

1 **Post-synaptic competition between calcineurin and PKA
2 regulates mammalian sleep-wake cycles.**

3

4 Yimeng Wang^{1,&}, Siyu Cao^{1,&}, Daisuke Tone^{1,2}, Hiroshi Fujishima², Rikuhiro G.
5 Yamada², Rei-ichiro Ohno¹, Shoi Shi^{1,2, #}, Kyoko Matsuzawa², Mari Kaneko³, Maki
6 Ukai-Tadenuma^{2,†}, Hideki Ukai^{2,†}, Carina Hanashima⁴, Hiroshi Kiyonari³, Kenta
7 Sumiyama^{5,‡}, Koji L. Ode^{1,2}, Hiroki R. Ueda^{1,2,*}

8

9 ¹ Department of Systems Pharmacology, Graduate School of Medicine, The
10 University of Tokyo, Bunkyo-ku, Tokyo, Japan

11

12 ² Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics
13 Research, Suita, Osaka, Japan

14

15 ³ Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for
16 Biosystems Dynamics Research, Chuo-ku, Kobe, Hyogo, Japan

17

18 ⁴ Department of Biology, Faculty of Education and Integrated Arts and Sciences,
19 Waseda University, Shinjuku-ku, Tokyo, Japan

20

21 ⁵ Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems
22 Dynamics Research, Suita, Osaka, Japan

23

24 [#] Current address, International Institute for Integrative Sleep Medicine (IIIS),
25 University of Tsukuba, Tsukuba, Ibaraki, Japan

26

27 [†] Current address, International Research Center for Neurointelligence (WPI-
28 IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan

29

30 [‡] Current address, Department of Animal Sciences, Graduate School of
31 Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan

32

33 [&] These authors contributed equally

34

35 ^{*} uedah-tky@umin.ac.jp

36

37 **Abstract**

38 Phosphorylation of synaptic proteins is a pivotal biochemical reaction that controls
39 the sleep-wake cycle in mammals. Protein phosphorylation *in vivo* is reversibly
40 regulated by kinases and phosphatases. In this study, we investigated a pair of
41 kinases and phosphatases that reciprocally regulate sleep duration. Through
42 comprehensive screening of Protein kinase A (PKA) and phosphoprotein
43 phosphatase (PPP) family genes via the generation of 40 gene knockout mouse
44 lines including post-natal CRISPR targeting, we identified a regulatory subunit of
45 PKA (*Prkar2b*), a regulatory subunit of protein phosphatase (PP) 1 (*Pppr1r9b*), and
46 catalytic and regulatory subunits of PP2B (calcineurin) (*Ppp3ca* and *Ppp3r1*) as
47 sleep control genes. AAV-mediated stimulation of PKA and PP1/calcineurin activities
48 confirmed PKA as a wake-promoting kinase, while PP1 and calcineurin function as
49 sleep-promoting phosphatases. The importance of these phosphatases in sleep
50 regulation is supported by the dramatic changes in sleep duration associated with
51 their increased and decreased activity, ranging from approximately 17.3 hours/day
52 (PP1 expression) to 6.7 hours/day (post-natal CRISPR targeting of calcineurin). For
53 these phosphatases to exert their sleep-promoting effects, localization signals to the
54 excitatory post-synapse were necessary. Furthermore, the wake-promoting effect of
55 PKA localized to the excitatory post-synapse negated the sleep-promoting effect of
56 calcineurin, suggesting that PKA and calcineurin construct a hierarchical
57 phosphorylation control network for sleep regulation at excitatory post-synapses.

58 **Main**

59 Almost 75% of intracellular proteins undergo reversible phosphorylation
60 modifications, dynamically regulating protein activities¹. Reversible protein
61 phosphorylation is also pivotal in the sleep-wake cycle regulation, a concept
62 encapsulated as the "phosphorylation hypothesis of sleep regulation."² Genetic
63 screening studies have uncovered sleep-promoting kinases, such as CaMKIIα/β³,
64 SIK3⁴, and ERK1/2⁵. Furthermore, mass-spectrometry-based phosphoproteomic
65 analyses reveal that the phosphorylation state/level of synaptic proteins is
66 profoundly influenced by sleep-wake states^{6,7}. All such large-scale changes in
67 phosphoprotein profiles are difficult to explain by a few sleep-promoting kinases: for
68 example, proteins whose phosphorylation levels rise during sleep hint at the
69 involvement of kinases in subsequent wakefulness induction. Moreover, the dynamic
70 oscillation of phosphorylation levels throughout the sleep-wake cycle suggests that
71 not only phosphorylation reactions but also the reverse reactions catalyzed by
72 protein phosphatases play roles in sleep regulation.

73

74 Protein kinase A (PKA) is potentially involved in mammalian sleep control. PKA
75 consists of catalytic and regulatory subunits. PKA's catalytic subunit remains inactive
76 when bound to the regulatory subunit. The regulatory subunit binds to cAMP, leading
77 to dissociation from the catalytic subunit and PKA activation⁸⁻¹⁰. Studies in fruit flies
78 suggest PKA activation promotes wakefulness through octopamine neurotransmitter
79 release¹¹⁻¹⁵. In addition, mammalian research indicates PKA may antagonize sleep
80 induction via SIK1/2/3 phosphorylation^{16,17}.

81

82 The presence of sleep-controlling kinases also points to the significance of protein

83 phosphatases in the reversible control of phosphorylation residues during sleep
84 regulation. However, the role of specific protein phosphatase activities in mammalian
85 sleep regulation remains to be fully understood. Unlike kinases, only ~10 catalytic
86 subunits are encoded in the mammalian genome¹⁸, meaning phosphatase sequence
87 specificity is generally low, making predictions of corresponding phosphatases from
88 substrate sequences or specific kinases challenging. Regulatory subunits control a
89 variety of functions, including inhibiting catalytic subunit activity and directing
90 catalytic subunit localization¹⁹. Among the protein phosphatase family, Protein
91 Phosphatase 2B (PP2B/calcineurin) has a unique Ca^{2+} /CaM-activated regulatory
92 mechanism²⁰, and its role in synaptic plasticity regulation is well-documented^{21,22}.
93 Although fruit fly studies show calcineurin's related influence on sleep duration^{13,14},
94 it's unclear whether calcineurin activation increases or decreases sleep. A
95 comprehensive gene-knockout analysis could help decipher this complex interplay
96 between catalytic and regulatory subunits of protein phosphatases in sleep
97 regulation.

98

99 In our study, we found that PKA is the wake-promoting protein kinase in mammals,
100 supported by both functional inhibition and functional enhancement perturbations.
101 PKA appears to mainly exhibit its wake-promoting effects at the post-synapses of
102 excitatory neurons. Given phosphorylation's reversible nature *in vivo*, we also
103 identified phosphatases that counteract the wake-promoting of PKA effect at
104 excitatory post-synapses, discovering that Protein Phosphatase 1 (PP1) and
105 calcineurin induce sleep selectively at excitatory post synapses. Based on these
106 findings, we posit that the wake-promoting kinase PKA and sleep-promoting

107 phosphatases (calcineurin and PP1) have opposing effects on sleep regulation at
108 excitatory post-synapses.

109 **PKA is a wake-promoting kinase in mammals.**

110 To examine the role of each subunit of protein kinase A (PKA) in sleep regulation,
111 we conducted a comprehensive gene knockout (KO) study (**Fig. 1a**). The mouse
112 genome contains six genes in the PKA family: two are catalytic subunits (*Prkaca* and
113 *Prkacb*), and four are regulatory subunits (*Prkar1a*, *Prkar1b*, *Prkar2a*, and *Prkar2b*).
114 We employed the triple-target CRISPR method²³, using three distinct guide RNAs to
115 target a single gene, to knock out each member of the PKA family (**Extended Data**
116 **Fig. 1a-e**). However, we excluded *Prkar1a* from our study since its KO mice are
117 known to be lethal²⁴. The genotypes of the KO mice were validated using qPCR
118 (**Extended Data Fig. 1g-j**), and their phenotypes were assessed using a respiration-
119 based sleep phenotyping system, termed the Snappy Sleep Stager (SSS)²³, under
120 a 12:12 hr light-dark cycle. We found that *Prkaca* KO mice were also lethal, aligning
121 with previous observations in the C57BL/6 background²⁵. Among the four viable KO
122 mouse strains (*Prkacb*, *Prkar1b*, *Prkar2a*, and *Prkar2b* KO), we observed a
123 significant reduction in sleep duration in the *Prkar2b* KO mice, averaging $583.4 \pm$
124 21.4 min (mean \pm SEM, n = 8). This duration is approximately 141.6 min (or about
125 3.3 S.D.) less than that of the wild-type mice ($p < 0.001$) (**Fig. 1b**). The sleep/wake
126 amplitude, defined as the coefficient of variation (CV: standard deviation divided by
127 the mean) of sleep duration for each 10 min bin over 24 hours, was increased in the
128 *Prkar2b* KO mice, likely due to decreased sleep during the dark phase (**Fig. 1b, c**).
129 The reduced P_{ws} (transition probability from wakefulness to sleep) suggests that the
130 wake phase was more stable in these mice (**Fig. 1b**). Using a different set of gRNA
131 targets, we corroborated these sleep phenotypes, ruling out potential off-target
132 effects from specific gRNA sequences (**Extended Data Fig. 1f, k, and 2a, b**).
133 Consistent with the observed extended wakefulness in the *Prkar2b* KO mice, these

134 mice displayed an enhanced wakefulness response when introduced to a new
135 environment, as seen in the cage change experiment during the dark phase (ZT =
136 12) (**Extended Data Fig. 2c, d**).

137

138 To further investigate the sleep architecture of *Prkar2b* KO mice, we performed
139 EEG/EMG recordings under a 12:12 hr light-dark cycle. These mice showed reduced
140 NREM sleep duration, particularly during the dark phase (**Fig. 1d, e**). This reduction
141 was primarily due to both a decreased P_{WN} (transition probability from wakefulness
142 to NREM sleep) and an elevated P_{WW} (probability of remaining awake), reinforcing
143 the idea of stabilized wakefulness in *Prkar2b* KO mice (**Fig. 1f**). The increased
144 wakefulness coincided with a decrease in NREM delta power (**Extended Data Fig.**
145 **2e**), indicating PKA's role in sleep pressure regulation.

146

147 Given that *Prkar2b* encodes a PKA regulatory subunit that inhibits the kinase activity
148 of the PKA catalytic subunit, we next investigate if introducing a PKA inhibitor would
149 induce the opposite sleep phenotype of *Prkar2b* KO mice. We expressed the PKA
150 inhibitor peptide (PKI)^{26,27} in the mice brains, expressed under the *Camk2a* promoter
151 using AAV.PHP.eB (**Fig. 1g**), a setup previously demonstrated to effectively induce
152 gene expression throughout the mouse brain²⁸. As, expected, PKI expression led to
153 prolonged sleep duration when compared to its loss-of-function counterpart, PKI-
154 (3RA)²⁹ (**Fig. 1h, i**). This observation further emphasizes the intrinsic role of PKA
155 catalytic activity in promotingg wakefulness. EEG/EMG data also revealed that PKI-
156 expressing mice experienced extended NREM sleep accompanied by an increased
157 tendency toward NREM delta power (**Fig. 1j-l and Extended Data Fig. 2f**).

158

159 The effects of PKA inhibition could also be replicated by expressing the regulatory
160 subunit. Expressing PKA regulatory subunit mutants that cannot bind cAMP is
161 theorized to dampen the activation of endogenous PKA in a dominant-negative
162 fashion (**Extended Data Fig. 3a**)^{30,31}. As expected, introducing such mutants,
163 *Prkar1a* (G325D) and *Prkar1b* (G325D), led to sleep increases akin to PKI
164 expression (**Extended Data Fig. 3b-e**). These findings also suggest that the role of
165 *Prkar1a* in sleep, unverified due to its embryonic lethality upon knockout²⁴, aligns
166 with that of *Prkar1b*. Although *Prkar2a* expression does not result in significant sleep
167 change regardless of wild-type or dominant-negative mutant (**Extended Data Fig.**
168 **3f, g**), expression of *Prkar2b* showed a marked increase in sleep duration even in
169 the case of wild-type *Prkar2a* expression (**Extended Data Fig. 3h, i**); note that
170 expression of wildtype *Prkar2a* showed 807.3 min/day sleep while untreated mice
171 show ~750 min/day sleep in our assay system. This phenotype is opposite to the
172 *Prkar2a* KO, thus supporting the importance of *Prkar2a* for sleep control.

173

174 **Cortical excitatory post-synapse is a candidate subcellular component for the
175 wake-promoting function of PKA.**

176 We next examined whether PKA activation alone is sufficient to induce wakefulness.
177 We expressed a constitutively active mutant of the PKA catalytic subunit, *Prkaca*
178 (H88Q:W197R)³² (**Fig. 2a**). When compared to the expression of the wild-type
179 *Prkaca*, the constitutive-active mutant *Prkaca* (H88Q:W197R) led to a reduction in
180 sleep duration (**Fig. 2b**), underscoring PKA's role as a wake-promoting kinase. This
181 observation aligns with the sleep phenotype of *Prkaca* KO mice, where sleep
182 alterations were primarily seen during the dark phase (**Fig. 2c**).

183

184 EEG/EMG recordings from mice expressing *Prkaca* (H88Q:W197R) verified a
185 notable reduction in NREM sleep, predominantly during the dark phase,
186 accompanied by a decline in NREM delta power (**Fig. 2d-f**). Transition probabilities
187 between NREM-REM-Wake states also showed that *Prkaca* (H88Q:W197R)
188 expression led to an increase in P_{WW} and a decrease in P_{WN} , indicating wake phase
189 stabilization (**Fig. 2g**). The patterns of reduced NREM sleep in the dark phase and
190 enhanced wakefulness are reminiscent of the *Prkar2b* KO mice phenotype. These
191 results suggest that increased PKA kinase activity alone can stabilize and induce
192 wakefulness. Notably, *Prkaca* (H88Q:W197R) expression also diminished REM
193 sleep (**Fig. 2d**), implying that continuous wakefulness promotion by PKA can
194 suppress REM sleep.

195

196 Previous phosphoproteomics research indicated that the sleep-wake cycle
197 profoundly impacts the phosphorylation of synaptic proteins^{6,7,33}. Given PKA's
198 established role in regulating synaptic plasticity at excitatory post-synapses³⁴, we
199 postulate that the excitatory post-synapse might be a pivotal subcellular component
200 for the wake-promoting function of PKA. In support of this notion, fusion of the active
201 *Prkaca* (H88Q:W197R) with the PSD95-binding FingR sequence^{35,36} (PSD95.FingR-
202 *Prkaca*) remains the wake-promoting effect to the similar level with that of the non-
203 localized expression of *Prkaca* (H88Q:W197R) (**Fig. 2h-j and Extended Data Fig.**
204 **4a-c**). For the control condition in these experiments, we utilized the loss-of-function
205 *Prkaca* mutant K73E:K196E^{37,38}. We also suggest wakefulness promotion upon
206 expressing *Prkaca* (H88Q:W197R) mainly in cortical excitatory neurons, based on
207 the wake-promoting effect of *Prkaca* (H88Q:W197R) expressed by the combination
208 of the *Camk2a* promoter with Nex-Cre knock-in mice³⁹ (**Extended Data Fig. 4d-f**).

209 Mice expressing excitatory post-synapse localized PSD95.FingR-*Prkaca*
210 (H88Q:W197R) also exhibited reduced NREM and REM sleep and a decline in
211 NREM delta power (**Fig. 2k-m**), though the wake stabilization was not statistically
212 significant by the P_{ww} metric (**Fig. 2n**). In conclusion, we propose that PKA is a
213 wake-promoting kinase and its wake-promoting influence operates at excitatory
214 post-synapses.

215

216 **PP1 is a sleep-promoting phosphatase functioning at excitatory post-**
217 **synapses.**

218 The phosphorylation status of proteins is reversibly regulated by kinases and protein
219 phosphatases. Hence, we aimed to identify protein phosphatases that could
220 counteract the wake-promoting function of PKA. The major Ser/Thr protein
221 phosphatases expressed in the brain are PP1, PP2A, and calcineurin^{18,40}. To
222 investigate their roles, we undertook a comprehensive knockout (KO) experiment
223 targeting these three phosphatase families (**Fig. 3a**). From the key genes associated
224 with PP1, PP2A, and calcineurin, several are considered embryonically lethal or lead
225 to substantial growth/developmental issues (*Ppp2r4*, *Strn*, *Strn3*, *Ppp2ca*, *Ppp2r1a*,
226 *Ppp1cb*, *Ppp1r3c*, *Ppp1r8*, *Ppp1r10*, *Ppp1r12a*, *Trp53bp2*, *Ppp1r13l*, and *Ppp1r15b*)
227^{41,42}. A couple of genes were challenging for gRNA sequence selection due to an
228 abundance of retroposons (*Ppp1cc* and *Ppp1r14b*). Consequently, we initiated a
229 triple-target CRISPR-based screening for the genes depicted in **Extended Data Fig.**
230 **5**. KOs for *Ppp1r2*, *Ppp1r7*, *Ppp1r11*, *Ppp2r2a*, *Ppp2r3c*, *Ppp3ca*, and *Ppp3r1* were
231 unattainable, suggesting an embryonically lethal phenotype. For the remaining 34
232 genes, we executed sleep recordings using the SSS-based system. We found that
233 *Ppp1r9b* KO mice showed a pronounced sleep duration reduction and an enhanced

234 sleep-wake rhythmicity amplitude (**Fig. 3b and Extended Data Fig. 6a, c**). These
235 results were confirmed using a distinct set of triple-target CRISPR gRNA selections
236 (**Extended Data Fig. 5 and 6b, d, e**). Additionally, *Ppp1r3d* KO mice presented a
237 minor yet statistically significant sleep duration increase (**Fig. 3b and Extended**
238 **Data Fig. 6c**). Given the evident phenotype in *Ppp1r9b* KO mice, we then focused
239 on understanding the sleep control mechanism of *Ppp1r9b*. EEG-EMG recording of
240 *Ppp1r9b* KO mice revealed a significant reduction in both NREM and REM sleep
241 (**Fig. 3c, d**), with a trend in decreasing NREM delta power (**Extended Data Fig. 6f**).
242 Consistent with the increased amplitude observed in SSS recording, transition
243 probabilities for the typical sequence from NREM, REM to awake states (P_{WN} , P_{NR} ,
244 and P_{RW}) were all reduced in *Ppp1r9b* KO mice, indicating that both awake and
245 NREM states are stabilized, as shown by the increased P_{WW} and P_{NN} (**Fig. 3e**).
246

247 *Ppp1r9b*, also known as Neurabin-2/Spinophilin, has been shown to target some
248 PP1 catalytic subunits to excitatory post-synapses^{43,44}. One anticipated result of
249 *Ppp1r9b* KO is the absence of the PP1 catalytic subunit from these post-synapses.
250 Accordingly, we examined whether reintroducing the PP1 catalytic subunit at
251 excitatory post-synapses would counteract the *Ppp1r9b* KO effects (i.e., increased
252 sleep and decreased amplitude) (**Fig. 4a**). Compared to the loss-of-function mutants
253 of *PPP1CA* (H248K and D95N)^{45,46}, AAV-based expression of wild-type *PPP1CA*
254 and gain-of-function mutant lacking the inhibitory phosphorylation residue (T320A)⁴⁷
255 resulted in increased sleep duration as well as decreased amplitude (**Fig. 4b, c**).
256 Interestingly, such sleep effects were clearly observed only when *PPP1CA* was
257 expressed as a fusion protein with PSD95; expression of *PPP1CA* without PSD95
258 fusion had a negligible effect on sleep duration (**Extended Data Fig. 7a-c**). However,

259 amplitude reduction was still observed by the expression of wild-type or T320A
260 *PPP1CA* without PSD95 fusion (**Extended Data Fig. 7b, c**). Interestingly, the KO of
261 *Ppp1ca* showed an amplitude increase without showing a strong effect on sleep
262 duration (**Fig. 3b**). These results suggest that *PPP1CA* (and *PPP1R9B*) have distinct
263 NREM-sleep-promoting functions mainly at the excitatory post-synapses and sleep-
264 wake transition control involving non-post-synapse regions.

265

266 *PPP1CB* and *PPP1CC* also required PSD95 fusion to exert a clear increase in sleep
267 duration (**Fig. 4d-g and Extended Data Fig. 7d-g**), suggesting that excitatory post-
268 synapses are the central location for the sleep-promoting function of PP1 enzymatic
269 activity. The sleep-promoting function of PP1 is clearly attributed to the increase of
270 NREM sleep compared with the loss-of-function H248K (**Fig. 4h, i**), though the
271 change in the NREM delta power was not significant (**Extended Data Fig. 8a**). REM
272 sleep amount is even reduced in the case of gain-of-function PSD95-*PPP1CA*
273 (T320A) (**Fig. 4h**). Consistent with the decreased amplitude under the expression of
274 PSD95-*PPP1CA* (T320A) (**Fig. 4b**), both wake stability (P_{ww}) and NREM sleep
275 stability (P_{NN}) were significantly reduced (**Fig. 4j**).

276

277 The role of the endogenous PP1 catalytic subunit for sleep promotion was further
278 confirmed by the decreased sleep duration under the expression of *PPP1R1A*, a
279 regulatory subunit that inhibits the PP1 catalytic subunit¹⁹ (**Fig. 4k-m**). Overall, our
280 results characterize PP1 as a sleep-promoting phosphatase functioning at the
281 excitatory post-synapses. The sleep-promoting function is still evident under forced
282 awakening conditions: *Ppp1r9b* KO mice showed enhanced awake duration
283 induction by cage change (**Extended Data Fig. 8b**). On the other hand, sleep-

284 promoted PSD95-*PPP1CA* (T320A)) or PSD95-*PPP1CC* (T311A) mice showed
285 reduced awake duration induction by cage change (**Extended Data Fig. 8c, e**), while
286 the effect of PSD95-*PPP1CB* (T316A) was not evident (**Extended Data Fig. 8d**).

287

288 **Calcineurin is a potent NREM-sleep-promoting phosphatase functioning at**
289 **excitatory post-synapses.**

290 Whether calcineurin serves to promote sleep or wakefulness is still unclear in studies
291 in flies^{13,14}. In our KO screening, viable calcineurin subunit KO mice (i.e., *Ppp3cb*,
292 *Ppp3cc*, and *Ppp3r2* KO) did not show clear sleep phenotypes. Thus, we decided to
293 investigate the role of *Ppp3ca* and *Ppp3r1*, which would otherwise result in
294 embryonic lethality in the KO mice, by implementing post-natal KO via AAV-
295 mediated expression of triple-target CRISPR⁴⁸ (**Fig. 5a**).

296

297 Reduced sleep duration was observed in Cas9-expressing mice with the
298 administration of AAVs expressing triple CRISPR gRNAs targeting either *Ppp3ca* or
299 *Ppp3r1*, compared to the control AAV expressing gRNAs targeting *Tyrosinase* (**Fig.**
300 **5b, c**). A more pronounced reduction in sleep duration for *Ppp3ca*-targeted mice was
301 observed in the recordings from 9-week-old mice (**Fig. 5d, e**). This data suggests
302 that in mammals, calcineurin may function as a sleep-promoting protein
303 phosphatase. The reduced NREM sleep amount in *Ppp3ca* KO mice was confirmed
304 by EEG-EMG recording (**Fig. 5f, g**). We also observed reduced NREM delta power
305 in the KO mice (**Fig. 5h**). Furthermore, *Ppp3ca* KO mice had sever defect in the
306 increase/decrease dynamics of NREM delta power. Estimation of increase and
307 decrease time constant of delta power during awake and NREM epochs⁴⁹ revealed
308 that both increases and decrease rates are significantly slower in the *Ppp3ca* KO

309 mice (**Fig. 5i**). These dramatic changes in sleep duration and NREM delta power
310 dynamics suggest that calcineurin is a central regulator of sleep.

311

312 To further verify this sleep-promoting effect, we expressed a constitutively active
313 variant of the calcineurin catalytic subunit. The catalytic domain of calcineurin is
314 inhibited by its C-terminal domain. Therefore, deleting the C-terminal domain results
315 in a constitutively active calcineurin mutant that operates independently from
316 $\text{Ca}^{2+}/\text{CaM}$ activation^{50,51} (**Fig. 6a**). We found that the expression of constitutively
317 active *PPP3CA* or *PPP3CB* similarly promotes sleep compared to both the wild-type
318 and the phosphatase-inactive version (H151/160Q)^{51,52} of the C-terminal deleted
319 forms (**Fig. 6b-e**). Notably, the sleep-promotion effect requires fusion with
320 PSD95.FingR, and expressing *PPP3CA* and *PPP3CB* without this fusion did not
321 significantly alter the sleep phenotype (**Extended Data Fig. 9a-e**). On the other hand,
322 PSD95.FingR-fused *PPP3CA* and *PPP3CB* induced sleep increase even with a
323 lower dosage of AAV, indicating the robust sleep-promoting effect of calcineurin at
324 the excitatory post-synapses (**Extended Data Fig. 9f-j**). As in the case of PP1, the
325 sleep-promoting effect of calcineurin can be observed in the cage change condition
326 (**Extended Data Fig. 10a-d**). Specifically, the sleep-promoting PSD95.FingR-
327 *PPP3CA* (1-389) or *PPP3CB* (1-408) mitigated the wakefulness elicited by exposure
328 to a new environment, especially during the light phase (ZT = 0).

329

330 The enhanced sleep duration can be attributed to the increased NREM sleep based
331 on the EEG/EMG recording (**Extended Data Fig. 10e-f**). The NREM delta power
332 profile is not significantly altered in the PSD95.FingR-*PPP3CA* (1-389) expressed
333 under the control of *Syn1* promoter (**Extended Data Fig. 10g**). Interestingly, drastic

334 increase of NREM delta power is observed focused expression of PSD95.FingR-
335 *PPP3CA* (1-389) in the excitatory neurons by using *Camk2a* promoter (**Fig. 6f-h**),
336 further confirming the role of calcineurin in the induction of NREM sleep and NREM
337 delta power operating primarily at the excitatory post-synapse.

338

339 **Postsynaptic competition between PKA and calcineurin.**

340 Our results support the idea that wake-promoting PKA and sleep-promoting
341 calcineurin both regulate sleep at the excitatory post-synapse. To decipher how
342 these antagonistic kinases and phosphatases collaboratively influence overall sleep
343 duration, we conducted a co-activation experiment involving both PKA and
344 calcineurin (**Fig. 7a**). For the study, we expressed either or both of the constitutively
345 active forms of PKA and calcineurin as PSD95.FingR fusion proteins. In the
346 presence of loss-of-function PKA (PSD95.FingR-*Prkaca* (K73E:K169E)),
347 constitutively active PSD95.FingR-*PPP3CA* (1-389) showed enhanced sleep
348 duration compared to the co-expression of loss-of-function PSD95.FingR-*PPP3CA*
349 (1-389:H151Q) (**Fig. 7b-c**). The enhanced sleep duration in the presence of
350 constitutively active calcineurin is still evident in the co-presence of constitutively
351 active PKA (PSD95.FingR-*Prkaca* (H88Q:W197R)). However, the absolute sleep
352 duration is reduced in this condition when compared to the corresponding calcineurin
353 conditions in the presence of loss-of-function PKA (PSD95.FingR-*Prkaca*
354 (K73E:K169E)). This result suggests that both of sleep-inducing effect of calcineurin
355 and wake-inducing effect of PKA are detectable in this co-expression setting and the
356 total sleep duration is determined by the summation of the competing sleep/wake
357 control effect of calcineurin and PKA.

358

359 The additive effect of sleep-promoting calcineurin and wake-promoting PKA at the
360 excitatory post-synapse is confirmed by changing the relative dosage of AAV for
361 each enzyme. **Fig. 6d** and **6e** showed the results of the experiment similar to the
362 **Fig. 6b** except for that the higher dosage of AAV expressing calcineurin. In this
363 condition, sleep promotion effect of constitutively active calcineurin became more
364 evident. On the other hand, increased sleep duration elicited by the constitutive
365 active calcineurin was not observed under higher dosage of constitutively active PKA
366 (PSD95.FingR-*Prkaca* (H88Q:W197R)) (**Fig. 6f, g**). In other words, the sleep
367 promotion mediated by calcineurin is nullified by the higher level of the constitutive-
368 active PKA. Thus, this co-expression study illuminates a competing relationship
369 between the awake-promotion by PKA and sleep-promotion by calcineurin in
370 governing sleep at the excitatory post-synapse.

371

372 **Discussion**

373 Recent genetic researches have identified sleep-promoting kinases³⁻⁵. On the other
374 hand, phosphoproteomics studies indicate that, while there is a general trend of
375 increased phosphorylation levels of synaptic proteins during sleep deprivation³³,
376 there are not only phosphorylation sites that increase during wakefulness but also
377 numerous sites that increase during sleep^{6,7}. This makes it challenging to explain
378 the phosphorylation state of synaptic proteins in sleep-wake regulation solely from
379 the activity of sleep-promoting kinases. In this paper, we identified PKA as a wake-
380 promoting kinase and PP1 and calcineurin as sleep-promoting phosphatases. The
381 necessity and sufficiency of each kinase/phosphatase in the sleep duration
382 determination process in mammals are supported by the observation that opposing
383 changes in sleep duration occur with inhibition and activation of each enzymatic
384 activity (for example, PKA; inhibition by PKI and activation by *Prkaca* H88Q:W197R,
385 PP1; inhibition by PPP1R1A and activation by the expression of PP1 catalytic
386 subunits, calcineurin: inhibition by post-natal CRISPR and activation by the
387 expression of calcineurin catalytic subunits). These are positioned as having
388 complementary roles to the sleep-promoting kinases such as CaMKIIα/β, MAPK,
389 SIK3.

390

391 The relationship between PKA and calcineurin with sleep regulation has been
392 demonstrated in studies using fruit flies¹¹⁻¹⁵. The identified role of PKA as a wake-
393 promoting kinase is consistent with a report demonstrating that the induced
394 expression of PKA in mushroom bodies, which are thought to be a sleep center of
395 *Drosophila*, decreases the duration of sleep⁵³. A recent proteomics approach which
396 investigated proteins expressed in the postsynaptic density of the mouse cortex and

397 hippocampus during either wakefulness or sleep revealed that PKA components
398 including both catalytic and regulatory subunits are enriched during the wake phase⁶.
399 Furthermore, motif analysis of phosphopeptide predicted that PKA activity is
400 enriched both in wake phase and sleep phase⁶, suggesting that PKA activity is
401 dynamically controlled and substrate preference may be altered during sleep-wake
402 cycle. The downstream factors involved in PKA's wake regulation remain a subject
403 for future research. Introduction of mutations to the conserved PKA phosphorylation
404 sites in SIK1/2/3 results in sleep promotion^{16,17}; thus, the SIK3-HDAC4 pathway^{54,55}
405 might be a potential target of the awake-promoting function of PKA. However,
406 because the phosphorylation mimic mutations at the PKA target sites in SIK3 also
407 induce sleep¹⁶, further verification is needed to determine the molecular targets of
408 the wake-promoting effects of PKA.

409

410 The role of calcineurin in sleep regulation in fruit flies has been ambiguous, as both
411 genetic interventions that increased and decreased calcineurin activity led to
412 diminished sleep¹⁴. However, in our mammalian study, we observed contrasting
413 sleep phenotypes in relation to calcineurin activity: sleep duration decreased
414 following post-natal CRISPR targeting of *Ppp3ca* and *Ppp3r1*, whereas it increased
415 upon expression of *PPP3CA/PPP3CB* at the excitatory synapse. Consequently, in
416 mammals, the primary role of calcineurin in sleep regulation appears to be in
417 promoting sleep. Further research is necessary to investigate the downstream
418 targets of calcineurin in sleep regulation, as well as the factors controlling calcineurin
419 activity itself. It has been reported that the expression of calcineurin increases during
420 sleep⁵⁶, suggesting that calcineurin activity might be dynamically regulated
421 throughout the sleep-wake cycle. We have proposed the significance of calcium

422 signaling in sleep regulation, primarily focusing on CaMKII^{3,57}: if calcineurin as well
423 as CaMKII promote sleep downstream of calcium signaling, it should be interesting
424 to investigate how CaMKII and calcineurin might divide their sleep-promoting roles.
425 Given that CaMKII and calcineurin have different response characteristics to calcium
426 signaling⁵⁸, each enzyme might induce sleep in response to distinct types of calcium
427 signals.

428

429 The relationship between sleep regulation and synaptic plasticity or synaptic
430 homeostasis is well-established^{59,60}. The enzymes PKA, PP1, and CaN, which were
431 highlighted in our recent study, are also known for their roles in synaptic plasticity⁶¹.
432 PKA is recognized as a factor responsible for memory consolidation including the
433 consolidation during sleep⁶². Neurabin-2 has been implicated in neural plasticity and
434 memory consolidation as well⁶³⁻⁶⁵, while the enzymatic activity of PP1 is also
435 involved in memory extinction⁶⁶. In addition, inhibition or overexpression of
436 calcineurin showed abnormalities in memory consolidation and synaptic plasticity⁶³⁻
437 ⁶⁵, and thus calcineurin is understood to be one of the central factors in the control
438 of synaptic plasticity⁶⁷. A recent study in flies also suggests the involvement of IP₃R
439 both in sleep control and synaptic downscaling as a downstream factor of
440 calcineurin⁶⁸. Our observation about the catalytic subunits of PP1 and calcineurin in
441 sleep regulation clearly requiring localization to the post-synapse indicates that
442 these phosphatases function at the post-synapse for sleep control. The co-
443 expression scheme in **Fig. 7** suggests the competing relationship between PKA and
444 calcineurin at excitatory post-synapses. PKA, calcineurin, and PP1 share a post-
445 synaptic locus and enzymatic cascade in the regulation of synaptic plasticity⁶⁹⁻⁷³.
446 Thus, our results may shed light on the molecular link between sleep regulation and

447 synaptic plasticity control.

448

449 **Methods**

450 **Plasmids**

451 Mouse *Prkaca* (NM_008854.5) and *Prkacb* (NM_011100.5) cDNAs were subcloned
452 from mice brain. Mouse *Prakr1a* (NM_021880.4), *Prkar1b* (NM_001253890.1),
453 *Prkar2a* (NM_008924.3) cDNAs were obtained from pCDNA3-mouse PKA-RIalpha-
454 mEGFP, pcDNA3-mouse PKA-RIbeta-mEGFP, and pCDNA3-mouse PKA-RIIalpha-
455 mEGFP, respectively. pCDNA3-mouse PKA-RIalpha-mEGFP (Addgene plasmid #
456 45525 ; <http://n2t.net/addgene:45525> ; RRID:Addgene_45525), pcDNA3-mouse
457 PKA-RIbeta-mEGFP (Addgene plasmid # 45526 ; <http://n2t.net/addgene:45526> ;
458 RRID:Addgene_45526), and pCDNA3-mouse PKA-RIIalpha-mEGFP (Addgene
459 plasmid # 45527 ; <http://n2t.net/addgene:45527> ; RRID:Addgene_45527) were gifts
460 from Haining Zhong ⁷³. *Prkar2b* cDNA (NM_011158.4) were subcloned from mice
461 brain. cDNAs of Human PP1c (*PPP1CA*, NM_001008709.2; *PPP1CB*,
462 NM_002709.3; *PPP1CC*, NM_002710.4), *PPP1R1A*(NM_006741.4), and PP2Bc
463 (*PPP3CA*, NM_001130691.2; *PPP3CB*, NM_001142353.3) were obtained from
464 GeneScript Japan Inc. (Japan). cDNA with mutations or deletion were constructed
465 by site-directed mutagenesis using PrimeSTAR® HS DNA Polymerase mutagenesis
466 kit (Takara Bio, Japan) following to the manufacturer's instructions.

467

468 For pAAV construction, the cDNA sequence was transferred into the pAAV vector²⁸
469 along with a promoter (*hSyn1*⁷⁴ or *Camk2a*²⁸), FLAG tag, Camk2b 3'UTR²⁸, WPRE,
470 and SV40 polyA sequences as illustrated in each figure. The mCherry-PKI was
471 constructed based on the AIP2 expression vector²⁸ by fusing the PKI 1-24²⁹
472 sequence (TDVETTYADFIASGRTGRRNAIHD for WT;
473 TDVETTYADFIASGATGAANAIHD for 3RA) to the C-terminus of mCherry via a

474 (GGGGS)x3 linker, and assembled in pAAV with the *Camk2a* promoter, dendritic
475 targeting element (DTE) of mouse *Map2* gene, WPRE, and SV40 polyA sequences.
476 For double-floxed inverted open reading frame (DIO) constructs, the inverted *Prkaca*
477 sequence flanked by lox2272 and loxP was inserted between the *Camk2a* promoter
478 and the *Camk2b* 3'UTR in the pAAV vector as illustrated in **Extended Data Fig. 4d**.
479 For localized expression, rat PSD95 sequence from FU- dio PSD95-mCherry- W
480 plasmid was fused to the N-terminus of PP1c genes (*PPP1CA*, *PPP1CB*, *PPP1CC*).
481 FU- dio PSD95-mCherry- W was a gift from Elly Nedivi (Addgene plasmid # 73919;
482 <http://n2t.net/addgene:73919> ; RRID:Addgene_73919)⁷⁵ PSD95.FingR sequence
483 were obtained from pCAG_PSD95.FingR-eGFP-CCR5TC and directly fused to N-
484 terminus of *Prkaca* (**Fig. 2**) or *PPP3CA/PPP3CB* (**Fig. 5**). pCAG_PSD95.FingR-
485 eGFP-CCR5TC was a gift from Don Arnold (Addgene plasmid # 46295;
486 <http://n2t.net/addgene:46295> ; RRID:Addgene_46295), and FingR-based
487 constructs used in this study does not include transcriptional control system by the
488 zinc finger-KRAB³⁶.

489

490 For the construction of pAAV to simultaneously express triple gRNAs, a mCherry
491 expression cassette consisting of *hSyn1* promoter, mCherry, WPRE, hGH polyA
492 sequences was inserted into pAAV, and used as a gRNA template vector. Three
493 sets of U6 promoter and gRNA scaffold containing a gRNA sequence listed in
494 **Extended Data Fig. 5** were tandemly assembled and inserted in upstream of the
495 mCherry expression cassette in the gRNA template vector.

496

497 **Animals and sleep phenotyping**

498 All experimental procedures and housing conditions were approved by the

499 Institutional Animal Care and Use Committee of RIKEN Center for Biosystems
500 Dynamics Research and the University of Tokyo. All the animals were cared for and
501 treated humanely in accordance with the Institutional Guidelines for Experiments
502 using Animals. All mice had ad libitum access to food and water and were maintained
503 at ambient temperature and humidity conditions under a 12-hLD cycle. The timing of
504 switching from dark to light environment was set as ZT0. All C57BL/6N mice were
505 purchased from CLEA Japan (Tokyo, Japan). The mice used in each experiment
506 were randomly chosen from colonies. Animal experiments were performed at the
507 University of Tokyo and RIKEN Center for Biosystems Dynamics Research. Triple-
508 CRISPR KO screening for PKA was conducted at RIKEN and for phosphatases at
509 the University of Tokyo.

510

511 **Production of triple-CRISPR KO mice**

512 Guide RNA (gRNA) design and synthesis were performed using the same protocol
513 described in the previous report^{76,77}. gRNAs were designed using online design tools
514 including mm10 CRISPR/Cas9 database²³ (<http://www.crispr.riken.jp/>), CRISPR-
515 ERA: a comprehensive designer tool for CRISPR genome editing, (gene) repression,
516 and activation (<http://crispr-era.stanford.edu/>), CRISPRdirect⁷⁸
517 (<http://crispr.dbcls.jp/>), and the UNAFold Web Server (<http://unafold.rna.albany.edu/>).
518 gRNA templates were synthesized with T7 promoter by PCR from the pX330 plasmid
519 (Addgene plasmid # 42230). The T7-fused gRNA templates were amplified by PCR
520 and then used as a template for in vitro transcription with MEGAshortscript T7 kit
521 (Thermo Fisher Scientific, USA). The gRNAs were purified using the MEGAclear kit
522 (Thermo Fisher Scientific, USA). For Cas9 mRNA synthesis, p3s-Cas9HC plasmid⁷⁹
523 (Addgene plasmid # 43945) was digested with XbaI (New England BioLabs, Japan)

524 and used as a template for in vitro transcription with MEGAshortscript T7 kit (Thermo
525 Fisher Scientific, USA). Cas9 mRNA was purified using the MEGAclear kit (Thermo
526 Fisher Scientific, USA).

527

528 One-cell embryo microinjection was performed as described in the previous report²³.
529 Cas9 mRNA (100 ng/μL) and gRNAs (150 ng/μL in total) were co-injected into the
530 cytoplasm of C57BL/6N fertilized eggs in M2 medium (Merck Millipore, Germany or
531 ARK Resource, Japan) at room temperature (23–25°C). Details of the cytoplasmic
532 injection were reported previously⁸⁰. After microinjection, the embryos were cultured
533 for 1 h in KSOM medium (Merck Millipore, Germany or ARK Resource, Japan) in a
534 5% CO₂ incubator at 37°C, and 25–35 embryos were then transferred to the oviducts
535 of pseudopregnant female ICR mice.

536

537 **Genotyping of triple-CRISPR KO mice**

538 Genotyping of KO mice was conducted with the same protocol described in the
539 previous report²³. Genomic DNA of wild-type and KO mice was prepared from their
540 tails using the DNeasy Blood & Tissue Kit (QIAGEN, Germany), according to the
541 manufacturer's instructions. qPCR for genotyping was performed using the
542 LightCycler 480 II (Roche, Switzerland) and the SYBR Premix Ex Taq GC (Takara
543 Bio, Japan). Primers for qPCR (**Supplementary Table 1**, Eurofins Genomics,
544 Japan) were annealed to the CRISPR/Cas9 targeting sequences. The absolute
545 target site abundance was calculated using a standard curve obtained from wild-
546 type genomic DNA. The amount of *Tbp*⁸¹ was quantified and used as an internal
547 control. When the amplified intact DNA by qPCR is less than 0.5% of wild-type
548 genome, we judged that the target DNA is not detectable. When any of three targets

549 was not detected, we classified the animal as a KO. When we could not confirm KO
550 genotype by qPCR, we performed sequencing or a second qPCR using alternative
551 primers, which were independent of first qPCR.

552

553 **AAV production and injection**

554 AAV was produced as previously reported⁸² with some modifications. AAV pro 293T
555 (Takara Bio, Japan) cells were cultured in 150 mm dishes (VIOLAMO, AS ONE,
556 Japan) in a culture medium containing DMEM (high glucose) (Thermo Fisher
557 Scientific, USA), 10% fetal bovine serum (FBS) (Biowest, France), and 1% penicillin-
558 streptomycin (PS) (FUJIFILM Wako Pure Chemical, Japan) at 37°C in 5% CO₂.
559 pAAVs, pUCmini-iCAP-PHP.eB and pHelper plasmid with the plasmid ratio of 1:4:2
560 based on micrograms of DNA were transfected into cells at >90% confluency with
561 1mg/ml polyethyleneimine (PEI, Linear, MW 25000, Polysciences). pUCmini-iCAP-
562 PHP.eB for PHP.eB production was a gift from Dr. Viviana Gradinaru (Addgene
563 plasmid # 103005) ⁸³. On the next day of transfection, the culture medium was
564 replaced with the culture medium containing DMEM (high glucose, GlutamaxTM,
565 Thermo Fisher Scientific, USA), 2% FBS, 1% MEM Non-Essential Amino Acids
566 solution (NEAA) (Thermo Fisher Scientific, USA), and 1% PS. On the third day
567 following the transfection, the culture medium was collected and replaced with new
568 culture medium also containing DMEM (high glucose, GlutamaxTM), 2% FBS, 1%
569 MEM NEAA, and 1% PS. The collected culture medium was stored at 4°C. On the
570 fifth day following the transfection, the cells and the culture medium were collected.
571 The suspension of two times collections was separated into supernatant and cell
572 pellet after centrifuge (4000 rpm, 10 minutes). The supernatant mixture with
573 polyethylene glycol solution (PEG) (MW8000, MP Biomedicals, USA) at a final

574 concentration of 8% and left in the ice over 2 hours, whereas AAVs were extracted
575 from the cells pellet which re-suspended in a Tris-MgCl₂ buffer (10 mM Tris pH 8.0,
576 2 mM MgCl₂) followed by 3-4 freeze-thaw cycles in liquid nitrogen. The obtained
577 extract containing AAVs was treated with TurboNuclease (25kU, Accelagen,
578 Australia) for 1 hour. The cells in PEG mixtures were re-suspended by Tris-MgCl₂
579 buffer after centrifuge (4000 rpm, 30 minutes) and combined with the lysed cells and
580 incubated in 37°C water for 30 minutes. Then AAVs were purified by
581 ultracentrifugation (OptimaXE-90, Type 70 Ti rotor with 32.4mL OptiSealTM tubes,
582 Beckman Coulter, USA). with 58400 rpm for 145 minutes in 18°C with Iodixanol
583 density gradient solutions (15%, 25%, 40%, and 60% (wt/vol), serumwerk). Viral
584 particles solution was collected and ultrafiltered with Amicon Ultra-15 centrifugal
585 filters (100 kDa, Merck, Germany) to obtain the pure AAVs solution for animal
586 administration.

587

588 For AAV titration, virus solution was treated with TurboNuclease in 37°C 1hour
589 followed by Proteinase K (20 mg/ml, 37°C, 1 h). The viral genomes were obtained
590 by phenol: chloroform: isoamyl alcohol 25:24:1 (Nacalai Tesque, Japan) extraction
591 followed by isopropanol precipitation, and were dissolved in 1mmol/L Tris-EDTA (pH
592 8.0) buffer. The AAVs titer (vg/ml) were quantified depended on the number of
593 WPRE sequences in the AAVs' genome by qPCR using plasmids as a standard, and
594 WPRE sequences of was amplified by primers (qPCR_WPRE forward:5'-
595 CTGTTGGGCACTGACAATT-3'; qPCR_WPRE reverse: 5'-
596 GAAGGGACGTAGCAGAAGGA-3') and qPCR running protocol was 60 s at 95°C
597 for preheating, 45 cycles from 10 s at 95°C to 30s at 60°C using TB Green ® Premix
598 Ex Taq™ GC (Takara Bio, Japan).

599

600 For retro orbital injection of AAVs, six-week-old male C57BL/6NJcl mice (CLEA
601 Japan, Japan) were anesthetized with 2%–4% isoflurane inhalation Solution (Pfizer,
602 Japan) and injected with 100 μ l of AAVs in their retro orbital sinus. The AAV-
603 administrated mice were subjected to sleep phenotyping at eight-week-old.

604

605 **Sleep measurement with SSS**

606 The fully automatic non-invasive respiration-based sleep phenotyping system, called
607 the snappy sleep stager (SSS) was used to monitor the sleep of mice. The SSS
608 recording and analysis were carried out according to the protocol described
609 previously²³. The light condition of the SSS racks were set to light/dark (12 hours
610 period). In the normal measurement, AAV-administrated 7-week-old C57BL/6N mice
611 or control mice were placed in the SSS chambers for more than one week for sleep
612 recordings, with ad libitum access to food and water. For data analysis, the first day
613 in the chamber was excluded, and analysis was performed for six days of
614 measurement data. For post-natal KO (Fig. 5), 8- and 9-weeks old data were
615 analyzed. Sleep parameters such as sleep duration which were defined in previous
616 paper²³. Sleep staging was performed in every 8-second epoch. The definition of
617 transition probabilities are as follows: $P_{ws} = N_{ws} / (N_{ws} + N_{ww})$, and P_{sw} (transition
618 probability from sleep to wake) is defined as $P_{sw} = N_{sw} / (N_{sw} + N_{ss})$, where N_{mn} is
619 the number of transitions from state m to n ($m, n \in \{\text{sleep, wake}\}$) in the observed
620 period. The balance between P_{ws} and P_{sw} determines the total sleep time, i.e., mice
621 with longer sleep time tend to have increased P_{ws} and/or decreased P_{sw} . P_{ws} and
622 P_{sw} are independent of each other, and it can be deduced from the definition that
623 $P_{ws} + P_{ww} = 1$ and $P_{sw} + P_{ss} = 1$. Amplitude is defined as the coefficient of variation

624 (CV, the standard deviation divided by the mean) of sleep time for each 10-min bin
625 for 24 hours.

626

627 **Sleep measurement with EEG/EMG recording**

628 For EEG/EMG recording, mice were implanted with EEG and EMG electrodes for
629 polysomnographic recordings. To monitor EEG signals, 2 stainless steel EEG
630 recording screws with 1.0 mm in diameter and 2.0 mm in length were implanted on
631 the skull of the cortex (anterior, +1.0 mm; right, +1.5 mm from bregma or lambda)
632 and the EEG and EMG electrodes which have 4 pins in 2 mm pitch (Hirose Electric,
633 Japan) with soldered wires were wrapped around the screws. EMG activity was
634 monitored through stainless steel, Teflon-coated wires with 0.33 mm in diameter
635 (AS633, Cooner Wire, USA) connected with electrodes and the other endplaced into
636 the trapezius muscle. Finally, the fixed electrodes were fully covered by dental
637 cement (Unifast III, GC Corporation, Japan) and the mice scalp were sutured. After
638 7 days of recovery, the mice were placed in experimental cages with a connection
639 of spring supported recording leads. The EEG/EMG signals were amplified (Biotex,
640 Japan), filtered (EEG, 0.5 to 60 Hz; EMG, 5 to 128 Hz), digitized at a sampling rate
641 of 128 Hz, and recorded using VitalRecorder software (KISSEI Comtec, Japan).

642

643 For the sleep staging, FASTER method⁸⁴ was used with some modifications to
644 automatically annotate EEG and EMG data. A total of 24 h of recording data were
645 used for the analysis. Sleep staging was performed every 8-s epoch. Finally, the
646 annotations were manually checked. For *Ppp3ca* KO and *Tyr* KO mice (**Fig.5f-i**) and
647 for *Ppp3ca* expression experiments with *Camk2a* promoter (**Fig.6f-h**), three days of
648 automatically annotated data were used for the analyses.

649

650 The power spectrum density was calculated for each epoch by fast Fourier
651 transformation (FFT) with Welch's averaging method. Briefly, each 8-s segment was
652 further divided into 8 overlapping sequences. The overlapping length was 50% of
653 each sequence. The Hamming window was applied onto the sequences before the
654 FFT, and the obtained spectrum was averaged over the 8 sequences. The dirty
655 segments were excluded from the subsequent processes⁸⁴. The power spectrum of
656 each behavioral state (Wake, NREM, and REM) was calculated by averaging the
657 power spectra (1 to 50 Hz) of segments within each state over the observation period.
658 The calculated power spectra were normalized by the total power. The power density
659 in typical frequency domains was calculated as the summation of the powers in each
660 frequency domain (slow, 0.5 to 1 Hz; delta, 0.5 to 4 Hz; theta, 6 to 10 Hz).

661

662 Transition probabilities between wakefulness, NREM sleep, and REM sleep were
663 calculated same as previously reported⁷⁶. For example, $P_{NW} = N_{NW} / (N_{NW} + N_{NR} +$
664 $N_{NN})$, where N_{mn} is the number of transitions from state m to n ($m, n \in \{\text{wake, NREM}$
665 $\text{sleep, REM sleep}\}$) in the observed period.

666

667

668 **Estimation of EEG delta power dynamics**

669 The simulation and estimation of time constants for the daily increase and decrease
670 of NREM-EEG delta power were carried out as described in the previous study⁴⁹. In
671 brief, Franken and colleagues' method assumes that the dynamics of EEG delta
672 power in each epoch (S) increases according to Eq (1) during awake and REM sleep
673 phases and decreases according to Eq (2) during NREM sleep.

674

675 $S_{t+1} = UA - (UA - S_t)e^{-dt/\tau_i}$ (1)

676 $S_{t+1} = LA - (LA - S_t)e^{-dt/\tau_d}$ (2)

677 We simulated 72-h EEG recording composed of consecutive 8-s epochs ($dt = 8$ s).
678 The percentage of delta power for each epoch is used for the calculation and
679 estimation of each parameter. UA is the 99% level of the delta power percentage
680 distribution in the NREM epochs, which is estimated by fitting a gaussian distribution
681 to the histogram of the NREM delta power percentage. LA is defined as the
682 intersection of the distributions of delta power percentage in NREM and REM epochs.
683 τ_i and τ_d were estimated by comparing the simulated S and median delta power
684 percentage of sustained (>5 min) NREM episodes. Best τ_i and τ_d were explored
685 through the brute force optimization method implemented by the scipy python
686 library⁸⁵.

687

688 **ES-mice production**

689 Genetically modified mice were produced using the previously reported ES-mouse
690 method, which allows us to analyze the behavior of F0 generation mice^{86,87}. Mouse
691 ES cells (ESCs) were established from blastocysts in 3i medium culture conditions
692 as described previously⁸⁸. Mouse strains used for the ESC establishment were as
693 follows: heterozygous Nex-Cre mice³⁹ kindly provided from Carina Hanashima ;
694 H11-Cas9, B6J.129(Cg)-*Igs2*^{tm1.1(CAG-cas9*)Mmw}/J homozygous mice (The Jakson
695 Laboratory, JAX stock #028239)

696

697 Male ESCs were cultured as described previously^{86,87}. PURECoat amine dishes
698 (Beckton-Dickinson, NJ, USA) was treated with a medium containing LIF plus 6-

699 bromoindirubin-30-oxime (BIO)⁸⁹ for more than 5 h at 37°C with 5% CO₂. ESCs
700 were seeded at 1 × 10⁵ cells per well and maintained on the dishes at 37°C in 5%
701 CO₂ under humidified conditions with a 3i culture medium (Y40010, Takara Bio,
702 Japan) without feeder cells. The ESCs were collected by adding 0.25% trypsin-
703 EDTA solution and prepared as a cell suspension. 10–30 ESCs were injected into
704 each ICR (CLEA Japan, Japan) 8-cell-stage embryo and the embryos were
705 transferred into the uterus of pseudopregnant ICR female mice (SLC, Japan). We
706 determined the contribution of the ESCs in an obtained ES-mouse by its coat color
707 following a previously reported protocol^{86,87}. The ES mice uncontaminated with ICR-
708 derived cells were used for the experiment.

709

710 **Post-natal knockout by AAV-triple-target CRISPR**

711 6-week-old H11-Cas9 ES mice were administered 2x10¹² vg of AAVs encoding triple
712 gRNAs downstream of the U6 promoters (AAV-triple-gRNAs). Mice administered the
713 AAVs were subjected to SSS measurements at 8 and 9 weeks old, followed by
714 EEG/EMG recordings.

715

716 **Cage change experiment**

717 Cage change experiment was carried out following the six days measurement in
718 SSS. AAV-administered mice were kept in the SSS chambers for three days for
719 baseline recording. On the fourth day, the SSS chambers were replaced with new
720 ones at ZT0 or ZT12 (ZT 0 indicates the beginning of day, or the light phase, and ZT
721 12 is the beginning of night, or the dark phase). From day 1 of recording, the 6-days
722 data including 3-days baseline were collected and analyzed. The baseline data were
723 averaged and compared with the same time point on the fourth day.

724

725 **Statistics**

726 No statistical method was used to predetermine the sample size. The sample sizes
727 were determined based on our previous experiences and reports. Experiments were
728 repeated at least two times with the independent sets of the animals. In the sleep
729 analysis, individuals with abnormal measurement signals or weakened individuals
730 were excluded from the sleep data analyses due to the difficulties in accurate sleep
731 phenotyping.

732

733 Statistical analyses were performed by Microsoft Excel and R version 3.5.2.
734 Statistical tests were performed by two-sided. To compare two unpaired samples,
735 the normality was tested using the Shapiro test at a significance level of 0.05. When
736 the normality was not rejected in both groups, the homogeneity of variance was
737 tested using the F-test at a significance level of 0.05. When the null hypothesis of a
738 normal distribution with equal variance for the two groups was not rejected, Student's
739 t-test was used. When the normality was not rejected but the null hypothesis of equal
740 variance was rejected, a Welch's t-test was used. Otherwise, a two-sample Wilcoxon
741 test was applied.

742

743 To compare more than two samples against an identical sample (e.g., triple-CRISPR
744 screening), the normality was tested with the Kolmogorov-Smirnov test at a
745 significance level of 0.05. When the normality was not rejected in all groups, the
746 homogeneity of variance was tested with Bartlett's test at a significance level of 0.05.
747 When the null hypothesis of a normal distribution with equal variance was not
748 rejected for all groups, Dunnett's test was used. Otherwise, Steel's test was applied.

749

750 For multiple comparisons between each group, the Tukey-Kramer test was used
751 when the null hypothesis of a normal distribution with equal variance was not
752 rejected for all groups. Otherwise, Steel-Dwass test was applied.

753

754 In this study, $p < 0.05$ was considered significant ($*p < 0.05$, $**p < 0.01$, $***p < 0.001$,
755 and n.s. for not significant).

756

757 **Acknowledgment**

758 We thank all the lab members at the University of Tokyo and RIKEN Center for
759 Biosystems Dynamics Research (BDR), in particular, Takeyuki Miyawaki, Shiho
760 Sato, Kyoko Shimizu, Yoko Nakano and Kimiko Itayama for AAV preparation; Shuhei
761 S. Sugai for CRISPR experiment; Ayako Shimokawa, Sachiko Tomita, Masako
762 Kunimi, Ruriko Inoue for help with sleep phenotyping; Junko Garcon-Yoshida, Genki
763 N. Kanda, Kazuhiro Kon, Yumika Sugihara, Natsumi Hori, Eriko Matsushita, and
764 Yuichi Uranyu for animal experiment. We also thank members at LARGE, RIKEN
765 BDR for help with ES-mouse production.

766

767 This work was supported by grants from the Brain/MINDS JP21dm0207049, Science
768 and Technology Platform Program for Advanced Biological Medicine
769 JP21am0401011, AMED-CREST JP21gm0610006 (AMED/MEXT) (H.R.U.), Grant-
770 in-Aid for Scientific Research (S) JP18H05270 (JSPS KAKENHI) (H.R.U.) and
771 Scientific Research (C) JP23K05738 (JSPS KAKENHI) (K.L.O.), Grant-in-Aid for
772 Early-Career Scientists JP19K16115 (JSPS KAKENHI) (D.T.), HFSP Research
773 Grant Program RGP0019/2018 (HFSP) (H.R.U.), ERATO JPMJER2001 (JST)
774 (H.R.U.) and an intramural Grant-in-Aid from the RIKEN BDR (H.R.U.).

775

776

777 **AUTHOR CONTRIBUTIONS**

778 H.R.U., Y.W., C.S., D.T., and K.L.O. designed the study. Y.W, C.S., D.T., K.L.O.,
779 H.F., S.S., K.M. and R.G.Y. performed the sleep phenotype analysis. R.G.Y.
780 performed EEG/EMG data analysis. Y.W., C.S., and D.T. performed AAV production.
781 D.T., R.O., S.S., M.K., M.U.T., H.U., C.H. H.K. and K.S. produced genetically
782 modified mice. H.R.U., Y.W., C.S., D.T., R.G.Y and K.L.O. wrote the manuscript. All
783 authors discussed the results and commented on the manuscript.

784

785 **Figure legends**

786 **Fig.1 Identification of *Prkar2b* as a sleep controlling gene**

787 **(a)** Schematic diagram of production of PKA KO mice by Triple-targeted CRISPR
788 and sleep phenotyping. Genes encoding PKA catalytic subunit or regulatory subunit
789 genes were targeted by the method. **(b, c)** Sleep/wake parameters (b) and sleep
790 profiles (c) of the PKA KO mice, averaged over 6 days. Sleep duration is the total
791 sleep duration in a day. Amplitude represents the variation of sleep duration per hour
792 in a day. P_{WS} and P_{SW} are the transition probability between wakefulness and sleep.
793 The black dashed line and the shaded area represent the mean and 1 SD range,
794 respectively, of the wild-type mice wild-type C57BL/6N mice (n=108). The number
795 of mice used in the analysis is shown as (n). Steel's tests were performed between
796 mutants and the wild-type C57BL/6N mice. **(d, e)** Sleep phenotypes (d) and sleep
797 profiles (e) measured by EEG/EMG recordings for *Prkar2b* KO mice (n=6) and wild-
798 type C57BL/6N mice (n=8). Student's t-tests were performed between *Prkar2b* KO
799 and the wild-type C57BL/6N mice. **(f)** Differences in transition probabilities (between
800 wakefulness (W), NREM sleep (N), and REM sleep (R)) for *Prkar2b* KO mice.
801 Magenta lines and dashed blue lines indicate when the values for *Prkar2b* KO mice
802 are significantly ($p < 0.05$) higher and lower, respectively. Statistical analysis of P_{RW}
803 by Wilcoxon test and all others by Student's t-test. **(g)** Schematic diagram of AAV-
804 based PKI expression and sleep phenotyping. N-terminus region (1-24) of PKI were
805 fused to mCherry and expressed in a mouse brain **(h, i)** Sleep parameters (h) and
806 sleep profiles (i) of mice expressing PKI (WT) (n=6) and its inactive mutant (3RA)
807 (n=6) under the *Camk2a* promoter, averaged over 6 days. The dosages of the AAVs
808 were 4.0×10^{11} vg/mouse. Statistical analysis of sleep duration and P_{SW} by Student's
809 t-test and P_{WS} and Amplitude by Welch's t-test. **(j, k)** Sleep phenotypes (j) and sleep

810 profiles (k) measured by EEG/EMG recordings for PKI expressed mice (WT, n=4;
811 3RA, n=5). Student's t-tests were performed. **(I)** Differences in transition probabilities
812 (between wakefulness (W), NREM sleep (N), and REM sleep (R)) for PKI-expressing
813 mice. Magenta lines and dashed blue lines indicate when the values for PKI (WT)
814 mice are significantly ($p < 0.05$) higher and lower, respectively. Statistical analysis of
815 P_{RW} by Wilcoxon test, P_{NW} , P_{NR} , P_{RN} , P_{RR} by Student's t-test, and all others by Welch's
816 t-test. Shaded areas in the line plots represent SEM. Error bars: SEM, * $p < 0.05$, ** p
817 < 0.01, *** $p < 0.001$. ZT, zeitgeber time; WT, wild-type.

818

819 **Fig.2 PKA is a sleep promoting kinase in mammals**

820 **(a)** Schematic diagram of AAV-based PKA catalytic subunit expression. **(b, c)**
821 Sleep/wake parameters (b) and sleep profiles (c) of mice expressing *Prkaca* WT
822 (n=6) and its active mutant (H88Q:W197R) (n=6) under the *Camk2a* promoter,
823 averaged over 6 days. The dosages of the AAVs were 1.0×10^{10} vg/mouse.
824 Student's t-tests were performed. **(d-e)** Sleep phenotypes (d) and sleep profiles (e)
825 measured by EEG/EMG recordings for *Prkaca* (WT) (n=8) and *Prkaca*
826 (H88Q:W197R) (n=7). Student's t-tests were performed for comparisons. **(f)** NREM
827 power density in delta domain (1-4 Hz) and EEG power spectra. Wilcoxon test was
828 performed for the comparison in NREM delta power. **(g)** Differences in transition
829 probabilities (between wakefulness (W), NREM sleep (N), and REM sleep (R))
830 between *Prkaca* (WT) and *Prkaca* (H88Q:W197R) mice under *Camk2a* promoter.
831 Magenta lines and dashed blue lines indicate when the values for H88Q:W197R
832 mice are significantly ($p < 0.05$) higher and lower. Student's t-tests were performed
833 for comparisons of the transition probabilities. **(h)** Schematic diagram of localized
834 expression of PKA catalytic subunit based on PSD95.FingR. PSD95.FingR was

835 fused to N-terminus of PKA catalytic subunit and expressed in mice brains. (i, j)
836 Sleep/wake parameters (i) and sleep profiles (j) of mice expressing PSD95.FingR-
837 *Prkaca* inactive mutant (K73E:K169E) (n=6) and its active mutant (H88Q:W197R)
838 (n=6) under the *Camk2a* promoter. averaged over 6 days. The dosages of the AAVs
839 were 5.0×10^9 vg/mouse. Student's t-tests were performed. (k, l) Sleep phenotypes
840 (k) and sleep profiles (l) measured by EEG/EMG recordings for PSD95.FingR-
841 *Prkaca* inactive mutant (K73E:K169E) (n=8) and its active mutant (H88Q:W197R)
842 (n=8). Student's t-tests were performed for comparisons. (m) NREM power density
843 in delta domain (1-4 Hz) and EEG power spectra. Student's t-test was performed for
844 the comparison in NREM delta power. (n) Differences in transition probabilities
845 (between wakefulness (W), NREM sleep (N), and REM sleep (R)) between
846 PSD95.FingR-*Prkaca* inactive mutant (K73E:K169E) (n=8) and its active mutant
847 (H88Q:W197R) (n=8). Magenta lines and dashed blue lines indicate when the values
848 for H88Q:W197R mice are significantly ($p < 0.05$) higher and lower. Statistical
849 analysis of P_{NN} by Wilcoxon test, P_{RN} by Welch's t-test, and all others by Student's t-
850 test. Shaded areas in the line plots represent SEM. Error bars: SEM, * $p < 0.05$, ** p
851 < 0.01, *** $p < 0.001$. ZT, zeitgeber time; WT, wild-type.
852

853 **Fig.3 Identification of *Ppp1r9b* as a sleep controlling gene**

854 (a) Schematic diagram of triple-target CRISPR method used for targeting PP1, PP2A,
855 and PP2B (calcineurin) genes followed by sleep analyses using the respiration-
856 based sleep phenotyping system (SSS) or EEG/EMG recording. Detailed
857 information of designed gRNAs was provided in **Extended Data Fig. 5**. (b) Sleep
858 parameters of each 8-weeks-old male KO mice. Sleep duration is the total sleep
859 duration in a day. Amplitude represents the variation of sleep duration per hour in a

860 day. P_{ws} and P_{sw} are the transition probability between wakefulness and sleep. The
861 black dashed line and the shaded area represent the mean and 1 SD range,
862 respectively, of the wild-type mice wild-type C57BL/6N mice (n=101). The number
863 of mice used in the analysis is shown as (n). Dunnett's tests were performed between
864 mutants and the wild-type C57BL/6N mice. **(c, d)** Sleep phenotypes (c) and sleep
865 profiles (d) measured by EEG/EMG recordings for *Ppp1r9b* KO mice (n=8) and wild-
866 type C57BL/6N mice (n=8). Student's t-tests were performed. **(j)** Differences in
867 transition probabilities (between wakefulness (W), NREM sleep (N), and REM sleep
868 (R)) between wild-type C57BL/6N mice and *Ppp1r9b* KO mice. Magenta lines and
869 dashed blue lines indicate when the values for *Ppp1r9b* KO mice are significantly (p
870 < 0.05) higher and lower. Statistical analysis of P_{RN} by Welch's t-test, and all others
871 by Student's t-test. Shaded areas in the line plots represent SEM. Error bars: SEM,
872 *p < 0.05, **p < 0.01, ***p < 0.001. ZT, zeitgeber time; WT, wild-type.

873

874 **Fig.4 PP1 is a sleep promoting phosphatase at excitatory post-synapses**

875 **(a)** Information of the point mutations on PP1c genes used in this study (left). Red-,
876 dark yellow-, blue-colored sites indicate mutations of constitutive active, activity-
877 dead, dominant negative, respectively. The Schematic diagram of AAV-PHP.eB
878 based expression of PSD95-fused PP1 catalytic subunits (*PPP1CA*, *PPP1CB*,
879 *PPP1CC*) in mice postsynaptic density (right). PSD95 fusion emulated synaptic-
880 translocation of PPP1R9B-PP1c complex. AAVs were injected into 6-weeks-old
881 male wild-type C57BL/6N mice with the dosage of 4×10^{11} vg/mouse. **(b-g)** Sleep
882 parameters (b, d, f) and 24-hour sleep profile (c, e, g) of PSD95-fused PP1c-
883 expressing mice (n=6 each) measured by SSS, averaged over 6 days. For *PPP1CA*,
884 Tukey-Kramer tests were performed for sleep duration, P_{ws} and amplitude, and

885 Steel-Dwass was performed for P_{SW} between all individual groups. For *PPP1CB*,
886 Tukey-Kramer tests were performed for sleep duration, P_{SW} and amplitude, and
887 Steel-Dwass test was performed for P_{WS} . For *PPP1CC*, Tukey-Kramer tests were
888 performed for sleep duration and amplitude, and Steel-Dwass test was performed
889 for P_{WS} and P_{SW} . **(h, i)** Sleep phenotypes (h) and sleep profiles (i) measured by
890 EEG/EMG recordings for PSD95-fused *PPP1CA* (H248K) (n=5) and T320A mutant
891 mice (n=5). Student's t-tests were performed for the comparisons. The dosages of
892 the AAVs were 1.5×10^{11} vg/mouse. **(j)** Differences in transition probabilities
893 (between wakefulness (W), NREM sleep (N), and REM sleep (R)) between mice
894 expressing PSD95-fused *PPP1CA* H248K or T320A mutant. Magenta lines and
895 dashed blue lines indicate when the values for T320A mice are significantly ($p <$
896 0.05) higher and lower. Statistical analysis of P_{NW} , P_{WN} , and P_{WW} by Welch's t-test,
897 and all others by Student's t-test. **(k)** Schematic diagram of expression of
898 endogenous PP1 inhibitor *PPP1R1A* gene with AAV-PHP.eB. **(l, m)** Sleep
899 parameters (l) and 24 hour sleep profile (m) of 8-weeks-old PBS injected mice (n=6)
900 and *PPP1R1A*-expressing mice (n=6) measured by SSS, averaged over 6 days.
901 AAVs were injected into 6-weeks-old male wild-type C57BL/6N mice with the dosage
902 of 4×10^{11} vg/mouse. Student's t-test were performed. Shaded areas in the line plots
903 represent SEM. Error bars: SEM, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$. ZT, zeitgeber
904 time; WT, wild-type.

905

906 **Fig.5 Calcineurin is critical for quantitative and qualitative control of sleep**

907 **(a)** Schematic diagram of post-natal CRISPR KO method used for targeting PP2B
908 catalytic and regulatory genes with H11-Cas9 knock-in mice, followed by the
909 respiration-based sleep phenotyping system (SSS). **(b-e)** Sleep/wake parameters (b,

910 d) and sleep profiles (c, e) of Tyrosinase (*Tyr*) (n=4), *Ppp3ca* (n=6) and *Ppp3r1* (n=6)
911 -targeted mice at 8-week-old (b, c) and 9-week-old (d, e), averaged over 6 days. For
912 8-week-old mice, statistical analysis of sleep duration and amplitude by Steel's test,
913 and P_{ws} and P_{sw} by Dunnett's test against *Tyr* KO group. For 9-week-old mice,
914 statistical analysis of sleep duration and amplitude by Student's t-test, and P_{ws} and
915 P_{sw} by Wilcoxon test between *Tyr*- and *Ppp3ca*-tageted mice. (f, g) Sleep
916 phenotypes (f) and sleep profiles (g) measured by EEG/EMG recordings for *Tyr*
917 (n=4) and *Ppp3ca* (n=6) -targeted mice. Student's t-test was performed for
918 comparison of REM duration, Wilcoxon tests for NREM and wake durations. (h)
919 NREM power density in delta domain (1-4 Hz) and EEG power spectra of *Tyr* and
920 *Ppp3ca* -targeted mice. Student's t-test was performed for the comparison in NREM
921 delta power. (i) Estimated time constants for the increase of EEG delta power during
922 awake/REM periods (τ_i) and the decrease of NREM EEG delta power during the
923 NREM period (τ_d). Shaded areas in the line plots represent SEM. Error bars: SEM,
924 *p < 0.05, **p < 0.01, ***p < 0.001. KO, knock out; ZT, zeitgeber time.
925

926 **Fig.6 Calcineurin is a NREM sleep promoting phosphatase at excitatory post-
927 synapses**

928 (a) Schematic diagram of AAV-PHP.eB based expression of PSD95.FingR-fused
929 PP2B catalytic subunits (PPP3CA, PPP3CB) in postsynaptic density. The catalytic
930 domain in the PP2B catalytic subunit is kept blocked by its autoinhibitory domain
931 under a low calcium concentration, while its activity will be released from the deletion
932 of the autoinhibitory domain (e.g., constitutive active). The dosages of the AAVs
933 were 5×10^{10} vg/mouse. (b-e) Sleep/wake parameters (b, d) and sleep profiles (c, e)
934 of mice expressing PSD95.FingR-PP2B catalytic subunits, averaged over 6 days.

935 WT, wild-type (n=6); 1-389, constitutive active deletion mutant (n=6); 1-389(H151Q),
936 deletion mutant with inactive mutation (n=6). For PPP3CA, Steel-Dwass tests were
937 performed for sleep duration and P_{ws} , and Tukey-Kramer was performed for P_{sw}
938 and amplitude between all individual groups. For PPP3CB, Tukey-Kramer tests were
939 performed for sleep duration, P_{ws} and amplitude, and Steel-Dwass was performed
940 for P_{sw} . **(f, g)** Sleep phenotypes (f) and sleep profiles (g) measured by EEG/EMG
941 recordings for mice expressing PSD95.FingR-PPP3CA under *Camk2a* promoter. 1-
942 389, constitutive active deletion mutant (n=8); 1-389(H151Q), deletion mutant with
943 inactive mutation (n=8). Student's t-test was performed for comparison of REM
944 duration, Welch's t-tests for NREM and wake durations. **(h)** NREM power density in
945 delta domain (1-4 Hz) and EEG power spectra of mice expressing PSD95.FingR-
946 PPP3CA under *Camk2a* promoter. Student's t-test was performed for the
947 comparison in NREM delta power. Shaded areas in the line plots represent SEM.
948 Error bars: SEM, *p < 0.05, **p < 0.01, ***p < 0.001. ZT, zeitgeber time; WT, wild-
949 type.

950

951 **Fig.7 PKA competes with calcineurin at excitatory post-synapses in sleep**
952 **control**

953 **(a)** Schematic diagram of co-expression analysis of PSD95.FingR-*Prkaca* and
954 PSD95.FingR-PPP3CA. The functional relationship between PKA as a sleep-
955 promoting factor and calcineurin as a wake-promoting factor within postsynaptic
956 density was investigated. **(b-g)** Sleep/wake parameters (b, d, f) and sleep profiles
957 (c, e, g) of the PKA: calcineurin co-expressing mice, averaged over 6 days. Sleep
958 duration is the total sleep duration in a day. Amplitude represents the variation of
959 sleep duration per hour in a day. P_{ws} and P_{sw} are the transition probability between

960 wakefulness and sleep. AAV dosages for *Prkaca* were 1.3×10^9 (lower) (b-e) and
961 5.0×10^9 (higher) (f, g). *Prkaca* KE:KE, kinase-dead; HQ:WR, constitutive active. AAV
962 dosages for *PPP3CA* were 2.5×10^{10} (lower) (b, c) and 5.0×10^{10} (Higher) (d-g).
963 *PPP3CA* 1-389(H151Q), inactive; 1-389, constitutive active. The number of mice
964 used in the analysis is shown as (n). Statistical analyses were performed between
965 1-389 (H151Q) and 1-389 mice. In PKA (lower): Calcineurin (lower) condition (b),
966 Under *Prkaca* (K73E:K169E) -expressing condition, statistical analysis of sleep
967 duration, P_{SW} , and amplitude by Student's t-test, P_{WS} by Welch's t-test. Under *Prkaca*
968 (H88Q:W197R) -expressing condition, statistical analysis of sleep duration and
969 amplitude by Wilcoxon test, P_{WS} by Welch's t-test, and P_{SW} by Student's t-test. In
970 PKA (lower): Calcineurin (higher) condition (d), Under *Prkaca* (K73E:K169E) -
971 expressing condition, statistical analysis of sleep duration and P_{WS} by Welch's t-test,
972 P_{SW} and amplitude by Wilcoxon test. Under *Prkaca* (H88Q:W197R) -expressing
973 condition, statistical analysis of sleep duration and amplitude by Welch's t-test, P_{WS}
974 by Wilcoxon test, and P_{SW} by Student's t-test. In PKA (higher): Calcineurin (higher)
975 condition (f), Under *Prkaca* (K73E:K169E) -expressing condition, statistical analysis
976 of sleep duration by Welch's t-test, P_{WS} by Wilcoxon test, and P_{SW} and amplitude by
977 Student's t-test. Under *Prkaca* (H88Q:W197R) -expressing condition, statistical
978 analysis of sleep duration and P_{WS} by Wilcoxon test, and P_{SW} and amplitude by
979 Student's t-test. Shaded areas in the line plots represent SEM. Error bars: SEM, *p
980 < 0.05, **p < 0.01, ***p < 0.001. ZT, zeitgeber time.

981

982 **Extended Data**

983 **Extended Data Fig. 1. Triple-target CRISPR KO for PKA genes**

984 **(a-f)** Target sequences of the gRNAs for knocking out each *Prkaca*, *Prkacb*, *Prkar1a*,
985 *Prkar1b*, *Prkar2a*, and *Prkar2b* gene. Mouse genomic sequence data were obtained
986 from GRCm39/mm39 via the UCSC Genome Browser (<http://genome.ucsc.edu/>).
987 The colored letters (blue, orange, and green) show the 20-base target sequences.
988 The target sequences were designed on the sense (+) or the antisense (-) strand of
989 genomic DNA. **(g-k)** The genotyping of *Prkacb* (set1), *Prkar1b* (set1), *Prkar2a* (set1),
990 *Prkar2b* (set1 and set2) KO mice. The qPCR was performed with primer pairs listed
991 in Supplementary Table 1 for the three target sites in a gene. When the 0.5% criteria
992 were met in either set, the mouse was considered a KO mouse. Each number
993 represents each mouse used for the genotyping, and magenta color indicates KO-
994 determined animal. wt, wild-type.

995

996 **Extended Data Fig. 2. Sleep phenotypes of *Prkar2b* KO and PKI expressed**
997 **mice**

998 **(a, b)** Sleep/wake parameters (a) and sleep profiles (b) of *Prkar2b* KO (set2) mice
999 (n=6), averaged over 6 days. A gRNA set (set2) independent from **Fig. 1b-f** was
1000 used for KO mice production. The black dashed line and the shaded area represent
1001 the mean and 1 SD range, respectively, of the wild-type mice wild-type C57BL/6N
1002 mice (n=108). Dunnett's tests were performed between *Prkar2b* KO mice and the
1003 wild-type C57BL/6N mice. **(c, d)** Responses of wild-type C57BL/6N mice (n=6) and
1004 *Prkar2b* KO mice (n=6) to the cage change stimuli at ZT0 (c) or ZT12 (d). Total sleep
1005 duration of 4 hours just after the cage change was used for analysis. "Basal"
1006 represents the average of the sleep duration during the same time window over the

1007 previous 3 days. “Ratio” represents total sleep duration in cage change response
1008 divided by basal. **(e, f)** NREM power density in delta domain (1-4 Hz) and EEG power
1009 spectra for *Prkar2b* KO (set2) mice (e) and PKI-expressing mice (f). For *Prkar2b* KO
1010 (e), Student’s t-test was performed between wild-type C57BL/6N mice (n=8) and
1011 *Prkar2b* KO (set2) mice (n=6), and for PKI-expressing mice (f), Welch’s t-test was
1012 performed between PKI (WT) (n=4) and PKI (3RA) mice (n=5). Shaded areas in the
1013 line plots represent SEM. Error bars: SEM, *p < 0.05, **p < 0.01, ***p < 0.001. ZT,
1014 zeitgeber time; WT, wild-type.

1015

1016 **Extended Data Fig. 3. Expression of *Prkar1* and *Prkar2* decreased sleep**

1017 **(a)** Schematic diagram of AAV-based PKA regulatory subunit expression. Gly to
1018 Asp mutation in the regulatory subunits used in this study block the binding of cAMP
1019 to the protein, resulting continued inhibition of the catalytic subunits in the presence
1020 of cAMP. **(b, c)** Sleep/wake parameters (b) and sleep profiles (c) of mice expressing
1021 *Prkar1a* (WT) (n=6) and its dominant-negative mutant (G325D) (n=6) under the
1022 *hSyn1* promoter, averaged over 6 days. Welch’s t-test was performed for P_{SW} ,
1023 Student’s t-tests were performed for sleep duration, P_{WS} , and amplitude. **(d, e)**
1024 Sleep/wake parameters (d) and sleep profiles (e) of mice expressing *Prkar1b* WT
1025 (n=6) and its dominant-negative mutant (G325D) (n=6) under the *hSyn1* promoter,
1026 averaged over 6 days. Wilcoxon test was performed for amplitude, and Student’s t-
1027 tests were performed for sleep duration, P_{WS} , and P_{SW} . **(f, g)** Sleep/wake parameters
1028 (f) and sleep profiles (g) of mice expressing *Prkar2a* WT (n=6) and its dominant-
1029 negative mutant (G335D) (n=6) under the *hSyn1* promoter, averaged over 6 days.
1030 Student’s t-tests were performed for comparisons. **(h, i)** Sleep/wake parameters (h)
1031 and sleep profiles (i) of mice expressing *Prkar2b* WT (n=6) and its dominant-negative

1032 mutant (G349D) (n=6) under the *hSyn1* promoter, averaged over 6 days. Welch's t-
1033 tests were performed for sleep duration, Wilcoxon test was performed for amplitude,
1034 and Student's t-tests were performed for sleep duration, P_{ws} , and P_{sw} . AAV, adeno-
1035 associated virus; *hSyn1*, human synapsin 1; WT, wild-type; ZT, zeitgeber time.
1036 Shaded areas in the line plots represent SEM. Error bars: SEM, *p < 0.05, **p < 0.01,
1037 ***p < 0.001.

1038

1039 **Extended Data Fig. 4. Sleep phenotypes of *Prkaca* expressed mice**

1040 **(a)** Schematic diagram of *Prkaca* expression without localized protein fusion.
1041 PSD95.FingR was removed from the pAAV construct used in **Fig. 2h**. **(b, c)**
1042 Sleep/wake parameters (b) and sleep profiles (c) of mice expressing *Prkaca* kinase-
1043 dead (K73E:K169E) (n=6) and active (H88Q:W197R) (n=6) mutant under the *hSyn1*
1044 promoter, averaged over 6 days. Student's t-tests were performed for the
1045 comparisons. **(d)** Schematic diagram of AAV-based PKA catalytic subunit
1046 expression in Nex-Cre mice. **(e, f)** Sleep/wake parameters (e) and sleep profiles (f)
1047 of Nex-Cre mice expressing *Prkaca* kinase dead mutant (K73E:K169E) (n=6) and
1048 active mutant (H88Q:W197R) (n=6) under the *hSyn1* promoter, averaged over 6
1049 days. Wilcoxon test was performed for sleep duration, and Welch's t-tests were
1050 performed for P_{ws} , P_{sw} , and amplitude. AAV, adeno-associated virus; WT, wild-type;
1051 ZT, zeitgeber time. Shaded areas in the line plots represent SEM. Error bars: SEM,
1052 *p < 0.05, **p < 0.01, ***p < 0.001.

1053

1054 **Extended Data Fig. 5. Triple-target CRISPR KO for PP1, PP2A, and calcineurin**
1055 **genes**

1056 Target sequences of the gRNAs for PP1, PP2A and PP2B genes. Each gene had

1057 three target sequences. Mouse genomic sequence data were obtained from
1058 GRCm39/mm39 via the UCSC Genome Browser (<http://genome.ucsc.edu/>). The
1059 colored letters (blue, orange, and green) show the 20-base target sequences. The
1060 target sequences were designed on the sense (+) or the antisense (-) strand of
1061 genomic DNA.

1062

1063 **Extended Data Fig. 6. Sleep phenotypes of *Ppp1r9b* KO mice**

1064 **(a, b)** The genotyping of *Prkacb* (set1), *Prkar1b* (set1), *Prkar2a* (set1), *Prkar2b* (set1
1065 and set2) KO mice. The qPCR was performed with primer pairs listed in
1066 **Supplementary Table 1** for the three target sites in a gene. When the 0.5% criteria
1067 were met in either set, the mouse was considered a KO mouse. Each number
1068 represents each mouse used for the genotyping, and magenta color indicates KO-
1069 determined animal. wt, wild-type. **(c)** 24 hour sleep profiles of *Ppp1r9b* (n=10) and
1070 *Ppp1r3d* (n=12) mice KO mice in Figure 3B. **(d, e)** Sleep/wake parameters of
1071 *Ppp1r9b* KO (set2) mice (n=9), averaged over 6 days (d) and sleep profiles (e). KO
1072 mice were compared with 8-weeks-old wild-type C57BL/6N male mice (n=101). The
1073 black dashed line and the shaded area represent the mean and 1 SD range,
1074 respectively, of the wild-type mice. Student's t-tests were performed for comparison.
1075 **(f)** NREM power density in delta domain (1-4 Hz) and EEG power spectra of *Ppp1r9b*
1076 KO mice (n=8) and wild-type C57BL/6N mice (n=8) shown in Figure 3C-E. Student's
1077 t-test was performed for the comparison in NREM delta power. ZT, zeitgeber time.
1078 Shaded areas in the line plots represent SEM. Error bars: SEM, *p < 0.05, **p < 0.01,
1079 ***p < 0.001.

1080

1081 **Extended Data Fig. 7. PP1 catalytic subunits without post-synaptic localization**

1082 **do not increase sleep**

1083 **(a)** Schematic diagram of AAV-PHP.eB based expression of PP1 catalytic subunits
1084 (*PPP1CA*, *PPP1CB*, *PPP1CC*) in mice brain. AAVs were injected into 6-weeks-old
1085 male wild-type C57BL/6N mice with the dosage of 4×10^{11} vg/mouse. **(b-g)** Sleep
1086 parameters (b, d, f) and 24 hour sleep profiles (c, e, g) of mice expressing PP1
1087 catalytic subunit (n=6, each), averaged over 6 days. The dosages of the AAVs were
1088 4×10^{11} vg/mouse. For *PPP1CA*, *PPP1CB*, and *PPP1CC*, Tukey-Kramer tests were
1089 performed for sleep duration, P_{ws} , P_{sw} and amplitude between all individual groups.
1090 Shaded areas in the line plots represent SEM. Error bars: SEM, *p < 0.05, **p < 0.01,
1091 ***p < 0.001. WT, wild-type; ZT, zeitgeber time.

1092

1093 **Extended Data Fig. 8. Sleep phenotypes of PP1-expressed mice**

1094 **(a)** NREM power density in delta domain (1-4 Hz) and EEG power spectra of *PSD95-*
1095 *fused PPP1CA* phosphatase-dead (H248K) mice (n=5) and its active mutant
1096 (T320A) mice (n=5) shown in Figure 4H-J. Student's t-test was performed for the
1097 comparison in NREM delta power. **(b)** Responses of *Ppp1r9b* KO mice (n=8) and
1098 wild-type C57BL/6N mice (n=8) mice to the cage change stimuli. Total sleep duration
1099 of 4 hours just after the cage change was used for the analysis. "Basal" represents
1100 the average of the sleep duration during the same time window over the previous 3
1101 days. "Ratio" represents total sleep duration in cage change response divided by
1102 basal. Student's t-tests were performed for the comparisons. **(c-e)** Responses of
1103 mice expressing PSD95-fused PP1 catalytic subunits (n=6, each) to the cage
1104 change stimuli. The dosages of the AAVs were 4×10^{11} vg/mouse. Student's t-tests
1105 were performed for the comparisons between phosphatase-dead mutant and active
1106 mutant. Shaded areas in the line plots represent SEM. Error bars: SEM, *p < 0.05,

1107 **p < 0.01, ***p < 0.001. WT, wild-type; ZT, zeitgeber time.

1108

1109 **Extended Data Fig. 9. Calcineurin catalytic subunits without post-synaptic**
1110 **localization do not increase sleep**

1111 **(a)** Schematic diagram of PP2Bc genes (*PPP3CA*, *PPP3CB*) expression without
1112 localized protein fusion. PSD95.FingR was removed from the pAAV construct used
1113 in **Fig. 5f** (left). Information on mutation sites used in this study. Loss of function
1114 mutation site was highlighted in red, and the deletion regions for constitutive
1115 activation were marked in red dotted line (right). AAVs were injected into 6-weeks-
1116 old male wild-type C57BL/6N mice with the dosage of 4×10^{11} vg/mouse. **(b-e)** Sleep
1117 parameters (b, d) and 24 hour sleep profiles (c, e) of mice expressing PP2B catalytic
1118 subunit (n=6, each), averaged over 6 days. For *PPP3CA*, Steel-Dwass tests were
1119 performed for sleep duration, and Tukey-Kramer were performed for *P_{ws}* and *P_{sw}*
1120 and amplitude between all individual groups. For *PPP3CB*, Tukey-Kramer tests were
1121 performed for sleep duration, *P_{ws}*, *P_{sw}* and amplitude between all individual groups.

1122 **(f)** Schematic diagram of AAV-PHP.eB based expression of PSD95.FingR-fused
1123 PP2B catalytic subunits (*PPP3CA*, *PPP3CB*) in postsynaptic density. The overall
1124 scheme is the same as **Fig. 5f**. The dosages of the AAVs were 2.5×10^{10} vg/mouse
1125 (half dosage of **Fig. 5f**). **(g-j)** Sleep parameters (g, i) and 24 hour sleep profiles (h,
1126 j) of mice expressing PSD95.FingR-fused PP2B catalytic subunit (n=6, each),
1127 averaged over 6 days. For *PPP3CA*, Tukey-Kramer tests were performed for sleep
1128 duration and *P_{sw}*, and Steel-Dwass tests were performed for *P_{ws}* and amplitude
1129 between all individual groups. For *PPP3CB*, Steel-Dwass test was performed for
1130 sleep duration and *P_{ws}*, and Tukey-Kramer tests were performed for *P_{sw}* and
1131 amplitude between all individual groups. Shaded areas in the line plots represent

1132 SEM. Error bars: SEM, *p < 0.05, **p < 0.01, ***p < 0.001. WT, wild-type; ZT,
1133 zeitgeber time.

1134

1135 **Extended Data Fig. 10. Sleep phenotypes of calcineurin expressed mice**

1136 **(a-d)** Responses of mice expressing PSD95.FingR-fused PP2B catalytic subunit
1137 (*PPP3CA* and *PPP3CB*) to the cage change stimuli at ZT0 (a, b) or ZT12 (c, d) (n=6
1138 each). Total sleep duration of 4 hours just after the cage change was used for
1139 analysis. “Basal” represents the average of the sleep duration during the same time
1140 window over the previous 3 days. “Ratio” represents total sleep duration in cage
1141 change response divided by basal. Student’s t-tests were performed for the
1142 comparisons. **(e, f)** Sleep phenotypes (e) and sleep profiles (f) measured by
1143 EEG/EMG recordings for PSD95.FingR-fused *PPP3CA* (1-389) (n=5) and 1-389
1144 (H151Q) (n=5) mutant-expressing mice measured by EEG/EMG. Student’s t-tests
1145 were performed for the comparisons. The dosages of the AAVs were 5.0×10^{10}
1146 vg/mouse. **(g)** NREM power density in delta domain (1-4 Hz) and EEG power spectra
1147 of mice expressing *PSD95-fused PPP3CA* inactive mutant 1-389 (H151Q) (n=5) or
1148 active mutant (1-389) (n=5). Welch’s t-test was performed for the comparison in
1149 NREM delta power. Shaded areas in the line plots represent SEM. Error bars: SEM,
1150 *p < 0.05, **p < 0.01, ***p < 0.001. KO, knock out; WT, wild-type; ZT, zeitgeber time.

1151

1152 **Supplementary Table**

1153 **Supplementary Table 1**

1154 Oligonucleotide sequences used in quantitative PCR (qPCR). The qPCR primers
1155 (Eurofins Genomics, Japan) were used for genotyping of knockout mice.

1156

1157 REFERENCES

1158

1159 1 Sharma, K. *et al.* Ultradeep human phosphoproteome reveals a distinct regulatory nature of
1160 Tyr and Ser/Thr-based signaling. *Cell Rep* **8**, 1583-1594 (2014).
<https://doi.org/10.1016/j.celrep.2014.07.036>

1162 2 Ode, K. L. & Ueda, H. R. Phosphorylation Hypothesis of Sleep. *Front Psychol* **11**, 575328
(2020). <https://doi.org/10.3389/fpsyg.2020.575328>

1164 3 Tatsuki, F. *et al.* Involvement of Ca(2+)-Dependent Hyperpolarization in Sleep Duration in
1165 Mammals. *Neuron* **90**, 70-85 (2016). <https://doi.org/10.1016/j.neuron.2016.02.032>

1166 4 Funato, H. *et al.* Forward-genetics analysis of sleep in randomly mutagenized mice. *Nature*
1167 **539**, 378-383 (2016). <https://doi.org/10.1038/nature20142>

1168 5 Mikhail, C., Vaucher, A., Jimenez, S. & Tafti, M. ERK signaling pathway regulates sleep
1169 duration through activity-induced gene expression during wakefulness. *Sci Signal* **10** (2017).
<https://doi.org/10.1126/scisignal.aa9219>

1171 6 Diering, G. H. *et al.* Homer1a drives homeostatic scaling-down of excitatory synapses during
1172 sleep. *Science* **355**, 511-515 (2017). <https://doi.org/10.1126/science.aa8355>

1173 7 Bruning, F. *et al.* Sleep-wake cycles drive daily dynamics of synaptic phosphorylation.
1174 *Science* **366** (2019). <https://doi.org/10.1126/science.aav3617>

1175 8 Taylor, S. S., Buechler, J. A. & Yonemoto, W. cAMP-dependent protein kinase: framework
1176 for a diverse family of regulatory enzymes. *Annu Rev Biochem* **59**, 971-1005 (1990).
<https://doi.org/10.1146/annurev.bi.59.070190.004543>

1178 9 Walsh, D. A., Perkins, J. P. & Krebs, E. G. An adenosine 3',5'-monophosphate-dependant
1179 protein kinase from rabbit skeletal muscle. *J Biol Chem* **243**, 3763-3765 (1968).

1180 10 Turnham, R. E. & Scott, J. D. Protein kinase A catalytic subunit isoform PRKACA; History,
1181 function and physiology. *Gene* **577**, 101-108 (2016).
<https://doi.org/10.1016/j.gene.2015.11.052>

1183 11 Hendricks, J. C. *et al.* A non-circadian role for cAMP signaling and CREB activity in
1184 Drosophila rest homeostasis. *Nat Neurosci* **4**, 1108-1115 (2001).
<https://doi.org/10.1038/nn743>

1186 12 Crocker, A., Shahidullah, M., Levitan, I. B. & Sehgal, A. Identification of a neural circuit that
1187 underlies the effects of octopamine on sleep:wake behavior. *Neuron* **65**, 670-681 (2010).
<https://doi.org/10.1016/j.neuron.2010.01.032>

1189 13 Tomita, J. *et al.* Pan-neuronal knockdown of calcineurin reduces sleep in the fruit fly,
1190 Drosophila melanogaster. *J Neurosci* **31**, 13137-13146 (2011).
<https://doi.org/10.1523/JNEUROSCI.5860-10.2011>

1192 14 Nakai, Y. *et al.* Calcineurin and its regulator sra/DSCR1 are essential for sleep in Drosophila.
1193 *J Neurosci* **31**, 12759-12766 (2011). <https://doi.org/10.1523/JNEUROSCI.1337-11.2011>

1194 15 Crocker, A. & Sehgal, A. Octopamine regulates sleep in drosophila through protein kinase A-
1195 dependent mechanisms. *J Neurosci* **28**, 9377-9385 (2008).
<https://doi.org/10.1523/JNEUROSCI.3072-08a.2008>

1197 16 Honda, T. *et al.* A single phosphorylation site of SIK3 regulates daily sleep amounts and
1198 sleep need in mice. *Proc Natl Acad Sci U S A* **115**, 10458-10463 (2018).
<https://doi.org/10.1073/pnas.1810823115>

1200 17 Park, M. *et al.* Loss of the conserved PKA sites of SIK1 and SIK2 increases sleep need. *Sci
1201 Rep* **10**, 8676 (2020). <https://doi.org/10.1038/s41598-020-65647-0>

1202 18 Shi, Y. Serine/threonine phosphatases: mechanism through structure. *Cell* **139**, 468-484
1203 (2009). <https://doi.org/10.1016/j.cell.2009.10.006>

1204 19 Cohen, P. T. Protein phosphatase 1--targeted in many directions. *J Cell Sci* **115**, 241-256
1205 (2002). <https://doi.org/10.1242/jcs.115.2.241>

1206 20 Park, H. S., Lee, S. C., Cardenas, M. E. & Heitman, J. Calcium-Calmodulin-Calcineurin

1207 1208 Signaling: A Globally Conserved Virulence Cascade in Eukaryotic Microbial Pathogens. *Cell Host Microbe* **26**, 453-462 (2019). <https://doi.org/10.1016/j.chom.2019.08.004>

1209 21 Yakel, J. L. Calcineurin regulation of synaptic function: from ion channels to transmitter release and gene transcription. *Trends Pharmacol Sci* **18**, 124-134 (1997). [https://doi.org/10.1016/s0165-6147\(97\)01046-8](https://doi.org/10.1016/s0165-6147(97)01046-8)

1210 22 Sanderson, J. L. et al. AKAP150-anchored calcineurin regulates synaptic plasticity by limiting synaptic incorporation of Ca²⁺-permeable AMPA receptors. *J Neurosci* **32**, 15036-15052 (2012). <https://doi.org/10.1523/JNEUROSCI.3326-12.2012>

1211 23 Sunagawa, G. A. et al. Mammalian Reverse Genetics without Crossing Reveals Nr3a as a Short-Sleeper Gene. *Cell Rep* **14**, 662-677 (2016). <https://doi.org/10.1016/j.celrep.2015.12.052>

1212 24 Amieux, P. S. et al. Increased basal cAMP-dependent protein kinase activity inhibits the formation of mesoderm-derived structures in the developing mouse embryo. *J Biol Chem* **277**, 27294-27304 (2002). <https://doi.org/10.1074/jbc.M200302200>

1213 25 Skalhegg, B. S. et al. Mutation of the Calpha subunit of PKA leads to growth retardation and sperm dysfunction. *Mol Endocrinol* **16**, 630-639 (2002). <https://doi.org/10.1210/mend.16.3.0793>

1214 26 Liu, C., Ke, P., Zhang, J., Zhang, X. & Chen, X. Protein Kinase Inhibitor Peptide as a Tool to Specifically Inhibit Protein Kinase A. *Front Physiol* **11**, 574030 (2020). <https://doi.org/10.3389/fphys.2020.574030>

1215 27 Manschwetus, J. T. et al. A Stapled Peptide Mimic of the Pseudosubstrate Inhibitor PKI Inhibits Protein Kinase A. *Molecules* **24** (2019). <https://doi.org/10.3390/molecules24081567>

1216 28 Tone, D. et al. Distinct phosphorylation states of mammalian CaMKIIbeta control the induction and maintenance of sleep. *PLoS Biol* **20**, e3001813 (2022). <https://doi.org/10.1371/journal.pbio.3001813>

1217 29 Scott, J. D., Glaccum, M. B., Fischer, E. H. & Krebs, E. G. Primary-structure requirements for inhibition by the heat-stable inhibitor of the cAMP-dependent protein kinase. *Proc Natl Acad Sci U S A* **83**, 1613-1616 (1986). <https://doi.org/10.1073/pnas.83.6.1613>

1218 30 Willis, B. S., Niswender, C. M., Su, T., Amieux, P. S. & McKnight, G. S. Cell-type specific expression of a dominant negative PKA mutation in mice. *PLoS One* **6**, e18772 (2011). <https://doi.org/10.1371/journal.pone.0018772>

1219 31 Clegg, C. H., Correll, L. A., Cadd, G. G. & McKnight, G. S. Inhibition of intracellular cAMP-dependent protein kinase using mutant genes of the regulatory type I subunit. *J Biol Chem* **262**, 13111-13119 (1987).

1220 32 Orellana, S. A. & McKnight, G. S. Mutations in the catalytic subunit of cAMP-dependent protein kinase result in unregulated biological activity. *Proc Natl Acad Sci U S A* **89**, 4726-4730 (1992). <https://doi.org/10.1073/pnas.89.10.4726>

1221 33 Wang, Z. et al. Quantitative phosphoproteomic analysis of the molecular substrates of sleep need. *Nature* **558**, 435-439 (2018). <https://doi.org/10.1038/s41586-018-0218-8>

1222 34 Esteban, J. A. et al. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. *Nat Neurosci* **6**, 136-143 (2003). <https://doi.org/10.1038/nn997>

1223 35 Son, J. H. et al. Transgenic FingRs for Live Mapping of Synaptic Dynamics in Genetically-Defined Neurons. *Sci Rep* **6**, 18734 (2016). <https://doi.org/10.1038/srep18734>

1224 36 Gross, G. G. et al. Recombinant probes for visualizing endogenous synaptic proteins in living neurons. *Neuron* **78**, 971-985 (2013). <https://doi.org/10.1016/j.neuron.2013.04.017>

1225 37 Zheng, J. et al. Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MgATP and peptide inhibitor. *Biochemistry* **32**, 2154-2161 (1993). <https://doi.org/10.1021/bi00060a005>

1226 38 Li, H. et al. In vivo selection of kinase-responsive RNA elements controlling alternative splicing. *J Biol Chem* **284**, 16191-16201 (2009). <https://doi.org/10.1074/jbc.M900393200>

1227 39 Goebels, S. et al. Genetic targeting of principal neurons in neocortex and hippocampus of

1259 40 NEX-Cre mice. *Genesis* **44**, 611-621 (2006). <https://doi.org/10.1002/dvg.20256>

1260 41 Mansuy, I. M. & Shenolikar, S. Protein serine/threonine phosphatases in neuronal plasticity
1261 and disorders of learning and memory. *Trends Neurosci* **29**, 679-686 (2006).
<https://doi.org/10.1016/j.tins.2006.10.004>

1263 41 Sents, W. *et al.* PP2A Inactivation Mediated by PPP2R4 Haploinsufficiency Promotes Cancer
1264 Development. *Cancer Res* **77**, 6825-6837 (2017). <https://doi.org/10.1158/0008-5472.CAN-16-2911>

1266 42 Blake, J. A. *et al.* Mouse Genome Database (MGD): Knowledgebase for mouse-human
1267 comparative biology. *Nucleic Acids Res* **49**, D981-D987 (2021).
<https://doi.org/10.1093/nar/gkaa1083>

1269 43 Allen, P. B., Ouimet, C. C. & Greengard, P. Spinophilin, a novel protein phosphatase 1
1270 binding protein localized to dendritic spines. *Proc Natl Acad Sci U S A* **94**, 9956-9961 (1997).
<https://doi.org/10.1073/pnas.94.18.9956>

1272 44 Terry-Lorenzo, R. T. *et al.* The neuronal actin-binding proteins, neurabin I and neurabin II,
1273 recruit specific isoforms of protein phosphatase-1 catalytic subunits. *J Biol Chem* **277**, 27716-
1274 27724 (2002). <https://doi.org/10.1074/jbc.M203365200>

1275 45 Zhang, J., Zhang, Z., Brew, K. & Lee, E. Y. Mutational analysis of the catalytic subunit of
1276 muscle protein phosphatase-1. *Biochemistry* **35**, 6276-6282 (1996).
<https://doi.org/10.1021/bi952954l>

1278 46 Gallego, M., Kang, H. & Virshup, D. M. Protein phosphatase 1 regulates the stability of the
1279 circadian protein PER2. *Biochem J* **399**, 169-175 (2006).
<https://doi.org/10.1042/BJ20060678>

1281 47 Berndt, N., Dohadwala, M. & Liu, C. W. Constitutively active protein phosphatase 1alpha
1282 causes Rb-dependent G1 arrest in human cancer cells. *Curr Biol* **7**, 375-386 (1997).
[https://doi.org/10.1016/s0960-9822\(06\)00185-0](https://doi.org/10.1016/s0960-9822(06)00185-0)

1284 48 Wang, G. *et al.* Somatic genetics analysis of sleep in adult mice. *J Neurosci* **42**, 5617-5640
1285 (2022). <https://doi.org/10.1523/JNEUROSCI.0089-22.2022>

1286 49 Franken, P., Chollet, D. & Tafti, M. The homeostatic regulation of sleep need is under genetic
1287 control. *J Neurosci* **21**, 2610-2621 (2001). <https://doi.org/10.1523/JNEUROSCI.21-08-02610.2001>

1289 50 O'Keefe, S. J., Tamura, J., Kincaid, R. L., Tocci, M. J. & O'Neill, E. A. FK-506- and CsA-
1290 sensitive activation of the interleukin-2 promoter by calcineurin. *Nature* **357**, 692-694 (1992).
<https://doi.org/10.1038/357692a0>

1292 51 Shibasaki, F. & McKeon, F. Calcineurin functions in Ca(2+)-activated cell death in
1293 mammalian cells. *J Cell Biol* **131**, 735-743 (1995). <https://doi.org/10.1083/jcb.131.3.735>

1294 52 Shibasaki, F., Price, E. R., Milan, D. & McKeon, F. Role of kinases and the phosphatase
1295 calcineurin in the nuclear shuttling of transcription factor NF-AT4. *Nature* **382**, 370-373 (1996).
<https://doi.org/10.1038/382370a0>

1297 53 Joiner, W. J., Crocker, A., White, B. H. & Sehgal, A. Sleep in Drosophila is regulated by adult
1298 mushroom bodies. *Nature* **441**, 757-760 (2006). <https://doi.org/10.1038/nature04811>

1299 54 Zhou, R. *et al.* A signalling pathway for transcriptional regulation of sleep amount in mice.
1300 *Nature* **612**, 519-527 (2022). <https://doi.org/10.1038/s41586-022-05510-6>

1301 55 Kim, S. J. *et al.* Kinase signalling in excitatory neurons regulates sleep quantity and depth.
1302 *Nature* **612**, 512-518 (2022). <https://doi.org/10.1038/s41586-022-05450-1>

1303 56 Cirelli, C., Gutierrez, C. M. & Tononi, G. Extensive and divergent effects of sleep and
1304 wakefulness on brain gene expression. *Neuron* **41**, 35-43 (2004).
[https://doi.org/10.1016/s0896-6273\(03\)00814-6](https://doi.org/10.1016/s0896-6273(03)00814-6)

1306 57 Ode, K. L., Katsumata, T., Tone, D. & Ueda, H. R. Fast and slow Ca(2+)-dependent
1307 hyperpolarization mechanisms connect membrane potential and sleep homeostasis. *Curr
1308 Opin Neurobiol* **44**, 212-221 (2017). <https://doi.org/10.1016/j.conb.2017.05.007>

1309 58 Fujii, H. *et al.* Nonlinear decoding and asymmetric representation of neuronal input
1310 information by CaMKIIalpha and calcineurin. *Cell Rep* **3**, 978-987 (2013).

1311 59 <https://doi.org:10.1016/j.celrep.2013.03.033>

1312 59 Frank, M. G. Sleep and synaptic plasticity in the developing and adult brain. *Curr Top Behav*
1313 60 *Neurosci* **25**, 123-149 (2015). https://doi.org:10.1007/7854_2014_305

1314 60 Diekelmann, S. & Born, J. The memory function of sleep. *Nat Rev Neurosci* **11**, 114-126
1315 61 (2010). <https://doi.org:10.1038/nrn2762>

1316 61 Foley, K., McKee, C., Nairn, A. C. & Xia, H. Regulation of Synaptic Transmission and
1317 61 Plasticity by Protein Phosphatase 1. *J Neurosci* **41**, 3040-3050 (2021).
1318 61 <https://doi.org:10.1523/JNEUROSCI.2026-20.2021>

1319 62 Cho, J. *et al.* Fear memory consolidation in sleep requires protein kinase A. *Learn Mem* **25**,
1320 62 241-246 (2018). <https://doi.org:10.1101/lm.046458.117>

1321 63 Allen, P. B. *et al.* Distinct roles for spinophilin and neurabin in dopamine-mediated plasticity.
1322 63 *Neuroscience* **140**, 897-911 (2006). <https://doi.org:10.1016/j.neuroscience.2006.02.067>

1323 64 Wu, L. J. *et al.* Neurabin contributes to hippocampal long-term potentiation and contextual
1324 64 fear memory. *PLoS One* **3**, e1407 (2008). <https://doi.org:10.1371/journal.pone.0001407>

1325 65 Feng, J. *et al.* Spinophilin regulates the formation and function of dendritic spines. *Proc Natl
1326 65 Acad Sci U S A* **97**, 9287-9292 (2000). <https://doi.org:10.1073/pnas.97.16.9287>

1327 66 Genoux, D. *et al.* Protein phosphatase 1 is a molecular constraint on learning and memory.
1328 66 *Nature* **418**, 970-975 (2002). <https://doi.org:10.1038/nature00928>

1329 67 Tarasova, E. O., Gaydukov, A. E. & Balezina, O. P. Calcineurin and Its Role in Synaptic
1330 67 Transmission. *Biochemistry (Mosc)* **83**, 674-689 (2018).
1331 67 <https://doi.org:10.1134/S0006297918060056>

1332 68 Shao, L., Zhang, Y., Hao, Y. & Ping, Y. Upregulation of IP(3) receptor mediates APP-induced
1333 68 defects in synaptic downscaling and sleep homeostasis. *Cell Rep* **38**, 110594 (2022).
1334 68 <https://doi.org:10.1016/j.celrep.2022.110594>

1335 69 Sanderson, J. L., Gorski, J. A. & Dell'Acqua, M. L. NMDA Receptor-Dependent LTD Requires
1336 69 Transient Synaptic Incorporation of Ca(2)(+)-Permeable AMPARs Mediated by AKAP150-
1337 69 Anchored PKA and Calcineurin. *Neuron* **89**, 1000-1015 (2016).
1338 69 <https://doi.org:10.1016/j.neuron.2016.01.043>

1339 70 Sanderson, J. L. & Dell'Acqua, M. L. AKAP signaling complexes in regulation of excitatory
1340 70 synaptic plasticity. *Neuroscientist* **17**, 321-336 (2011).
1341 70 <https://doi.org:10.1177/1073858410384740>

1342 71 Mulkey, R. M., Endo, S., Shenolikar, S. & Malenka, R. C. Involvement of a
1343 71 calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. *Nature*
1344 71 **369**, 486-488 (1994). <https://doi.org:10.1038/369486a0>

1345 72 Hemmings, H. C., Jr., Greengard, P., Tung, H. Y. & Cohen, P. DARPP-32, a dopamine-
1346 72 regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. *Nature*
1347 72 **310**, 503-505 (1984). <https://doi.org:10.1038/310503a0>

1348 73 Nishi, A. *et al.* Regulation of DARPP-32 dephosphorylation at PKA- and Cdk5-sites by NMDA
1349 73 and AMPA receptors: distinct roles of calcineurin and protein phosphatase-2A. *J Neurochem*
1350 73 **81**, 832-841 (2002). <https://doi.org:10.1046/j.1471-4159.2002.00876.x>

1351 74 Thiel, G., Greengard, P. & Sudhof, T. C. Characterization of tissue-specific transcription by
1352 74 the human synapsin I gene promoter. *Proc Natl Acad Sci U S A* **88**, 3431-3435 (1991).
1353 74 <https://doi.org:10.1073/pnas.88.8.3431>

1354 75 Villa, K. L. *et al.* Inhibitory Synapses Are Repeatedly Assembled and Removed at Persistent
1355 75 Sites In Vivo. *Neuron* **89**, 756-769 (2016). <https://doi.org:10.1016/j.neuron.2016.01.010>

1356 76 Niwa, Y. *et al.* Muscarinic Acetylcholine Receptors Chrm1 and Chrm3 Are Essential for REM
1357 76 Sleep. *Cell Rep* **24**, 2231-2247 e2237 (2018). <https://doi.org:10.1016/j.celrep.2018.07.082>

1358 77 Yoshida, K. *et al.* Leak potassium channels regulate sleep duration. *Proc Natl Acad Sci U S
1359 77 A* **115**, E9459-E9468 (2018). <https://doi.org:10.1073/pnas.1806486115>

1360 78 Naito, Y., Hino, K., Bono, H. & Ui-Tei, K. CRISPRdirect: software for designing CRISPR/Cas
1361 78 guide RNA with reduced off-target sites. *Bioinformatics* **31**, 1120-1123 (2015).
1362 78 <https://doi.org:10.1093/bioinformatics/btu743>

1363 79 Cho, S. W., Kim, S., Kim, J. M. & Kim, J. S. Targeted genome engineering in human cells
1364 with the Cas9 RNA-guided endonuclease. *Nat Biotechnol* **31**, 230-232 (2013).
1365 <https://doi.org/10.1038/nbt.2507>

1366 80 Sumiyama, K., Kawakami, K. & Yagita, K. A simple and highly efficient transgenesis method
1367 in mice with the Tol2 transposon system and cytoplasmic microinjection. *Genomics* **95**, 306-
1368 311 (2010). <https://doi.org/10.1016/j.ygeno.2010.02.006>

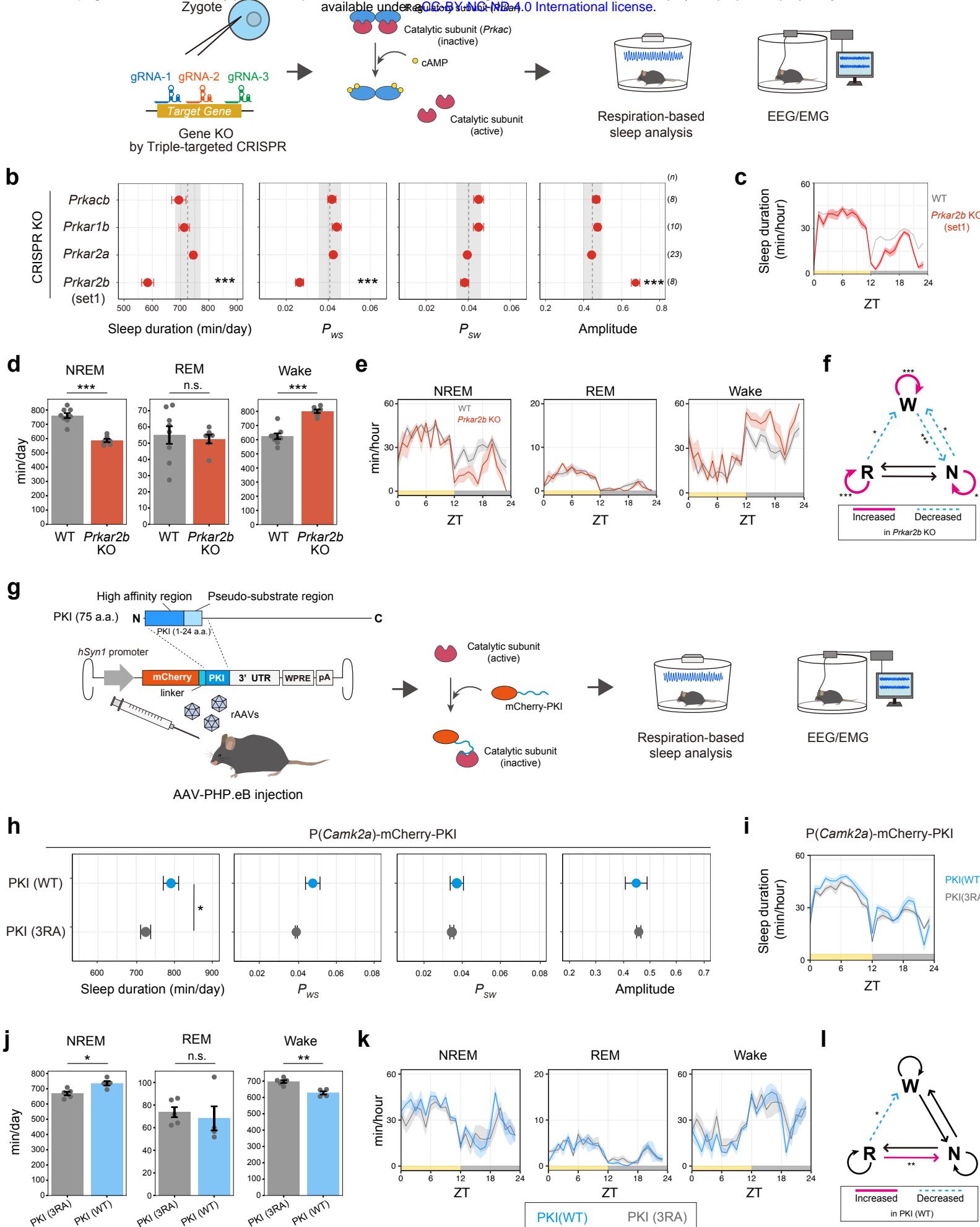
1369 81 Tsujino, K. *et al.* Establishment of TSH beta real-time monitoring system in mammalian
1370 photoperiodism. *Genes Cells* **18**, 575-588 (2013). <https://doi.org/10.1111/gtc.12063>

1371 82 Challis, R. C. *et al.* Systemic AAV vectors for widespread and targeted gene delivery in
1372 rodents. *Nat Protoc* **14**, 379-414 (2019). <https://doi.org/10.1038/s41596-018-0097-3>

1373 83 Chan, K. Y. *et al.* Engineered AAVs for efficient noninvasive gene delivery to the central and
1374 peripheral nervous systems. *Nat Neurosci* **20**, 1172-1179 (2017).
1375 <https://doi.org/10.1038/nn.4593>

1376 84 Sunagawa, G. A., Sei, H., Shimba, S., Urade, Y. & Ueda, H. R. FASTER: an unsupervised
1377 fully automated sleep staging method for mice. *Genes Cells* **18**, 502-518 (2013).
1378 <https://doi.org/10.1111/gtc.12053>

1379 85 Virtanen, P. *et al.* SciPy 1.0: fundamental algorithms for scientific computing in Python. *Nat
1380 Methods* **17**, 261-272 (2020). <https://doi.org/10.1038/s41592-019-0686-2>


1381 86 Ukai, H., Kiyonari, H. & Ueda, H. R. Production of knock-in mice in a single generation from
1382 embryonic stem cells. *Nat Protoc* **12**, 2513-2530 (2017).
1383 <https://doi.org/10.1038/nprot.2017.110>

1384 87 Ode, K. L. *et al.* Knockout-Rescue Embryonic Stem Cell-Derived Mouse Reveals Circadian-
1385 Period Control by Quality and Quantity of CRY1. *Mol Cell* **65**, 176-190 (2017).
1386 <https://doi.org/10.1016/j.molcel.2016.11.022>

1387 88 Kiyonari, H., Kaneko, M., Abe, S. & Aizawa, S. Three inhibitors of FGF receptor, ERK, and
1388 GSK3 establishes germline-competent embryonic stem cells of C57BL/6N mouse strain with
1389 high efficiency and stability. *Genesis* **48**, 317-327 (2010). <https://doi.org/10.1002/dvg.20614>

1390 89 Sato, H., Amagai, K., Shimizukawa, R. & Tamai, Y. Stable generation of serum- and feeder-
1391 free embryonic stem cell-derived mice with full germline-competency by using a GSK3
1392 specific inhibitor. *Genesis* **47**, 414-422 (2009). <https://doi.org/10.1002/dvg.20514>

1393

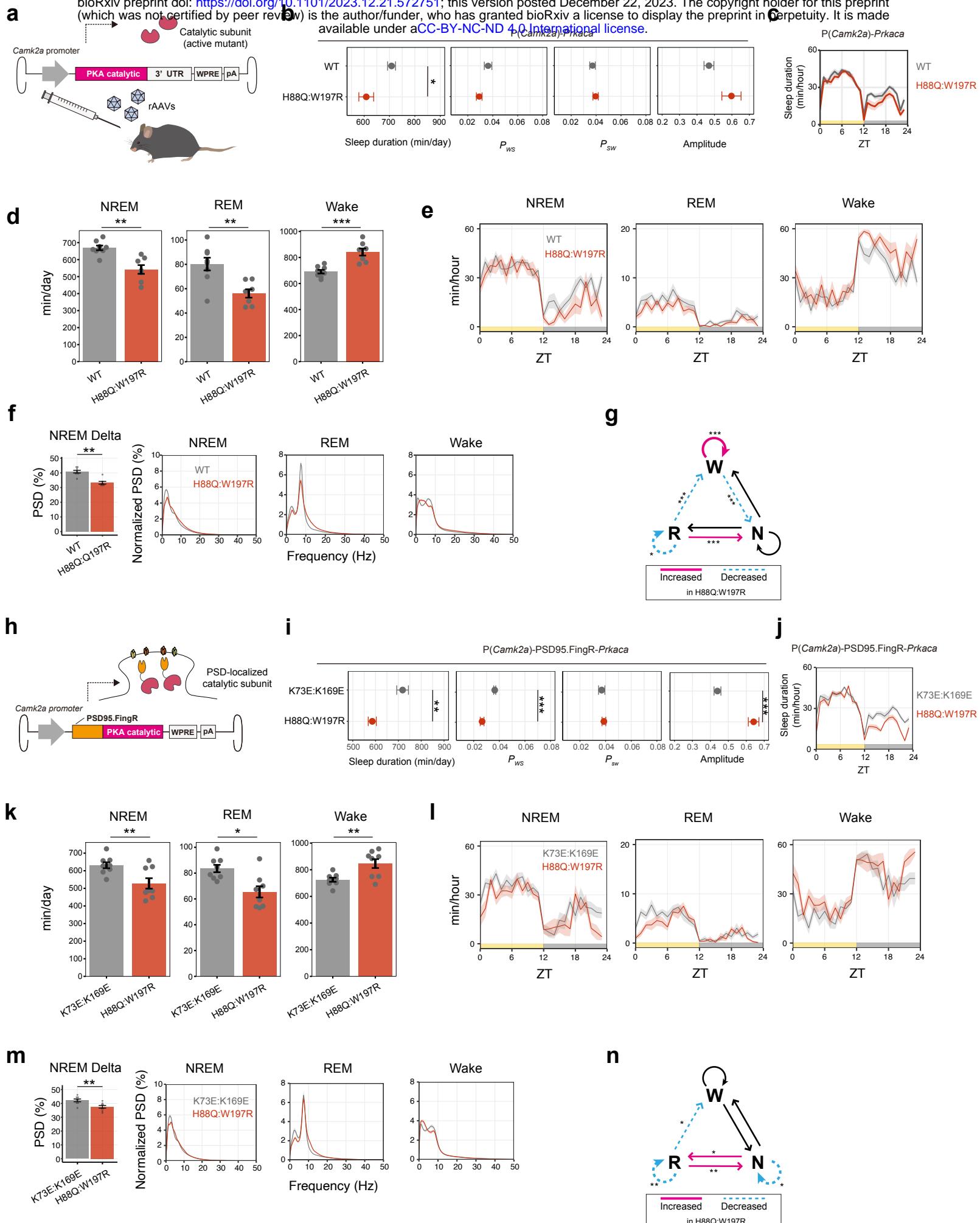
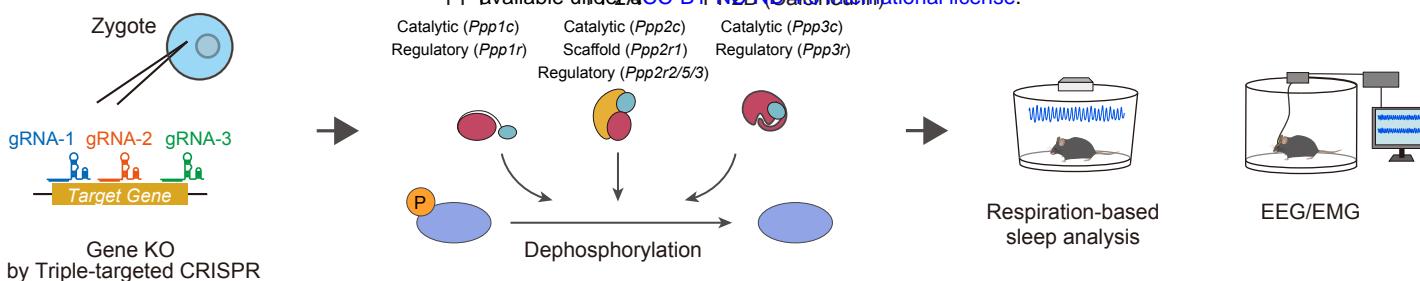
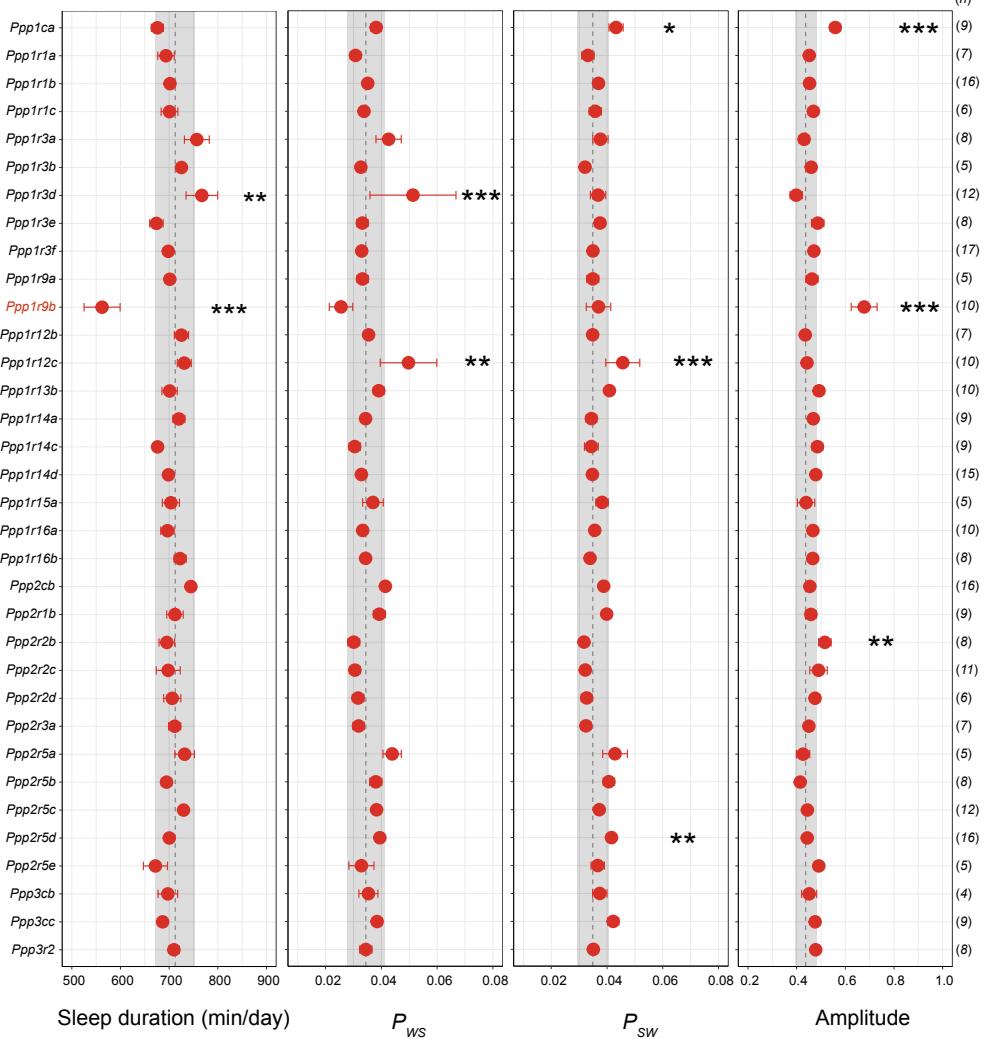
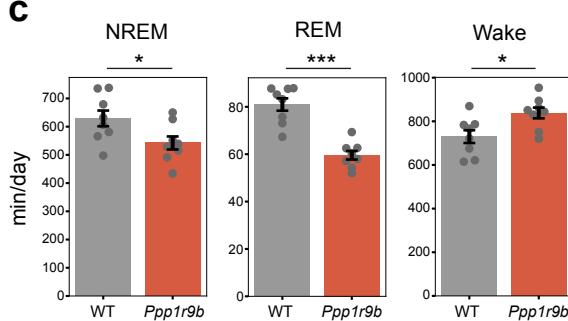
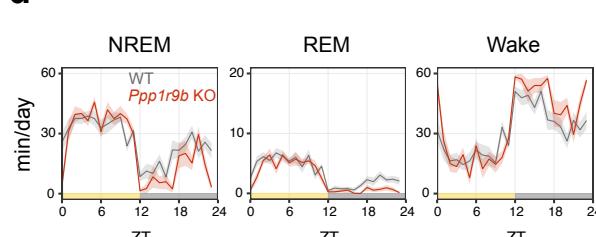




Figure 2


a


b

c

d

e

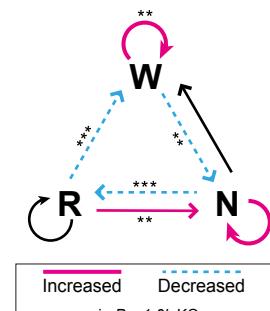


Figure 3

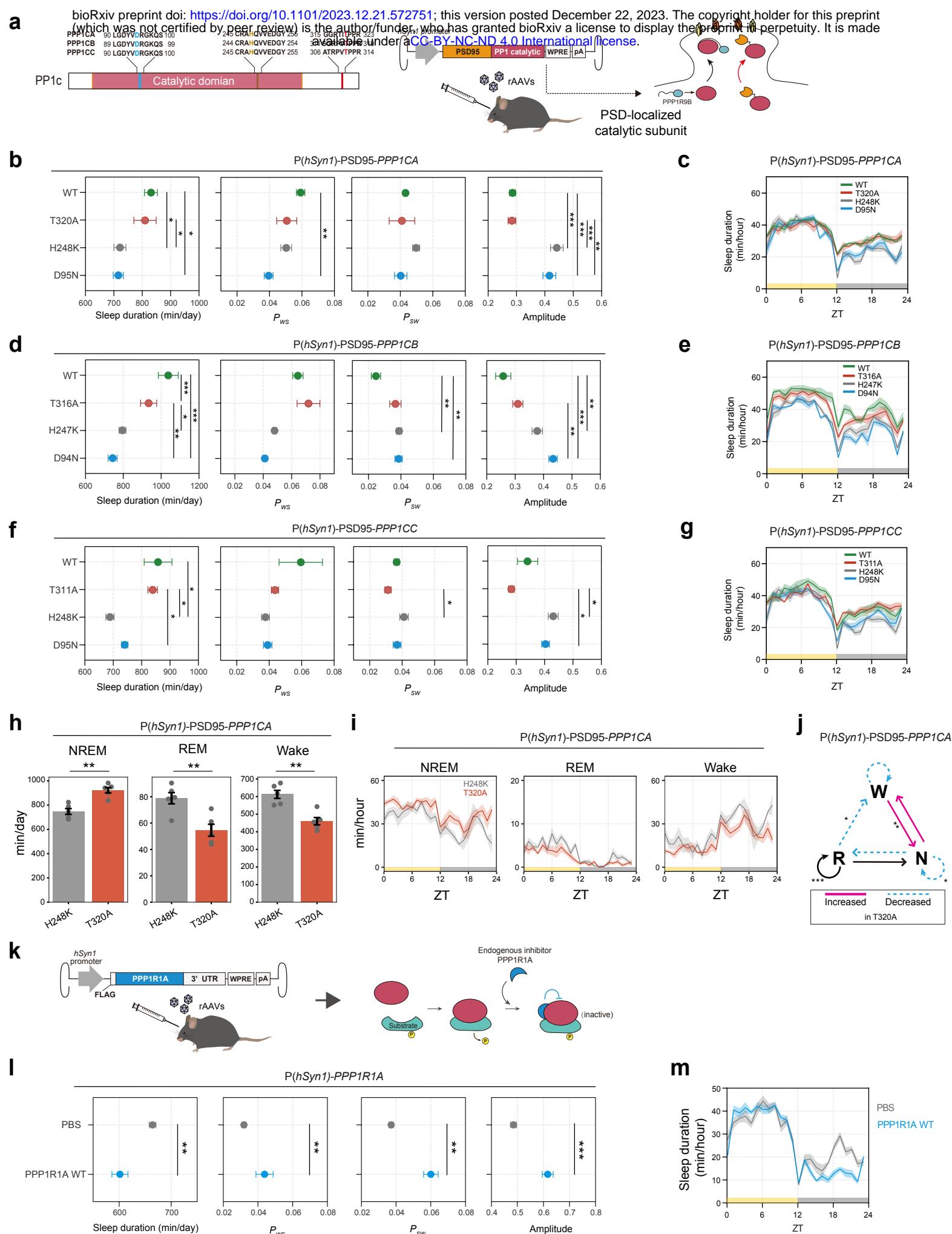
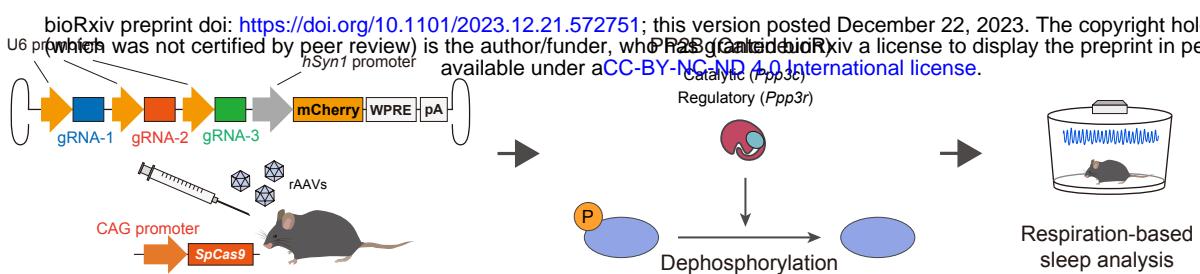
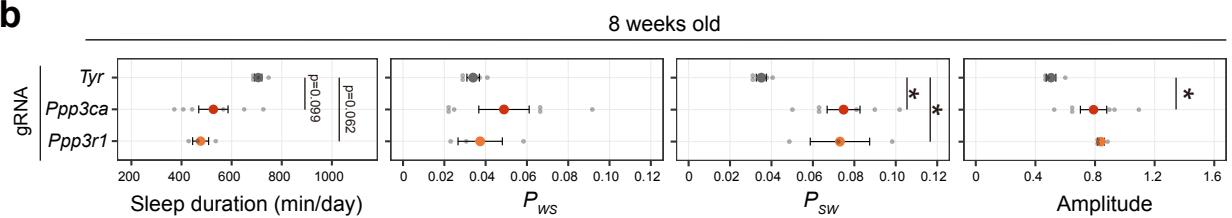
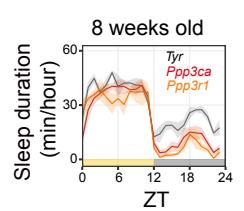
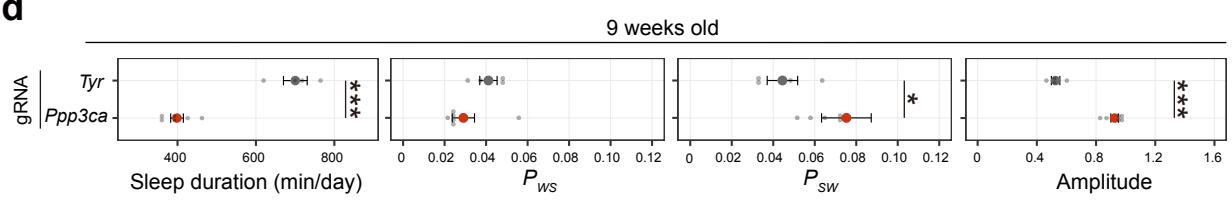
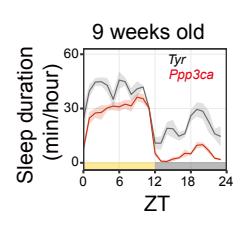
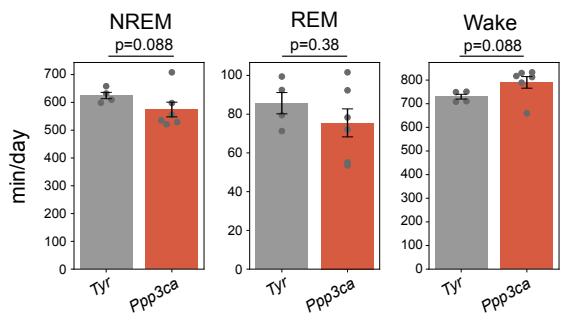




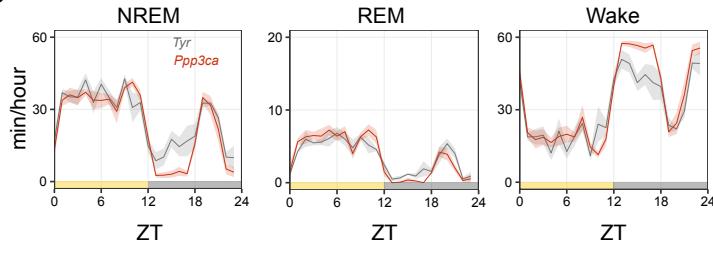
Figure 4

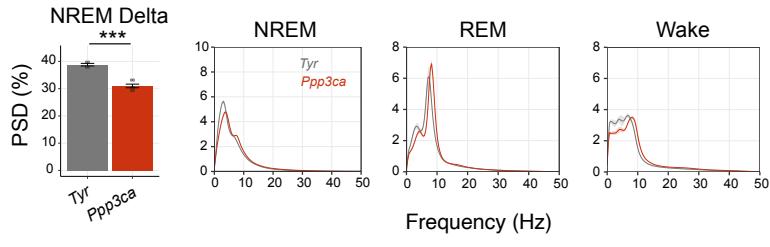

a


b


c


d

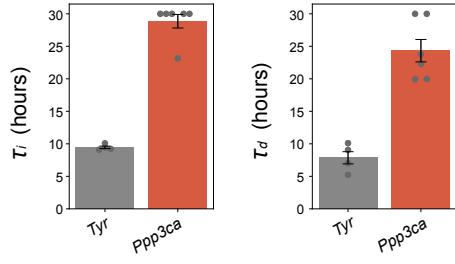
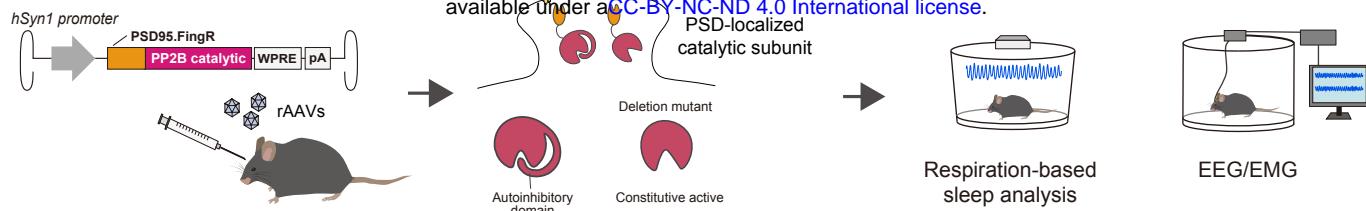

e

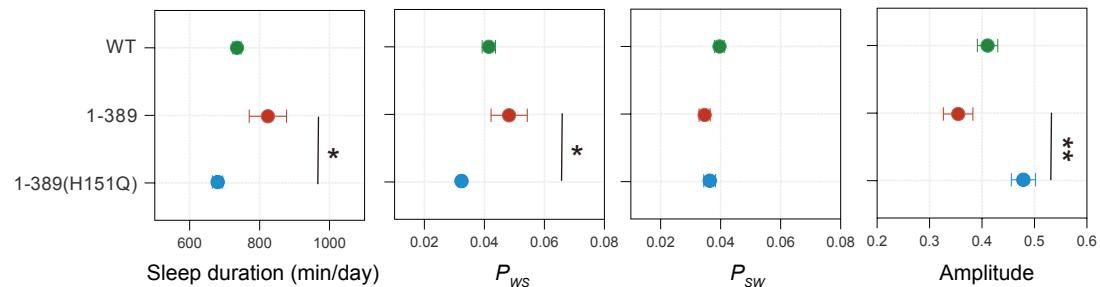

f

g

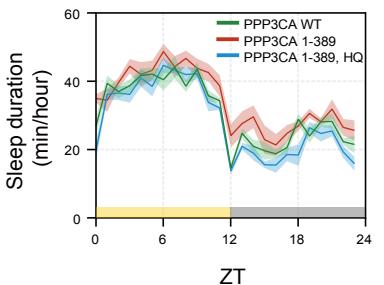
h

i

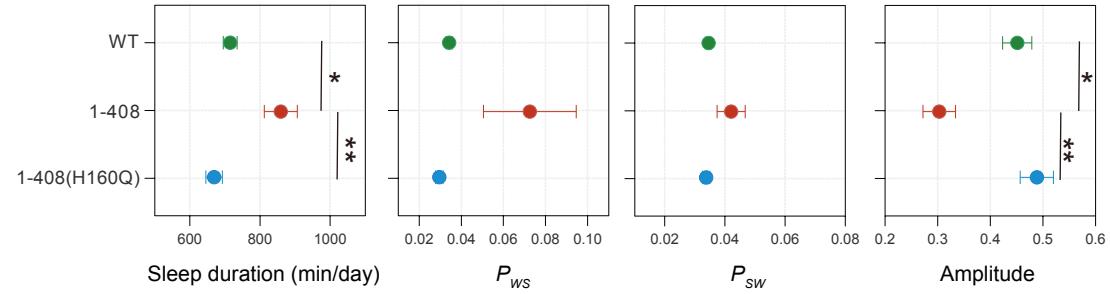




Figure 5

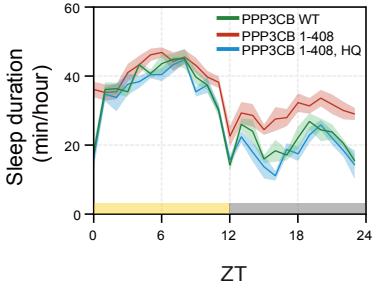
a


b

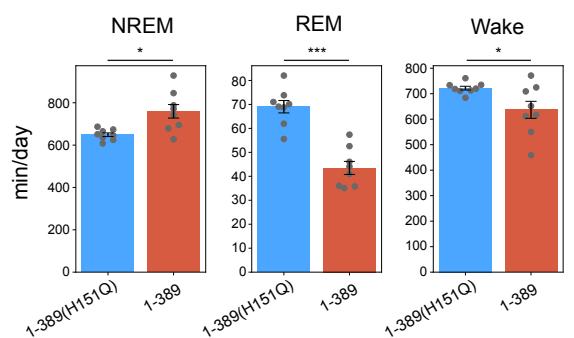
P(hSyn1)-PSD95.FingR-PPP3CA


c

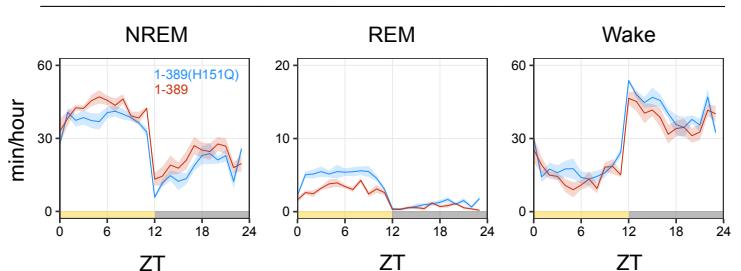
P(hSyn1)-PSD95.FingR-PPP3CA


d

P(hSyn1)-PSD95.FingR-PPP3CB


e

P(hSyn1)-PSD95.FingR-PPP3CB


f

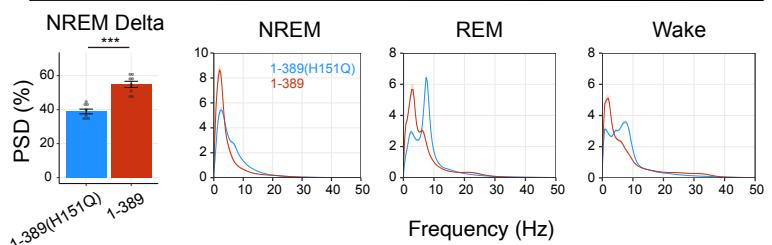
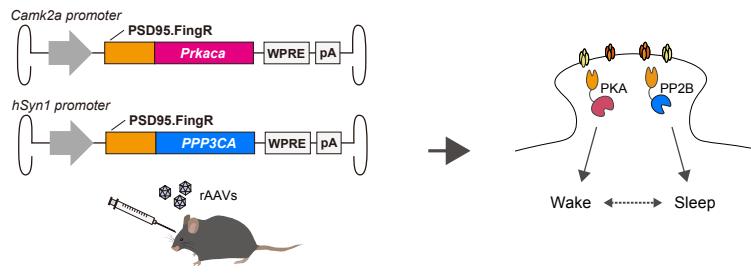
P(Camk2a)-PSD95.FingR-PPP3CA

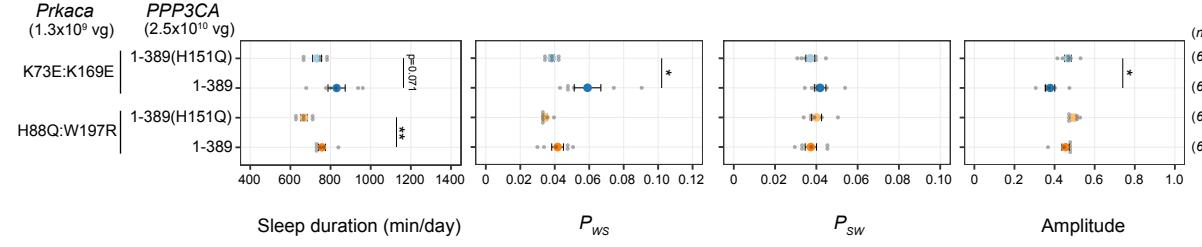
g

P(Camk2a)-PSD95.FingR-PPP3CA

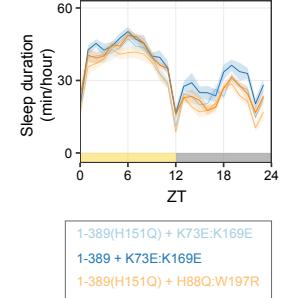
h

P(Camk2a)-PSD95.FingR-PPP3CA

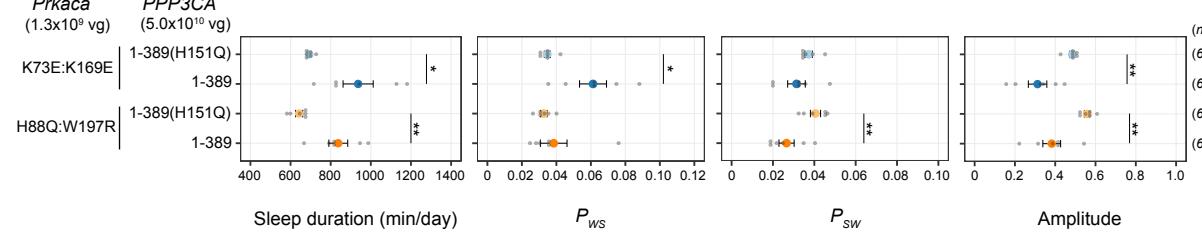




Figure 6

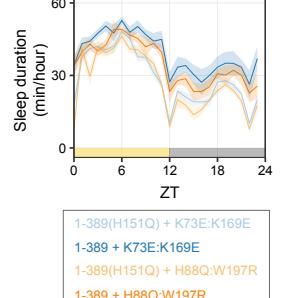
a


b

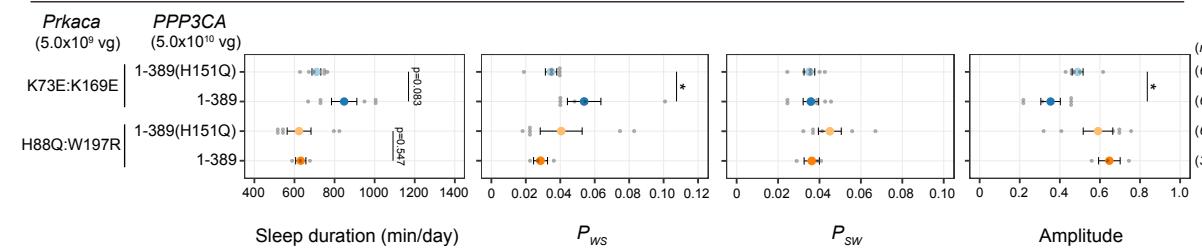
P(Camk2a)-PSD95.FingR-Prkaca
P(hSyn1)-PSD95.FingR-PPP3CA


c

P(Camk2a)-PSD95.FingR-Prkaca
P(hSyn1)-PSD95.FingR-PPP3CA


d

P(Camk2a)-PSD95.FingR-Prkaca
P(hSyn1)-PSD95.FingR-PPP3CA


e

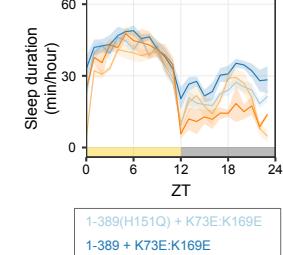
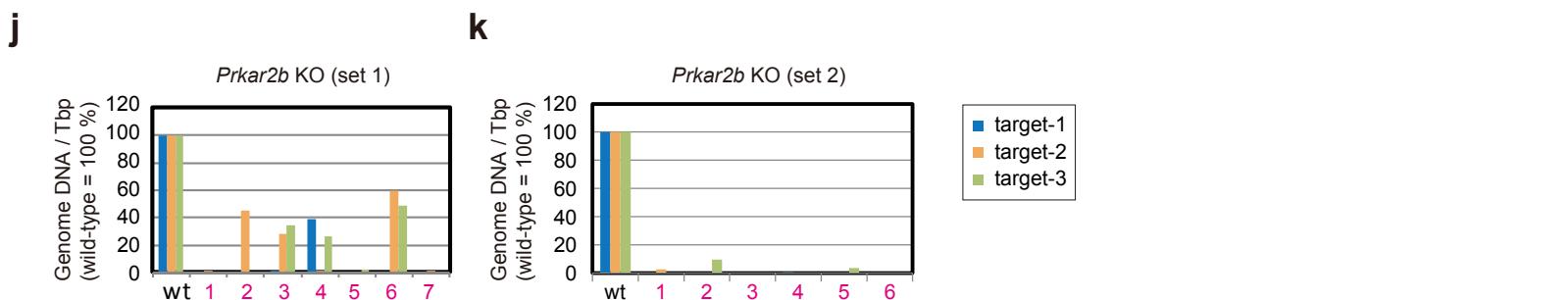
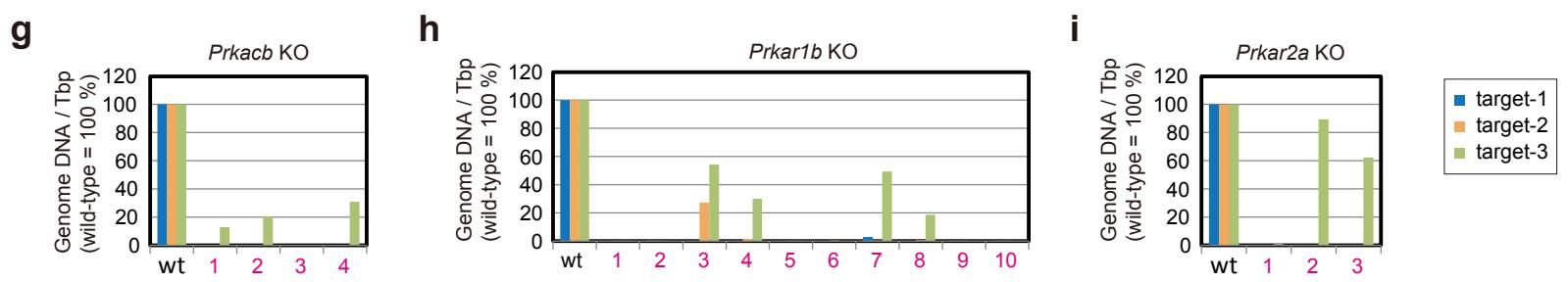
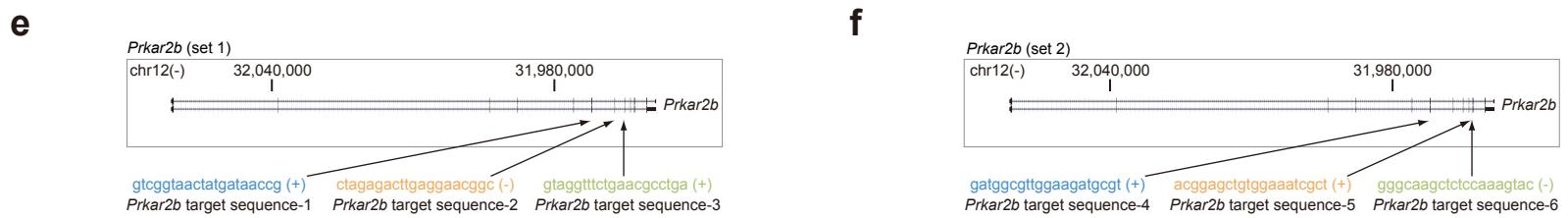
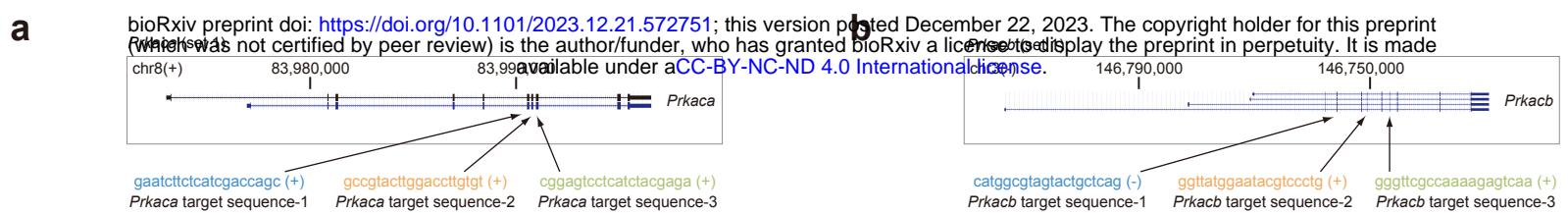
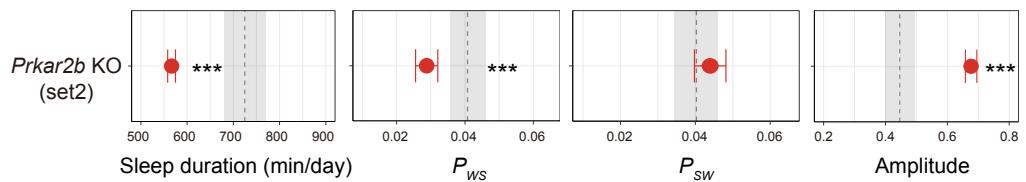
P(Camk2a)-PSD95.FingR-Prkaca
P(hSyn1)-PSD95.FingR-PPP3CA

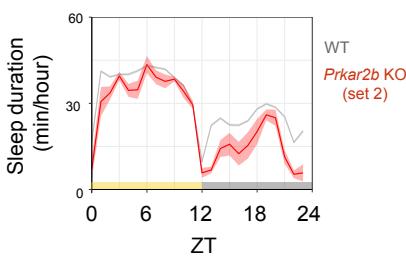
f

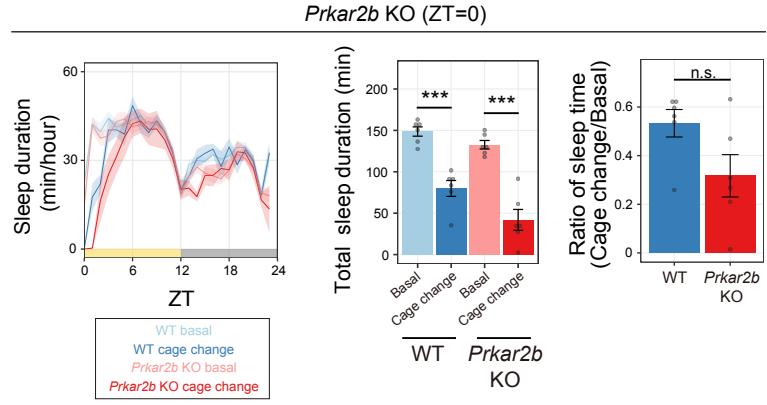
P(Camk2a)-PSD95.FingR-Prkaca
P(hSyn1)-PSD95.FingR-PPP3CA

g

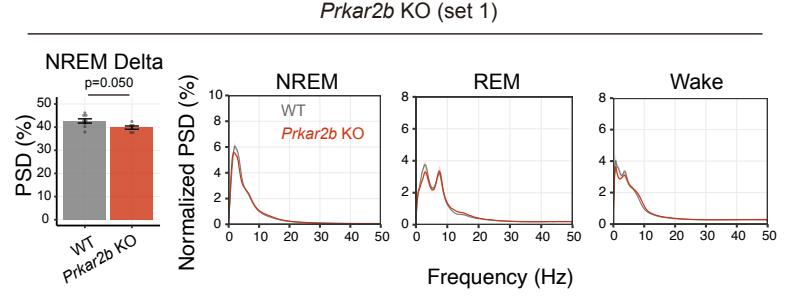
P(Camk2a)-PSD95.FingR-Prkaca
P(hSyn1)-PSD95.FingR-PPP3CA

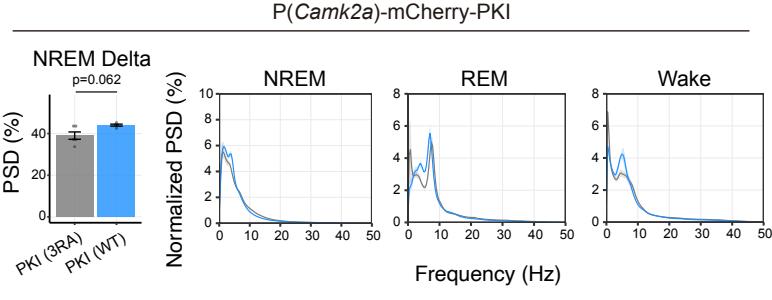







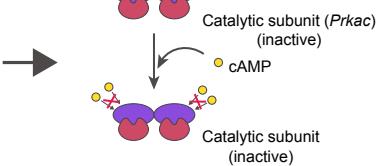
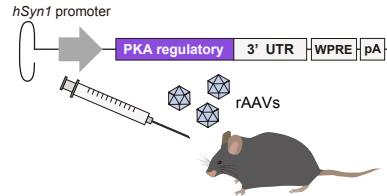

Figure 7


a

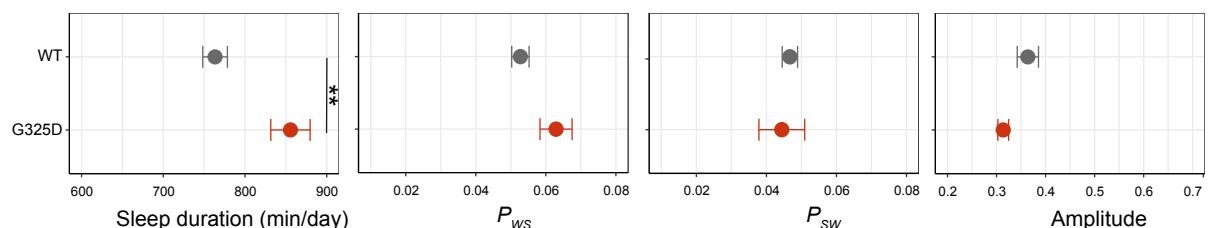
b

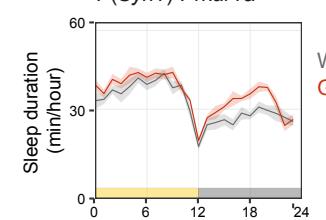

c


d

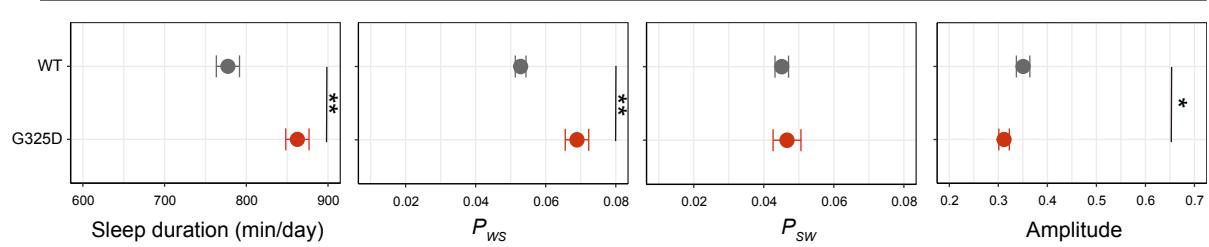



e

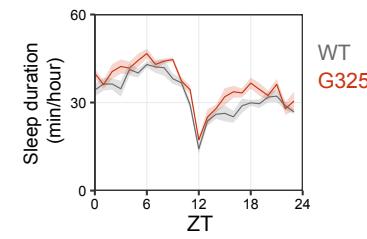

f


b

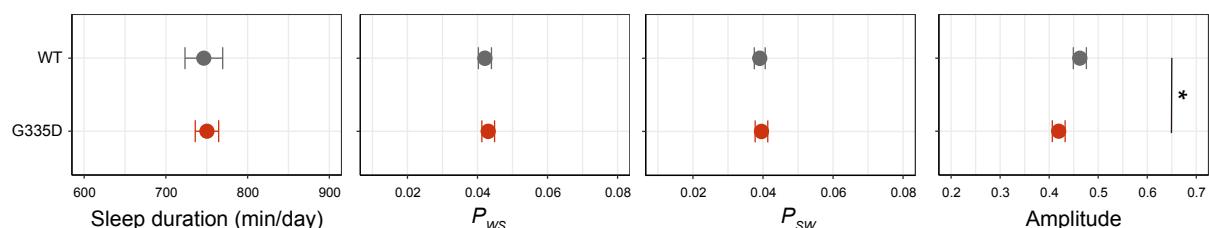
P(Syn1)-Prkar1a


c

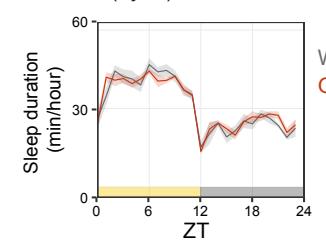
P(Syn1)-Prkar1a


d

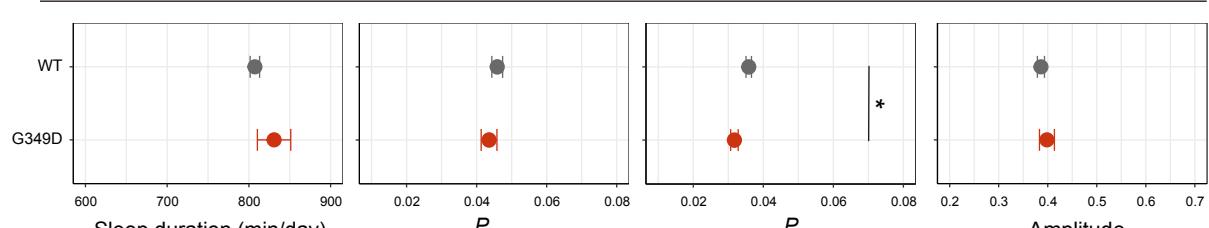
P(Syn1)-Prkar1b


e

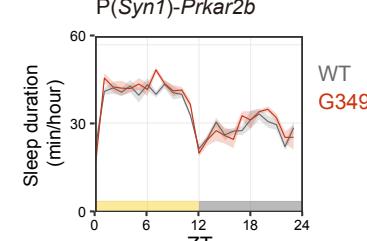
P(Syn1)-Prkar1b


f

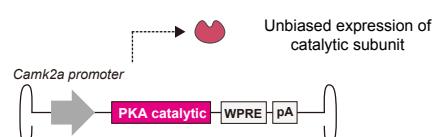
P(Syn1)-Prkar2a


g

P(Syn1)-Prkar2a

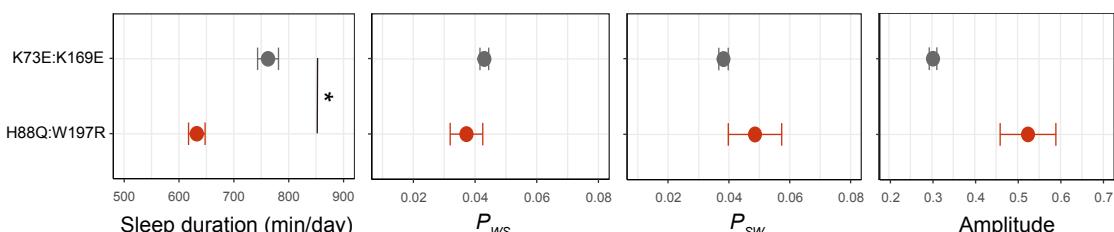

h

P(Syn1)-Prkar2b

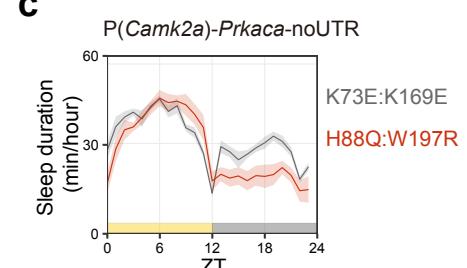


i

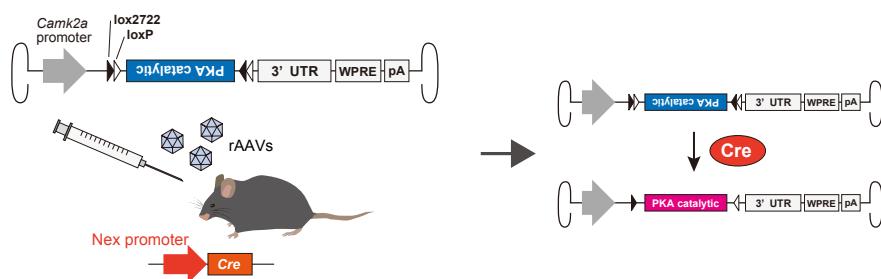
P(Syn1)-Prkar2b



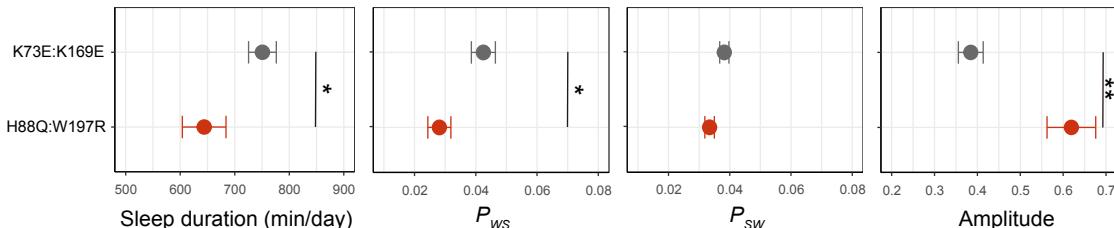
a



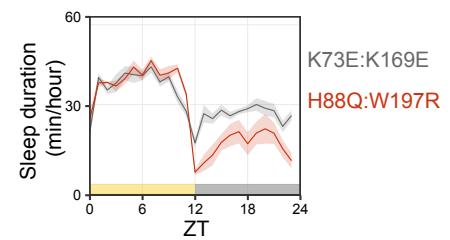
b

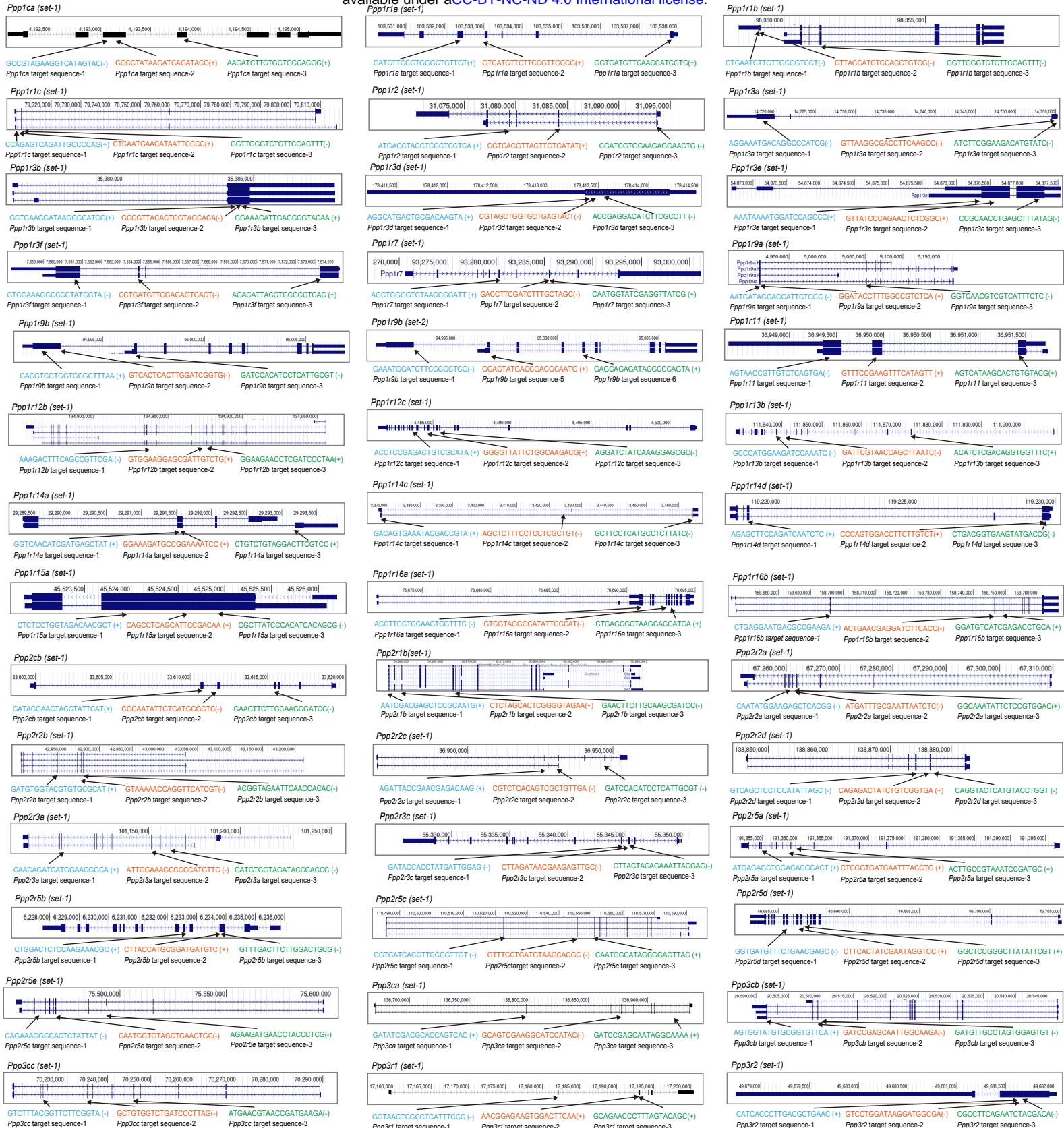

P(Camk2a)-Prkaca-noUTR

c



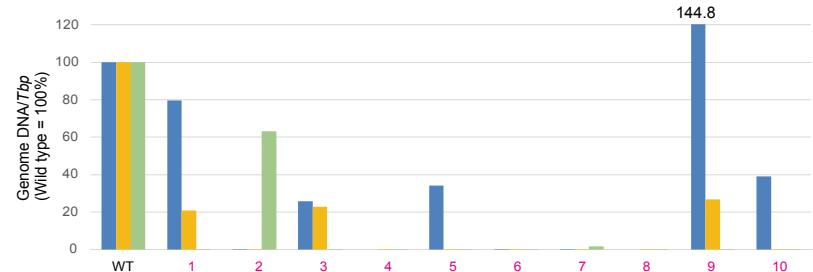
d


e

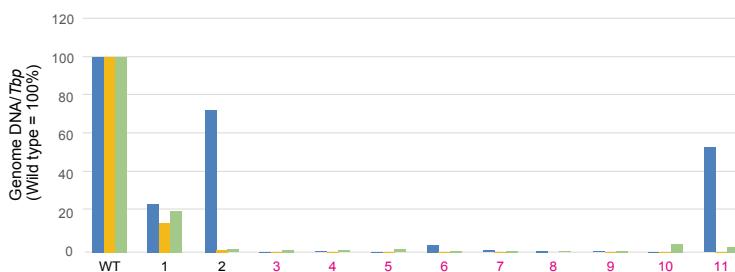

Nex-Cre: P(Camk2a)-Prkaca

f

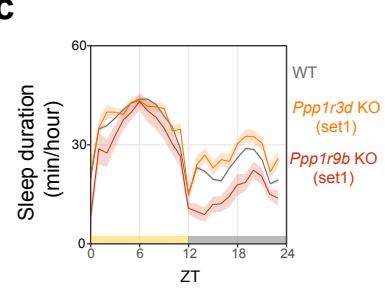
Nex-Cre: P(Camk2a)-Prkaca



Extended Data Figure 5

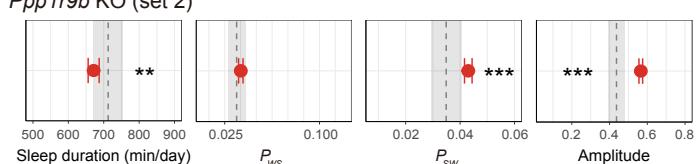

a

Ppp1r9b (set 1)

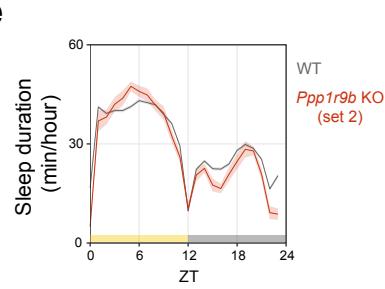


b

Ppp1r9b (set 2)

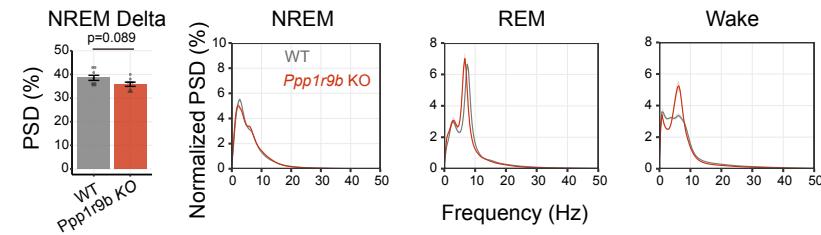


c

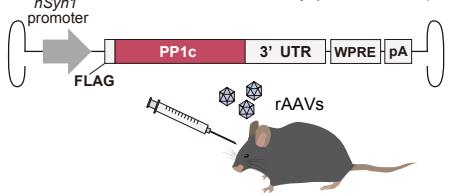


d

Ppp1r9b KO (set 2)

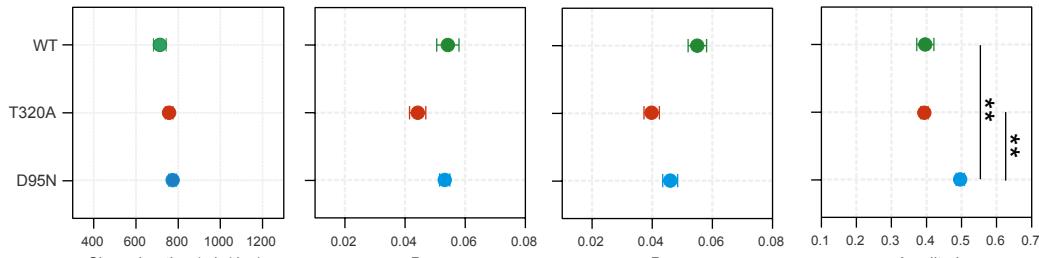


e

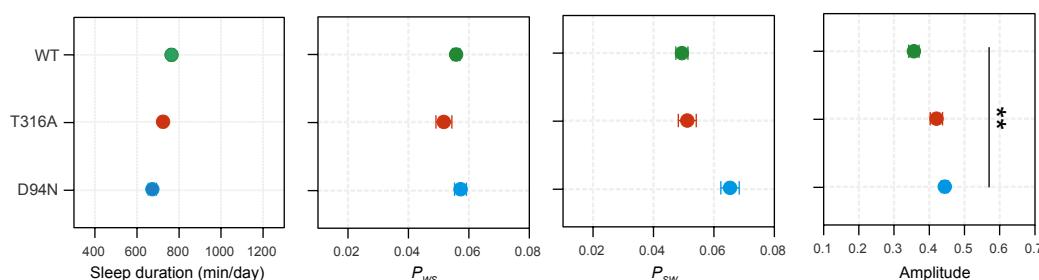


f

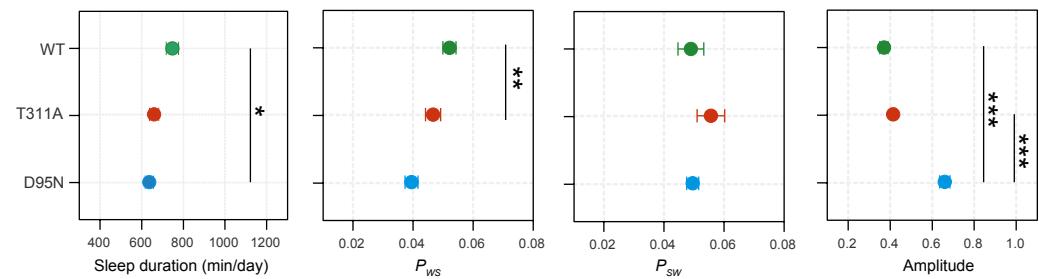
Ppp1r9b KO (set 1)



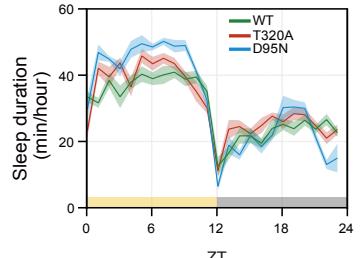
a


b

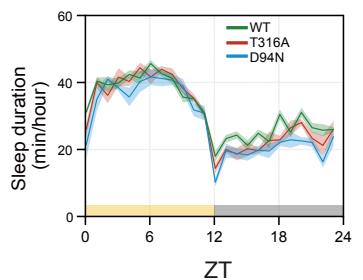
P(*hSyn1*)-PPP1CA


d

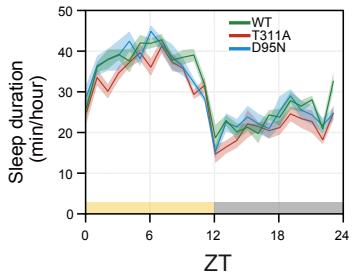
P(*hSyn1*)-PPP1CB


f

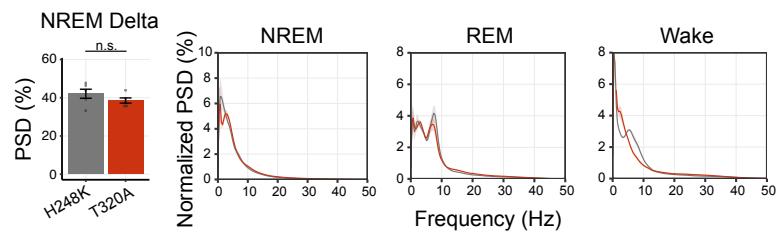
P(*hSyn1*)-PPP1CC


c

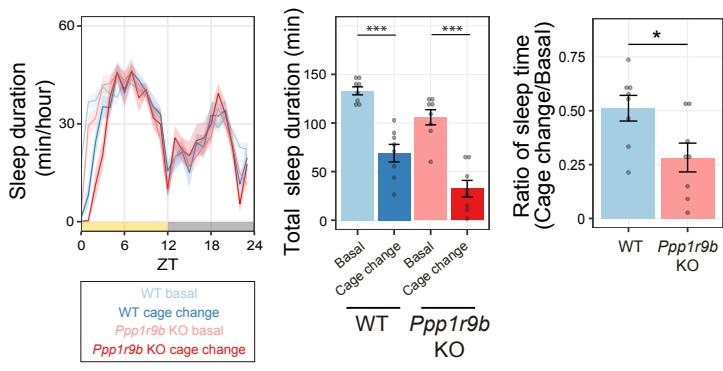
P(*hSyn1*)-PPP1CA


e

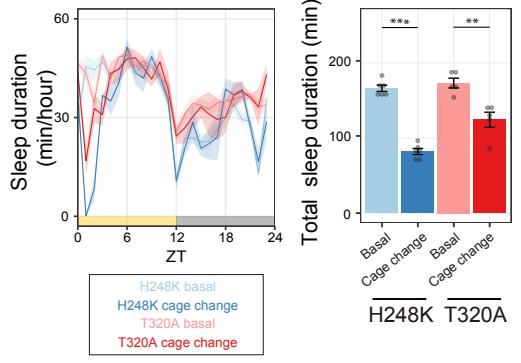
P(*hSyn1*)-PPP1CB



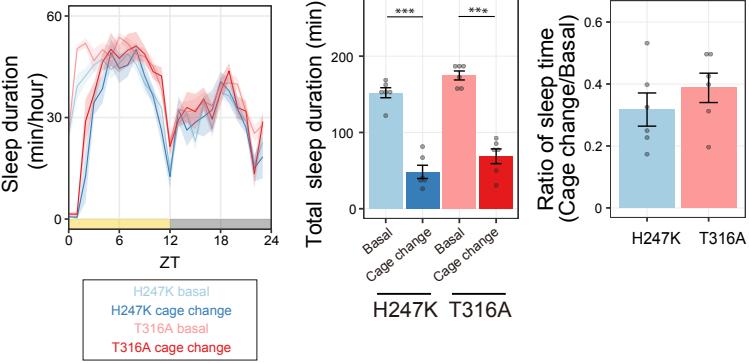
g


P(*hSyn1*)-PPP1CC

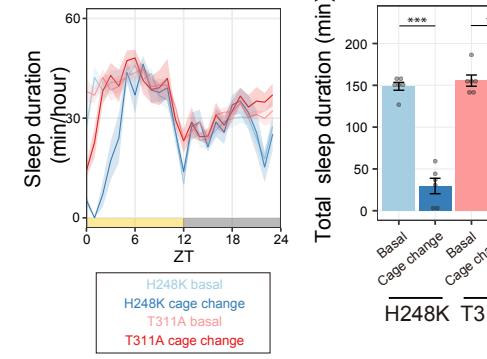
a



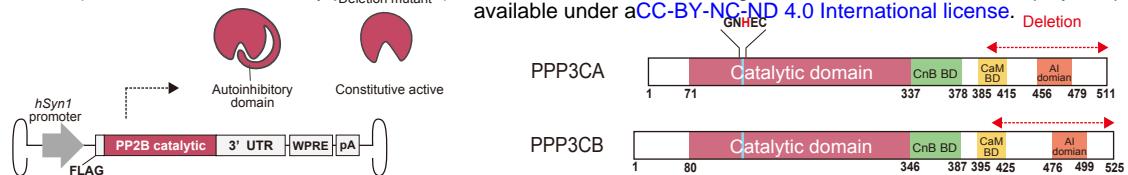
b


c

P(hSyn1)-PSD95-PPP1CA (ZT=0)

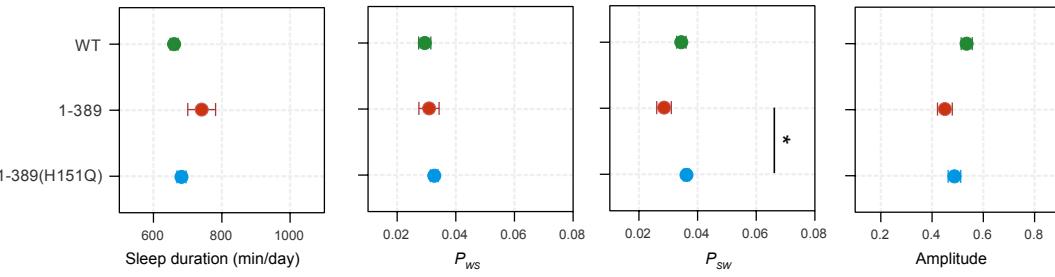

d

P(hSyn1)-PSD95-PPP1CB (ZT=0)

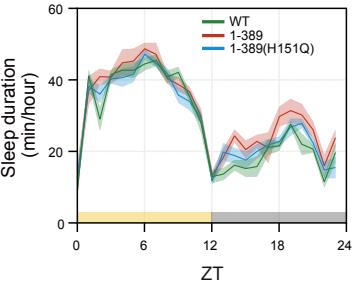


e

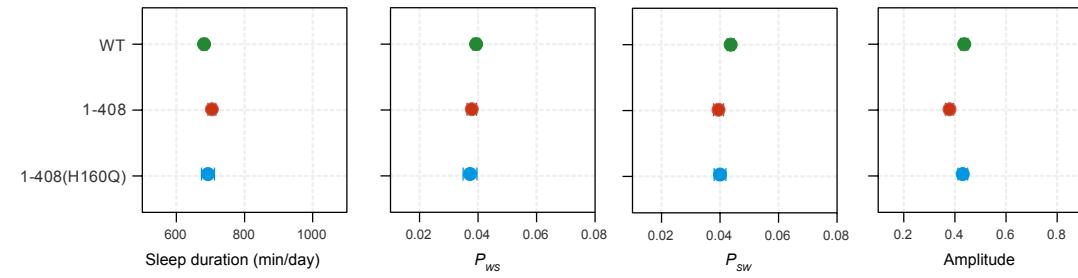
P(hSyn1)-PSD95-PPP1CC (ZT=0)



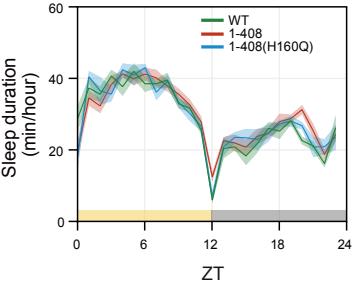
a


b

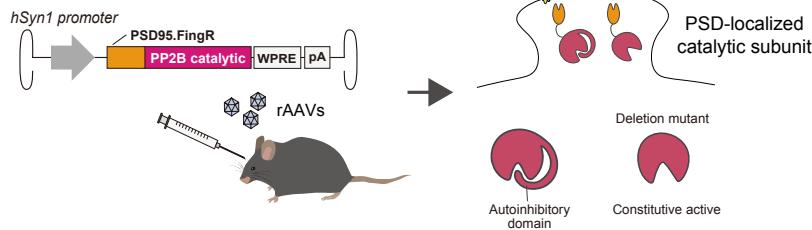
P(hSyn1)-PPP3CA


c

P(hSyn1)-PPP3CA

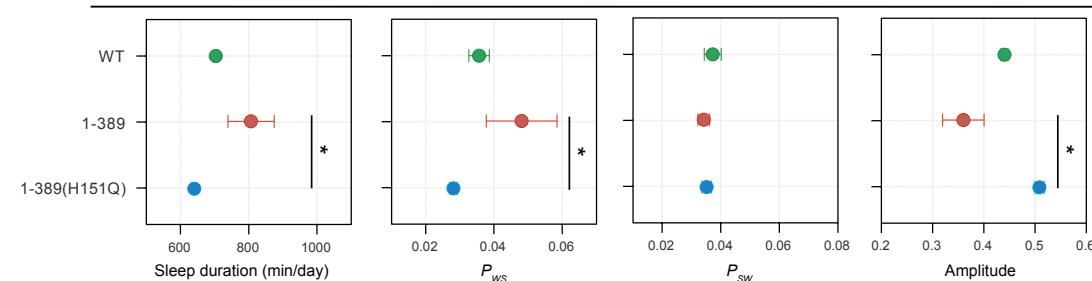

d

P(hSyn1)-PPP3CB

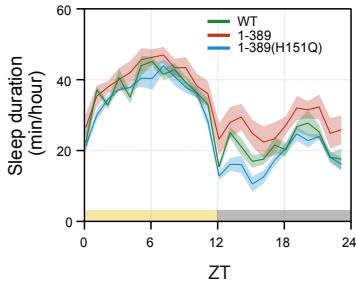


e

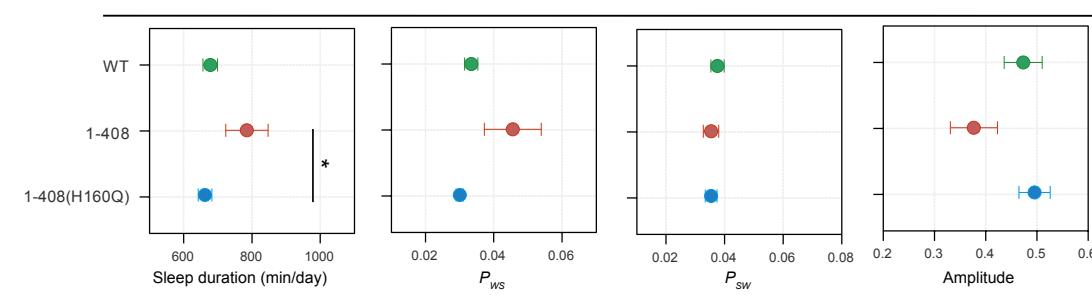
P(hSyn1)-PPP3CB



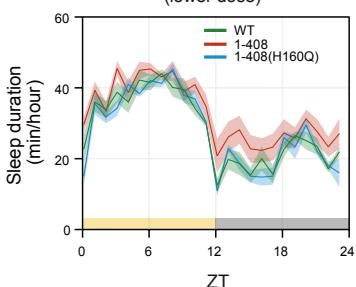
f


g

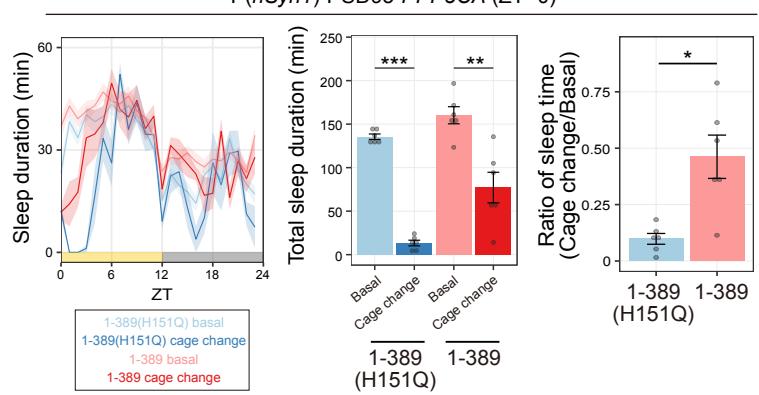
P(hSyn1)-PSD95.FingR-PPP3CA (lower dose)


h

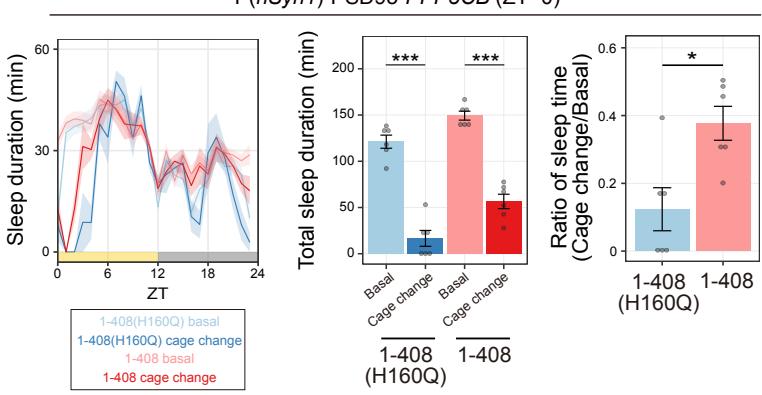
P(hSyn1)-PSD95.FingR-PPP3CA (lower dose)

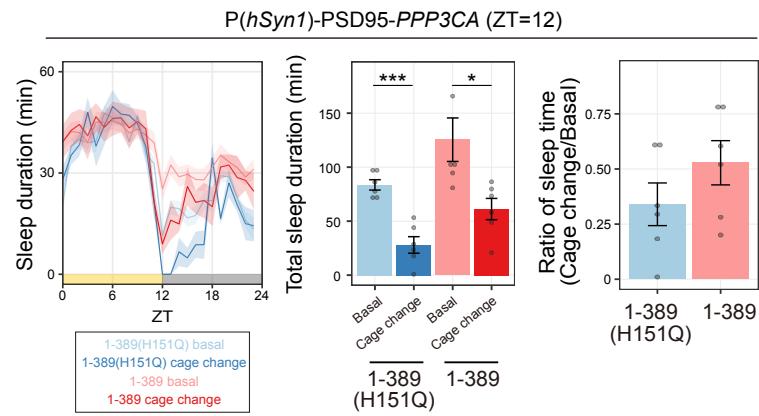

i

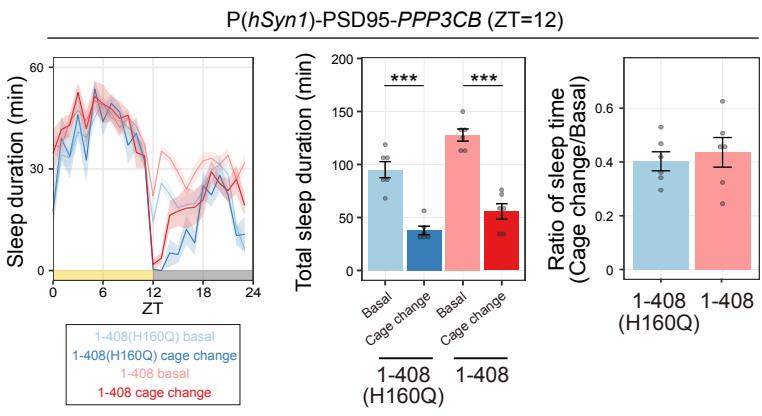
P(hSyn1)-PSD95.FingR-PPP3CB (lower dose)

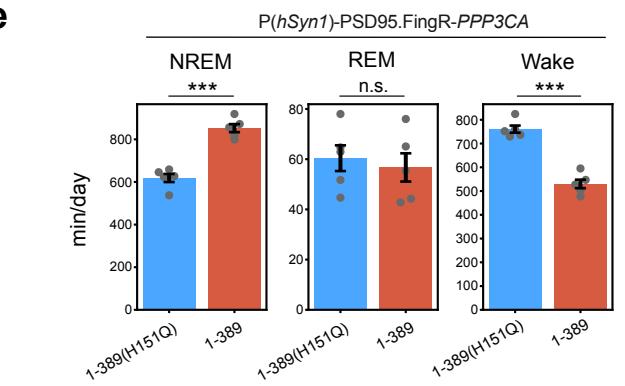


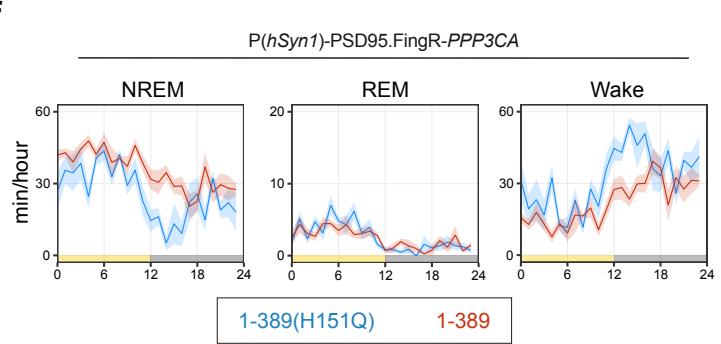
j

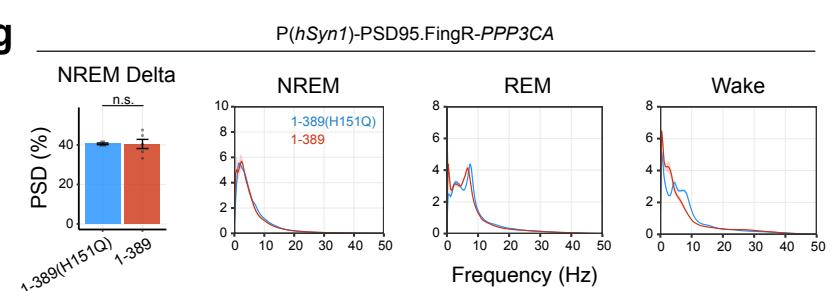

P(hSyn1)-PSD95.FingR-PPP3CB (lower dose)


a


b


c


d


e

f

g

