

1 ***In vivo validation of late-onset Alzheimer's disease genetic risk factors***

2 Michael Sasner¹, Christoph Preuss¹, Ravi S. Pandey², Asli Uyar², Dylan Garceau¹,
3 Kevin P. Kotredes¹, Harriet Williams¹, Adrian L. Oblak³, Peter Bor-Chian Lin³, Bridget
4 Perkins³, Disha Soni³, Cindy Ingraham³, Audrey Lee-Gosselin³, Bruce T. Lamb³, Gareth
5 R. Howell¹, and Gregory W. Carter^{1,2}

6

7 ¹The Jackson Laboratory, 600 Main St, Bar Harbor, ME, 04609 USA

8 ²The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT,
9 06032 USA

10 ³Stark Neurosciences Research Institute, School of Medicine, Indiana University, NB
11 Building, 320 W 15th St #414, Indianapolis, IN 46202

12

13 Correspondence

14 Gregory Carter, The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609 USA.

15 E-mail: Gregory.Carter@jax.org@jax.org

16

17 **Structured Abstract**

18 **Introduction:** Genome-wide association studies have identified over 70 genetic loci
19 associated with late-onset Alzheimer's disease (LOAD), but few candidate
20 polymorphisms have been functionally assessed for disease relevance and mechanism
21 of action.

22 **Methods:** Candidate genetic risk variants were informatically prioritized and individually
23 engineered into a LOAD-sensitized mouse model that carries the AD risk variants
24 APOE4 and Trem2*^R47H. Potential disease relevance of each model was assessed by
25 comparing brain transcriptomes measured with the Nanostring Mouse AD Panel at 4
26 and 12 months of age with human study cohorts.

27 **Results:** We created new models for 11 coding and loss-of-function risk variants.
28 Transcriptomic effects from multiple genetic variants recapitulated a variety of human
29 gene expression patterns observed in LOAD study cohorts. Specific models matched to
30 emerging molecular LOAD subtypes.

31 **Discussion:** These results provide an initial functionalization of 11 candidate risk
32 variants and identify potential preclinical models for testing targeted therapeutics.

33

34

35 **Background**

36 Alzheimer's disease (AD) is the most common cause of dementia, with a growing
37 clinical, financial, and social impact. An increasing body of evidence highlights the
38 importance of genetic risk in AD (1-3). While a small percentage of AD cases are linked
39 to causative, familial mutations in the amyloid precursor protein (APP) processing
40 pathway, the vast majority of cases are late-onset AD (LOAD), have heterogeneous
41 symptoms and etiology, and are associated with polygenic risk from a combination of
42 low-risk, relatively common variants (4-6). Genome-wide association studies (GWAS)
43 have identified numerous LOAD risk variants, but few have been experimentally
44 validated, and physiological mechanisms have not been elucidated, even for the single
45 strongest risk variant, the ε4 allele of *APOE* gene (4, 7). This is but one example (8) of
46 the general problem of how to progress from the identification of genetic variants to
47 functional impact of variants to getting to physiological disease mechanisms (9). Here
48 we present a novel approach to assay the impact of individual polygenic risk factors
49 using an *in vivo* approach.

50 While numerous potential therapeutics have shown promising results in transgenic
51 mouse models of familial AD, few have advanced in clinical trials. This may result from
52 numerous causes, but it is clear that one reason may be the lack of translational animal
53 models available for preclinical studies (10-12). Almost all existing rodent models are
54 based on causative mutations in proteins in the amyloid precursor protein (APP)
55 processing pathway expressed in neurons. Most AD genetic risk resides in genes
56 mainly expressed in microglia and other non-neuronal cell types, as recently reviewed
57 (5, 13, 14), indicating that complex cellular interactions play a causative role in disease

58 etiology. While *in vitro* systems have been shown to have value, more relevant *in vivo*
59 models are necessary to understand these cell-cell interactions (15). In particular,
60 animal models are required to study the early and progressive stages of pathology,
61 which are not accessible in clinical studies but are critical to understand disease
62 mechanisms so as to better target novel therapeutic approaches.

63 The MODEL-AD consortium was established to create and characterize translationally
64 relevant mouse models of LOAD, and to set up protocols for preclinical testing in these
65 new models (16). In this study we provide an overview of novel mouse models
66 expressing human risk variants. Variants were introduced using a knock-in approach to
67 avoid known issues with transgenic models (11, 17-19). To potentially enhance
68 disease-relevant outcomes, variants were created on a more LOAD-susceptible genetic
69 background expressing humanized *APOE* with the $\epsilon 4$ variant and the R47H mutation in
70 *Trem2*, two of the strongest genetic risk factors for LOAD (20). The effects of each
71 variant were assessed by gene expression changes in aging male and female brains
72 using a newly developed transcriptomics panel (21), representing key LOAD-associated
73 changes in clinical AD samples (22). This allowed us to functionalize GWAS variants
74 with small but significant increases in disease risk and avoided a reliance on amyloid
75 deposition or cognitive assays, which have not proven to translate to clinical studies.

76 **Methods**

77 **Late-onset AD risk variant prioritization**

78 Prioritization and construction of the APOE and TREM2 variants in the LOAD1 strain
79 were previously discussed (20). Late-onset variants were selected based on human
80 genetic association, predicted pathogenicity, conservation with mouse homolog, and
81 allele frequency. We further prioritized based on diversity in predicted function to
82 maximize our exploration of potential LOAD biology. Determining specific variants was
83 primarily limited by the rarity of strong coding candidates (e.g. nonsynonymous, stop-
84 gain) and strict mouse sequence homology that required the same SNP be engineered
85 into mice. This led to a mix of variants at high-confidence GWAS loci, functional
86 candidates, and exploratory variants. Exome sequencing from the Alzheimer's Disease
87 Sequencing Project (ADSP) was initially used to identify specific variants at loci (23),
88 buttressed by summary data at NIAGADS (<https://www.niagads.org/genomics/app>). All
89 variants are annotated as "ADSP Variants" that passed NIAGADS quality control checks
90 (<https://www.niagads.org/genomics/app>).

91 ABCA7*A1527G (rs3752246) is the most common of multiple predicted loss-of-function
92 variants associated with increased LOAD risk at the *ABCA7* locus (24, 25). The
93 *SORL1**A528T (rs2298813) variant is among candidates in the *SORL1* gene and likely
94 involved in retromer function (26); deficits in retromer-dependent endosomal recycling
95 have been implicated as causal in AD (27-29). The *SNX1**D465N (rs1802376) variant
96 locus is associated with AD (24) and *SNX1* is involved in retromer function relevant to
97 LOAD (30). *PLCG2**M28L (rs61749044) has been associated with LOAD
98 [<https://www.biorxiv.org/content/10.1101/2020.05.19.104216v1>, (24, 31) and *Plcg2* is a

99 key protein in microglial activation in response to AD pathology (32). The SHC2*V433M
100 (rs61749990) variant was identified in ADSP exomes and has been associated with
101 neurodegeneration and neuron loss (33, 34). SLC6A17*P61P (rs41281364) reduces
102 gene expression in the brain (gtexportal.org/home/gene/SLC6A17), and its reduction is
103 also associated with LOAD (agora.adknowledgeportal.org/genes/ENSG00000197106).
104 Rare variants have been associated with neurological phenotypes (35, 36). The
105 CLASP2*L163P (rs61738888) variant has been associated with neurodegeneration
106 from meta-analysis (37). The MTMR4*V297G (rs2302189) variant has been linked to
107 cognitive function (38, 39). Predicted *CEACAM1* loss-of-function variants had a high
108 disease burden in ADSP exome sequencing data (SKAT-O Bonferroni-adjusted p =
109 7.47 x 10-7) and the gene was associated with AD-related traits in a model of mouse
110 genetic variability (40). The common MTHFR*677C>T (rs1801133) has been associated
111 with increased risk for LOAD and other age-related disorders (41, 42). To explore a
112 copy-number variant linked to vascular function, we used an existing MEOX2 knockout
113 based on an association with Alzheimer's disease (43) that may be related to the gene's
114 role in neurovascular health (44). This variant was assessed in a heterozygous state
115 due to non-viability of the homozygote.

116

117 **Model development**

118 All experiments were approved by the Animal Care and Use Committee at The Jackson
119 Laboratory. Mice were bred in the mouse facility at The Jackson Laboratory and
120 maintained in a 12/12-h light/dark cycle, consisting of 12 h-ON 7 am-7 pm, followed by
121 12 h-OFF. Room temperatures are maintained at 18–24°C (65–75°F) with 40–60%

122 humidity. All mice were housed in positive, individually ventilated cages (PIV). Standard
123 autoclaved 6% fat diet (Purina Lab Diet 5K52) was available to the mice ad-lib, as was
124 water with acidity regulated from pH 2.5–3.0.

125 Novel mouse alleles were generated using direct delivery of CRISPR-Cas9 reagents to
126 LOAD1 (JAX #28709)(20) mouse zygotes. Analysis of genomic DNA sequence
127 surrounding the target region, using the Benchling (www.benchling.com) guide RNA
128 design tool, identified appropriate gRNA sequences with a suitable target endonuclease
129 site.

130 *Streptococcus pyogenes* Cas9 (SpCas9) V3 protein and gRNA were purchased as part
131 of the Alt-R CRISPR-Cas9 system using the crRNA:tracrRNA duplex format as the
132 gRNA species (IDT, USA). Alt-R CRISPR-Cas9 crRNAs (Product# 1072532, IDT, USA)
133 were synthesized using the gRNA sequences specified in the DESIGN section and
134 hybridized with the Alt-R tracrRNA (Product# 1072534, IDT, USA) as per
135 manufacturer's instructions. Plasmid or oligonucleotide constructs were synthesized by
136 Genscript.

137 See supplemental Table 1 for CRISPR reagents.

138 To prepare the gene editing reagent for electroporation, SpCas9:gRNA
139 Ribonucleoprotein (RNP) complexes were formed by incubating AltR-SpCas9 V3
140 (Product#1081059 , IDT, USA) and gRNA duplexes for 20 minutes at room temperature
141 in embryo tested TE buffer (pH 7.5). The SpCas9 protein and gRNA duplex were at 833
142 ng/ul and 389 ng/ul, respectively, during complex formation. Post RNP formation, the
143 purified plasmid was added and the mixture spun at 14K RPM in a microcentrifuge. The

144 supernatant was transferred to a clean tube and stored on ice until use in the embryo
145 electroporation procedure. The final concentration of the gRNA, SpCas9 and plasmid
146 components in the electroporation mixture were 600ng/ul, 500 ng/ul and 20 ng/ul,
147 respectively.

148 Founders were selected that: were positive by short-range PCR assays; had
149 appropriate sequence across the homology arm junctions; were negative for the
150 plasmid backbone; and had correct sequence of the inserted construct.

151 Allele-specific genotyping protocols for all models are available on JAX Mice data
152 sheets for each model.

153 Other models were obtained from the JAX mouse repository, see Table 1.

154 **Brain Harvest at 4 months of age**

155 Anesthetized and subsequently perfused animals were decapitated, and heads
156 submerged quickly in cold 1X PBS. The brain was carefully removed from the skull,
157 weighed, and divided midsagittally, into left and right hemispheres, using a brain matrix.
158 The right hemisphere was quickly homogenized on ice and equally aliquoted into
159 cryotubes for transcriptomic analysis. Cryotubes were immediately snap-frozen on
160 dry ice and stored long-term at -80°C.

161

162 **RNA Sample Extraction**

163 Total RNA was extracted from snap-frozen right brain hemispheres using Trizol
164 (Invitrogen, Carlsbad, CA). mRNA was purified from total RNA using biotin-tagged poly

165 dT oligonucleotides and streptavidin-coated magnetic beads and quality was assessed
166 using an Agilent Technologies 2100 Bioanalyzer (Agilent, Santa Clara, CA).

167 RNA-Sequencing Assay Library Preparation Sequencing libraries were constructed
168 using TruSeq DNA V2 (Illumina, San Diego, CA) sample prep kits and quantified using
169 qPCR (Kapa Biosystems, Wilmington, MA). The mRNA was fragmented, and double-
170 stranded cDNA was generated by random priming. The ends of the fragmented DNA
171 were converted into phosphorylated blunt ends. An “A” base was added to the 3’ ends.
172 Illumina-specific adaptors were ligated to the DNA fragments. Using magnetic bead
173 technology, the ligated fragments were size-selected and then a final PCR was
174 performed to enrich the adapter-modified DNA fragments since only the DNA fragments
175 with adaptors at both ends will amplify.

176 **RNA-Sequencing**

177 Libraries were pooled and sequenced by the Genome Technologies core facility at The
178 Jackson Laboratory. All samples were sequenced on Illumina HiSeq 4000 using HiSeq
179 3000/4000 SBS Kit reagents (Illumina), targeting 30 million read pairs per sample.
180 Samples were split across multiple lanes when being run on the Illumina HiSeq, once
181 the data was received the samples were concatenated to have a single file for paired-
182 end analysis.

183

184 **RNA-Sequencing Data Processing**

185 Sequence quality of reads was assessed using FastQC (v0.11.3, Babraham). Low-
186 quality bases were trimmed from sequencing reads using Trimmomatic (v0.33; Bolger et

187 al., 2014). After trimming, reads of length longer than 36 bases were retained. The
188 average quality score was greater than 30 at each base position and sequencing depth
189 was in range of 60–80 million reads. RNA-Seq sequencing reads from all samples were
190 mapped to the mouse genome (version GRCm38.p6) using ultrafast RNA-Seq aligner
191 STAR (v2.5.3; Dobin et al., 2013). To measure human APOE gene expression, we
192 created a chimeric mouse genome by concatenating the human APOE gene sequence
193 (human chromosome 19:44905754-44909393) into the mouse genome (GRCm38.p6)
194 as a separate chromosome (referred to as chromosome 21 in chimeric mouse genome).
195 Subsequently, we added gene annotation of the human APOE gene into the mouse
196 gene annotation file. Additionally, we have also introduced annotation for novel Trem2
197 isoform in mouse gene annotation file (GTF file), that is identical to primary transcript
198 but truncated exon2 by 119 bp from its start position(20). Afterward, a STAR index was
199 built for this chimeric mouse genome sequence for alignment, then STAR aligner output
200 coordinate-sorted BAM files for each sample mapped to the chimeric mouse genome
201 using this index. Gene expression was quantified in two ways, to enable multiple
202 analytical methods: transcripts per million (TPM) using RSEM (v1.2.31; Li and Dewey,
203 2011), and raw read counts using HTSeq-count (v0.8.0; Anders et al., 2015).

204

205 **NanoString transcriptomic analysis**

206 The NanoString Mouse AD gene expression panel (21) was used for gene expression
207 profiling on the nCounter platform (NanoString, Seattle, WA). Mouse NanoString gene
208 expression data were collected from brain hemisphere homogenates at 4, 8 and 12
209 months of age for both sexes, from approximately six animals per group. The nSolver

210 software was used for generating NanoString gene expression counts. Normalization
211 was done by dividing counts within a lane by geometric mean of the designated
212 housekeeping genes from the same lane. Next, normalized count values were log-
213 transformed and corrected for potential batch effects using ComBat (45).

214 Next, we determined the effects of each factor (sex and genetic variants) by fitting a
215 multiple regression model using the lm function in R as (46):

216
$$\log(\text{expr}) = \beta_0 + \sum_i \beta_i + \varepsilon$$

217 The sum is over sex (male), and all genetic variants (5xFAD, LOAD1, *Abca7**A1527G,
218 *Ceacam1*KO, *Mthfr**677C>T, *Shc2**V433M, *Slc6a17**P61P, *Clasp2**L163P,
219 *Sorl1**A528T, *Meox2* KO (HET), *Snx1**D465N, *Plcg2**M28L, *Mtmr4**V297G) used in this
220 study. The $\log(\text{expr})$ represents log-transformed normalized count from the NanoString
221 gene expression panel (21). In this formulation, B6J was used as the control for the
222 5xFAD and LOAD1 mouse models, whereas LOAD1 served as controls for GWAS-
223 based models in order to estimate the effects of individual variants. Separate models
224 were run for each age cohort.

225

226 **Human AMP-AD Gene Co-expression Modules**

227 Data for 30 human brain co-expression modules from the Accelerating Medicines
228 Partnership for Alzheimer's Disease (AMP-AD) studies were obtained from the Synapse
229 data repository (<https://www.synapse.org/#/Synapse:syn11932957/tables/>; SynapseID:
230 syn11932957). Briefly, Wan et al. (2020) (22) identified 30 human brain co-expression
231 modules based on meta-analysis of differential gene expression from seven distinct

232 brain regions in postmortem samples obtained from three independent LOAD cohorts
233 (47-49). These 30 human AMP-AD modules were further classified into five distinct
234 Consensus Clusters that describe the major functional alterations observed in human
235 LOAD (21, 22).

236 **Human AD Subtypes**

237 Milind et al. (50), integrated post-mortem brain co-expression data from the frontal
238 cortex, temporal cortex, and hippocampus brain regions and stratified patients into
239 different molecular subtypes based on molecular profiles in three independent human
240 LOAD cohorts (ROS/MAP, Mount Sinai Brain Bank, and Mayo Clinic) (47-49). Two
241 distinct LOAD subtypes were identified in the ROSMAP cohort, three LOAD subtypes
242 were identified in the Mayo cohort, and two distinct LOAD subtypes were identified in
243 the MSBB cohort. Similar subtype results were observed in each cohort, with LOAD
244 subtypes found to primarily differ in their inflammatory response based on differential
245 expression analysis (50). Data for LOAD subtypes were obtained through AD
246 Knowledge Portal (51) (<https://www.synapse.org/#!Synapse:syn23660885>).

247 **Mouse-human expression comparison**

248 To assess the human disease relevance of LOAD risk variants in mice, we determined
249 the extent to which changes due to genetic perturbations in mice matched those
250 observed in human AD cases versus controls. For each mouse perturbation, we tested
251 each of the 30 AMP-AD modules using mouse-human gene homologs and limited to the
252 genes both present in the module and the NanoString Mouse AD Panel, which was
253 designed to optimize coverage of these modules (21). Pearson's correlations were

254 computed for changes in gene expression (log fold change) across all module genes for
255 human AD cases versus controls (22) against the effect of each mouse perturbation (β)
256 as measured above (21, 46). We used the cor.test function in R as:

$$\text{cor.test}(\text{Log}_2\text{FC}(\text{AD}/\text{control}), \beta)$$

257 from which we obtained the correlation coefficient and the significance level (p-value) of
258 the correlation for each perturbation-module pair. Log₂FC values for human transcripts
259 were obtained through the AD Knowledge Portal (51)
260 (<https://www.synapse.org/#!Synapse:syn14237651>).

261

262 To determine the similarity of each mouse perturbation and the LOAD subtypes, we
263 computed the Pearson's correlation between gene expression changes (log fold
264 change) in human AD subtype cases versus controls (50) and the effect of each mouse
265 perturbation (β) across genes on the NanoString panel (21) using cor.test function in R
266 as:

$$\text{cor.test}(\text{Log}_2\text{FC}(\text{LOADSubtype}/\text{control}), \beta)$$

267 from which we obtained both the correlation coefficient and the significance level (p-
268 value) of the correlation. Here, Log₂FC(LOAD Subtype/control) represented the log-fold
269 change in gene expression in each subtype versus control and the correlation spanned
270 all homologous genes on the NanoString AD Mouse Panel.

271 We plotted the correlation results using the ggplot2 package in R. Framed circles were
272 used to denote significant ($p < 0.05$) positive (blue) and negative (red) Pearson's

273 correlation coefficients. The color intensity and size of the circles were sized
274 proportional to Pearson's correlation coefficient.

275

276 **Functional enrichment analysis**

277 Gene set enrichment analysis (GSEA) was used based on the method proposed by
278 Subramanian, et. al (52) as implemented in the R Bioconductor package clusterProfiler
279 (53) for the Reactome pathway library and Gene Ontology terms. Nanostring Mouse AD
280 Panel genes (21) were ranked based on regression coefficients calculated for each
281 factor and GSEA was performed on this ranked dataset. The use of GSEA ensured that
282 pathway effects were assessed relative to the genes on the panel, as the panel was
283 enriched for AD-relevant genes. Enrichment scores for all Reactome pathways and GO
284 terms were computed to compare relative expression on the pathway level between
285 each factor estimate from the regression models. We also performed Gene Ontology
286 term enrichment analyses using enrichGO function in the clusterProfiler (53).
287 Significance of pathways and GO terms were determined using false discovery rate
288 (FDR) multiple testing correction (FDR adjusted $p < 0.05$).

289 **Results**

290 **Validation of novel models**

291 Sequence analysis demonstrated that the appropriate sequence variants had been
292 established, see Supplemental Figure 1A. Quantification of transcript counts in
293 homozygous LOAD models relative to littermate wild-type controls showed no
294 significant differences in expression levels (Supplemental Figure 1B).

295 **LOAD associated risk variants showed age-dependent concordance with distinct
296 human co-expression modules**

297 We assess the relevance of each LOAD risk variant to the molecular changes observed
298 in human disease (47-49, 54) by correlating the effect of each mouse perturbation (sex
299 and genetic variants) with 30 human AMP-AD brain gene co-expression modules (22)
300 using the NanoString Mouse AD Panel (21). We analyzed mouse NanoString data from
301 brain hemispheres at different ages (4 and 12 months) to assess the correlation with
302 human post-mortem co-expression modules as animals aged.

303 The amyloidogenic 5xFAD transgenic model exhibited significant positive correlations
304 ($p < 0.05$) with several human co-expression modules in Consensus Cluster B enriched
305 for immune-system related pathways at both four and 12 months but showed significant
306 positive correlations ($p < 0.05$) with neurodegeneration associated human co-
307 expression modules in Consensus Cluster C only at 12 months (Figure 2A-B). However,
308 we did not observe significant positive correlations between effect of 5xFAD and human
309 co-expression modules in Consensus Cluster A, D, and E, validating that the 5xFAD

310 strain is primarily a model of amyloidosis and does not fully recapitulate late-onset AD
311 changes.

312 At 4 months, among all LOAD risk variants, only *Slc6a17*P61P* showed significant
313 positive correlations ($p<0.05$) with the immune related modules (Figure 2A). The
314 *Abca7*A1527G*, *Sorl1*A528T*, and *Mtmr4*V297G* risk variants exhibited significant
315 positive correlations ($p<0.05$) with extracellular matrix organization-related modules in
316 Consensus Cluster A (Figure 2A). The *Ceacam1* KO, *Plcg2*M28L*, *Meox2* KO(HET),
317 and *Mtmr4*V297G* strains exhibited significant positive correlations ($p<0.05$) with cell
318 cycle and myelination-associated modules in Consensus Cluster D and cellular stress-
319 response associated modules in Consensus Cluster E (Figure 2A). *Abca7*A1527G* and
320 *Sorl1*A528T* variants generated significant positive correlations ($p<0.05$) with cellular
321 stress-response associated modules in Consensus Cluster E.

322 We observed more significant correlations between LOAD risk variants and human
323 AMP-AD modules at 12 months for most strains. The *Abca7*A1527G* variant had the
324 most pronounced correlations with LOAD expression changes, exhibiting significant
325 positive correlations ($p<0.05$) with immune related modules in Consensus Cluster B, cell
326 cycle and myelination-associated modules in Consensus Cluster D, and cellular stress-
327 response associated modules in Consensus Cluster E (Figure 2B). The *Mthfr*677C>T*
328 variant exhibited significant positive correlations ($p<0.05$) with cell cycle and
329 myelination-associated modules in Consensus Cluster D and cellular stress-response
330 associated modules in Consensus Cluster E (Figure 2B). *Sorl1*A528T* led to significant
331 positive correlations ($p<0.05$) with several human co-expression modules in Consensus
332 Cluster C enriched for neuronal related pathways (Figure 2B). The *Plcg2*M28L* variant

333 had significant positive correlations ($p<0.05$) with human co-expression modules in
334 Consensus Cluster C enriched for neuronal related pathways and with cell cycle and
335 myelination-associated modules in Consensus Cluster D (Figure 2B). *Ceacam1* KO,
336 *Slc6a17*P61P*, and *Shc2*V433M* exhibited significant positive correlations ($p<0.05$) with
337 human co-expression modules in Consensus Cluster B enriched for transcripts
338 associated with immune related pathways in multiple brain regions, while *Clasp2*L163P*
339 and *Sor1*A528T* led to significant positive correlations ($p<0.05$) with human co-
340 expression module in Consensus Cluster B enriched for immune related pathways in
341 cerebellum and frontal pole brain region, respectively (Figure 2B). The *Mtmt4*V297G*
342 variants exhibited significant positive correlations ($p<0.05$) with cell cycle and
343 myelination-associated modules in Consensus Cluster D and cellular stress-response
344 associated modules in Consensus Cluster E (Figure 2B). *Snx1*D465N* also exhibited
345 significant positive correlation with cell-cycle and myelination-associated modules in
346 Consensus Cluster D (Figure 2B).

347 Overall, we observed LOAD risk variants in mice showed concordance with distinct
348 human co-expression modules, reflecting a different transcriptional response driven by
349 each LOAD risk variant. The associations between LOAD risk variants and human gene
350 co-expression modules increased with age. We note that models harboring late-onset
351 AD risk variants exhibited significant positive correlation with human modules in
352 Consensus Cluster A, D and E, which were not captured by 5XFAD strain, highlighting
353 the importance of using LOAD risk variants to fully capture LOAD molecular
354 pathologies.

355 We next assessed the similarities between variant effects in mice by comparing each
356 model to all other models. To identify LOAD risk variants driving similar transcriptional
357 responses in mice, we performed correlation between regression coefficients calculated
358 for each genetic variant at four and 12 months. At four months, effects of the LOAD1
359 construct (*APOE4* and *TREM2*R47H*) were weakly and positively correlated with effect
360 of 5xFAD transgene ($p < 0.05$), but this correlation diminished at 12 months (Figure 3A-
361 B). Effects of LOAD1 were also significantly positively correlated ($p < 0.05$) with
362 *Sorl1*A528T* and *Mtmr4*V297G* at four months, but this correlation diminished by 12
363 months (Figure 3A-B). Effects of *Abca7*A157G* and *Ceacam1* KO variants were weakly
364 correlated at four months ($p < 0.05$), and this correlation increased at 12 months (Figure
365 3A-B). Effects of *Shc2*V433M* and *Slc6a17*P161P* variants were also significantly
366 positively correlated at four months ($p < 0.05$) and became stronger with age (Figure
367 3A-B). Furthermore, effects of *Snx1*D465N*, *Plcg2*M28L*, and *Mtmr4*V297G* risk
368 variants were significantly positively correlated ($p < 0.05$) at 12 months. Similarly,
369 effects of the *Sorl1*A528T* and *Meox2* KO(HET) variants were significantly positively
370 correlated ($p < 0.05$) at 12 months (Figure 3A-B). In summary, we observed that LOAD
371 risk variants generally increased in similarity with age, supporting an age-dependent
372 role for these genetic factors. However, all strains did not converge on similar
373 transcriptional responses, suggesting distinct mechanisms of influence on LOAD risk.

374 **Pathway alterations varied by LOAD genetic perturbation**

375 To further elucidate the functional role of these LOAD risk variants in aged mice, we
376 performed Gene Set Enrichment Analysis (GSEA) (52) for the Reactome pathway
377 library for all 12 month samples. GSEA revealed upregulation of immune-related

378 pathways in the presence of multiple risk variants such as *Abca7**A1527G,
379 *Mthfr**677C>T, and *Snx1**D465N (Figure 3C, Supplementary Table S2), while neuronal-
380 associated pathways were downregulated in the presence of risk variants such as
381 *Abca7**A1527G, *Mthfr**677C>T, *Sorl1**A528T, *Plcg2**M28L, *Ceacam1* KO,
382 *Shc2**V433M, and *Slc6a17**P161P (Figure 3C, Supplementary Table S2). Extracellular
383 matrix organization pathway was downregulated in risk variants such as *Sorl1**A528T,
384 *Clasp2**L163P, *Meox2* KO(HET) and *LOAD1* but upregulated in the presence of risk
385 variant such as *Abca7**A1527G, *Snx1**D465N and *Mthfr**677C>T (Figure 3C,
386 Supplementary Table S2). Cell cycle pathway was downregulated in the presence of
387 *Mthfr**677C>T, *Ceacam1* KO, *Shc2**V433M, and *Slc6a17**P161P, while upregulated in
388 the presence of other risk variants such as *Abca7**A1527G, *Clasp2**L163P, *Meox2*
389 KO(HET), and *Sorl1**A528T (Figure 3C, Supplementary Table S2). Cellular response to
390 heat stress pathway were downregulated in the presence of *Snx1**D465N,
391 *Shc2**V433M, and *Slc6a17**P161P, but upregulated in the presence of risk variants
392 such as *Abca7**A1527G, *Mthfr**677C>T, *Sorl1**A528T, *Plcg2**M28L, *Ceacam1* KO
393 (Figure 3C, Supplementary Table S2). Overall, we observed that multiple AD-
394 associated pathways were upregulated in the presence of some LOAD risk variants but
395 downregulated in presence of another set of risk variants. This suggest that distinct risk
396 variants perturb distinct molecular changes associated with LOAD in aging mice.

397 **Age-dependent pathway effects driving AMP-AD module correlations in ABCA7,
398 MTHFR, SORL1, and PLCG2 mouse models**

399 In our mouse-human correlation analysis, the effects of multiple LOAD variants
400 (*Abca7**A1527G, *Mthfr**677C>T, *Sorl1**A528T, and *Plcg2**M28L) correlated with human

401 AMP-AD co-expression modules in age-dependent and pathway-specific manner. To
402 further identify the AD-relevant biological processes associated with these selected
403 LOAD risk variants (*Abca7**A1527G, *Mthfr**677C>T, *Sorl1**A528T, and *Plcg2**M28L) we
404 adopted two approaches. First, we performed GSEA (52) on the NanoString Mouse AD
405 Panel genes ranked based on regression coefficients calculated for each factor at 12
406 months and identified significantly enriched Gene Ontology terms (padj < 0.05). Next,
407 we isolated the homologous genes exhibiting directional coherence between the effects
408 of selected genetic risk variants (*Abca7**A1527G, *Mthfr**677C>T, *Sorl1**A528T, and
409 *Plcg2**M28L) and changes in expression in human AMP-AD co-expression modules at
410 12 months and performed Gene Ontology (GO) enrichment analysis. These subsets
411 represent the pathways that (1) are altered in each mouse model, and (2) drive the
412 mouse-human module associations. GO terms common to both enrichment tests were
413 then annotated to the modules in which they appear.

414 The *Abca7**A1527G variant showed significant negative correlations (p < 0.05) with
415 immune-related modules in Consensus Cluster B, cell cycle and myelination-associated
416 modules in Consensus Cluster D, and cellular stress-response associated modules in
417 Consensus Cluster E (Figure 4A) at four months. However, at 12 months these effects
418 were reversed and the variant exhibited significant positive correlations (p < 0.05) with
419 several immune-related modules in Consensus Cluster B, cell cycle and myelination-
420 associated modules in Consensus Cluster D, and cellular stress-response associated
421 modules in Consensus Cluster E (Figure 4A). Biological processes such as 'de novo'
422 protein folding, 'de novo' post-translational protein folding, granulocyte migration,
423 cytokine-mediated signaling pathway, insulin receptor signaling pathway, and neutrophil

424 migration had increased expression in the presence of *Abca7*A1527G* (Figure 4A,
425 Supplementary Table S3). The correlation between the *Abca7*A1527G* variant and the
426 immune-associated human co-expression modules (Consensus Cluster B) (Figure 4A,
427 Supplementary Table S5) was driven by genes enriched for granulocyte migration,
428 cytokine-mediated signaling pathway, and neutrophil migration (including *Pecam1*,
429 *Cd74*, *Trem2*, *Trem1*, *Csf1*, *Il1rap*, and *Ceacam1*) (Supplementary Table S4). As
430 drivers of the correlations between *Abca7*A1527G* and Consensus Cluster E modules
431 (Figure 4A, Supplementary Table S5), we found genes enriched in 'de novo' protein
432 folding and 'de novo' post-translational protein folding (e.g., *Hspa2*, *Hspa1b*, and
433 *Dnajb4*) (Supplementary Table S4). Insulin receptor signaling was enriched in genes
434 (*Foxo1*, *Prkcq*, and *Bcar3*) (Supplementary Table S4) driving the correlation between
435 *Abca7*A1527G* and modules in Consensus Cluster D (Figure 4A, Supplementary Table
436 S5).

437 A similar reversal of effects with age was observed for *MTHFR*. The *Mthfr*677C>T*
438 variants exhibited significant negative correlations ($p < 0.05$,) with several cell cycle and
439 myelination-associated modules in Consensus Cluster D and cellular stress-response
440 associated modules in Consensus Cluster E (Figure 4B) at four months. At 12 months,
441 these correlations were positive (Figure 4B). GSEA of the *Mthfr*677C>T* variant
442 identified significant enrichments of response to unfolded protein, positive regulation of
443 cellular catabolic process, negative regulation translation, positive regulation of GTPase
444 activity, B cell mediated immunity, and purine ribonucleotide metabolic process (Figure
445 4B, Supplementary Table S3). B cell mediated immunity and negative regulation
446 translation biological processes were also enriched in genes (including *C1qa*, *C1qb*,

447 *Cd81*, and *Zfp36*) (Supplementary Table S4) with directional coherence for
448 *Mthfr*677C>T* and LOAD effects in Consensus Cluster B (Figure 4B, Supplementary
449 Table S5). Correlations between the *Mthfr*677C>T* variant and Consensus Cluster D
450 changes (Figure 4B, Supplementary Table S5) were driven by genes enriched for
451 positive regulation of cellular catabolic process and positive regulation of GTPase
452 activity (including *Bin1*, *Picalm*, *Dock10*, and *Psen1*) (Supplementary Table S4).
453 Biological processes such as response to unfolded protein and purine ribonucleotide
454 metabolic process were enriched in genes (e.g., *Hspa1b*, *Hspf1*, *Hsp90aa1*, *Snca*, and
455 *Atp5h*) (Supplementary Table S4) underlying the correlations between *Mthfr*677C>T*
456 and Consensus Cluster E effects (Figure 4B, Supplementary Table S5).
457 The *Plcg2*M28L* variant caused significant positive correlations ($p < 0.05$) with
458 neuronal-related modules in Consensus Cluster C and cell-cycle associated modules in
459 Consensus Cluster D at both four and 12 months (Figure 4C). Enriched biological
460 processes included postsynapse organization, regulation of axonogenesis, cognition,
461 locomotory behavior, glial cell development, and regulation of protein catabolic process
462 (Figure 4C, Supplementary Table S3). Biological processes such as postsynapse
463 organization, cognition, and locomotory behavior were enriched in genes (*Mapt*,
464 *Gabrb3*, *App*, *Ppp3cb*, and *Slc8a2*) (Supplementary Table S4) with directional
465 coherence for *Plcg2*M28L* human AD changes in Consensus Cluster C (Figure 4C,
466 Supplementary Table S5). Biological processes such as regulation of axonogenesis,
467 glial cell development and regulation of protein catabolic process were enriched in
468 genes (*Snx1*, *Picalm*, *Psen1*, *Mag*, *Foxo1*, and *Kif13b*) (Supplementary Table S4) drove

469 the correlations between *Plcg2*M28L* and Consensus Cluster D effects (Figure 4C,
470 Supplementary Table S5).

471 Aged *Sorl1*A528T* mice (12 months) showed positive correlations ($p < 0.05$) with
472 neuronal-associated modules in Consensus Cluster C that were not apparent at four
473 months of age (Figure 4D). Enriched processes included the downregulation of synapse
474 organization, synapse assembly, regulation of synaptic plasticity and regulation of
475 epithelial cell proliferation, and the increased expression of negative regulation of
476 transporter activity and SNARE complex assembly genes. These processes drove the
477 correlation between the *SORL1* variant and LOAD effects in Consensus Cluster C
478 modules (Figure 4D, Supplementary Table S5), where GSEA for genes with directional
479 coherence generated synapse organization, synapse assembly, regulation of synaptic
480 plasticity, upregulation of negative regulation of transporter activity, and SNARE
481 complex assembly (including the genes *Mapt*, *App*, *Gabrb3*, *Calm3*, *Snca*, *Cdkl5*, *Vgf*,
482 and *Ywhag*) (Supplementary Table S4).

483 Overall, we found that late-onset genetic factors in mice generally led to both more
484 abundant changes with age and increasingly disease-relevant pathway changes with
485 age.

486 **Alignment of mouse models with AD Subtypes**

487 Postmortem transcriptomics from AMP-AD and similar studies have enabled the
488 partitioning of AD cases into potential disease subtypes. These studies have often
489 stratified AD subjects into inflammatory and non-inflammatory subtypes (50, 55, 56). To
490 determine if our mouse models preferentially resembled putative AD subtypes, we

491 correlated the effect of each variant with inflammatory and non-inflammatory subtypes
492 associated with LOAD (50) in the ROSMAP, MSBB, and Mayo cohorts (47-49).

493 We found that at four months of age, variants did stratify by human subtypes. The
494 effects of *Abca7**A1527G, *Sorl1**A528T, and *Plcg2**M28L were positively correlated ($p <$
495 0.05) with the inflammatory subtypes across all three cohorts, while *Mtmt4**V297G was
496 positively correlated ($p < 0.05$) with ROSMAP and MSBB inflammatory subtypes
497 (Figure 5). In contrast, *Shc2**V433M and *Clasp2**L163P exhibited significant positive
498 correlations ($p < 0.05$) with non-inflammatory subtypes across all three cohorts (Figure
499 5).

500 At 12 months, the correlations between *Abca7**A1527G effects and the inflammatory
501 subtypes across all three cohorts increased ($p < 0.05$) and the *Ceacam1* KO variant had
502 become positively correlated ($p < 0.05$) with the inflammatory subtypes across all three
503 cohorts (Figure 5). On other hand LOAD1, *Meox2* KO (HET), and *Snx1**D465N were
504 positive correlated ($p < 0.05$) with non-inflammatory subtypes across all three cohorts
505 (Figure 5). Three strains, *Sorl1**A528T, *Plcg2**M28L, and *Mtmt4**V297G, which were
506 positively correlated ($p < 0.05$) with inflammatory subtypes at four months, transitioned
507 to correlation ($p < 0.05$) with non-inflammatory subtypes at 12 months (Figure 5). These
508 results are in concordance with our findings that *Abca7**A1527G was significantly
509 correlated with immune related human modules and were enriched for immune
510 associated biological processes (Figure 4A), while *Sorl1**A528T and *Plcg2**M28L
511 variants were significantly correlated with neuronal related human modules and
512 enriched for neuronal associated biological processes (Figure 4C-D). Overall, these
513 findings suggest that different mouse strains may provide better models for distinct AD

514 subtypes, and that risk for these subtypes may be influenced by distinct AD genetic
515 factors.

516

517 **Discussion**

518 In this study, we have performed gene expression screening of new knock-in mouse
519 models harboring candidate genetic variants for late-onset Alzheimer's disease. Our
520 ultimate goal is to provide the research community and therapeutic development
521 programs with improved preclinical models of LOAD, suitable for preclinical testing of
522 therapeutics that target molecular processes contributing to LOAD origins and
523 progression. By basing these models on human genetics, we also provide a preliminary
524 functional characterization of possible disease-relevant effects from the candidate
525 genetic variants.

526 Notable results include the finding that many AD-related pathways, modules, and
527 processes are affected by the introduction of late-onset variants. However, the changes
528 were not consistent across strains, suggesting that different genetic loci contribute to
529 distinct AD-related dysfunction (Figures 2 and 4). For example, we determined that the
530 *SORL1* risk factor impinges primarily on AD-relevant synaptic gene expression, while
531 the *ABCA7* variant broadly affected non-neuronal gene expression including immune,
532 protein folding, and metabolic pathways. Meanwhile the *PLCG2* variant primarily
533 affected genes that were annotated to behavior, synapses, and glial cells and similarly
534 changed in human LOAD. We note that a transgenic model harboring familial AD
535 mutations in *App* and *Psen1* exhibited different gene expression changes focused on an

536 acute inflammatory response. Finally, the limited effects of variants like *Clasp2***L163P*
537 suggest that the specific variant is not disease-associated, its AD-related effects are not
538 visible in the transcriptome, and/or it does not trigger changes until later age. This
539 diversity of effects across mouse strains provides specific models to study different
540 aspects of AD biology and paves the way for precision preclinical testing of candidate
541 therapeutics that target these pathways.

542 Preliminary analysis further suggested that the different loci contribute in an age-
543 dependent manner (Figures 2 and 4) and model putative disease subtypes (Figure 5).
544 However, validation of such partitioning of genetic risk is difficult in human studies due
545 to postmortem tissue sampling and limited cohort size for multi-omic data (50). We also
546 found that the gene expression effects of LOAD variant knock-ins generally increased in
547 terms of magnitude and disease relevance as mice aged from four to 12 months
548 (Figures 2 and 4). This finding supports the notion that LOAD genetic factors become
549 more relevant in an aging brain as they contribute to late-life disease risk.

550 We note that genetic variants from frequently associated loci tended to produce the
551 most consistent AD-relevant phenotypes (e.g. SORL1, ABCA7, PLCG2) although many
552 of the more exploratory variants also generated AD-like expression signatures across
553 multiple modules in aging mice (e.g. CEACAM1, MTMR4) (Figure 2). Recent advances
554 in variant inference and functional prediction, including many noncoding variants and
555 major GWAS loci, will enable the next round of models to address additional GWAS loci
556 without candidate coding variants, such as the *EPHA1* locus (25). Furthermore, many
557 AD-associated loci suffered from insufficient homology in mice (e.g. *MS4A4/MS4A6E*,

558 *INPP5D, CR1*), which will be addressed by ongoing efforts to humanize these relevant
559 regions of the mouse genome (Benzow K, *et al.*, this issue).

560 This study had several caveats that need to be noted. Most importantly, aging is the
561 strongest risk factor for late-onset AD (57) and it needs to be recognized that mice at 12
562 months of age are roughly equivalent to humans at 38-47 years of age. Therefore, our
563 transcriptomic comparison to post-mortem AMP-AD clinical samples, while practical, is
564 unrealistic and we are now testing those models that best approximated human
565 transcriptional changes at 12 months to at least 24 months of age (31, 58) (Oblak A, *et*
566 *al.*, this issue). Likewise, recent studies (as well as our pilot data) have shown that
567 proteomics is a more reliable means to correlate models to disease than transcriptomics
568 (59, 60) (Oblak A, *et al.*, this issue), so we will be using proteomic analysis on prioritized
569 models.

570 The Trem2*R47H allele in the LOAD1 base model used here has been shown to cause
571 an ~2-fold decrease in *Trem2* expression (61). However, our analysis technique
572 factors out allele effects individually so that we are confident of our results. We have
573 since created a new model (JAX #33781) that we have shown has normal Trem2
574 transcript levels and that will replace the allele used here in future projects.

575 In this study, we have focused on introducing coding variants on a LOAD1 background
576 (20), aged the mice to middle age (12 months), and characterized the animals using a
577 gene expression panel developed for rapid comparison to recent human study results
578 (21). In future work we will extend our approach to model candidate noncoding variants
579 at LOAD genetic loci without strong candidate coding SNPs, humanizing loci and
580 regulatory regions when necessary (Benzow K, *et al.*, this issue). We will breed the

581 most promising variants presented here – *Abca7***A1527G*, *Sorl1***A528T*, *Mthfr***677C>T*,
582 and *Plcg2***M28L* – to a genetic background with humanized A β peptide (the LOAD2
583 strain) and age cohorts beyond 18 months to assess additional disease-related
584 progression with advanced age. These select strains will be assessed in depth with
585 multiple genome-scale omics measures (RNA-seq, tandem mass tag proteomics,
586 metabolomics), plasma biomarkers, *in vivo* imaging, neuropathology and behavioral
587 metrics. Each assay will be optimized for translational value. We will also introduce
588 modifiable risk factors through unhealthy diets and exposure to common environmental
589 toxicants. At the same time, all models are distributed without use restrictions to enable
590 all researchers to obtain, study, and modify these models as desired.

References

- 591 1. De Jager PL, Shulman JM, Chibnik LB, Keenan BT, Raj T, Wilson RS, et al. A
592 genome-wide scan for common variants affecting the rate of age-related cognitive
593 decline. *Neurobiol Aging*. 2012;33(5):1017 e1-15.
- 594 2. Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. Genetic
595 meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates
596 Abeta, tau, immunity and lipid processing. *Nat Genet*. 2019;51(3):414-30.
- 597 3. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et
598 al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for
599 Alzheimer's disease. *Nat Genet*. 2013;45(12):1452-8.
- 600 4. Frisoni GB, Altomare D, Thal DR, Ribaldi F, van der Kant R, Ossenkoppele R, et
601 al. The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. *Nat
602 Rev Neurosci*. 2021.
- 603 5. Karch CM, Goate AM. Alzheimer's disease risk genes and mechanisms of
604 disease pathogenesis. *Biol Psychiatry*. 2015;77(1):43-51.
- 605 6. Visscher PM, Yengo L, Cox NJ, Wray NR. Discovery and implications of
606 polygenicity of common diseases. *Science*. 2021;373(6562):1468-73.
- 607 7. Martens YA, Zhao N, Liu CC, Kanekiyo T, Yang AJ, Goate AM, et al. ApoE
608 Cascade Hypothesis in the pathogenesis of Alzheimer's disease and related dementias.
609 *Neuron*. 2022;110(8):1304-17.
- 610 8. Khani M, Gibbons E, Bras J, Guerreiro R. Challenge accepted: uncovering the
611 role of rare genetic variants in Alzheimer's disease. *Mol Neurodegener*. 2022;17(1):3.
- 612 9. Lappalainen T, MacArthur DG. From variant to function in human disease
613 genetics. *Science*. 2021;373(6562):1464-8.

614 10. King A. The search for better animal models of Alzheimer's disease. *Nature*.
615 2018;559(7715):S13-S5.

616 11. Onos KD, Sukoff Rizzo SJ, Howell GR, Sasner M. Toward more predictive
617 genetic mouse models of Alzheimer's disease. *Brain Res Bull*. 2016;122:1-11.

618 12. Scearce-Levie K, Sanchez PE, Lewcock JW. Leveraging preclinical models for
619 the development of Alzheimer disease therapeutics. *Nat Rev Drug Discov*.
620 2020;19(7):447-62.

621 13. Ertekin-Taner N. Genetics of Alzheimer's disease: a centennial review. *Neurol
622 Clin*. 2007;25(3):611-67, v.

623 14. Van Cauwenbergh C, Van Broeckhoven C, Sleegers K. The genetic landscape
624 of Alzheimer disease: clinical implications and perspectives. *Genet Med*.
625 2016;18(5):421-30.

626 15. Sierksma A, Escott-Price V, De Strooper B. Translating genetic risk of
627 Alzheimer's disease into mechanistic insight and drug targets. *Science*.
628 2020;370(6512):61-6.

629 16. Oblak AL, Forner S, Territo PR, Sasner M, Carter GW, Howell GR, et al. Model
630 organism development and evaluation for late-onset Alzheimer's disease: MODEL-AD.
631 *Alzheimers Dement (N Y)*. 2020;6(1):e12110.

632 17. Gulbranson DR, Ho K, Yu GQ, Yu X, Das M, Shao E, et al. Phenotypic
633 differences between the Alzheimer's disease-related hAPP-J20 model and
634 heterozygous Zbtb20 knockout mice. *eNeuro*. 2021.

635 18. Jankowsky JL, Zheng H. Practical considerations for choosing a mouse model of
636 Alzheimer's disease. *Mol Neurodegener*. 2017;12(1):89.

637 19. Sasaguri H, Nilsson P, Hashimoto S, Nagata K, Saito T, De Strooper B, et al.
638 APP mouse models for Alzheimer's disease preclinical studies. *EMBO J*.
639 2017;36(17):2473-87.

640 20. Kotredes KP, Oblak A, Pandey RS, Lin PB, Garceau D, Williams H, et al.
641 Uncovering Disease Mechanisms in a Novel Mouse Model Expressing Humanized
642 APOEpsilon4 and Trem2*R47H. *Front Aging Neurosci*. 2021;13:735524.

643 21. Preuss C, Pandey R, Piazza E, Fine A, Uyar A, Perumal T, et al. A novel
644 systems biology approach to evaluate mouse models of late-onset Alzheimer's disease.
645 *Mol Neurodegener*. 2020;15(1):67.

646 22. Wan YW, Al-Ouran R, Mangleburg CG, Perumal TM, Lee TV, Allison K, et al.
647 Meta-Analysis of the Alzheimer's Disease Human Brain Transcriptome and Functional
648 Dissection in Mouse Models. *Cell Rep*. 2020;32(2):107908.

649 23. Bis JC, Jian X, Kunkle BW, Chen Y, Hamilton-Nelson KL, Bush WS, et al. Whole
650 exome sequencing study identifies novel rare and common Alzheimer's-Associated
651 variants involved in immune response and transcriptional regulation. *Mol Psychiatry*.
652 2020;25(8):1859-75.

653 24. Bellenguez C, Kucukali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N, et
654 al. New insights into the genetic etiology of Alzheimer's disease and related dementias.
655 *Nat Genet*. 2022;54(4):412-36.

656 25. Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, et al. Common
657 variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset
658 Alzheimer's disease. *Nat Genet*. 2011;43(5):436-41.

659 26. Lee JH, Barral S, Reitz C. The neuronal sortilin-related receptor gene SORL1
660 and late-onset Alzheimer's disease. *Curr Neurol Neurosci Rep.* 2008;8(5):384-91.

661 27. Qureshi YH, Berman DE, Marsh SE, Klein RL, Patel VM, Simoes S, et al. The
662 neuronal retromer can regulate both neuronal and microglial phenotypes of Alzheimer's
663 disease. *Cell Rep.* 2022;38(3):110262.

664 28. Simoes S, Guo J, Buitrago L, Qureshi YH, Feng X, Kothiyal M, et al. Alzheimer's
665 vulnerable brain region relies on a distinct retromer core dedicated to endosomal
666 recycling. *Cell Rep.* 2021;37(13):110182.

667 29. Young JE, Holstege H, Andersen OM, Petsko GA, Small SA. On the causal role
668 of retromer-dependent endosomal recycling in Alzheimer's disease. *Nat Cell Biol.*
669 2023;25(10):1394-7.

670 30. Vardarajan BN, Bruesegem SY, Harbour ME, Inzelberg R, Friedland R, St
671 George-Hyslop P, et al. Identification of Alzheimer disease-associated variants in genes
672 that regulate retromer function. *Neurobiol Aging.* 2012;33(9):2231 e15- e30.

673 31. Oblak AL, Kotredes KP, Pandey RS, Reagan AM, Ingraham C, Perkins B, et al.
674 *Plcg2(M28L) Interacts With High Fat/High Sugar Diet to Accelerate Alzheimer's*
675 *Disease-Relevant Phenotypes in Mice.* *Front Aging Neurosci.* 2022;14:886575.

676 32. Tsai AP, Dong C, Lin PB, Messenger EJ, Casali BT, Moutinho M, et al. *PLCG2* is
677 associated with the inflammatory response and is induced by amyloid plaques in
678 Alzheimer's disease. *Genome Med.* 2022;14(1):17.

679 33. Ferguson MC, Garland EM, Hedges L, Womack-Nunley B, Hamid R, Phillips JA,
680 3rd, et al. *SHC2* gene copy number in multiple system atrophy (MSA). *Clin Auton Res.*
681 2014;24(1):25-30.

682 34. Sakai R, Henderson JT, O'Bryan JP, Elia AJ, Saxton TM, Pawson T. The
683 mammalian *ShcB* and *ShcC* phosphotyrosine docking proteins function in the
684 maturation of sensory and sympathetic neurons. *Neuron.* 2000;28(3):819-33.

685 35. Hagglund MG, Hellsten SV, Bagchi S, Ljungdahl A, Nilsson VC, Winnergren S, et
686 al. Characterization of the transporterB0AT3 (*Slc6a17*) in the rodent central nervous
687 system. *BMC Neurosci.* 2013;14:54.

688 36. Iqbal Z, Willemsen MH, Papon MA, Musante L, Benevento M, Hu H, et al.
689 *Homozygous SLC6A17 mutations cause autosomal-recessive intellectual disability with*
690 *progressive tremor, speech impairment, and behavioral problems.* *Am J Hum Genet.*
691 2015;96(3):386-96.

692 37. Li MD, Burns TC, Morgan AA, Khatri P. Integrated multi-cohort transcriptional
693 meta-analysis of neurodegenerative diseases. *Acta Neuropathol Commun.* 2014;2:93.

694 38. Davies G, Armstrong N, Bis JC, Bressler J, Chouraki V, Giddaluru S, et al.
695 Genetic contributions to variation in general cognitive function: a meta-analysis of
696 genome-wide association studies in the CHARGE consortium (N=53949). *Mol*
697 *Psychiatry.* 2015;20(2):183-92.

698 39. Demange PA, Malanchini M, Mallard TT, Biroli P, Cox SR, Grotzinger AD, et al.
699 Investigating the genetic architecture of noncognitive skills using GWAS-by-subtraction.
700 *Nat Genet.* 2021;53(1):35-44.

701 40. O'Connell KMS, Ouellette AR, Neuner SM, Dunn AR, Kaczorowski CC. Genetic
702 background modifies CNS-mediated sensorimotor decline in the AD-BXD mouse model
703 of genetic diversity in Alzheimer's disease. *Genes Brain Behav.* 2019;18(8):e12603.

704 41. Hu Q, Teng W, Li J, Hao F, Wang N. Homocysteine and Alzheimer's Disease:
705 Evidence for a Causal Link from Mendelian Randomization. *J Alzheimers Dis.*
706 2016;52(2):747-56.

707 42. You M, Zhou X, Yin W, Wan K, Zhang W, Li C, et al. The Influence of MTHFR
708 Polymorphism on Gray Matter Volume in Patients With Amnestic Mild Cognitive
709 Impairment. *Front Neurosci.* 2021;15:778123.

710 43. Rovelet-Lecrux A, Legallic S, Wallon D, Flaman JM, Martinaud O, Bombois S, et
711 al. A genome-wide study reveals rare CNVs exclusive to extreme phenotypes of
712 Alzheimer disease. *Eur J Hum Genet.* 2012;20(6):613-7.

713 44. Soto I, Grabowska WA, Onos KD, Graham LC, Jackson HM, Simeone SN, et al.
714 Meox2 haploinsufficiency increases neuronal cell loss in a mouse model of Alzheimer's
715 disease. *Neurobiol Aging.* 2016;42:50-60.

716 45. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression
717 data using empirical Bayes methods. *Biostatistics.* 2007;8(1):118-27.

718 46. Pandey RS, Graham L, Uyar A, Preuss C, Howell GR, Carter GW. Genetic
719 perturbations of disease risk genes in mice capture transcriptomic signatures of late-
720 onset Alzheimer's disease. *Mol Neurodegener.* 2019;14(1):50.

721 47. Allen M, Carrasquillo MM, Funk C, Heavner BD, Zou F, Younkin CS, et al.
722 Human whole genome genotype and transcriptome data for Alzheimer's and other
723 neurodegenerative diseases. *Sci Data.* 2016;3:160089.

724 48. De Jager PL, Ma Y, McCabe C, Xu J, Vardarajan BN, Felsky D, et al. A multi-
725 omic atlas of the human frontal cortex for aging and Alzheimer's disease research. *Sci
726 Data.* 2018;5:180142.

727 49. Wang M, Beckmann ND, Roussos P, Wang E, Zhou X, Wang Q, et al. The
728 Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data in
729 Alzheimer's disease. *Sci Data.* 2018;5:180185.

730 50. Milind N, Preuss C, Haber A, Ananda G, Mukherjee S, John C, et al.
731 Transcriptomic stratification of late-onset Alzheimer's cases reveals novel genetic
732 modifiers of disease pathology. *PLoS Genet.* 2020;16(6):e1008775.

733 51. Greenwood AK, Montgomery KS, Kauer N, Woo KH, Leanza ZJ, Poehlman WL,
734 et al. The AD Knowledge Portal: A Repository for Multi-Omic Data on Alzheimer's
735 Disease and Aging. *Current Protocols in Human Genetics.* 2020;108(1):e105.

736 52. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et
737 al. Gene set enrichment analysis: a knowledge-based approach for interpreting
738 genome-wide expression profiles. *Proc Natl Acad Sci U S A.* 2005;102(43):15545-50.

739 53. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R Package for Comparing
740 Biological Themes Among Gene Clusters. *OMICS : a Journal of Integrative Biology.*
741 2012;16(5):284-7.

742 54. Mostafavi S, Gaiteri C, Sullivan SE, White CC, Tasaki S, Xu J, et al. A molecular
743 network of the aging human brain provides insights into the pathology and cognitive
744 decline of Alzheimer's disease. *Nat Neurosci.* 2018;21(6):811-9.

745 55. Neff RA, Wang M, Vatansever S, Guo L, Ming C, Wang Q, et al. Molecular
746 subtyping of Alzheimer's disease using RNA sequencing data reveals novel
747 mechanisms and targets. *Sci Adv.* 2021;7(2).

748 56. Zheng C, Xu R. Molecular subtyping of Alzheimer's disease with consensus non-
749 negative matrix factorization. *PLoS One.* 2021;16(5):e0250278.

750 57. Lau V, Ramer L, Tremblay ME. An aging, pathology burden, and glial
751 senescence build-up hypothesis for late onset Alzheimer's disease. *Nat Commun.*
752 2023;14(1):1670.

753 58. Reagan AM, Christensen KE, Graham LC, Bedwell AA, Eldridge K, Speedy R, et
754 al. The 677C > T variant in methylenetetrahydrofolate reductase causes morphological
755 and functional cerebrovascular deficits in mice. *J Cereb Blood Flow Metab.*
756 2022;42(12):2333-50.

757 59. Nelson RS, Dammer EB, Santiago JV, Seyfried NT, Rangaraju S. Brain Cell
758 Type-Specific Nuclear Proteomics Is Imperative to Resolve Neurodegenerative Disease
759 Mechanisms. *Front Neurosci.* 2022;16:902146.

760 60. Rayaprolu S, Higginbotham L, Bagchi P, Watson CM, Zhang T, Levey AI, et al.
761 Systems-based proteomics to resolve the biology of Alzheimer's disease beyond
762 amyloid and tau. *Neuropsychopharmacology.* 2021;46(1):98-115.

763 61. Xiang X, Piers TM, Wefers B, Zhu K, Mallach A, Brunner B, et al. The Trem2
764 R47H Alzheimer's risk variant impairs splicing and reduces Trem2 mRNA and protein in
765 mice but not in humans. *Mol Neurodegener.* 2018;13(1):49.

766 62. Tallquist MD, Soriano P. Epiblast-restricted Cre expression in MORE mice: a tool
767 to distinguish embryonic vs. extra-embryonic gene function. *Genesis.* 2000;26(2):113-5.

768

769 **Acknowledgements**

770 We gratefully acknowledge the contribution of Genome Technology core and Candice
771 Baker and Kim Martens in the Genetic Engineering Technologies Service at The
772 Jackson Laboratory for expert assistance with the work described in this publication.
773 The results published here are in whole or in part based on data obtained from the AD
774 Knowledge Portal (<https://adknowledgeportal.org>). Study data were provided by the
775 Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago. Data
776 collection was supported through funding by NIA grants P30AG10161 (ROS),
777 R01AG15819 (ROSMAP; genomics and RNAseq), R01AG17917 (MAP), R01AG36836
778 (RNAseq), the Illinois Department of Public Health (ROSMAP), and the Translational
779 Genomics Research Institute (genomic). Additional phenotypic data can be requested
780 at www.radc.rush.edu. Mount Sinai Brain Bank data were generated from postmortem
781 brain tissue collected through the Mount Sinai VA Medical Center Brain Bank and were

782 provided by Dr. Eric Schadt from Mount Sinai School of Medicine. The Mayo RNAseq
783 study data was led by Nilüfer Ertekin-Taner, Mayo Clinic, Jacksonville, FL as part of the
784 multi-PI U01 AG046139 (MPIs Golde, Ertekin-Taner, Younkin, Price). Samples were
785 provided from the following sources: The Mayo Clinic Brain Bank. Data collection was
786 supported through funding by NIA grants P50 AG016574, R01 AG032990, U01
787 AG046139, R01 AG018023, U01 AG006576, U01 AG006786, R01 AG025711, R01
788 AG017216, R01 AG003949, NINDS grant R01 NS080820, CurePSP Foundation, and
789 support from Mayo Foundation. Study data includes samples collected through the Sun
790 Health Research Institute Brain and Body Donation Program of Sun City, Arizona. The
791 Brain and Body Donation Program was supported by the National Institute of
792 Neurological Disorders and Stroke (U24 NS072026 National Brain and Tissue Resource
793 for Parkinson's Disease and Related Disorders), the National Institute on Aging (P30
794 AG19610 Arizona Alzheimer's Disease Core Center), the Arizona Department of Health
795 Services (contract 211002, Arizona Alzheimer's Research Center), the Arizona
796 Biomedical Research Commission (contracts 4001, 0011, 05-901 and 1001 to the
797 Arizona Parkinson's Disease Consortium), and the Michael J. Fox Foundation for
798 Parkinson's Research.

799 **Conflict of Interest**

800 The authors declare that this research was conducted in the absence of any commercial
801 or financial relationships that could be construed as a potential conflict of interest.

802 **Funding Sources**

803 The IU/JAX/PITT MODEL-AD Center was supported through funding by NIA grant
804 U54AG054345.

805 **Consent Statement**

806 No consent was required as all human subjects data were reused under controlled
807 access with an active AD Knowledge Portal Data Use Certificate (v7.3). All data were
808 anonymized by original sources with no possibility of deanonymization.

809 **Ethics Statement**

810 The animal study was reviewed and approved by the The Jackson Laboratory Animal
811 Use Committee.

812 **Availability of data and materials**

813 The MODEL-AD data sets are available via the AD Knowledge Portal
814 (<https://adknowledgeportal.org>). The AD Knowledge Portal is a platform for accessing
815 data, analyses, and tools generated by the Accelerating Medicines Partnership (AMP-
816 AD) Target Discovery Program and other National Institute on Aging (NIA)-supported
817 programs to enable open-science practices and accelerate translational learning. The
818 data, analyses and tools are shared early in the research cycle without a publication
819 embargo on secondary use. Data is available for general research use according to the
820 following requirements for data access and data attribution
821 (<https://adknowledgeportal.org/DataAccess/Instructions>).

822 All mouse models are available from the Jackson Laboratory mouse repository.

823 **Keywords:** Alzheimer's disease; Animal models; Transcriptomic analysis; Preclinical;
824 Abca7; Plcg2; Mthfr; APOE4; Trem2

825 **Figure and table captions**

826 **FIGURE 1: Strategy to prioritize loci and LOAD risk variants.**

827 Summary of strategies for variant selection for **(A)** late-onset Alzheimer's disease and
828 **(B)** neurovascular risk factors. **(C)** Gene expression analysis comparing human and
829 mouse gene expression data to identify human LOAD modules that are altered by
830 genetically engineered variants in mice.

831

832 **FIGURE 2: Correlation between LOAD associated risk variants and 30 human**
833 **AMP-AD brain co-expression modules using the NanoString Mouse AD panel (A)**

834 Correlation between the effect of each mouse perturbation relative to the LOAD1
835 background in four-month-old mice and 30 human co-expression modules (22), also
836 including the early-onset transgenic model 5XFAD and the LOAD1 background relative
837 to C57BL/6J. The 30 human co-expression modules were grouped into five consensus
838 clusters with similar gene content across the multiple studies and brain regions (22).

839 Framed circles correspond to significant ($p < 0.05$) positive (blue) and negative (red)
840 Pearson's correlation coefficients, with size and color intensity proportional to the
841 correlation. The effects of multiple LOAD risk variants in mice were positively correlated
842 ($p < 0.05$) with cell cycle and myelination-associated modules in Consensus Cluster D
843 and cellular stress-response associated modules in Consensus Cluster E. **(B)**

844 Correlation between the effect of each mouse perturbation at 12 months and the 30
845 human co-expression modules. LOAD risk variants showed significant correlation with
846 functionally distinct AMP-AD co-expression modules. The effects of *Abca7*A1527G*,

847 *Shc2*V433M, Ceacam1 KO, and Slc6a17*P61P* in aged mice correlated with the
848 immune modules in Consensus Cluster B, while the effects of *Sorl1*A528T* and
849 *Plcg2*M28L* correlated with the neuronal modules in Consensus Cluster C.

850

851 **FIGURE 3: Correlation between effect of genetic variants and gene set enrichment**

852 **analysis (A)** Correlation between regression coefficients calculated for each genetic
853 variant at four months. Color intensity and size of the circles are proportional to the
854 Pearson correlation coefficient, with insignificant correlations ($p > 0.05$) left blank. **(B)**
855 Correlation between regression coefficients calculated for each genetic variant at 12
856 months. The effects of *Snx1*D465N*, *Plcg2*M28L*, and *Mtmt4*V297G* risk variants in
857 mice showed significantly positively correlation ($p < 0.05$) at 12 months **(C)**. Gene set
858 enrichment analyses results of selected AD-associated pathways from Reactome library
859 in the presence of each LOAD risk variants in mice. Enriched pathways are grouped by
860 their overlap with functional annotations of human AMP-AD Consensus Clusters.
861 Immune-related pathways had increased expression in the presence of multiple risk
862 variants such as *Abca7*A1527G*, *Mthfr*677C>T*, and *Snx1*D465N*, while neuronal-
863 associated pathways had reduced expression in the presence of risk variants such as
864 *Abca7*A1527G*, *Mthfr*677C>T*, *Sorl1*A528T*, *Plcg2*M28L*, *Ceacam1 KO*,
865 *Shc2*V433M*, and *Slc6a17*P161P*.

866

867 **FIGURE 4: Identification of specific AD-associated processes in LOAD risk**
868 **variants exhibiting transcriptomic changes similar to human LOAD in age-**

869 **dependent manner.** For four new mouse strains the following is displayed: the six top
870 enriched GO terms identified by GSEA and GO enrichment analysis of genes with
871 common directional changes with human AD modules (top left); gene module networks
872 with common directional changes with the human AMP-AD modules, where node colors
873 correspond to human AMP-AD Consensus Clusters A (orange), B (green), C (blue), D
874 (turquoise) or E (pink) (top right); and the effects of each variant at multiple ages
875 correlated across LOAD effects in 30 AMP-AD modules, following the legend of Figure
876 3. **(A)** results for the *Abca7**A1527G model, **(B)** results for the *Mthfr**677C>T model, **(C)**
877 results for the *Plcg2**M28L model, and **(D)** results for the *Sorl1**A528T model. All results
878 are relative to the LOAD1 genetic background for all strains.

879

880 **FIGURE 5: Correlation between the effect of each mouse perturbation and**
881 **molecular subtypes of LOAD.** Two molecular LOAD subtypes inferred in the
882 ROSMAP cohort, three subtypes in the Mayo cohort, and two subtypes in the Mount
883 Sinai Brain Bank (MSBB) cohort (50). Framed circles correspond to significant ($p <$
884 0.05) positive (blue) and negative (red) Pearson's correlation coefficients across all
885 genes on the NanoString panel, with color intensity and circle size proportional to the
886 correlation. **(B)** At four months, the *Abca7**A1527G and *Sorl1**A528T variants represent
887 inflammatory subtypes of LOAD (Subtypes A) in each of the cohorts, while *Shc2**V433M
888 and *Clasp2**L163P variants mimic the non-inflammatory subtypes of LOAD (Subtypes
889 B). **(C)** At 12 months, the *Abca7**A1527G and *Ceacam1* KO variants recapitulate
890 inflammatory subtypes of LOAD (Subtypes A), while the *Snx1**D465N, *Mtmt4**V297G,
891 and *LOAD1* variants model non-inflammatory subtypes of LOAD (Subtypes B).

892 **SUPPLEMENTAL FIGURE 1: Validation of novel mouse models.** RNA-seq was
893 performed on brain tissue at 4 months of age for each model. **(A)** Sequence analysis
894 identified appropriate engineered variants; in some cases, silent mutations were
895 introduced for CRISPR or genotyping purposes. **(B)** Transcript counts were used to
896 demonstrate normal expression levels for SNP models, and lack of expression in the
897 Ceacam1 knockout model.

TABLE 1: Listing of gene loci, human risk variants and corresponding mouse alleles, allele type, and JAX ID of mouse models created. All models also contain a humanized APOE4 allele and a Trem2*R47H allele on the C57BL6/J background (“LOAD1”), which was used as a control.

SUPPLEMENTAL TABLE 1: Reagents used to engineer LOAD mutations using CRISPR. The Meox2 allele was previously created (62) and obtained from the JAX repository (JAX # 3755).

SUPPLEMENTAL TABLE 2: Gene set enrichment analyses results of Reactome pathways for the effects of LOAD risk variants in mice at 12 months.

SUPPLEMENTAL TABLE 3: Gene set enrichment analyses results of GO terms for the effects of *Abca7**A1527G, *Mthfr**677C>T, *Plcg2**M28L, and *Sorl1**A528T variants in mice.

SUPPLEMENTAL TABLE 4: Genes with common directional changes for the effects of *Abca7**A1527G, *Mthfr**677C>T, *Plcg2**M28L, and *Sorl1**A528T variants in mice at 12 months and human AD cases.

SUPPLEMENTAL TABLE 5: Enriched GO terms in genes with common directional changes for the effects of *Abca7**A1527G, *Mthfr**677C>T, *Plcg2**M28L, and *Sorl1**A528T variants in mice at 12 months and human AD cases.

Locus	Allele (Human)	Allele (Mouse)	SNP	Allele Type	JAX #
Abca7	A1527G	A1541G	rs3752246	missense	30283
Ceacam1	LOF variants	KO	---	KO	30673
Clasp2	L163P	L163P	rs61738888	missense	31944
Meox2	LOF variants	HET KO	---	HET KO	33770
Mthfr	A222V (677C>T)	A262V	rs1801133	missense	30922
Mtmr4	V297G	V297G	rs2302189	missense	31950
Plcg2	M28L	M28L	rs61749044	missense	30674
Shc2	V577M	V433M	rs2298813	missense	31952
Slc6a17	P61P	P61P	rs41281364	silent mutation	31948
Snx1	D466N	D465N	rs1802376	missense	31942
Sorl1	A528T	A528T	rs41281364	missense	31940
Other models used:					
C57BL/6J					664
5xFAD					8730
LOAD1					28709

A

Candidate GWAS risk variants for late-onset AD (Odds ratio > 1)

Common in EUR
population (MAF > 0.01)

Deleterious coding
(missense)

Variant conservation
(Sequence identity $> 50\%$,
GERP++ scores > 1)

9 variants prioritized for novel
LOAD mouse models:
*ABCA7, MTMR4, SORL1, SNX1,
PLCG2, CLASP2, SHC2, SLC6A17*

Candidate genes linked to vascular and blood-brain barrier dysfunction

Vascular expression &
reported role in age-related
disease

Sequence homology
(Sequence identity $> 50\%$)

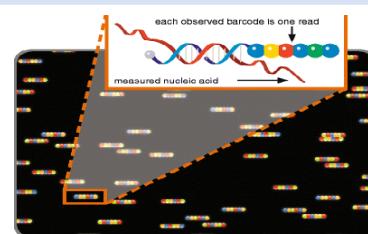
3 genes prioritized for
primary screening:
MTHFR, MEOX2, CEACAM1

C

Catalog of human co-expression modules across 7 post-mortem brain regions

ROSMAP
Dorsolateral prefrontal cortex (DLPFC)
MAYO
Cerebellum (CBE)
Temporal cortex (TCX)
MOUNT SINAI BRAIN BANK
Frontal pole (FP)
Superiortemporal gyrus (STG)
Parahippocampal gyrus (PHG)
Inferiorfrontal gyrus (IFG)

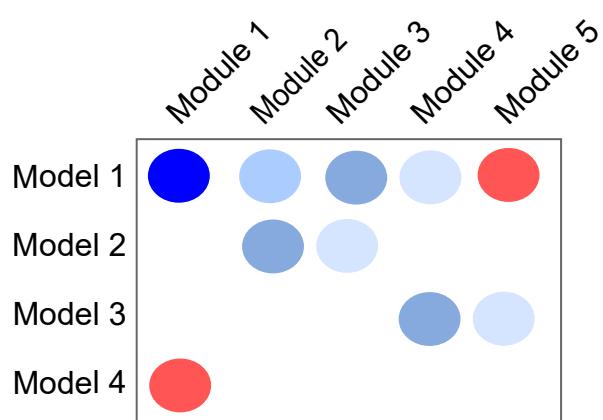
nCounter® Mouse Alzheimer's Disease Panel based on human co-expression modules



Brain hemisphere
expression

Correlate gene expression changes in novel Alzheimer's disease mouse models with human transcriptome signatures

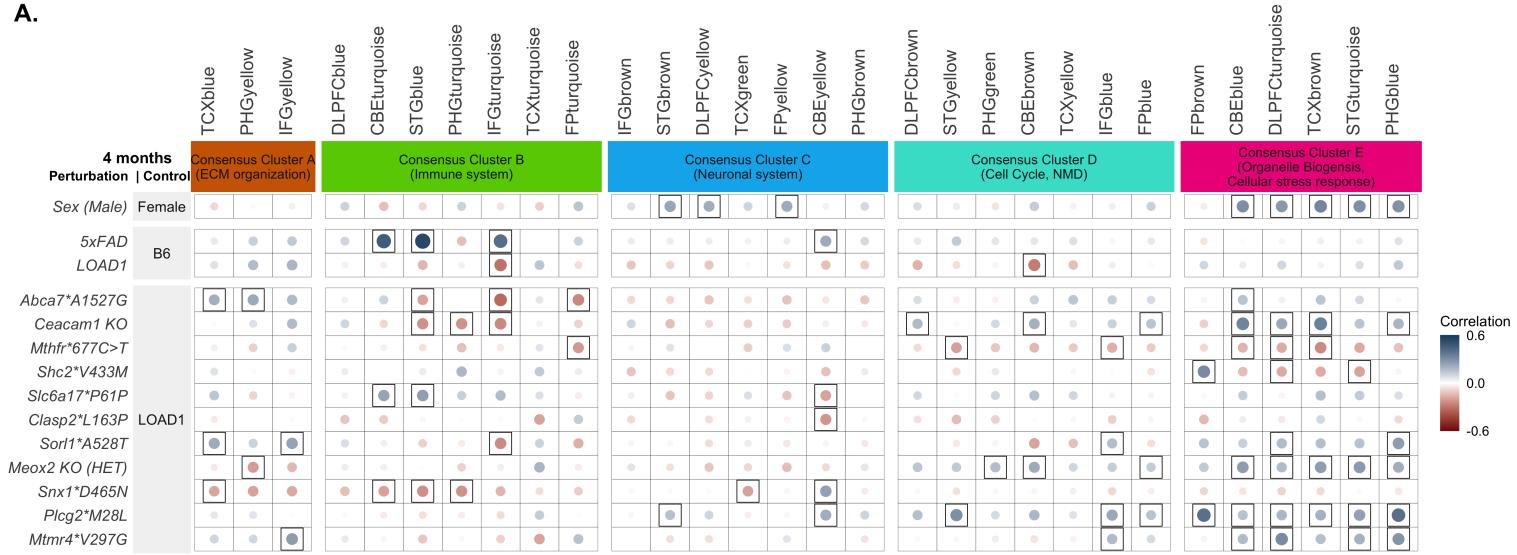
Aging cohorts
(6 males/6 females)
@ 4 months
@ 12 months



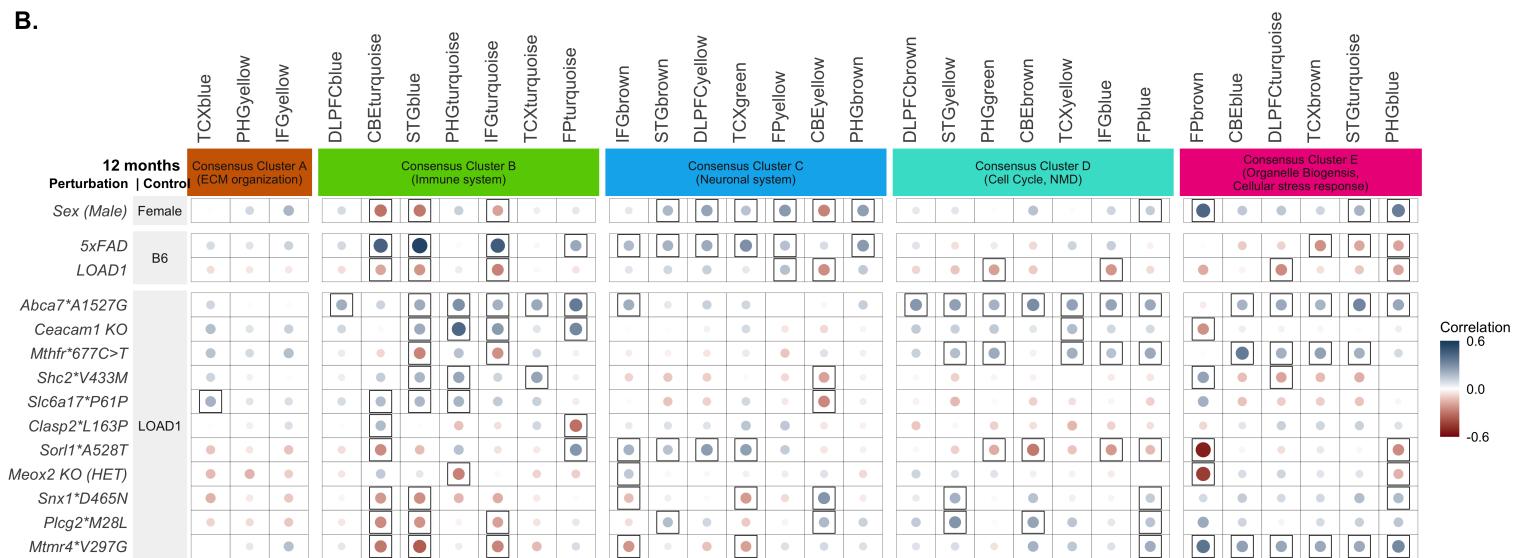
Similar expression
across species

Dissimilar expression
across species

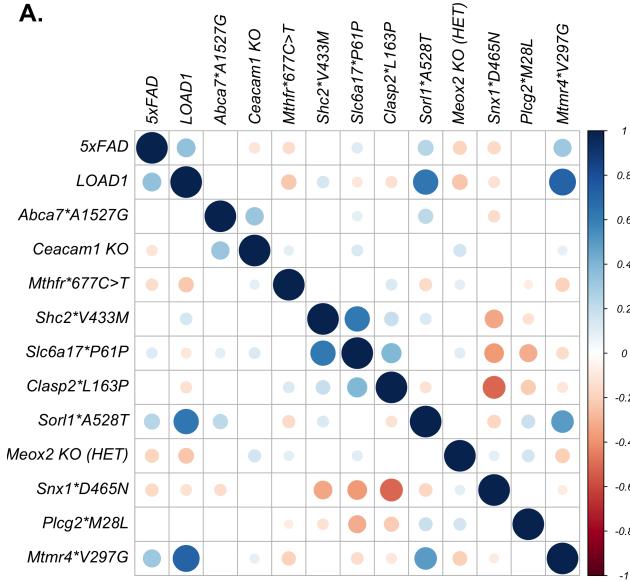
A.



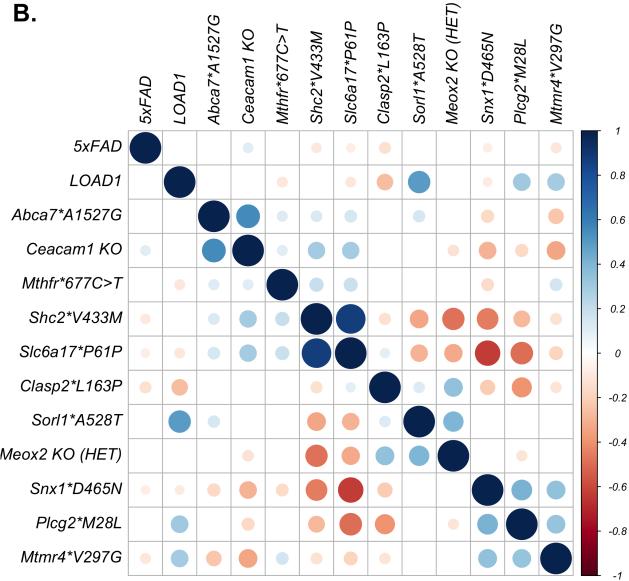
B.



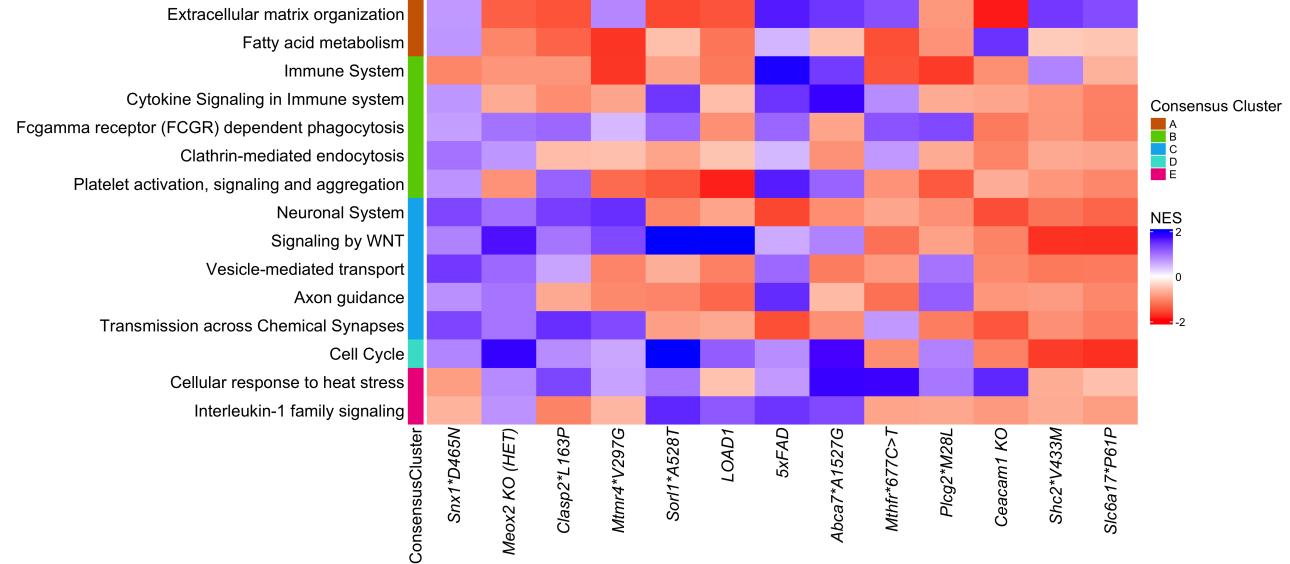
A.



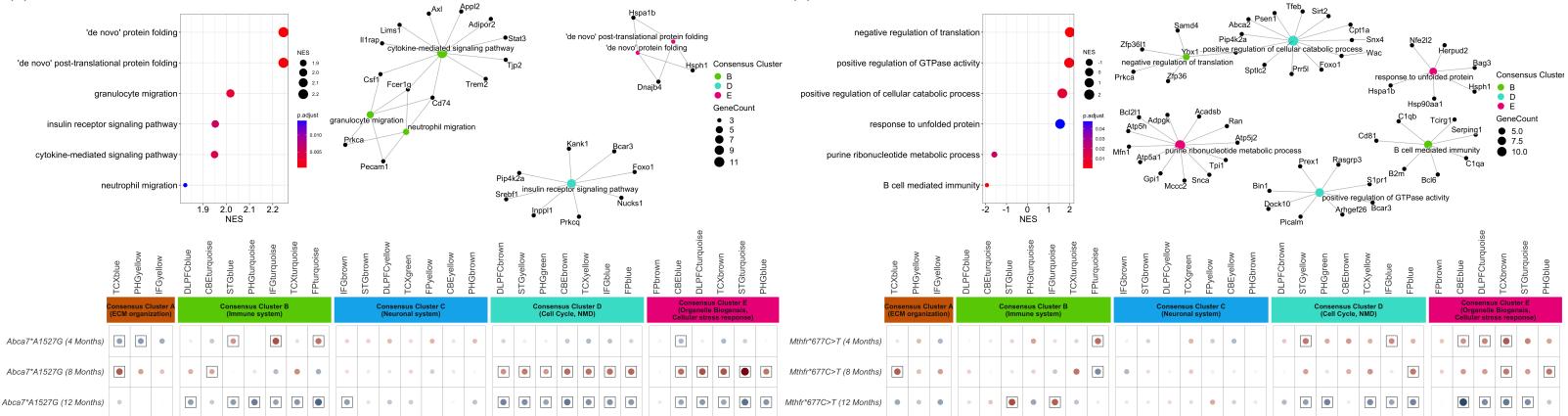
B.



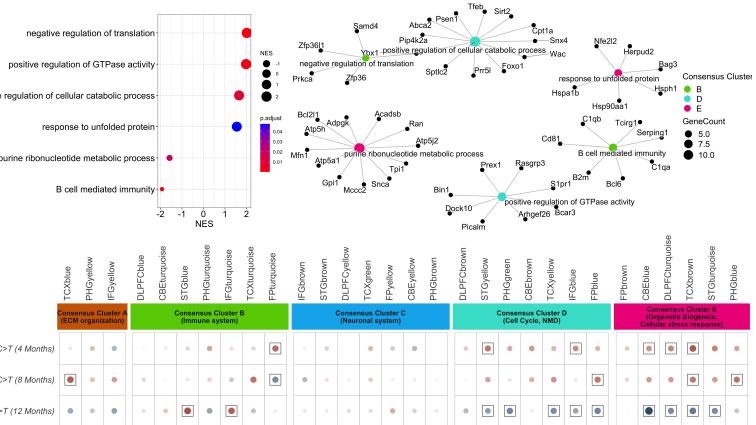
C.



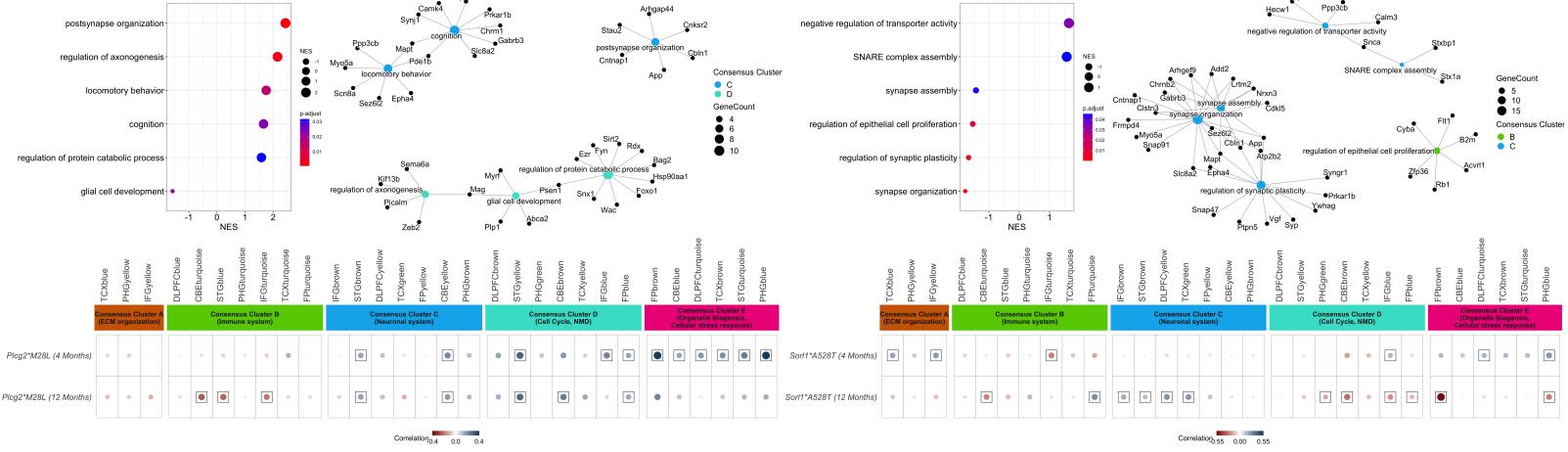
(A) *Abca7*A1527G*



(B) *Mthfr*677C>T*



(C) *Piog2*M28L*



(D) *Sor11*A528T*

