the same ROIs when the animal was swimming freely. The similarity of the Ca2+ dynamics183

between different experimental conditions (Fig. 5a) was quantified by correlation analysis (Fig. 5d, left), where each184

data point represents a single trial from a single ROI. Many trials exhibited high correlation, and similarity improved185

after we applied the AF algorithm to remove motion artifacts.186

2.4 Real-time optogenetic manipulation of freely swimming larval zebrafish187

After introducing the dual-color AF method to extract brain-wide Ca2+ activity, we now describe the optogenetic188

system that enables real-time manipulation of user-defined brain regions in freely behaving larval zebrafish (Fig. 1).189

A user first selects the region to be stimulated on the zebrafish brain browser (ZBB) atlas (Fig. 6b, left) (27). The190

system then translates the region into actual locations on the fish brain and delivers photo-stimulation through191

real-time image processing and coordinate transformation.192

193

Fig. 6a shows the workflow of the optogenetic module. We used the red channel fluorescence image for194

brain region selection. To achieve online image processing, we speed up the reconstruction and registration195

algorithm by resizing the images, reducing the number of iterations in the reconstruction algorithm (16), and using a196

deep neural network model to compute the affine transformation matrix (28). These optimizations reduce the image197

processing time to 80 ms, faster than the acquisition speed of fluorescence imaging (10 Hz). After the coordinates198

of the user-selected region on the ZBB atlas are translated into the coordinates on the real-time image, the position199

is converted into a two-dimensional analog voltage signal. This signal is used to control the rapid deflection of the200

Galvo mirror in the X and Y directions, which completes the optical stimulation of a specified region in the larval201

zebrafish brain.202

203

Here we used transgenic zebrafish with pan-neuronal expression of jGCaMP8s (24), LSSmCrimson204

and the light-sensitive protein ChrimsonR (29) (elavl3:H2B-jGCaMP8s - elavl3:H2B-LSSmCrimson ×205

elavl3:ChrimsonR-tdTomato, 7 dpf) to test the capability of our system. A minimal area was selected in the206

ZBB atlas (Fig. 6b, left) and after coordinate transformation, a yellow laser beam was applied to the corresponding207
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Figure 4. AF algorithm for signal correction. a. Schematics of the AF algorithm. The AF algorithm works by first estimating the
motion artifacts in the green channel ĝ(n) using a weighted sum of the red channel signal r(n) over a recent history. The weights
w are dynamically updated so that the residual error, e(n) = g(n) - ĝ(n), is minimized. b. Top, representative raw fluorescence
signals from an ROI in freely swimming zebrafish with panneuronal expression of EGFP and LSSmCrimson. Bottom, inferred
activity traces. The AF method is more accurate than the conventional ratiometric method (Ratio) in removing motion artifacts.
c. The histogram shows the distribution of the inferred ROI activity level, defined as the standard deviation of activity over time.
Related to b. d. Top, a raw EGFP fluorescence signal with randomly added synthetic neural activity (purple). Bottom, inferred
activity trace (yellow).
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Figure 5. Blue light stimulation. a. Experimental paradigm of the blue light stimulation. A larval zebrafish was freely swimming
under our tracking microscope while blue excitation light (1 ms pulsed stimulation, 2.5% duty cycle) was suddenly turned on. The
light was turned on and off at 20/30 second intervals. The same animal was then immobilized in low melting point agarose and an
identical pattern of light stimulation was applied. Brain-wide calcium activity was recorded in both conditions. b. Top: jGCaMP8s
and LSSmCrimson raw fluorescence signals in 5 representative ROIs in which neurons showed prominent Ca2+ activity after light
stimulus onset. Shaded regions indicate the dark period. Bottom: inferred calcium activity using the AF algorithm. Left panels
are recordings from freely swimming condition while right panels are from immobilized condition. c. The spatial location of the
brain regions in b. d. Violin charts of trial-to-trial pairwise correlation between Ca2+ activity in freely-swimming and immobile
conditions. Left, correlations of raw jGCaMP8s signals; right, correlations of AF inferred signals. Each violin chart represents the
distribution of r for each of the 4 trials (see b) in 18 selected ROIs (a total of 72 data points).
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2.5 Optogenetic manipulation of nMLF

area on the fish head (Fig. 6b, right). The full x width at half-maximum (FWHM) of the photostimulation intensity208

profile is 7.8 µm and the y FWHM is 6.7 µm (Fig. S7d). We could identify the activation of the corresponding209

region in the green channel before and after the onset of optogenetic stimulation (Fig. 6d and Fig. S7a-b). During210

stimulation, we aim to consistently target the same area (Fig. S7c) and Fig. 6e shows the displacement (or error)211

between the actual position of the light spot and the target position during a 50-second experiment. The shaded212

red regions indicate periods of swift fish motion during which the yellow laser was deflected out of the FoV to avoid213

targeting the wrong area. Several factors, including a limited speed to update the position of stimulation (Fig. 6a)214

and tracking error (Fig. 2), make it challenging to correctly stimulate the targeted area when larval zebrafish were215

swimming. We therefore decided to perform optogenetic manipulation only during inter-bout intervals (i.e., when the216

animal is relatively still, see Methods).217

2.5 Optogenetic manipulation of nMLF218

Finally, we demonstrate how our integrated system, which combines 3D tracking, brain-wide Ca2+ imaging and219

optogenetic stimulation of a defined brain region, can be used to probe the relationship between neural activity220

and behavior. We performed a transient (1.5 second) unilateral optogenetic stimulation (Fig. 7a) of the tegmentum221

region including nMLF (30, 31), which quickly induced an ipsilateral turn within 2 s in the vast majority of cases222

(VideoS3). Fig. 7b shows example bouts from 1 fish and Fig. 7c plots the turning angle distribution from 6 fish.223

Spontaneous turns in the absence of light stimulation did not show directional bias, and the magnitude of a turn was224

smaller (Fig. 7b-c). As a control, when the same light stimulation was applied to zebrafish that did not express the225

light-sensitive protein ChrimsonR, the animals’ movements did not show directional preference: they exhibited more226

forward runs and when they turned, the turning amplitude was much smaller (Fig. 7d-e).227

228

All-optical interrogation enabled us to investigate how local optogenetic manipulation impacts brain-wide activity in229

a freely swimming zebrafish. Fig. 7f reveals the appearance of neural activity across brain circuits after optogenetic230

activation of nMLF. The trial-averaged active regions were colored according to their response onset time, when the231

activity amplitude reached 20% of its maximum after optogenetic manipulation. We found that evoked neural activity232

appeared in different regions of the brain, including the tegmentum, the optic tectum, the torus semicircularis, and233

the cerebellum (Fig. S8). In particular, a total of n = 1788 ROIs exhibited prominent Ca2+ activity during optogenetic234

stimulation of the left or right nMLF region. The population neural activity pattern, which can be viewed as an235

n-dimensional vector a⃗(t), exhibited higher Pearson’s correlation coefficient across trials when unilateral stimulation236

was applied to the same side of the brain than when stimulation was applied to the opposite side (Fig. 7g and237

legends).238

3 Discussion239

Freely-swimming zebrafish exhibit different internal states and behavioral responses to sensory inputs than240

head-fixed zebrafish (17, 31). By combining robust tracking in different conditions, Ca2+ signal correction based on241

dual color fluorescence imaging, and optogenetic manipulation of freely swimming zebrafish, our method enables242

more accurate read-outs of brain activity associated with different behaviors, and all-optical interrogation of the243

brain-wide circuit in a freely swimming larval zebrafish (Fig. 8).244

245

Extracting neural activity from Ca2+ signals in the presence of strong noise is a challenging task. Here, we246

tackled this problem employing the AF method, which has been widely applied in other biomedical signal processing247

applications (32, 33). Adaptive filters can effectively eliminate motion artifacts and interference from strongly248

correlated noise. Compared to other motion correction methods (34), the AF algorithm is fast and does not require249

prior knowledge. These advantages make it more suitable for closed-loop online experiments.250

251

Improving the correlation and signal-to-noise ratio (SNR) of the green and red signals allows our AF algorithm to252

obtain more accurate signal correction results (Fig. S5). Using less pigmented and more transparent zebrafish,253

such as the casper line (35) for brain imaging, helps to reduce the chromatic aberration caused by pigmentation254

and tissue scattering and could thus improve the correlation between red and green signals. Using brighter red255

fluorescent proteins and Ca2+ indicators with a larger dynamic range (36) would further improve the SNR and thus256

make the extraction of the activity signal more accurate. Another possibility is to use SomaGCaMP (37) instead of257

nuclear localized GCaMP, which would increase the amount of fluorophore expression.258

259

The AF algorithm is not always accurate for all brain regions, especially when the correlation and SNR of260

the dual-channel signals are low. To address this issue, we may need to develop refined models that use the261

statistics of dual channel signals. One possible improvement is to perform an in-depth statistical analysis of the262
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Figure 6. Real-time optogenetic system. a. Schematics of the optogenetic stimulation workflow. b. Transformation of a
user-defined brain region on a ZBB atlas (left) to a real-time position on a freely swimming zebrafish (right). The yellow rectangle
shows the stimulation pattern. Scale bar, 100 µm. c. Pseudo-color fish brain pixel intensity averaged across 200 registered
red channel fluorescence images. The white arrow indicates the location of the red fluorescence excited by the laser beam
(Methods). Scale bar, 100 µm. d. Left, green channel image. Scale bar, 100 µm. Right, a zoomed-in image around the
stimulated region (white rectangle) before (top) and during (middle) yellow light stimulation. The color map (bottom) indicates the
change in fluorescence intensity (Methods). Scale bar, 50 µm. e. Top, images of the fish brain during optogenetic stimulation.
Scale bar: 100 µm. Bottom, the displacement between the actual position of the light beam and the targeted position. We
deflected the laser out of the FoV during periods of rapid fish movements, indicated by the shaded red regions.

Chai et al. | All-optical interrogation of zebrafish | 11

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 12, 2023. ; https://doi.org/10.1101/2023.05.24.542114doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.24.542114
http://creativecommons.org/licenses/by-nc/4.0/
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Figure 7. Optogenetic activation of the unilateral nMLF region induced ipsilateral turning behavior and activity changes.
a. Stimulation regions and paradigm. The left and right mid-brain regions including nMLF were alternatively stimulated (VideoS3).
b. Example bout trajectories from a elavl3:H2B-jGCaMP8s - elavl3:H2B-LSSmCrimson × elavl3:ChrimsonR-tdTomato fish. c.
Histogram of Bout angle from all elavl3:H2B-jGCaMP8s - elavl3:H2B-LSSmCrimson × elavl3:ChrimsonR-tdTomato fish (n =
6). d. Example bout trajectory from a elavl3:H2B-jGCaMP8s - elavl3:H2B-LSSmCrimson fish without the expression of opsin
(ChrimsonR) in neurons. e. Histogram of bout angle from all elavl3:H2B-jGCaMP8s - elavl3:H2B-LSSmCrimson fish (n = 5,
Methods). f. Activity appeared after optogenetic stimulation of the unilateral nMLF region. Active regions were color coded
based on their response onset time when the corrected signal intensity reached 20% of their maximum after the optogenetic

manipulation. g. Pairwise Pearson’s r of brain-wide activity between time frames, defined as a⃗(t)·⃗a(t′)
∥a⃗(t)∥∥a⃗(t′)∥ . Time frames include

500-millisecond periods (5 frames in each trial and 20 trials) after activating the unilateral nMLF region, as well as randomly
selected 500-millisecond epochs when no optogenetic manipulation was performed.
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4.1 Hardware

data captured from freely swimming EGFP × LSSmCrimson zebrafish. We could also extract features of neural263

activity-induced signal changes in jGCaMP8s x LSSmCrimson zebrafish paralyzed by bungarotoxin. These prior264

information, when combined with the location of each brain region, could be used to develop a more accurate model265

for dual-channel signals.266

267

Previous zebrafish optogenetic experiments can be divided into two categories: (1) optogenetic manipulation268

of specific brain regions with spatially patterned illumination in head-fixed zebrafish (12, 14); (2) manipulation of269

freely swimming zebrafish with spatially localized photosensitive proteins using full-field light (38, 39). The first270

method can provide spatially accurate stimulation, but behavior responses are restricted and not natural. The271

second approach allows optogenetic manipulation of naturalistic behavior, but generating fish lines expressing272

photosensitive proteins in desired brain regions is challenging and only one spatial pattern of stimulation can273

be applied to the fish. Our system aims to overcome the limitations of both approaches: it allows selective light274

stimulation of specific brain regions and rapid switching of stimuli between multiple regions in freely swimming275

zebrafish.276

277

The current optogenetic module uses a laser without beam expansion, and manipulation of a selected brain278

region is achieved by high-speed 2D galvo mirror scanning, a design that greatly reduces the loss of laser energy279

and allows for ultra-high intensity of light projection. An alternative method is to generate patterned illumination280

using the digital micromirror device (DMD) (13, 40), which could be less energy efficient. However, our design281

results in optogenetic manipulation without Z-resolution (Fig. 6c). A set of lenses could be added before the galvo282

mirror for beam expansion. This would allow the beam to converge only near the focal plane, and the rapid decrease283

in light intensity away from the focal plane would enable the activation of neurons only near the focal plane. The284

position of the focal plane could be adjusted by moving the lens with a piezo.285

286

Our real-time optogenetic system updates its illumination pattern at 10 Hz. The main factor that limits the287

speed of the system is the time it takes to reconstruct the volumetric image of the fish that is used to register288

in the ZBB atlas. Using deep learning algorithms (41–44) instead of the traditional Richardson-Lucy iterative289

reconstruction method is expected to greatly accelerate the speed of reconstruction and make our system more290

responsive to rapid and high-frequency head movements.291

292

We use visible light for single-photon optogenetic manipulation, an approach that allows us to manipulate a293

large range of brain regions nearly simultaneously and has minimal thermal effects compared to infrared light.294

However, visible light is easily scattered by brain tissue, making manipulation less spatially accurate, especially295

for deep brain regions. Recently developed two-photon optogenetics and holographic technique have enabled296

manipulation of multiple neurons at different locations in a fixed 3D volume (9, 12). Two-photon microscopy has also297

demonstrated its ability to track and stimulate a single neuron in a freely moving Drosophila larva (45). The inherent298

nature of two-photon excitation can significantly reduce tissue scattering and improve manipulation accuracy (46).299

Combining two-photon optogenetics with one-photon volumetric imaging in freely swimming zebrafish is a promising300

future direction if the spatial accuracy of optogenetic manipulation at the single-neuron level is critical; if speed and301

cost are critical, then single-photon optogenetics would be the better choice.302

303

Molecular biology approaches can be used to further improve the accuracy and adaptability of optical read-outs304

and the manipulation of defined neural populations. For example, the integration of novel nuclear localization305

sequences optimizes the confinement of calcium indicators and RFP within the cell nucleus (47). This optimization306

could intensify the sparsity of fluorescence expression, thereby elevating the resolution of the reconstructed images.307

With the aid of suitable promoters and the GAL4 / UAS system, opsins can be expressed in defined brain regions308

or cell-types (48–50). This capability would enable us to explore the influence of anatomically and/or genetically309

defined cell assemblies on brain-wide activity and animal behavior.310

311

In conclusion, we anticipate that our all-optical technique, when combined with recent development in volumetric312

imaging methods (17, 19, 51–57), would significantly advance the investigation of neural mechanisms underlying313

various naturalistic behaviors in zebrafish and other model organisms (25, 58–61).314

4 Methods315

4.1 Hardware316

The new system was an update of XLFM (16). The upgraded system consists of three main components: a 3D317

tracking module, a dual-color fluorescence imaging module, and an optogenetic manipulation module.318
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4.2 A U-Net neural network to track fish position and orientation

Neural activity correction via 
     dual channel imaging

    Optogenetic manipulation 

Tracking, imaging, 

 activity manipulation

                      Robust tracking

Figure 8. Summary of the all-optical interrogation method. Robust tracking, accurate extraction of Ca2+ activity, as well
as manipulation of neural activity in specific brain regions enable us to investigate the neural mechanisms underlying different
behaviors of freely-swimming zebrafish.

319

The 3D tracking module used a high-speed camera (0.8 ms exposure time, 340 fps, Basler aca2000-340kmNIR,320

Germany) to capture the lateral motion of the fish. We developed a U-Net (21) based real-time system that could321

rapidly identify the head and yolk position. The error signal between the actual head position and the set point was322

then fed into the tracking model to generate output signals and control the movement of a high-speed customized323

stage. The autofocus camera (100 fps, Basler aca2000-340kmNIR) behind a 5-microlens array captured 5 images324

of the fish from different perspectives. The z position of the fish can be estimated by calculating the inter-fish325

distance based on the principle of LFM. The error signal between the actual axial position of the fish head and the326

set point was then fed into the PID to generate an output signal to drive a piezo (PI P725KHDS, 400 µ m travel327

distance) coupled to the fish container.328

329

In the dual-color fluorescence imaging module, a blue excitation laser (Coherent, Sapphire 488 nm, 400330

mW) was expanded and collimated into a beam with a diameter of ∼ 25 mm. It was then focused by an achromatic331

lens (focal length: 125 mm) and reflected by a dichroic mirror (Semrock, Di02-R488-25X36, US) in the back pupil of332

the imaging objective (Nikon N25X-APO-MP, 25X, NA 1.1, WD 2 mm, Japan) resulting in an illumination area of ∼333

1.44 mm in diameter near the objective focal plane. This 488 nm laser was used to simultaneously excite jGCaMP8s334

and LSSmCrimson. Along the fluorescence imaging light path, the fluorescence collected by the objective was split335

into two beams by a dichroic mirror (Semrock, FF556-SDi01-25X36) before the microlens arrays and entered the336

two sCMOS cameras (Andor Zyla 4.2, UK) separately. Each lenslet array consisted of two groups of microlenses337

with different focal lengths (26 mm or 24.6 mm) in order to extend the axial field of view while maintaining the338

same magnification for each subimage. Both lenslet arrays were conjugated to the objective back pupil by a pair of339

achromatic lenses (focal lengths: F1 = 180 mm and F2 = 160 mm). Two bandpass filters (Semrock FF01-525/45340

and Semrock FF02-650/100) were placed before 2 cameras, respectively, to block light from other wavelengths.341

342

A 588 nm laser (CNI MGL-III-588, China) reflected by a 2D galvo mirror system (Thorlabs GVS002, USA)343

was used for optogenetic manipulation. The midpoint of two galvo mirrors was conjugated onto the back pupil of the344

imaging objective by a pair of achromatic lenses (focal lengths: F1 = 180 mm and F2 = 180 mm). A dichroic mirror345

(Semrock, Di01-R405/488/594-25X36) reflected the 588 nm laser and transmitted the green and red fluorescence.346

4.2 A U-Net neural network to track fish position and orientation347

We used a simplified U-Net (21) model to detect the head and yolk of the fish. The model contains only two348

downsampling layers and two upsampling layers, which improves the detection speed. The heat map is used as the349
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4.3 Model predictive control (MPC)

output of the model, showing the location of the target point and the confidence level.350

351

To create a training dataset, we used custom MATLAB tools (Natick, MA). First, we used k-means to extract352

the key frames in the video. The key frames covered the variety of fish movements and the complexity of the353

background. Second, we read the first three keyframes of each video and manually marked the position of the fish’s354

head and yolk. We rotated the three keyframes until the fish’s head was facing the same direction, calculated the355

average image, and rotated the average images at 5-degree intervals to create 72 templates. Then, the positions356

of the head and yolk of the fish in all keyframes were determined using template matching. We manually checked357

the position marked on each keyframe and corrected for the wrong label. Finally, we created a training dataset by358

combining all labeled frames and dividing them into subsets of test and training frames.359

360

We used pytorch to build, train, and test the model. For training, we used the Adam optimizer and MSE loss361

function, with a batch size of 32, an initial learning rate of 0.001 and a gradual decay. We saved the model with362

the lowest loss in the test set and stopped training when the loss was no longer decreasing. We implemented the363

models in our tracking system using TensorRT. We reduced the model precision to Float16 to improve inference364

speed without sacrificing inference accuracy.365

4.3 Model predictive control (MPC)366

We adopted the MPC method in (17) to control the X-Y motorized stage. We modeled the motion of the stage367

and the fish, and then selected the optimal stage input by minimizing future tracking error. The stage was modeled368

as a linear time-invariant system, whose velocity was predicted by convolving the input with the impulse response369

function of the system. The motion of the fish during a bout was modeled as a uniform linear motion. Instead of370

directly predicting the trajectory of the fish brain, as in (17), we first predicted the trajectory of the fish yolk, which is371

much straighter, especially at the beginning of a bout. We then predicted the fish brain position by shifting along the372

current heading vector. The loss function to be minimized is the sum of squares of tracking error over six time steps373

into the future, plus an L2 penalty for stage input. We replaced the L2 penalty on the future planned acceleration374

vector (17) with the L2 penalty on stage inputs, which empirically reduced stage vibration.375

4.4 Volumetric image registration376

Accurate alignment of volumetric images of freely swimming zebrafish larvae is essential for subsequent signal377

correction and neural activity analysis. Because the green and the red fluorescence signals are derived from378

splitting a single beam of light, the raw reconstructed volumetric images between the two channels differ only by379

a simple affine transformation. The red channel is activity-independent and the intensity difference between frames380

is relatively smaller than that in the green channel. Therefore, we first performed multistep alignment on the red381

channel and then applied identical operations on the green channel (Fig. 3a). Direct alignment of raw images382

is time-consuming and data-intensive. To address these challenges, we designed and implemented the following383

four-step registration pipeline.384

• Crop. We first rotated the reconstructed original 3D images (600 × 600 × 250 voxels) based on the orientation385

of the fish head recorded by the behavior camera. This rotation aligned the rostrocaudal axis of all frames in386

the same direction. We then cropped and removed the black space surrounding the fish. Finally, the images387

were resized to 308 × 380 × 210 voxels, which are the dimensions of the ZBB atlas template (27).388

• Approximate registration. We selected one cropped image and aligned it with the ZBB atlas to generate389

a unified template for the whole sequence. Next, we use the CMTK toolbox to register each frame with the390

template using the affine transformation (22, 62). Using the "correlation ratio, CR" as the registration metric,391

we achieved the best result (63). With "OpenMP" multithread optimization, we were able to finish one frame of392

approximate registration in 25 seconds (64).393

• Remove fish eyes. Because the rotation of fish eyes could seriously affect the next step nonrigid registration,394

we used a U-net neural network to automatically remove fish eyes.395

• Diffeomorphic registration. To handle the minute changes in an image caused by breathing, heartbeat, and396

body twisting, we found it necessary to refine our approximate registration. We used the optical flow algorithm397

’Maxwell’s demons’ to implement non-rigid registration in the final phase (23). To increase the precision of398

the optical flow method with our data, we generated a fresh alignment template. This was achieved by taking399

an average from every tenth frame across every hundred frames within the image sequence. Subsequently,400

we lined up each segment of the sequence with the newly created alignment templates. This algorithm was401

developed using MATLAB and can be speeded up via a GPU. In practice, the execution time for each frame402
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4.5 Segmentation

was averaged at 72 seconds on a single RTX 3090 GPU. Efficiency can be further optimized by deploying403

multiple GPUs.404

To evaluate the alignment accuracy, we first implemented our multistep registration pipeline on the red and green405

channels of a swimming larval zebrafish. The green channel in this case contained the EGFP signals that were406

sparsely expressed in the neuronal nuclei. We used the MATLAB toolkit "CellSegm" (65) to perform cell segmentation407

and obtain the centroid coordinates of neurons expressed by EGFP in every frame. We then matched each408

neuron’s positions in a post-registered time frame to its correspondent in a fixed template frame using the Hungarian409

algorithm. We identified 164 ±15 (mean ±SD) neurons in all time frames and 195 neurons in the template. Due410

to uneven distribution of excitation light in the FoV, scattering, and attenuation of fluorescence by brain tissue and411

body pigments, not all neurons’ cell bodies were visible in every frame. We introduced the searching radius, a412

hyperparameter in the Hungarian algorithm that controls how far the algorithm will look for matches. The root413

mean square displacement (RMSD) between the positions of pairs of matched neurons and the matching ratio both414

increased with the searching radius and plateaued at a large radius (Fig. S2c). We selected the result with a 5-voxel415

search radius as our best estimate of alignment accuracy (Fig. 3d and Fig. S2c), because it was large enough to find416

most of the true matches.417

4.5 Segmentation418

After applying multistep registration (section 4.4) to the activity-dependent green channel, we performed cell419

segmentation based on temporal correlation in the green channel, following the approach introduced in (66). We420

calculated the average correlation between each voxel and its 14 neighbors to obtain a "correlation map". We then421

implemented the watershed algorithm on this correlation map to obtain a preliminary segmentation result. For each422

voxel, we further analyzed its correlation with the average activity of that specific segmented region and obtained the423

’coherence map’. Finally, we used a threshold filter on the coherence map to obtain the final segmentation results,424

which was also applied to the red channel.425

426

The correlation-based segmentation was not suitable for the elavl3:H2B - EGFP × elavl3:H2B - LSSmCrimson fish427

data because the green channel lacks the neural activity signals. Instead, we divided the entire image into 8 × 8 ×428

6 voxel regions. The grid size was close to the mean segmented ROI size of our Ca2+ imaging data.429

4.6 Normalized least-mean-square (NLMS) adaptive filter430

We start by presenting a phenomenological model of the fluctuation of fluorescence signals in the activity-dependent431

green channel and the activity-independent red channel. Noise in the red channel has two major contributions:432

motion-induced fluctuation of fish and independent noise introduced along the optical pathway and by the sCMOS433

camera. Here we model the red LSSmCrimson signal r(n) from a given ROI at time frame n as434

r(n) = I(n)βr(n)+ ϵr(n), (1)

where ϵr(n) is independent noise, I(n) is the local excitation light intensity and βr(n) is the baseline fluorescence,435

which in theory only depends on the number of fluorophores expressed in the neuron. However, fish movements in436

3 dimensions make both I(n) and βr(n) time dependent.437

438

We model the green jGCaMP8s signal g(n) from the same ROI in a similar way by incorporating the Ca2+
439

activity a(n)440

g(n) = I(n)
[
βg(n)

(
1+a(n)

)]
+ ϵg(n), (2)

where ϵg(n) is independent noise and βg(n) is the baseline. If the emission light fields of the green and red441

fluorophores captured by the imaging objective and the camera are identical, then we can identify βg(n) = αβr(n),442

where α is a proportionality constant. Therefore, a simple division between the green and red signals is sufficient443

to extract Ca2+ activity, provided that the independent noise is small. In practice, due to various scattering of brain444

tissue and obstruction of body pigments, we are agnostic about the relationship between βg(n) and βr(n); but445

it is reasonable to assume that they are strongly correlated in a complicated and time-dependent way, which is446

consistent with our observation and analysis of the raw EGFP and LSSmCrimson signals.447

448

Under the assumption that motion-induced fluctuations are strongly correlated between the green and the449

red channel, and such fluctuation is history-dependent, we decided to use an adaptive filter (AF) to extract Ca2+
450

activity corrupted by motion artifacts. We aim to predict the green channel signal g(n) from the red channel r(n)451

using the normalized least mean squares (NLMS) AF algorithm (67). The NLMS algorithm continuously subtracts452
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4.7 Galvo voltage matrix

the predicted signal ĝ(n) from g(n) so that the residue e(n) = g(n) − ĝ(n) is minimized. The predicted ĝ(n) is a453

weighted sum of the history-dependent red signal:454

ĝ(n) =
M−1∑
k=0

w(k)r(n−k)

= w⃗(n) · r⃗(n)

(3)

where M is the filter length and here we set M = 2. We iteratively update the weight (i.e., filter) vector w⃗ using455

gradient descent:456

w⃗(n+1) = w⃗(n)+ µ

∥r⃗(n)∥2 + δ
r⃗(n)e(n) (4)

We follow (68) to determine the iteration step size µ. Once ĝ(n) was computed, we made the following assumption457

that:458

ĝ(n) ≈ I(n)βg(n) (5)

As a result, the Ca2+ activity is given by459

a(n) ≈ g(n)/ĝ(n)−1, (6)

provided that ϵg(n) ≪ ĝ(n), namely the independent noise is much smaller than motion-induced fluctuation.460

Performance of AF algorithm461

To identify the factors that affect the inference ability of the AF algorithm, we added randomly timed synthetic462

signals with fixed amplitude to the EGFP signals of freely swimming zebrafish. We then evaluated the AF inference463

performance by calculating the cross-correlation (Pearson’s r ) between the AF inferred signal and the synthetic464

signal for each ROI. We visually represented each ROI’s correlation as colored scattered points in two dimensions465

with the correlation between dual-channel signals on the y-axis and the coefficient of variation (CV) of the red466

channel on the x-axis for different synthetic signal amplitudes (Fig. S5, left column). ROIs with a higher correlation467

between dual-channel signals and smaller CV typically exhibit better AF inference performance. As the amplitude468

of the synthetic signal increases (defined as the CV of an ROI’s EGFP signal multiplied by a constant), the overall469

inference performance also increases (Fig. S5, right column).470

471

To establish a criterion for screening ROIs with a potential high AF inference performance, we binarized the r472

between AF inferred signal and synthetic signal with a threshold value of 0.5. We considered ROIs with a r greater473

than 0.5 to have a good inference performance (Fig. S4). We then used polynomial logistic regression to perform a474

binary classification task, which can be modeled as:475

g(x1,x2) = 1
1+e−f(x1,x2) ,

where f is a cubic polynomial function with fitted coefficients, and x1, x2 are CV of the red channel and Pearson’s r476

of dual-channel signals respectively. For visualization purposes, the pink regime in Fig. S5 corresponds to g > 0.7477

while the blue one corresponds to g < 0.7; the dashed line dividing the two regimes can be viewed as a decision478

boundary. The area under the ROC curve (AUC) was used to quantify the classification performance.479

480

We found that the measured medium amplitude of jGCaMP8s in head-fixed larval zebrafish was about 4481

times the CV of EGFP signals in freely swimming zebrafish (Fig. S3). We therefore selected the fitted model when482

the amplitude of synthetic neural activity is four times (4×) the CV of the EGFP signals (Fig. S5c). Note that483

when the same model (Fig. S5c) was applied to synthetic signals whose amplitudes were sampled from a defined484

statistical distribution instead of a fixed amplitude, we found a similar classification performance.485

4.7 Galvo voltage matrix486

We placed a fluorescence plate under the microscope objective and adjusted the stage height and laser intensity487

to maximize the brightness and minimize the size of the fluorescence spot excited by the optogenetic laser. The488

galvo input is a voltage pair (GalvoX, GalvoY). We varied the galvo voltage input with an interval of 0.1 V and a489

range of -1.5 V to +1.5 V in both the X and Y directions. We recorded 10 frames per voltage pair. The raw recorded490

images were resized to 512 × 512 pixels and reconstructed. We took the coordinates of the brightest point on the491

image of each voltage pair. If there was no bright spot in the FoV, the voltage pair was deleted. As a result, the492

correspondence between some of the galvo input voltage pairs and image coordinates was known. Assuming a493
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4.8 Online optogenetics pipeline

linear transformation relationship between the voltage pairs and the coordinates, we found the affine transformation494

matrix using the known points. Then, we calculated the galvo voltage pair corresponding to each point in the image495

and stored it as the GalvoX and GalvoY voltage matrices.496

4.8 Online optogenetics pipeline497

A custom C++ program was used to implement the optogenetic system. After the images were captured by the red498

fluorescence camera, the image reconstruction and alignment process were implemented in the GPU, while the499

coordinate transformation and the control of the galvo were implemented in the CPU.500

501

The image processing algorithm was run on an RTX 3080 Ti GPU using CUDA 11. We resized an image502

from 2048 × 2048 pixels to 512 × 512 pixels using the AVIR image resizing algorithm designed by Aleksey Vaneev503

(https://github.com/avaneev/avir). Due to the reduced image size and memory consumption, we could use504

the PSF of the whole volume to do the deconvolution with a total of 10 iterations. The size of the reconstructed 3D505

image is 200 × 200 × 50 voxels. It took about 75 ms to reconstruct one frame.506

507

We used TCP to communicate between the tracking system and the optogenetic system. We rotated the508

fish head orientation of the 3D image to match that of the ZBB atlas using the fish heading angle provided by509

the tracking system. We then found the maximum connected region by threshold segmentation and removed the510

redundant pixels outside the region. The size of the image after cropping was 95 × 76 × 50 pixels, which is the511

same as the ZBB atlas. Finally, we aligned the 3D image with the standard brain by affine transformation using a512

transformer neural network model. The rotation, cropping, and affine alignment took about 10 ms.513

514

The coordinate transformation first calculated the inverse of the affine matrix and the rotation matrix. The515

user-provided coordinates of the region on the ZBB atlas were then multiplied by the transformation matrix. Finally,516

the transformed coordinates were shifted by the upper left corner coordinates of the cropped image. This converted517

the coordinates of the specified region selected in the ZBB atlas to the coordinates of the actual fish brain.518

519

The voltage pairs to be applied to Galvo were read from the GalvoX and GalvoY voltage matrices (see section 4.7).520

The voltage signals were then delivered to the 2D galvo system (Thorlabs GVS002, US) using an I/O Device521

(National Instruments PCIe-6321, US). The galvo system converted the voltage signals into angular displacements522

of two mirrors, allowing rapid scanning of a specified area.523

524

To avoid targeting the wrong brain region, we decided to deliver light stimulation only during the inter-bout525

interval. We maintained a queue of length 50 that stored the fish heading angle from the tracking system. The526

average of the heading angle of the fish in the queue was calculated. If the difference between the received fish527

heading angle and the average in the queue was greater than 5 degrees, the fish was considered to have entered a528

bout during the delay, and the laser beam was deflected out of the field of view.529

4.9 Spatial accuracy of optogenetic stimulation530

We selected an ROI of 1×1 pixel to test spatial precision during continuous optogenetic stimulation in freely moving531

zebrafish. A notch filter (Thorlabs NF594-23) was used to exclude the scattering light from the 588 nm laser in532

Fig. 6c-d. This filter was removed in order to accurately observe the position of the laser in Fig. 6e. It is important533

to point out that our current optogenetic module does not possess a Z-resolution (see Discussion for potential534

improvement).535

536

We computed pairwise voxel intensity difference (∆F/F ) between the average green channel image before537

stimulation and that during stimulation. Voxels with a value less than 20 were considered noisy background and set538

to 0. We show a single X-Y and Y-Z plane in Fig. 6d.539

4.10 Bout detection and behavior analysis540

We use the displacement of the tracking stage δs(t) between consecutive frames to detect the movements of the541

zebrafish, and create a binary motion sequence by thresholding δs(t) at 20 µm. To identify the bouts, we merged542

adjacent binary segments to obtain a complete bout sequence. To characterize bouts, we calculated the angle543

between the heading direction at the beginning of a bout and the heading direction of each frame during a bout544

(Fig. 7b and Fig. 7d). The bout angle (Fig. 7c and Fig. 7e) was defined as the angle between the heading direction545

at the start of a bout and at the end of the bout. Positive values represent right turns.546
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4.11 Brain activity analysis during optogenetic stimulation

4.11 Brain activity analysis during optogenetic stimulation547

Whole brain neural activity were obtained from inferred signals using the AF algorithm, and unreliable regions of the548

brain were excluded from further analysis (section 4.6).549

550

To characterize brain-wide activity evoked by optogenetic stimulation, we first identified brain regions with551

significantly elevated neural activity immediately after optogenetic activation of the ipsilateral nMLF. We compared552

Ca2+ activity in these regions with activity at times without optogenetic manipulation and used a rank sum test with553

multiple comparison correction to identify significant differences. We then calculated the mean activity trace for each554

ROI by averaging over multiple trials. Finally, we calculated the time (latency) it took for each ROI to reach 20% of555

its maximum activity. The latency for each ROI is colored in Fig. 7f.556

557

To characterize brain-wide activity and their differences during optogenetic-induced turns, we used a rank558

sum test with multiple comparison correction to compare Ca2+ activity from 3 frames before to 3 frames after the559

start of a bout and Ca2+ activity at other moments. We identified 1788 ROIs that exhibited significantly elevated560

calcium activity during turns.561

562

We next selected 5 frames of data after the onset of unilateral nMLF photostimulation: 10 trials during left563

stimulation and 10 trials during right stimulation, for a total of 100 frames. We also selected 10 time segments, each564

of which contains 5 frames (50 frames in total), randomly selected from the remaining frames without optogenetic565

manipulation. We calculated the Pearson’s r between every pair of the population activity vectors. The results were566

represented by the similarity matrix (Fig. 7g) using the frame index.567

Code and data availability568

The source code can be publicly accessed at https://github.com/Wenlab/OptoSwim.569

Supplementary information570

S1 Supplementary figures. S1 comprises 8 supplement figures.571

S2 Supplementary movies. S2 comprises 3 supplement movies.572
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Figure S4. AF inference ability depends on dual-channel correlations and coefficient of variation (CV) of red channel
signals. We use the correlation coefficient between AF inferred signals and synthetic signals to measure the inference
performance. The following are typical situations from three ROIs: a. r (Inferred, Synthetic) < 0.5, r (Red,Green) = 0.30, and
CV(Red) = 0.23. b. r (Inferred, Synthetic) = 0.5, r (Red,Green) = 0.54, and CV(Red) = 0.12. c. r (Inferred, Synthetic) > 0.5,
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Figure S5. Decision boundary of AF inference performance changes with Ca2+ activity amplitude. The amplitudes of
synthetic signals are a multiple of the CV of the ROI’s EGFP signal (2× in a, 3× in b, and 4× in c). Left, each panel shows the
decision boundary (dashed line), where ROIs (and inferred signals) in the pink regime were accepted whereas those in the blue
regime were discarded (Methods). Right, histogram of correlation coefficient r between inferred signals and synthetic signals.
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Figure S6. Neural activity in 18 selected ROIs during blue light stimulation (continued on the next page). First and second
rows: jGCaMP8s and LSSmCrimson raw fluorescence signals in 6 representative ROIs in which neurons showed prominent Ca2+

activity after light stimulus onset. Shaded regions indicate the dark period. Third row: inferred Ca2+ activity using the adaptive
filter algorithm. Left panels are recordings from freely swimming condition while right panels are from immobilized condition.
Bottom: The spatial location of the 6 represented brain regions.
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Neural activity in 18 selected ROIs during blue light stimulation (continued).
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Neural activity in 18 selected ROIs during blue light stimulation (continued).
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Figure S7. Enhanced Ca2+ activity in photostimulated brain region and spatial profile of the laser beam. a. Yellow
rectangle indicates the stimulated brain region. b. The change in fluorescence intensity of the jGCaMP8s in the brain region
shown in a. Shaded yellow region marked the period of optogenetic stimulation. c. Average post-registered fish image (related
to Fig. 6e). The white arrow indicates the actual stimulated region during a 50-second experiment in a freely-swimming larval
zebrafish. Scale bar, 100 µm. d. The measured laser intensity distribution around the stimulated region in c. The measured full
width at half maximum (FWHM) was 7.8 µm (X axis) and 6.8 µm (Y axis).
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Figure S8. Latency of activity in different brain regions after optogenetic stimulation of unilateral nMLF. The mean onset
time of neural activity in each ZBB brain region after optogenetic activation of the left (a) or right (b) nMLF. The latency was
defined as the time at which the amplitude of activity reached 20% of the maximum value of activity. Error bars represent SD.
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Supplementary Videos730

Tracking a freely swimming larval zebrafish.731

Example NIR tracking video, related to Fig. 2e. A zebrafish was swimming in the presence of water flow. Our732

tracking algorithm was able to accurately identify the fish head and complete the tracking despite interference from733

the distracting background.734

3D registration of a sparsely EGFP-labeled fish brain.735

Example alignment video, related to Fig. 3b-d. Sparsely EGFP labeled zebrafish were used to test the effectiveness736

of our alignment method. Left, the fish brain MIP after 3D reconstruction; right, the post-registered fish brain MIP737

guided by the LSSmCrimson channel.738

All-optical interrogation in a freely swimming larval zebrafish.739

Example video, related to Fig. 7. On the left, after unilateral optogenetic activation of the tegmentum region740

containing nMLF, the zebrafish turned ipsilaterally. On the right, changes in whole-brain activity were recorded741

simultaneously.742
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