

1 **Infection and antibiotic-associated changes in the fecal microbiota of *C. rodentium***
2 **ϕ stx2_{dact}-infected C57BL/6 mice**

3

4 Sabrina Mühlen^{1,2,3,4*,#}, Ann Kathrin Heroven^{1,5*}, Bettina Elxnat¹, Silke Kahl⁵, Dietmar H.
5 Pieper^{5*}, Petra Dersch^{1,2,3*#}

6

7 ¹Department of Molecular Infection Biology, Helmholtz Centre for Infection Research,
8 Braunschweig, Germany

9 ²Institute for Infectiology, University of Münster, Münster, Germany

10 ³German Centre for Infection Research (DZIF), Partner site HZI, Braunschweig and associated
11 site University of Münster, Germany

12 ⁴Department of Molecular Immunology, Ruhr-University Bochum, Bochum, Germany

13 ⁵Microbial Interactions and Processes, Helmholtz Centre for Infection Research,
14 Braunschweig, Germany

15

16 [#]Address correspondence to:

17 Sabrina Mühlen: sabrina.muehlen@ruhr-uni-bochum.de;

18 Petra Dersch: petra.dersch@uni-muenster.de

19 * Contributed equally to this work

20

21 Keywords: murine microbiota, antibiotics, *C. rodentium*, Shiga toxin

22

23

24

25

26

27

28

29

30

31

32

33

34 ABSTRACT

35 Enterohemorrhagic *E. coli* causes watery to bloody diarrhea, which may progress to
36 hemorrhagic colitis and hemolytic-uremic syndrome. While early studies suggested that
37 antibiotic treatment may worsen the pathology of an EHEC infection, recent work has shown
38 that certain non-Shiga toxin-inducing antibiotics avert disease progression. Unfortunately, both
39 intestinal bacterial infections and antibiotic treatment are associated with dysbiosis. This can
40 alleviate colonization resistance, facilitate secondary infections, and potentially lead to more
41 severe illness. To address the consequences in the context of an EHEC infection, we used the
42 established mouse infection model organism *C. rodentium* ϕ stx2_{dact} and monitored changes in
43 fecal microbiota composition during infection and antibiotic treatment. *C. rodentium* ϕ stx2_{dact}
44 infection resulted in minor changes compared to antibiotic treatment. The infection caused
45 clear alterations in the microbial community, leading mainly to a reduction of Muribaculaceae
46 and a transient increase in Enterobacteriaceae distinct from *Citrobacter*. Antibiotic treatments
47 of the infection resulted in marked and distinct variations in microbiota composition, diversity,
48 and dispersion. Enrofloxacin and trimethoprim/sulfamethoxazole, which did not prevent Stx-
49 mediated organ damage, had the least disruptive effects on the intestinal microbiota, while
50 kanamycin and tetracycline, which rapidly cleared the infection, caused a severe reduction in
51 diversity. Kanamycin treatment resulted in the depletion of all but Bacteroidetes genera,
52 whereas tetracycline effects on Clostridia were less severe. Together, these data highlight the
53 need to address the impact of individual antibiotics in the clinical care of life-threatening
54 infections and consider microbiota-regenerating therapies.

55

56 IMPORTANCE

57 Understanding the impact of antibiotic treatment on enterohemorrhagic *E. coli* (EHEC)
58 infections is crucial for appropriate clinical care. While discouraged by early studies, recent
59 findings suggest certain antibiotics can impede disease progression. Here, we investigated the
60 impact of individual antibiotics on the fecal microbiota in the context of an established EHEC
61 mouse model using *C. rodentium* ϕ stx2_{dact}. The infection caused significant variations in the
62 microbiota, leading to a transient increase in Enterobacteriaceae distinct from *Citrobacter*.
63 However, these effects were minor compared to those observed for antibiotic treatments.
64 Indeed, antibiotics that most efficiently cleared the infection also had the most detrimental
65 effect on the fecal microbiota, causing a substantial reduction in microbial diversity.
66 Conversely, antibiotics showing adverse effects or incomplete bacterial clearance had a

67 reduced impact on microbiota composition and diversity. Taken together, our findings
68 emphasize the delicate balance required to weigh the harmful effects of infection and antibiotics
69 in treatment.

70

71 INTRODUCTION

72 Infections with bacterial pathogens are still among the most common causes of death globally
73 (1). With the discovery of penicillin in 1928 (2), mortality rates associated with bacterial
74 infections decreased significantly (3). However, research has also shown that the use of
75 antibiotics increases the development of antibiotic-resistant pathogens (1, 3, 4), can enhance
76 susceptibility to other intestinal pathogens (5, 6), or can increase the risk of complications, as
77 in case of infections with enterohemorrhagic *E. coli* (EHEC) (7-9).

78 Infections with enterohaemorrhagic *E. coli* cause bloody diarrhea and can progress to
79 hemorrhagic colitis and hemolytic-uremic syndrome (HUS) in approximately 10 to 15% of
80 cases (10). Children are most susceptible to infection, but adults, especially the elderly, are also
81 affected. Shiga toxin (Stx) is considered the major virulence factor of EHEC (7, 10-12) and is
82 responsible for its increased virulence compared to enteropathogenic *E. coli* (EPEC) (11, 12).
83 To date, the treatment options are still limited and primarily consist of supportive therapies as
84 it has been suggested that antibiotic treatment may cause a worsening of the disease due to
85 increased production and release of Shiga toxin (8, 9). Several studies have investigated the
86 ability of different antibiotics to induce Shiga toxin production *in vitro* and *in vivo* (7-9, 13),
87 but the results obtained were inconclusive.

88 Due to the high host specificity of the pathogen, no proper mouse model was previously
89 available to study EHEC infections *in vivo*. While *C. rodentium* is a suitable model for EPEC
90 infections (14), it does not encode Shiga toxin. In 2012, a *C. rodentium* strain was generated,
91 which encodes the Stx2_{dact} phage (*C. rodentium* φstx2_{dact}), mimicking EHEC and providing a
92 model to study its pathogenesis *in vivo* (15). Using this mouse model, we demonstrated that
93 the application of *stx*-inducing antibiotics resulted in weight loss and kidney damage despite
94 the clearance of infection (16). However, several non-*stx*-inducing antibiotics cleared the
95 bacterial infection without causing Stx-mediated pathology, suggesting that these antibiotics
96 might be useful for treating EHEC infections (16).

97 Unfortunately, many antibiotics are known to alter the composition and richness of the
98 microbiota, resulting in dysbiosis, which can be unfavorable for overall health (17, 18). The
99 intestinal microbiota of mammals has a significant impact on metabolic and nutritional

100 activities (19, 20), host immune responses (e.g., immune cell population, cytokine patterns (21-
101 23), and behavioral patterns (24). An intact microbiota provides beneficial biological functions
102 by producing metabolic products such as vitamins and short-chain fatty acids (SCFAs) (25). It
103 is thus not surprising that antibiotic-mediated changes of the microbiota can be associated with
104 intestinal disorders such as inflammatory bowel disease, diarrhea, and colitis, as well as
105 extraintestinal and systemic disorders, including metabolic diseases (diabetes), autoimmune
106 responses (rheumatoid arthritis), allergies, asthma, obesity, and even neoplastic and
107 neurodegenerative diseases (19, 26-28).

108 Another consequence of antibiotic-triggered dysbiosis is the loss of colonization resistance
109 against pathogens (26). A prominent example is treatment with antibiotics such as clindamycin
110 and vancomycin, which leads to increased and long-lasting susceptibility to *Clostridioides*
111 *difficile* and allows expansion and dense colonization of resistant *Enterococcus* and *Klebsiella*
112 *pneumoniae* strains (5, 6). Recently, it was also shown that colonization of mice with *C.*
113 *rodentium* and *C. rodentium* ϕ *stx2*_{dact}-mediated pathology varied greatly, depending on the
114 intestinal microbiota composition and the production of SCFAs (29).

115 Although several studies have investigated the changes in the murine gastrointestinal
116 microbiota composition in response to antibiotic treatment (30-37), there is little information
117 on the individual influence of different classes of antibiotics on the microbiota composition in
118 a murine infection model. Additionally, there are no studies that assess the impact of infection
119 on the fecal microbiota in the presence and absence of antibiotics with Shiga toxin-producing
120 *C. rodentium*. For this reason, we studied the impact of *C. rodentium* ϕ *stx2*_{dact} infection and
121 antibiotic treatment on the fecal microbiota composition as a measure of intestinal microbiota
122 disruption. We found that *C. rodentium* ϕ *stx2*_{dact} infection caused significant alterations in the
123 composition of the murine fecal microbiota. These changes were, however, minor in magnitude
124 and direction compared to the effects of antibiotics, which resulted in tremendous and highly
125 diverse antibiotic-specific changes in microbiota structure and diversity. Knowledge of the
126 destructive effect on potentially beneficial commensals triggered by a specific class of
127 antibiotics may be helpful for clinical applications, such as treating enteric infections.

128

129 **RESULTS**

130 Antibiotics are commonly used to treat bacterial infections. However, as some antibiotics are
131 known to induce the expression and secretion of Shiga toxin, they are generally not suggested
132 as a treatment strategy for EHEC infections (7, 8). In an earlier study, we systematically

133 analyzed the effect of antibiotics from different classes on Shiga toxin-mediated disease using
134 *C. rodentium* ϕ stx2_{dacl}. In this study, mice were orally infected with *C. rodentium* ϕ stx2_{dacl}.
135 Starting from day 4 post-infection, mice were daily treated with five antibiotics of different
136 classes (enrofloxacin – Enf, kanamycin – Kan, rifampicin – Rif, tetracycline – Tet; and
137 trimethoprim/sulfamethoxazole – T/S). Throughout the study, fecal samples were collected to
138 allow the analysis of the microbiota composition on days 0 (before infection), 4, 6, and 12 post-
139 infection (**Fig. 1**). These time points were chosen as *C. rodentium* initiates colonization of the
140 colon on day 4, reaches a maximal uniform distribution along the entire colonic mucosa on day
141 6 and starts to decline on day 12 post-infection (38). In total, we analyzed 410 samples of 125
142 mice belonging to seven different treatment groups (uninfected (UI), infected untreated (UT),
143 and infected, antibiotic-treated mice (Enf, Kan, Rif, Tet, T/S) at the four time-points (**Fig. 1**)
144 by 16S rRNA gene sequencing assessing the effects of *C. rodentium* ϕ stx2_{dacl} infection as well
145 as short- and long-term antibiotics treatment in C57BL/6Rj mice (**Table S1**). In total,
146 7,654,419 bacterial 16S rDNA sequence counts were obtained with a mean of $18,669 \pm 8,447$
147 counts per sample.

148

149 **Elimination of batch differences by mixing treatment groups**

150 Differences in the intestinal microbiota composition of mice have been described and may
151 depend on age, gender, genetic background, housing conditions, and others (30). We performed
152 five experiments using independently purchased mouse batches (Batch 1-5). Each experiment
153 consisted of different treatment groups to investigate the effect of *C. rodentium* ϕ stx2_{dacl}
154 infection and antibiotics on the gut microbiota independently of the mouse batches (**Fig. 1**).
155 We first assessed whether the mouse batches, although purchased from the same vendor and
156 barrier, differed. For this purpose, we compared the fecal microbiota of all mice on Day 0 (D0).
157 Permutational multivariate analysis of variance analysis (PERMANOVA) revealed that there
158 were significant differences ($p < 0.001$) between the different mouse batches at all taxonomic
159 levels from sequence type up to phylum (**Table S2**). These differences are also represented in
160 the non-metric multidimensional scaling (nMDS) plot (**Fig. S1A**). PERMANOVA
161 comparisons between the different experiments showed that all batches were significantly
162 different at the sequence type level (**Table S2**). Additionally, there were significant differences
163 in sequence type richness (ST), evenness (J), and diversity **Fig. S1B**.

164 As every batch of mice was separated into groups of 5 mice, which were then infected and
165 later divided into different treatment groups (by cage; see **Fig. 1**), we then determined whether

166 the observed differences were also significant when the treatment groups were compared or
167 whether the fact that the batches were all separated into the different treatment groups, was
168 enough to eliminate the observed variability. Here, PERMANOVA revealed no differences in
169 the microbiota composition at any taxonomic level (sequence type to phylum; **Table S2**). This
170 can also be seen in the nMDS plot (**Fig. 2A**). Also, there were no significant differences in
171 sequence type richness, evenness, or diversity (**Fig. 2B**). Hence, although there are significant
172 differences in the purchased mouse batches before infection, splitting the mice into different
173 treatment groups abrogated these variations.

174

175 **Influence of *C. rodentium* ϕ stx2_{dact} infection on the fecal microbiota**

176 To assess the impact of *C. rodentium* ϕ stx2_{dact} infection on the fecal microbiota composition
177 over time, samples taken from uninfected and infected untreated mice were compared.
178 Uninfected untreated mice showed no significant changes in the microbiota composition down
179 to the sequence type level over time (**Table S3**), which is reflected in the clustering of the
180 samples in the nMDS plot (**Fig. S2A**). Some genera tended to be differentially distributed, but
181 none were significantly different when corrected for multiple comparisons (**Fig. 3, Table S4**).
182 Furthermore, there was no change in α -diversity at the sequence type level over time (sequence
183 type richness (ST), Pielou's evenness (J), diversity (Simpson index, 1- λ , and Shannon index
184 H); **Fig. S2B**).

185 PERMANOVA analysis revealed significant community structure changes after infection
186 with *C. rodentium* ϕ stx2_{dact} from sequence type to the family level throughout the experiment
187 and specific, tremendous changes upon infection from day 4 to day 6 visible at all taxonomic
188 levels (**Table S3**). Concomitant with community structure changes, a clear increase in
189 multivariate dispersion was observed (from 0.861 and 0.908 on day 0 (D0) and 4 (D4)
190 respectively to 1.459 and 1.397 on day 6 (D6) and 12 (D12), respectively, **Fig. S3**). Only slight
191 changes in diversity were observed and a significant increase in evenness (J) and diversity (1-
192 λ) was visible only from D4 to D6 (**Fig. S2B**). The time course of *Citrobacter* abundance could
193 be followed, which increased from a relative abundance of 2.0% on D4 to 5.0% on day 6 before
194 slightly declining to 3.5% on D12 (**Fig. 3**). In addition to the significant change in *Citrobacter*
195 abundance, significant changes in the abundance of 17 out of 74 genera or genus-level taxa
196 (23%) were detected (**Fig. 3, Table S4**). The most prominent changes were observed for
197 *Duncaniella* and *Muribaculum* of the Bacteroidetes six days post-infection (D6), where the
198 relative abundance dropped to roughly 50%, whereas a further decrease during infection was

199 not apparent. Similarly, *Prevotella* decreased significantly in abundance during early infection
200 (D6) but not during late infection (D12). These observations contrast with *Odoribacter*, which
201 increased significantly in abundance during early infection (D6), and *Bacteroides*, which
202 increased significantly only in the late infection phase (D12). The increase in the abundance of
203 *Bacteroides* could be further defined to the species level, where out of three species observed
204 in the majority of samples, only *B. uniformis* increased significantly (see **Fig S4**). Outside the
205 Bacteroidetes phylum, the effect on bacterial genera was minor (**Fig. 3, Table S4**). Of note,
206 Enterobacteriaceae, related to *E. coli* but distinct from *Citrobacter*, increased from a mean
207 relative abundance of <0.01% on D4 to 0.58% on D6. Together, these findings show that the
208 *C. rodentium* ϕ stx2_{dact} infection causes significant changes in the community structure of the
209 murine intestinal flora.

210

211 **Consequences of antibiotic treatment on microbiota composition**

212 We then investigated variations in the relative abundance of bacteria as a consequence of
213 treatment with different antibiotics on D6 (short-term antibiotic treatment) and D12 (long-term
214 antibiotic treatment) post-infection.

215 **Enrofloxacin** treatment was previously shown to clear *C. rodentium* ϕ stx2_{dact} infection
216 within two days. Unfortunately, while resolving the infection, the antibiotic-induced Shiga
217 toxin expression and release resulted in severe kidney pathology, weight loss, and death (16).
218 As expected, the abundance of *Citrobacter* was greatly reduced after treatment onset (from a
219 mean of 3.2% on D4 to 0.01% on D6), and the pathogen was eliminated afterwards (**Fig. 3,**
220 **Table S4**). The reduction of *Citrobacter* abundance was accompanied by a significant change
221 in community structure as evidenced by PERMANOVA analysis (**Table S3**; see also
222 visualization in the nMDS plot **Fig. S5A**), with a slight decrease in evenness from D6 to D12
223 (0.815 ± 0.056 on D6 to 0.768 ± 0.062 on D12), but no significant effect on richness and
224 diversity (**Fig. 4A**). The multivariate dispersion increased tremendously from 0.986 and 1.063
225 on D0 and D4 respectively to 1.73 and 1.818 on D6 and D12, respectively (**Fig. S3**), the highest
226 heterogeneity observed here. Fifty-two of 71 genera (73%) showed a significant change in their
227 abundance over time (**Table S4**). Forty-eight of these were affected during short treatment (D4
228 vs. D6), but only 5 during long-term treatment (D6 vs. D12) with enrofloxacin. Interestingly,
229 the majority of genera of the Bacteroidetes, Proteobacteria, and Actinobacteria phyla decreased
230 considerably in abundance during early treatment (**Fig. 6**), with all three *Bacteroides* species
231 were practically eliminated already on D6 (**Fig. S4**). In contrast, no clear trend was observed

232 within the Firmicutes (**Fig. 6**). Several Ruminococcaceae (e.g., *Harryflintia*, *Anaerotruncus*)
233 as well as *Oscillibacter* and *Dysosmobaacter* increased in relative abundance after short-term
234 antibiotics treatment (D6), but declined later on, whereas an increase in relative abundance of
235 Clostridiales was observed (**Fig. 6, Table S4**). This trend was also visible in the genera
236 Lachnospiraceae and specifically in unclassified Lachnospiraceae. They comprised a mean of
237 13.8% on D4 before enrofloxacin treatment and increased significantly to a mean of 48.9%.
238 These differences were also visible when higher taxa (families to phylum) were analyzed (**Fig.**
239 **S6**).

240 Treatment with **kanamycin** also allowed complete elimination of *C. rodentium* ϕ stx2_{dact} on
241 day 6 post-infection with low colon pathology and no kidney damage (16). However,
242 kanamycin caused the most dramatic changes in microbiota composition (**Table S3; Fig. S5B**),
243 with 60 out of 65 genera (92%) showing a significant change (mainly a reduction) in relative
244 abundance over time (**Fig. 6, Fig. S6, Table S4**). In contrast to enrofloxacin, which had a minor
245 impact on diversity and induced only a slight decrease in evenness, kanamycin significantly
246 influenced taxon richness (from 246 \pm 69 on D4 to 75 \pm 25 on D6), evenness (from 0.797 \pm 0.035
247 to 0.713 \pm 0.025), and diversity (H: from 4.36 \pm 0.39 to 3.05 \pm 0.23; 1- λ : from 0.961 \pm 0.020 to
248 0.899 \pm 0.015) (**Fig. 4B**). A slight recovery in evenness and diversity was observed during long-
249 term kanamycin treatment (D12) (**Fig. 4B**). Also, in contrast to enrofloxacin a decrease rather
250 than an increase in dispersion was observed (**Fig. S3**). In accordance with our previous data
251 (16) and as observed for enrofloxacin, the abundance of *Citrobacter* was tremendously reduced
252 after short-term kanamycin treatment and completely abolished on D12 (**Fig. 6, Fig. S7**).
253 Furthermore, all other proteobacterial genera significantly diminished during short-term
254 antibiotic treatment, and bacterial reads that could be classified to any proteobacterial class
255 were absent on D12. Similarly, both actinobacterial genera (*Adlercreutzia* and
256 *Bifidobacterium*) as well as unclassified *Eggerthellaceae* were nearly abolished on D6 with
257 only a few reads remaining in some communities (**Fig. 6, Table S4**). Nearly all Clostridiales
258 genera were also practically eliminated already on D6, and unclassified Ruminococcaceae,
259 unclassified Lachnospiraceae, or unclassified Clostridiales followed the same trend with a
260 significant reduction during short-term antibiotic treatment. An exception were bacteria with
261 similarity in sequence to *Clostridium fusiformis* of the Lachnospiraceae, which increased in
262 relative abundance and reached a mean of 1.4%. The Erysipelotrichiaceae genera
263 *Faecalibaculum* and *Duboisella* also significantly increased in relative abundance upon
264 kanamycin treatment (**Fig. 6, Fig. S7, Table S4**). Members of the Bacteroidetes showed a

265 mixed behavior, where specifically *Bacteroides* increased by more than one order of magnitude
266 in relative abundance during short-term antibiotic treatment (from 2.5 to 31.9%). The most
267 extreme change was observed for *B. acidifaciens*, which increased from a mean of 0.5% on D4
268 to a mean of 24.4% on D6, whereas *Bacteroides* 11 was only slightly affected (**Fig. S4**). Also,
269 *Parabacteroides* increased from below 0.1% before antibiotic treatment to a mean of 5.2%
270 relative abundance on D6 and 7.8% on D12, whereas e.g., *Odoribacter* and *Muribaculum*
271 decreased (**Fig. 6, Table S4**). These differences in abundance upon treatment were also
272 observed at higher taxonomic levels where overall only Bacteroidales showed an increase in
273 relative abundance, whereas the abundance of all other phyla decreased (**Fig. S6**).

274 **Rifampicin** also allowed survival and prevented kidney damage by the infection with *C.*
275 *rodentium* ϕ stx2_{dact}, but overall, the colon pathology was somewhat higher, as the pathogen
276 was not fully eliminated (16). Microbiota analysis confirmed this result, and *Citrobacter*
277 remained as an important member of the microbial community, although at a relatively low
278 abundance of 0.2% after 6 and even 12 days (**Fig. 6**). Rifampicin treatment was accompanied
279 by a substantial reduction in richness (from 233 \pm 52 on day 4 to 69 \pm 15 on D6) and diversity
280 (H: from 4.291 \pm 0.246 to 3.134 \pm 0.408; 1- λ : from 0.962 \pm 0.014 to 0.913 \pm 0.054) that recovered
281 slightly but significantly over treatment time (richness: 125 \pm 27 on D12; H: 3.710 \pm 0.287; 1- λ :
282 0.947 \pm 0.020) (**Fig. 4C**). There was a slight increase in multivariate dispersion concomitant
283 with antibiotic treatment (**Fig. S3**). PERMANOVA shows that rifampicin treatment resulted in
284 significant changes in microbiota composition over time (**Table S3**), and the nMDS plot
285 revealed a slight recovery of microbiota composition on D12 (**Fig. S5C**). This was reflected in
286 the number of genera differentially distributed where out of 60 genera, 47 (83%) were affected
287 during early antibiotic treatment (D4 to D6) and 25 during late antibiotic treatment (D6 to D12)
288 (**Fig. 6, Table S4**). As observed for kanamycin treatment, most Clostridiales genera clearly
289 diminished in relative abundance. Also, unclassified Lachnospiraceae diminished dramatically
290 in relative abundance by two orders from D4 to D6 (**Table S4**). However, they recovered to
291 pre-treatment levels on D12. Interestingly, recovery was also observed for a variety of
292 Ruminococcaceae and Lachnospiraceae genera (see **Fig. 6, Fig. S7**). In contrast,
293 Erysipelotrichiaceae (*Faecalibaculum* and *Clostridium* XVIII) increased significantly after
294 rifampicin treatment. Such an increase in relative abundance was also evident for various
295 proteobacterial genera. However, during extended treatment, they regained their original
296 relative abundance levels. Enterobacteriaceae related to *E. coli* and distinct from *Citrobacter*
297 increased from a mean relative abundance of <0.01% on D4 to 9.2% on D6 and then dropped

298 to 0.32% on D12. The effect of rifampicin on Bacteroidetes was typically negative and resulted
299 in relative depletion of *Alistipes*, *Prevotella*, *Odoribacter*, and *Parabacteroides*, usually by at
300 least one order of magnitude (**Fig. 6**, **Fig. S7**, **Table S4**). Accordingly, depletion was observed
301 for the whole Bacteroidales class as well as the Clostridiales, whereas *Erysipelotrichiales*
302 followed opposing abundance effects (**Fig. S6**).

303 Similar to kanamycin, **tetracycline** was also able to fully eradicate *Citrobacter* colonization
304 on D6, allowed murine survival, and abolished colon and kidney damage (16). The depletion
305 could be confirmed here by microbiota analysis, where the relative abundance of *Citrobacter*
306 was 0.004% on D6, with no *Citrobacter* detectable on D12 (**Fig. 6**, **Table S4**). Diversity
307 changes during tetracycline treatment were prominent with a severe decline in richness
308 (268±72 to 125±31), evenness (J: 0.806±0.023 to 0.758±0.039), and diversity (H: 4.479±0.299
309 to 3.652±0.362; 1-λ: 0.970±0.014 to 0.945±0.019) from D4 to D6 (**Fig. 4D**). A clear shift in
310 microbiota composition was observable and while samples obtained on D0 and D4 clustered
311 together in the nMDS plot, the samples for both D6 and D12 show distinct, separate clustering
312 (**Fig. S5D**), suggesting successive shifts in microbiota composition throughout treatment.
313 These changes were statistically significant, as evidenced by PERMANOVA (**Table S3**).
314 Interestingly, tetracycline addition did not affect multivariate dispersion (**Fig. S3**). A total of
315 52 of 66 genera (79%) were influenced by tetracycline treatment, with 47 being impacted from
316 D4 to D6 and 12 genera from D6 to D12 (**Fig. 6**, **Fig. S7**, **Table S4**). The application of
317 tetracycline resulted in a rapid depletion and elimination of Lactobacillaceae, Actinobacteria,
318 and Proteobacteria (**Fig. 6**, **Fig. S6**, **Table S4**). Also, most Clostridiales genera were negatively
319 affected. However, *Ruthenibacterium* and Lachnospiraceae of the *C. fusiformis* cluster showed
320 an increase during early treatment. Bacteroidetes showed different oscillating behavior. All
321 three Muribaculaceae genera (*Duncaniella*, *Muribaculum*, and *Paramuribaculum*) decreased
322 under tetracycline treatment, with both *Muribaculum* and *Paramuribaculum* recovering during
323 extended treatment. Similarly, the relative abundance of *Prevotellamassilia*, *Prevotella*, and
324 *Odoribacter* decreased, and that of *Prevotellamassilia* and *Prevotella* returned to higher
325 relative abundance levels during extended treatment. In contrast, *Alistipes* and *Bacteroides*
326 showed an extreme initial relative abundance increase during tetracycline treatment (**Fig. 6**,
327 **Fig. S7**, **Table S4**). A detailed analysis of the species level revealed that only *Bacteroides* 11
328 and *B. acidifaciens* contributed to this overall increase of the genus, with *B. acidifaciens*
329 increasing from 0.6% relative abundance on D4 to 40.2% on D12. This contrasts with the
330 severe depletion observed for *B. uniformis* (**Fig. S4**).

331 In the case of **trimethoprim/sulfamethoxazole**, complete elimination of *C. rodentium*
332 $\phi stx2_{dact}$ was only observed on D12 but not on D6 post-infection, and this was sufficient to
333 reduce but not abolish colon pathology or kidney damage (16). Accordingly, microbiota
334 analysis revealed significant *Citrobacter* levels on D6 (0.014%) (**Fig. 6, Fig. S7, Table S4**).
335 Changes in diversity and richness were minor, and only slight changes in evenness were
336 recorded as significant (**Fig. 4E**). Dispersion increased after antibiotic treatment (from 0.946
337 and 0.943 on D0 and D4, respectively, to 1.579 and 1.612 on D6 and D12, respectively, **Fig.**
338 **S3**). Also, the fecal microbiota composition changed significantly (**Fig. 6, Fig. S7, Table S3**)
339 but less tremendously compared to, for example, kanamycin and tetracycline. Only 31 of 69
340 genera (45%) were significantly affected in their abundance. Of these, 21 were affected during
341 early treatment and only five during extended treatment. For trimethoprim/sulfamethoxazole,
342 the most prominent effect observed was a decrease in the relative abundance of various
343 Bacteroidetes genera such as *Prevotella*, *Odoribacter*, *Duncaniella*, *Muribaculum*, and
344 *Paramuribaculum*. Clostridiales genera were only slightly affected, whereas Lactobacillaceae
345 increased in relative abundance (**Fig. 6, Fig. S7, Table S4**).

346 In summary, both short and long-term antibiotic treatment resulted in significant and global
347 shifts in microbiota composition (**Fig. 6, Fig. S7, Table S4**), which were much more dramatic
348 compared to those observed during infection (**Fig. 3, Fig. S7**). Furthermore, these changes were
349 highly specific for each tested antibiotic, with kanamycin having the most prominent effect. In
350 contrast, trimethoprim/sulfamethoxazole triggered relatively minor differences, and no
351 substantial overlaps between treatment groups were observed (**Fig. 5, Fig. 6**).
352

353 **DISCUSSION**

354 Several recent studies described the impact of single and, in some cases, combinations of
355 antibiotics on the intestinal microbiota in mice (30, 32-36, 39). However, a detailed
356 comparative analysis addressing the impact of different classes of antibiotics on the gut
357 microbiota during treatments to eliminate enteric bacterial pathogens has not been performed.
358 Here, we describe that infection with *C. rodentium* $\phi stx2_{dact}$ used to mimic EHEC infections in
359 mice, causes significant shifts in the relative abundance of members of the fecal microbiota.
360 However, the overall effect of the infection alone was minor compared to that triggered by the
361 treatment with antibiotics.

362 Mice in which the infection remained untreated displayed a significant increase of *Citro-*
363 *bacter* with a maximum relative abundance of ~5% on day 6. This corresponds to the relative

364 abundance previously reported for the intestinal lumen (40). However, the mucosal relative
365 abundance appears to reach higher values (38, 41). While no alterations in microbial diversity
366 upon *C. rodentium* infection were reported in the literature (40), minor variations in microbiota
367 composition were detected (38, 40-43). Lupp *et al.* indicated a bloom of Enterobacteriaceae
368 upon infection, yet Hoffmann *et al.* suggested that this bloom at the mucosa was mainly due to
369 an expansion of *Citrobacter* itself rather than of other family members (41, 42). Also, Hopkins
370 *et al.* reported an increase in Enterobacteriaceae, which was restricted to the mucosa, however,
371 without analyzing whether this bloom was solely due to *Citrobacter* (38). We could clearly
372 show that on day 6 post-infection, an increase in Enterobacteriaceae distinct to *Citrobacter*
373 occurred, probably due to *Citrobacter* creating a niche for those Enterobacteriaceae.

374 The most prominent effect of infection observed in our study was a decrease in
375 Bacteroidetes, specifically due to a decrease in relative abundance of Muribaculaceae (**Fig.**
376 **S7**), a bacterial family just recently defined and before subsumed into the Porphyromonadaceae
377 (44). One previous report also described a decrease in Porphyromonadaceae and Prevotella,
378 another a decrease in *Lactobacillus* abundance upon murine infection with wildtype
379 *Citrobacter* (42, 43) which is similar to the Stx-expressing *Citrobacter* variant used here.
380 However, a detailed comparison with other reports is difficult as they limited the analysis to
381 higher taxonomic levels (40), analyzed very few animals (38), or the microbiota of the
382 uninfected, naïve mice used in the different studies varied significantly, which is likely to affect
383 the pathogen colonization and pathogen-triggered changes of the microbiota (35). For example,
384 Hoffmann *et al.* reported a significant increase in Deferribacteriaceae (42), which were absent
385 from the microbiota of mice analyzed here.

386 In fact, the naïve microbiota of mice used here varied significantly depending on the mouse
387 batch, even when obtained from the same supplier. While the significance of these community
388 differences was eliminated by mixing different mouse batches to create treatment groups,
389 differences remained at the individual mouse level and may create disparities in colonization
390 resistance mediated by the naïve microbiota (43). As example, resistance to *C. rodentium* and
391 EHEC infection has previously been associated with higher diversity and abundance of
392 butyrate-producing bacteria (29, 45) and higher concentrations of SCFAs (29), and admini-
393 stration of butyrate reduced pathogen-mediated intestinal damage (46). Also, enhancement or
394 erosion of the mucus layer by commensals may contribute to the colonization capability (47).
395 Moreover, EHEC and *Citrobacter* virulence gene expression is controlled by microbiota-
396 derived substances, which will also influence colonization and associated microbiota
397 alterations (47, 48).

398 Infections with EHEC are commonly not treated with antibiotics due to the fear of antibiotic-
399 induced Shiga toxin production (7-9). However, as the *E. coli* O104:H4 outbreak in Northern
400 Germany in 2011 has shown, the necessity may arise to treat patients with antibiotics to prevent
401 deadly outcomes. The effects of antibiotics from different classes on the induction of *stx*
402 expression, however, vary greatly. Antibiotics that interfere with DNA replication (e.g.,
403 enrofloxacin, ciprofloxacin) induce the bacterial SOS response and tend to induce Shiga toxin
404 synthesis *in vitro*. In contrast, antibiotics inhibiting protein synthesis (e.g., kanamycin,
405 tetracycline) or blocking bacterial transcription (e.g., rifampicin) consistently showed no *stx*
406 induction (7, 9, 13, 16, 49) and enhanced survival of EHEC- or *C. rodentium* ϕ *stx2dact*-infected
407 mice (16, 50). In particular, tetracycline and kanamycin cleared an infection with *C. rodentium*
408 ϕ *stx2dact* without causing kidney damage (16) whereas rifampicin only reduced the *Citrobacter*
409 load, but limited kidney damage (16). Importantly, several patients who developed HUS during
410 the *E. coli* O104:H4 outbreak were treated with rifaximin, a rifampicin derivative. All patients
411 survived and had fewer seizures than those not treated (51), suggesting that these antibiotics
412 may provide promising options for life-threatening EHEC infections.

413 The use of antibiotics is well-known to cause dysbiosis (52, 53). However, little information
414 was available regarding the influence of individual antibiotics on the fecal microbial
415 community structure in a comparable EHEC infection setting. Here, we showed that mice
416 treated with individual antibiotics of different classes showed large, antibiotic-specific shifts
417 in microbiota composition and varied in their response to long-term antibiotic treatment. We
418 showed here that the administration of kanamycin, tetracycline or rifampicin as promising
419 treatment options all resulted in significant abundance changes of at least 75% of genera and
420 genus-level taxa observed and caused a significant reduction in diversity. This dysbiosis may
421 trigger adverse effects, including the opening up of niches for infection with or outgrowth of
422 pathobionts such as *Clostridioides difficile* and *Enterococcus faecalis* (5, 6), which should be
423 considered for clinical applications.

424 Several recent studies have also investigated the effects of single antibiotics or antibiotic
425 cocktails on the intestinal microbiota of naïve mice. However, some of these studies used very
426 few animals in the different treatment groups (31, 32, 34), such that the significance of
427 identified differences can only poorly be assessed. For example, Sun *et al.* (31) used only five
428 mice per treatment group and detected no changes in microbiota composition upon
429 enrofloxacin treatment at the phylum level but an increase in Prevotellaceae and Rikenellaceae
430 and decrease in Bacteroidaceae families (31). This contrasts with our report, where a significant

431 impact on nearly all Bacteroidetes genera and all Bacteroidetes families and various other
432 genera could be evidenced with 3-fold that sample size. Another study used qPCR on a
433 restricted number of taxa to survey the microbiota. However, the results (54) do not correspond
434 to those of other studies, possibly because the method does not reach the accuracy of 16S rDNA
435 amplicon sequencing or metagenomic analyses. In a metagenomic study assessing the effects
436 of tetracycline, Yin *et al.* observed a significant decrease in the abundance of Firmicutes
437 together with an increase in Bacteroidetes, in accordance with our results (33), but Zhao *et al.*
438 obtained slightly different results in their study, which, however, was carried out with an
439 extremely small sample size (34). Namasivayam *et al.* evaluated the effect of anti-tuberculosis
440 therapy but also of rifampicin alone in small treatment groups (32). Most of the observed
441 community changes were due to rifampicin, and *Alistipes*, *Erysipelotrichiaceae*, and
442 *Parabacteroides* tended to be depleted. Mullineaux-Sanders *et al.* (47) used six animals per
443 treatment group and showed that kanamycin treatment exhibited severe effects and that the
444 bacterial communities were highly dominated by Bacteroidetes genera, similar to the situation
445 observed in our study. Korte *et al.* also evaluated trimethoprim/sulfamethoxazole, which
446 induced minimal changes in the community composition (35). Here, we also showed that
447 trimethoprim/sulfamethoxazole did not affect the diversity and caused milder alterations of the
448 microbiota overall. However, this antibiotic was less effective, as it only slowly eliminated the
449 pathogen and reduced but did not abolish Stx-mediated kidney damage (16). Overall, our data
450 confirmed that trimethoprim/sulfamethoxazole and enrofloxacin have a less disruptive effect
451 on the microbiota than tetracycline and kanamycin.

452 Other studies also included mice with a different, rather unusual naïve mouse microbiota,
453 which also hampered a direct comparison of the antibiotic effects. Very recently, Grabowski
454 *et al.* (30) aimed to analyze the effect of enrofloxacin, however, the control mice exhibited a
455 tremendously high amount of Carnobacteriaceae (~30%) and Pseudomonadaceae (10%) as
456 unusual gut colonizers, which were rapidly depleted preventing any detailed evaluation of
457 antibiotic effects. Severe and long-term changes in the intestinal microbiota were also observed
458 with a combination of four different antibiotics (ampicillin, vancomycin, metronidazole, and
459 neomycin) (30, 36, 37, 39). Here, an increase in *Enterococcus* and a decrease in probiotics-
460 related genera such as *Lactobacillus* was reported as common across individual and mixed
461 antibiotic treatments (37). However, *Enterococcus* is not a common member of the murine
462 microbiome and was present here at very low abundance in only a small subset of mice.

463 The comparison with recent studies made evident that reported antibiotic-mediated effects
464 on the murine microbiota differ significantly, depending not only on the antibiotic and the

465 treatment conditions but considerably on the composition of the naïve microbiota, the sample
466 size used for analysis, and the sensitivity of the applied microbiota analysis method. All these
467 factors contribute to seemingly inconsistent results between studies. Moreover, additional
468 information is required about inhibitory and enhancing effects associated with individual
469 antibiotics, such as concentrations of metabolites controlling microbial growth and host
470 immune responses, as well as the expression of virulence-relevant genes of intestinal
471 pathogens. A more detailed understanding of the effects of antibiotic treatment on different
472 members of the gastrointestinal microbiota will be of great importance to address these issues.
473

474 MATERIAL AND METHODS

475 **Animal ethics.** C57BL/6Rj mice were housed under pathogen-free conditions in accordance
476 with FELASA recommendations in the BSL3 animal facility of the Helmholtz Centre for
477 Infection Research, Braunschweig. The protocol was approved by the Niedersächsisches
478 Landesamt für Verbraucherschutz und Lebensmittelsicherheit: permit no. 33.19-42502-04-
479 16/2124. Animals were treated with appropriate care, and all efforts were made to minimize
480 suffering. Food and water were available *ad libitum* throughout the experiment.
481

482 **Animal infections.** Six-week-old female C57BL/6Rj mice purchased from Janvier Labs (Le
483 Genest-Saint-Isle, France) barrier A02 were infected with 5×10^8 CFU *C. rodentium* DBS770
484 (*C. rodentium* ϕ stx2_{dact}) following the feeding protocol described in Flowers *et al.* (55) or left
485 uninfected. From 4 days post-infection, drinking water was supplemented with 2% glucose and
486 either of the following antibiotics: enrofloxacin (0.25 mg/ml), kanamycin (2.6 mg/ml),
487 tetracycline (1 mg/ml), rifampicin (1 mg/ml), or trimethoprim/sulfamethoxazole (Trimetotat
488 oral suspension 48% (Livisto)). Supplemented water was exchanged daily to ensure
489 continuously high levels of antibiotics. Mice were weighed daily.
490

491 **Genomic DNA isolation from feces.** For collection of fecal pellets from individual mice,
492 animals were separated into boxes for up to 30 min. Samples for gDNA isolation were collected
493 in Lysing matrix D tubes on D0 (before infection) and on D4, D6, and D12 post-infection.
494 Genomic DNA was isolated using the FastDNATM Spin Kit and a FastPrep-24 bead beating
495 grinder (MP Biomedicals, Germany) and eluted in 100 μ l H₂O_{dd}. DNA concentrations were
496 determined using a NanoDropTM One/One^C spectrophotometer (ThermoFisher Scientific).
497

498 **16S rDNA amplification and sequencing.** A 2-step PCR-approach was used to amplify the
499 V1-V2 variable region of the 16S rRNA gene. PCR with primers 27Fbif and 338R containing
500 part of the sequencing primer sites as short overhangs (given in italics)
501 (ACGACGCTCTTCCGATCTAGRGTTGATYMTGGCTCAG and
502 GACGTGTGCTCTTCCGATCTTGCTGCCTCCCGTAGGAGT, respectively) was used to
503 enrich for target sequences (20 cycles). A second amplification step of 10 cycles added the two
504 indices and Illumina adapters to amplicons (56). Amplified products were purified, normalized,
505 and pooled using the SequalPrep Normalization Plate (ThermoFisher Scientific) and sequenced
506 on an Illumina MiSeq (2X300 bases, San Diego, USA). Demultiplexed raw data for all the
507 amplicon sequencing pair-end datasets are publicly available at the NCBI Sequence Reads
508 Archive (SRA) under BioProject accession number PRJNA1011327.

509

510 **Bioinformatic and statistical analysis.** The fastQ files were analyzed with the dada2 package
511 version 1.12.1 in R (57). The quality-trimming and filtering steps were performed using the
512 filterAndTrim function. Forward and reverse reads were trimmed on the 5'-end by 20 and 19
513 bases, respectively. Reads were truncated to a length of 240 bases and a maximum of 2
514 expected errors per read was permitted. After denoising and paired-end reads merging,
515 chimeras were removed. Remaining non-bacterial sequences (eukaryota, mitochondria,
516 chloroplast) were manually deleted. Overall, 7,654,419 bacterial 16S rDNA sequence counts
517 were obtained with a mean of $18,669 \pm 8,447$ reads per sample (**Table S1**). All samples were
518 re-sampled to equal the smallest library size of 6,708 reads using the phyloseq package
519 returning 3,098 sequence types (58) (**Table S1**). Sequence types were annotated based on the
520 naïve Bayesian classification with a pseudo-bootstrap threshold of 80% using RDP set18 (59)
521 (**Table S1**). Sequence variants were then manually analyzed against the RDP database using
522 the Seqmatch function to define the discriminatory power of each sequence type. Species level
523 annotations were assigned to a sequence variant when only 16S rRNA gene fragments of
524 previously described isolates of a single species were aligned with a maximum of two
525 mismatches with this sequence variant (60). Relative abundances (in percentage) of sequence
526 types, species, genera, families, orders, classes and phyla were used for downstream analyses.
527 Calculation of diversity indices (species richness ST, Shannon diversity index H, Pielous
528 evenness J, Simpson diversity index $1-\lambda$) and multivariate analyses were performed using
529 PRIMER (v.7.0.11, PRIMER-E, Plymouth Marine Laboratory, UK), whereas univariate
530 analyses were performed using Prism 9 (Graphpad Software, Inc.).

531 Differences in diversity indices between the different mouse batches (**Fig. S1B**) and the
532 different treatment groups (**Fig. 2B**) were tested for by ordinary ANOVA using the Holm-
533 Sidak test for multiple comparisons. Changes in diversity over time were analyzed using a
534 mixed effects model. Tukey's test was used for multiple comparisons.

535 The data matrices comprising 3,098 sequence types, 126 genera, or other taxa were used to
536 construct sample-similarity matrices applying the Bray-Curtis algorithm, where samples were
537 ordinated using non-metric multidimensional scaling (nMDS) with 50 random restarts (61).
538 Significant differences between *a priori* predefined groups of samples were evaluated using
539 Permutational Multivariate Analysis of Variance (PERMANOVA), allowing for type III
540 (partial) sums of squares, fixed effects sum to zero for mixed terms. Monte Carlo p-values were
541 generated using unrestricted permutation of raw data (62). Groups of samples were considered
542 significantly different if the p-value was <0.05. The abundances of taxa present in the
543 community of at least 10% of the samples were compared by the Kruskal-Wallis test with
544 Benjamini-Hochberg corrections for multiple comparisons (63). Groups of samples were
545 considered significantly different if the adjusted p-value was <0.05. Taxa differentially
546 distributed over time were further assessed by Dunn's post-hoc test. The within-group
547 homogeneity was tested by calculating multivariate dispersion indices with PRIMER.

548

549 **Acknowledgments**

550 We thank Susanne Talay for her excellent introduction and support with all aspects of work in
551 the BSL3 facilities at the Helmholtz Centre for Infection Research, the staff of the BSL3 animal
552 facility for their help and support, Luiz Borges and Howard Junca for critical discussions and
553 Ingo Schmitz for critically reading the manuscript. Petra Dersch and Sabrina Mühlen were
554 supported by the German Centre for Infection Research (DZIF). We declare no conflicts of
555 interest.

556

557 **REFERENCES**

- 558 1. Collaborators GBDAR. 2022. Global mortality associated with 33 bacterial pathogens
559 in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet
560 400:2221-2248.
- 561 2. Fleming A. 1980. Classics in infectious diseases: on the antibacterial action of cultures
562 of a penicillium, with special reference to their use in the isolation of *B. influenzae* by
563 Alexander Fleming, Reprinted from the British Journal of Experimental Pathology
564 10:226-236, 1929. Rev Infect Dis 2:129-39.
- 565 3. Adedeji WA. 2016. The Treasure Called Antibiotics. Ann Ib Postgrad Med 14:56-57.

566 4. Junca H, Pieper DH, Medina E. 2022. The emerging potential of microbiome
567 transplantation on human health interventions. *Comput Struct Biotechnol J* 20:615-
568 627.

569 5. Buffie CG, Jarchum I, Equinda M, Lipuma L, Gobourne A, Viale A, Ubeda C, Xavier J,
570 Pamer EG. 2012. Profound alterations of intestinal microbiota following a single dose
571 of clindamycin results in sustained susceptibility to *Clostridium difficile*-induced colitis.
572 *Infect Immun* 80:62-73.

573 6. Lewis JD, Chen EZ, Baldassano RN, Otley AR, Griffiths AM, Lee D, Bittinger K, Bailey A,
574 Friedman ES, Hoffmann C, Albenberg L, Sinha R, Compher C, Gilroy E, Nessel L, Grant
575 A, Chehoud C, Li H, Wu GD, Bushman FD. 2015. Inflammation, antibiotics, and diet as
576 environmental stressors of the gut microbiome in pediatric Crohn's Disease. *Cell Host Microbe* 18:489-500.

578 7. Kakoullis L, Papachristodoulou E, Chra P, Panos G. 2019. Shiga toxin-induced
579 haemolytic uraemic syndrome and the role of antibiotics: a global overview. *J Infect*
580 79:75-94.

581 8. Panos GZ, Betsi GI, Falagas ME. 2006. Systematic review: are antibiotics detrimental
582 or beneficial for the treatment of patients with *Escherichia coli* O157:H7 infection?
583 *Aliment Pharmacol Ther* 24:731-42.

584 9. McGannon CM, Fuller CA, Weiss AA. 2010. Different classes of antibiotics differentially
585 influence shiga toxin production. *Antimicrob Agents Chemother* 54:3790-8.

586 10. Karch H, Tarr PI, Bielaszewska M. 2005. Enterohaemorrhagic *Escherichia coli* in human
587 medicine. *Int J Med Microbiol* 295:405-18.

588 11. Karmali MA, Petric M, Lim C, Fleming PC, Steele BT. 1983. *Escherichia coli* cytotoxin,
589 haemolytic-uraemic syndrome, and haemorrhagic colitis. *Lancet* 2:1299-1300.

590 12. O'Brien AD, Lively TA, Chang TW, Gorbach SL. 1983. Purification of *Shigella dysenteriae*
591 1 (Shiga)-like toxin from *Escherichia coli* O157:H7 strain associated with haemorrhagic
592 colitis. *Lancet* 2:573.

593 13. Kimmitt PT, Harwood CR, Barer MR. 2000. Toxin gene expression by shiga toxin-
594 producing *Escherichia coli*: the role of antibiotics and the bacterial SOS response.
595 *Emerg Infect Dis* 6:458-65.

596 14. Crepin VF, Collins JW, Habibzay M, Frankel G. 2016. *Citrobacter rodentium* mouse
597 model of bacterial infection. *Nat Protoc* 11:1851-76.

598 15. Mallick EM, McBee ME, Vanguri VK, Melton-Celsa AR, Schlieper K, Karalius BJ, O'Brien
599 AD, Butterton JR, Leong JM, Schauer DB. 2012. A novel murine infection model for
600 Shiga toxin-producing *Escherichia coli*. *J Clin Invest* 122:4012-24.

601 16. Mühlen S, Ramming I, Pils MC, Koeppel M, Glaser J, Leong J, Flieger A, Stecher B,
602 Dersch P. 2020. Identification of antibiotics that diminish disease in a murine model
603 of enterohemorrhagic *Escherichia coli* infection. *Antimicrob Agents Chemother*
604 doi:10.1128/AAC.02159-19.

605 17. Zeissig S, Blumberg RS. 2014. Life at the beginning: perturbation of the microbiota by
606 antibiotics in early life and its role in health and disease. *Nat Immunol* 15:307-10.

607 18. Lange K, Buerger M, Stallmach A, Bruns T. 2016. Effects of Antibiotics on Gut
608 Microbiota. *Dig Dis* 34:260-8.

609 19. Flint HJ, Scott KP, Louis P, Duncan SH. 2012. The role of the gut microbiota in nutrition
610 and health. *Nat Rev Gastroenterol Hepatol* 9:577-89.

611 20. Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, Kim SG, Li H, Gao Z,
612 Mahana D, Zarate Rodriguez JG, Rogers AB, Robine N, Loke P, Blaser MJ. 2014. Altering

613 the intestinal microbiota during a critical developmental window has lasting metabolic
614 consequences. *Cell* 158:705-721.

615 21. Macpherson AJ, Harris NL. 2004. Interactions between commensal intestinal bacteria
616 and the immune system. *Nat Rev Immunol* 4:478-85.

617 22. Belkaid Y, Hand TW. 2014. Role of the microbiota in immunity and inflammation. *Cell*
618 157:121-41.

619 23. Kamada N, Seo SU, Chen GY, Nunez G. 2013. Role of the gut microbiota in immunity
620 and inflammatory disease. *Nat Rev Immunol* 13:321-35.

621 24. Johnson KV, Foster KR. 2018. Why does the microbiome affect behaviour? *Nat Rev*
622 *Microbiol* 16:647-655.

623 25. Kasubuchi M, Hasegawa S, Hiramatsu T, Ichimura A, Kimura I. 2015. Dietary gut
624 microbial metabolites, short-chain fatty acids, and host metabolic regulation.
625 *Nutrients* 7:2839-49.

626 26. Keeney KM, Yurist-Doutsch S, Arrieta MC, Finlay BB. 2014. Effects of antibiotics on
627 human microbiota and subsequent disease. *Annu Rev Microbiol* 68:217-35.

628 27. Russell SL, Gold MJ, Hartmann M, Willing BP, Thorson L, Wlodarska M, Gill N, Blanchet
629 MR, Mohn WW, McNagny KM, Finlay BB. 2012. Early life antibiotic-driven changes in
630 microbiota enhance susceptibility to allergic asthma. *EMBO Rep* 13:440-7.

631 28. Cho I, Blaser MJ. 2012. The human microbiome: at the interface of health and disease.
632 *Nat Rev Genet* 13:260-70.

633 29. Osbelt L, Thiemann S, Smit N, Lesker TR, Schroter M, Galvez EJC, Schmidt-Hohagen K,
634 Pils MC, Muhlen S, Dersch P, Hiller K, Schluter D, Neumann-Schaal M, Strowig T. 2020.
635 Variations in microbiota composition of laboratory mice influence *Citrobacter*
636 *rodentium* infection via variable short-chain fatty acid production. *PLoS Pathog*
637 16:e1008448.

638 30. Grabowski L, Pierzynowska K, Kosznik-Kwasnicka K, Stasilojc M, Jerzemowska G,
639 Wegrzyn A, Wegrzyn G, Podlacha M. 2023. Sex-dependent differences in behavioral
640 and immunological responses to antibiotic and bacteriophage administration in mice.
641 *Front Immunol* 14:113358.

642 31. Sun L, Zhang X, Zhang Y, Zheng K, Xiang Q, Chen N, Chen Z, Zhang N, Zhu J, He Q. 2019.
643 Antibiotic-Induced Disruption of Gut Microbiota Alters Local Metabolomes and
644 Immune Responses. *Front Cell Infect Microbiol* 9:99.

645 32. Namasivayam S, Maiga M, Yuan W, Thovarai V, Costa DL, Mitterreder LR, Wipperman
646 MF, Glickman MS, Dzutsev A, Trinchieri G, Sher A. 2017. Longitudinal profiling reveals
647 a persistent intestinal dysbiosis triggered by conventional anti-tuberculosis therapy.
648 *Microbiome* 5:71.

649 33. Yin J, Zhang XX, Wu B, Xian Q. 2015. Metagenomic insights into tetracycline effects on
650 microbial community and antibiotic resistance of mouse gut. *Ecotoxicology* 24:2125-
651 32.

652 34. Zhao W, Hong H, Yin J, Wu B, Zhao F, Zhang XX. 2021. Recovery of gut microbiota in
653 mice exposed to tetracycline hydrochloride and their correlation with host
654 metabolism. *Ecotoxicology* 30:1620-1631.

655 35. Korte SW, Dorfmeyer RA, Franklin CL, Ericsson AC. 2020. Acute and long-term effects
656 of antibiotics commonly used in laboratory animal medicine on the fecal microbiota.
657 *Vet Res* 51:116.

658 36. de Nies L, Busi SB, Tsenkova M, Halder R, Letellier E, Wilmes P. 2022. Evolution of the
659 murine gut resistome following broad-spectrum antibiotic treatment. *Nat Commun*
660 13:2296.

661 37. Huang C, Feng S, Huo F, Liu H. 2022. Effects of four antibiotics on the diversity of the
662 intestinal microbiota. *Microbiol Spectr* 10:e0190421.

663 38. Hopkins EGD, Roumeliotis TI, Mullineaux-Sanders C, Choudhary JS, Frankel G. 2019.
664 Intestinal Epithelial Cells and the Microbiome Undergo Swift Reprogramming at the
665 Inception of Colonic *Citrobacter rodentium* Infection. *mBio* 10.

666 39. Knoop KA, McDonald KG, Kulkarni DH, Newberry RD. 2016. Antibiotics promote
667 inflammation through the translocation of native commensal colonic bacteria. *Gut*
668 65:1100-9.

669 40. Cannon T, Sinha A, Trudeau LE, Maurice CF, Gruenheid S. 2020. Characterization of
670 the intestinal microbiota during *Citrobacter rodentium* infection in a mouse model of
671 infection-triggered Parkinson's disease. *Gut Microbes* 12:1-11.

672 41. Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC, Finlay BB.
673 2007. Host-mediated inflammation disrupts the intestinal microbiota and promotes
674 the overgrowth of Enterobacteriaceae. *Cell Host Microbe* 2:119-29.

675 42. Hoffmann C, Hill DA, Minkah N, Kirn T, Troy A, Artis D, Bushman F. 2009. Community-
676 wide response of the gut microbiota to enteropathogenic *Citrobacter rodentium*
677 infection revealed by deep sequencing. *Infect Immun* 77:4668-78.

678 43. Wang G, Feuerbacher LA, Hardwidge PR. 2018. Influence of Intestinal Microbiota
679 Transplantation and NleH Expression on *Citrobacter rodentium* Colonization of Mice.
680 *Pathogens* 7.

681 44. Lagkouvardos I, Lesker TR, Hitch TCA, Galvez EJC, Smit N, Neuhaus K, Wang J, Baines
682 JF, Abt B, Stecher B, Overmann J, Strowig T, Clavel T. 2019. Sequence and cultivation
683 study of Muribaculaceae reveals novel species, host preference, and functional
684 potential of this yet undescribed family. *Microbiome* 7:28.

685 45. Lee KS, Jeong YJ, Lee MS. 2021. *Escherichia coli* Shiga Toxins and Gut Microbiota
686 Interactions. *Toxins (Basel)* 13.

687 46. Yang W, Yu T, Huang X, Bilotta AJ, Xu L, Lu Y, Sun J, Pan F, Zhou J, Zhang W, Yao S,
688 Maynard CL, Singh N, Dann SM, Liu Z, Cong Y. 2020. Intestinal microbiota-derived
689 short-chain fatty acids regulation of immune cell IL-22 production and gut immunity.
690 *Nat Commun* 11:4457.

691 47. Mullineaux-Sanders C, Collins JW, Ruano-Gallego D, Levy M, Pevsner-Fischer M,
692 Glegola-Madejska IT, Sagfors AM, Wong JLC, Elinav E, Crepin VF, Frankel G. 2017.
693 *Citrobacter rodentium* Relies on Commensals for Colonization of the Colonic Mucosa.
694 *Cell Rep* 21:3381-3389.

695 48. Turner NCA, Connolly JPR, Roe AJ. 2019. Control freaks-signals and cues governing the
696 regulation of virulence in attaching and effacing pathogens. *Biochem Soc Trans*
697 47:229-238.

698 49. Ochoa TJ, Chen J, Walker CM, Gonzales E, Cleary TG. 2007. Rifaximin does not induce
699 toxin production or phage-mediated lysis of Shiga toxin-producing *Escherichia coli*.
700 *Antimicrob Agents Chemother* 51:2837-41.

701 50. Rahal EA, Kazzi N, Sabra A, Abdelnoor AM, Matar GM. 2011. Decrease in Shiga toxin
702 expression using a minimal inhibitory concentration of rifampicin followed by
703 bactericidal gentamicin treatment enhances survival of *Escherichia coli* O157:H7-
704 infected BALB/c mice. *Ann Clin Microbiol Antimicrob* 10:34.

705 51. Menne J, Delmas Y, Fakhouri F, Licht C, Lommele A, Minetti EE, Provot F, Rondeau E,
706 Sheerin NS, Wang J, Weekers LE, Greenbaum LA. 2019. Outcomes in patients with
707 atypical hemolytic uremic syndrome treated with eculizumab in a long-term
708 observational study. *BMC Nephrol* 20:125.

709 52. Francino MP. 2015. Antibiotics and the Human Gut Microbiome: Dysbioses and
710 Accumulation of Resistances. *Front Microbiol* 6:1543.

711 53. Ramirez J, Guarner F, Bustos Fernandez L, Maruy A, Sdepanian VL, Cohen H. 2020.
712 Antibiotics as Major Disruptors of Gut Microbiota. *Front Cell Infect Microbiol*
713 10:572912.

714 54. Strzepa A, Majewska-Szczepanik M, Lobo FM, Wen L, Szczepanik M. 2017. Broad
715 spectrum antibiotic enrofloxacin modulates contact sensitivity through gut microbiota
716 in a murine model. *J Allergy Clin Immunol* 140:121-133 e3.

717 55. Flowers LJ, Bou Ghanem EN, Leong JM. 2016. Synchronous Disease Kinetics in a
718 Murine Model for Enterohemorrhagic *E. coli* Infection Using Food-Borne Inoculation.
719 *Front Cell Infect Microbiol* 6:138.

720 56. Rath S, Heidrich B, Pieper DH, Vital M. 2017. Uncovering the trimethylamine-
721 producing bacteria of the human gut microbiota. *Microbiome* 5:54.

722 57. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. 2016. DADA2:
723 High-resolution sample inference from Illumina amplicon data. *Nat Methods* 13:581-
724 3.

725 58. McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible interactive
726 analysis and graphics of microbiome census data. *PLoS One* 8:e61217.

727 59. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A,
728 Kuske CR, Tiedje JM. 2014. Ribosomal Database Project: data and tools for high
729 throughput rRNA analysis. *Nucleic Acids Res* 42:D633-42.

730 60. Schulz C, Schutte K, Koch N, Vilchez-Vargas R, Wos-Oxley ML, Oxley APA, Vital M,
731 Malfertheiner P, Pieper DH. 2018. The active bacterial assemblages of the upper GI
732 tract in individuals with and without *Helicobacter* infection. *Gut* 67:216-225.

733 61. Clarke KRG, R. N.; Somerfield, P. J.; Warwick, R. M. 2014. Change in marine
734 communities: an approach to statistical analysis and interpretation. Primer-E Ltd.

735 62. Anderson MJ. 2001. A new method for non-parametric multivariate analysis of
736 variance. *Austral Ecology* 26:32 - 46.

736 63. Hochberg Y, Benjamini Y. 1990. More powerful procedures for multiple significance
737 testing. *Stat Med* 9:811-8.

738

739

740

741 **Figure Legends**

742 **Fig. 1 Experimental set-up.** For each experiment, purchased mice were separated into groups
743 of 5 mice per cage. Mice were infected with *C. rodentium* ϕ stx2_{dact} by feeding on day 0 (D0),
744 and weight was monitored daily (16). A group of control mice was kept uninfected. Prior to
745 infection and on days 4, 6, and 12 (D4, D6, D12) post-infection, fecal samples were collected
746 from which genomic DNA was isolated. From these samples, the V1/V2 regions of the 16S
747 rDNA were amplified and sequenced for microbiota analyses. This figure was created with

748 Biorender.com.

749

750 **Fig. 2 Batch mixing eliminates differences in treatment groups.** (A) The global bacterial
751 community structure in mice feces at the start of the experiment was assessed by non-metric
752 multidimensional scaling (nMDS). The global community structure is based on standardized
753 sequence type abundance data, and similarities were calculated using the Bray-Curtis similarity
754 algorithm. Each mouse belonged to one of five batches (Batch) and was assigned to one
755 treatment group (indicated by different colors). (B) The diversity of the different treatment
756 groups is indicated by total sequence type number, Pielou's evenness (J'), Shannon diversity
757 (H'), and Simpsons diversity ($1-\lambda$), respectively, and was analyzed using sequence type relative
758 abundance data as input. Data are based on an ordinary ANOVA analysis using Tukey's test
759 for multiple comparisons. The mean is indicated by + and the median by a black line. The box
760 represents the interquartile range. The whiskers extend to the upper adjacent value (largest
761 value = 75th percentile + 1.5 x IQR) and the lower adjacent value (lowest value = 25th
762 percentile - 1.5 x IQR), and the dots represent outliers. There was no statistically significant
763 difference in any of the tested indices between any treatment group.

764

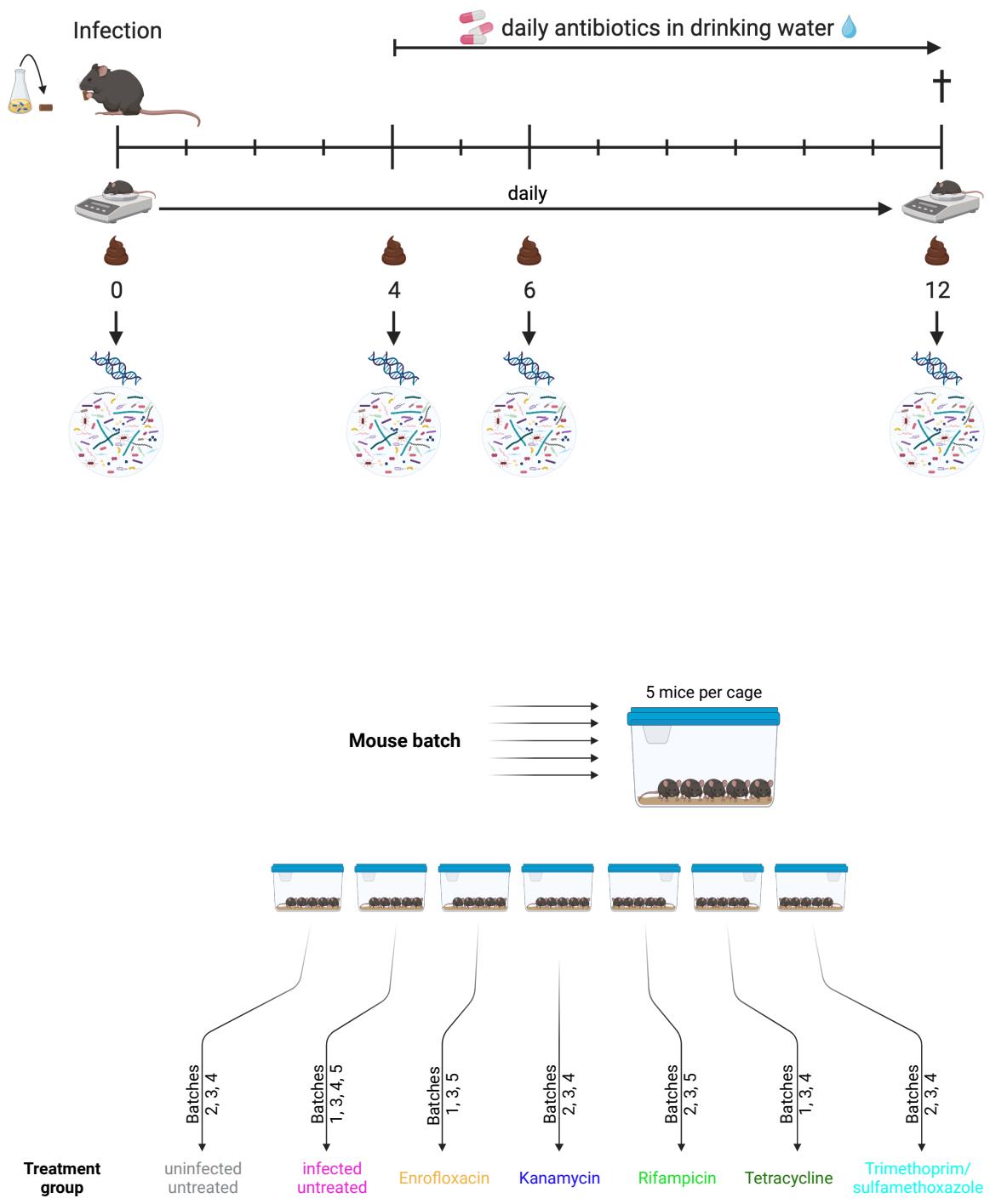
765 **Fig. 3 Heat map showing genera influenced by infection.** The evolutionary history to the
766 left was inferred using the Neighbor-Joining method and is based on representative nearly full-
767 length 16S rRNA gene sequences for all genera given (**Table S5**). The evolutionary distances
768 were computed using the p-distance method and are given in units of the number of base
769 differences per site. All ambiguous positions were removed for each sequence pair (pairwise
770 deletion option). Evolutionary analyses were conducted in MEGA 7. The different phyla
771 observed are indicated by color code. Only genera present in >10% of samples are further
772 analyzed. The scale of the heatmap is indicated to the right and covers four orders of magnitude
773 of mean relative abundance data. Changes over time were assessed by Kruskal-Wallis test with
774 Benjamini-Hochberg corrections for multiple comparisons. Groups of samples were
775 considered significantly different if the adjusted p-value was <0.05 . Taxa differentially
776 distributed over time were further assessed by Dunn's post-hoc test. A significant change in
777 abundance compared to the previous time point is indicated by a bold arrow if $p<0.01$ and a
778 thin arrow if $p<0.05$. The arrow direction indicates an increase or decrease in abundance.

779

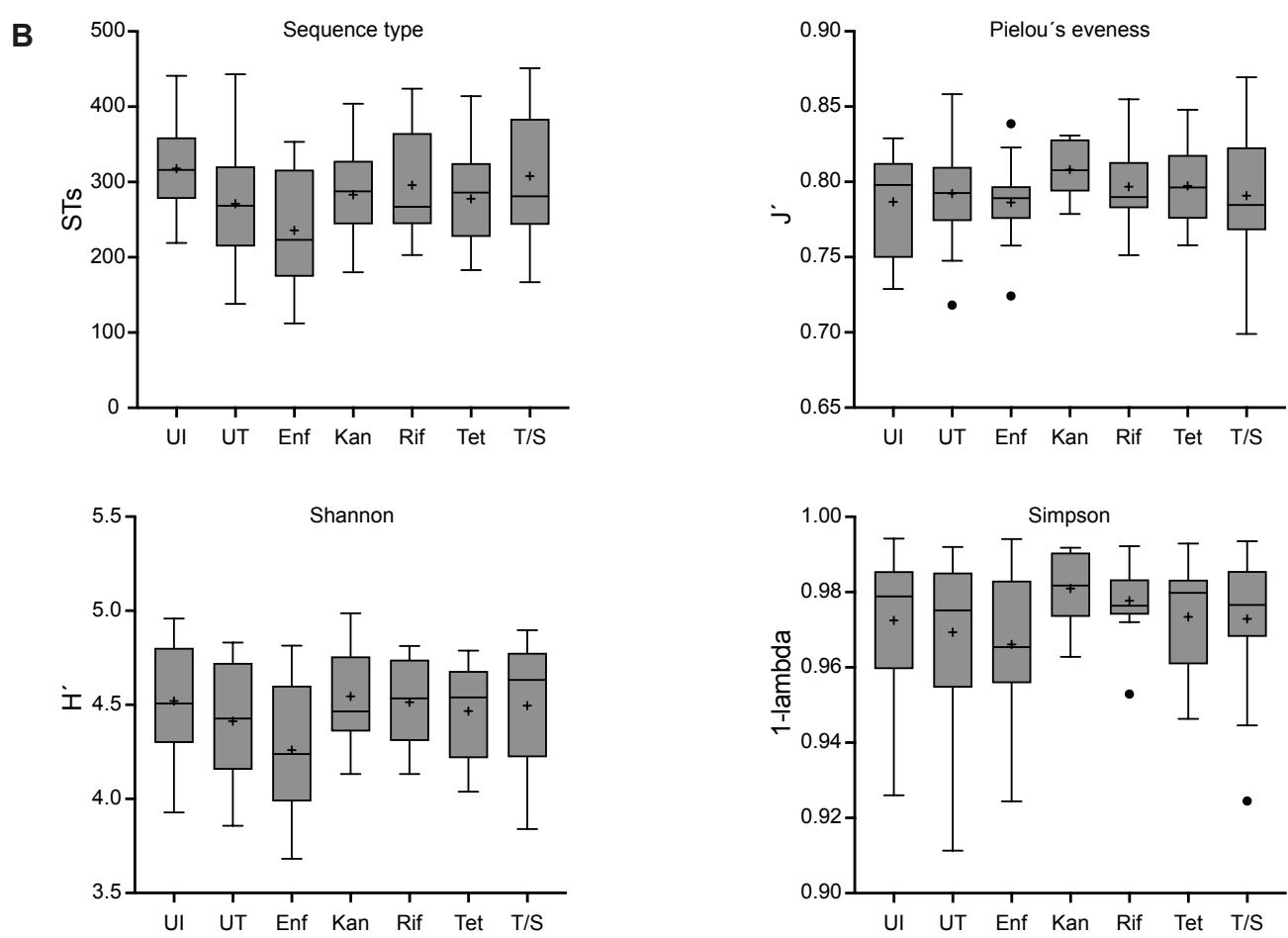
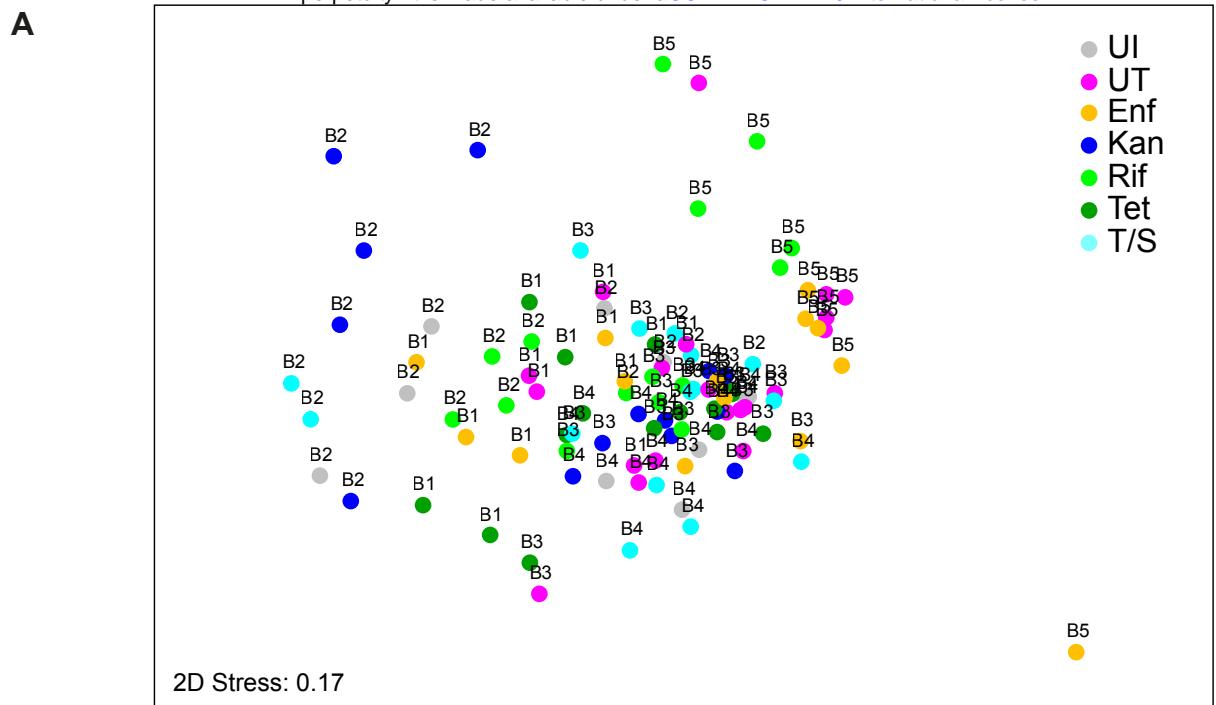
780 **Fig. 4 Bacterial community diversity dependent on antibiotic treatment.** Diversity is

781 indicated by total sequence type number, Shannon diversity (H'), Simpson's diversity (1- λ),
782 and Pielou's evenness (J'), respectively, and was analyzed using sequence type relative
783 abundance data as input. Differences in diversity were analyzed using a mixed effects model
784 and multiple comparisons were corrected using the Tukey test (A, enrofloxacin; B, kanamycin;
785 C, rifampicin; D, tetracycline; E, trimethoprim/sulfamethoxazole) separately over time.
786 Statistically significant differences are indicated as *p<0.05, **p<0.01, ***p<0.001 or
787 ****p<0.0001. The mean is indicated by + and the median by a black line. The box represents
788 the interquartile range. The whiskers extend to the upper adjacent value (largest value = 75th
789 percentile + 1.5 x IQR) and the lower adjacent value (lowest value = 25th percentile - 1.5 x
790 IQR) and the dots represent outliers.

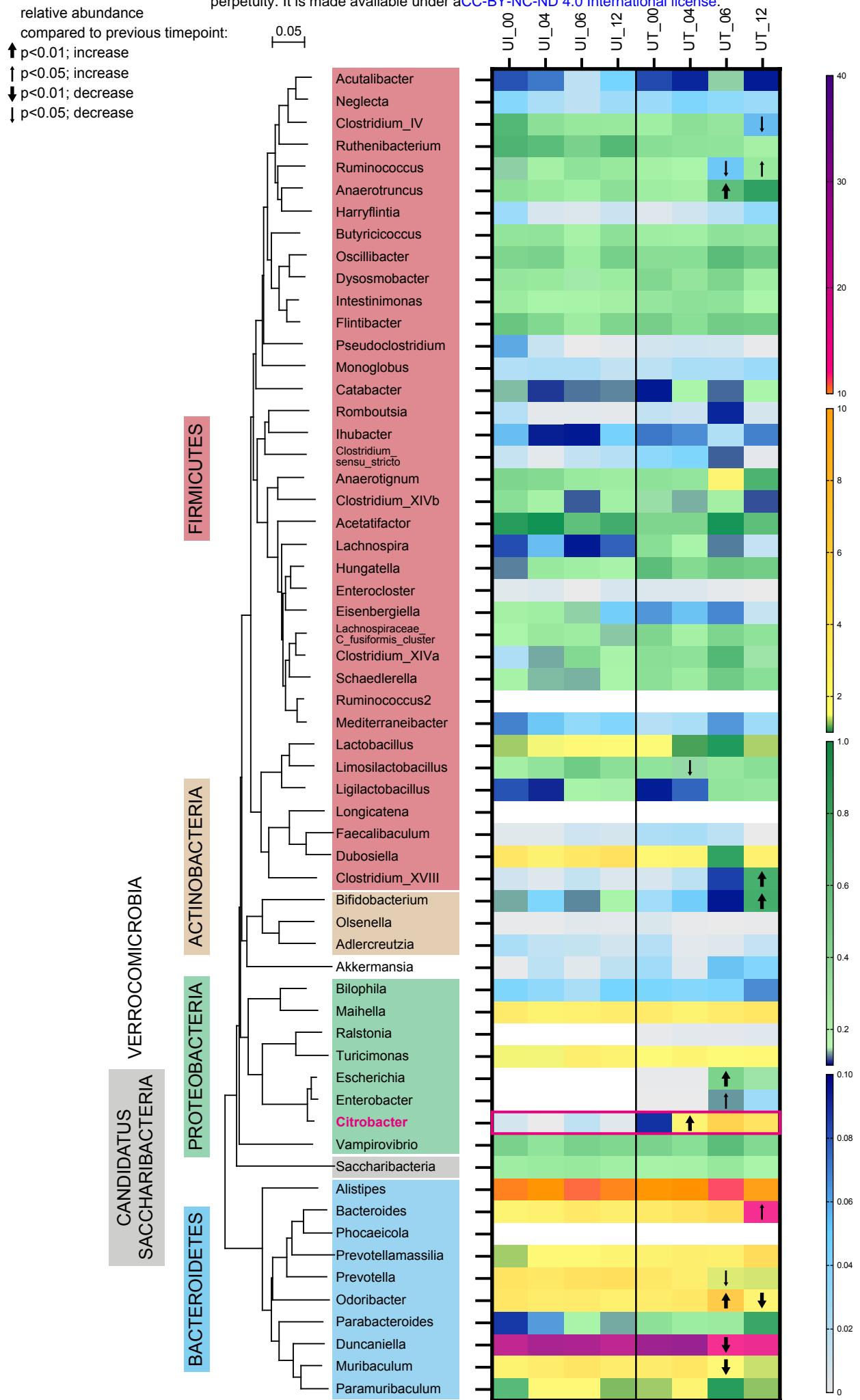
791


792 **Fig. 5 Differences in global bacterial community structure in mice feces upon infection**
793 **and subsequent antibiotic treatment.** The global bacterial community structure was assessed
794 by non-metric multidimensional scaling (nMDS) and is based on standardized sequence type
795 abundance data. Similarities were calculated using the Bray-Curtis similarity algorithm. All
796 treatment groups except control mice (UI) were infected with *C. rodentium* ϕ stx2_{dact} on day 0.
797 Treatment groups that received antibiotics from day 4 post-infection are indicated by Enf
798 (enrofloxacin), Kan (kanamycin), Rif (rifampicin), Tet (tetracycline), or T/S
799 (trimethoprim/sulfamethoxazole). Treatment group 'UT' remained untreated. The labels
800 indicate the day post-infection.

801



802 **Fig. 6 Heat map showing genera influenced by antibiotic treatment post-infection.** The
803 evolutionary history to the left was inferred using the Neighbor-Joining method and is based
804 on representative nearly full-length 16S rRNA gene sequences of representatives for all genera
805 given (**Table S5**). The evolutionary distances were computed using the p-distance method and
806 are in the units of the number of base differences per site. All ambiguous positions were
807 removed for each sequence pair (pairwise deletion option). Evolutionary analyses were
808 conducted in MEGA 7. The different phyla observed are indicated by color code. Only genera
809 present in >10% of a given treatment group are further analyzed. The scale of the heatmap is
810 indicated to the right and covers four orders of magnitude of mean relative abundance data.
811 Changes over time were assessed by Kruskal-Wallis test with Benjamini-Hochberg corrections
812 for multiple comparisons. Groups of samples were considered significantly different if the
813 adjusted p-value was <0.05. Taxa differentially distributed over time were further assessed by

814 Dunn's post-hoc test. A significant change in abundance compared to the previously indicated
815 time point is indicated by a bold arrow if $p < 0.01$ and a thin arrow if $p < 0.05$. The arrow direction
816 indicates an increase or decrease in abundance.


817

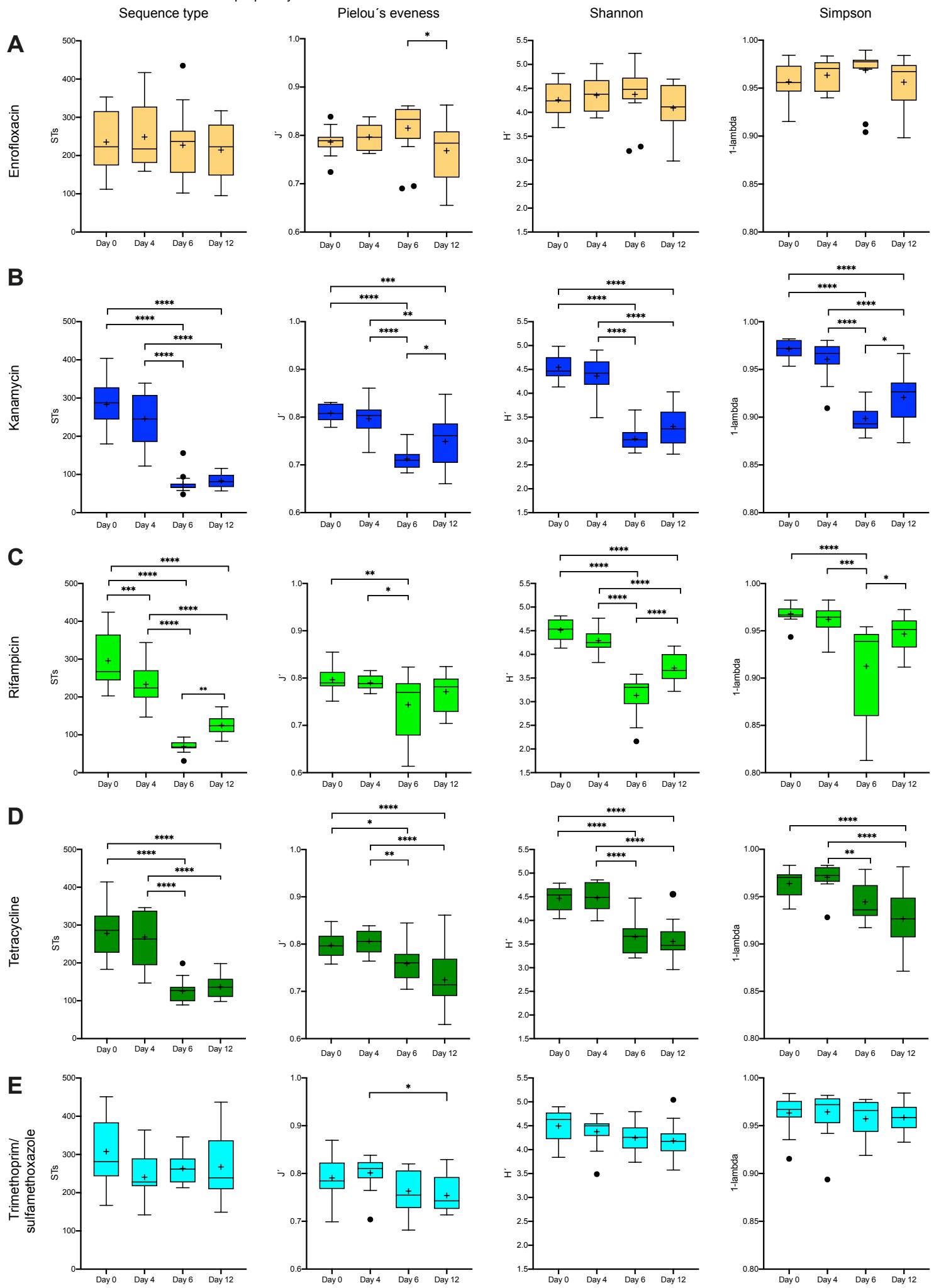

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

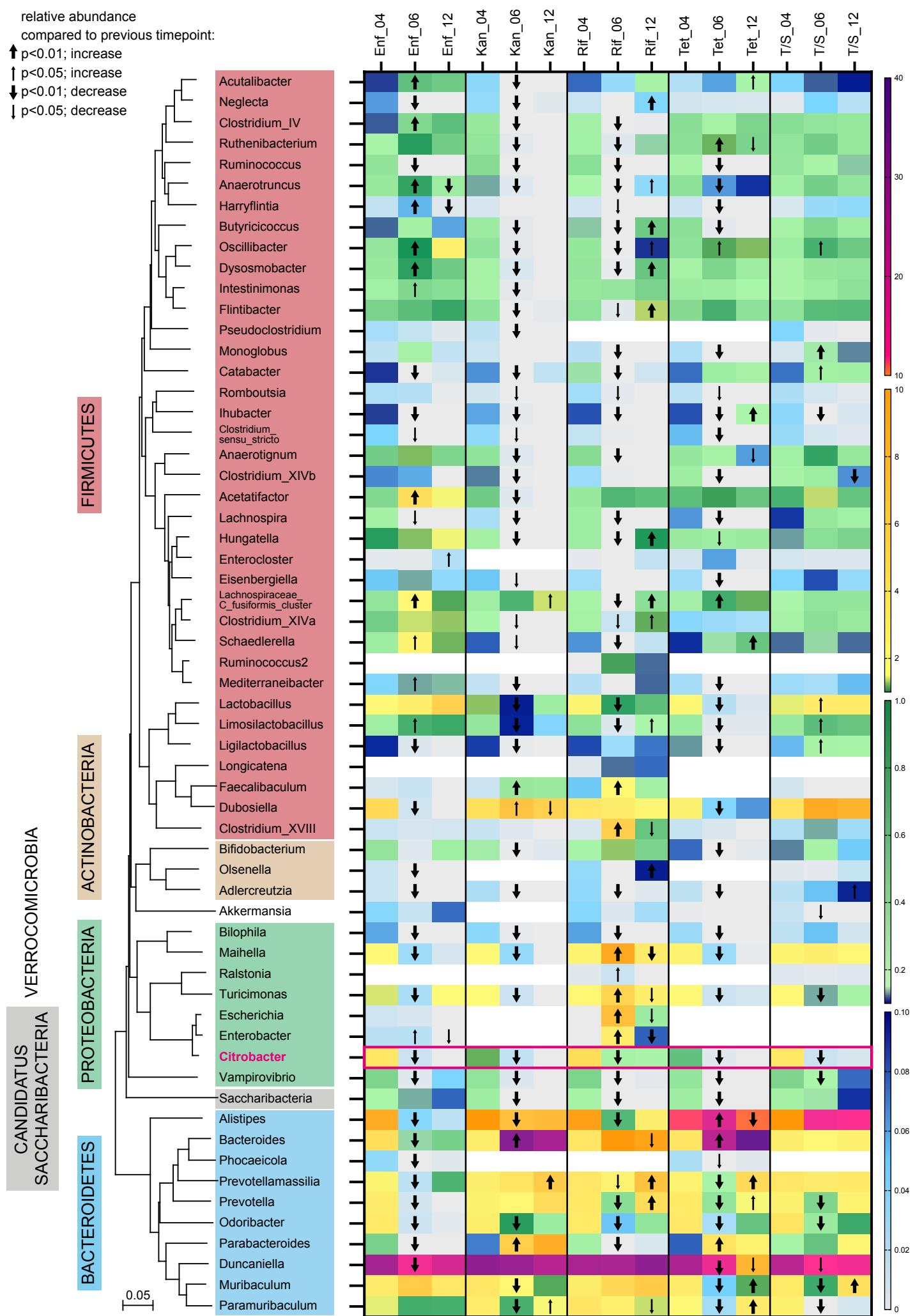


Figure 6

1 **Supplementary Information**

2

3 **Supplementary Figures**

4 **Fig. S1 Global community structures of different mouse batches (experiments).** (A) nMDS
5 plot indicating the fecal global bacterial community structure of the separate mouse batches
6 (indicated by different icons and colors) and their assignment to treatment groups (indicated
7 above the icons; UI: uninfected, UT: untreated, Enf: Enrofloxacin, Kan: Kanamycin, Rif:
8 Rifampicin, Tet: Tetracycline, T/S: Trimethoprim/Sulfamethoxazole). The global community
9 structure is based on standardized sequence-type abundance data, and similarities were
10 calculated using the Bray-Curtis similarity algorithm. (B) Diversity of the microbial
11 communities in different mouse batches as indicated by total sequence-type number, Pielou's
12 evenness (J') Shannon diversity (H') and Simpsons diversity ($1-\lambda$), respectively, and was
13 analyzed using sequence type relative abundance data as input. Data are based on an ordinary
14 ANOVA analysis with Tukey's test for multiple comparisons. Statistically significant
15 differences are indicated as * $p<0.05$, ** $p<0.01$, *** $p<0.001$ or **** $p<0.0001$. The mean is
16 indicated by + and the median by a black line. The box represents the interquartile range. The
17 whiskers extend to the upper adjacent value (largest value = 75th percentile + 1.5 x IQR) and
18 the lower adjacent value (lowest value = 25th percentile - 1.5 x IQR) and the dots represent
19 outliers.

20

21 **Fig. S2 Global community structures of uninfected and infected untreated mice over time.**

22 (A) nMDS plot showing global bacterial community structures of UI (uninfected) and UT
23 (untreated) mice over time. The time of sampling is indicated above the icons. The global
24 community structure is based on standardized sequence type abundance data, and similarities
25 were calculated using the Bray-Curtis similarity algorithm (B and C). Diversity of the
26 microbial communities in UI (uninfected, B) and UT (untreated, C) mice as indicated by total
27 sequence type number, Pielou's evenness (J'), Shannon diversity (H'), and Simpsons diversity
28 ($1-\lambda$), respectively, were analyzed using sequence type relative abundance data as input.
29 Differences in diversity were tested by using a mixed effect model, and multiple comparisons
30 were corrected using the Tukey test. Statistically significant differences are indicated as
31 * $p<0.05$. The mean is indicated by + and the median by a black line. The box represents the
32 interquartile range. The whiskers extend to the upper adjacent value (largest value = 75th
33 percentile + 1.5 x IQR) and the lower adjacent value (lowest value = 25th percentile - 1.5 x

34 IQR) and the dots represent outliers.

35

36 **Fig. S3 Heterogeneity in microbial communities depending on treatment and treatment**
37 **times as indicated by multivariate dispersion indices.** Indices indicating the within-group
38 homogeneity were calculated by PRIMER and were followed for all treatment groups over
39 time (UI, uninfected untreated; UT, infected untreated; Enf, Enrofloxacin; Kan, Kanamycin;
40 Rif, Rifampicin; Tet, Tetracycline; T/S, Trimethoprim/Sulfamethoxazole).

41

42 **Fig. S4 Relative abundance of *Bacteroides* species as influenced by infection and antibiotic**
43 **treatment.** Variations in the relative abundance of *Bacteroides_11*, *Bacteroides acidifaciens*,
44 and *Bacteroides uniformis* were followed for all treatment groups over time (A, uninfected
45 untreated; B, infected untreated; C, Enrofloxacin; D, Kanamycin; E, Rifampicin; F,
46 Tetracycline; G, Trimethoprim/Sulfamethoxazole). Significant differences upon treatment
47 time were calculated using the Kruskal-Wallis test with Benjamini-Hochberg correction and
48 are indicated as **p<0.01, ***p<0.001 and ****p<0.0001. The individual relative abundances
49 are given, and the mean (dotted lines) ± SEM is indicated.

50

51 **Fig. S5 Differences in global bacterial community structure in mice feces upon infection**
52 **and subsequent antibiotic treatment.** The global bacterial community structure was assessed
53 by non-metric multidimensional scaling (nMDS) and is based on standardized sequence type
54 abundance data. Similarities were calculated using the Bray-Curtis similarity algorithm. All
55 treatment groups were infected with *C. rodentium* ϕ stx2_{dact} on day 0. Treatment groups
56 received antibiotics (A) enrofloxacin, (B) kanamycin, (C) rifampicin, (D) tetracycline, or (E)
57 trimethoprim/sulfamethoxazole from day 4 post-infection.

58

59 **Fig. S6 Phylogenetic taxa (families, order, classes, and phyla) influenced by infection and**
60 **antibiotic treatment.** The abundances of taxa were compared using the Kruskal-Wallis test
61 with Benjamini-Hochberg corrections for multiple comparisons. Groups of samples were
62 considered significantly different in abundance if the adjusted p-value was <0.05. Taxa
63 differentially distributed over time were further assessed by Dunn's post-hoc test. Changes in
64 relative abundance between day 4 (d04) and day 6 (d06) and between day 6 (d06) and day 12
65 (d12) during infection (UT) and antibiotic treatment (Enf, enrofloxacin; Kan, kanamycin; Rif,
66 rifampicin; Tet, tetracycline; or T/S, trimethoprim/ sulfamethoxazole) are indicated by arrows

67 with the arrow direction indicating increase or decrease in abundance. A bold arrow indicates
68 a significant change in relative abundance with $p < 0.01$ and a small arrow with $0.01 < p < 0.05$.
69 The color of the arrow shows the relative abundance on d4 or d6 (red: >10%, yellow: 1-10%;
70 green 0.1-1%, blue <0.1%).

71

72 **Fig. S7 Stacked bar-plot representation of microbiota compositions at the genus level.** The
73 relative abundance of the different genera in the fecal microbiota of uninfected mice, infected
74 mice, and mice additionally treated with antibiotics is given for all time points assessed. Genera
75 with an abundance below 1% as well as taxa that could not be classified down to the genus
76 level but at least to the phyla given are summarized to the respective phylum. Sequences that
77 could not be classified to the phylum level are grouped as other. The different treatment groups
78 (uninfected untreated (UI); infected untreated (UT); Enf, enrofloxacin; Kan, kanamycin; Rif,
79 rifampicin; Tet, tetracycline; or T/S, trimethoprim/ sulfamethoxazole) are given below the X-
80 axis label indicating the sampling day (00: D0; 04: D4; 06: D6; and 12: D12).

81

82 **Supplementary Tables**

83 **Table S1: Nucleotide sequences of all sequence variants determined using Illumina-based**
84 **amplicon deep-sequencing, their phylogenetic annotation and sequence count as well as**
85 **relative abundance data after rarefying across all 410 fecal samples.**

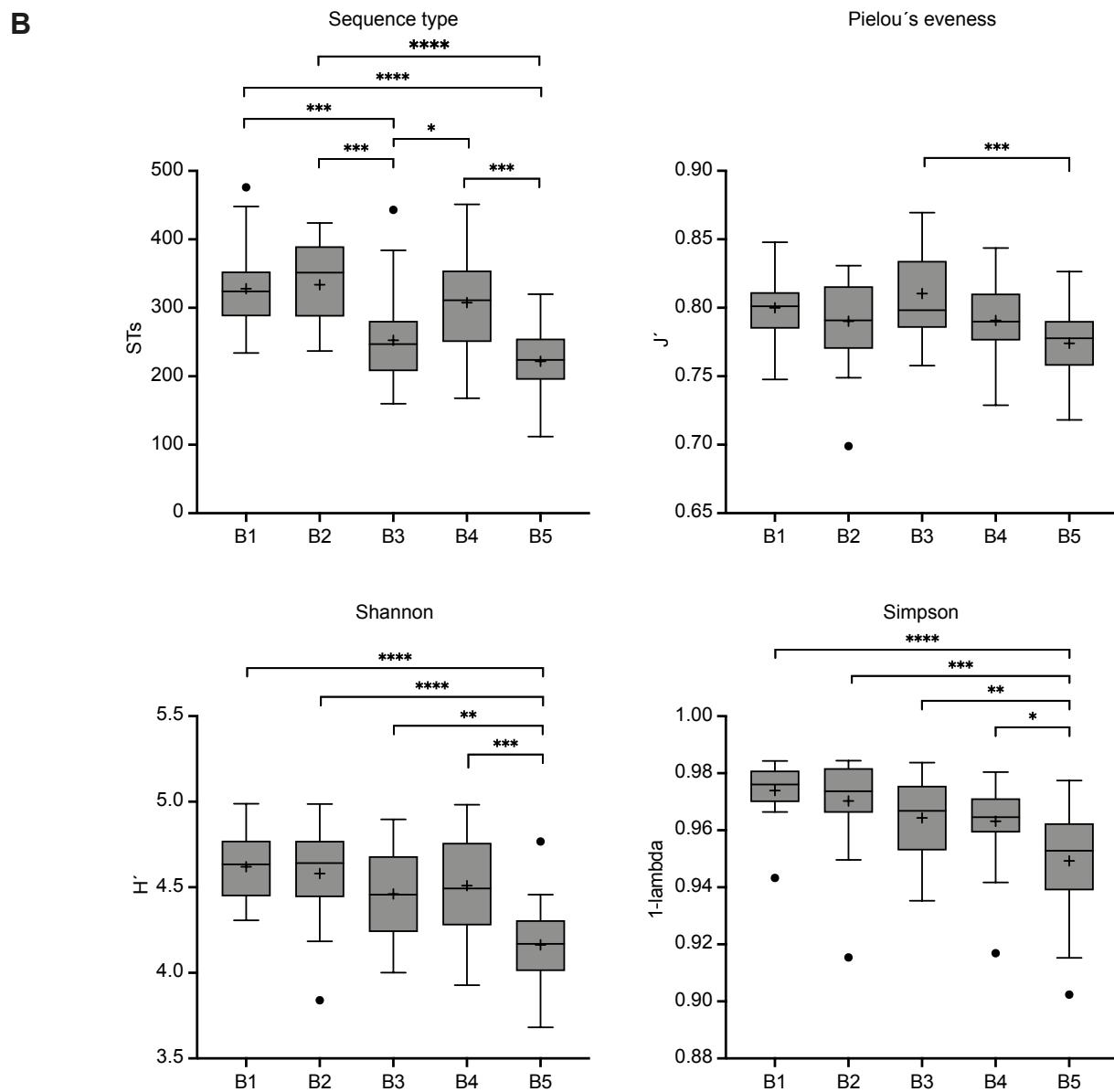
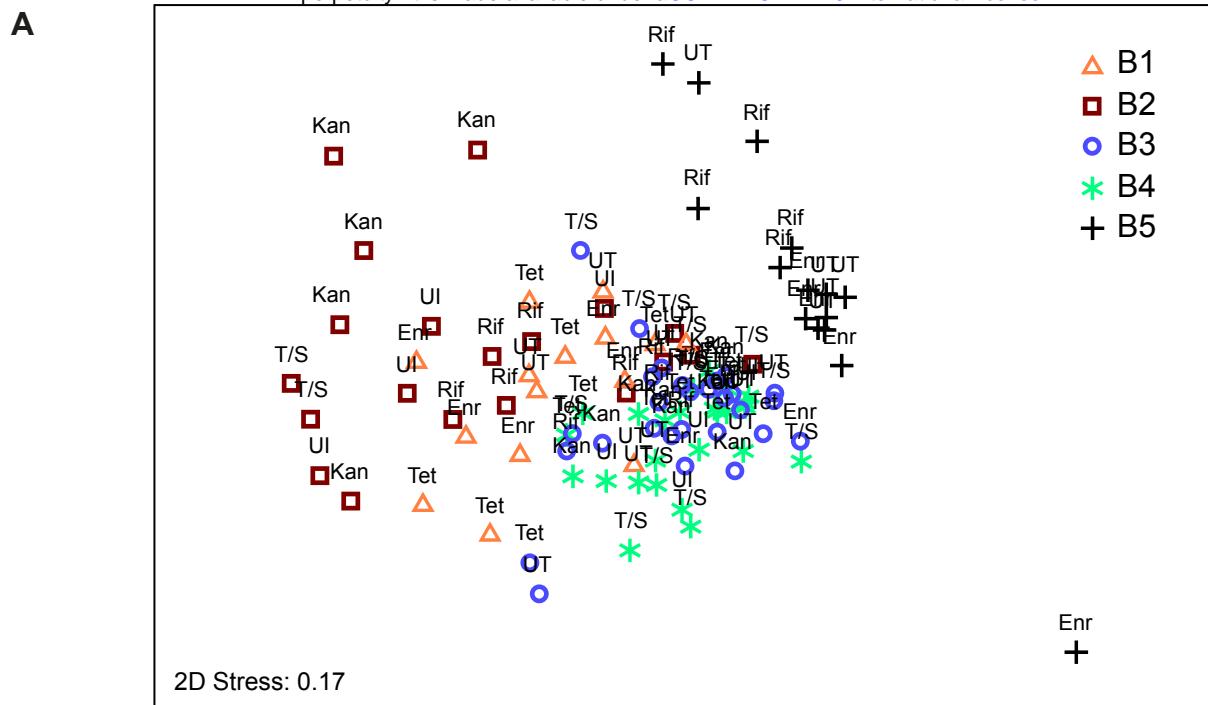
86

87 **Table S2: Factors influencing global community structures prior to infection as indicated**
88 **by PERMANOVA.** The significance of differences in community structure between different
89 mouse batches (experiments) and treatment groups was calculated by PERMANOVA (main
90 test). The Pseudo-F and the Monte Carlo p-values are given for each factor performed at
91 different taxonomic levels (from sequence type to phylum). The t statistics and the Monte Carlo
92 p-values are also given for paired tests among different mouse batches. Analysis was performed
93 at different taxonomic levels (from sequence type to phylum). Bold p <0.05.

94

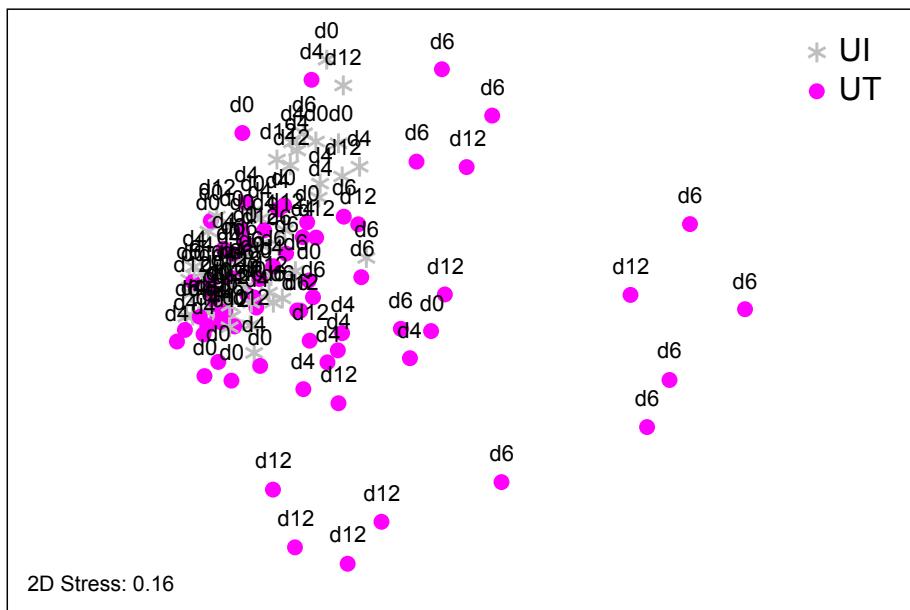
95 **Table S3: Influence of infection and antibiotic treatment on the community structure as**
96 **indicated by PERMANOVA.** The significance of differences in community structure in
97 treatment groups over time was calculated by PERMANOVA pairwise tests separately for each
98 treatment group. The t statistics and the Monte Carlo p-values are given. Analysis was
99 performed at different taxonomic levels (from sequence type to phylum). Bold p <0.05.

100



101 **Table S4: Phylogenetic taxa (genera, families, order, classes, and phyla) influenced by**
102 **infection and antibiotic treatment.** Changes over time were assessed by the Kruskal-Wallis
103 test with Benjamini-Hochberg corrections for multiple comparisons separately in uninfected
104 mice (UI), infected but untreated mice (UT) as well as in Enf (enrofloxacin), Kan (kanamycin),
105 Rif (rifampicin), Tet (tetracycline), or T/S (trimethoprim/sulfamethoxazole) treated mice.
106 Groups of samples were considered significantly different if the adjusted p-value was <0.05 .
107 Both the original (KW_p) as well as the adjusted p-value (KW_padj_BH) are given. Taxa
108 differentially distributed over time were further assessed by Dunn's post-hoc test. The
109 significance of the taxon difference between the different time points is given. p-values >0.01
110 are indicated in yellow and p-values between 0.05 and 0.01 in orange.

111

112 **Table S5: Sequences used as representative for genera identified.** The strain as well as the
113 accession number is given. Phylogenetic placement as performed by RDP is given in
114 parentheses.


115

116

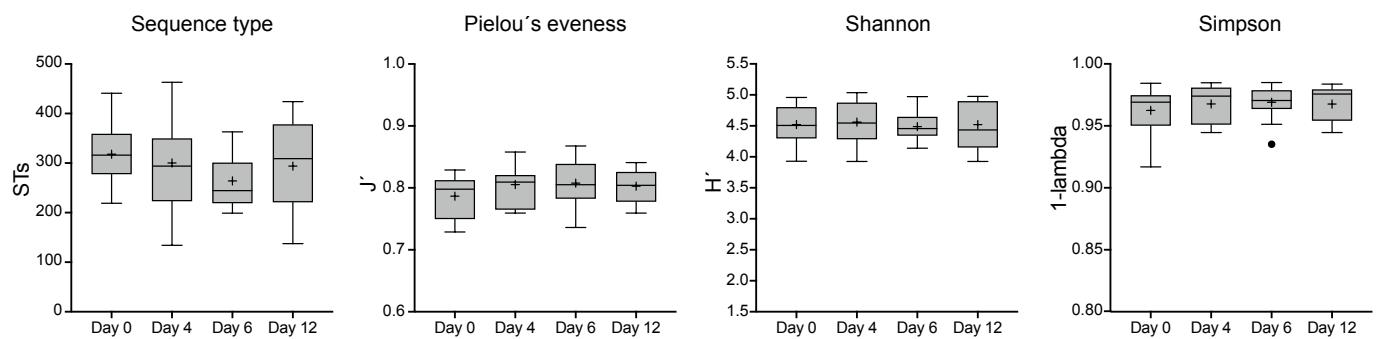
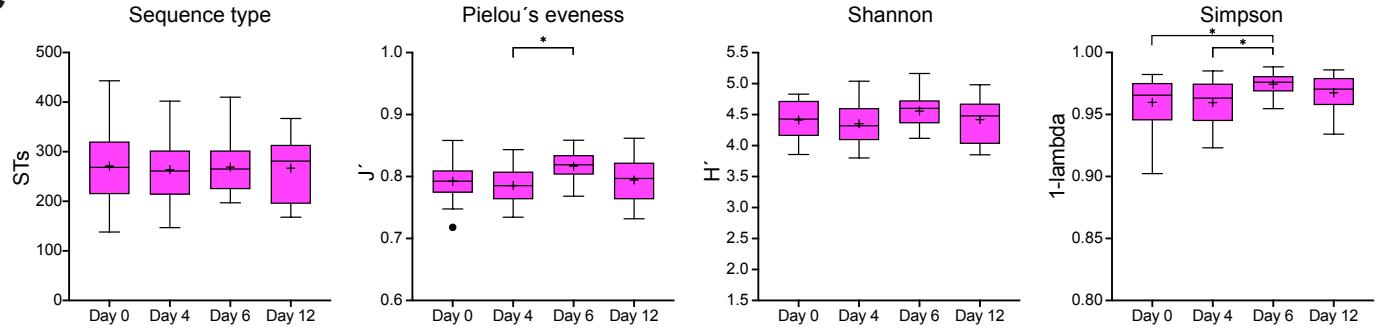
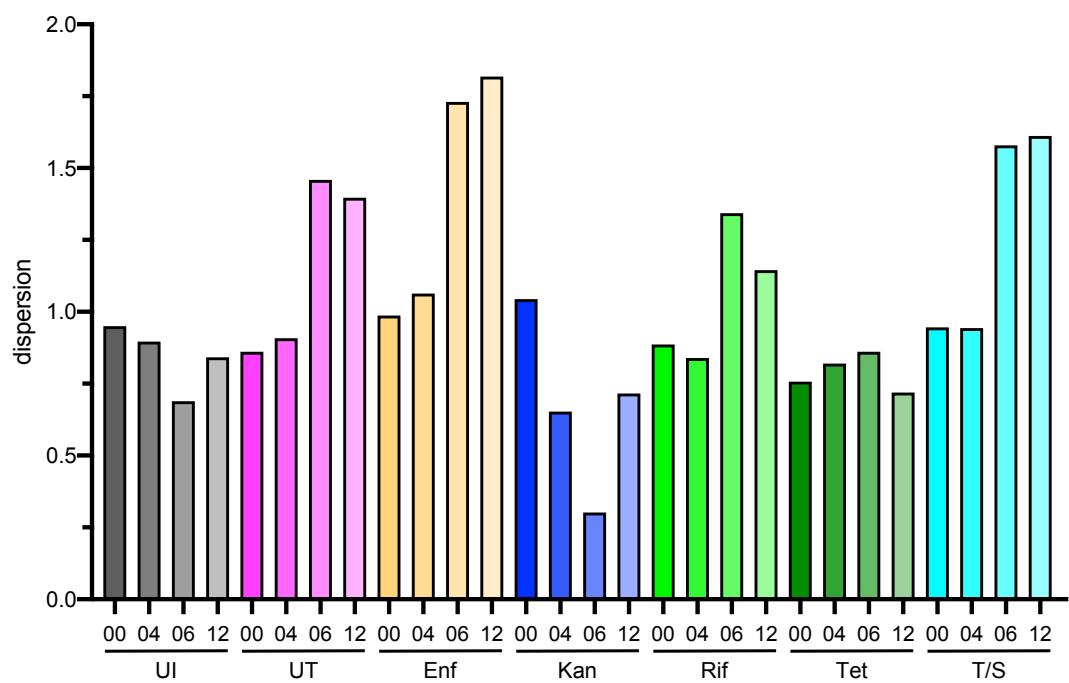
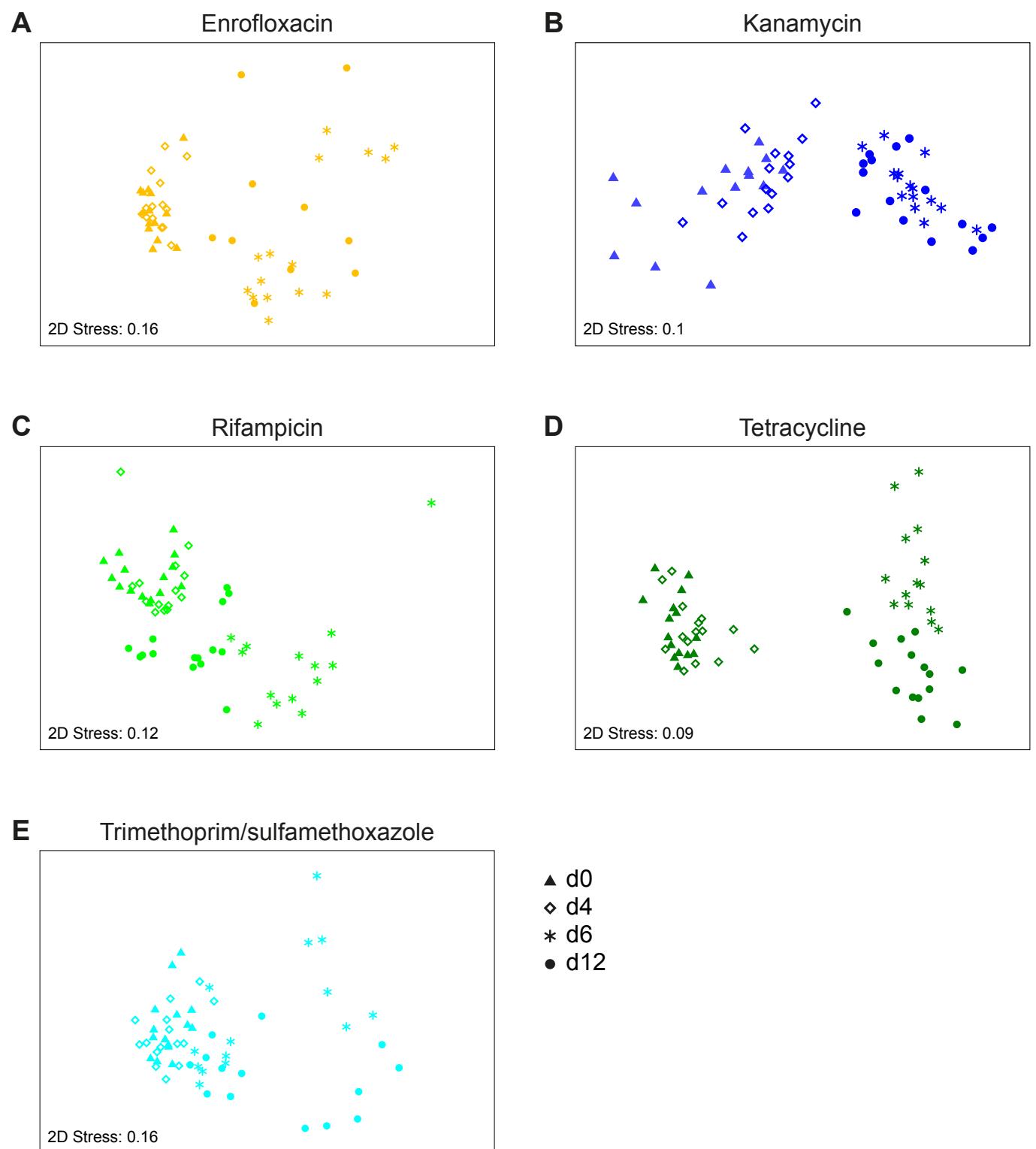
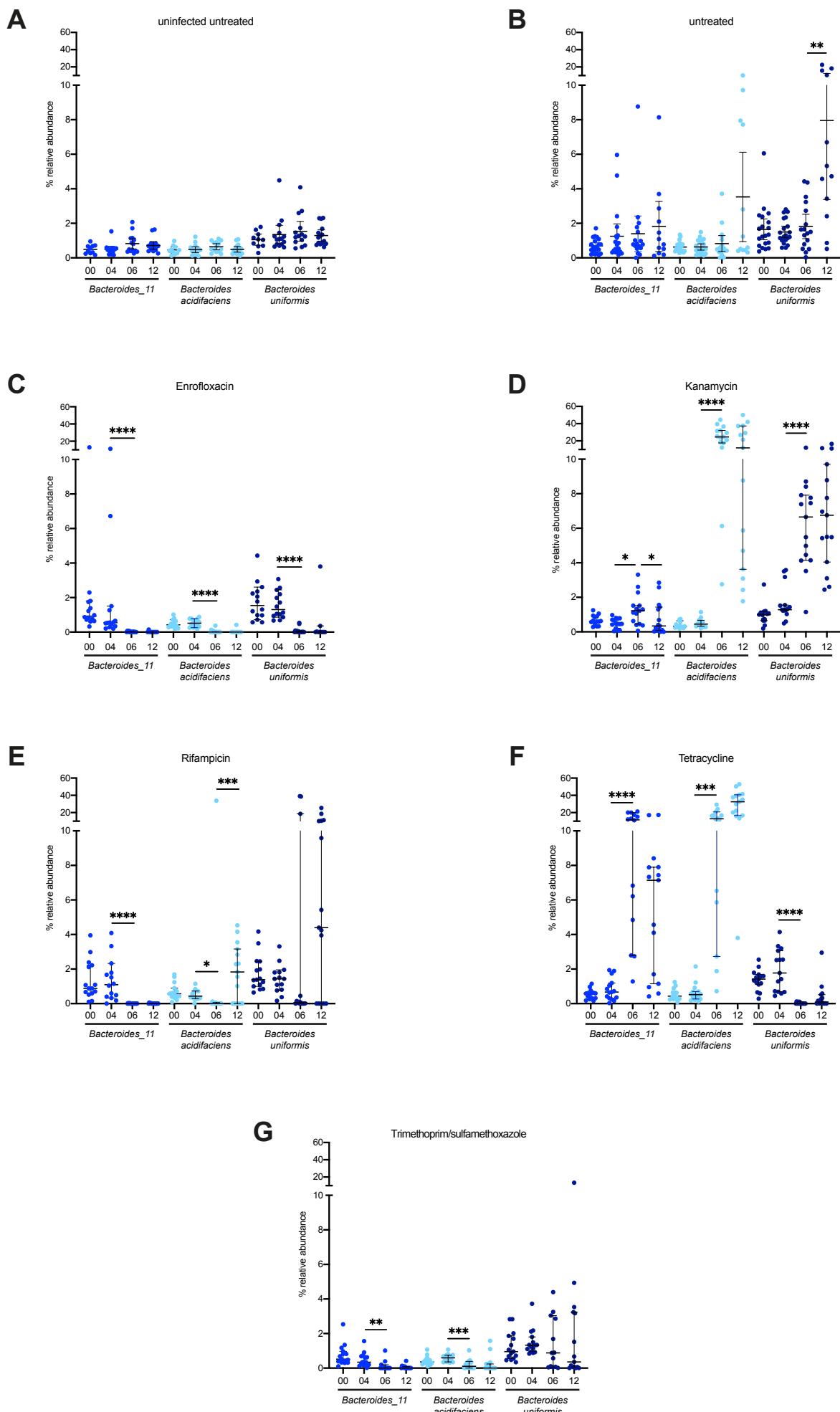


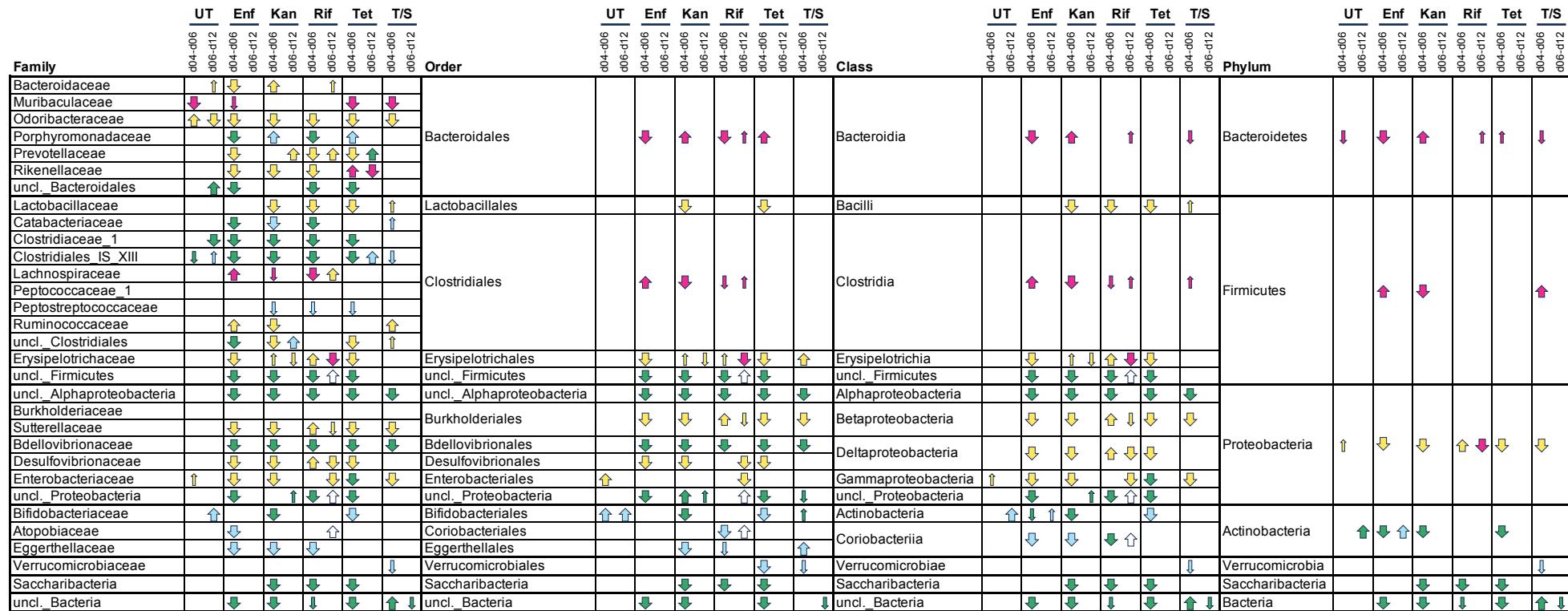
Figure S1


A


B


C


Figure S2


Figure S3

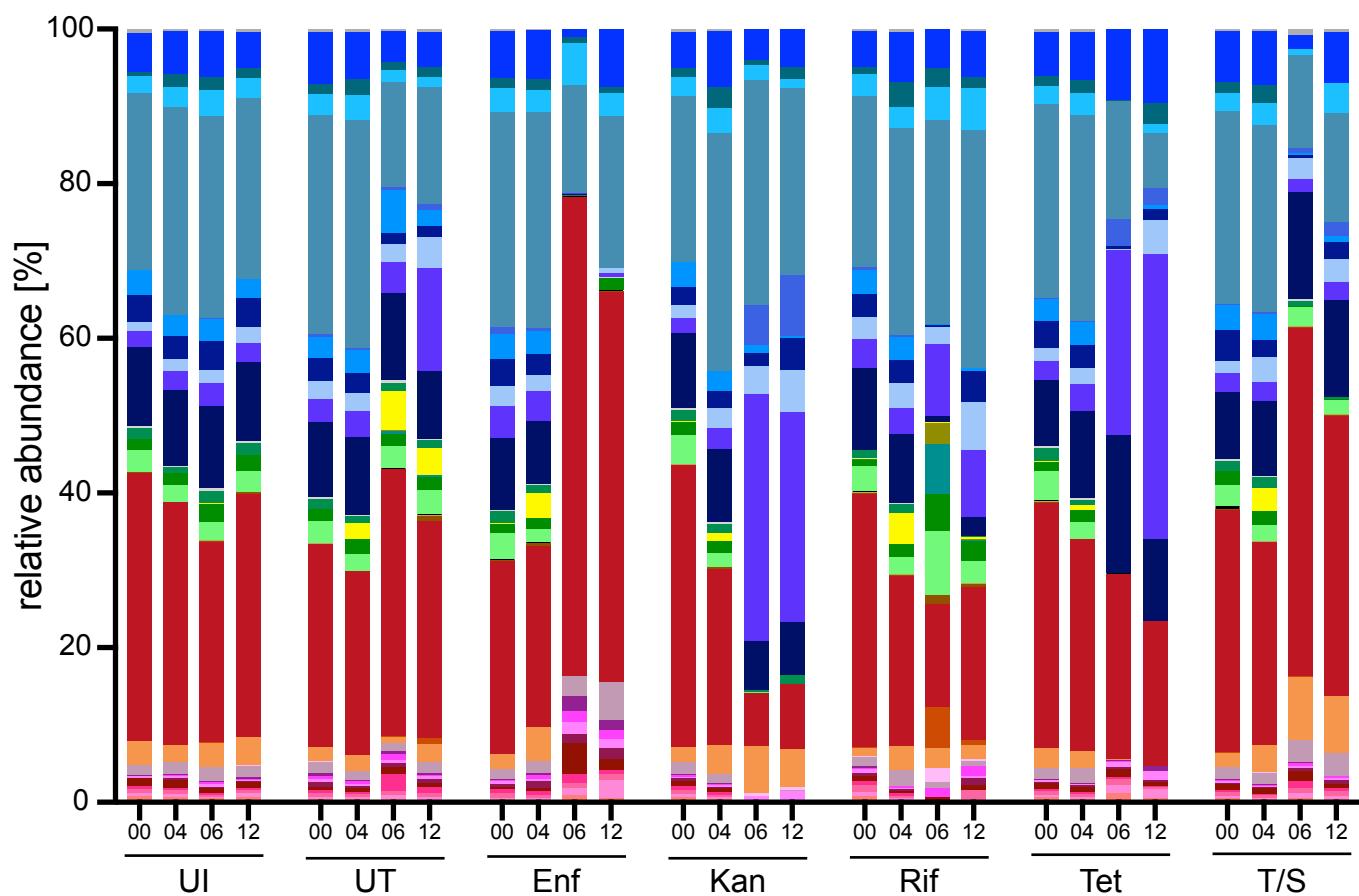

Figure S4

Figure S5

Figure S6

Firmicutes

- Ruthenibacterium
- Oscillibacter
- Flintibacter
- Anaerotignum
- Acetatitfactor
- Hungatella
- Lachnospiraceae
- C.fusiformis_cluster
- Clostridium XIVa
- Schaedlerella
- Ruminococcus2
- Lactobacillus
- Faecalibaculum
- Dubosiella
- Clostridium XVIII
- other Firmicutes

Actinobacteria

- Bifidobacterium
- other Actinobacteria

Verrococicrobia

- other Verrococicrobia

Proteobacteria

- Mailhella
- Turicimonas
- Escherichia
- Enterobacter
- Citrobacter
- other Proteobacteria

Candidatus Saccharibacteria

- other Candidatus Saccharibacteria

Bacteroidetes

- Alistipes
- Bacteroides
- Prevotellamassilia
- Prevotella
- Odoribacter
- Parabacteroides
- Duncaniella
- Muribaculum
- Paramuribaculum
- other Bacteroidetes

Other

- other

Figure S7

Table S2: Factors influencing global community structures prior to infection as indicated by PERMANOVA

Factor (main test)	Sequence type		Genus		Family		Order		Class		Phylum	
	Pseudo-F	p(MC)	Pseudo-F	p(MC)	Pseudo-F	p(MC)	Pseudo-F	p(MC)	Pseudo-F	p(MC)	Pseudo-F	p(MC)
Mouse batch	7.65	0.001	9.892	0.001	9.1471	0.001	7.0709	0.001	7.1082	0.001	5.5688	0.001
Treatment	1.265 4	0.05	0.9964	0.444	0.9504	0.486	0.8906	0.500	0.8832	0.528	0.8772	0.522
Mouse batch	t	p(MC)	t	p(MC)	t	p(MC)	t	p(MC)	t	p(MC)	t	p(MC)
Exp1, Exp2	1.4338	0.03	1.5872	0.069	1.6066	0.086	1.4597	0.152	1.4548	0.145	1.4577	0.154
Exp1, Exp3	2.5183	0.001	3.1116	0.001	3.2787	0.001	2.6604	0.005	2.6904	0.008	2.414	0.019
Exp1, Exp4	2.5919	0.001	2.9979	0.001	3.102	0.001	2.2253	0.021	2.2552	0.03	0.9391	0.361
Exp1, Exp5	3.0989	0.001	3.2492	0.001	2.6754	0.002	2.9616	0.007	2.986	0.003	2.9594	0.003
Exp2, Exp3	3.0072	0.001	4.531	0.001	4.6244	0.001	4.1387	0.001	4.146	0.001	3.8986	0.001
Exp2, Exp4	3.1034	0.001	4.3015	0.001	4.3475	0.001	3.5471	0.001	3.5569	0.002	2.6147	0.016
Exp2, Exp5	3.3833	0.001	4.1237	0.001	3.6481	0.001	3.8001	0.001	3.7982	0.002	3.8884	0.002
Exp3, Exp4	1.9542	0.001	1.5691	0.077	1.5049	0.089	1.5351	0.123	1.5206	0.11	1.8825	0.056
Exp3, Exp5	3.2861	0.001	2.5251	0.001	1.9199	0.021	1.4215	0.156	1.3729	0.152	1.0841	0.296
Exp4, Exp5	3.477	0.001	3.1231	0.001	2.4874	0.006	2.4307	0.007	2.425	0.012	2.6552	0.012

The significance of differences in community structure between different mouse batches (experiments) and treatment groups was calculated by PERMANOVA (main test). The Pseudo-F and the Monte Carlo p-values are given for each factor performed at different taxonomic levels (from sequence type to phylum).

The t statistics and the Monte Carlo p-values are also given for paired tests among different mouse batches. Analysis was performed at different taxonomic levels (from sequence type to phylum).

Table S3. Influence of infection and antibiotic treatment on the community structure as indicated by PERMANOVA.

Treatment group	Groups compared	Sequence type		Genus		Family		Order		Class		Phylum	
		t	p(MC)	t	p(MC)	t	p(MC)	t	p(MC)	t	p(MC)	t	p(MC)
Uninfected	D0, D4	0.93691	0.51	0.76536	0.527	0.74305	0.509	0.70656	0.489	0.69952	0.550	0.83131	0.422
	D4, D6	0.86115	0.661	1.0593	0.282	1.0824	0.275	1.0807	0.259	1.081	0.287	1.0056	0.342
	D6, D12	0.96153	0.464	0.97638	0.377	1.0339	0.337	1.0383	0.297	1.0403	0.302	1.3741	0.182
	D0, D6	1.2126	0.145	1.3824	0.147	1.3666	0.166	1.546	0.127	1.5526	0.124	1.6105	0.123
	D0, D12	1.0014	0.411	0.71454	0.608	0.63383	0.630	0.56165	0.620	0.55581	0.644	0.30651	0.817
	D4, D12	1.0659	0.327	0.77786	0.540	0.76517	0.495	0.6099	0.601	0.60871	0.586	0.76355	0.447
Untreated	D0, D4	1.0594	0.283	0.99084	0.378	0.97662	0.366	0.88395	0.422	0.89604	0.409	0.62893	0.651
	D4, D6	2.0553	0.001	2.7307	0.003	2.8913	0.001	2.8181	0.005	2.8371	0.002	2.9692	0.001
	D6, D12	1.7079	0.007	1.8143	0.012	1.9599	0.020	1.4991	0.114	1.4897	0.109	1.2001	0.114
	D0, D6	2.236	0.002	2.8993	0.002	3.11	0.001	2.8575	0.005	2.8746	0.003	2.9772	0.001
	D0, D12	2.4325	0.001	2.7645	0.001	2.7905	0.001	1.1781	0.224	1.1811	0.230	1.3764	0.001
	D4, D12	2.2016	0.001	2.5271	0.002	2.503	0.001	1.2921	0.181	1.3082	0.178	1.553	0.001
Enrofloxacin	D0, D4	1.0417	0.373	0.93365	0.458	0.93206	0.392	0.96754	0.359	0.9917	0.344	0.56329	0.651
	D4, D6	3.5416	0.001	5.5806	0.001	6.1622	0.001	7.116	0.001	7.141	0.001	7.5984	0.001
	D6, D12	1.3882	0.048	1.5505	0.056	1.8758	0.057	1.9346	0.049	1.9352	0.037	1.7717	0.114
	D0, D6	3.6434	0.001	5.858	0.001	6.7782	0.001	7.7103	0.001	7.7969	0.001	8.2922	0.001
	D0, D12	2.9537	0.001	4.0523	0.001	4.3411	0.001	4.7418	0.001	4.8024	0.001	5.3155	0.001
	D4, D12	2.8212	0.001	3.8563	0.001	3.9412	0.001	4.346	0.001	4.3613	0.001	4.7363	0.001
Kanamycin	D0, D4	1.6066	0.011	2.2693	0.014	2.356	0.001	2.6564	0.009	2.6729	0.013	2.7083	0.008
	D4, D6	4.9061	0.001	5.5389	0.001	5.679	0.001	4.7501	0.001	4.7651	0.001	5.2085	0.001
	D6, D12	2.1345	0.004	1.2796	0.187	1.1749	0.220	1.185	0.232	1.1852	0.243	0.63918	0.547
	D0, D6	5.0109	0.001	6.5705	0.001	6.7729	0.001	7.5659	0.001	7.6115	0.001	8.0335	0.001
	D0, D12	4.3128	0.001	5.315	0.001	5.4164	0.001	6.8929	0.001	6.9332	0.001	7.3893	0.001
	D4, D12	4.2732	0.001	4.635	0.001	4.7641	0.001	4.1696	0.001	4.183	0.001	4.5821	0.001

Rifampicin	D0, D4	1.5462	0.019	2.1818	0.009	2.3209	0.010	2.3024	0.011	2.302	0.014	2.0294	0.048
	D4, D6	3.9196	0.001	3.8694	0.001	3.3896	0.001	2.5029	0.003	2.4312	0.003	1.7954	0.058
	D6, D12	2.9607	0.001	3.1801	0.001	2.9792	0.001	2.8709	0.002	2.8705	0.001	2.5967	0.004
	D0, D6	4.3263	0.001	4.8026	0.001	4.8802	0.001	3.813	0.001	3.7713	0.001	2.8383	0.006
	D0, D12	3.2411	0.001	3.7543	0.001	3.8688	0.001	3.217	0.005	3.1947	0.002	3.152	0.008
	D4, D12	2.8638	0.001	2.6768	0.001	2.2746	0.004	1.2613	0.213	1.1567	0.225	1.0187	0.323
Tetracyclin	D0, D4	1.3922	0.037	1.2261	0.174	1.2302	0.221	1.3278	0.183	1.338	0.183	1.3689	0.157
	D4, D6	5.1002	0.001	4.503	0.001	4.1584	0.001	1.9785	0.043	1.9983	0.031	1.9081	0.048
	D6, D12	3.2338	0.001	2.9394	0.001	2.4197	0.010	0.97816	0.340	0.97786	0.355	0.98413	0.353
	D0, D6	5.4999	0.001	4.9873	0.001	4.6247	0.001	2.7176	0.010	2.7314	0.005	2.8725	0.011
	D0, D12	5.7337	0.001	7.2247	0.001	6.4527	0.001	4.5068	0.001	4.5304	0.001	5.2955	0.001
	D4, D12	5.4003	0.001	6.6276	0.001	6.0217	0.001	3.1106	0.003	3.1402	0.002	3.5544	0.003
T/S	D0, D4	1.2917	0.084	1.2907	0.163	1.1038	0.280	1.1376	0.282	1.1333	0.270	0.85496	0.393
	D4, D6	2.5193	0.001	2.9124	0.001	2.9912	0.002	2.7929	0.003	2.7862	0.009	3.2456	0.002
	D6, D12	1.2247	0.131	1.102	0.285	1.1027	0.258	0.94531	0.386	0.95272	0.372	0.99205	0.318
	D0, D6	2.4593	0.002	2.6616	0.002	2.6103	0.004	2.2708	0.027	2.2622	0.014	2.7185	0.006
	D0, D12	2.6919	0.001	2.383	0.001	2.442	0.005	2.0007	0.047	1.9892	0.045	2.1863	0.030
	D4, D12	2.6686	0.001	2.5613	0.001	2.7004	0.001	2.4256	0.014	2.4223	0.009	2.8113	0.013

The significance of differences in community structure in treatment groups over time was calculated by PERMANOVA pairwise tests separately for each treatment group. The t statistics and the Monte Carlo p-values are given. Analysis was performed at different taxonomic levels (from sequence type to phylum). Bold p <0.05.

Table S5. Sequences used as representative for genera identified

No	Strain/sequence
1	<i>Bifidobacterium adolescentis</i> (T); ATCC 15703; AP009256
2	<i>Adlercreutzia equolifaciens</i> (T); FJC-B9; AB306661
3	<i>Olsenella uli</i> (T); ATCC49627; AF292373
4	<i>Bacteroides fragilis</i> (T); ATCC 25285; CR626927
5	<i>Parabacteroides distasonis</i> (T); JCM 5825; AB238922
6	<i>Prevotella copri</i> (T); CB7; AB064923
7	<i>Phocaeicola dorei</i> (T); JCM_13471; AB242142
8	<i>Odoribacter splanchnicus</i> (T); NCTC 10825; L16496
9	<i>Alistipes onderdonkii</i> (T); WAL8169; AY974071
10	Uncultured bacterium (Prevotellamassilia); SPIM aaj33h04; EU462045
11	<i>Porphyromonadaceae</i> bacterium (Duncaniella); C941; JF803519
12	uncultured bacterium (Paramuribaculum); SWPT13_aaa04d04; EF097024
13	Uncultured bacterium (Muribaculum); SWPT13_aaa03b10; EF096949
14	<i>Ralstonia solanacearum</i> (T); LMG 2299; EF016361
15	<i>Vampirovibrio chlorellavorus</i> (T); ICPB 3707; HM038000
16	<i>Bilophila wadsworthia</i> (T); 7959; AJ867049
17	Uncultured bacterium (Maihella); WD6 aak49b02; EU510775
18	Uncultured bacterium (Turicimonas); 16saw36-1a04.w2k; EF603855
19	<i>Citrobacter rodentium</i> (T) CDC1843-73; AF025363
20	<i>Enterobacter ludwigii</i> (T) EN-119 DSMZ16688; AJ853891
21	<i>Escherichia coli</i> (T); ATCC11775; X80725
22	<i>Akkermansia muciniphila</i> (T); Muc; AY271254
23	<i>Candidatus Saccharibacteria</i> bacterium GW2011 GWC2_44_17; CP011211
24	<i>Lactobacillus delbrueckii</i> (T); ATCC11842; CR954253
25	<i>Ligilactobacillus salivarius</i> (T); ATCC 11741; AF089108
26	<i>Limosilactobacillus mucosae</i> (T); DSM13345; AF126738
27	uncultured bacterium (Dubosiella); C21_m01; AY993273
28	<i>Faecalibaculum rodentium</i> (T); ALO17; KP881689
29	<i>Clostridium XVIII</i> C. ramosum; ATCC25582; M23731
30	<i>Longicatena, Faecalitalea cylindroides</i> ; JCM 7787; AB018187
31	<i>Mediterraneibacter massiliensis</i> (T); AT10; LN881607
32	<i>Ruminococcus2 torques</i> (T); ATCC27756; L76604
33	<i>Clostridium</i> sp. ASF502 (Schaedlerella); ASF 502; AF157053
34	<i>Clostridium XIVa</i> scindens (T); ATCC35704; AF262238
35	<i>Lachnospiraceae</i> C. fusiformis; CIEAF018; AB702934
36	<i>Eisenbergiella</i> sp. AT9; LN881600

37	Enterocloster clostridioformis (T); ATCC 25537; M59089
38	Hungatella hathewayi (T); DSM 13479 = CCUG 43506; AJ311620
39	Lachnospira multipara (T); DSM3073; FR733699
40	Clostridiales bacterium CIEAF 015 (Acetatifactor); AB702929
41	Clostridium XIVb piliforme; 11KD; DQ352809
42	Anaerotignum propionicum (T); JCM 1430; AB649276
43	Clostridium perfringens (T); ATCC13124; CP000246
44	Eubacterium sp. WAL 18692 (Ihubacter); GQ461730
45	Romboutsia lituseburensis (T); ATCC 25759; M59107
46	Catabacter hongkongensis (T); HKU16; AY574991
47	uncultured bacterium (Monoglobus); E358; DQ326876
48	Pseudoclostridium thermosuccinogenes (T); DSM5807;Y18180
49	Clostridiales bacterium (Flintibacter); CIEAF026; AB702939
50	Intestinimonas butyriciproducens (T); SRB-521-5-I; KC311367
51	uncultured bacterium (Dysosmobaacter); B5_253; EU766390
52	Oscillibacter ruminantium (T); GH1; JF750939
53	Butyricoccus pullicaecorum (T); 25-3; EU410376
54	Uncultured bacterium (Harryflintia; nby506h05c1; HM832302
55	Anaerotruncus colihominis (T); 14565; AJ315980
56	Ruminococcus albus (T); ATCC27210; L76598
57	Ruminococcaceae bacterium (Ruthenibacterium); cv2; LN827534
58	Clostridium leptum (T) (Clostridium IV); DSM 753T; AJ305238
59	Uncultured bacterium (Neglecta) SWPT3_aaa02d01; EF099368
60	Clostridium sp. Clone-25 (Acutalibacter); AB622839

The strain as well as the accession number is given. Phylogenetic placement as performed by RDP is given in parentheses.