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Structured Abstract 17 

Introduction: Genome-wide association studies have identified over 70 genetic loci 18 

associated with late-onset Alzheimer’s disease (LOAD), but few candidate 19 

polymorphisms have been functionally assessed for disease relevance and mechanism 20 

of action. 21 

Methods: Candidate genetic risk variants were informatically prioritized and individually 22 

engineered into a LOAD-sensitized mouse model that carries the AD risk variants 23 

APOE4 and Trem2*R47H.  Potential disease relevance of each model was assessed by 24 

comparing brain transcriptomes measured with the Nanostring Mouse AD Panel at 4 25 

and 12 months of age with human study cohorts. 26 

Results: We created new models for 11 coding and loss-of-function risk variants.  27 

Transcriptomic effects from multiple genetic variants recapitulated a variety of human 28 

gene expression patterns observed in LOAD study cohorts. Specific models matched to 29 

emerging molecular LOAD subtypes.  30 

Discussion:  These results provide an initial functionalization of 11 candidate risk 31 

variants and identify potential preclinical models for testing targeted therapeutics. 32 

 33 

  34 
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Background 35 

Alzheimer’s disease (AD) is the most common cause of dementia, with a growing 36 

clinical, financial, and social impact.  An increasing body of evidence highlights the 37 

importance of genetic risk in AD (1-3).  While a small percentage of AD cases are linked 38 

to causative, familial mutations in the amyloid precursor protein (APP) processing 39 

pathway, the vast majority of cases are late-onset AD (LOAD), have heterogeneous 40 

symptoms and etiology, and are associated with polygenic risk from a combination of 41 

low-risk, relatively common variants (4-6).  Genome-wide association studies (GWAS) 42 

have identified numerous LOAD risk variants, but few have been experimentally 43 

validated, and physiological mechanisms have not been elucidated, even for the single 44 

strongest risk variant, the ε4 allele of APOE gene (4, 7).  This is but one example (8) of 45 

the general problem of how to progress from the identification of genetic variants to 46 

functional impact of variants to getting to physiological disease mechanisms (9).  Here 47 

we present a novel approach to assay the impact of individual polygenic risk factors 48 

using an in vivo approach. 49 

While numerous potential therapeutics have shown promising results in transgenic 50 

mouse models of familial AD, few have advanced in clinical trials.  This may result from 51 

numerous causes, but it is clear that one reason may be the lack of translational animal 52 

models available for preclinical studies (10-12).  Almost all existing rodent models are 53 

based on causative mutations in proteins in the amyloid precursor protein (APP) 54 

processing pathway expressed in neurons.  Most AD genetic risk resides in genes 55 

mainly expressed in microglia and other non-neuronal cell types, as recently reviewed 56 

(5, 13, 14), indicating that complex cellular interactions play a causative role in disease 57 
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etiology.  While in vitro systems have been shown to have value, more relevant in vivo 58 

models are necessary to understand these cell-cell interactions (15).  In particular, 59 

animal models are required to study the early and progressive stages of pathology, 60 

which are not accessible in clinical studies but are critical to understand disease 61 

mechanisms so as to better target novel therapeutic approaches. 62 

The MODEL-AD consortium was established to create and characterize translationally 63 

relevant mouse models of LOAD, and to set up protocols for preclinical testing in these 64 

new models (16).  In this study we provide an overview of novel mouse models 65 

expressing human risk variants.  Variants were introduced using a knock-in approach to 66 

avoid known issues with transgenic models (11, 17-19).  To potentially enhance 67 

disease-relevant outcomes, variants were created on a more LOAD-susceptible genetic 68 

background expressing humanized APOE with the ε4 variant and the R47H mutation in 69 

Trem2, two of the strongest genetic risk factors for LOAD (20).  The effects of each 70 

variant were assessed by gene expression changes in aging male and female brains 71 

using a newly developed transcriptomics panel (21), representing key LOAD-associated 72 

changes in clinical AD samples (22). This allowed us to functionalize GWAS variants 73 

with small but significant increases in disease risk and avoided a reliance on amyloid 74 

deposition or cognitive assays, which have not proven to translate to clinical studies. 75 
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Methods 76 

Late-onset AD risk variant prioritization 77 

Prioritization and construction of the APOE and TREM2 variants in the LOAD1 strain 78 

were previously discussed (20). Late-onset variants were selected based on human 79 

genetic association, predicted pathogenicity, conservation with mouse homolog, and 80 

allele frequency. We further prioritized based on diversity in predicted function to 81 

maximize our exploration of potential LOAD biology. Determining specific variants was 82 

primarily limited by the rarity of strong coding candidates (e.g. nonsynonymous, stop-83 

gain) and strict mouse sequence homology that required the same SNP be engineered 84 

into mice. This led to a mix of variants at high-confidence GWAS loci, functional 85 

candidates, and exploratory variants. Exome sequencing from the Alzheimer’s Disease 86 

Sequencing Project (ADSP) was initially used to identify specific variants at loci (23), 87 

buttressed by summary data at NIAGADS (https://www.niagads.org/genomics/app). All 88 

variants are annotated as “ADSP Variants” that passed NIAGADS quality control checks 89 

(https://www.niagads.org/genomics/app). 90 

ABCA7*A1527G (rs3752246) is the most common of multiple predicted loss-of-function 91 

variants associated with increased LOAD risk at the ABCA7 locus (24, 25). The 92 

SORL1*A528T (rs2298813) variant is among candidates in the SORL1 gene and likely 93 

involved in retromer function (26); deficits in retromer-dependent endosomal recycling 94 

have been implicated as causal in AD (27-29). The SNX1*D465N (rs1802376) variant 95 

locus is associated with AD (24) and SNX1 is involved in retromer function relevant to 96 

LOAD (30). PLCG2*M28L (rs61749044) has been associated with LOAD 97 

[https://www.biorxiv.org/content/10.1101/2020.05.19.104216v1, (24, 31) and Plcg2 is a 98 
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key protein in microglial activation in response to AD pathology (32). The SHC2*V433M 99 

(rs61749990) variant was identified in ADSP exomes and has been associated with 100 

neurodegeneration and neuron loss (33, 34). SLC6A17*P61P (rs41281364) reduces 101 

gene expression in the brain (gtexportal.org/home/gene/SLC6A17), and its reduction is 102 

also associated with LOAD (agora.adknowledgeportal.org/genes/ENSG00000197106). 103 

Rare variants have been associated with neurological phenotypes (35, 36). The 104 

CLASP2*L163P (rs61738888) variant has been associated with neurodegeneration 105 

from meta-analysis (37). The MTMR4*V297G (rs2302189) variant has been linked to 106 

cognitive function (38, 39). Predicted CEACAM1 loss-of-function variants had a high 107 

disease burden in ADSP exome sequencing data (SKAT-O Bonferroni-adjusted p = 108 

7.47 x 10-7) and the gene was associated with AD-related traits in a model of mouse 109 

genetic variability (40). The common MTHFR*677C>T (rs1801133) has been associated 110 

with increased risk for LOAD and other age-related disorders (41, 42). To explore a 111 

copy-number variant linked to vascular function, we used an existing MEOX2 knockout 112 

based on an association with Alzheimer’s disease (43) that may be related to the gene’s 113 

role in neurovascular health (44). This variant was assessed in a heterozygous state 114 

due to non-viability of the homozygote. 115 

 116 

Model development 117 

All experiments were approved by the Animal Care and Use Committee at The Jackson 118 

Laboratory.  Mice were bred in the mouse facility at The Jackson Laboratory and 119 

maintained in a 12/12-h light/dark cycle, consisting of 12 h-ON 7 am-7 pm, followed by 120 

12 h-OFF. Room temperatures are maintained at 18–24�C (65–75�F) with 40–60% 121 
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humidity. All mice were housed in positive, individually ventilated cages (PIV). Standard 122 

autoclaved 6% fat diet (Purina Lab Diet 5K52) was available to the mice ad-lib, as was 123 

water with acidity regulated from pH 2.5–3.0. 124 

Novel mouse alleles were generated using direct delivery of CRISPR-Cas9 reagents to 125 

LOAD1 (JAX #28709)(20)  mouse zygotes.  Analysis of genomic DNA sequence 126 

surrounding the target region, using the Benchling (www.benchling.com) guide RNA 127 

design tool, identified appropriate gRNA sequences with a suitable target endonuclease 128 

site. 129 

Streptococcus pyogenes Cas9 (SpCas9) V3 protein and gRNA were purchased as part 130 

of the Alt-R CRISPR-Cas9 system using the crRNA:tracrRNA duplex format as the 131 

gRNA species (IDT, USA). Alt-R CRISPR-Cas9 crRNAs (Product# 1072532, IDT, USA) 132 

were synthesized using the gRNA sequences specified in the DESIGN section and 133 

hybridized with the Alt-R tracrRNA (Product# 1072534, IDT, USA) as per 134 

manufacturer’s instructions. Plasmid or oligonucleotide constructs were synthesized by 135 

Genscript.   136 

See supplemental Table 1 for CRISPR reagents. 137 

To prepare the gene editing reagent for electroporation, SpCas9:gRNA 138 

Ribonucleoprotein (RNP) complexes were formed by incubating AltR-SpCas9 V3 139 

(Product#1081059 , IDT, USA) and gRNA duplexes for 20 minutes at room temperature 140 

in embryo tested TE buffer (pH 7.5). The SpCas9 protein and gRNA duplex were at 833 141 

ng/ul and 389 ng/ul, respectively, during complex formation. Post RNP formation, the 142 

purified plasmid was added and the mixture spun at 14K RPM in a microcentrifuge. The 143 
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supernatant was transferred to a clean tube and stored on ice until use in the embryo 144 

electroporation procedure. The final concentration of the gRNA, SpCas9 and plasmid 145 

components in the electroporation mixture were 600ng/ul, 500 ng/ul and 20 ng/ul, 146 

respectively.  147 

Founders were selected that:  were positive by short-range PCR assays; had 148 

appropriate sequence across the homology arm junctions; were negative for the 149 

plasmid backbone; and had correct sequence of the inserted construct. 150 

Allele-specific genotyping protocols for all models are available on JAX Mice data 151 

sheets for each model. 152 

Other models were obtained from the JAX mouse repository, see Table 1. 153 

Brain Harvest at 4 months of age 154 

Anesthetized and subsequently perfused animals were decapitated, and heads 155 

submerged quickly in cold 1X PBS. The brain was carefully removed from the skull, 156 

weighed, and divided midsagitally, into left and right hemispheres, using a brain matrix. 157 

The right hemisphere was quickly homogenized on ice and equally aliquoted into 158 

cryotubes for and transcriptomic analysis. Cryotubes were immediately snap-frozen on 159 

dry ice and stored long-term at -80�C.  160 

 161 

RNA Sample Extraction 162 

Total RNA was extracted from snap-frozen right brain hemispheres using Trizol 163 

(Invitrogen, Carlsbad, CA). mRNA was purified from total RNA using biotin-tagged poly 164 
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dT oligonucleotides and streptavidin-coated magnetic beads and quality was assessed 165 

using an Agilent Technologies 2100 Bioanalyzer (Agilent, Santa Clara, CA). 166 

RNA-Sequencing Assay Library Preparation Sequencing libraries were constructed 167 

using TruSeq DNA V2 (Illumina, San Diego, CA) sample prep kits and quantified using 168 

qPCR (Kapa Biosystems, Wilmington, MA). The mRNA was fragmented, and double-169 

stranded cDNA was generated by random priming. The ends of the fragmented DNA 170 

were converted into phosphorylated blunt ends. An ‘‘A’’ base was added to the 3’ ends. 171 

Illumina-specific adaptors were ligated to the DNA fragments. Using magnetic bead 172 

technology, the ligated fragments were size-selected and then a final PCR was 173 

performed to enrich the adapter-modified DNA fragments since only the DNA fragments 174 

with adaptors at both ends will amplify. 175 

RNA-Sequencing 176 

Libraries were pooled and sequenced by the Genome Technologies core facility at The 177 

Jackson Laboratory. All samples were sequenced on Illumina HiSeq 4000 using HiSeq 178 

3000/4000 SBS Kit reagents (Illumina), targeting 30 million read pairs per sample. 179 

Samples were split across multiple lanes when being run on the Illumina HiSeq, once 180 

the data was received the samples were concatenated to have a single file for paired-181 

end analysis. 182 

 183 

RNA-Sequencing Data Processing 184 

Sequence quality of reads was assessed using FastQC (v0.11.3, Babraham). Low-185 

quality bases were trimmed from sequencing reads using Trimmomatic (v0.33; Bolger et 186 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 24, 2023. ; https://doi.org/10.1101/2023.12.21.572849doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.21.572849
http://creativecommons.org/licenses/by/4.0/


10 

 

al., 2014). After trimming, reads of length longer than 36 bases were retained. The 187 

average quality score was greater than 30 at each base position and sequencing depth 188 

was in range of 60–80 million reads. RNA-Seq sequencing reads from all samples were 189 

mapped to the mouse genome (version GRCm38.p6) using ultrafast RNA-Seq aligner 190 

STAR (v2.5.3; Dobin et al., 2013). To measure human APOE gene expression, we 191 

created a chimeric mouse genome by concatenating the human APOE gene sequence 192 

(human chromosome 19:44905754-44909393) into the mouse genome (GRCm38.p6) 193 

as a separate chromosome (referred to as chromosome 21 in chimeric mouse genome). 194 

Subsequently, we added gene annotation of the human APOE gene into the mouse 195 

gene annotation file. Additionally, we have also introduced annotation for novel Trem2 196 

isoform in mouse gene annotation file (GTF file), that is identical to primary transcript 197 

but truncated exon2 by 119 bp from its start position(20). Afterward, a STAR index was 198 

built for this chimeric mouse genome sequence for alignment, then STAR aligner output 199 

coordinate-sorted BAM files for each sample mapped to the chimeric mouse genome 200 

using this index. Gene expression was quantified in two ways, to enable multiple 201 

analytical methods: transcripts per million (TPM) using RSEM (v1.2.31; Li and Dewey, 202 

2011), and raw read counts using HTSeq-count (v0.8.0; Anders et al., 2015). 203 

 204 

NanoString transcriptomic analysis  205 

The NanoString Mouse AD gene expression panel (21) was used for gene expression 206 

profiling on the nCounter platform (NanoString, Seattle, WA). Mouse NanoString gene 207 

expression data were collected from brain hemisphere homogenates at 4, 8 and 12 208 

months of age for both sexes, from approximately six animals per group. The nSolver 209 
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software was used for generating NanoString gene expression counts. Normalization 210 

was done by dividing counts within a lane by geometric mean of the designated 211 

housekeeping genes from the same lane. Next, normalized count values were log-212 

transformed and corrected for potential batch effects using ComBat (45). 213 

Next, we determined the effects of each factor (sex and genetic variants) by fitting  a 214 

multiple regression model using the lm function in R as (46): 215 

                                               log(expr)  =   �� � ∑ �� �  ��  216 

The sum is over sex (male), and all genetic variants (5xFAD, LOAD1,  Abca7*A1527G, 217 

Ceacam1KO, Mthfr*677C>T, Shc2*V433M, Slc6a17*P61P, Clasp2*L163P, 218 

Sorl1*A528T, Meox2 KO (HET), Snx1*D465N, Plcg2*M28L, Mtmr4*V297G) used in this 219 

study. The log(expr) represents log-transformed normalized count from the NanoString 220 

gene expression panel (21).  In this formulation, B6J was used as the control for the 221 

5xFAD and LOAD1 mouse models, whereas LOAD1 served as controls for GWAS-222 

based models in order to estimate the effects of individual variants. Separate models 223 

were run for each age cohort. 224 

 225 

Human AMP-AD Gene Co-expression Modules 226 

Data for 30 human brain co-expression modules from the Accelerating Medicines 227 

Partnership for Alzheimer’s Disease (AMP-AD) studies were obtained from the Synapse 228 

data repository (https://www.synapse.org/#!Synapse:syn11932957/tables/; SynapseID: 229 

syn11932957). Briefly, Wan et al. (2020) (22) identified 30 human brain co-expression 230 

modules based on meta-analysis of differential gene expression from seven distinct 231 
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brain regions in postmortem samples obtained from three independent LOAD cohorts 232 

(47-49). These 30 human AMP-AD modules were further classified into five distinct 233 

Consensus Clusters that describe the major functional alterations observed in human 234 

LOAD (21, 22).  235 

Human AD Subtypes 236 

Milind et al. (50), integrated post-mortem brain co-expression data from the frontal 237 

cortex, temporal cortex, and hippocampus brain regions and stratified patients into 238 

different molecular subtypes based on molecular profiles in three independent human 239 

LOAD cohorts (ROS/MAP, Mount Sinai Brain Bank, and Mayo Clinic) (47-49). Two 240 

distinct LOAD subtypes were identified in the ROSMAP cohort, three LOAD subtypes 241 

were identified in the Mayo cohort, and two distinct LOAD subtypes were identified in 242 

the MSBB cohort. Similar subtype results were observed in each cohort, with LOAD 243 

subtypes found to primarily differ in their inflammatory response based on differential 244 

expression analysis (50). Data for LOAD subtypes were obtained through AD 245 

Knowledge Portal (51) (https://www.synapse.org/#!Synapse:syn23660885). 246 

Mouse-human expression comparison 247 

To assess the human disease relevance of LOAD risk variants in mice, we determined 248 

the extent to which changes due to genetic perturbations in mice matched those 249 

observed in human AD cases versus controls. For each mouse perturbation, we tested 250 

each of the 30 AMP-AD modules using mouse-human gene homologs and limited to the 251 

genes both present in the module and the NanoString Mouse AD Panel, which was 252 

designed to optimize coverage of these modules (21). Pearson’s correlations were 253 
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computed for changes in gene expression (log fold change) across all module genes for 254 

human AD cases versus controls (22) against the effect of each mouse perturbation (β) 255 

as measured above (21, 46). We used the cor.test function in R as: 256 

���. 
��

������
�� ���
���⁄ �, �� 

from which we obtained the correlation coefficient and the significance level (p-value) of 257 

the correlation for each perturbation-module pair. Log2FC values for human transcripts 258 

were obtained through the AD Knowledge Portal (51) 259 

(https://www.synapse.org/#!Synapse:syn14237651).  260 

 261 

To determine the similarity of each mouse perturbation and the LOAD subtypes, we 262 

computed the Pearson’s correlation between gene expression changes (log fold 263 

change) in human AD subtype cases versus controls (50) and the effect of each mouse 264 

perturbation (β) across genes on the NanoString panel (21) using cor.test function in R 265 

as: 266 

���. 
��

������
�������
��� ���
���⁄ �, �� 

from which we obtained both the correlation coefficient and the significance level (p-267 

value) of the correlation. Here, Log2FC(LOAD Subtype/control) represented the log-fold 268 

change in gene expression in each subtype versus control and the correlation spanned 269 

all homologous genes on the NanoString AD Mouse Panel. 270 

We plotted the correlation results using the ggplot2 package in R. Framed circles were 271 

used to denote significant (p < 0.05) positive (blue) and negative (red) Pearson’s 272 
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correlation coefficients. The color intensity and size of the circles were sized 273 

proportional to Pearson’s correlation coefficient. 274 

 275 

Functional enrichment analysis 276 

Gene set enrichment analysis (GSEA) was used based on the method proposed by 277 

Subramanian, et. al (52) as implemented in the R Bioconductor package clusterProfiler 278 

(53) for the Reactome pathway library and Gene Ontology terms. Nanostring Mouse AD 279 

Panel genes (21) were ranked based on regression coefficients calculated for each 280 

factor and GSEA was performed on this ranked dataset. The use of GSEA ensured that 281 

pathway effects were assessed relative to the genes on the panel, as the panel was 282 

enriched for AD-relevant genes. Enrichment scores for all Reactome pathways and GO 283 

terms were computed to compare relative expression on the pathway level between 284 

each factor estimate from the regression models. We also performed Gene Ontology 285 

term enrichment analyses using enrichGO function in the clusterProfiler (53). 286 

Significance of pathways and GO terms were determined using false discovery rate 287 

(FDR) multiple testing correction (FDR adjusted p < 0.05).  288 
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Results 289 

Validation of novel models 290 

Sequence analysis demonstrated that the appropriate sequence variants had been 291 

established, see Supplemental Figure 1A.  Quantification of transcript counts in 292 

homozygous LOAD models relative to littermate wild-type controls showed no 293 

significant differences in expression levels (Supplemental Figure 1B). 294 

LOAD associated risk variants showed age-dependent concordance with distinct 295 

human co-expression modules 296 

We assess the relevance of each LOAD risk variant to the molecular changes observed 297 

in human disease (47-49, 54) by correlating the effect of each mouse perturbation (sex 298 

and genetic variants) with 30 human AMP-AD brain gene co-expression modules (22) 299 

using the NanoString Mouse AD Panel (21). We analyzed mouse NanoString data from 300 

brain hemispheres at different ages (4 and 12 months) to assess the correlation with 301 

human post-mortem co-expression modules as animals aged.  302 

The amyloidogenic 5XFAD transgenic model exhibited significant positive correlations 303 

(p < 0.05) with several human co-expression modules in Consensus Cluster B enriched 304 

for immune-system related pathways at both four and 12 months but showed significant 305 

positive correlations (p < 0.05) with neurodegeneration associated human co-306 

expression modules in Consensus Cluster C only at 12 months (Figure 2A-B). However, 307 

we did not observe significant positive correlations between effect of 5xFAD and human 308 

co-expression modules in Consensus Cluster A, D, and E, validating that the 5xFAD 309 
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strain is primarily a model of amyloidosis and does not fully recapitulate late-onset AD 310 

changes. 311 

At 4 months, among all LOAD risk variants, only Slc6a17*P61P showed significant 312 

positive correlations (p<0.05) with the immune related modules (Figure 2A). The 313 

Abca7*A1527G, Sorl1*A528T, and Mtmr4*V297G risk variants exhibited significant 314 

positive correlations (p<0.05) with extracellular matrix organization-related modules in 315 

Consensus Cluster A (Figure 2A). The Ceacam1 KO, Plcg2*M28L, Meox2 KO(HET), 316 

and Mtmr4*V297G strains exhibited significant positive correlations (p<0.05) with cell 317 

cycle and myelination-associated modules in Consensus Cluster D and cellular stress-318 

response associated modules in Consensus Cluster E (Figure 2A).  Abca7*A1527G and  319 

Sorl1*A528T variants generated significant positive correlations (p<0.05) with cellular 320 

stress-response associated modules in Consensus Cluster E.  321 

We observed more significant correlations between LOAD risk variants and human 322 

AMP-AD modules at 12 months for most strains. The Abca7*A1527G variant had the 323 

most pronounced correlations with LOAD expression changes, exhibiting significant 324 

positive correlations (p<0.05) with immune related modules in Consensus Cluster B, cell 325 

cycle and myelination-associated modules in Consensus Cluster D, and cellular stress-326 

response associated modules in Consensus Cluster E (Figure 2B). The Mthfr*677C>T 327 

variant exhibited significant positive correlations (p<0.05) with cell cycle and 328 

myelination-associated modules in Consensus Cluster D and cellular stress-response 329 

associated modules in Consensus Cluster E (Figure 2B). Sorl1*A528T led to significant 330 

positive correlations (p<0.05) with several human co-expression modules in Consensus 331 

Cluster C enriched for neuronal related pathways (Figure 2B). The Plcg2*M28L variant 332 
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had significant positive correlations (p<0.05) with human co-expression modules in 333 

Consensus Cluster C enriched for neuronal related pathways and with cell cycle and 334 

myelination-associated modules in Consensus Cluster D (Figure 2B). Ceacam1 KO, 335 

Slc6a17*P61P, and Shc2*V433M exhibited significant positive correlations (p<0.05) with 336 

human co-expression modules in Consensus Cluster B enriched for transcripts 337 

associated with immune related pathways in multiple brain regions, while Clasp2*L163P 338 

and Sorl1*A528T led to significant positive correlations (p<0.05) with human co-339 

expression module in Consensus Cluster B enriched for immune related pathways in 340 

cerebellum and frontal pole brain region, respectively (Figure 2B). The Mtmr4*V297G 341 

variants exhibited significant positive correlations (p<0.05) with cell cycle and 342 

myelination-associated modules in Consensus Cluster D and cellular stress-response 343 

associated modules in Consensus Cluster E (Figure 2B). Snx1*D465N also exhibited 344 

significant positive correlation with cell-cycle and myelination-associated modules in 345 

Consensus Cluster D (Figure 2B).  346 

Overall, we observed LOAD risk variants in mice showed concordance with distinct 347 

human co-expression modules, reflecting a different transcriptional response driven by 348 

each LOAD risk variant. The associations between LOAD risk variants and human gene 349 

co-expression modules increased with age. We note that models harboring late-onset 350 

AD risk variants exhibited significant positive correlation with human modules in 351 

Consensus Cluster A, D and E, which were not captured by 5XFAD strain, highlighting 352 

the importance of using LOAD risk variants to fully capture LOAD molecular 353 

pathologies. 354 
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We next assessed the similarities between variant effects in mice by comparing each 355 

model to all other models To identify LOAD risk variants driving similar transcriptional 356 

responses in mice, we performed correlation between regression coefficients calculated 357 

for each genetic variant at four and 12months. At four months, effects of the LOAD1 358 

construct (APOE4 and TREM2*R47H) were weakly and positively correlated with effect 359 

of 5xFAD transgene (p < 0.05), but this correlation diminished at 12 months (Figure 3A-360 

B). Effects of LOAD1 were also significantly positively correlated (p<0.05) with 361 

Sorl1*A528T and Mtmr4*V297G at four months, but this correlation diminished by 12 362 

months (Figure 3A-B). Effects of Abca7*A157G and Ceacam1 KO variants were weakly 363 

correlated at four months (p < 0.05), and this correlation increased at 12 months (Figure 364 

3A-B). Effects of Shc2*V433M and Slc6a17*P161P variants were also significantly 365 

positively correlated at four months (p < 0.05) and become stronger with age (Figure 366 

3A-B). Furthermore, effects of Snx1*D465N, Plcg2*M28L, and Mtmr4*V297G risk 367 

variants were significantly positively correlation (p < 0.05) at 12 months. Similarly, 368 

effects of the Sorl1*A528T and Meox2 KO(HET) variants were significantly positively 369 

correlated (p < 0.05) at 12 months (Figure 3A-B). In summary, we observed that LOAD 370 

risk variants generally increased in similarity with age, supporting an age-dependent 371 

role for these genetic factors. However, all strains did not converge on similar 372 

transcriptional responses, suggesting distinct mechanisms of influence on LOAD risk.  373 

Pathway alterations varied by LOAD genetic perturbation 374 

To further elucidate the functional role of these LOAD risk variants in aged mice, we 375 

performed Gene Set Enrichment Analysis (GSEA) (52) for the Reactome pathway 376 

library for all 12 month samples. GSEA revealed upregulation of immune-related 377 
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pathways in the presence of multiple risk variants such as Abca7*A1527G,  378 

Mthfr*677C>T, and Snx1*D465N (Figure 3C, Supplementary Table S2), while neuronal-379 

associated pathways were downregulated in the presence of  risk variants such as 380 

Abca7*A1527G,  Mthfr*677C>T, Sorl1*A528T, Plcg2*M28L, Ceacam1 KO, 381 

Shc2*V433M, and Slc6a17*P161P (Figure 3C, Supplementary Table S2). Extracellular 382 

matrix organization pathway was downregulated in risk variants such as Sorl1*A528T, 383 

Clasp2*L163P, Meox2 KO(HET)  and LOAD1 but upregulated in the presence of risk 384 

variant such as Abca7*A1527G, Snx1*D465N and Mthfr*677C>T (Figure 3C, 385 

Supplementary Table S2). Cell cycle pathway was downregulated in the presence of  386 

Mthfr*677C>T, Ceacam1 KO, Shc2*V433M, and Slc6a17*P161P, while upregulated in 387 

the presence of other risk variants such as Abca7*A1527G, Clasp2*L163P, Meox2 388 

KO(HET), and Sorl1*A528T (Figure 3C, Supplementary Table S2). Cellular response to 389 

heat stress pathway were downregulated in the presence of Snx1*D465N, 390 

Shc2*V433M, and Slc6a17*P161P, but upregulated in the presence of  risk variants 391 

such as Abca7*A1527G,  Mthfr*677C>T, Sorl1*A528T, Plcg2*M28L, Ceacam1 KO 392 

(Figure 3C, Supplementary Table S2).  Overall, we observed that multiple AD-393 

associated pathways were upregulated in the presence of some LOAD risk variants but 394 

downregulated in presence of another set of risk variants. This suggest that distinct risk 395 

variants perturb distinct molecular changes associated with LOAD in aging mice.   396 

Age-dependent pathway effects driving AMP-AD module correlations in ABCA7, 397 

MTHFR, SORL1, and PLCG2 mouse models 398 

In our mouse-human correlation analysis, the effects of multiple LOAD variants 399 

(Abca7*A1527G, Mthfr*677C>T, Sorl1*A528T, and Plcg2*M28L) correlated with human 400 
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AMP-AD co-expression modules in age-dependent and pathway-specific manner. To 401 

further identify the AD-relevant biological processes associated with these selected 402 

LOAD risk variants (Abca7*A1527G, Mthfr*677C>T, Sorl1*A528T, and Plcg2*M28L) we 403 

adopted two approaches. First, we performed GSEA (52) on the NanoString Mouse AD 404 

Panel genes ranked based on regression coefficients calculated for each factor at 12 405 

months and identified significantly enriched Gene Ontology terms (padj < 0.05). Next, 406 

we isolated the homologous genes exhibiting directional coherence between the effects 407 

of selected genetic risk variants (Abca7*A1527G, Mthfr*677C>T, Sorl1*A528T, and 408 

Plcg2*M28L) and changes in expression in human AMP-AD co-expression modules at 409 

12 months and performed Gene Ontology (GO) enrichment analysis. These subsets 410 

represent the pathways that (1) are altered in each mouse model, and (2) drive the 411 

mouse-human module associations. GO terms common to both enrichment tests were 412 

then annotated to the modules in which they appear. 413 

The Abca7*A1527G variant showed significant negative correlations (p < 0.05) with 414 

immune-related modules in Consensus Cluster B, cell cycle and myelination-associated 415 

modules in Consensus Cluster D, and cellular stress-response associated modules in 416 

Consensus Cluster E (Figure 4A) at four months. However, at 12 months these effects 417 

were reversed and the variant exhibited significant positive correlations (p < 0.05) with 418 

several immune-related modules in Consensus Cluster B, cell cycle and myelination-419 

associated modules in Consensus Cluster D, and cellular stress-response associated 420 

modules in Consensus Cluster E (Figure 4A). Biological processes such as 'de novo' 421 

protein folding, 'de novo' post-translational protein folding, granulocyte migration, 422 

cytokine-mediated signaling pathway, insulin receptor signaling pathway, and neutrophil 423 
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migration had increased expression in the presence of Abca7*A1527G (Figure 4A, 424 

Supplementary Table S3). The correlation between the Abca7*A1527G variant and the 425 

immune-associated human co-expression modules (Consensus Cluster B) (Figure 4A, 426 

Supplementary Table S5) was driven by genes enriched for granulocyte migration, 427 

cytokine-mediated signaling pathway, and neutrophil migration (including Pecam1, 428 

Cd74, Trem2, Trem1, Csf1, Il1rap, and Ceacam1) (Supplementary Table S4). As 429 

drivers of the correlations between Abca7*A1527G and Consensus Cluster E modules 430 

(Figure 4A, Supplementary Table S5), we found genes enriched in ‘de novo' protein 431 

folding and 'de novo' post-translational protein folding (e.g., Hspa2, Hspa1b, and 432 

Dnajb4) (Supplementary Table S4). Insulin receptor signaling was enriched in genes 433 

(Foxo1, Prkcq, and Bcar3) (Supplementary Table S4) driving the correlation between  434 

Abca7*A1527G and modules in Consensus Cluster D (Figure 4A, Supplementary Table 435 

S5).  436 

A similar reversal of effects with age was observed for MTHFR. The Mthfr*677C>T 437 

variants exhibited significant negative correlations (p < 0.05,) with several cell cycle and 438 

myelination-associated modules in Consensus Cluster D and cellular stress-response 439 

associated modules in Consensus Cluster E (Figure 4B) at four months. At 12 months, 440 

these correlations were positive (Figure 4B). GSEA of the Mthfr*677C>T variant 441 

identified significant enrichments of response to unfolded protein, positive regulation of 442 

cellular catabolic process, negative regulation translation, positive regulation of GTPase 443 

activity, B cell mediated immunity, and purine ribonucleotide metabolic process (Figure 444 

4B, Supplementary Table S3). B cell mediated immunity and negative regulation 445 

translation biological processes were also enriched in genes (including C1qa, C1qb, 446 
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Cd81, and Zfp36) (Supplementary Table S4) with directional coherence for 447 

Mthfr*677C>T and LOAD effects in Consensus Cluster B (Figure 4B, Supplementary 448 

Table S5). Correlations between the Mthfr*677C>T variant and Consensus Cluster D 449 

changes (Figure 4B, Supplementary Table S5) were driven by genes enriched for 450 

positive regulation of cellular catabolic process and positive regulation of GTPase 451 

activity (including Bin1, Picalm, Dock10, and Psen1) (Supplementary Table S4). 452 

Biological processes such as response to unfolded protein and purine ribonucleotide 453 

metabolic process were enriched in genes (e.g., Hspa1b, Hsph1, Hsp90aa1, Snca, and 454 

Atpp5h) (Supplementary Table S4) underlying the correlations between Mthfr*677C>T 455 

and Consensus Cluster E effects (Figure 4B, Supplementary Table S5). 456 

The Plcg2*M28L variant caused significant positive correlations (p < 0.05) with 457 

neuronal-related modules in Consensus Cluster C and cell-cycle  associated modules in 458 

Consensus Cluster D at both four and 12 months (Figure 4C). Enriched biological 459 

processes included postsynapse organization, regulation of axonogenesis, cognition, 460 

locomotory behavior, glial cell development, and regulation of protein catabolic process 461 

(Figure 4C, Supplementary Table S3). Biological processes such as postsynapse 462 

organization, cognition, and locomotory behavior were enriched in genes (Mapt, 463 

Gabrb3, App, Ppp3cb, and Slc8a2) (Supplementary Table S4) with directional 464 

coherence for Plcg2*M28L human AD changes in Consensus Cluster C (Figure 4C, 465 

Supplementary Table S5). Biological processes such as regulation of axonogenesis, 466 

glial cell development and regulation of protein catabolic process were enriched in 467 

genes (Snx1, Picalm, Psen1, Mag, Foxo1, and Kif13b) (Supplementary Table S4) drove 468 
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the correlations between Plcg2*M28L and Consensus Cluster D effects (Figure 4C, 469 

Supplementary Table S5). 470 

Aged Sorl1*A528T mice (12 months) showed positive correlations (p < 0.05)  with 471 

neuronal-associated modules in Consensus Cluster C that were not apparent at four 472 

months of age (Figure 4D). Enriched processes included the downregulation of synapse 473 

organization, synapse assembly, regulation of synaptic plasticity and regulation of 474 

epithelial cell proliferation, and the increased expression of negative regulation of 475 

transporter activity and SNARE complex assembly genes. These processes drove the 476 

correlation between the SORL1 variant and LOAD effects in Consensus Cluster C 477 

modules (Figure 4D, Supplementary Table S5), where GSEA for genes with directional 478 

coherence generated synapse organization, synapse assembly, regulation of synaptic 479 

plasticity, upregulation of negative regulation of transporter activity, and SNARE 480 

complex assembly (including the genes Mapt, App, Gabrb3, Calm3, Snca, Cdkl5, Vgf, 481 

and Ywhag) (Supplementary Table S4).  482 

Overall, we found that late-onset genetic factors in mice generally led to both more 483 

abundant changes with age and increasingly disease-relevant pathway changes with 484 

age. 485 

Alignment of mouse models with AD Subtypes 486 

Postmortem transcriptomics from AMP-AD and similar studies have enabled the 487 

partitioning of AD cases into potential disease subtypes. These studies have often 488 

stratified AD subjects into inflammatory and non-inflammatory subtypes (50, 55, 56). To 489 

determine if our mouse models preferentially resembled putative AD subtypes, we 490 
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correlated the effect of each variant  with inflammatory and non-inflammatory subtypes 491 

associated with LOAD (50) in the ROSMAP, MSBB, and Mayo cohorts (47-49).  492 

We found that at four months of age, variants did stratify by human subtypes. The 493 

effects of Abca7*A1527G, Sorl1*A528T, and Plcg2*M28L were positively correlated (p < 494 

0.05) with the inflammatory subtypes across all three cohorts, while Mtmr4*V297G was 495 

positively correlated (p < 0.05) with  ROSMAP and MSBB inflammatory subtypes 496 

(Figure 5). In contrast, Shc2*V433M and Clasp2*L163P exhibited significant positive 497 

correlations (p < 0.05) with non-inflammatory subtypes across all three cohorts (Figure 498 

5).  499 

At 12 months, the correlations between Abca7*A1527G effects and the inflammatory 500 

subtypes across all three cohorts increased (p < 0.05) and the Ceacam1 KO variant had 501 

become positively correlated (p < 0.05) with the inflammatory subtypes across all three 502 

cohorts (Figure 5). On other hand LOAD1, Meox2 KO (HET), and Snx1*D465N were 503 

positive correlated (p < 0.05) with non-inflammatory subtypes across all three cohorts 504 

(Figure 5). Three strains, Sorl1*A528T, Plcg2*M28L, and Mtmr4*V297G, which were 505 

positively correlated (p < 0.05) with inflammatory subtypes at four months, transitioned 506 

to correlation (p < 0.05) with non-inflammatory subtypes at 12 months (Figure 5). These 507 

results are in concordance with our findings that Abca7*A1527G was significantly 508 

correlated with immune related human modules and were enriched for immune 509 

associated biological processes (Figure 4A), while Sorl1*A528T and Plcg2*M28L 510 

variants were significantly correlated with neuronal related human modules and 511 

enriched for neuronal associated biological processes (Figure 4C-D).  Overall, these 512 

findings suggest that different mouse strains may provide better models for distinct AD 513 
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subtypes, and that risk for these subtypes may be influenced by distinct AD genetic 514 

factors. 515 

 516 

Discussion 517 

In this study, we have performed gene expression screening of new knock-in mouse 518 

models harboring candidate genetic variants for late-onset Alzheimer’s disease. Our 519 

ultimate goal is to provide the research community and therapeutic development 520 

programs with improved preclinical models of LOAD, suitable for preclinical testing of 521 

therapeutics that target molecular processes contributing to LOAD origins and 522 

progression. By basing these models on human genetics, we also provide a preliminary 523 

functional characterization of possible disease-relevant effects from the candidate 524 

genetic variants. 525 

Notable results include the finding that many AD-related pathways, modules, and 526 

processes are affected by the introduction of late-onset variants. However, the changes 527 

were not consistent across strains, suggesting that different genetic loci contribute to 528 

distinct AD-related dysfunction (Figures 2 and 4). For example, we determined that the 529 

SORL1 risk factor impinges primarily on AD-relevant synaptic gene expression, while 530 

the ABCA7 variant broadly affected non-neuronal gene expression including immune, 531 

protein folding, and metabolic pathways. Meanwhile the PLCG2 variant primarily 532 

affected genes that were annotated to behavior, synapses, and glial cells and similarly 533 

changed in human LOAD. We note that a transgenic model harboring familial AD 534 

mutations in App and Psen1 exhibited different gene expression changes focused on an 535 
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acute inflammatory response. Finally, the limited effects of variants like Clasp2*L163P 536 

suggest that the specific variant is not disease-associated, its AD-related effects are not 537 

visible in the transcriptome, and/or it does not trigger changes until later age. This 538 

diversity of effects across mouse strains provides specific models to study different 539 

aspects of AD biology and paves the way for precision preclinical testing of candidate 540 

therapeutics that target these pathways. 541 

Preliminary analysis further suggested that the different loci contribute in an age-542 

dependent manner (Figures 2 and 4) and model putative disease subtypes (Figure 5). 543 

However, validation of such partitioning of genetic risk is difficult in human studies due 544 

to postmortem tissue sampling and limited cohort size for multi-omic data (50). We also 545 

found that the gene expression effects of LOAD variant knock-ins generally increased in 546 

terms of magnitude and disease relevance as mice aged from four to 12 months 547 

(Figures 2 and 4). This finding supports the notion that LOAD genetic factors become 548 

more relevant in an aging brain as they contribute to late-life disease risk.  549 

We note that genetic variants from frequently associated loci tended to produce the 550 

most consistent AD-relevant phenotypes (e.g. SORL1, ABCA7, PLCG2) although many 551 

of the more exploratory variants also generated AD-like expression signatures across 552 

multiple modules in aging mice (e.g. CEACAM1, MTMR4) (Figure 2). Recent advances 553 

in variant inference and functional prediction, including many noncoding variants and 554 

major GWAS loci, will enable the next round of models to address additional GWAS loci 555 

without candidate coding variants, such as the EPHA1 locus (25). Furthermore, many 556 

AD-associated loci suffered from insufficient homology in mice (e.g. MS4A4/MS4A6E, 557 
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INPP5D, CR1), which will be addressed by ongoing efforts to humanize these relevant 558 

regions of the mouse genome (Benzow K, et al., this issue). 559 

This study had several caveats that need to be noted.  Most importantly, aging is the 560 

strongest risk factor for late-onset AD (57) and it needs to be recognized that mice at 12 561 

months of age are roughly equivalent to humans at 38-47 years of age.  Therefore, our 562 

transcriptomic comparison to post-mortem AMP-AD clinical samples, while practical, is 563 

unrealistic and we are now testing those models that best approximated human 564 

transcriptional changes at 12 months to at least 24 months of age (31, 58) (Oblak A, et 565 

al., this issue).  Likewise, recent studies (as well as our pilot data) have shown that 566 

proteomics is a more reliable means to correlate models to disease than transcriptomics 567 

(59, 60) (Oblak A, et al., this issue), so we will be using proteomic analysis on prioritized 568 

models.  569 

The Trem2*R47H allele in the LOAD1 base model used here has been shown to cause 570 

an ~2-fold decrease in Trem2 expression (61).   However, our analysis technique 571 

factors out allele effects individually so that we are confident of our results.  We have 572 

since created a new model (JAX #33781) that we have shown has normal Trem2 573 

transcript levels and that will replace the allele used here in future projects. 574 

In this study, we have focused on introducing coding variants on a LOAD1 background 575 

(20), aged the mice to middle age (12 months), and characterized the animals using a 576 

gene expression panel developed for rapid comparison to recent human study results 577 

(21). In future work we will extend our approach to model candidate noncoding variants 578 

at LOAD genetic loci without strong candidate coding SNPs, humanizing loci and 579 

regulatory regions when necessary (Benzow K, et al., this issue). We will breed the 580 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 24, 2023. ; https://doi.org/10.1101/2023.12.21.572849doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.21.572849
http://creativecommons.org/licenses/by/4.0/


28 

 

most promising variants presented here – Abca7*A1527G, Sorl1*A528T, Mthfr*677C>T, 581 

and Plcg2*M28L – to a genetic background with humanized Aβ peptide (the LOAD2 582 

strain) and age cohorts beyond 18 months to assess additional disease-related 583 

progression with advanced age. These select strains will be assessed in depth with 584 

multiple genome-scale omics measures (RNA-seq, tandem mass tag proteomics, 585 

metabolomics), plasma biomarkers, in vivo imaging, neuropathology and behavioral 586 

metrics. Each assay will be optimized for translational value. We will also introduce 587 

modifiable risk factors through unhealthy diets and exposure to common environmental 588 

toxicants. At the same time, all models are distributed without use restrictions to enable 589 

all researchers to obtain, study, and modify these models as desired. 590 
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Figure and table captions 825 

FIGURE 1: Strategy to prioritize loci and LOAD risk variants. 826 

Summary of strategies for variant selection for (A) late-onset Alzheimer’s disease and 827 

(B) neurovascular risk factors. (C) Gene expression analysis comparing human and 828 

mouse gene expression data to identify human LOAD modules that are altered by 829 

genetically engineered variants in mice. 830 

 831 

FIGURE 2: Correlation between LOAD associated risk variants and 30 human 832 

AMP-AD brain co-expression modules using the NanoString Mouse AD panel (A) 833 

Correlation between the effect of each mouse perturbation relative to the LOAD1 834 

background in four-month-old mice and 30 human co-expression modules (22), also 835 

including the early-onset transgenic model 5XFAD and the LOAD1 background relative 836 

to C57BL/6J. The 30 human co-expression modules were grouped into five consensus 837 

clusters with similar gene content across the multiple studies and brain regions (22). 838 

Framed circles correspond to significant (p < 0.05) positive (blue) and negative (red) 839 

Pearson’s correlation coefficients, with size and color intensity proportional to the 840 

correlation. The effects of multiple LOAD risk variants in mice were positively correlated 841 

(p < 0.05) with cell cycle and myelination-associated modules in Consensus Cluster D 842 

and cellular stress-response associated modules in Consensus Cluster E. (B) 843 

Correlation between the effect of each mouse perturbation at 12 months and the 30 844 

human co-expression modules. LOAD risk variants showed significant correlation with 845 

functionally distinct AMP-AD co-expression modules. The effects of Abca7*A1527G, 846 
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Shc2*V433M, Ceacam1 KO,  and Slc6a17*P61P in aged mice correlated with the 847 

immune modules in Consensus Cluster B, while the effects of Sorl1*A528T and 848 

Plcg2*M28L correlated with the neuronal modules in Consensus Cluster C. 849 

 850 

FIGURE 3: Correlation between effect of genetic variants and gene set enrichment 851 

analysis (A) Correlation between regression coefficients calculated for each genetic 852 

variant at four months. Color intensity and size of the circles are proportional to the 853 

Pearson correlation coefficient, with insignificant correlations (p > 0.05) left blank. (B) 854 

Correlation between regression coefficients calculated for each genetic variant at 12 855 

months. The effects of Snx1*D465N, Plcg2*M28L, and Mtmr4*V297G risk variants in 856 

mice showed significantly positively correlation (p < 0.05) at 12 months (C). Gene set 857 

enrichment analyses results of selected AD-associated pathways from Reactome library 858 

in the presence of each LOAD risk variants in mice. Enriched pathways are grouped by 859 

their overlap with functional annotations of human AMP-AD Consensus Clusters. 860 

Immune-related pathways had increased expression in the presence of multiple risk 861 

variants such as Abca7*A1527G, Mthfr*677C>T, and Snx1*D465N, while  neuronal-862 

associated pathways had reduced expression in the presence of  risk variants such as 863 

Abca7*A1527G, Mthfr*677C>T, Sorl1*A528T, Plcg2*M28L, Ceacam1 KO, 864 

Shc2*V433M, and Slc6a17*P161P. 865 

 866 

FIGURE 4: Identification of specific AD-associated processes in LOAD risk 867 

variants exhibiting transcriptomic changes similar to human LOAD in age-868 
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dependent manner. For four new mouse strains the following is displayed: the six top 869 

enriched GO terms identified by GSEA and GO enrichment analysis of genes with 870 

common directional changes with human AD modules (top left); gene module networks 871 

with common directional changes with the human AMP-AD modules, where node colors 872 

correspond to human AMP-AD Consensus Clusters A (orange), B (green), C (blue), D 873 

(turquoise) or E (pink) (top right); and the effects of each variant at multiple ages 874 

correlated across LOAD effects in 30 AMP-AD modules, following the legend of Figure 875 

3. (A) results for the Abca7*A1527G model, (B) results for the Mthfr*677C>T model, (C) 876 

results for the Plcg2*M28L model, and (D) results for the Sorl1*A528T model. All results 877 

are relative to the LOAD1 genetic background for all strains. 878 

 879 

FIGURE 5: Correlation between the effect of each mouse perturbation and 880 

molecular subtypes of LOAD. Two molecular LOAD subtypes inferred in the 881 

ROSMAP cohort, three subtypes in the Mayo cohort, and two subtypes in the Mount 882 

Sinai Brain Bank (MSBB) cohort (50). Framed circles correspond to significant (p < 883 

0.05) positive (blue) and negative (red) Pearson’s correlation coefficients across all 884 

genes on the NanoString panel, with color intensity and circle size proportional to the 885 

correlation. (B) At four months, the Abca7*A1527G and Sorl1*A528T variants represent 886 

inflammatory subtypes of LOAD (Subtypes A) in each of the cohorts, while Shc2*V433M 887 

and Clasp2*L163P variants mimic the non-inflammatory subtypes of LOAD (Subtypes 888 

B). (C) At 12 months, the Abca7*A1527G and Ceacam1 KO variants recapitulate 889 

inflammatory subtypes of LOAD (Subtypes A), while the Snx1*D465N, Mtmr4*V297G, 890 

and LOAD1 variants model non-inflammatory subtypes of LOAD (Subtypes B). 891 
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SUPPLEMENTAL FIGURE 1: Validation of novel mouse models.  RNA-seq was 892 

performed on brain tissue at 4 months of age for each model.  (A) Sequence analysis 893 

identified appropriate engineered variants; in some cases, silent mutations were 894 

introduced for CRISPR or genotyping purposes. (B) Transcript counts were used to 895 

demonstrate normal expression levels for SNP models, and lack of expression in the 896 

Ceacam1 knockout model.  897 

 

 

TABLE 1:  Listing of gene loci, human risk variants and corresponding mouse alleles, 

allele type, and JAX ID of mouse models created.  All models also contain a humanized 

APOE4 allele and a Trem2*R47H allele on the C57BL6/J background (“LOAD1”), which 

was used as a control.  

 

SUPPLEMENTAL TABLE 1: Reagents used to engineer LOAD mutations using 

CRISPR.  The Meox2 allele was previously created (62) and obtained from the JAX 

repository (JAX # 3755). 

 

SUPPLEMENTAL TABLE 2: Gene set enrichment analyses results of Reactome 

pathways for the effects of LOAD risk variants in mice at 12 months. 
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SUPPLEMENTAL TABLE 3: Gene set enrichment analyses results of GO terms for the 

effects of Abca7*A1527G, Mthfr*677C>T, Plcg2*M28L, and Sorl1*A528T variants in 

mice.  

 

SUPPLEMENTAL TABLE 4: Genes with common directional changes for the effects of 

Abca7*A1527G, Mthfr*677C>T, Plcg2*M28L, and Sorl1*A528T variants in mice at 12 

months and human AD cases.  

 

SUPPLEMENTAL TABLE 5: Enriched GO terms in genes with common directional 

changes for the effects of Abca7*A1527G, Mthfr*677C>T, Plcg2*M28L, and 

Sorl1*A528T variants in mice at 12 months and human AD cases.  

 

 898 
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Locus Allele (Human) Allele (Mouse) SNP Allele Type JAX # 
Abca7 A1527G A1541G rs3752246 missense 30283 

Ceacam1 LOF variants KO  --- KO 30673 

Clasp2 L163P L163P rs61738888 missense 31944 

Meox2 LOF variants HET KO  --- HET KO 33770 

Mthfr A222V (677C>T) A262V rs1801133 missense 30922 

Mtmr4 V297G V297G rs2302189 missense 31950 

Plcg2 M28L M28L rs61749044 missense 30674 

Shc2 V577M V433M rs2298813 missense 31952 

Slc6a17 P61P P61P rs41281364 silent 
mutation 31948 

Snx1 D466N D465N rs1802376 missense 31942 

Sorl1 A528T A528T rs41281364 missense 31940 

Other models used:           

C57BL/6J         664 

5xFAD         8730 

LOAD1         28709 
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Candidate GWAS risk variants
for late-onset AD
(Odds ratio > 1)

Deleterious coding
(missense)

Common in EUR
population (MAF > 0.01)

Variant conservation
(Sequence identity > 50%,

GERP++ scores > 1)

9 variants prioritized for novel
LOAD mouse models:

ABCA7, MTMR4, SORL1, SNX1, 
PLCG2, CLASP2, SHC2, SLC6A17

A B
Candidate genes

linked to vascular and 
blood brain-barrier dysfunction 

Sequence homology
(Sequence identity > 50%)

3 genes prioritized for 
primary screeening:

MTHFR, MEOX2, CEACAM1 

Vascular expression & 
reported role in age-related

disease

C Catalog of human co-expression modules 
across 7 post-mortem brain regions 

ROSMAP  
Dorsolateral prefrontal cortex (DLPFC)
MAYO 
Cerebellum (CBE)
Temporal cortex (TCX)
MOUNT SINAI BRAIN BANK
Frontal pole (FP)
Superiortemporal gyrus (STG)
Parahipocampal gyrus (PHG)
Inferiorfrontal gyrus (IFG)

 

nCounter® Mouse Alzheimer’s Disease Panel
based on human co-expression modules

  Aging cohorts
(6 males/6 females)
 @   4 months 
 @ 12 months

Correlate gene expression changes in novel Alzheimer's disease mouse models
with human transcriptome signatures  

Model 1
Similar expression
across species

 Dissimilar expression
 across species

Brain hemisphere
expression

Model 2

Model 3

Model 4

Mod
ule

 1
Mod

ule
 2

Mod
ule

 3
Mod

ule
 4

Mod
ule

 5
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