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Abstract

Recent advances in mass spectrometry-based peptidomics has cat-
alyzed the identification and quantification of thousands endogenous
peptides across diverse biological systems. However, the large theoretical
peptidomic landscape and high proportion of missing values poses several
challenges for downstream analyses and limits the comparability of clin-
ical samples. Here, we present a generalizable computational workflow
that clusters peptides with overlapping sequences to reduce the dimen-
sionality of peptidomic data, improve the definition of protease cut-sites,
enhance inter-sample comparability, and enable the implementation of
reliable and large-scale data analysis methods akin to those employed in
other omics fields. We showcase the algorithm by performing large-scale
quantitative analysis of wound fluid peptidomes of highly defined porcine
wounds and human clinical non-healing wounds. The analysis revealed
signature phenotype-specific peptide regions reflecting pathogen-specific
proteolytic activity at the earliest stages of colonization, resulting in
novel class of potential peptide cluster-based biomarkers.
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Introduction

Peptides are short sequences of amino acids which, like proteins, play diverse
and crucial roles in many biological processes. Recent advances in mass spec-
trometry instrumentation, sample preparation techniques, and data analysis
strategies have catalyzed the large-scale studies of peptidomes. While a frac-
tion of endogenous peptides are synthesized de novo, a vast peptidomic land-
scape emerges through the degradation of proteins by endo- and exoproteases
(1,2). The interplay between these classes of proteases results in clusters of
peptides with overlapping sequences centered around endoprotease cut-sites, in-
troducing variation and redundancy into peptidomic data. The large number
of potential peptides combined with the stochastic data collection associated
with data-dependent acquisition mass spectrometry makes peptidomes highly
dynamic, typically resulting in diverse peptidomes with a low degree of overlap
between samples.

Current peptidomic data analysis strategies largely rely on filtering-methods to
sift through the large datasets and remove unwanted degradation products to
eventually identify some of the relevant bioactive peptides of importance (3—
5). This can be accomplished by e.g. predicting the functions and properties
of peptides and thereafter selecting the highest-scoring peptides according to a
desired metric. While this ‘needle-in-a-haystack’ perspective has proven success-
ful in identifying endogenous bioactive peptides and peptide biomarkers across
diverse contexts such as diabetes, organ failure, inflammation, infection, cancer,
neurodegenerative disease, and as neuronal peptide hormones (3,4,6-11), it en-
tails removing a substantial fraction of the peptidome, potentially discarding
important information about the biological system in question.

Wound infections constitute a substantial societal burden due to their impact on
public health and healthcare resources, the challenges involved in their diagnosis,
and the pathogens’ resilience to treatments. Several bacterial species, such as
Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumanii, Corynebac-
terium, Enterococcus faecalis, and Staphylococcus aureus are particularly com-
mon in wound infections. Of these, P. aeruginosa and S. aureus are the most
common culprits in burn wounds and surgical site wounds (12) and are on
the Global Priority List released by the World Health Organization due to their
threat towards human health and their increasing resistance towards antibiotics
(13-15).

Bacteria release proteases and other factors modulate the hosts’ proteolytic
activity to shape the peptidome landscape, facilitate immune response subver-
sion, and promote bacterial invasion, making wound infections highly prote-
olytic environments (2,16-20). Concurrently, the host has developed elaborate
peptide-based defense systems which aid in combating the pathogen as a part
of the innate defense (21,22). The peptidome lies at the interface of this interac-
tion as it reflects the combination of substrate availability, protease landscape,
protease activity, post-translational modifications, and conformally exposed cut-
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sites, which may vary depending on the microenvironment and type of pathogen.
This intricate interplay underscores the need to investigate protein degradation
and the resulting peptidome for mechanistic insights and as a source for both
biomarkers and therapeutic targets for wound infections (2). Large-scale pep-
tidomic studies could potentially provide a more comprehensive perspective on
these mechanisms, however, there remains an unmet need for computational
methods that capture the entirety of the peptidome.

We present a computational workflow leveraging the inherent clustering of pep-
tides to simplify peptidomic data analysis. By employing a community-based
algorithm, we capture the natural clustering of peptides into entities denoted
as peptide clusters. The clustering of peptides into functional entities enable
the implementation of reliable and large-scale analytical methods akin to those
employed in other omics fields. This reduction in dataset dimensionality en-
hances inter-sample comparability by alleviating the problem of missing data
points. Further, it allows for the detection of phenotype-specific peptide regions,
shedding light on the impact of proteases, modulating factors, and peptides in
the battle between pathogen and host. We apply this method to deconvolute
and study the peptidomes of wound fluids from porcine wounds fluids infected
by S. aureus and P. aeruginosa, individually as well as in superinfections, to
uncover the infected wound fluid peptidome and find pathogen-specific biomark-
ers during the earliest stages of bacterial colonization. We then demonstrate
that the method generalizes to complex clinical non-healing wounds in human
patients. The methodology underlying the creation and analysis of peptide clus-
ters has been provided in a Python package available under an MIT license:
https://github.com/ErikHartman /pepnets

Results

In clinically infected wounds, the bacterial composition depends on the patients’
microbiome as well as other factors, such as pre-existing conditions and patient
genotype (23). The time of initial infection is often unknown, and the composi-
tion of bacterial species vary, complicating investigations of bacterial infection
dynamics on the peptidome. To mitigate these challenges, we used wound fluids
from porcine wounds infected with S. aureus (N=21) and P. aeruginosa (N=17)
on day 0. Four of the S. aureus-infected wounds were infected with P. aerug-
inosa on day 1, resulting in a double infection. 13 control wounds were not
infected. The wounds were covered with a dressing that absorbed the wound
fluid, which was changed every 24 hours and analyzed over a time-course of 2-3
days from infection (Fig. la) (24). Proteins were separated from the peptidome
using molecular weight cut-off filters of 30 kDa, whereby the wound-derived
peptides were identified and quantified by tandem mass spectrometry (MS/MS)
(25). In total, 15268 peptides were identified across all samples, of which 4557
are unique to a single sample, demonstrating the relatively low overlap between
samples. On average, each sample contained 89.5 4+ 7% missing values. Most
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peptides were identified in P. aeruginosa-infected wounds and the fewest were
in the control wounds (Supplementary Fig. 1). A characterization of the wound
fluid peptidomes can be found in Supplementary Notes S1.

Closer inspection of the peptidome revealed peptide clusters comprised of pep-
tides with partially overlapping sequences, differing by single terminal amino
acids, compatible with the influence of exopeptidases. These variants introduce
redundancy in the dataset and complicates inter-sample comparisons. Although
methodologies aiming to cluster linear peptide sequences have previously been
developed to reduce the complexity of epitope-related data (26-28), they do not
take peptide length and proximity in the protein backbone into account, which is
crucial to the clustering of the peptidome. Therefore, we developed an algorithm
that clusters similar peptide sequences by their similarity and proximity in the
protein backbone. Therefore, we developed an algorithm that clusters similar
peptide sequences with respect to their proximity on the protein backbone.

To initialize clustering, protein centered peptide networks are generated for
each protein separately by connecting peptides with overlapping amino acid se-
quences, similar lengths, and a centroid distance below a certain threshold (Fig.
1b, equations 1-5 in Methods). The topology of the resulting networks depends
on the peptide content and may result in small islands of distinct and highly sep-
arated clusters, or large connected components as a result of continuous overlap
between peptides derived from different cut-sites. To separate the connected
components, the resulting networks were further partitioned by applying the
Leiden community detection algorithm (29), seeking to maximize the modular-
ity of the network (Fig. 1b). This partitions the large connected components
into highly connected subcomponents, which effectively separates between the
unique clusters. An example of the network for hemoglobin subunit beta (HBB)
and the resulting designated clusters can be seen in Fig. lc. Another visual-
ization of the clustering when projecting the peptides in APOA1 to the protein
backbone can be seen in Fig. 1d. Peptides within a cluster have consistent bio-
physical properties, motivating the use of peptide clusters as a functional entity
(Supplementary Notes S2).
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Fig. 1. Generating wound fluid peptidomic clusters. a Wounds were
created on pigs and overlaid with a dressing. The wound drainage, containing
proteins and peptides, is absorbed into the dressing. The dressings were changed
and sampled every day over a 2-3-day period. The fluid was extracted from the
dressings, whereafter proteins were filtered out by applying a mass filter of 30
kDa. The endogenous peptides were subsequently identified and quantified by
MS/MS. In total, 21 wounds were infected with S. aureus, and 17 with P. aerug-
inosa on day 0. Additionally, 4 of the S. aureus-infected wounds were infected
with P. aeruginosa on day 1, resulting in double infected samples, which were
sampled over day 2 and 3. 13 samples were not infected and were used as a con-
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trol. b The initial step in generating peptide clusters entails generating peptide
networks (undirected graphs). Peptides are connected if they pass the thresh-
old d(Pi,Pj) < T where d is a function of peptide overlap, length ratios, and
centroid distance, and T is a chosen threshold. Here, an optimal threshold of 4
was identified empirically and applied to generate the networks. The resulting
network is further partitioned by applying the Leiden community detection algo-
rithm (29) which seeks to maximize the modularity of the network, @, to finally
create peptide clusters. ¢ Example of the peptide network for HBB where each
node represents a peptide. Nodes are colored by starting position (left) and
designated cluster after applying the Leiden algorithm (right). d Visualization
of the clustering algorithm when applied to APOA1. The upper panel shows
all the peptides without clustering projected onto the protein backbone. The
lower panel shows the results after clustering, where peptides from each cluster
are colored differently from its neighbors and depending on what cluster they
belong to.

Characterization of wound fluid peptidomes

To characterize the wound fluid peptidomes, we apply our community-based
clustering strategy to the complete dataset of 15268 unique peptide sequences,
resulting in 761 clusters, thereby reducing dimensionality by 95%. The average
number of missing values was reduced by 70.5 + 13.3%, representing an increase
in present values by 320 4+ 87%. The clusters were quantified by taking the
sum of the three most abundant peptides (topN-method). Grouping the pep-
tide clusters using hierarchical clustering shows two distinct groups. One group
predominately contains shared peptide clusters found in most of the samples
whereas the other group contains mostly peptide clusters unique to a smaller
set of samples (Fig. 2a). Dimensionality reduction by UMAP showed that the
quantified clusters separate the sample types into distinct groups (Fig. 2b). In
general, peptide clusters are more abundant and numerous in infected wounds,
both in terms of intensity and number of unique clusters (Fig. 2c), indicating
higher proteolytic activity during infection. The P. aeruginosa-infected wounds
contain more abundant and unique clusters compared to those infected by S.
aureus, while the double infected wounds show similar cluster intensities as
wounds infected by P. aeruginosa. The clustering enables statistical compar-
isons between sample types using the DE-score (30). In total, 98 clusters had
a logy(fold change) > 4 and a p-value < 0.01, demonstrating that the peptide
clustering strategy supports identification of clusters that are differentially abun-
dant between sample types. In Fig. 2d, the abundances of the 5 top-scoring
clusters in S. aureus and P. aeruginosa respectively, are shown.

An important property of the reduced data is that standard omics-esque machine
learning-based classification of samples can be performed. Here, we trained
an XGBoost (31) classifier to distinguish between the controls, S. aureus and
P. aeruginosa-infected samples, and achieved a classification accuracy of 92 +
1% (Fig. 2e). To investigate how many clusters are indicative of infection, a
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modified version of recursive feature elimination using SHAP (32) was applied
to iteratively remove features deemed less important to the classifier. Optimal
performance was achieved when utilizing 10-60 clusters (Fig. 2f). The top 50
clusters identified as the most important ones are listed in Supplementary Table
1.

Infections are not binary but exist on a continuum, as some wounds are more
heavily colonized than others. We hypothesized that the amount of colonized
bacteria was reflected in the peptidome, and that the output probability of a
classifier trained on the peptidomic content therefore would be indicative of the
level of colonization. Similarly, the classifier probability in a double infection
would reflect the fraction of colonization by the respective species. To test if the
classifier can predict the CFU-composition in the double infected wounds, we
trained an SVM to distinguish between the single-infected samples, and then
determined the probability of P. aeruginosa infection in the double infected
samples. The correlation between the fraction of CFUp ,cryginosqe and output
probability was 0.94 (Pearson’s r) (Fig. 2g). This demonstrates that the level of
bacterial colonization is reflected in the peptidome, indicating that the effects of
either specific bacterial proteases or modulating factors are captured in peptide
clusters.
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Fig. 2 Peptide clusters enable large scale analysis. a Clustermap of
peptide clusters. The color intensity is proportional to the cluster quantity
calculated by the topN method on the logy-transformed intensity. Hierarchical
clustering is performed on the peptide clusters (columns). b Uniform manifold
projection (UMAP) of the quantified clusters colored by sample type. The
shape indicates the day the samples were taken. ¢ A polar projection where
each scatter represents a cluster. The position of the cluster is computed as
> %, where i are the sample types |v;| the cluster quantity. Each sample type
is separated by 120°. The color intensity is proportional to the —log,,(p—wvalue)
as determined by ANOVA, clipped to < 10. d Swarmplot of the log,-intensities
of the top 5 clusters by DE-score for S. aureus (upper) and P. aeruginosa
lower. e Average confusion matrix from k-fold cross-validation (k = 3) of an
XGBoost classifier. f Recursive feature elimination using SHAP to estimate
feature importance was performed to investigate the number of optimal features
for an XGBoost classifier. The mean accuracy after removing a given number
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of features is shown as scatters. Error bands represent +1 SD. An optimal
number of features lie in the range of 10-60 features (out of 781 total). g
A support vector machine (SVM) with a linear kernel was trained to classify
bacterial species of infection based on the quantified peptide clusters. The y-
axis shows the prediction probability for P. aeruginosa infection when given
the double infected samples, and the x-axis shows the proportion of CFU for
P. aeruginosa compared to S. aureus for the samples. The correlation between
SVM probability and P. aeruginosa CFU-proportion is 0.92 (Pearson’s r).

Clusters can be utilized to identify bacterial protease ac-
tivity

To identify the protease activity which has given rise to the different peptidomes,
we first analyzed the wound fluids using zymograms. Here, three distinct pat-
terns were seen in control and single infections, where P. aeruginosa-infected
wounds showed enzymatic activity with degradation in the 75-50 kDa and 100
kDa-regions (Fig. 3a). The P. aeruginosa-related enzymatic activity was not
observed until day 3 in the superinfected samples, suggesting that P. aerugi-
nosa-colonization is delayed when there is a pre-existing S. aureus-colonization
(Fig. 3b). The protein content was investigated with SDS-PAGE, showing little
to no difference between sample types (Supplementary Fig. 3).

Investigating the p4-p4’ regions surrounding peptide terminals can reveal spe-
cific proteolytic activity in wound infections, as proteases typically exhibit speci-
ficity in this residue window. Each cluster is associated with two cut-sites (for
non-terminal peptides) defined by the most common terminal position in each
cluster and sample. The amino acid distributions in the p4-p4’ windows were
weighted by the topN-intensity, generating a weighted amino acid distribution
for each sample type at each position surrounding the cut-site. The distribu-
tions of infected sample types were then compared to the control-distribution
using the Kullback-Leibler (KL) divergence. Across all infected sample types,
the largest divergence was observed in the pl-position, indicating a different
protease-profile compared to the control. The P. aeruginosa infected samples
have a cut-site specificity towards lysine at the pl-position, whereas S. aureus
infected wounds have a specificity towards valine and arginine. In S. aureus-
infections, there is also a specificty at the p3, pl’ and p3’ positions, although
not as distinct as the one at pl. The superinfected wounds exhibited an S. au-
reus-like profile on day 2, whereafter the typical P. aeruginosa lysine-specificity
emerged on day 3 (Fig. 3c) which correlates with the patterns in the zymo-
grams. This reiterates that P. aeruginosa-colonization is delayed when there is
a pre-existing S. aureus-colonization (Fig. 2b) and that the bacteria-specific pro-
teolytic activity can be discerned in the cut-sites. Projecting the KL-weighted
cut-site amino acid frequencies to two dimensions using UMAP, separates the
samples cluster based on infection, but not on day, in contrary to what was
observed when projecting the quantified clusters (Fig. 3d). In total, 158 pep-
tide clusters are uniquely identified in the P. aeruginosa-infected wounds over
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the complete time span. These clusters are almost entirely enclosed by cut-sites
with a lysine at the pl-position (Fig. 3e). A similar profile emerges on day 3
in superinfected samples (Fig. 3f). These results show that the type of clusters,
cluster sizes, and intensity changes in a time-dependent fashion, whereas the
cleavage patterns are largely similar over time and dependent on the type of
bacterial pathogen.
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Identifying pathogen-specific peptidomic clusters in
HMGB1, HPT and PR-39

The previous analyses have demonstrated that the algorithm enabled identifi-
cation of differentially abundant clusters and evidence of bacteria-specific pro-
teolytic activity in the peptidomic content of infected wound fluids. In Fig.
4 we showcase 3 proteins that exemplify different degradation patterns depen-
dent on infection type and which potentially could be used as pathogen-specific
biomarkers.

High mobility group-box 1 (HMGB1) exhibits different peptide profiles in P.
aeruginosa-infected wounds and S. aureus-infected wounds. Cleavage of HMGB1
in wounds infected by P. aeruginosa produced peptides which were not identi-
fied in S. aureus infections or control. These clusters appeared in double in-
fected wounds on day 3, when the bacterial load of P. aeruginosa had increased
(Fig. 4a). Haptoglobin (HPT) also exhibits a different peptidomic profile in P.
aeruginosa infections. Peptides from the region 100-120 are cleaved into two
sub-peptides which are identified in P. aeruginosa-infected wounds (Fig. 4b).

In certain proteins, the degradation patterns are highly similar, but certain
clusters are differentially abundant. Amongst these proteins is the antimicrobial
protein PR-39. Several clusters from the antibacterial region of PR-39 (131-169)
are identified in both P. aeruginosa and S. aureus-infected wounds (Fig. 4d).
All clusters of PR-39 exhibit similar abundance, except for clusters in this region,
which are more abundant in P. aeruginosa-infected wounds (Supplementary Fig.
5 & 6). Further discussion of the biological significance of the exhibited protein
degradation can be found in Supplementary Notes S3.
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Fig. 4 Identification of potential pathogen-specific biomarker clus-
ters. Visualization of the peptidome projected onto proteins. In all figures, the
top panel contains a histogram showcasing the number of identified residues
at a given position, separated on peptide clusters. The clusters are colored
repeatedly in green, blue and purple. The color intensity is proportional to
the mean peptide intensity. a The cleavage pattern of High-mobility group
box 1 (HMGBI1) for the single and superinfected samples. In b, ¢ the samples
for single infection over day 1 & 2 are pooled. b Haptoglobin (HPT) contains
differentially abundant and unique peptide clusters in P. aeruginosa-infected
wounds. A major cluster is cleaved into two subpeptides only present in P.
aeruginosa-infected wounds. ¢ Peptides in the antimicrobial part of PR-39
(131-169) are more abundant in P. aeruginosa-infected wounds.

Characterizing contaminated wounds with peptide clusters

During bacterial analysis of the wounds, it was noticed that 4 of the wounds
which were infected with S. aureus on day 0 were contaminated prior to inoc-
ulation (24). The enzymatic activity was therefore analyzed with zymograms,
showing similarities to patterns typical for P. aeruginosa on day 1, and S. aureus
on day 2 (Fig. 5a). The peptidome of these wounds were analyzed in means
of finding out the peptidomic nature of the double infection. Using the same
machine learning classifier which was used to estimate the CFU-composition
previously, the probability of P. aeruginosa infection was determined in the
unintentionally infected samples. The samples were given a high probability
of being P. aeruginosa-infected on day 1, which then shifted to S. aureus on
day 2 (Fig. 5b). In a UMAP-projection, the samples on day 1 cluster with P.
aeruginosa samples, whereafter they shift to S. aureus (Fig. 5d).

On day 1, the cut-site specificity resembles that of P. aeruginosa or the double
infection on day 3, as lysine is the most common amino acid at pl. This changes
on day 2, where the cut-sites resembles S. aureus or double infection(Fig. 5c).
The cut-site specificity was quantified by taking the sum of the KL-divergence in
the p4-p4’ window, showing that the divergence to S. aureus decreases from day
1 to day 2, while there is a slight increase against P. aeruginosa. Together, this
demonstrates the utility of the methodology by identifying subtle differences in
proteolytic patterns.
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Fig. 5 Characterisation of contaminated wounds. a Zymograms for the
accidentally double infected wounds. An approximate kDa ladder is shown to
the left of the gels. b The classification probability given by an SVM of the
sample being P. aeruginosa for the accidentally double infected samples. c
Logoplots of cut-site specificity (p4-p4’) for the accidental double infections.
The height of the column is calculated by the Kullback-Leibler divergence
between the weighted amino acid distributions for the sample types against
control. d Uniform manifold projection (UMAP) of the peptide intensities
colored by sample type and shaped determined by the day the sample was taken.
e Heatmap of the total KL divergence between the amino acid distribution
of accidentally double infected wounds (with days as columns) and the single
infections (pooled over day 1 and 2). The total KL divergence against P.
aeruginosa increases between day 1 and 2, meaning that the cut-site specificities
get increasingly dissimlar.

Characterisation of wound fluid from non-healing wounds

Lastly, we sought to investigate whether the methodology developed here gen-
eralizes to human samples by applying it to human wound fluids from patients
with non-healing wounds. Common bacteria found in non-healing wounds in-
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clude S. aureus, P. aeruginosa and Enterococcus species (33). A total of 18
samples were analyzed with the MS/MS workflow described above, resulting
in 41741 peptides. Out of these, 10 samples were characterized as primarily
being colonized by P. aeruginosa, and 8 by being primarily colonized by S. au-
reus. The qualitative bacterial composition of the wounds was determined using
MALDI, and the protease activity was analyzed with zymograms (Fig. 6a). The
complete list of identified bacterial species and sample specifications can be seen
in Supplementary Table 2 and described in Supplementary Notes 4.

Peptide clusters were generated with the same settings as previously applied to
the porcine samples, finally resulting in 3254 clusters - reducing the dataset size
by 92% and increasing the fraction of present values by 290 4+ 30%. Analyzing
the cut-sites revealed a highly specific motif at the pl-position. The motif is
identical to that of human neutrophil elastase (NE), with a strong specificity for
valine, alanine, isoleucine and threonine, in descending order (34,35) (Fig. 6b).
All P. aeruginosa-infected wounds revealed a moderate or high level of NE, while
a majority of S. aureus-infected samples had a low level of NE-like specificity
(Fig. 6¢). Performing hierarchical clustering on the peptide cluster intensities
revealed that they largely cluster on NE activity and bacterial species (Fig. 6d,
Supplementary Fig. 7a). Dimensionality reduction using UMAP was performed
on the KL-weighted p4-p4’ amino acid frequencies, revealing three clusters which
can be recognized as having different degrees of NE-like pl specificity (Fig. 6e).
These also show a correspondence with bacterial colonizer and the zymogram
appearance, as e.g., sample 9, 15 and 16 cluster with S. aureus.

The clusters exclusively identified in the high NE-samples were enclosed by cut-
sites with valine, alanine and isoleucine at the pl-position. Similarly, the clusters
exclusively present in the moderate NE-samples which are mainly colonized by P.
aeruginosa, showed a specificity against lysine in the pl-position (Fig. 6g) which
is not identifiable if stratifying on primary bacterial colonizer (Supplementary
Fig. 7b). The cut-sites were analyzed after removing all clusters enclosed by
valine, alanine, isoleucine or threonine. Performing UMAP on the resulting
KL-weighted p4-p4’ amino acid frequencies reduced the influence of NE and
separated the samples based on bacterial colonizer (Supplementary Fig. 8a,b).
In conclusion, these results show that the peptide cluster strategy proposed here
can enable the identification of the bacterial species of the primary colonizer in
complex non-healing human wounds based on the peptidome alone.
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Fig. 6 Characterisation of human chronic wound fluid peptidomes.
a Zymograms of all 18 samples. The bar under the lane is colored based on
the level of NE-like cut-site specificity. A kDa ladder is shown to the left of
the gels. The gels for sample 9 and 10 were shorter and therefore have their
own reference ladder. b Logoplots of the mean p4-p4’ amino acid frequency
for three groups of samples identified by clustering, which correspond to
different levels of NE-like specificty at the pl-position. In addition to previous
colorations, valine, isoleucine, alanine and threonine are now colored purple. ¢
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The number of samples with different bacterial species determined by MALDI
and zymograms with regards to the different level of NE-like specificity. d
Clustermap of log-transformed peptide cluster intensities. The row colors
correspond to the identified groups in b and on the bacterial species identified
in the zymograms and MALDI. e UMAP of the p4-p4’ amino acid frequency for
all samples, colored by identified clusters which correspond to level of NE-like
specificity at the pl-position. f UMAP of the p4-p4’ amino acid frequency for
all samples, colored by the consensus between the results from MALDI and
the zymograms. g The amino acids identified at the pl-position for the unique
clusters when comparing samples with different levels of NE-like specificity.

Discussion

Understanding the impact and the underlying processes behind protein degra-
dation has enhanced our understanding of biological systems and represents an
unexplored resource for the identification of new biomarkers and therapeutic
targets. However, large-scale peptidomics analyses present challenges rooted
in the inherent diversity and scale of the peptidomic landscape. To address
these challenges, we present a method that deconvolves the peptidome by using
networks and community detection algorithms to approximate optimal parti-
tioning. The algorithm results in a data-reduction of 93-95% in our datasets,
combating the curse of dimensionality and opening avenues for analytical strate-
gies similar to those successfully employed in other omics fields. The method
also enables a new definition of an endoprotease cut-site as the most common
terminals to a peptide cluster, leading to improved cut-site analyses. Impor-
tantly, we demonstrate that classification models can utilize peptide clusters to
distinguish between samples, identify important clusters, and estimate the type
and level of pathogen-specific colonization and activity. This method not only
advances our understanding of the peptidome but also enhances the precision
and interpretability of large-scale peptidomics analyses in complex biological
contexts.

The data and algorithm presented here has several shortcomings that warrant
consideration. Firstly, the algorithm is dependent on the manual selection of
parameters, such as the threshold selected when creating networks and the res-
olution parameter during partitioning. The values for these parameters were
identified empirically by visualizing the data and seeing what made intuitive
sense. No data-driven parameter selection algorithm was found to generate op-
timal clustering, mainly because the optimization goal was difficult to define.
Secondly, the datasets presented here are limited, with 111 porcine samples and
18 human samples. Given the complexity and diversity of wounds and the pep-
tidome, there is a need for studies to validate our findings and investigate the
wound fluid peptidome further.

Despite these limitations, we identify unique cut-sites dependent on the species
of the primary wound colonizer. Generally, cut-sites vary mostly in the pl-
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position. Wounds infected by P. aeruginosa exhibit a large specificity towards
lysine residues at pl which is compatible with the reported specificity of its
secreted virulence factor protease IV (36). In human non-healing wounds, we
see a large influence of neutrophil elastase-like proteases which is in agreement
with previous studies demonstrating elevated elastase levels (37). Although we
do not identify any known proteases in the cut-site specificity of S. aureus-
infected wounds, we identify differentially abundant and unique clusters in both
cases. These generally correspond to clusters derived from known inflammatory
proteins, such as HMGB1, PR39 and protegrins when infected by P. aeurginosa,
and cytoskeletal proteins when infected by S. aureus.

The methodology presented here has the potential to instantiate a new branch of
peptidomics research, in which large-scale data-driven analyses are used to iden-
tify peptidomic differences in different biological contexts. Here, we have demon-
strated its utility in wound infections, however, we envision similar methodolo-
gies to be applied to a plethora of contexts, ranging from infectious diseases to
cancer and metabolic disorders.

Methods

The goal of generating peptide clusters is to group highly similar and proximate
peptides into a single entity. This coincides with capturing the endopeptidase
activity, while filtering out the effect of exoproteases which generate clusters of
highly similar peptides. If all possible variations of peptides were present in the
data, this would be an easy task, since all peptides could be merged onto the
longest variant. However, due to random processes and sampling stochasticity,
the data becomes noisy. Additionally, sometimes a peptide is cleaved into two
subpeptides, in which case information is lost when merging onto the parent
peptide. These issues call for a fuzzy algorithm to yield the most optimal
grouping of peptides. Here, we devise an approach which utilizes networks and
community detection to approximate the optimal grouping of peptide clusters.

Generating peptide clusters

The first step in generating peptide clusters is to generate weighted peptide
networks, where peptides we consider being part of the same cluster have a low
distance between them. The distance between each pair of peptides is calculated
using a distance function, d. The distance function devised and applied here
takes peptide overlap, centroid distance, and peptide length ratios into account.
The rationale behind the choice of these variables are the following: peptides
with a high degree of overlap are likely to belong to the same cluster. Long
peptides with high overlap, but a large distance between their centroids are
unlikely to be from the same cluster. Peptides with different lengths could
belong to the same cluster, but should not be connected directly. If intermediate
products are present, they will have an indirect connection, however, if not, they
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should not be connected, as they are most likely from different clusters. The
different parts of the distance function for peptides p; and p; are:

Pipa ™ Pisrars + 6)

do(pi7pj) =1/( T,

end start

pilength + pﬁengm D

dl (pi’pj) = max(pilength /pjlength ’pjzength /pilength)

dC(pi’pj) = |picentroid B pjcentroid

Where € is a noise variable of 1078, Pireryen the length of peptide 7 and Do

the centroid position of peptide i. The complete distance is the sum of the
factors:

d(pmp]) = do + dl + dc

And the peptides are connected if:

d(]%pj) <T

where T is an arbitrary threshold which is purpose specific. In our data, an
optimal threshold of 4 was identified empirically. A network is created for
each protein separately. The created networks are partitioned into isolated
components, with weaker connections between clusters with lowly overlapping
components. To further partition the network, the Leiden community detection
algorithm is applied.

The Leiden community detection algorithm is highly similar to the more com-
mon Louvain detection algorithm, but improves on it by guaranteeing well-
connected communities (29). These algorithms seek to maximize the modularity
of the network, which is calculated as:

Q= Z(Aij - 7kikj/2m)6(o-i70'j)
ij

where A is the adjacency matrix, k; is the weighted degree of node 4, m is the
total sum of edge weights and 0(c;,0;) = 1if i and j are in the same community.
7 is the resolution parameter which defines the expected number of communities.
In our dataset, the optimal resolution factor was investigated empirically and
given a value of 0.8.

It was noted that if a protein contained regions of highly varying peptide density,
the algorithm tended to split clusters in high density regions even though the
peptides overlapped to a great extent. To correct for this, a manual step of
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merging clusters was applied, where clusters were merged if the cumulative
distance of each termini was below given threshold. Here, a threshold of 2 was
used. Lastly, clusters with fewer than 3 peptides were removed from the dataset
since these could not be quantified with the topN-method when N=3.

Analyzing peptide clusters

Cluster quantification can be conducted similarly to protein quantification in
proteomics research. Here, clusters were quantified by taking the total value of
the top 3 most intense peptides as is common in label-free proteomics quantifi-
cation (38). To investigate what clusters differed the most between the sample
types, differential abundance analysis and machine learning based feature ex-
traction was performed. For pair-wise differential abundance analysis, p-values
were calculated using students t-test. The most differentially abundant peptide
clusters were selected using the DE-score (30). The DE-score is the pythagorean
sum of the normalized fold change and p-value, and was modified so that the
logarithmized fold change was sign-dependent.

log(FC) ? log(p — value)
max(log(FC)) max(log(p — value))

DE = Sign(log(FC>)\/

Thereby, the top peptide clusters for both groups included in the analysis can
be extracted separately. When comparing more than two groups, p-values were
calculated using ANOVA.

To investigate if classification-models could be used to distinguish between sam-
ple types, classificaton was performed with an XGBoost classifier. The classifier
takes the scaled cluster intensities as input. To investigate how many peptide
clusters and which peptide clusters were important for classification, a modi-
fied recursive feature extraction scheme was implemented. Here, features are
iteratively removed based on their SHAP value, as features with low SHAP are
considered unimportant for the classifier.

It was hypothesized that a classification model could be used to estimate the
fraction of pathogen colonization in superinfected wounds. An SVM with a
linear kernel was trained to classify the single infections, whereafter it was used
to classify the superinfected wounds. An SVM with a linear kernel was chosen
so that the decision boundrary and thereby the output probability would reflect
the prediction certainty in a linear fashion, so that it could be compared with
the CFU-fractions for the different bacteria. The output probabilities were
correlated with the CFU-fractions using Pearson’s r.

The most probable cut-site giving rise to each cluster is the most common
terminal, i.e., the mode of the terminal positions for each cluster and sample. To
identify cut-site specificity, windows spanning 8 amino acids surrounding these
sites were considered (p4-p4’). The amino acid distribution for each sample type
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and position was weighted with the mean peptide cluster intensity. The influence
of the pathogens on the cut-sites was compared against control. To quantify the
difference between these distributions, the Kullenback-Leibler divergence was
computed as follows:

Dy = 3 plaliogX)

zeX ( )

Where p(z) is the amino acid distribution for the infected sample type and g(z)
for the control. The divergence was used to weigh the amino acid frequency at
each position, before displaying them in a logo-plot.

The cut-site amino acid frequency distribution is a matrix of dimensions 23 x 8.
Stacking this matrix into a vector of length 23 -8 and concatenating all samples
allows us to get a feature matrix. To investigate the proximity of cut-sites

the dimensionality of the feature matrix was reduced to two dimensions using
UMAP.

To remove the effect of neutrophil elastase, clusters enclosed by valine, isoleucine,
alanine and threonine were removed from all samples. The remaining clusters
were filtered for each sample separately, to remove clusters which had valine,
isoleucine, alanine and threonine as the most common terminals. The cut-site
specificities were thereafter calculated as per above.

Implementation & software

The complete bioinformatic analysis was conducted in Python 3.9. Net-
workX and iGraph were used to generate networks. The Leiden algorithm
was used as implemented in the leidenalg-package. XGBoost, scikit-learn
and SHAP were used for machine learning applications. The UMAP-learn
package was used for dimensionality reduction using UMAP. Scipy was used
to calculate p-values. The in-house processing package DPKS was used
for quantification (39). Vector manipulations utilized numpy. A package
for the creation of peptide clusters is available under an MIT license at
GitHub: https://github.com/ErikHartman/pepnets. All figures were created
in BioRender.com.

Ethics statement

All animal experiments are performed according to Swedish Animal Welfare
Act SFS 1988:534 and were approved by the Animal Ethics Committee of
Malmé/Lund, Sweden (permit number M131-16). The use of human wound ma-
terials was approved by the Swedish ethical review authority (etikprévningsmyn-
digheten application number 2023-05051-02). Written consent was received from
all subjects prior to participation.
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Pig wound model

In a previous study exploring the effects of the thrombin derived antimicrobial
peptide TCP-25, partial thickness wounds of Gottingen minipigs were either
infected with S. aureus or P. aeruginosa (24). The wounds were then dressed
with a polyurethane dressing, which was changed 24 and 48 hours post infection,
and the old dressings were collected for wound fluid extraction. The same
dressing procedure was also performed for uninfected control wounds as well as
superinfected wounds which were first infected with S. aureus, and infected with
P. aeruginosa after 24 hours, during the first change of polyurethane dressing.
The dressing of the superinfected wound was also collected 72 hours post S.
aureus infection (24). The collected dressings were placed in syringes and soaked
in 10 mM Tris (pH 7.4), before ejecting the fluids. Halt Protease Inhibitor
Cocktail (Thermo Fisher Scientific, USA) was then added to half of the extracted
wound fluid from each sample. All samples were then stored at -80°C before
use.

Quantitative bacterial counts

The swabs and dressing fluid samples were diluted with sterile PBS to generate
7 10-fold serial dilutions (from 10x to 107x). Six separate 10 L drops of the
undiluted sample and each of the dilutions were deposited on a Todd-Hewitt
agar plate. The plates were incubated at 37°C in 5% CO2 overnight. The next
morning, the number of colonies was counted and recorded.

Wound fluids from non-healing human wounds

Wound fluid from patients with venous non-healing wounds was collected from
Mepilex dressings applied on the wounds for 48-72 hours. The dressings were
extracted as described above, and Halt Protease Inhibitor Cocktail added as
above before storage at -80°C.

Identification of bacteria

Colonies from wound swab samples were prepared using the extended direct
transfer sample preparation procedure on stainless steel MALDI target plates as
described by the manufacturer (Bruker Daltronik GmbH). A Microflex LT/SH
SMART MALDI-TOF mass spectrometry (MS) instrument with flexControl v.
3.4 (Bruker Daltronik GmbH) was used to analyze the target plate and collect
mass spectra in linear mode over a mass range of 2 to 20 kDa. A spectrum
of 240 summed laser shots was acquired for each sample spot. The spectra
were analyzed using a MALDI Biotyper (MBT) Compass v. 4.1 with the MBT
Compass Library Revision L (DB-9607, 2020) (Bruker Daltronik GmbH).
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Sample preparation, mass spectrometry and data process-
ing

Wound fluid extracts with supplemented protease inhibitor had their protein
concentrations measured using the Pierce BCA Protein Assay Kit (Thermo
Fisher Scientific, USA) according to the provided instructions. A volume cor-
responding to 500 pg of protein for pig wound fluids and 100 pg of protein for
human wound fluid was diluted in 10 mM Tris (pH 7.4) to 100 pl, and then fur-
ther diluted in 300 pl 8 M urea (in 10 mM Tris (pH 7.4) to a final concentration
of 6 M urea) supplemented with 0.067% RapiGest SF (Waters, USA) (to a final
concentration of 0.05% RapiGest SF). The samples were then incubated for 30
minutes at room temperature. Meanwhile, Microcon - 30 centrifugal filter units
were rinsed with 100 pul 6 M urea (in 10 mM Tris (pH 7.4)) by centrifugation for
15 minutes at 10 000 RCF at room temperature (RT). The samples were then
loaded onto the filter units and centrifuged for 30 minutes at 10 000 RCF at
RT, followed by a final rinse with an additional 100 ul 6 M urea (in 10 mM Tris
(pH 7.4)) and 5 minutes of centrifugation at 10 000 RCF at RT. The filtrate
was then stored at -20°C until LC-MS/MS analysis.

In total, wound fluids from 47 pig wounds (17 wounds infected with S. aureus
from 4 pigs, 17 wounds infected with P. aeruginosa from 4 pigs, 13 uninfected
wounds from 4 pigs) at two time points (24 and 48 hours post infection) had
their peptides extracted. In addition, wound fluids from 4 superinfected wounds
from 1 pig at three different time points (24, 48 and 72 hours post S. aureus
infection) also had their peptides extracted. 18 human wound fluids from 4
subjects had their peptides extracted.

Extracted peptide samples were acidified by adding 1 nul 100% formic acid (FA)
to 60 nl of peptide filtrate. Meanwhile, UltraMicro Spin Columns (The Nest
Group, USA) were wet by adding 100 pl 100% acetonitrile (ACN) + 0.1% FA
and centrifuging the column at 800 RCF for 1 minute at room temperature.
These conditions were used for the remainder of the centrifugation steps of the
solid phase extraction. The columns were then equilibrated by centrifuging 100
nl 2% ACN + 0.1% trifluoroacetic acid (TFA) through them twice. Samples
were then spun onto the columns, followed by a washing step where 100 pl
2% ACN + 0.1% TFA was centrifuged through. The samples were then eluted
by centrifuging 100 pl 70% ACN + 0.1% TFA through the columns. Once
eluted, the samples were dried using an Eppendorf Concentrator plus at 45°C
and redissolved in 30 ul 2% ACN + 0.1% TFA.

The redissolved peptide samples were loaded onto Evotip Pure columns accord-
ing to the provided instructions, apart from that the loaded samples were dis-
solved in 30 pl 2% ACN + 0.1 % FA instead of 20 pl 0.1% FA. These were then
analyzed by LC-MS/MS on an Evosep One LC (Evosep, Denmark) coupled to
a timsTOF Pro mass spectrometer (Bruker, USA). The LC was equipped with
an EV1137 Performance Column — 15 cm x 150 pm, filled with 1.5 pm ReproSil-
Pur C18 beads (Evosep, Denmark), and separation was performed using the
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accompanying 30 samples per day program. The MS used the DDA PASEF
mode, doing 10 PASEF scans every acquisition cycle. The accumulation and
ramp times were both set to 100 ms. Precursors with a +1 charge were ignored
and the target intensity was set to 20 000, with dynamic exclusion active, at 0.4
min. The isolation width was set to 2 at 700 Th and 3 at 800 Th.

The data from the LC-MS/MS runs were searched with PEAKS X. UniProtKB
reviewed (Swiss-Prot) protein list of pig proteins was used as a database
when searching the pig samples, with the exchange of fibrinogen alpha chain
(FIBA_PIG) and fibrinogen beta chain (FIBB_PIG) to the UniProtKB
unreviewed (TrEMBL) versions F1IRX36_ PIG and FIRX37_PIG respectively.
When searching the human samples, UniprotKB reviewed (Swiss-Prot) protein
list of human proteins was used as a database. The lists can be found in
supplemental data X. The precursor tolerance was set to 20 ppm and the
fragment tolerance was set to 0.03 Da. Oxidation (M, +15.99) was treated as
a possible modification, and a maximum of one modification per peptide was
allowed. The search results were filtered at 1% FDR and at least 1 unique
peptide for each protein.

The peptide intensities were log,-transformed. Identified but unquantifiable
peptides were imputed by sampling from a uniform distribution U(2,8) which
is lower than the least abundant quantifiable peptides. The intensities were then
mean-normalized so that all samples had equal intensity-means.

Zymograms

Zymogram gels were created with a separation gel consisting of 375 mM Tris
buffer (pH 8.8), 0.1% (w/v) SDS, 0.1% (w/v) gelatine, 10% (w/v) acryl amide,
0.05% (w/v) TEMED and 0.05% (w/v) APS in Milli-Q water and a stacking
gel consisting of 125 mM Tris (pH 6.8), 0.1% (w/v) SDS, 4% (w/v) acryl amide,
0.1% (w/v) TEMED and 0.05% (w/v) APS in Milli-Q water. For each sample,
5 pg of protein without added protease inhibitor was diluted to 5 ul with Milli-Q
water, and then mixed with 5 pl sample buffer consisting of 400 mM Tris-HCI
(pH 6.8), 20% (v/v) glycerol, 5% (w/v) SDS and 0.03% (w/v) bromophenol blue
in Milli-Q water, which was then added to the wells. The gels were then run
using an electrophoresis buffer consisting of 25 mM Tris, 200 mM glycine and
0.1% (w/v) SDS in Milli-Q water at pH 8.7 for 60 minutes at 150 V. Afterwards,
the gels were washed with deionized water and incubated for 60 minutes in 2.5
% Triton X-100 at room temperature, with 160 rpm shaking, and followed by
another deionized water wash. Next, the gels were incubated overnight at 37°C
in an enzyme buffer consisting of 50 mM Tris-HCl (pH 7.5), 200 mM NaCl,
5 mM CaCl2 and 1 pM ZnCI2 with 50 rpm shaking. The next day, the gels
were washed in deionized water and incubated in a staining buffer consisting
of 0.25% (w/v) Coomassie brilliant Blue G-250, 38.4% (v/v) ethanol and 7%
(v/v) acetic acid in Milli-Q water for 60 minutes. The gels were then placed
in a de-staining solution consisting of 9.6% (v/v) ethanol and 7% (v/v) acetic
acid in Milli-Q and imaged using a Chemidoc MP Imaging System (Bio-Rad
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Laboratories, USA).

SDS-PAGE

From each wound fluid sample, 20 pg of protein with added protease inhibitor
was mixed with Milli-Q water to 8 pl. 10 ul Tricine SDS Sample Buffer (2X) and
2 ul NuPAGE Reducing Agent (10X) was added to each sample. The samples
were then incubated at 95 °C for 5 minutes. 10-20% Tricine gels and running
buffer were prepared as described by the manufacturer’s instructions and were
then run for 90 minutes at 100 V. Once the runs were finished, the gels were
stained with Gelcode Blue Safe Protein Stain (Thermo Fisher Scientific, USA)
according to the instructions provided by the manufacturer. Imaging was then
performed using a Chemidoc MP Imaging System (Bio-Rad Laboratories, USA).

Code availability

A package containing the code used for the creation and analysis of peptide clus-
ters is available in the open GitHub repository https://github.com/ErikHartman/pepnets
under an MIT license.

Data availability

The data in this study will be made available at ProteomeXchange at the time
of publication.
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Supplementary information

Supplementary Notes S1. Characterisation of the porcine wound fluid
peptidomes

The infected wounds developed clinical signs of infection, including erythema
and visible bacterial biofilms (Supplementary Fig. la). The bacterial load in
the single infections remained stable with around 10> CFU (Supplementary Fig.
1b). In the double infections, however, the CFU count of S. aureus increased
when introducing P. aeruginosa, and the two species reached similar levels of
colonization on day 3 (Supplementary Fig. 1c¢). Dimensionality reduction using
uniform manifold projection (UMAP) on the log-transformed peptide intensities
showed that peptidomes are sample type-specific (Supplementary Fig. 1d). The
number of identified peptides decreased between days m and n + 1, with an
average decrease of 34% (Supplementary Fig. le). Hierarchical clustering on
peptide intensities revealed two distinct clusters, where one cluster constitutes
the shared peptides, and the second contains most peptides identified in a subset
of samples (Supplementary Fig. 1f). Peptide lengths vary between 7 and 58
amino acids, with a mean length of 15.2 amino acids. Control samples contain
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a smaller fraction of short peptides (<11 amino acids) compared to infected
samples, and peptide length decreases between days 1 and 2 (Supplementary
Fig. 2d).

Supplementary Notes S2. Peptide properties in clusters

Previous work has shown that peptide properties are largely conserved in pep-
tides with high sequence similarity (1,2). To investigate this and to motivate
the use of peptide clusters as a functional entity, the antimicrobial tendencies
of all peptides were predicted using a pre-trained deep convolutional neural
network (3). The network outputs a classification probability (antimicrobial
prediction score) for a given peptide sequence. The variance of the antimicro-
bial prediction score between peptides within a cluster was compared to the
variance between all peptides in a protein as a benchmark. The inter-cluster
variance is significantly lower than the inter-protein variance of antimicrobial
scores (Supplementary Fig. 2). Other properties, such as isoelectric point and
aromaticity, showed similar distributions.

Supplementary Notes S3. Biological significance of HMGB1, HPT
and PR39

High mobility group-box 1 (HMGB1) is a dual-functioning protein, as its in-
tracellular role entails transcriptional regulation by binding to DNA while it
acts as a damage-associated molecular pattern (DAMP) when released into the
extracellular environment. It contains three functional regions denoted as the
A-box, B-box and the acidic C-terminal tail (Fig 4a). Further, it contains
heparin-binding, TLR-binding and RAGE-binding domains which regulate the
inflammatory response. The degradation of HMGB1 into functional peptides
by endogenous proteases have been studied, demonstrating cleavage by C1, neu-
trophil elastase, cathepsin G and matrix metalloproteinase 3 (32-34). HMGBI1
has also been documented to interact with P. aeruginosa in pneumonia and cys-
tic fibrosis by mediating inflammation and attenuating bacterial clearance (35),
as well as in keratitis (36). We find that cleavage of HMGBI1 in wounds infected
by P. aeruginosa produced peptides from the A-box region (29-43) and B-box
(112-127) as well as the acidic tail (190-206, 196-212) which were not identified
inS. aureusinfections or control. Additionally, these clusters appeared in dou-
ble infected wounds on day 3, when the bacterial load of P. aeruginosa had
increased. The two clusters from the A-box and B-box are surrounded by cut
sites with lysine at pl, matching the cut site specificity of P. aeruginosa.

Haptoglobin (HPT) is a protein that binds free hemoglobin, thereby protecting
tissues from deleterious oxidative activity. However, it has also been demon-
strated to bind to HMGBI, and the resulting complex binds CD163, leading
to anti-inflammatory signaling in the monocyte-macrophage lineage (37). In P.
aeruginosa infections, HPT is cleaved in the region 100-120 resulting in differ-
entially abundant peptide clusters although also present in S. aureus-infected
wounds (Fig. 2d). However, the peptides from this region are subsequentially
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cleaved at a cut site with a lysine at position pl, into two sub-peptides (Fig.
4c). These are only identified in P. aeruginosa-infected wounds. Additionally,
the peptide cluster in region 154-169 is only identified in P. aeruginosa-infected
wounds and is flanked by cut sites with a lysine at pl.

PR-39 is an antibacterial protein, with peptides derived from the region of PR-
39 (131-169) exhibiting high antibacterial activity. Cleavage in this region has
been documented to inhibit the antimicrobial effect, as the shorter sub-peptides
are much less potent than the full peptide (27). All clusters of PR-39 exhibit
similar abundance, except for clusters in this region, which are more abundant
in P. aeruginosa-infected wounds. Both P. aeruginosa andS. aureushas been
demonstrated to exhibit resistance towards the effect of PR-39 -S. aureusbeing
completely resistant to high concentrations and P. aeruginosa being relatively
resistant to PR-AMPs.

Supplementary Notes S4. Description of human non-healing wound
samples

Out of the 18 samples, 10 showed growth of P. aeruginosa. These samples also
often contained other bacteria, such as E. faecalis, **S. lugdunensis, Corynebac-
terium sp., S. aureus, and S. agalactiae. The other 8 samples primarily con-
tained S. aureus. Sample 9 contained P. aeruginosa®™ but did not show a P.
aerguinosa-like profile on the zymogram, and is therefore labeled “P. aeruginosa
MALDI+ Zymo-". One patient was given antibiotics against a P. aeruginosa-
infection, and two samples derived from this patient are therefore labeled as “P.
aeruginosa after antibiotics”.

Supplementary figures

Supplementary Fig. 1 The wound fluid peptidome is pathogen-
specific. a Representative pictures of the porcine wounds with and without
dressing over the sampling period. Wounds were infected on day 0. The double
infected wounds were infected with P. aeruginosa on day 1. b log;,CFU
over the three-day period in the single infections and control wounds. c
log,,CFU over the three-day period in the double infected wounds. In b
and c the line shows the mean trend and the error bars +£1SD. d Uniform
manifold projection (UMAP) of the peptide intensities colored by sample
type and shaped determined by the day the sample was taken. e Number of
peptides detected over the timespan. The right panel shows the fold change
of number of peptides between day n and n — 1. Every sample is shown as
a scatter, alongside a line for mean values. For the means, +1 SD is shown
as error-bands. f Clustering of peptide groups using hierarchical clustering.
The color in the heatmap is proportional to the normalized log,-transformed
intensity. Clustering is performed using hierarchical clustering minimizing the
Ward-distance.
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Supplementary Fig. 4 SDS-PAGE for sample types. SDS-PAGE on the
wound fluid of all samples on day 1 (left) and day 2 (right). The upper row
shows the sample s infected by S. aureus, the middle by P. aeruginosa and the
lower the uninfected control samples.

Ctrl



https://doi.org/10.1101/2023.12.28.573527
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.28.573527; this version posted December 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a b
Sample type S |
S. aureus Ctrl S, aureus ample type Ctrl
P aeruginosa Double infection P. aeruginosa Double infection
APOE 294-317 A
APOE 291-304 - HMGB1 197-212 4
APOE 279-290
HMGB1 190-206 -
APOE 255-276 -
APOE 221-231 A HMGB1 151-171 4
5 APOE 210-223 5
© APOE 195-211 A @ HMGB1 147-164 A
O APOE 179-193 ©
APOE 167-179 4 HMGB1 112-127
APOE 136-155 A
HMGB1 87-103 4
APOE 90-117 A
APOE 71-89 A HMGB1 29-43 4
APOE 18-30 - T T T
T T T T 10 20 30
10 Iogz((i)ntenii(iy) 40 logs(intensity)
2
c d
Sample type
S. aureus Ctrl Sample type
P. aeruginosa Double infection S aureu.s e . X
P. aeruginosa Double infection
PR39 151-169 -
HPT 300-311 4
PR39 147-163 -
PR39 138-159 A HPT 254-270 1
PR39 132-142 4 HPT 164-177
5 PR39 132-151 A 5 HPT 154-169 1
% PR39 96-106 - 9
O O HPT 126-143
PR39 64-78
PR39 54-78 A HPT 107-120 A
PR39 55-73 4 HPT 100-120 1
PR39 35-55 4
HPT 102-114 4
PR39 28-55 A T T 1
T T 0 20 40 60
20 40 log,(intensity)

log,(intensity)

Supplementary Fig. 5 Cluster abundances. Abundances for all clusters
in a APOE, b HMGB1 ¢ PR39 and d HPT.
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Supplementary Fig. 6 Top 50 differentially expressed cluster abun-

dances.

Abundances of the clusters exhibiting the highest differential

expression in a P. aeruginosa-infected wounds and b S. aureus-infected

wounds.
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Supplementary Fig. 7 a UMAP of the quantified peptide clusters colored
based on results from MALDI and zymograms. b Amino acid profile for the
amino acids at the pl position for the unique clusters when stratifying the
samples on the species of the primary colonizer.
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Supplementary Fig. 8 Removing the effect of neutrophil elastase
The effect of neutrophil elastase was removed by removing all clusters which
had valine, isoleucine, alanine and threonine at the pl position of any terminal.
a,b UMAP projection of the p4-p4’ KL-weighted amino acid frequencies. In
a the scatters are colored depending on the appearance of the zymogram and
the bacterial composition of the MALDI. In b the scatters are colored based
on the identified groups of high, medium and low NE-like p1 specificity.

Supplementary Table 1 The 50 top ranking features extracted by training
an XGBoost classifier and estimating the feature importance using SHAP. The
topn-columns contain the sum of the abundance of the cluster per group calcu-
lated by taking the sum of the top 3 most abundant peptides.

Ctrl P. aeruginosa S. aureus

Rank Protein Start  End topn topn topn
0 HPT 102 114 0.15 25.4 0.25

1 PF11 48 62 4.44 36.34 32.76
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Ctrl P. aeruginosa S. aureus

Rank Protein Start  End topn topn topn
2 SAA2 54 85 3.37 27.72 34.25
3 HMGN2 54 90 0 18.51 0.3
4 APOC3 39 83 40.88 51.65 50.34
5 HBA 0 22 40.1 45.7 34.2
6 FIRX37 48 73 20.44 23.4 17.65
7 THRB 296 317 0.83 6.49 21.55
8 RL31 90 106 1.27 3.5 5.35
9 PF11 12 39 10.9 39.65 40.86
10 ACTB 227 240 0.72 6.14 12.77
11 CO3 437 457 0 18.79 0
12 F1RX36 219 238 0 1.92 23.08
13 PF11 198 209 7.18 12.04 25.8
14 G3P 192 213 2.71 15.05 0.5
15 HMGB2 192 210 0 20.69 0
16 F1RX36 593 623 24.64 39.74 43.33
17 F1RX37 167 186 9.66 6.2 4.43
18 TBB5 422 444 1.48 9.37 10.87
19 G3P 192 217 16.56 16.37 16.31
20 PF11 128 161 24.55 36.9 49.2
21 APOE 255 276 1.96 16.46 16.2
22 BAG6 651 664 0 3.99 13.1
23  FI1RX37 48 87 16.97 20.11 17.92
24 APOE 294 317 19.08 19.43 25.48
25 VTNC 65 7 0 1.04 3.72
26 ITTIH4 632 648 2.4 2.45 6.72
27 HBB 29 61 26.81 21.87 6.11
28 HBB 118 137 12.66 32.71 8.71
29 HBA 0 48 24.32 8.09 22.99
31 F1RX37 55 87 23.12 22.67 21.93
32 TTHY 126 150 1.8 23.67 0.6
33 LOX15 624 643 2.24 1.82 6.06
34 ANXA1 8 29 14.35 28.95 20.64
35 HMGN2 24 46 10.7 36.88 9.21
36 PF11 161 203 2.23 4.71 10.37
37 TYB4 13 44 24.27 48.98 27.38
38 VIME 47 71 4.04 26.85 15.77
39 PFl11 171 198 0.87 5.28 6.49
40 APOC3 20 43 33.62 48.21 41.66
41 ITIH4 658 678 3.4 34.59 16.44
42  VIME 38 68 5.91 10.28 9.73
43 H4 24 35 2.27 3.41 9.34
44 SAA2 84 119 2.7 20.42 174
45 F1RX36 466 518 36.85 45.09 44.81

10
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Ctrl P. aeruginosa S. aureus

Rank Protein Start  End topn topn topn
46 ITIH2 492 521 0 5.94 9.07
47 PF11 137 166 40.68 39.57 48.2
48 FA5 985 1009 1.34 9.09 2.78
49 VTNC 108 127 0 0.27 2.23

50 HMGB2 1 18 0.44 3.21 4.22

Supplementary Table 2 Sample specifications for human samples. Bacterial
identification by MALDI was not performed on samples 17 and 18.

NE
Sample Patient Day Wound group Zymogram Bacteria

1 2101 3 1 Low S. S.
aureus aureus,
E.
faecalis,
S. lug-
dunensis
2 2101 3 2 Low S. S.
aureus aureus,
E.
faecalis,
S. lug-
dunensis
3 2101 8 1 Low S. S.
aureus aureus,
E.
faecalis,
Corynebac-
terium
sp.
4 2101 8 2 Low S. S.
aureus aureus,
E.
faecalis,
S. lug-
dunensis,
Corynebac-
terium
sp.
5 2104 3 1 Low S. S.
aureus aureus

11


https://doi.org/10.1101/2023.12.28.573527
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.28.573527; this version posted December 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

NE

Sample Patient Day Wound group Zymogram Bacteria

6 2104 3 2 Low S. S.
aureus aureus

7 2104 8 1 High S. S.
aureus aureus

8 2104 8 2 High S. S.
aureus aureus

9 2103 3 1 High P. P.
aerugi- aerugi-
nosa nosa, S.

aureus,
Corynebac-
terium

Sp.

10 2103 8 1 High P. S.
aerugi- aureus P.
nosa aerugi-

nosa E.
faecalis
Corynebac-
terium

sp. P.
rettger

11 2105 15 2 Low P. S.
aerugi- aureus P.
nosa aerugi-

nosa
Corynebac-
terium

sp. S.
agalac-
tiae

12 2105 17 2 Low P. -
aerugi-
nosa

12
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NE
Sample Patient Day Wound group Zymogram Bacteria
13 2105 22 2 Low P. S.
aerugi- aureus,
nosa P. aerug-
imnosa,
Corynebac-
teriaum
sp., S.
agalac-
tiae, A.
xylosoxi-
dans
14 2105 24 2 Low P. -
aerugi-
nosa
15 2105 29 1 Low P. P.
aerugi- aerugi-
nosa nosa,
Corynebac-
terium
sp., A.
xylosoxi-
dans
16 2105 31 2 Low P. P.
aerugi- aerugi-
nosa nosa,
Corynebac-
terium
Sp.
17 2105 3 1 High P. -
aerugi-
nosa
18 2105 3 1 High P. -
aerugi-
nosa
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