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Structured Abstract

Introduction: Genome-wide association studies have identified over 70 genetic loci
associated with late-onset Alzheimer’s disease (LOAD), but few candidate
polymorphisms have been functionally assessed for disease relevance and mechanism

of action.

Methods: Candidate genetic risk variants were informatically prioritized and individually
engineered into a LOAD-sensitized mouse model that carries the AD risk variants
APOE4 and Trem2*R47H. Potential disease relevance of each model was assessed by
comparing brain transcriptomes measured with the Nanostring Mouse AD Panel at 4

and 12 months of age with human study cohorts.

Results: We created new models for 11 coding and loss-of-function risk variants.
Transcriptomic effects from multiple genetic variants recapitulated a variety of human
gene expression patterns observed in LOAD study cohorts. Specific models matched to

emerging molecular LOAD subtypes.

Discussion: These results provide an initial functionalization of 11 candidate risk

variants and identify potential preclinical models for testing targeted therapeutics.
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Background

Alzheimer’s disease (AD) is the most common cause of dementia, with a growing
clinical, financial, and social impact. An increasing body of evidence highlights the
importance of genetic risk in AD (1-3). While a small percentage of AD cases are linked
to causative, familial mutations in the amyloid precursor protein (APP) processing
pathway, the vast majority of cases are late-onset AD (LOAD), have heterogeneous
symptoms and etiology, and are associated with polygenic risk from a combination of
low-risk, relatively common variants (4-6). Genome-wide association studies (GWAS)
have identified numerous LOAD risk variants, but few have been experimentally
validated, and physiological mechanisms have not been elucidated, even for the single
strongest risk variant, the €4 allele of APOE gene (4, 7). This is but one example (8) of
the general problem of how to progress from the identification of genetic variants to
functional impact of variants to getting to physiological disease mechanisms (9). Here
we present a novel approach to assay the impact of individual polygenic risk factors

using an in vivo approach.

While numerous potential therapeutics have shown promising results in transgenic
mouse models of familial AD, few have advanced in clinical trials. This may result from
numerous causes, but it is clear that one reason may be the lack of translational animal
models available for preclinical studies (10-12). Almost all existing rodent models are
based on causative mutations in proteins in the amyloid precursor protein (APP)
processing pathway expressed in neurons. Most AD genetic risk resides in genes
mainly expressed in microglia and other non-neuronal cell types, as recently reviewed

(5, 13, 14), indicating that complex cellular interactions play a causative role in disease
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etiology. While in vitro systems have been shown to have value, more relevant in vivo
models are necessary to understand these cell-cell interactions (15). In particular,
animal models are required to study the early and progressive stages of pathology,
which are not accessible in clinical studies but are critical to understand disease

mechanisms so as to better target novel therapeutic approaches.

The MODEL-AD consortium was established to create and characterize translationally
relevant mouse models of LOAD, and to set up protocols for preclinical testing in these
new models (16). In this study we provide an overview of novel mouse models
expressing human risk variants. Variants were introduced using a knock-in approach to
avoid known issues with transgenic models (11, 17-19). To potentially enhance
disease-relevant outcomes, variants were created on a more LOAD-susceptible genetic
background expressing humanized APOE with the €4 variant and the R47H mutation in
Trem2, two of the strongest genetic risk factors for LOAD (20). The effects of each
variant were assessed by gene expression changes in aging male and female brains
using a newly developed transcriptomics panel (21), representing key LOAD-associated
changes in clinical AD samples (22). This allowed us to functionalize GWAS variants
with small but significant increases in disease risk and avoided a reliance on amyloid

deposition or cognitive assays, which have not proven to translate to clinical studies.
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Methods

Late-onset AD risk variant prioritization

Prioritization and construction of the APOE and TREM2 variants in the LOADL1 strain
were previously discussed (20). Late-onset variants were selected based on human
genetic association, predicted pathogenicity, conservation with mouse homolog, and
allele frequency. We further prioritized based on diversity in predicted function to
maximize our exploration of potential LOAD biology. Determining specific variants was
primarily limited by the rarity of strong coding candidates (e.g. nonsynonymous, stop-
gain) and strict mouse sequence homology that required the same SNP be engineered
into mice. This led to a mix of variants at high-confidence GWAS loci, functional
candidates, and exploratory variants. Exome sequencing from the Alzheimer’s Disease
Sequencing Project (ADSP) was initially used to identify specific variants at loci (23),
buttressed by summary data at NIAGADS (https://www.niagads.org/genomics/app). All
variants are annotated as “ADSP Variants” that passed NIAGADS quality control checks

(https://lwww.niagads.org/genomics/app).

ABCAT7*A1527G (rs3752246) is the most common of multiple predicted loss-of-function
variants associated with increased LOAD risk at the ABCA7 locus (24, 25). The
SORL1*A528T (rs2298813) variant is among candidates in the SORL1 gene and likely
involved in retromer function (26); deficits in retromer-dependent endosomal recycling
have been implicated as causal in AD (27-29). The SNX1*D465N (rs1802376) variant
locus is associated with AD (24) and SNX1 is involved in retromer function relevant to
LOAD (30). PLCG2*M28L (rs61749044) has been associated with LOAD

[https://www.biorxiv.org/content/10.1101/2020.05.19.104216v1, (24, 31) and Plcg2 is a

5
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99  key protein in microglial activation in response to AD pathology (32). The SHC2*V433M
100  (rs61749990) variant was identified in ADSP exomes and has been associated with
101  neurodegeneration and neuron loss (33, 34). SLC6A17*P61P (rs41281364) reduces
102  gene expression in the brain (gtexportal.org/home/gene/SLC6A17), and its reduction is
103  also associated with LOAD (agora.adknowledgeportal.org/genes/ENSG00000197106).
104 Rare variants have been associated with neurological phenotypes (35, 36). The
105 CLASP2*L163P (rs61738888) variant has been associated with neurodegeneration
106  from meta-analysis (37). The MTMR4*V297G (rs2302189) variant has been linked to
107  cognitive function (38, 39). Predicted CEACAML1 loss-of-function variants had a high
108  disease burden in ADSP exome sequencing data (SKAT-O Bonferroni-adjusted p =
109  7.47 x 10-7) and the gene was associated with AD-related traits in a model of mouse
110  genetic variability (40). The common MTHFR*677C>T (rs1801133) has been associated
111 with increased risk for LOAD and other age-related disorders (41, 42). To explore a
112 copy-number variant linked to vascular function, we used an existing MEOX2 knockout
113  based on an association with Alzheimer’s disease (43) that may be related to the gene’s
114  role in neurovascular health (44). This variant was assessed in a heterozygous state

115  due to non-viability of the homozygote.

116

117  Model development

118  All experiments were approved by the Animal Care and Use Committee at The Jackson
119 Laboratory. Mice were bred in the mouse facility at The Jackson Laboratory and
120  maintained in a 12/12-h light/dark cycle, consisting of 12 h-ON 7 am-7 pm, followed by

121 12 h-OFF. Room temperatures are maintained at 18—-24'1C (65-75''F) with 40—60%

6
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122 humidity. All mice were housed in positive, individually ventilated cages (PIV). Standard
123 autoclaved 6% fat diet (Purina Lab Diet 5K52) was available to the mice ad-lib, as was

124  water with acidity regulated from pH 2.5-3.0.

125  Novel mouse alleles were generated using direct delivery of CRISPR-Cas9 reagents to
126  LOAD1 (JAX #28709)(20) mouse zygotes. Analysis of genomic DNA sequence

127  surrounding the target region, using the Benchling (www.benchling.com) guide RNA
128  design tool, identified appropriate gRNA sequences with a suitable target endonuclease

129  site.

130  Streptococcus pyogenes Cas9 (SpCas9) V3 protein and gRNA were purchased as part
131  of the Alt-R CRISPR-Cas9 system using the crRNA:tracrRNA duplex format as the

132 gRNA species (IDT, USA). Alt-R CRISPR-Cas9 crRNAs (Product# 1072532, IDT, USA)
133  were synthesized using the gRNA sequences specified in the DESIGN section and

134  hybridized with the Alt-R tracrRNA (Product# 1072534, IDT, USA) as per

135  manufacturer’s instructions. Plasmid or oligonucleotide constructs were synthesized by

136  Genscript.

137  See supplemental Table 1 for CRISPR reagents.

138  To prepare the gene editing reagent for electroporation, SpCas9:gRNA

139  Ribonucleoprotein (RNP) complexes were formed by incubating AltR-SpCas9 V3

140  (Product#1081059, IDT, USA) and gRNA duplexes for 20 minutes at room temperature
141  in embryo tested TE buffer (pH 7.5). The SpCas9 protein and gRNA duplex were at 833
142 ng/ul and 389 ng/ul, respectively, during complex formation. Post RNP formation, the

143 purified plasmid was added and the mixture spun at 14K RPM in a microcentrifuge. The
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supernatant was transferred to a clean tube and stored on ice until use in the embryo
electroporation procedure. The final concentration of the gRNA, SpCas9 and plasmid
components in the electroporation mixture were 600ng/ul, 500 ng/ul and 20 ng/ul,

respectively.

Founders were selected that: were positive by short-range PCR assays; had
appropriate sequence across the homology arm junctions; were negative for the

plasmid backbone; and had correct sequence of the inserted construct.

Allele-specific genotyping protocols for all models are available on JAX Mice data

sheets for each model.

Other models were obtained from the JAX mouse repository, see Table 1.

Brain Harvest at 4 months of age

Anesthetized and subsequently perfused animals were decapitated, and heads
submerged quickly in cold 1X PBS. The brain was carefully removed from the skull,
weighed, and divided midsagitally, into left and right hemispheres, using a brain matrix.
The right hemisphere was quickly homogenized on ice and equally aliquoted into
cryotubes for and transcriptomic analysis. Cryotubes were immediately snap-frozen on

dry ice and stored long-term at -80(1C.

RNA Sample Extraction

Total RNA was extracted from snap-frozen right brain hemispheres using Trizol

(Invitrogen, Carlsbad, CA). mRNA was purified from total RNA using biotin-tagged poly
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dT oligonucleotides and streptavidin-coated magnetic beads and quality was assessed

using an Agilent Technologies 2100 Bioanalyzer (Agilent, Santa Clara, CA).

RNA-Sequencing Assay Library Preparation Sequencing libraries were constructed
using TruSeq DNA V2 (lllumina, San Diego, CA) sample prep kits and quantified using
gPCR (Kapa Biosystems, Wilmington, MA). The mRNA was fragmented, and double-
stranded cDNA was generated by random priming. The ends of the fragmented DNA
were converted into phosphorylated blunt ends. An “A” base was added to the 3’ ends.
lllumina-specific adaptors were ligated to the DNA fragments. Using magnetic bead
technology, the ligated fragments were size-selected and then a final PCR was
performed to enrich the adapter-modified DNA fragments since only the DNA fragments

with adaptors at both ends will amplify.

RNA-Sequencing

Libraries were pooled and sequenced by the Genome Technologies core facility at The
Jackson Laboratory. All samples were sequenced on Illumina HiSeq 4000 using HiSeq
3000/4000 SBS Kit reagents (lllumina), targeting 30 million read pairs per sample.
Samples were split across multiple lanes when being run on the lllumina HiSeq, once
the data was received the samples were concatenated to have a single file for paired-

end analysis.

RNA-Sequencing Data Processing

Sequence quality of reads was assessed using FastQC (v0.11.3, Babraham). Low-

guality bases were trimmed from sequencing reads using Trimmomatic (v0.33; Bolger et

9
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187  al., 2014). After trimming, reads of length longer than 36 bases were retained. The

188 average quality score was greater than 30 at each base position and sequencing depth
189  was in range of 60—80 million reads. RNA-Seq sequencing reads from all samples were
190 mapped to the mouse genome (version GRCm38.p6) using ultrafast RNA-Seq aligner
191  STAR (v2.5.3; Dobin et al., 2013). To measure human APOE gene expression, we

192  created a chimeric mouse genome by concatenating the human APOE gene sequence
193  (human chromosome 19:44905754-44909393) into the mouse genome (GRCm38.p6)
194  as a separate chromosome (referred to as chromosome 21 in chimeric mouse genome).
195  Subsequently, we added gene annotation of the human APOE gene into the mouse

196  gene annotation file. Additionally, we have also introduced annotation for novel Trem?2
197  isoform in mouse gene annotation file (GTF file), that is identical to primary transcript
198  but truncated exon2 by 119 bp from its start position(20). Afterward, a STAR index was
199  built for this chimeric mouse genome sequence for alignment, then STAR aligner output
200 coordinate-sorted BAM files for each sample mapped to the chimeric mouse genome
201 using this index. Gene expression was quantified in two ways, to enable multiple

202 analytical methods: transcripts per million (TPM) using RSEM (v1.2.31; Li and Dewey,

203  2011), and raw read counts using HTSeq-count (v0.8.0; Anders et al., 2015).

204

205 NanoString transcriptomic analysis

206  The NanoString Mouse AD gene expression panel (21) was used for gene expression
207  profiling on the nCounter platform (NanoString, Seattle, WA). Mouse NanoString gene
208  expression data were collected from brain hemisphere homogenates at 4, 8 and 12

209 months of age for both sexes, from approximately six animals per group. The nSolver

10
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software was used for generating NanoString gene expression counts. Normalization
was done by dividing counts within a lane by geometric mean of the designated
housekeeping genes from the same lane. Next, normalized count values were log-

transformed and corrected for potential batch effects using ComBat (45).

Next, we determined the effects of each factor (sex and genetic variants) by fitting a

multiple regression model using the Im function in R as (46):

log(expr) = Bo+ XiBi+ €

The sum is over sex (male), and all genetic variants (5xFAD, LOAD1, Abca7*Al1527G,
Ceacaml1KO, Mthfr*677C>T, Shc2*V433M, Slc6al7*P61P, Clasp2*L163P,
Sorl1*A528T, Meox2 KO (HET), Snx1*D465N, Plcg2*M28L, Mtmr4*V297G) used in this
study. The log(expr) represents log-transformed normalized count from the NanoString
gene expression panel (21). In this formulation, B6J was used as the control for the
5XFAD and LOAD1 mouse models, whereas LOADL1 served as controls for GWAS-
based models in order to estimate the effects of individual variants. Separate models

were run for each age cohort.

Human AMP-AD Gene Co-expression Modules

Data for 30 human brain co-expression modules from the Accelerating Medicines
Partnership for Alzheimer’s Disease (AMP-AD) studies were obtained from the Synapse
data repository (https://www.synapse.org/#! Synapse:syn11932957/tables/; SynapselD:
syn11932957). Briefly, Wan et al. (2020) (22) identified 30 human brain co-expression
modules based on meta-analysis of differential gene expression from seven distinct

11
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brain regions in postmortem samples obtained from three independent LOAD cohorts
(47-49). These 30 human AMP-AD modules were further classified into five distinct
Consensus Clusters that describe the major functional alterations observed in human

LOAD (21, 22).

Human AD Subtypes

Milind et al. (50), integrated post-mortem brain co-expression data from the frontal
cortex, temporal cortex, and hippocampus brain regions and stratified patients into
different molecular subtypes based on molecular profiles in three independent human
LOAD cohorts (ROS/MAP, Mount Sinai Brain Bank, and Mayo Clinic) (47-49). Two
distinct LOAD subtypes were identified in the ROSMAP cohort, three LOAD subtypes
were identified in the Mayo cohort, and two distinct LOAD subtypes were identified in
the MSBB cohort. Similar subtype results were observed in each cohort, with LOAD
subtypes found to primarily differ in their inflammatory response based on differential
expression analysis (50). Data for LOAD subtypes were obtained through AD

Knowledge Portal (51) (https://www.synapse.org/#!Synapse:syn23660885).

Mouse-human expression comparison

To assess the human disease relevance of LOAD risk variants in mice, we determined
the extent to which changes due to genetic perturbations in mice matched those
observed in human AD cases versus controls. For each mouse perturbation, we tested
each of the 30 AMP-AD modules using mouse-human gene homologs and limited to the
genes both present in the module and the NanoString Mouse AD Panel, which was

designed to optimize coverage of these modules (21). Pearson’s correlations were

12
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254  computed for changes in gene expression (log fold change) across all module genes for
255  human AD cases versus controls (22) against the effect of each mouse perturbation (j3)

256  as measured above (21, 46). We used the cor.test function in R as:

cor.test(Log,FC(AD /control), B)

257  from which we obtained the correlation coefficient and the significance level (p-value) of
258  the correlation for each perturbation-module pair. Log,FC values for human transcripts
259  were obtained through the AD Knowledge Portal (51)

260  (https://lwww.synapse.org/#!Synapse:syn14237651).

261

262  To determine the similarity of each mouse perturbation and the LOAD subtypes, we

263 computed the Pearson’s correlation between gene expression changes (log fold

264  change) in human AD subtype cases versus controls (50) and the effect of each mouse
265  perturbation () across genes on the NanoString panel (21) using cor.test function in R

266 as.

cor.test(Log,FC(LOADSubtype /control),[3)

267  from which we obtained both the correlation coefficient and the significance level (p-
268  value) of the correlation. Here, Log,FC(LOAD Subtype/control) represented the log-fold
269  change in gene expression in each subtype versus control and the correlation spanned

270  all homologous genes on the NanoString AD Mouse Panel.

271 We plotted the correlation results using the ggplot2 package in R. Framed circles were

272 used to denote significant (p < 0.05) positive (blue) and negative (red) Pearson’s

13
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273 correlation coefficients. The color intensity and size of the circles were sized

274  proportional to Pearson’s correlation coefficient.

275

276  Functional enrichment analysis

277  Gene set enrichment analysis (GSEA) was used based on the method proposed by

278  Subramanian, et. al (52) as implemented in the R Bioconductor package clusterProfiler
279  (53) for the Reactome pathway library and Gene Ontology terms. Nanostring Mouse AD
280 Panel genes (21) were ranked based on regression coefficients calculated for each

281 factor and GSEA was performed on this ranked dataset. The use of GSEA ensured that
282  pathway effects were assessed relative to the genes on the panel, as the panel was

283  enriched for AD-relevant genes. Enrichment scores for all Reactome pathways and GO
284  terms were computed to compare relative expression on the pathway level between

285  each factor estimate from the regression models. We also performed Gene Ontology
286  term enrichment analyses using enrichGO function in the clusterProfiler (53).

287  Significance of pathways and GO terms were determined using false discovery rate

288  (FDR) multiple testing correction (FDR adjusted p < 0.05).

14
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289 Results

290 Validation of novel models

291  Sequence analysis demonstrated that the appropriate sequence variants had been
292  established, see Supplemental Figure 1A. Quantification of transcript counts in
293  homozygous LOAD models relative to littermate wild-type controls showed no

294  significant differences in expression levels (Supplemental Figure 1B).

295 LOAD associated risk variants showed age-dependent concordance with distinct

296 human co-expression modules

297 We assess the relevance of each LOAD risk variant to the molecular changes observed
298 in human disease (47-49, 54) by correlating the effect of each mouse perturbation (sex
299  and genetic variants) with 30 human AMP-AD brain gene co-expression modules (22)
300 using the NanoString Mouse AD Panel (21). We analyzed mouse NanoString data from
301 brain hemispheres at different ages (4 and 12 months) to assess the correlation with

302 human post-mortem co-expression modules as animals aged.

303 The amyloidogenic 5XFAD transgenic model exhibited significant positive correlations
304 (p < 0.05) with several human co-expression modules in Consensus Cluster B enriched
305 for immune-system related pathways at both four and 12 months but showed significant
306  positive correlations (p < 0.05) with neurodegeneration associated human co-

307  expression modules in Consensus Cluster C only at 12 months (Figure 2A-B). However,
308 we did not observe significant positive correlations between effect of 5xFAD and human

309 co-expression modules in Consensus Cluster A, D, and E, validating that the 5xFAD
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310 strain is primarily a model of amyloidosis and does not fully recapitulate late-onset AD

311 changes.

312 At 4 months, among all LOAD risk variants, only Slc6al7*P61P showed significant

313  positive correlations (p<0.05) with the immune related modules (Figure 2A). The

314  Abca7*A1527G, Sorl1*A528T, and Mtmr4*V297G risk variants exhibited significant

315  positive correlations (p<0.05) with extracellular matrix organization-related modules in
316  Consensus Cluster A (Figure 2A). The Ceacaml KO, Plcg2*M28L, Meox2 KO(HET),
317 and Mtmr4*V297G strains exhibited significant positive correlations (p<0.05) with cell
318 cycle and myelination-associated modules in Consensus Cluster D and cellular stress-
319 response associated modules in Consensus Cluster E (Figure 2A). Abca7*A1527G and
320 Sorl1*A528T variants generated significant positive correlations (p<0.05) with cellular

321  stress-response associated modules in Consensus Cluster E.

322  We observed more significant correlations between LOAD risk variants and human

323  AMP-AD modules at 12 months for most strains. The Abca7*A1527G variant had the
324  most pronounced correlations with LOAD expression changes, exhibiting significant

325  positive correlations (p<0.05) with immune related modules in Consensus Cluster B, cell
326  cycle and myelination-associated modules in Consensus Cluster D, and cellular stress-
327 response associated modules in Consensus Cluster E (Figure 2B). The Mthfr*677C>T
328 variant exhibited significant positive correlations (p<0.05) with cell cycle and

329 myelination-associated modules in Consensus Cluster D and cellular stress-response
330 associated modules in Consensus Cluster E (Figure 2B). Sorl1*A528T led to significant
331  positive correlations (p<0.05) with several human co-expression modules in Consensus

332 Cluster C enriched for neuronal related pathways (Figure 2B). The Plcg2*M28L variant
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333  had significant positive correlations (p<0.05) with human co-expression modules in

334 Consensus Cluster C enriched for neuronal related pathways and with cell cycle and
335 myelination-associated modules in Consensus Cluster D (Figure 2B). Ceacaml KO,

336 Slc6al7*P61P, and Shc2*V433M exhibited significant positive correlations (p<0.05) with
337 human co-expression modules in Consensus Cluster B enriched for transcripts

338 associated with immune related pathways in multiple brain regions, while Clasp2*L163P
339 and Sorl1*A528T led to significant positive correlations (p<0.05) with human co-

340 expression module in Consensus Cluster B enriched for immune related pathways in
341 cerebellum and frontal pole brain region, respectively (Figure 2B). The Mtmr4*V297G
342  variants exhibited significant positive correlations (p<0.05) with cell cycle and

343  myelination-associated modules in Consensus Cluster D and cellular stress-response
344  associated modules in Consensus Cluster E (Figure 2B). Snx1*D465N also exhibited
345  significant positive correlation with cell-cycle and myelination-associated modules in

346  Consensus Cluster D (Figure 2B).

347  Overall, we observed LOAD risk variants in mice showed concordance with distinct

348  human co-expression modules, reflecting a different transcriptional response driven by
349  each LOAD risk variant. The associations between LOAD risk variants and human gene
350 co-expression modules increased with age. We note that models harboring late-onset
351  AD risk variants exhibited significant positive correlation with human modules in

352  Consensus Cluster A, D and E, which were not captured by 5XFAD strain, highlighting
353 the importance of using LOAD risk variants to fully capture LOAD molecular

354  pathologies.
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355  We next assessed the similarities between variant effects in mice by comparing each
356  model to all other models To identify LOAD risk variants driving similar transcriptional
357 responses in mice, we performed correlation between regression coefficients calculated
358 for each genetic variant at four and 12months. At four months, effects of the LOAD1

359  construct (APOE4 and TREM2*R47H) were weakly and positively correlated with effect
360 of 5XFAD transgene (p < 0.05), but this correlation diminished at 12 months (Figure 3A-
361 B). Effects of LOAD1 were also significantly positively correlated (p<0.05) with

362  Sorl1*A528T and Mtmr4*V297G at four months, but this correlation diminished by 12
363 months (Figure 3A-B). Effects of Abca7*A157G and Ceacaml KO variants were weakly
364 correlated at four months (p < 0.05), and this correlation increased at 12 months (Figure
365 3A-B). Effects of Shc2*V433M and Slc6al7*P161P variants were also significantly

366  positively correlated at four months (p < 0.05) and become stronger with age (Figure
367 3A-B). Furthermore, effects of Snx1*D465N, Plcg2*M28L, and Mtmr4*Vv297G risk

368  variants were significantly positively correlation (p < 0.05) at 12 months. Similarly,

369  effects of the Sorl1*A528T and Meox2 KO(HET) variants were significantly positively
370 correlated (p < 0.05) at 12 months (Figure 3A-B). In summary, we observed that LOAD
371 risk variants generally increased in similarity with age, supporting an age-dependent
372 role for these genetic factors. However, all strains did not converge on similar

373  transcriptional responses, suggesting distinct mechanisms of influence on LOAD risk.

374  Pathway alterations varied by LOAD genetic perturbation

375  To further elucidate the functional role of these LOAD risk variants in aged mice, we
376  performed Gene Set Enrichment Analysis (GSEA) (52) for the Reactome pathway

377 library for all 12 month samples. GSEA revealed upregulation of immune-related
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pathways in the presence of multiple risk variants such as Abca7*A1527G,
Mthfr*677C>T, and Snx1*D465N (Figure 3C, Supplementary Table S2), while neuronal-
associated pathways were downregulated in the presence of risk variants such as
Abca7*A1527G, Mthfr*677C>T, Sorl1*A528T, Plcg2*M28L, Ceacaml KO,
Shc2*V433M, and Slc6al7*P161P (Figure 3C, Supplementary Table S2). Extracellular
matrix organization pathway was downregulated in risk variants such as Sorl1*A528T,
Clasp2*L163P, Meox2 KO(HET) and LOAD1 but upregulated in the presence of risk
variant such as Abca7*A1527G, Snx1*D465N and Mthfr*677C>T (Figure 3C,
Supplementary Table S2). Cell cycle pathway was downregulated in the presence of
Mthfr*677C>T, Ceacaml KO, Shc2*V433M, and Slc6al7*P161P, while upregulated in
the presence of other risk variants such as Abca7*A1527G, Clasp2*L163P, Meox2
KO(HET), and Sorl1*A528T (Figure 3C, Supplementary Table S2). Cellular response to
heat stress pathway were downregulated in the presence of Snx1*D465N,
Shc2*V433M, and Slc6al7*P161P, but upregulated in the presence of risk variants
such as Abca7*A1527G, Mthfr*677C>T, Sorl1*A528T, Plcg2*M28L, Ceacaml KO
(Figure 3C, Supplementary Table S2). Overall, we observed that multiple AD-
associated pathways were upregulated in the presence of some LOAD risk variants but
downregulated in presence of another set of risk variants. This suggest that distinct risk

variants perturb distinct molecular changes associated with LOAD in aging mice.

Age-dependent pathway effects driving AMP-AD module correlations in ABCA7,

MTHFR, SORL1, and PLCG2 mouse models

In our mouse-human correlation analysis, the effects of multiple LOAD variants

(Abca7*A1527G, Mthfr*677C>T, Sorl1*A528T, and Plcg2*M28L) correlated with human
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401  AMP-AD co-expression modules in age-dependent and pathway-specific manner. To
402  further identify the AD-relevant biological processes associated with these selected

403  LOAD risk variants (Abca7*A1527G, Mthfr*677C>T, Sorl1*A528T, and Plcg2*M28L) we
404 adopted two approaches. First, we performed GSEA (52) on the NanoString Mouse AD
405 Panel genes ranked based on regression coefficients calculated for each factor at 12
406  months and identified significantly enriched Gene Ontology terms (padj < 0.05). Next,
407  we isolated the homologous genes exhibiting directional coherence between the effects
408  of selected genetic risk variants (Abca7*A1527G, Mthfr*677C>T, Sorl1*A528T, and

409  Plcg2*M28L) and changes in expression in human AMP-AD co-expression modules at
410 12 months and performed Gene Ontology (GO) enrichment analysis. These subsets
411  represent the pathways that (1) are altered in each mouse model, and (2) drive the

412  mouse-human module associations. GO terms common to both enrichment tests were

413  then annotated to the modules in which they appear.

414  The Abca7*A1527G variant showed significant negative correlations (p < 0.05) with

415 immune-related modules in Consensus Cluster B, cell cycle and myelination-associated
416  modules in Consensus Cluster D, and cellular stress-response associated modules in
417  Consensus Cluster E (Figure 4A) at four months. However, at 12 months these effects
418  were reversed and the variant exhibited significant positive correlations (p < 0.05) with
419  several immune-related modules in Consensus Cluster B, cell cycle and myelination-
420 associated modules in Consensus Cluster D, and cellular stress-response associated
421  modules in Consensus Cluster E (Figure 4A). Biological processes such as 'de novo'
422  protein folding, 'de novo' post-translational protein folding, granulocyte migration,

423  cytokine-mediated signaling pathway, insulin receptor signaling pathway, and neutrophil
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424  migration had increased expression in the presence of Abca7*A1527G (Figure 4A,

425  Supplementary Table S3). The correlation between the Abca7*A1527G variant and the
426  iImmune-associated human co-expression modules (Consensus Cluster B) (Figure 4A,
427  Supplementary Table S5) was driven by genes enriched for granulocyte migration,

428  cytokine-mediated signaling pathway, and neutrophil migration (including Pecaml1,

429 Cd74, Trem2, Treml, Csfl, lllrap, and Ceacaml) (Supplementary Table S4). As

430  drivers of the correlations between Abca7*A1527G and Consensus Cluster E modules
431 (Figure 4A, Supplementary Table S5), we found genes enriched in ‘de novo' protein
432  folding and 'de novo' post-translational protein folding (e.g., Hspa2, Hspalb, and

433  Dnajb4) (Supplementary Table S4). Insulin receptor signaling was enriched in genes
434  (Foxol, Prkcq, and Bcar3) (Supplementary Table S4) driving the correlation between
435  Abca7*A1527G and modules in Consensus Cluster D (Figure 4A, Supplementary Table

436  Sb).

437 A similar reversal of effects with age was observed for MTHFR. The Mthfr*677C>T

438  variants exhibited significant negative correlations (p < 0.05,) with several cell cycle and
439  myelination-associated modules in Consensus Cluster D and cellular stress-response
440 associated modules in Consensus Cluster E (Figure 4B) at four months. At 12 months,
441  these correlations were positive (Figure 4B). GSEA of the Mthfr*677C>T variant

442  identified significant enrichments of response to unfolded protein, positive regulation of
443  cellular catabolic process, negative regulation translation, positive regulation of GTPase
444  activity, B cell mediated immunity, and purine ribonucleotide metabolic process (Figure
445 4B, Supplementary Table S3). B cell mediated immunity and negative regulation

446  translation biological processes were also enriched in genes (including Clga, C1qb,
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447  Cd81, and Zfp36) (Supplementary Table S4) with directional coherence for

448  Mthfr*677C>T and LOAD effects in Consensus Cluster B (Figure 4B, Supplementary
449  Table S5). Correlations between the Mthfr*677C>T variant and Consensus Cluster D
450 changes (Figure 4B, Supplementary Table S5) were driven by genes enriched for

451  positive regulation of cellular catabolic process and positive regulation of GTPase

452  activity (including Binl, Picalm, Dock10, and Psenl) (Supplementary Table S4).

453  Biological processes such as response to unfolded protein and purine ribonucleotide
454  metabolic process were enriched in genes (e.g., Hspalb, Hsphl, Hsp90aal, Snca, and
455  Atpp5h) (Supplementary Table S4) underlying the correlations between Mthfr*677C>T

456  and Consensus Cluster E effects (Figure 4B, Supplementary Table S5).

457  The Plcg2*M28L variant caused significant positive correlations (p < 0.05) with

458  neuronal-related modules in Consensus Cluster C and cell-cycle associated modules in
459  Consensus Cluster D at both four and 12 months (Figure 4C). Enriched biological

460  processes included postsynapse organization, regulation of axonogenesis, cognition,
461 locomotory behavior, glial cell development, and regulation of protein catabolic process
462  (Figure 4C, Supplementary Table S3). Biological processes such as postsynapse

463  organization, cognition, and locomotory behavior were enriched in genes (Mapt,

464  Gabrb3, App, Ppp3ch, and Slc8a2) (Supplementary Table S4) with directional

465 coherence for Plcg2*M28L human AD changes in Consensus Cluster C (Figure 4C,
466  Supplementary Table S5). Biological processes such as regulation of axonogenesis,
467  glial cell development and regulation of protein catabolic process were enriched in

468  genes (Snx1, Picalm, Psenl, Mag, Foxol, and Kif13b) (Supplementary Table S4) drove
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the correlations between Plcg2*M28L and Consensus Cluster D effects (Figure 4C,

Supplementary Table S5).

Aged Sorl1*A528T mice (12 months) showed positive correlations (p < 0.05) with
neuronal-associated modules in Consensus Cluster C that were not apparent at four
months of age (Figure 4D). Enriched processes included the downregulation of synapse
organization, synapse assembly, regulation of synaptic plasticity and regulation of
epithelial cell proliferation, and the increased expression of negative regulation of
transporter activity and SNARE complex assembly genes. These processes drove the
correlation between the SORL1 variant and LOAD effects in Consensus Cluster C
modules (Figure 4D, Supplementary Table S5), where GSEA for genes with directional
coherence generated synapse organization, synapse assembly, regulation of synaptic
plasticity, upregulation of negative regulation of transporter activity, and SNARE
complex assembly (including the genes Mapt, App, Gabrb3, Calm3, Snca, Cdkl5, Vdf,

and Ywhag) (Supplementary Table S4).

Overall, we found that late-onset genetic factors in mice generally led to both more
abundant changes with age and increasingly disease-relevant pathway changes with

age.

Alignment of mouse models with AD Subtypes

Postmortem transcriptomics from AMP-AD and similar studies have enabled the
partitioning of AD cases into potential disease subtypes. These studies have often
stratified AD subjects into inflammatory and non-inflammatory subtypes (50, 55, 56). To

determine if our mouse models preferentially resembled putative AD subtypes, we
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491  correlated the effect of each variant with inflammatory and non-inflammatory subtypes

492  associated with LOAD (50) in the ROSMAP, MSBB, and Mayo cohorts (47-49).

493  We found that at four months of age, variants did stratify by human subtypes. The

494  effects of Abca7*A1527G, Sorl1*A528T, and Plcg2*M28L were positively correlated (p <
495  0.05) with the inflammatory subtypes across all three cohorts, while Mtmr4*vV297G was
496  positively correlated (p < 0.05) with ROSMAP and MSBB inflammatory subtypes

497  (Figure 5). In contrast, Shc2*V433M and Clasp2*L163P exhibited significant positive
498  correlations (p < 0.05) with non-inflammatory subtypes across all three cohorts (Figure

499  5).

500 At 12 months, the correlations between Abca7*A1527G effects and the inflammatory
501  subtypes across all three cohorts increased (p < 0.05) and the Ceacaml1 KO variant had
502 become positively correlated (p < 0.05) with the inflammatory subtypes across all three
503 cohorts (Figure 5). On other hand LOAD1, Meox2 KO (HET), and Snx1*D465N were
504  positive correlated (p < 0.05) with non-inflammatory subtypes across all three cohorts
505 (Figure 5). Three strains, Sorl1*A528T, Plcg2*M28L, and Mtmr4*V297G, which were
506  positively correlated (p < 0.05) with inflammatory subtypes at four months, transitioned
507 to correlation (p < 0.05) with non-inflammatory subtypes at 12 months (Figure 5). These
508  results are in concordance with our findings that Abca7*A1527G was significantly

509 correlated with immune related human modules and were enriched for immune

510 associated biological processes (Figure 4A), while Sorl1*A528T and Plcg2*M28L

511 variants were significantly correlated with neuronal related human modules and

512  enriched for neuronal associated biological processes (Figure 4C-D). Overall, these

513  findings suggest that different mouse strains may provide better models for distinct AD
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subtypes, and that risk for these subtypes may be influenced by distinct AD genetic

factors.

Discussion

In this study, we have performed gene expression screening of new knock-in mouse
models harboring candidate genetic variants for late-onset Alzheimer’s disease. Our
ultimate goal is to provide the research community and therapeutic development
programs with improved preclinical models of LOAD, suitable for preclinical testing of
therapeutics that target molecular processes contributing to LOAD origins and
progression. By basing these models on human genetics, we also provide a preliminary
functional characterization of possible disease-relevant effects from the candidate

genetic variants.

Notable results include the finding that many AD-related pathways, modules, and
processes are affected by the introduction of late-onset variants. However, the changes
were not consistent across strains, suggesting that different genetic loci contribute to
distinct AD-related dysfunction (Figures 2 and 4). For example, we determined that the
SORL1 risk factor impinges primarily on AD-relevant synaptic gene expression, while
the ABCA7 variant broadly affected non-neuronal gene expression including immune,
protein folding, and metabolic pathways. Meanwhile the PLCG2 variant primarily
affected genes that were annotated to behavior, synapses, and glial cells and similarly
changed in human LOAD. We note that a transgenic model harboring familial AD

mutations in App and Psenl exhibited different gene expression changes focused on an
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acute inflammatory response. Finally, the limited effects of variants like Clasp2*L163P
suggest that the specific variant is not disease-associated, its AD-related effects are not
visible in the transcriptome, and/or it does not trigger changes until later age. This
diversity of effects across mouse strains provides specific models to study different
aspects of AD biology and paves the way for precision preclinical testing of candidate

therapeutics that target these pathways.

Preliminary analysis further suggested that the different loci contribute in an age-
dependent manner (Figures 2 and 4) and model putative disease subtypes (Figure 5).
However, validation of such partitioning of genetic risk is difficult in human studies due
to postmortem tissue sampling and limited cohort size for multi-omic data (50). We also
found that the gene expression effects of LOAD variant knock-ins generally increased in
terms of magnitude and disease relevance as mice aged from four to 12 months
(Figures 2 and 4). This finding supports the notion that LOAD genetic factors become

more relevant in an aging brain as they contribute to late-life disease risk.

We note that genetic variants from frequently associated loci tended to produce the
most consistent AD-relevant phenotypes (e.g. SORL1, ABCA7, PLCG2) although many
of the more exploratory variants also generated AD-like expression signatures across
multiple modules in aging mice (e.g. CEACAM1, MTMRA4) (Figure 2). Recent advances
in variant inference and functional prediction, including many noncoding variants and
major GWAS loci, will enable the next round of models to address additional GWAS loci
without candidate coding variants, such as the EPHA1L locus (25). Furthermore, many

AD-associated loci suffered from insufficient homology in mice (e.g. MS4A4/MS4AGE,
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558 INPP5D, CR1), which will be addressed by ongoing efforts to humanize these relevant

559  regions of the mouse genome (Benzow K, et al., this issue).

560 This study had several caveats that need to be noted. Most importantly, aging is the
561  strongest risk factor for late-onset AD (57) and it needs to be recognized that mice at 12
562 months of age are roughly equivalent to humans at 38-47 years of age. Therefore, our
563  transcriptomic comparison to post-mortem AMP-AD clinical samples, while practical, is
564 unrealistic and we are now testing those models that best approximated human

565 transcriptional changes at 12 months to at least 24 months of age (31, 58) (Oblak A, et
566  al., this issue). Likewise, recent studies (as well as our pilot data) have shown that

567 proteomics is a more reliable means to correlate models to disease than transcriptomics
568 (59, 60) (Oblak A, et al., this issue), so we will be using proteomic analysis on prioritized

569 models.

570 The Trem2*R47H allele in the LOAD1 base model used here has been shown to cause
571 an ~2-fold decrease in Trem2 expression (61). However, our analysis technique

572  factors out allele effects individually so that we are confident of our results. We have
573  since created a new model (JAX #33781) that we have shown has normal Trem2

574  transcript levels and that will replace the allele used here in future projects.

575 In this study, we have focused on introducing coding variants on a LOAD1 background
576  (20), aged the mice to middle age (12 months), and characterized the animals using a
577 gene expression panel developed for rapid comparison to recent human study results
578  (21). In future work we will extend our approach to model candidate noncoding variants
579  at LOAD genetic loci without strong candidate coding SNPs, humanizing loci and

580 regulatory regions when necessary (Benzow K, et al., this issue). We will breed the
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581  most promising variants presented here — Abca7*A1527G, Sorl1*A528T, Mthfr*677C>T,
582 and Plcg2*M28L — to a genetic background with humanized AR peptide (the LOAD2

583  strain) and age cohorts beyond 18 months to assess additional disease-related

584  progression with advanced age. These select strains will be assessed in depth with

585 multiple genome-scale omics measures (RNA-seq, tandem mass tag proteomics,

586  metabolomics), plasma biomarkers, in vivo imaging, neuropathology and behavioral

587 metrics. Each assay will be optimized for translational value. We will also introduce

588  modifiable risk factors through unhealthy diets and exposure to common environmental

589 toxicants. At the same time, all models are distributed without use restrictions to enable

590 all researchers to obtain, study, and modify these models as desired.
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825 Figure and table captions

826 FIGURE 1: Strategy to prioritize loci and LOAD risk variants.

827  Summary of strategies for variant selection for (A) late-onset Alzheimer’s disease and
828  (B) neurovascular risk factors. (C) Gene expression analysis comparing human and
829  mouse gene expression data to identify human LOAD modules that are altered by

830 genetically engineered variants in mice.

831

832 FIGURE 2: Correlation between LOAD associated risk variants and 30 human

833 AMP-AD brain co-expression modules using the NanoString Mouse AD panel (A)
834  Correlation between the effect of each mouse perturbation relative to the LOAD1

835  background in four-month-old mice and 30 human co-expression modules (22), also
836 including the early-onset transgenic model 5XFAD and the LOAD1 background relative
837 to C57BL/6J. The 30 human co-expression modules were grouped into five consensus
838  clusters with similar gene content across the multiple studies and brain regions (22).
839  Framed circles correspond to significant (p < 0.05) positive (blue) and negative (red)
840  Pearson’s correlation coefficients, with size and color intensity proportional to the

841  correlation. The effects of multiple LOAD risk variants in mice were positively correlated
842  (p < 0.05) with cell cycle and myelination-associated modules in Consensus Cluster D
843  and cellular stress-response associated modules in Consensus Cluster E. (B)

844  Correlation between the effect of each mouse perturbation at 12 months and the 30
845 human co-expression modules. LOAD risk variants showed significant correlation with

846  functionally distinct AMP-AD co-expression modules. The effects of Abca7*A1527G,
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Shc2*V433M, Ceacaml KO, and Slc6al7*P61P in aged mice correlated with the
immune modules in Consensus Cluster B, while the effects of Sorl1*A528T and

Plcg2*M28L correlated with the neuronal modules in Consensus Cluster C.

FIGURE 3: Correlation between effect of genetic variants and gene set enrichment
analysis (A) Correlation between regression coefficients calculated for each genetic
variant at four months. Color intensity and size of the circles are proportional to the
Pearson correlation coefficient, with insignificant correlations (p > 0.05) left blank. (B)
Correlation between regression coefficients calculated for each genetic variant at 12
months. The effects of Snx1*D465N, Plcg2*M28L, and Mtmr4*V297G risk variants in
mice showed significantly positively correlation (p < 0.05) at 12 months (C). Gene set
enrichment analyses results of selected AD-associated pathways from Reactome library
in the presence of each LOAD risk variants in mice. Enriched pathways are grouped by
their overlap with functional annotations of human AMP-AD Consensus Clusters.
Immune-related pathways had increased expression in the presence of multiple risk
variants such as Abca7*A1527G, Mthfr*677C>T, and Snx1*D465N, while neuronal-
associated pathways had reduced expression in the presence of risk variants such as
Abca7*Al1527G, Mthfr*677C>T, Sorl1*A528T, Plcg2*M28L, Ceacaml KO,

Shc2*V433M, and Slc6al7*P161P.

FIGURE 4: Identification of specific AD-associated processes in LOAD risk

variants exhibiting transcriptomic changes similar to human LOAD in age-
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869 dependent manner. For four new mouse strains the following is displayed: the six top
870 enriched GO terms identified by GSEA and GO enrichment analysis of genes with

871  common directional changes with human AD modules (top left); gene module networks
872  with common directional changes with the human AMP-AD modules, where node colors
873  correspond to human AMP-AD Consensus Clusters A (orange), B (green), C (blue), D
874  (turquoise) or E (pink) (top right); and the effects of each variant at multiple ages

875 correlated across LOAD effects in 30 AMP-AD modules, following the legend of Figure
876 3. (A) results for the Abca7*A1527G model, (B) results for the Mthfr*677C>T model, (C)
877  results for the Plcg2*M28L model, and (D) results for the Sorl1*A528T model. All results

878  are relative to the LOAD1 genetic background for all strains.

879

880 FIGURE 5: Correlation between the effect of each mouse perturbation and

881 molecular subtypes of LOAD. Two molecular LOAD subtypes inferred in the

882 ROSMAP cohort, three subtypes in the Mayo cohort, and two subtypes in the Mount
883  Sinai Brain Bank (MSBB) cohort (50). Framed circles correspond to significant (p <

884  0.05) positive (blue) and negative (red) Pearson’s correlation coefficients across all

885 genes on the NanoString panel, with color intensity and circle size proportional to the
886  correlation. (B) At four months, the Abca7*A1527G and Sorl1*A528T variants represent
887 inflammatory subtypes of LOAD (Subtypes A) in each of the cohorts, while Shc2*V433M
888 and Clasp2*L163P variants mimic the non-inflammatory subtypes of LOAD (Subtypes
889  B). (C) At 12 months, the Abca7*A1527G and Ceacaml KO variants recapitulate

890 inflammatory subtypes of LOAD (Subtypes A), while the Snx1*D465N, Mtmr4*V297G,

891 and LOAD1 variants model non-inflammatory subtypes of LOAD (Subtypes B).
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892 SUPPLEMENTAL FIGURE 1: Validation of novel mouse models. RNA-seq was
893 performed on brain tissue at 4 months of age for each model. (A) Sequence analysis
894 identified appropriate engineered variants; in some cases, silent mutations were

895 introduced for CRISPR or genotyping purposes. (B) Transcript counts were used to
896 demonstrate normal expression levels for SNP models, and lack of expression in the

897 Ceacaml knockout model.

TABLE 1: Listing of gene loci, human risk variants and corresponding mouse alleles,
allele type, and JAX ID of mouse models created. All models also contain a humanized
APOEA4 allele and a Trem2*R47H allele on the C57BL6/J background (“LOAD1”"), which

was used as a control.

SUPPLEMENTAL TABLE 1: Reagents used to engineer LOAD mutations using
CRISPR. The Meox2 allele was previously created (62) and obtained from the JAX

repository (JAX # 3755).

SUPPLEMENTAL TABLE 2: Gene set enrichment analyses results of Reactome

pathways for the effects of LOAD risk variants in mice at 12 months.
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SUPPLEMENTAL TABLE 3: Gene set enrichment analyses results of GO terms for the
effects of Abca7*A1527G, Mthfr*677C>T, Plcg2*M28L, and Sorl1*A528T variants in

mice.

SUPPLEMENTAL TABLE 4: Genes with common directional changes for the effects of
Abca7*Al1527G, Mthfr*677C>T, Plcg2*M28L, and Sorl1*A528T variants in mice at 12

months and human AD cases.

SUPPLEMENTAL TABLE 5: Enriched GO terms in genes with common directional
changes for the effects of Abca7*A1527G, Mthfr*677C>T, Plcg2*M28L, and

Sorl1*A528T variants in mice at 12 months and human AD cases.
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Locus Allele (Human) | Allele (Mouse) SNP Allele Type | JAX #
Abca7 Al1527G A1541G rs3752246 missense 30283
Ceacaml LOF variants KO KO 30673
Clasp2 L163P L163P rs61738888 missense 31944
Meox2 LOF variants HET KO HET KO 33770
Mthfr A222V (677C>T) A262V rs1801133 missense | 30922
Mtmr4 V297G V297G rs2302189 missense 31950
Plcg2 M28L M28L rs61749044 | missense 30674
Shc2 V577M V433M rs2298813 missense 31952
Slc6al? P61P P61P rs41281364 mil':Ztri]:Jn 31948
Snx1 D466N D465N rs1802376 missense 31942
Sorll A528T A528T rs41281364 missense 31940
Other models used:
C57BL/6J 664
5XFAD 8730
LOAD1 28709
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