

1 **Title**

2 **Age-associated aberrations of cumulus-oocyte interaction and**
3 **microfilamentous structure in the zona pellucida decline female fertility.**

4

5 Yu Ishikawa-Yamauchi^{1,a}, Chihiro Emori², Hideto Mori^{3,4,5}, Tsutomu Endo², Kiyonori Kobayashi²,
6 Yuji Watanabe¹, Hiroshi Sagara¹, Takeshi Nagata^{6,7}, Daisuke Motooka², Akinori Ninomiya²,
7 Manabu Ozawa¹, and Masahito Ikawa^{1,2,*}

8

9 ¹The Institute of Medical Science, The University of Tokyo, Tokyo 1088639 Japan.

10 ²Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871 Japan.

11 ³Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 9970035 Japan.

12 ⁴Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 2520882
13 Japan.

14 ⁵Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University,
15 Suita, Osaka 5650871 Japan.

16 ⁶School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 3058577
17 Japan.

18 ⁷Information and Communication Research Division, Mizuho Research and Technologies, Ltd.,
19 Inc., Tokyo 1018443 Japan.

20 ^aCurrent address: Department of Regenerative Medicine, Graduate School of Medicine,
21 Yokohama City University, Kanagawa 2360004 Japan.

22

23 **Contact info**

24 Email: ikawa@biken.osaka-u.ac.jp

25

26 **Abstract**

27 One of the major age-related declines in female reproductive function is the reduced quantity
28 and quality of oocytes. Here we demonstrate that structural changes in the zona pellucida (ZP)
29 decrease fertilization rates from 34- to 38-week-old female mice, equivalent to the
30 mid-reproductive of human females. In middle-age ovaries, the decline in the number of
31 transzonal projections was accompanied by a decrease in cumulus cell-oocyte interactions,
32 resulting in a deterioration of the oocyte quality. Scanning electron microscopy showed the ZP
33 surface microfilament structure transitioning from rugged to smooth with age, leading to
34 decreased fertilization rates due to impaired sperm binding to the ZP. Moreover, the fertilization
35 rate of middle-age mice was restored to a comparable level to that of young mice by
36 destabilizing the ZP in the presence of glutathione. These results suggest that the age-related
37 structural changes in the ZP is a key for successful fertilization at reproductive age.

38

39 **Keywords:** Aging, Female reproduction, Fertilization, The zona pellucida, Mouse

40

41 **Introduction**

42 Aging is a complex biological process accompanied by physical changes throughout a lifetime.
43 The functional decline of cells and tissues begins earlier in the female reproductive organs with
44 individual aging (Broekmans et al., 2009; Heffner, 2004). One of the age-specific declines in
45 tissue function, menopause, which is the loss of follicular function in the ovaries, typically
46 occurs around age 50. In contrast, a marked decline in fertility is evident after age 35, with very
47 limited pregnancies after age 40. The fertility rate for non-contraceptive populations is
48 approximately 40% in the 20s to early 30s, 20-30% in the mid-30s, and 5-10% after age 40
49 among women (Heffner, 2004; Michelle J.K. Osterman, 2022).

50 In mammals, females undergo oocyte proliferation in the ovary during fetal development, and
51 the oocytes are then stored in the ovary until sexual maturity and ovulation (Macklon & Fauser,
52 1999). The oocytes remain arrested in the meiotic first division within the primary follicle
53 (McGee & Hsueh, 2000). As only a limited number of oocytes are activated and developed for
54 ovulation, many follicles in the ovary remain dormant for years to even decades (Macklon &
55 Fauser, 1999). Recent comprehensive analyses using RNA-seq have unveiled gene expression
56 patterns in oocytes correlated with aging in mice and humans (Babayev & Duncan, 2022;
57 Hamatani et al., 2004; Llonch et al., 2021; Pan et al., 2008). Indeed, DNA repair disorder,
58 telomere shrinkage, chromosome missegregation, and mitochondrial dysfunction are

59 predominantly involved in the deterioration of oocyte quality in mice aged 12-20 months
60 (late-reproductive age, equivalent to age 40-60 in humans) (Dutta & Sengupta, 2016). While
61 correlations between aging and the quality of oocyte have been found in late-reproductive age,
62 why fertility begins to decline from mid-reproductive age remains unclear. A previous study
63 demonstrated that the number of offspring in spontaneous pregnancies decreases after 8
64 months in mice (mid-reproductive age equivalent to age 35-40 in humans) (Suzuki et al., 1994).
65 The cumulus cells also showed age-specific gene expression changes earlier than the oocyte
66 with aging (Mishina et al., 2021), presuming that the maintenance of functional cumulus cells is
67 critical to assuring oocyte quality.

68 During late folliculogenesis, the oocyte has physical contact with granulosa cells (progenitor of
69 cumulus cells) and forms the cumulus-oocyte complex (COC) at ovulation. Their close
70 interaction with the oocyte during folliculogenesis contributes to the maturation of the oocyte.
71 Cumulus cells extend multiple filopodia into the zona pellucida (ZP) in the oocyte, known as a
72 transzonal projection (TZP), making bridges between cumulus cells and the oocytes. Cumulus
73 cells play a role in cellular communication, including endocrine, autocrine, and paracrine
74 regulators such as amino acids and ions, which facilitate follicle development and ovulation
75 (Eppig et al., 2005). Its failure interferes with oocyte maturation and fertility (Kidder & Mhawi,
76 2002; Simon et al., 1997). However, little is known about how aging of cumulus cells is involved
77 in the maturation of the oocyte.

78 As mentioned above, a gap between individual aging and reproductive aging is highly
79 recognized, understanding of fertility decline in middle-aged females is essential to elucidate
80 the mechanism of reproductive aging. In the present study, we demonstrated how aging affects
81 the intercommunication between cumulus cells and the oocyte and subsequent fertilization
82 using middle-aged (34- to 38-week-old) female mice. We found that, in the ovary, the oocyte
83 quality declines due to a lack of interaction between the cumulus cells and the oocyte. In aged
84 oocytes, the lack of ZP surface mesh structure prevents sperm binding and penetration. Lastly,
85 adding glutathione to loosen ZP rescued fertilization rates. These results suggest that
86 age-related oocyte-cumulus miscommunication impairs the formation of ZP and middle-aged
87 female fertility.

88

89 **Results**

90 **Middle-aged female mice show a reduction of ovarian reserve of follicles and ovulated
91 oocytes**

92 When we examined the estrous cycle by taking daily vaginal smears, diestrus was prolonged in
93 middle-aged female (middle) mice compared with young-aged female (young) mice (The
94 average number of estrus cycles was 3.2 ± 0.2 and 2.3 ± 0.1 during a 20 day-test in young and
95 middle, respectively), still the estrus cycles were maintained (Figure S1A-D). We next
96 investigated female fecundity by natural mating. We found that the number of pups in
97 middle-aged mice was significantly reduced compared to that in young mice despite successful
98 coitus demonstrated by vaginal plug formation (Figure 1A). Morphological analysis revealed
99 that ovarian tissues of middle mice turned brown, while the oviduct and uterus and the ovarian
100 weight remained comparable between young and middle-aged mice (Figure 1B and C).
101 However, the area of ovarian fibrosis (Briley et al., 2016; Foley et al., 2021) was highly
102 abundant in middle-aged mice (Figure 1D and E). Furthermore, the number of follicles in
103 middle-aged mice was significantly decreased among primordial, primary, and secondary
104 follicles (Figure 1F and G). When we retrieved the oocytes from oviducts after superovulation in
105 middle-aged mice, half as many oocytes as in young mice were recovered (Figure 1H and S1E).
106 Because the hormone levels in the sera of young and middle-aged mice were comparable in
107 estradiol (Figure 1F), we focused on the development of antral follicles. As a result, the number
108 of antral follicles (follicular diameter $> 300 \mu\text{m}$) was significantly reduced 48 hours after
109 pregnant mare's serum gonadotropin (PMSG) treatment in middle mice (Figure 1J and I).
110 These results indicate that aging at the middle reproductive stage impairs follicular development
111 in the ovary.

112

113 **Impaired intercommunication between cumulus cells and oocytes causes reduced
114 oocyte quality during aging**

115 The cumulus cells, somatic cells that surround the oocytes within the follicle, play an essential
116 role in promoting oocyte maturation by bidirectionally transporting ions, amino acids, small
117 molecules, and hormonal signaling through gap junctions during folliculogenesis (Matzuk et al.,
118 2002). Previous studies demonstrated that cumulus cells undergo transcriptome changes
119 during aging at the middle reproductive stage (Mishina et al., 2021) and secrete factors that
120 deteriorate the oocytes in vivo and in vitro (Babayev & Duncan, 2022). We thus asked whether
121 the bidirectional communication between the cumulus cells and oocytes was attenuated by
122 aging in the follicle. When we observed the antral follicles using a transmission electron
123 microscope (TEM), the cumulus cells appeared regularly arranged along the oocyte in young
124 (Figure. 2A). In contrast, the density of cell adhesion between the cumulus cells was lost, and

125 the spacing between the cumulus cells was significantly enlarged in middle-aged mice (Figure
126 2A, B, and closeup pictures).

127 The cumulus cells form gap junctions; the innermost layer of cumulus cells surrounding the
128 oocyte extends cytoplasmic projections/filopodia, transzonal projections (TZPs), to transmit the
129 essential factors to the oocyte for its maturation. A previous study suggests that aging impacts
130 cumulus cells first then oocytes because transcriptomes change in cumulus cells and the GV
131 oocytes at 9-month-old and 14-month-old, respectively (Mishina et al., 2021). We thus analyzed
132 the published datasets (GSE159281) to characterize the expression patterns of gap junction
133 genes involved in cumulus cell adhesion. Gene expression of *Gjc1* (Connexin 45) was
134 significantly decreased at 9 and 14 months of age (Figure S2). In addition to *Gjc1*, gene
135 expression of the gap junction gene, *Gja1* (Connexin 43) and *Gja4* (Connexin 37), which are
136 also mainly expressed in the cumulus cells and function in cell adhesion of the cumulus cells,
137 were found to be significantly downregulated in antral follicles of middle compared to that of
138 young by qPCR (Figure. 2C). Because estrus cycles were difficult to be determined by smear
139 test (Figure S1C and D), we next treated females with PMSG. The expression level of *Fshr*,
140 which is expressed in the cumulus cells and induces follicle development in response to
141 follicle-stimulating hormone, was significantly decreased in middle-aged mice (Figure 2D),
142 regardless of comparable endogenous secretion of estradiol at the estrus stage (Figure S1F).

143 TZPs bridge cumulus cells and oocytes to exchange amino acids and nutrients in maturing
144 GV oocytes, making TZPs the histological marker for intercommunication between cumulus
145 cells and oocytes. When we carefully observed the ZP, the number of TZPs decreased by about
146 half in middle-aged mice (Figure 2E and F). To examine the intercommunication between
147 cumulus cells and GV oocytes, we performed two types of experiments. First, we measured the
148 amount of cytoplasmic glutathione (GSH) in GV oocytes (Figure 2G). GSH is a tripeptide
149 composed of glycine (Gly), L-cysteine (L-Cys), and L-glutamic acid (L-Glu) residues, defined as
150 one of the indicators of cytoplasmic maturation in oocytes, and plays antioxidant roles in the
151 oocytes (Tatemoto et al., 2000). Moreover, it has been reported that the cumulus cells transport
152 Gly, L-Cys, and L-Glu amino acids via TZPs to regulate GSH synthesis and accumulation in the
153 oocytes (Mori et al., 2000), suggesting that cumulus cells are responsible for the maintenance
154 of cytoplasmic GSH concentrations in the oocytes. The cytoplasmic GSH concentration varied
155 among GV oocytes in middle-aged mice, but the average was significantly reduced compared
156 with young GV oocytes; 2.28 and 1.55 pmol/oocyte in young and middle, respectively. In the
157 second experiment, we injected lucifer yellow into GV oocytes and observed its transfer into the

158 cumulus cells. The transitional ratio in middle GV oocytes was only about half that of young GV
159 oocytes (Figure 2H-J). These results suggest that the dysfunction of cumulus cells
160 accompanied by the disturbed cumulus cell layered structure leads to poor cumulus cell-oocyte
161 intercommunication and oocyte quality.

162

163 Impaired sperm binding to ZP results in reduced fertilization rates in middle-aged mice

164 We hypothesized that oocytes with reduced intercommunication with cumulus cells during
165 folliculogenesis would affect their subsequent capacity for fertilization and development in
166 middle-aged mice. We further analyzed the transcriptomes of young and middle post-ovulatory
167 MII oocytes and cumulus cells using bulk RNA-seq (Figures 3A and S3A). The MII oocytes and
168 cumulus cells showed their characteristic gene expression patterns (Figure S3B). Consistently
169 with previous study (Mishina et al., 2021), the MII oocytes in middle-aged mice had no
170 age-specific gene clusters compared to young MII oocytes (Figure 3B). In contrast to
171 pre-ovulatory cumulus cells (Mishina et al., 2021), no age-specific gene clusters were found in
172 ovulated cumulus cells (Figure 3B). Gene Ontology (GO) analysis also failed to list age-specific
173 GO terms in biological processes (Figure S3C).

174 When we performed in vitro fertilization (IVF), the fertilization rate of mid MII oocytes was
175 significantly lower than that of young (Figure 3C and D). When we cultured zygotes for four
176 days, we found a tendency to decrease the developmental rate and a small difference in the
177 transcriptome in middle-aged mice (Figures 3B, E, F, and S4A). However, there was no
178 significant difference. To further elucidate which stage of the fertilization process is affected by
179 aging (Figure S4B), we performed IVF with cumulus-free (sperm-ZP binding assay) or ZP-free
180 (sperm-oolemma fusion assay) oocytes. Although an average of 50 sperm were bound to the
181 ZP of young oocytes, the number of sperm bound to the ZP was decreased to half in middle MII
182 oocytes (Figure 3G and H). Still, MII oocytes of middle-aged mice were fusion competent with
183 young oocytes when freed from the ZP (Figure 3I and J). These results suggested that aging
184 attenuates the fertilization potential of the oocyte by affecting the ZP rather than the oolemma.

185

186 Aging alters the external microfilamentous structure of the ZP and affects fertilization

187 The ZP forms a mesh-like structure consisting of a delicate filamentous matrix and fibers. The
188 ZP plays critical roles in fertilization, facilitating sperm binding, penetration, and preventing
189 fertilization with extra sperm and heterospecific sperm. Since the oocytes are retained in the
190 ovary until their activation for ovulation or atresia, we investigated how the structure of the ZP

191 alters with aging. Taking advantage of scanning electron microscopy (SEM), we observed the
192 ZP surface structure of MII oocytes immediately after ovulation and classified them into three
193 groups (Figure. 4A). Type I; a well-defined reticular structure and fenestration with ruggedness
194 on the surface. Type II; a reticular structure with tiny pores and less ruggedness. Type III; an
195 entirely smooth surface with a collapsed mesh structure and no pores. Based on the
196 classification, 95% of MII oocytes in young were classified as Type I, whereas the proportion of
197 Type II and Type III MII oocytes was remarkably higher in middle-aged mice (Figure 4B). These
198 results were consistent with a previous study (Nogues et al., 1988) and the presence of smooth
199 structures in Type III was even more pronounced in MII oocytes of middle-aged mice.

200 Moreover, to objectively evaluate the ZP surface structure, we attempted to characterize the
201 shape of the ZP surface by fractal dimensions, which represent universal quantities related to
202 the geometrical or structural complexity. We developed an algorithm that analyzes surface
203 ruggedness based on three validation factors: the fractal dimension (self-similarity or
204 complexity), the number of holes that form between the mesh structures (a major characteristic
205 of the ZP), and the edge intensity (unevenness) (Figure S5A). The algorithm was trained using
206 leave-one-out cross-validation of each feature from the images and analyzed a total of 83
207 images. As a result, the algorithms achieved a classification accuracy of 87%. The likelihoods of
208 the fractal dimensions were found to be 0.54 and 0.64 in young and middle, respectively
209 (Figures S5B and C). The more rugged ZP surface structure of MII oocytes corresponded to a
210 smaller fractal dimension and likelihoods, suggesting that young MII oocytes had a higher
211 self-similarity and regularity. Conversely, the ZP surface structure became more complex with
212 increasing likelihoods, with MII oocytes of middle-aged mice exhibiting more planar or smooth
213 structures. These data indicate that structures subjectively classified as Type II and Type III
214 showed a high fractal dimension and that the fractal dimension of the corresponding ZP surface
215 structures could adequately explain the subjective observation. These results also suggest that
216 aging increases the smoothing of the ZP surface structure of oocytes.

217 To investigate how alterations of the ZP surface structure affect fertilization, we retrospectively
218 observed fertilized and unfertilized eggs, based on pronuclei formation after IVF, using a
219 stereomicroscope and conducted SEM analyses. In young and middle-aged mice, most
220 fertilized eggs were classified as Type I and Type II, respectively, with no eggs exhibiting Type
221 III (Figure 4C and E), indicating that at least a reticular structure is necessary for fertilization.
222 Unfertilized eggs showed fewer Type I oocytes and increased ratios of Type II and even Type III,
223 regardless of age (Figure 4D and E). We also found some holes/scratches on the surface,

224 so-called “sperm scars,” presumably undermined by sperm passing through the ZP
225 (Yanagimachi, 1994). The number of sperm scars was approximately ten on the hemispheres of
226 the fertilized eggs, and sperm numbers varied on the unfertilized eggs (Figure 4F and G). Since
227 successful fertilization alters the ZP structure and prevents extra sperm entry (ZP block to
228 polyspermy) (Fahrenkamp et al., 2020), the large number of sperm scars should represent the
229 failure of fertilization. The findings suggest that one possible reason for the lower fertilization
230 rate in IVF was that the surface structure of the ZP changes from ruggedness to smooth
231 structure with age, and its formation prevents sperm binding to the ZP in middle-aged mice.

232

233 **Oocytes exhibit aberrant accumulation of ZP filaments in middle-aged mice**

234 To investigate when the alteration of the ZP surface structure began to occur, we observed
235 cross-sections of the ZP by TEM using GV oocytes in antral follicles. In the cross-sectional
236 image of the ZP in young, the ZP fibers were disorderly arranged to extend (Figure 5A-C), as if
237 diverging, toward the cumulus cells, and spaces not occupied by fibers were observed in the
238 outermost layers of the ZP (Figure 5B, C, B', and C'). The facts suggest that the ZP surface
239 structure already has a mesh structure in GV oocytes in young and is maintained until
240 fertilization. On the contrary, the surface of GV oocytes in middle-aged mice had no ruggedness
241 (Figure 5D-F) because the fibers were densely packed and formed a flat line (Figure 5E, E', F,
242 and F'). Moreover, the gaps between fibers on the surface observed in GV oocytes in young
243 were also absent (Figure 5E' and F'). This result is consistent with Figure 4A that the surface
244 structure observed in the MII oocytes did not exhibit a ruggedness structure in middle-aged
245 mice. To objectively evaluate the degree of the ruggedness of the ZP surface in GV oocytes, we
246 then analyzed the likelihoods using the algorithm developed in Figure 4. The scores showed
247 that cross sections of the ZP in middle-aged mice were regular and less uneven; the average of
248 likelihoods was 0.54 and 0.70 in young and middle, respectively (Figures 5G and S6A). The
249 results indicate that even within follicular development, the ZP surface structure lost its
250 ruggedness with age.

251 We further focused on the internal structure and protein expression of the ZP. Although there
252 was no difference in the oocyte size and perivitelline space (PVS) in young and middle,
253 thickness and total area of the ZP in MII oocytes were significantly increased in middle-age
254 mice (Figures 5H and S6B-D). Comparing the density of ZP fibers in the assigned regions
255 (outermost, midmost, and innermost), we found that the fibers were denser in all areas of the
256 ZP in middle-aged mice (Figure 5I-L). These data indicate that the age-related change in the ZP

257 affects the loss of surface roughness and the internal mesh structure.

258 The main components of the zona pellucida are ZP1, ZP2, and ZP3, with ZP2 being the most
259 abundant component. We carried out western blotting and found that the ZP2 protein amount
260 was 1.5 times greater in middle-aged mice than in young (Figure 5M). Given the unavailability
261 of effective antibodies against ZP1 and ZP3, we further conducted MS analysis to compare the
262 presence of those proteins quantitatively (Figure S6E). The results showed that the MS score of
263 ZP2 increased in the ZP of middle-aged mice as in Figure 5M. In contrast, ZP3 and ZP1
264 showed an increasing tendency, but there were significant individual differences (Figures 5N
265 and table S1). These indicate that aging causes changes in the surface structure and internal
266 fiber occupancy of the ZP, at least with quantitative changes in the ZP constituent protein ZP2.

267

268 **Glutathione treatment restores the fertilization rate in middle-aged mice.**

269 Since the ZP structure changes with age, we tried to improve the fertilizing ability in middle-aged
270 mice. Glutathione has been reported to reduce disulfide bonds of ZP proteins, increase free
271 thiols, and thus destabilize the ZP, effectively improving the fertilization rate of frozen-thawed
272 mouse sperm (Bath, 2010; Takeo et al., 2015; Takeo & Nakagata, 2011). When we incubated the
273 COCs in a glutathione-containing medium, 98% of young MII oocytes showed ZP expansion,
274 increasing the ZP diameter. The ZP diameter of MII oocytes also increased to an average of
275 125.3 μ m, although there was some variation among the oocytes in middle-aged mice (Figure 6A
276 and B). Moreover, as we carried out IVF with a glutathione-containing medium, average
277 fertilization rates were recovered from 65.3% to 85.0% in middle-aged mice, comparable to
278 young controls (Figure 6C and D). These results indicate that even though the surface structure
279 and composition of the constituent proteins differ from young in aged oocytes, the loosening of
280 the ZP could restore the fertilization rate in mice.

281

282 **Discussion**

283 Our present data show that an age-related reduction in oocyte-cumulus cell interactions in the
284 ovary and subsequent structural changes in the ZP diminish fertilization at mid-reproductive age,
285 which can partially be restored by glutathione treatment (Figure 7).

286 Previous studies have investigated the impacts of aging on female individuals, the ovaries,
287 oocytes, and embryo development using naturally aged mice from 10 to 24 months of age
288 (Bertoldo et al., 2020; Duncan et al., 2017). However, female mice fertility declines rapidly from
289 6 to 9 months (Suzuki et al., 1994), which is as early as six months before menopause (12-15

290 months) (Diaz Brinton, 2012; Russ et al., 2022). In the present study, our result reconfirmed that
291 the fertility of middle-aged mice was significantly lower than that of young mice, despite their
292 ability to produce pups. This result is consistent with humans; female fertility declines rapidly
293 after age 35, while women reach menopause around age 50 (Broekmans et al., 2009).

294 As mentioned in Figure. 2, bidirectional communication between cumulus cells-oocytes had
295 already diminished in the ovary during fertility decline. The COCs essentially form multilayered
296 cumulus cells in the ovary; however, we found that these were thinner in middle-aged mice due
297 to the weak adhesion between cumulus cells (Figures 1I and 2A). Intercellular communication is
298 crucial for the oocyte maturation during folliculogenesis. Mutant mice lacking connexin 37
299 (Cx37, encoded by *Gja4*) exhibited infertile due to incomplete oocyte maturation at meiotic
300 division by lack of gap junctions between cumulus cells and oocytes in follicles (Simon et al.,
301 1997). Oocyte-specific deletion of connexin 43 (Cx43, encoded by *Gja1*) led to subfertility in
302 mice (Gershon et al., 2008). The fate of premature oocytes goes to either atresia or failure of
303 ovulation. Replacing Cx37-null mutant mice by specific expression of Cx43 in the oocytes
304 restored the formation of gap junctions and resumed oocyte maturation in follicles, suggesting
305 that the physical linkages between cumulus cells and oocytes are essential (Kordowitzki et al.,
306 2021; Li et al., 2007). However, it remained unclear how aging is associated with the expression
307 of connexin proteins. At least our data (Figure 2C) and a significant decrease in expression of
308 the cluster of gap junction genes shown by the spatial RNA-seq (Mishina et al., 2021) suggest
309 that an age-dependent reduction in the cumulus cell function diminished the cumulus-oocyte
310 intercellular communications in middle-aged mice.

311 Our data showed that the impact of aging was more pronounced at fertilization than at
312 post-fertilization. As shown in Figure 3D, the embryo development rate tended to decrease,
313 although this was not significant; average rates were 94.5% and 74.1% in young and middle,
314 respectively ($p = 0.569$). Transcriptome analysis also failed to show differentially expressed
315 genes with age in the blastocysts (Figure S4A). On the other hand, in humans, previous studies
316 demonstrated that advanced maternal age (above age 35) greatly affected early embryonic
317 development and blastocyst formation (Janny & Menezo, 1996). The proportion of
318 chromosomal aneuploidies, including trisomies, was reported to rise from a 10% incidence at
319 the age of 30 to 20% at the age of 40 in blastocysts in humans (Gruhn et al., 2019; Ntostis et al.,
320 2021). Similarly, the ratio of trisomies and mosaics observed in fetuses was 12.8% from 14-16
321 months old female mice (Yamamoto et al., 1973); however, the rate of chromosomal
322 abnormalities in oocytes in middle is comparable to those in young (Webster & Schuh, 2017),

323 suggesting that impaired fertilization may contribute to the reduced fertility of middle-aged mice.
324 Although we cannot rule out that embryos obtained from 34- to 38-week-old female mice may
325 have chromosomal defects, the decrease in fertilizing ability should not be overlooked.

326 The ZP performs various functions during mammalian oogenesis, fertilization, and
327 preimplantation development. Sperm must penetrate the ZP before fertilization. Once
328 fertilization occurs, the mid and inner filaments of ZP fuse to prevent polyspermy (Familiari et al.,
329 1992), and the oocytes secret ovastacin that cleaves ZP2 and hardens the ZP (Burkart et al.,
330 2012). Thus, abnormalities of the ZP cause low fertility or infertility (Familiari et al., 2008;
331 Litscher & Wassarman, 2020). The ZP surface structures have been investigated in various
332 species such as bovine, canine, mouse, and humans (Baez et al., 2019; Nogues et al., 1988;
333 Vanroose et al., 2000). A distinct mesh structure with numerous pores and fenestrations is well
334 conserved across species. Previous studies demonstrated that the successfully fertilized
335 oocytes had ruggedness on the surface structure, while premature oocytes and unfertilized
336 eggs had a smooth structure in human IVF (Familiari et al., 2008; Magerkurth et al., 1999). Our
337 data suggested that the structure of the ZP changed from ruggedness to smoothness, affecting
338 sperm-binding to the ZP and subsequent fertilization in aged mice (Figures 3A, 4A, and C).
339 Consistently with human IVF (Magerkurth et al., 1999), the number of sperm bound to the ZP
340 surface corresponded to the morphology of the ZP (Figure 4C-G). Of note, the destabilization of
341 the ZP structure in aged oocytes by glutathione treatments restored the fertilization rate (Figure
342 6C).

343 Our present data show that at middle age there was reduced fertilizing ability of the oocyte due
344 to structural aberrations and dysfunction of the ZP. In addition to the chromosomal
345 abnormalities and subsequent abnormal embryonic development post-fertilization, fertility
346 decline in middle reproductive age is associated with fertilization defects. Thus, improving the
347 follicular environment and restoring fertilizing ability may be a cue for infertility treatment in
348 middle reproductive age.

349

350 **Materials and Methods**

351 ***Animals***

352 All C57BL/6J mice used in this study were purchased from CLEA Japan (Tokyo, Japan) and
353 Charles River Japan (Yokohama, Japan). Mice were maintained under pathogen-free
354 conditions, under a 12-h light/12-h dark cycle in a temperature-controlled environment of the
355 experimental animal facility at the Institute of Medical Science of the University of Tokyo as well

356 as the Research Institute for Microbial Diseases, Osaka University. All mouse experiments were
357 approved by the Institutional Animal Care and Use Committee of the University of Tokyo
358 (#PA19-10) and the Animal Care and Use Committee of the Research Institute for Microbial
359 Diseases, Osaka University (#Biken-AP-H30-01) and performed in compliance with their
360 guidelines. Young-aged female (young; 10 to 12 weeks old, equivalent to age 20-25 in humans)
361 mice (Dutta & Sengupta, 2016), middle-aged female (middle; 34 to 38 weeks old, equivalent to
362 age 35-40 in humans), and male mice (12- to 15-week-old) were used.

363

364 ***Smear Test***

365 Vaginal smears from nine young and twenty middle mice were observed every morning
366 (9:00-11:00) and evening (16:00-18:00) continuously for 20 days. Female mice were classified
367 into each stage of the estrous cycle based on the following criteria for the morphology and
368 quantity of cells. The proestrus stage showed nucleated and few cornified epithelial cells, the
369 estrus stage showed many cornified epithelial cells, the metestrus stage showed many
370 leukocytes, and few nucleated epithelial cells, and the diestrus stage showed decreased cell
371 numbers and few leukocytes (Hasegawa et al., 2016).

372

373 ***Fertility test***

374 Two young- or middle-aged mice were caged with a male mouse two-to-one to observe
375 pregnancy, as modified from a previous work (Hasuwa et al., 2013). Copulation was confirmed
376 by checking for vaginal plugs every morning, and the number of pups was counted after birth.
377 The pregnancy rate was calculated by successful delivery per plug formation.

378

379 ***Hormone measurement***

380 On the days of estrus and metestrus, 20-50 μ L of mouse blood was collected from the tail vein,
381 and serum was obtained after centrifugation. Serum estradiol was analyzed using standard
382 enzyme-linked immunosorbent assay (ELISA). The mouse estradiol kit (KGE014) was
383 purchased from Bio-Techne (Minneapolis, MN) and assays were performed according to the
384 manufacturer's instruction.

385

386 ***Observation of ovaries histology and follicular count***

387 For hematoxylin and periodic acid-Schiff (PAS), ovaries were fixed with Bouin's solution at 4°C
388 overnight. Fixed ovaries were then embedded in paraffin, sectioned by microtome at 5 μ m

389 thickness, rehydrated, and treated with 1% periodic acid for 15 min, followed by treatment with
390 Schiff's reagent (Wako, Osaka, Japan) for 20 min. The sections were stained with hematoxylin
391 prior to imaging. For hematoxylin-eosin (HE) staining, the ovaries were fixed with 4%
392 paraformaldehyde at 4°C overnight. Fixed ovaried were then embedded in paraffin, sectioned by
393 microtome at 5 μ m thickness, rehydrated, and treated with hematoxylin for 5 min and eosin for 5
394 min (Hasuwa et al., 2013). Ovarian sections were observed by using a BZ-X710 microscope
395 (KEYENCE, Osaka, Japan). The number of primordial, primary, secondary, and antral follicles
396 was counted based on the morphology of cell compartments, as described previously (Duncan
397 et al., 2017; Myers et al., 2004).

398

399 ***Measurement of area of ovarian fibrosis***

400 The area of fibrosis was stained brown in HE-stained sections. The area of fibrosis occupying
401 the whole ovary (%ovarian fibrosis) was measured using ImageJ.

402

403 ***Oocyte collection, in vitro fertilization, and in vitro culture***

404 Females were superovulated by intraperitoneal injection of pregnant mare's serum
405 gonadotropin (PMSG; 5 units; ASKA Pharmaceutical, Tokyo, Japan) followed by human
406 chorionic gonadotropin (hCG; 5 units; ASKA Pharmaceutical) 48 h later, as described previously
407 (Miyata et al., 2015). The cumulus-oocyte complexes (COCs) were retrieved from the oviduct
408 15 h after hCG injection and incubated in HTF medium (ARK Resource, Kumamoto, Japan)
409 until use. In vitro fertilization (IVF) was performed using 100 μ L HTF and CARD MEDIUM with
410 the Case 2 method (KYUDO company, Saga, Japan) as described in the instruction manual.
411 Fresh cauda epididymal sperm of males were dispersed in a 300 μ L drop of HTF at 37°C for 30
412 min. Sperm were added to the drop containing the COC at a final concentration of 1.5×10^5
413 sperm/mL. The oocytes were collected 6 h after IVF and cultured in kSOM (ARK Resource)
414 medium for 5 days with observation every 24-h at 37°C under 5% CO₂ in air. The numbers of
415 one-cell embryos with pronuclei and unfertilized oocytes were counted and used for estimation
416 of the success rate of fertilization.

417

418 ***Sperm-Zona binding and Fusion assay***

419 Fresh sperm from the cauda epididymis were dispersed in 200 μ L of drops of TYH medium and
420 incubated for 2 h at 37°C under 5% CO₂ in air to induce capacitation. The final concentration of
421 sperm was adjusted to 1.0×10^5 sperm/mL in 100 μ L TYH medium drops for insemination. The

422 sperm-zona pellucida (ZP) binding assay was performed as described previously (Fujihara et
423 al., 2020; Kiyozumi et al., 2020). Briefly, the COCs were treated with hyaluronidase for 5 min to
424 remove cumulus cells and oocytes were washed with TYH medium. The oocytes were then
425 incubated for 2 h with sperm and fixed with 0.25% glutaraldehyde for 30 min. The bound sperm
426 on the ZP were observed with an Olympus IX70 fluorescence microscope and a Keyence
427 BZ-X710 fluorescence microscope. For the fusion assay, the ZP was removed by adding
428 Tyrode (Sigma-Aldrich, Burlington, MA) and the ZP-free oocytes were inseminated with 1.0 ×
429 10^5 sperm/mL in TYH medium. Twenty minutes after insemination, the ZP-free eggs were
430 gently washed in fresh medium drops and then moved to fresh medium drops, fixed with 0.2%
431 paraformaldehyde, and stained by Hoechst 33342. The eggs were transferred to
432 glass-bottomed chambers to observe sperm nuclei fused with oolemma using a spinning-disk
433 confocal microscope (Olympus) (Miyata et al., 2015).

434

435 ***Quantitative real-time PCR of isolated cumulus cells***

436 The collection of cumulus cells was performed as described previously (Emori et al., 2020).
437 Briefly, the ovaries from females with 5 IU of PMSG 44-46 h were excised, punctured by
438 using a 26G needle (TERUMO, Tokyo, Japan), and the COCs were gently moved to
439 separate media. The media was composed of bicarbonate-buffered minimal essential
440 medium alpha (MEM α ; Thermo Fisher Scientific, Gaithersburg, MD) supplemented with 3
441 mg/ml of bovine serum albumin (Sigma-Aldrich, St. Louis, MO). Fresh cumulus cells were
442 obtained by removing oocytes from COCs via repeated pipetting using fine-bore pipettes
443 and washed with PBS three times. Total RNA was extracted by using Sepasol[®]-RNA I
444 Super G (nacalai, Tokyo, Japan) according to the manufacturer's instructions and
445 DNase-treated (Takara Bio Inc., Tokyo, Japan). cDNA was synthesized using SuperScript
446 VILO (Thermo Fisher Scientific) according to the manufacturer's instructions in a reaction
447 volume of 10 μ L. The synthesized cDNA was used for qPCR. qPCR analysis was
448 performed with at least three independent RNA samples using Thunderbird SYBR qPCR
449 Mix (Toyobo, Osaka, Japan) and StepOne system (Thermo Fisher Scientific) for
450 quantification. The fold difference was calculated using the $\Delta\Delta Ct$ method (Schmittgen &
451 Livak, 2008). The primers used in this study are shown in Table S2.

452

453 ***In silico data analysis***

454 GSE159281, a set of single-cell transcriptome data for mouse oocytes and cumulus cells in

455 the antral follicles, was downloaded from the NCBI web site (Mishina et al., 2021). A list of
456 mouse genes encoding gap junctions, which is also reported to be expressed in the
457 cumulus cells, were selected for comparison in this study.

458

459 ***RNA-seq***

460 Superovulation of females was done using a previous method (Hasegawa et al., 2016).
461 The COCs were recovered from the oviducts 15 h after hCG injection, placed in HTF
462 medium with 1 mg/mL hyaluronidase for 5 min at 37°C under 5% CO₂. Only 0.5 µL of
463 media containing cumulus cells from each mouse was added to 10 µL lysis buffer (Takara
464 Bio Inc.). The oocytes were then treated with 1 mg/mL collagenase to remove the ZP, as
465 described previously (Yamatoya et al., 2011). For MII oocytes, 20 oocytes from 4 mice (5
466 oocytes per mouse) were collected in one tube and added to 10 µL lysis buffer. For
467 blastocysts, 20 blastocysts from 4 mice (5 blastocysts per mouse) were collected at 4 days
468 after in vitro fertilization. Total RNAs of each sample were extracted using miRNeasy Micro
469 Kit (QIAGEN). RNA quality was confirmed by using an Agilent 2100 bioanalyzer (Agilent,
470 Santa Clara, CA). The RNA of the cumulus cells extracted from each individual mouse was
471 mixed using equal amounts of RNA. Full-length cDNA was generated using a SMART-Seq
472 HT Kit (Takara Bio) according to the manufacturer's instructions. An Illumina library was
473 prepared using a NexteraXT DNA Library Preparation Kit (Illumina) according to SMARTer
474 kit instructions. The resulting libraries were sequenced using HiSeq 2500 or NovaSeq 6000
475 platforms in a single-end mode (Illumina, San Diego, CA, USA). Sequenced reads
476 (approximately 10 million reads) were mapped to the mouse reference genome sequences
477 (mm10) using TopHat version 2.1.1. Normalized FPKM were calculated using Cuffnorm or
478 Cuffdiff version 2.2.1 and each value lower than 0.1 was set to 0.1. Gene Ontology (GO)
479 analysis was performed using Metascape (<https://metascape.org/>) (Zhou et al., 2019).
480 Hierarchical clustering heatmaps of genes identified in the RNA-seq data was calculated
481 with Ward's method using Scipy and visualized with Matplotlib. The obtained RNA-seq
482 data have been deposited in the Gene Expression Omnibus database (BioSample
483 accession: SAMD00638922-SAMD00638945).

484

485 ***Injection of lucifer yellow into COCs***

486 The COCs were collected from the ovaries 44-48 h after PMSG injection and placed in
487 FHM medium until use. The oocyte of each COC was injected with about 10 pL of a 100

488 mM solution of Lucifer Yellow (L453; Thermo Fisher Scientific), as described previously
489 (El-Hayek et al., 2018). The COCs were incubated for 30 min, then observed using a
490 fluorescence microscope (Keyence). The intensity of GFP in the oocytes and cumulus cells
491 at 0 and 30 min incubation was measured by using ImageJ.

492

493 ***Glutathione measurement of GV oocytes***

494 The COCs were collected, as described above (See “Quantitative real-time PCR of
495 *isolated cumulus cells*”), and) and placed in TYH medium. The COCs were treated with
496 hyaluronidase (Sigma Type I-S, 150 units/mL) and washed with MEMα medium.
497 Cumulus-free eggs were transferred into 50 µL drops of acidic Tyrode’s solution (Sigma)
498 and pipetted several times until the ZP was dissolved under a stereoscopic microscope
499 (approximately 30 sec). GV oocytes were then washed in PBS with 0.1% PVP three times
500 and stored at –80°C until use. Due to the limitation of detection sensitivity, at least 20 GV
501 oocytes were prepared for one assay. GSH measurements were performed using
502 GSH-Glo™ Glutathione Assay kit (Promega) according to the manufacturer’s instruction
503 and SperctraMax L (Molecular Devices, CA).

504

505 ***Transmission electron microscopy (TEM)***

506 The ovaries were fixed in 2.5% glutaraldehyde + 2% paraformaldehyde in phosphate buffer
507 (0.1 M, pH 7.4) and then fixed with 2.5% glutaraldehyde + 2% paraformaldehyde in
508 phosphate buffer (0.1 M, pH 7.4). The specimens were postfixed in 2% osmium tetroxide
509 (OsO₄) in phosphate buffer (0.1 M, pH 7.4) at 4°C for 2 h, dehydrated in a graded ethanol
510 series (30%-99%) and then embedded in Epo812 (TAAB). For observation of the ZP
511 filaments, the ovaries and oviducts were pre-soaked in 0.02% saponin and 1.0% ruthenium
512 red in phosphate buffer (0.1 M, pH 7.4) for 30 min, and then fixed with 2.5% glutaraldehyde
513 + 2% paraformaldehyde plus 0.02% saponin and 1.0% ruthenium red in phosphate buffer
514 (0.1 M, pH 7.4) at 4°C overnight (Familiari et al., 2008; Familiari et al., 1989). Ruthenium
515 red is known to act as a staining and stabilizing agent of structural glycoproteins and
516 polyanionic carbohydrates by preventing their dissolution and/or alteration induced by
517 aqueous fixatives (Familiari et al., 1989). The specimens were washed in phosphate buffer
518 (0.1 M, pH 7.4) containing 1.0% RR and 0.02% saponin, postfixed for 1 h in 2.0% OsO₄ in
519 phosphate (0.1 M, pH 7.4) buffer containing 0.75% ruthenium red and 0.02% saponin and
520 then dehydrated in a graded ethanol series (30%-99%) and then embedded, as described

521 above. Sections (roughly 70 nm thick) were prepared using a Leica EM UC 6
522 ultramicrotome (Leica, Wetzlar, Germany) and observed using a JEM-1400 Flash
523 transmission electron microscope (JEOL, Tokyo, Japan) at 80 kV (Hirano et al., 2022).

524

525 ***Measurement of cumulus cell-cell distance***

526 Segmentation of cumulus cells in TEM pictures was performed using Cellpose
527 (<https://www.cellpose.org/>) (Stringer et al., 2021). The center of cell was calculated, and
528 images were threshold based on the cell shape and then a cell-cell distance was calculated
529 by using ImageJ.

530

531 ***Scanning electron microscopy (SEM)***

532 SEM analysis was performed, as described previously (Kawano et al., 2010) with some
533 modifications. Briefly, MII oocytes, fertilized eggs, and unfertilized eggs were washed three
534 times with 0.1% PVP/PBS, then with PBS and fixed with 2.0% glutaraldehyde in phosphate
535 buffer (0.1 M, pH 7.4) on poly-L-lysine (PLL; sigma)-coated silicon mounts (G3390 Silicon
536 wafer; EMJapan Co., Ltd., Tokyo, Japan) at room temperature for 1 h. The eggs were
537 treated successively with 1% OsO₄, 1% Tannic acid, and then 1% OsO₄ in the above
538 phosphate buffer at 4°C for 10 min and dehydrated with a graded ethanol series
539 (30%-99%). The dehydrated samples were treated with isoamyl acetate and dried in liquid
540 CO₂ using a critical-point drying apparatus (HCP-2; Hitachi, Tokyo, Japan), transferred
541 onto a stub and coated with osmium coater (HPC-1S; Vacuum Device, Ibaraki, Japan).
542 Images were then acquired under a Zeiss Sigma field-emission SEM (Zeiss Sigma; Carl
543 Zeiss, UK) at a working distance of 5 mm and an accelerating voltage of 5 kV.

544

545 ***Western blot analysis***

546 Western blotting was conducted, as reported previously (Emori et al., 2020). Following three
547 washes with 0.1% PVP/PBS, twenty MII oocytes were directly mixed with SDS sample
548 buffer (Nacalai) and stored at -80°C until use. Protein lysates were resolved by
549 SDS/polyacrylamide gel electrophoresis (PAGE) and transferred to polyvinylidene fluoride
550 (PVDF) membranes (Bio-Rad, Hercules, CA, USA). After blocking, blots were incubated
551 with anti-ZP2 antibody (1:1000, kindly gifted by Dr. Luca Jovine) at 4°C for overnight and
552 then incubated with secondary antibodies conjugated with horseradish-peroxidase (HRP) or
553 conjugated donkey anti-rat IgG [1:2000, 712-035-153; Jackson ImmunoResearch, West

554 Grove, PA, USA]. GAPDH was used as an internal control (1:1000, Direct-BlotTM HRP
555 anti-GAPDH antibody, 607903; Biolegend, San Diego, CA, USA). Signals were visualized
556 using Luminata Forte (Merck Millipore, Tokyo, Japan) and the ChemiDoc Imaging System
557 (Bio-Rad).

558

559 ***Mass spectrometry and data analysis***

560 Isolation of the ZP was performed by using a piezo-manipulator (Yamagata et al., 2002).
561 Briefly, the COC was retrieved from the oviduct 15 h after hCG injection, as described above
562 (See “*Oocyte collection, in vitro fertilization, and in vitro culture*”), and placed in
563 HEPES-buffered KSOM (FHM) at room temperature. The COCs were treated with
564 hyaluronidase and oocytes were washed with FHM medium. The ZP was drilled by a
565 piezo-manipulator PMAS-CT150 (Prime Tech LTD., Ibaraki, Japan) in FHM with 0.25 M
566 sucrose and then separated from the oocyte. Five the ZP collected from each mouse, in
567 three replicates, were subjected to MS analysis. The ZP samples were purified using
568 methanol-chloroform precipitation and then dissolved in 0.1% Rapigest solution (Waters,
569 Milford, MA, USA). The ZP proteins were reduced with 10 mM dithiothreitol (DTT), followed
570 by alkylation with 55 mM iodoacetamide, and digested by treatment with trypsin and purified
571 with a C18 tip (GL-Science, Tokyo, Japan). The resultant peptides were subjected to
572 nanocapillary reversed-phase LC-MS/MS analysis using a C18 column (12 cm x 75 um,
573 1.9 μ m, Nikkyo technos, Tokyo, Japan) on a nanoLC system (Bruker Daltoniks, Bremen,
574 Germany) connected to a tims TOF Pro mass spectrometer (Bruker Daltoniks) and a
575 modified nano-electrospray ion source (CaptiveSpray; Bruker Daltoniks). The mobile phase
576 consisted of water containing 0.1% formic acid (solvent A) and acetonitrile containing 0.1%
577 formic acid (solvent B). Linear gradient elution was carried out from 2% to 35% solvent B for
578 20 min at a flow rate of 250 nL/min. The ion spray voltage was set at 1.6 kV in the positive
579 ion mode. Ions were collected in the trapped ion mobility spectrometry (TIMS) device over
580 100 ms and MS and MS/MS data were acquired over an *m/z* range of 100-2,000. During the
581 collection of MS/MS data, the TIMS cycle was adjusted to 0.53 s and included 1 MS plus 4
582 parallel accumulation serial fragmentation (PASEF)-MS/MS scans, each containing on
583 average 12 MS/MS spectra (>100 Hz) (Meier et al., 2015; Meier et al., 2018), and nitrogen
584 gas was used as collision gas. The resulting data was processed using Data Analysis
585 version 5.2 (Bruker Daltoniks), and proteins were identified using MASCOT version 2.7.0
586 (Matrix Science, London, UK) against the Uniprot mouse database (88,017 sequences;

587 35,135,138 residues). Protease specificity was set for trypsin (C-term, KR; Restrict, P;
588 Independent, no; Semispecific, no; two missed and/or nonspecific cleavages permitted).
589 Variable modifications considered were N-terminal Gln to pyro-Glu, and oxidation of
590 methionine. The mass tolerance for precursor ions was ± 15 ppm. The mass tolerance for
591 fragment ions was ± 0.05 Da. The threshold score/expectation value for accepting individual
592 spectra was $p < 0.05$. Quantitative value and fold exchange were calculated by Scaffold5
593 version 5.1.2 (Proteome Software, Portland, OR, USA; Protein Threshold: 99%; Min #
594 Peptides: 2; Peptide Threshold: 95%) for MS/MS-based proteomic studies (Searle, 2010).
595 The quantitative values (Normalized Total Spectra) are available in Table S1.

596

597 ***Analysis of the fractal dimension***

598 The fractal analysis allows the complexity of shapes and pattern recognition to be
599 quantified as fractal dimensions (Mandelbrot, 1967). Fractal dimensions of the ZP surface
600 structure and cross-images were analyzed using a custom-written MATLAB-based
601 algorithm based on the library (Dennis & Dessimis, 1989):
602 <https://jp.mathworks.com/matlabcentral/fileexchange/71774-create-measure-characterize-visualize-1d-2d-3d-fractals>. Note that this library is only applicable to the calculation of
603 fractal dimensions. The code for fractal analysis generated during this study are available
604 at the GitHub: https://github.com/YulshikawaYamauchi/Ishikawa_et_al_2023. The fractal
605 dimension ranged from 1 to 3, with bin edges in increments of 0.2. In addition to the fractal
606 dimension, our custom algorithm read in images, calculated image features, including the
607 number of holes and the edge intensity, and performed linear multiple regression training
608 and prediction. The imported original images were first subjected to smoothing image
609 processing (<https://jp.mathworks.com/help/images/ref/imbilatfilt.html>). The fractal
610 dimensions define the median of all pixels as the fractal dimension representative of the
611 image after calculating the fractal dimension per pixel. The calculation of the fractal
612 dimension per pixel was performed in the following steps: all pixels D1 (difference from
613 neighboring pixels) and D2 (difference from pixels epsilon away) were calculated. For D1
614 and D2, the average values Dm1 and Dm2 of the neighborhood blocks of the window width
615 were calculated, and the fractal dimension was calculated using the following formula.
616

617

618
$$\text{Fractal dimension (FD)} = \sqrt{2} (0.5 + (\log(Dm1) - \log(Dm2)) / \log(\text{epsilon})) + 2.5$$

619

620 In the area histogram of holes, the image was converted to a binary image, and the number
621 of holes per area was represented by histograms. Based on the results of the validation,
622 the optical histogram bin edges were set to 0, 50, 100, 150, 1000, and 1000000. In the
623 calculation of edge intensity, the number of edges per intensity was represented by
624 histograms. The edges of the histogram bins were 0, 20, 40, 60, and 100, but the weights
625 were all set to zero in this study, as the edge intensities were not of much importance when
626 verified. The reasons as follows; there were 19 explanatory variables including 10 bins for
627 the histogram of fractal dimension, 5 bins for the histogram of the number of holes, and 4
628 bins for the edge strength. Among these 19 variables, effective variables for linear
629 regression were selected, and the weight of the unselected variables was fixed to zero.
630 Specifically, we performed the following processing, and the resulting setE_best became
631 the selected explanatory variables, while the weight of the unselected variables became
632 zero.

633

634 1. Upon selection of all variables, the set of selected variables was setE. The mean
635 absolute error (MAE) of the Leave One Out (LOO) cross-validation was then
636 determined and initialized as follows.

637

MAE_best = MAE

setE_best = setE

638

639 2. LOO cross-validation was performed by excluding one variable from the variables
640 stored in setE, and the best MAE with the highest accuracy was set as
641 MAE_best_tmp.

642 3. setE was updated as follows: the set of explanatory variables when setE =
643 MAE_best_tmp (the one with the best accuracy among the ones obtained by
644 excluding one variable from setE).

645 4. If MAE_best > MAE_best_tmp, the following updates are performed:

646

MAE_best = MAE_best_tmp setE_best = setE

647

648 5. The process ended when the number of variables in setE became one. Otherwise, the
649 process returned to step 2."

650

651 As learning YAF and MAF using linear multiple regression, the following variables were
652 trained. Explanatory variable X is a standardized histogram of the three types of features,
653 fractal dimension histogram, vacancy area histogram, and edge intensity histogram. The
654 objective variable Y is YAF set to 0 and MAF set to 1. The linear multiple regression
655 equation was as follows.

656

657
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_m x_m$$

658

659 Ideally, the estimate y should be 0 or 1, but in practice, y can take values below 0 or above
660 1, so it is transformed into a likelihood, p, by the following sigmoidal function.

661

$$p = 1/(1 + e^{(-y)})$$

662

663 As mentioned above, we used Leave One Out (LOO) cross-validation to test the accuracy
664 of our machine-learning models on unknown data not used for training. The LOO
665 cross-validation test performs the following tests N times: 1. create a training model with
666 N-1 teacher data by excluding one piece of data from N teacher data; 2. input the excluded
667 one piece of data into the training model to predict the objective variable; and 3. perform
668 the same test N times to estimate all the data. Since all these estimation results are not
669 included in building the learning model, the prediction accuracy of the LOO cross-test can
670 be regarded as the prediction accuracy for the unknown data.

671

672 ***Statistical analysis***

673 Statistical analysis was performed with the GraphPad Prism 9 software. Data are
674 represented as mean \pm SEM of three or more biological replicates. Statistical tests are
675 detailed in each Figure legend. Differences were considered significant at $*p < 0.05$, $**p <$
676 0.01 , and $***p < 0.001$. Error bars represent SEM. Figure legends indicate the number of n
677 values and the number of experiments for each analysis.

678

679 **Acknowledgments**

680 The authors thank Dr. Yasuhiro Yamada for valuable advice and discussions, Miyako Baba
681 and Mio Kikuchi for technical assistance. Drs. Natsuko Kawano, Masanori Nasu, and

682 Fusako Mitsuhashi for technical assistance for SEM. Drs. Yoshihiro Kawaoka and Michiko
683 Ujie for usage of SEM. Dr. Julio M. Castaneda and Dr. Daiji Kiyozumi for critical reading of
684 the manuscript. This work was supported by the Ministry of Education, Culture, Sports,
685 Science and Technology (MEXT)/Japan Society for the Promotion of Science (JSPS)
686 KAKENHI grants (JP19J01089 to Y.IY., and JP19H05750 and JP21H05033 to M.I.), Japan
687 Agency for Medical Research and Development (AMED) grant JP21gm5010001 to M.I.,
688 the Core Research for Evolutional Science and Technology (CREST)/Japan Science and
689 Technology Agency (JST) grant (JPMJCR21N1) to M.I.

690

691 **Author Contributions**

692 Y.IY. and M.I. conceived the study and wrote the manuscript together. Y.IY., C.E., K.K., and
693 T.E. performed the research and analyzed the data. D.M. and H.M. performed bulk
694 RNA-seq analysis. Y.W. and H.S. assisted and performed TEM and SEM. T.N. developed
695 the algorithm for fractal analysis. A.N. performed MS analysis. M.O. assisted and advised
696 on the research.

697

698 **Competing interests**

699 The authors declare no competing interests.

700

701

702 **References**

703 Babayev, E., & Duncan, F. E. (2022). Age-associated changes in cumulus cells and
704 follicular fluid: the local oocyte microenvironment as a determinant of gamete
705 quality. *Biol Reprod*, 106(2), 351-365. <https://doi.org/10.1093/biolre/ioab241>

706 Baez, F., Camargo, A. A., & Gastal, G. D. A. (2019). Ultrastructural Imaging Analysis of the
707 Zona Pellucida Surface in Bovine Oocytes. *Microsc Microanal*, 25(4), 1032-1036.
708 <https://doi.org/10.1017/S1431927619000692>

709 Bath, M. L. (2010). Inhibition of in vitro fertilizing capacity of cryopreserved mouse sperm
710 by factors released by damaged sperm, and stimulation by glutathione. *PLoS One*,
711 5(2), e9387. <https://doi.org/10.1371/journal.pone.0009387>

712 Bertoldo, M. J., Listijono, D. R., Ho, W. J., Riepsamen, A. H., Goss, D. M., Richani, D., Jin,
713 X. L., Mahbub, S., Campbell, J. M., Habibalahi, A., Loh, W. N., Youngson, N. A.,
714 Maniam, J., Wong, A. S. A., Selesniemi, K., Bustamante, S., Li, C., Zhao, Y.,

715 Marinova, M. B., . . . Wu, L. E. (2020). NAD(+) Repletion Rescues Female Fertility
716 during Reproductive Aging. *Cell Rep*, 30(6), 1670-1681 e1677.
717 <https://doi.org/10.1016/j.celrep.2020.01.058>

718 Briley, S. M., Jasti, S., McCracken, J. M., Hornick, J. E., Fegley, B., Pritchard, M. T., &
719 Duncan, F. E. (2016). Reproductive age-associated fibrosis in the stroma of the
720 mammalian ovary. *Reproduction*, 152(3), 245-260.
721 <https://doi.org/10.1530/REP-16-0129>

722 Broekmans, F. J., Soules, M. R., & Fauser, B. C. (2009). Ovarian aging: mechanisms and
723 clinical consequences. *Endocr Rev*, 30(5), 465-493.
724 <https://doi.org/10.1210/er.2009-0006>

725 Burkart, A. D., Xiong, B., Baibakov, B., Jimenez-Movilla, M., & Dean, J. (2012). Ovastacin,
726 a cortical granule protease, cleaves ZP2 in the zona pellucida to prevent
727 polyspermy. *J Cell Biol*, 197(1), 37-44. <https://doi.org/10.1083/jcb.201112094>

728 Dennis, T. J., & Dessipris, N. G. (1989). Fractal Modeling in Image Texture Analysis. *Int J
729 Proceedings-F Radar and Signal Processing*, 136(5), 227-235. [https://doi.org/DOI 10.1049/ip-f.2.1989.0036](https://doi.org/DOI
730 10.1049/ip-f.2.1989.0036)

731 Diaz Brinton, R. (2012). Minireview: translational animal models of human menopause:
732 challenges and emerging opportunities. *Endocrinology*, 153(8), 3571-3578.
733 <https://doi.org/10.1210/en.2012-1340>

734 Duncan, F. E., Jasti, S., Paulson, A., Kelsh, J. M., Fegley, B., & Gerton, J. L. (2017).
735 Age-associated dysregulation of protein metabolism in the mammalian oocyte.
736 *Aging Cell*, 16(6), 1381-1393. <https://doi.org/10.1111/acel.12676>

737 Dutta, S., & Sengupta, P. (2016). Men and mice: Relating their ages. *Life Sci*, 152, 244-248.
738 <https://doi.org/10.1016/j.lfs.2015.10.025>

739 El-Hayek, S., Yang, Q., Abbassi, L., FitzHarris, G., & Clarke, H. J. (2018). Mammalian
740 Oocytes Locally Remodel Follicular Architecture to Provide the Foundation for
741 Germline-Soma Communication. *Curr Biol*, 28(7), 1124-1131.e1123.
742 <https://doi.org/10.1016/j.cub.2018.02.039>

743 Emori, C., Ito, H., Fujii, W., Naito, K., & Sugiura, K. (2020). Oocytes suppress FOXL2
744 expression in cumulus cells in micedagger. *Biol Reprod*, 103(1), 85-93.
745 <https://doi.org/10.1093/biolre/ioaa054>

746 Eppig, J. J., Pendola, F. L., Wigglesworth, K., & Pendola, J. K. (2005). Mouse oocytes
747 regulate metabolic cooperativity between granulosa cells and oocytes: amino acid

748 transport. *Biol Reprod*, 73(2), 351-357.
749 <https://doi.org/10.1095/biolreprod.105.041798>

750 Fahrenkamp, E., Algarra, B., & Jovine, L. (2020). Mammalian egg coat modifications and
751 the block to polyspermy. *Mol Reprod Dev*, 87(3), 326-340.
752 <https://doi.org/10.1002/mrd.23320>

753 Familiari, G., Heyn, R., Relucenti, M., & Sathananthan, H. (2008). Structural changes of the
754 zona pellucida during fertilization and embryo development. *Front Biosci*, 13,
755 6730-6751. <https://doi.org/10.2741/3185>

756 Familiari, G., Nottola, S. A., Familiari, A., & Motta, P. M. (1989). The three-dimensional
757 structure of the zona pellucida in growing and atretic ovarian follicles of the mouse.
758 Scanning and transmission electron-microscopic observations using ruthenium red
759 and detergents. *Cell Tissue Res*, 257(2), 247-253.
760 <https://doi.org/10.1007/BF00261827>

761 Familiari, G., Nottola, S. A., Macchiarelli, G., Micara, G., Aragona, C., & Motta, P. M. (1992).
762 Human zona pellucida during in vitro fertilization: an ultrastructural study using
763 saponin, ruthenium red, and osmium-thiocarbohydrazide. *Mol Reprod Dev*, 32(1),
764 51-61. <https://doi.org/10.1002/mrd.1080320109>

765 Foley, K. G., Pritchard, M. T., & Duncan, F. E. (2021). Macrophage-derived multinucleated
766 giant cells: hallmarks of the aging ovary. *Reproduction*, 161(2), V5-V9.
767 <https://doi.org/10.1530/REP-20-0489>

768 Fujihara, Y., Lu, Y., Noda, T., Oji, A., Larasati, T., Kojima-Kita, K., Yu, Z., Matzuk, R. M.,
769 Matzuk, M. M., & Ikawa, M. (2020). Spermatozoa lacking Fertilization Influencing
770 Membrane Protein (FIMP) fail to fuse with oocytes in mice. *Proc Natl Acad Sci U S*
771 *A*, 117(17), 9393-9400. <https://doi.org/10.1073/pnas.1917060117>

772 Gershon, E., Plaks, V., Aharon, I., Galiani, D., Reizel, Y., Sela-Abramovich, S., Granot, I.,
773 Winterhager, E., & Dekel, N. (2008). Oocyte-directed depletion of connexin43 using
774 the Cre-LoxP system leads to subfertility in female mice. *Dev Biol*, 313(1), 1-12.
775 <https://doi.org/10.1016/j.ydbio.2007.08.041>

776 Gruhn, J. R., Zielinska, A. P., Shukla, V., Blanshard, R., Capalbo, A., Cimadomo, D.,
777 Nikiforov, D., Chan, A. C., Newnham, L. J., Vogel, I., Scarica, C., Krapchev, M.,
778 Taylor, D., Kristensen, S. G., Cheng, J., Ernst, E., Bjorn, A. B., Colmorn, L. B.,
779 Blayney, M., . . . Hoffmann, E. R. (2019). Chromosome errors in human eggs shape
780 natural fertility over reproductive life span. *Science*, 365(6460), 1466-1469.

781 <https://doi.org/10.1126/science.aav7321>

782 Hamatani, T., Falco, G., Carter, M. G., Akutsu, H., Stagg, C. A., Sharov, A. A., Dudekula, D.
783 B., VanBuren, V., & Ko, M. S. (2004). Age-associated alteration of gene expression
784 patterns in mouse oocytes. *Hum Mol Genet*, 13(19), 2263-2278.
785 <https://doi.org/10.1093/hmg/ddh241>

786 Hasegawa, A., Mochida, K., Inoue, H., Noda, Y., Endo, T., Watanabe, G., & Ogura, A.
787 (2016). High-Yield Superovulation in Adult Mice by Anti-Inhibin Serum Treatment
788 Combined with Estrous Cycle Synchronization. *Biol Reprod*, 94(1), 21.
789 <https://doi.org/10.1095/biolreprod.115.134023>

790 Hasuwa, H., Ueda, J., Ikawa, M., & Okabe, M. (2013). miR-200b and miR-429 function in
791 mouse ovulation and are essential for female fertility. *Science*, 341(6141), 71-73.
792 <https://doi.org/10.1126/science.1237999>

793 Heffner, L. J. (2004). Advanced maternal age--how old is too old? *N Engl J Med*, 351(19),
794 1927-1929. <https://doi.org/10.1056/NEJMp048087>

795 Hirano, M., So, Y., Tsunekawa, S., Kabata, M., Ohta, S., Sagara, H., Sankoda, N., Taguchi,
796 J., Yamada, Y., Ukai, T., Kato, M., Nakamura, J., Ozawa, M., Yamamoto, T., &
797 Yamada, Y. (2022). MYCL-mediated reprogramming expands pancreatic
798 insulin-producing cells. *Nat Metab*, 4(2), 254-268.
799 <https://doi.org/10.1038/s42255-022-00530-y>

800 Janny, L., & Menezo, Y. J. (1996). Maternal age effect on early human embryonic
801 development and blastocyst formation. *Mol Reprod Dev*, 45(1), 31-37.
802 [https://doi.org/10.1002/\(SICI\)1098-2795\(199609\)45:1<31::AID-MRD4>3.0.CO;2-T](https://doi.org/10.1002/(SICI)1098-2795(199609)45:1<31::AID-MRD4>3.0.CO;2-T)

803 Kawano, N., Kang, W., Yamashita, M., Koga, Y., Yamazaki, T., Hata, T., Miyado, K., & Baba,
804 T. (2010). Mice lacking two sperm serine proteases, ACR and PRSS21, are
805 subfertile, but the mutant sperm are infertile in vitro. *Biol Reprod*, 83(3), 359-369.
806 <https://doi.org/10.1095/biolreprod.109.083089>

807 Kidder, G. M., & Mhawi, A. A. (2002). Gap junctions and ovarian folliculogenesis.
808 *Reproduction*, 123(5), 613-620. <https://doi.org/10.1530/rep.0.1230613>

809 Kiyozumi, D., Noda, T., Yamaguchi, R., Tobita, T., Matsumura, T., Shimada, K., Kodani, M.,
810 Kohda, T., Fujihara, Y., Ozawa, M., Yu, Z., Miklossy, G., Bohren, K. M., Horie, M.,
811 Okabe, M., Matzuk, M. M., & Ikawa, M. (2020). NELL2-mediated lumicrine
812 signaling through OVCH2 is required for male fertility. *Science*, 368(6495),
813 1132-1135. <https://doi.org/10.1126/science.aay5134>

814 Kordowitzki, P., Sokolowska, G., Wasielak-Politowska, M., Skowronska, A., & Skowronski,
815 M. T. (2021). Pannexins and Connexins: Their Relevance for Oocyte
816 Developmental Competence. *Int J Mol Sci*, 22(11).
817 <https://doi.org/10.3390/ijms22115918>

818 Li, T. Y., Colley, D., Barr, K. J., Yee, S. P., & Kidder, G. M. (2007). Rescue of oogenesis in
819 Cx37-null mutant mice by oocyte-specific replacement with Cx43. *J Cell Sci*, 120(Pt
820 23), 4117-4125. <https://doi.org/10.1242/jcs.03488>

821 Litscher, E. S., & Wassarman, P. M. (2020). Zona Pellucida Proteins, Fibrils, and Matrix.
822 *Annu Rev Biochem*, 89, 695-715.
823 <https://doi.org/10.1146/annurev-biochem-011520-105310>

824 Llonch, S., Barragán, M., Nieto, P., Mallol, A., Elosua-Bayes, M., Lorden, P., Ruiz, S.,
825 Zambelli, F., Heyn, H., Vassena, R., & Payer, B. (2021). Single human oocyte
826 transcriptome analysis reveals distinct maturation stage-dependent pathways
827 impacted by age. *Aging Cell*, 20(5), e13360. <https://doi.org/10.1111/acel.13360>

828 Macklon, N. S., & Fauser, B. C. (1999). Aspects of ovarian follicle development throughout
829 life. *Horm Res*, 52(4), 161-170. <https://doi.org/10.1159/000023456>

830 Magerkurth, C., Topfer-Petersen, E., Schwartz, P., & Michelmann, H. W. (1999). Scanning
831 electron microscopy analysis of the human zona pellucida: influence of maturity
832 and fertilization on morphology and sperm binding pattern. *Hum Reprod*, 14(4),
833 1057-1066. <https://doi.org/10.1093/humrep/14.4.1057>

834 Mandelbrot, B. (1967). How long is the coast of britain? Statistical self-similarity and
835 fractional dimension. *Science*, 156(3775), 636-638.
836 <https://doi.org/10.1126/science.156.3775.636>

837 Matzuk, M. M., Burns, K. H., Viveiros, M. M., & Eppig, J. J. (2002). Intercellular
838 communication in the mammalian ovary: oocytes carry the conversation. *Science*,
839 296(5576), 2178-2180. <https://doi.org/10.1126/science.1071965>

840 McGee, E. A., & Hsueh, A. J. (2000). Initial and cyclic recruitment of ovarian follicles.
841 *Endocr Rev*, 21(2), 200-214. <https://doi.org/10.1210/edrv.21.2.0394>

842 Meier, F., Beck, S., Grassl, N., Lubeck, M., Park, M. A., Raether, O., & Mann, M. (2015).
843 Parallel Accumulation-Serial Fragmentation (PASEF): Multiplying Sequencing
844 Speed and Sensitivity by Synchronized Scans in a Trapped Ion Mobility Device. *J
845 Proteome Res*, 14(12), 5378-5387. <https://doi.org/10.1021/acs.jproteome.5b00932>

846 Meier, F., Brunner, A. D., Koch, S., Koch, H., Lubeck, M., Krause, M., Goedecke, N.,

847 Decker, J., Kosinski, T., Park, M. A., Bache, N., Hoerning, O., Cox, J., Rather, O., &
848 Mann, M. (2018). Online Parallel Accumulation-Serial Fragmentation (PASEF) with
849 a Novel Trapped Ion Mobility Mass Spectrometer. *Mol Cell Proteomics*, 17(12),
850 2534-2545. <https://doi.org/10.1074/mcp.TIR118.000900>

851 Michelle J.K. Osterman, B. E. H., Joyce A. Martin, Anne K. Driscoll, and Claudia P.
852 Valenzuela. (2022). Births: Final Data for 2020. *National Vital Statistics Reports*,
853 70(17), 1-50.

854 Mishina, T., Tabata, N., Hayashi, T., Yoshimura, M., Umeda, M., Mori, M., Ikawa, Y.,
855 Hamada, H., Nikaido, I., & Kitajima, T. S. (2021). Single-oocyte transcriptome
856 analysis reveals aging-associated effects influenced by life stage and calorie
857 restriction. *Aging Cell*, 20(8), e13428. <https://doi.org/10.1111/acel.13428>

858 Miyata, H., Satouh, Y., Mashiko, D., Muto, M., Nozawa, K., Shiba, K., Fujihara, Y., Isotani,
859 A., Inaba, K., & Ikawa, M. (2015). Sperm calcineurin inhibition prevents mouse
860 fertility with implications for male contraceptive. *Science*, 350(6259), 442-445.
861 <https://doi.org/10.1126/science.aad0836>

862 Mori, T., Amano, T., & Shimizu, H. (2000). Roles of gap junctional communication of
863 cumulus cells in cytoplasmic maturation of porcine oocytes cultured in vitro. *Biol
864 Reprod*, 62(4), 913-919. <https://doi.org/10.1095/biolreprod62.4.913>

865 Myers, M., Britt, K. L., Wreford, N. G., Ebling, F. J., & Kerr, J. B. (2004). Methods for
866 quantifying follicular numbers within the mouse ovary. *Reproduction*, 127(5),
867 569-580. <https://doi.org/10.1530/rep.1.00095>

868 Nogues, C., Ponsa, M., Vidal, F., Boada, M., & Egozcue, J. (1988). Effects of aging on the
869 zona pellucida surface of mouse oocytes. *J In Vitro Fert Embryo Transf*, 5(4),
870 225-229. <https://doi.org/10.1007/BF01131126>

871 Ntostis, P., Swanson, G., Kokkali, G., Iles, D., Huntriss, J., Pantou, A., Tzetis, M., Pantos,
872 K., Picton, H. M., Krawetz, S. A., & Miller, D. (2021). The effects of aging on
873 molecular modulators of human embryo implantation. *iScience*, 24(7), 102751.
874 <https://doi.org/10.1016/j.isci.2021.102751>

875 Pan, H., Ma, P., Zhu, W., & Schultz, R. M. (2008). Age-associated increase in aneuploidy
876 and changes in gene expression in mouse eggs. *Dev Biol*, 316(2), 397-407.
877 <https://doi.org/10.1016/j.ydbio.2008.01.048>

878 Russ, J. E., Haywood, M. E., Lane, S. L., Schoolcraft, W. B., & Katz-Jaffe, M. G. (2022).
879 Spatially resolved transcriptomic profiling of ovarian aging in mice. *iScience*, 25(8),

880 104819. <https://doi.org/10.1016/j.isci.2022.104819>

881 Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative
882 C(T) method. *Nat Protoc*, 3(6), 1101-1108. <https://doi.org/10.1038/nprot.2008.73>

883 Searle, B. C. (2010). Scaffold: a bioinformatic tool for validating MS/MS-based proteomic
884 studies. *Proteomics*, 10(6), 1265-1269. <https://doi.org/10.1002/pmic.200900437>

885 Simon, A. M., Goodenough, D. A., Li, E., & Paul, D. L. (1997). Female infertility in mice
886 lacking connexin 37. *Nature*, 385(6616), 525-529.
887 <https://doi.org/10.1038/385525a0>

888 Stringer, C., Wang, T., Michaelos, M., & Pachitariu, M. (2021). Cellpose: a generalist
889 algorithm for cellular segmentation. *Nat Methods*, 18(1), 100-106.
890 <https://doi.org/10.1038/s41592-020-01018-x>

891 Suzuki, H., Togashi, M., Morigushi, Y., & Adashi, J. (1994). Relationship Fertilization
892 between Rate in IVCS Mice Decline in Fertility and In Vitro. *Jurnal of Reproduction
893 and Development*, 40(2), 107-116.

894 Takeo, T., Horikoshi, Y., Nakao, S., Sakoh, K., Ishizuka, Y., Tsutsumi, A., Fukumoto, K.,
895 Kondo, T., Haruguchi, Y., Takeshita, Y., Nakamura, Y., Tsuchiyama, S., & Nakagata,
896 N. (2015). Cysteine analogs with a free thiol group promote fertilization by reducing
897 disulfide bonds in the zona pellucida of mice. *Biol Reprod*, 92(4), 90.
898 <https://doi.org/10.1095/biolreprod.114.125443>

899 Takeo, T., & Nakagata, N. (2011). Reduced glutathione enhances fertility of frozen/thawed
900 C57BL/6 mouse sperm after exposure to methyl-beta-cyclodextrin. *Biol Reprod*,
901 85(5), 1066-1072. <https://doi.org/10.1095/biolreprod.111.092536>

902 Tatemoto, H., Sakurai, N., & Muto, N. (2000). Protection of porcine oocytes against
903 apoptotic cell death caused by oxidative stress during In vitro maturation: role of
904 cumulus cells. *Biol Reprod*, 63(3), 805-810.
905 <https://doi.org/10.1095/biolreprod63.3.805>

906 Vanroose, G., Nauwynck, H., Soom, A. V., Ysebaert, M. T., Charlier, G., Oostveldt, P. V., &
907 de Kruif, A. (2000). Structural aspects of the zona pellucida of in vitro-produced
908 bovine embryos: a scanning electron and confocal laser scanning microscopic
909 study. *Biol Reprod*, 62(2), 463-469. <https://doi.org/10.1095/biolreprod62.2.463>

910 Webster, A., & Schuh, M. (2017). Mechanisms of Aneuploidy in Human Eggs. *Trends Cell
911 Biol*, 27(1), 55-68. <https://doi.org/10.1016/j.tcb.2016.09.002>

912 Yamagata, K., Nakanishi, T., Ikawa, M., Yamaguchi, R., Moss, S. B., & Okabe, M. (2002).


913 Sperm from the calmegin-deficient mouse have normal abilities for binding and
914 fusion to the egg plasma membrane. *Dev Biol*, 250(2), 348-357.
915 <https://www.ncbi.nlm.nih.gov/pubmed/12376108>

916 Yamamoto, M., Endo, A., & Watanabe, G. (1973). Maternal age dependence of
917 chromosome anomalies. *Nat New Biol*, 241(109), 141-142.
918 <https://doi.org/10.1038/newbio241141a0>

919 Yamatoya, K., Ito, C., Araki, M., Furuse, R., & Toshimori, K. (2011). One-step collagenase
920 method for zona pellucida removal in unfertilized eggs: easy and gentle method for
921 large-scale preparation. *Reprod Med Biol*, 10(2), 97-103.
922 <https://doi.org/10.1007/s12522-011-0075-8>

923 Yanagimachi, R. (1994). Mammalian Fertilization. In E. Knobil & J. D. Neill (Eds.), *The*
924 *Physiology of reproduction* (2nd ed., Vol. 1, pp. 189-317). Raven Press.
925 <https://ci.nii.ac.jp/ncid/BA2169504X>

926 Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O., Benner,
927 C., & Chanda, S. K. (2019). Metascape provides a biologist-oriented resource for
928 the analysis of systems-level datasets. *Nat Commun*, 10(1), 1523.
929 <https://doi.org/10.1038/s41467-019-09234-6>

930

931 **▪ Figures legends**

932
933 **Figure 1. Physiological aging reduced ovarian reserve of follicles and ovulated oocytes**
934 **in middle-aged mice**

935 (A) The fecundity of young-aged (10- to 12-week-old; young) and middle-aged (34- to
936 38-week-old; middle) female mice was analyzed by natural mating; n indicates the number of
937 female mice examined. *** $p < 0.001$; Tukey-Kramer test. (B) Tissue morphology of the ovary,
938 oviduct, and uterus. Scale bar = 5 mm. (C) Ovary weight. ns, not significant ($p > 0.05$;
939 Tukey-Kramer test). (D) Representative hematoxylin and eosin (HE) stained ovarian sections.
940 The regions surrounded by dotted lines are highlighted. Arrow indicates the area of ovarian
941 fibrosis. Scale bar = 500 μ m. (E) The ratio of fibrosis area in the ovary. *** $p < 0.001$;
942 Tukey-Kramer test. (F) Representative hematoxylin – PAS stained ovarian sections. Scale bar =
943 500 μ m. (G) The number of follicles including primordial, primary, secondary, and antral, in the
944 ovary. ** $p < 0.01$; *** $p < 0.001$; Unpaired Student's t-test. (H) The number of ovulated oocytes.
945 Superovulation was induced with 7.5 IU (international units) each of PMSG and hCG at 48-hour
946 intervals; n shows the number of females analyzed. *** $p < 0.001$; Tukey-Kramer test. (I)
947 Histological analysis of the ovary 48 h after PMSG injection. The regions surrounded by dotted
948 lines, the cumulus-oocyte complex (COC), in young and middle ovarian follicles are highlighted.
949 Scale bar = 500 μ m. (J) Total number of antral follicles (max follicular diameter > 300 μ m) from
950 ovaries 48 h after PMSG injection. ** $p < 0.01$; Unpaired Student's t-test. Data are mean \pm SEM.

951
952
953 **Figure 2. Aging leads to a depletion of cumulus cell gap junctions and the loss of**
954 **intercommunication between cumulus cells and oocytes**

955 (A) Representative TEM pictures of the antral follicles. The regions surrounded by dotted lines
956 are enlarged at the bottom. Scale bar = 20 μ m (upper), 10 μ m (bottom). (B) Cell-to-cell distance
957 between cumulus cells in the antral follicles. Four different positions, including red lines and
958 black dotted lines in Figure 2A, are used for analysis *** $p < 0.001$, Tukey-Kramer test. (C and D)
959 Gene expression of gap junction genes including *Gja1* (Connexin 43), *Gjc1* (Connexin 45), *Gja4*
960 (Connexin 37), cumulus cell maker *Cyp19a1*, germ cell marker *Ddx4*, and follicle-stimulating
961 hormone receptor *Fshr* in cumulus cells. Cumulus cells were collected from antral follicles 48h
962 after PMSG injection. *** $p < 0.001$; ns, not significant ($p > 0.05$), unpaired Student's t-test. (E)
963 TEM pictures of the COCs in the antral follicle, including cumulus cells, the zona pellucida (ZP),
964 transzonal projection (TZP), and oocyte. Scale bar = 5 μ m. Arrowheads indicate TZPs. (F) The
965 number of TZPs. *** $p < 0.001$; Tukey-Kramer test. (G) Amount of glutathione (GSH) in an
966 oocyte; n indicates the number of female mice examined. * $p < 0.05$; Tukey-Kramer test. (H)
967 Schematic diagram of lucifer yellow injection into the GV oocytes with cumulus cells. Images
968 were taken at 0 and 30 min after injection. (I) Pictures of the COCs at 0 and 30 min after
969 injection. Scale bars = 100 μ m. (J) The ratio of fluorescence intensity of cumulus cells
970 before/after incubation; n indicates the number of COCs tested. * $p < 0.05$; Tukey-Kramer test.
971 Data are mean \pm SEM.

972
973
974 **Figure 3. Fertilization rate decreased due to the failure of sperm binding to the ZP in mid**
975 **oocytes**

976 (A) Schematic diagram of bulk RNA-seq using MII oocytes, cumulus cells, and blastocysts. (B)
977 Transcriptome analysis of MII oocytes, cumulus cells at ovulation, and blastocysts after IVF
978 between young and middle mice. (C) IVF assay. Representative pictures of zygotes. Fertilized
979 eggs were defined by pronuclei in zygotes. Asterisks indicate a zygote. (D) Fertilization rate.
980 Fertilization rate was obtained after excluding fragmented oocytes. n indicates the number of
981 female mice examined. * $p < 0.05$; Mann-Whitney test. (E) Representative pictures of
982 blastocysts after 4-day incubation following IVF. Scale bar = 100 μ m. (F) Developmental rate.
983 Developmental rate was obtained by number of blastocysts over total 2-cell embryos. ns, not
984 significant ($p > 0.05$; Mann-Whitney test). (G) Sperm-ZP binding assay. (H) Statistical analysis
985 of the number of sperm bound to ZP. N indicates the number of oocytes used in each female.

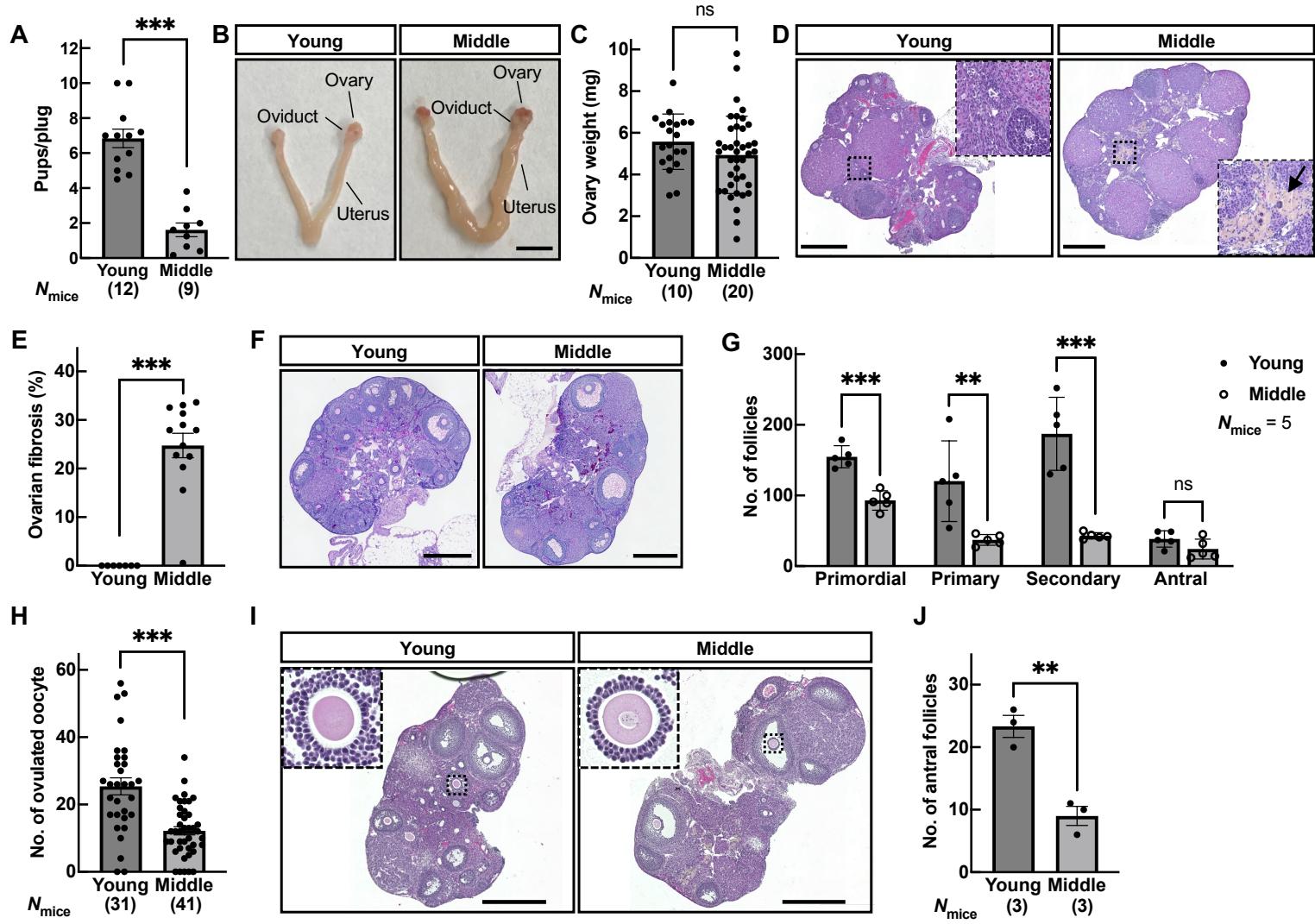
986 *** $p < 0.001$; Tukey-Kramer test. (I) Sperm-oocyte fusion assay. Dotted circles and arrows
987 indicate an oocyte and sperm nuclei fused with oolemma, respectively. (J) Statistical analysis of
988 the number of sperm fused with an oocyte. ns, not significant ($p > 0.05$; unpaired Student's
989 t-test). Data are mean \pm SEM.
990
991

Figure 4. The ZP surface structure altered and affected fertilization with aging

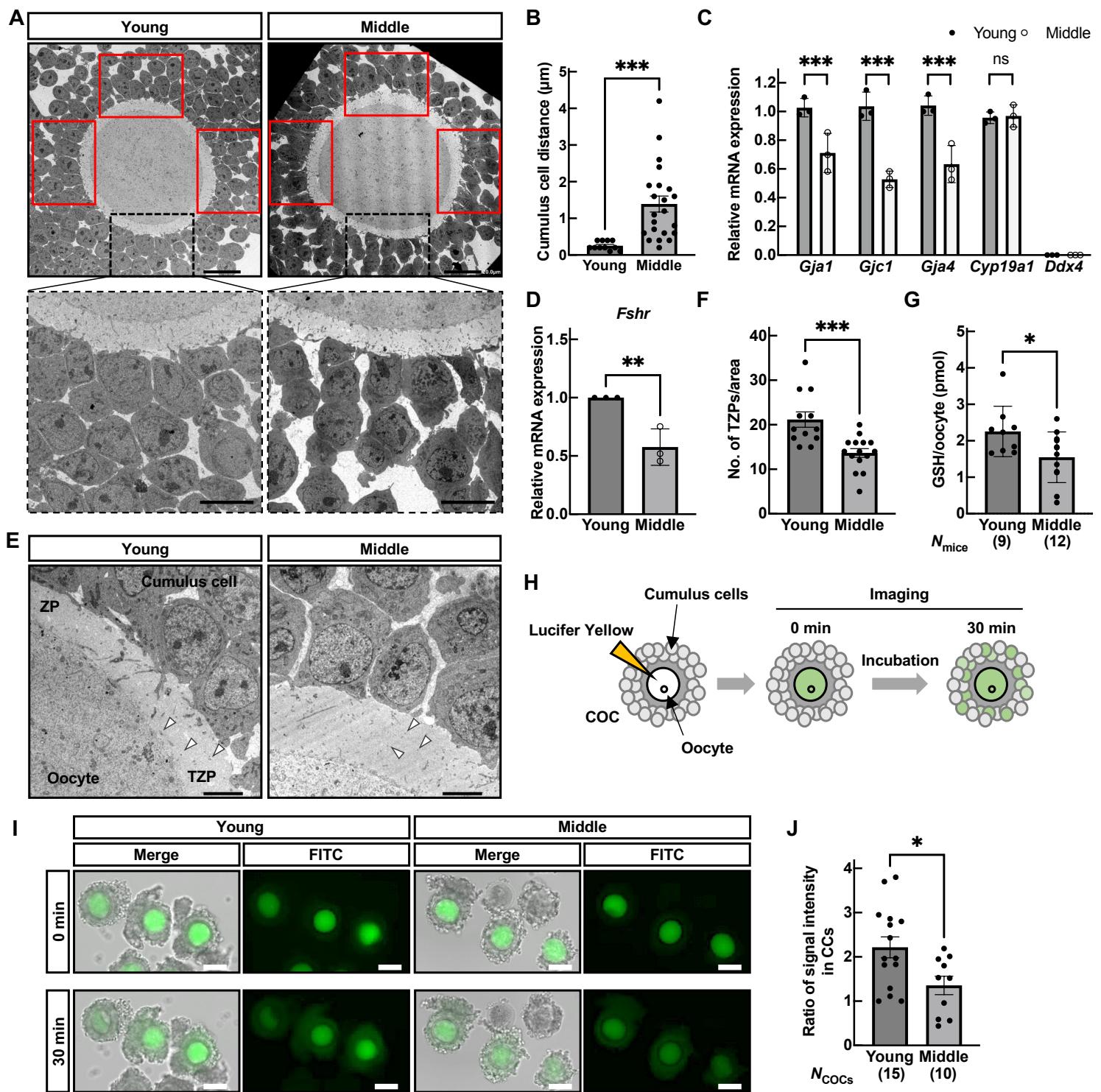
992 (A) Classification of SEM images of ZP surface. The regions surrounded by dotted lines are
993 highlighted at the bottom. Magnification x1500 in upper panels, and x10,000 in bottom panels.
994 Type I surface structure has ruggedness with a network and spongy appearance containing
995 numerous pores and fenestrations. Type II shows a more compact structure with fewer pores
996 and smooth surfaces. Type III shows that fenestrations of the outer surface were rare or even
997 absent. (B) The population of ZP surface classification based on the morphology of Figure 4A.
998 (C and D) SEM images of ZP surface in fertilized eggs and unfertilized eggs. The regions
999 surrounded by dotted lines are highlighted at the bottom. Magnification x1,500 in the upper
1000 panels, and x10,000 in the bottom panels. (E) The ZP surface classification of fertilized and
1001 unfertilized eggs. (F and G) The number of sperm tracks in the oocyte hemispheres.
1002
1003
1004

Figure 5. Aberrant accumulation of ZP filaments occurred in middle-aged mice

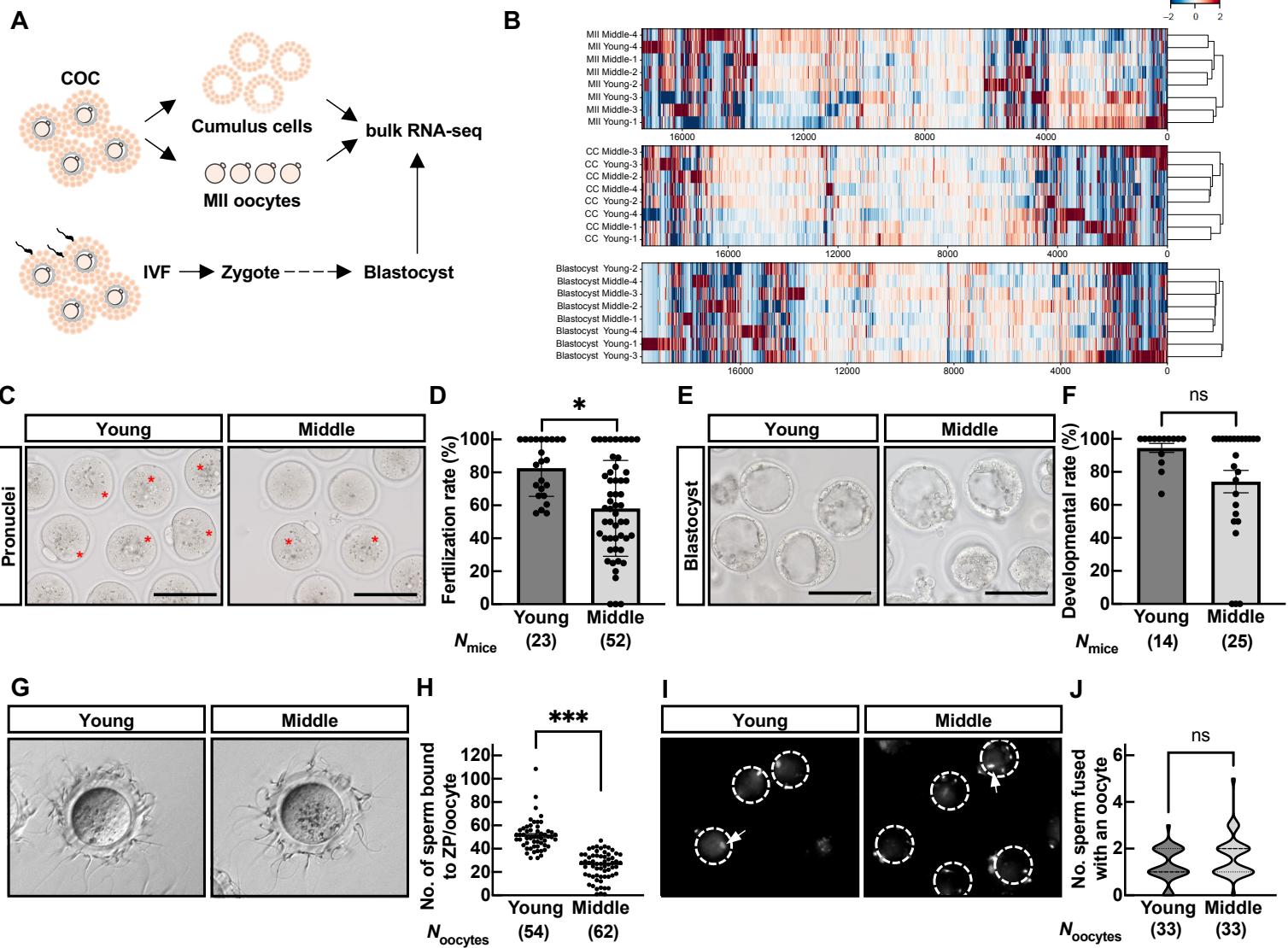
1005 (A to F) TEM picture s of the antral follicles. The regions surrounded by red dotted lines are
1006 highlighted in B, C, E and F. Enlarged images of B, C, E, and F were also shown in B' C', E',
1007 and F'. Scale bars = 200 nm in a and d, and 20 nm in B, C, E, and F. (G) Verification of surface
1008 roughness in the ZP. The value of likelihood was obtained by a fractal dimension analysis. (H)
1009 The ZP thickness. ** $p < 0.01$; Tukey-Kramer test. (I) Schematic position of outermost, midmost,
1010 and innermost in the ZP. (J and K) TEM pictures of the ZP filaments composing the outermost,
1011 middle, and innermost areas. A double arrow explains a position between a cumulus cell side to
1012 an oolemma side. The regions surrounded by dotted lines are highlighted in j' and k'. (L) Areas
1013 of ZP filaments in outermost, midmost, and innermost. * $p < 0.05$, *** $p < 0.001$; Tukey-Kramer test.
1014 (M) Western blot of ZP2 in 20 MII oocytes. GAPDH was used as a loading control. Statistical
1015 analysis of ZP2. Four independent experiments were tested. * $p < 0.05$ (unpaired Student's
1016 t-test). (N) MS analysis of the ZP. Average MS score was obtained from three independent
1017 experiments ($N_{mice} = 3$). p; unpaired Student's t-test. Data are mean \pm SEM.
1018
1019
1020

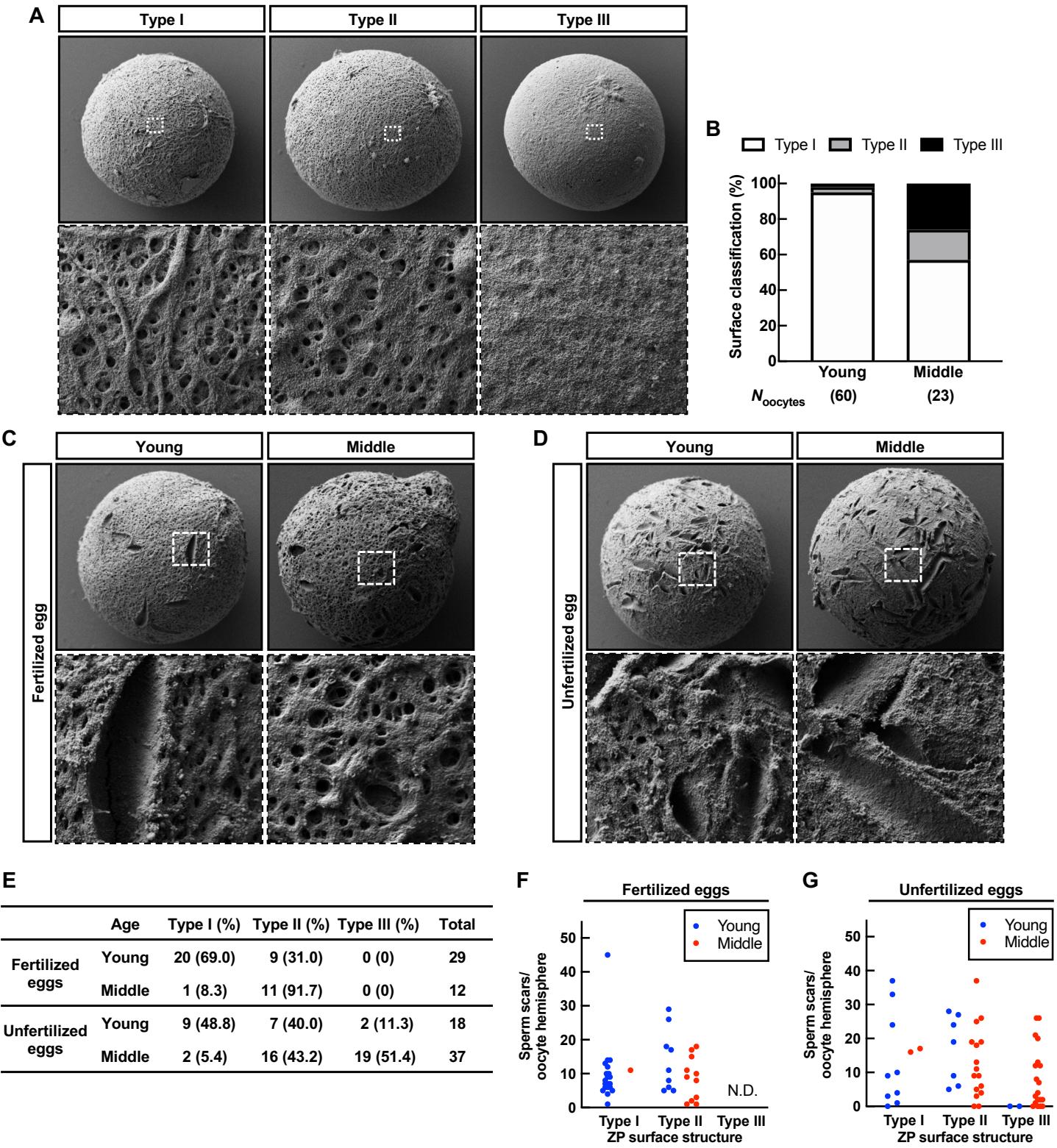

Figure 6. Glutathione treatment recovered the fertilization rate in middle-aged mice

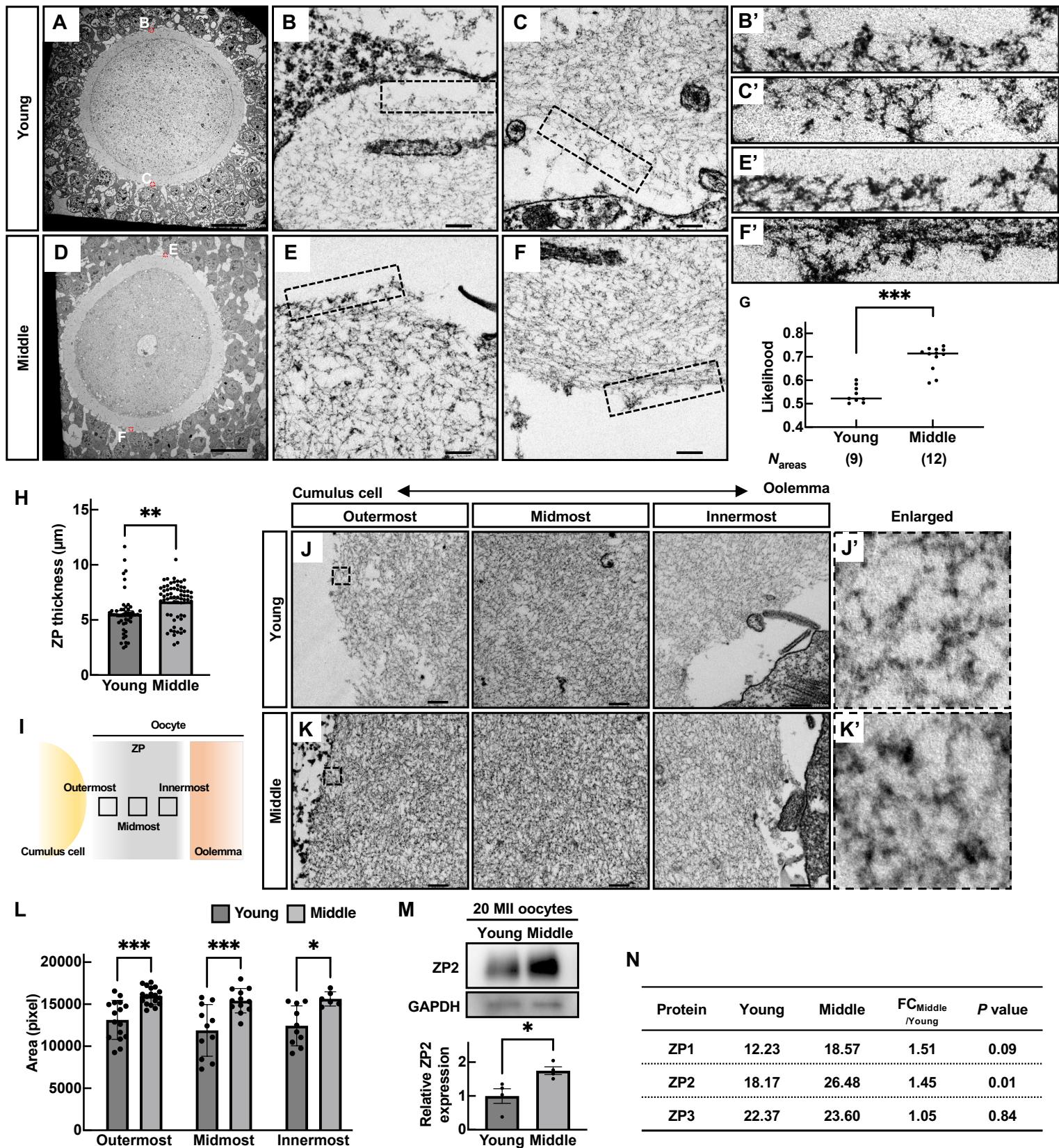
1021 (A) Representative pictures of the ZP expansion in the presence of glutathione. Scale bars =
1022 100 μ m. (B) ZP diameter; n indicates the number of oocytes examined. ** $p < 0.01$; *** $p < 0.001$;
1023 Tukey-Kramer test. (C) Representative pictures of fertilized eggs obtained through IVF in media
1024 containing glutathione. Scale bars = 100 μ m. (D) Fertilization rate; n indicates the number of
1025 female mice examined. ** $p < 0.01$; *** $p < 0.001$; ns, not significant ($p > 0.05$, Two-way ANOVA
1026 with Tukey's multiple comparisons test). Data are mean \pm SEM.
1027
1028
1029

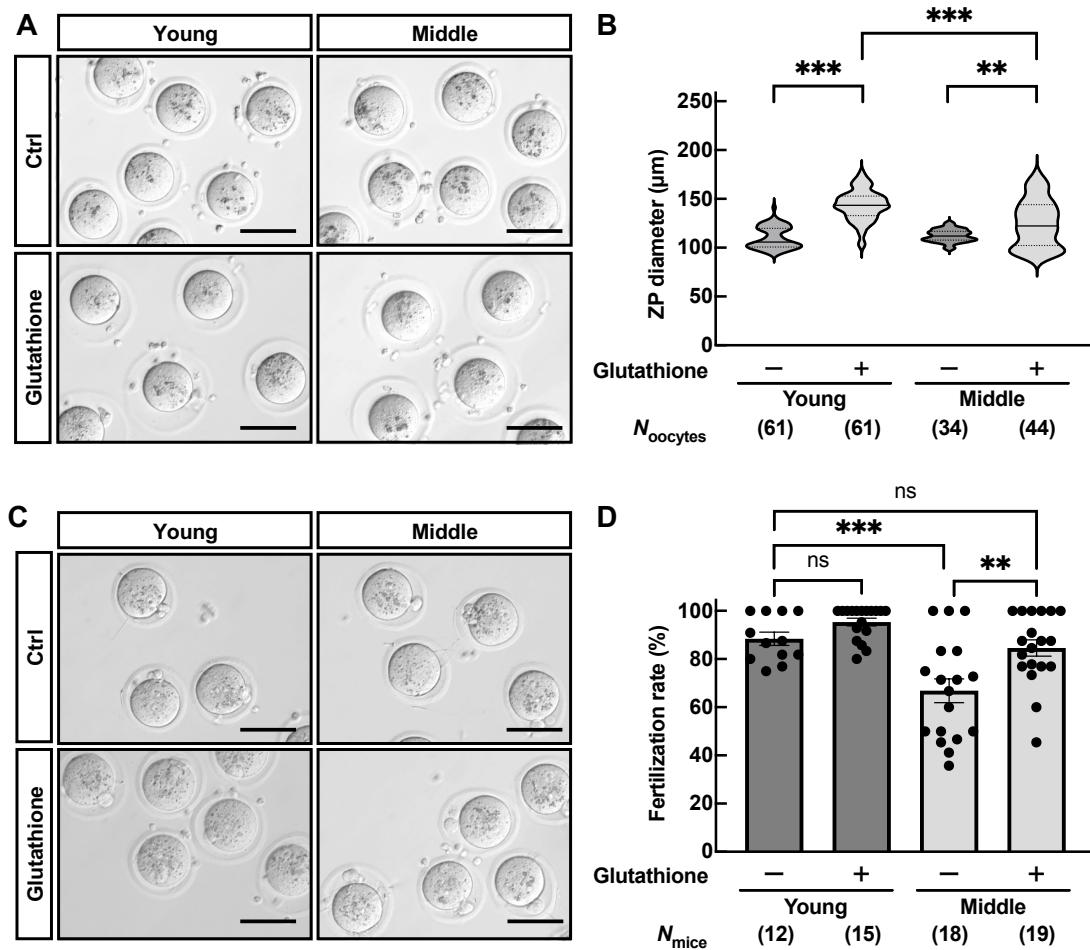

Figure 7. Schematic model of age-associated ZP structure affecting fertilization

1030 In aging female mice, the quality of the oocytes was reduced in the ovary due to the decreased
1031 bidirectional communication between oocytes and cumulus cells. In addition, at least in mature
1032 follicles, the mesh structure of the ZP surface becomes a smooth structure, which persists
1033 during ovulation, preventing sperm from binding to the ZP and fertilization. The addition of
1034 glutathione in IVF could restore the fertilization rate of aged oocytes.
1035
1036


Figure 1


Figure 2


Figure 3


Figure 4

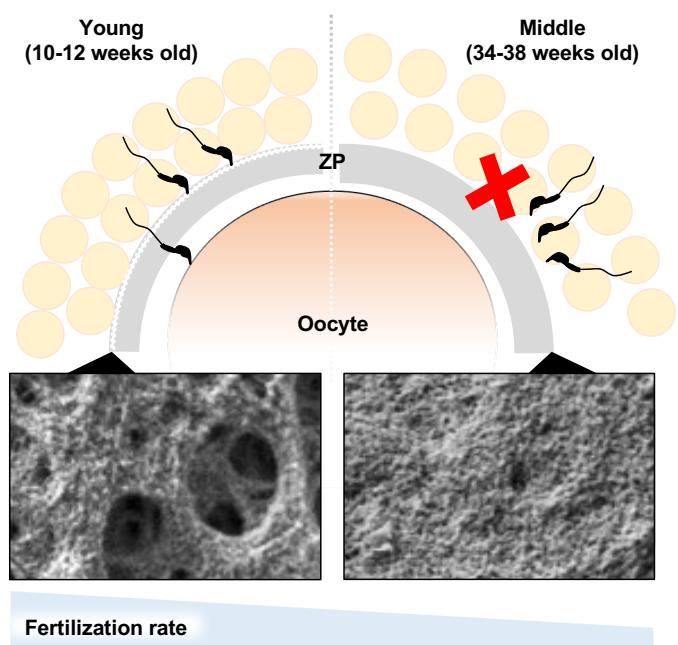

Figure 5

Figure 6

Figure 7

