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Abstract

Advances in spatial omics technologies have brought opportunities to dissect tissue
microenvironment, while aso posing more requirements and challenges for
computational methods. Here we developed a package SOAPy to systematically
dissect spatial architecture, dynamics and communication from spatial omics data.
Specificaly, it provides analysis methods for multiple spatial-related tasks, including
spatial domain, spatial expression tendency, sSpatiotemporal expression pattern,
cellular co-localization, multi-cellular niches, and ligand-receptor-mediated and
spatial-constrained cell communication. Applying SOAPy on different spatial omics
technologies and diverse biological fields has demonstrated its power on elucidation
of biologica questions about tumors, embryonic development, and normal
physiological structures. Overall, SOAPy is auniversal tool for spatial omics analysis,

providing a foundation for continued investigation of the microenvironment.
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33  spatial omics, Python package, microenvironment, expression pattern, multi-cellular
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35

36 Introduction

37 Spatially resolved transcriptomics has been crowned Method of the Year 2020 by
38 Nature Methods'. Since then, more and more experimental methods for measuring
39 expression levels of genes, proteins or metabolites in a spatial context have been
40  developed. These technologies include barcode-based and imaging-based ones, which
41 differ in resolution, accuracy and throughout®®. The most widely used 10X Visium
42  gpatial transcriptomics measures thousands of genes in each 55um spot that typically
43 contains 1-10 cells®. And imaging-based methods reach more microscopic resolution,
44 such as MIBI-TOF® and PhenoCycler-Fusion®, both detecting dozens of proteins at
45  subcellular resolution. Additionally, spatial multi-omics technologies that
46  simultaneously measure multiple molecular types are emerging, e.g NanoString
47  GeoMx DSPfor 18000 RNAs and 140 proteins in the region of interest (usually >100
48 cells)’.

49 With the development of experimental methods, corresponding analysis pipelines
50 have been designed for pre-processing raw data from specific experimental platforms,
51 such as Space Ranger for 10X Visum and MCMICRO for multiplexed tissue
52 imaging®. Methods adapted from single-cell RNA sequencing (scRNA-seq) data
53 analysis could be used to perform standard dimensional reduction, clustering, cell
54 type annotation and marker selection for spatial-omics data’ that do not require spatial
55 information. And for low resolution spatial technologies, various deconvolution
56  methods have been developed to impute cell-type composition from the mixture of
57 cdls.

58 After these pre-processing, downstream analyses arelargely independent of
59 experimental technologies, focus on the key feature of spatial omics. space. For
60  example, identifying spatial variable genes'®™?, detecting spatial domains™, inferring

61 genes or cell-subtypes associated with spatial localization, and so on®. Earlier
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62  algorithms were often designed for one specific task, tools that fit in with various
63  analysis tasks are becoming popular. A pioneer work Giotto not only builds a data
64  pre-processing pipeline similar to scRNA-seq data analysis*®, but also provides
65 modules for spatial pattern detection, cell neighborhood analysis, and interactive
66  visualization. Squidpy provides scalable analysis framework for both spatial
67 neighborhood graph and image, along with an interactive visualization tool™. stlearn
68 is another integrated package for spatia transcriptomic anaysis, which adds the
69  functions of spatia tragjectories and pseudotime analysis'®. Investigating the spatial
70  organization of tissue microenvironment are important applications of spatial omics,
71 which may gain new insights in various biological fields. However, the related
72 analysis methods are scattered or lacking, a package for integrative analysis of
73 microenvironmental spatial organization isin an urgent need.

74 To address this problem, we present a package SOAPy (Spatial Omics Analysisin
75  Python) to jointly perform multiple tasks for dissecting spatia organization, including
76  gpatial domain, spatial expression tendency, spatiotemporal expression pattern,
77  co-localization of paired cell types, multi-cellular niches, and cell-cell communication.
78  SOAPy improves on previous tools in three main areas (Table S1): (1) Providing
79  several aternative methods for most tasks to be suitable for complex and diverse
80 biological tissues and various anaysis requirements. (2) Offering a factor
81  decomposition strategy for high-order spatial data to discover the major modes of
82 variations in spatial, time, sample or others. (3) Proposing a new method to combine
83  ligand-receptor expression and spatial locations to better infer short-range and
84  long-range cell communications. We also applied SOAPy to a wide range of public
85  datasets to demonstrate its general applicability and interpretability. SOAPy will be
86  one of the fundamental packages for spatial omics analysis in Python.

87

g8  Results

89  Overview of the SOAPy package
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90 SOAPy is composed of four modules: Data Preprocessing, Molecular Spatial
91  Dynamics containing Spatial Tendency and Spatiotemporal Pattern analysis, Cellular
92  Spatial Architecture for analyzing Spatial Proximity and Spatial Composition, and
93  Spatial Communication that combines spatial distance, expression level and
94 interaction mechanism of ligand-receptors to infer cell interactions (Figure 1). In
95 addition, SOAPy provides rich visualization capabilities for all of the anaysis
96  methods mentioned above.

97 The flexible Data Preprocessing module makes SOAPy suitable for various spatial
98 data, fitting with different modalities and different resolutions. To demonstrate the
99 utility of SOAPy, eight public datasets obtained from five state-of-the-art
100 technologies were analyzed (Table S2). These datasets involve multiple scenarios
101 with different molecular modalities (protein vs RNA), throughput (dozens to
102 genome-wide), spatial resolution (0.1 ~ 55um), and in physiological and pathological
103 dtates.

104

105  Spatial domain analysis recapitulates anatomic and pathological structures

106 Cells are not randomly distributed in tissues. They are self-organized into specific
107  structures to perform tissue functions. While in disease states, cells form abnormal
108  structures. The Spatial Domain anaysis provides unsupervised (STAGATE) and
109  supervised (AUCHI-LMI) methods to detect these structures (called spatial domains)
110  based on gene expression profiles and spatial locations*"*2,

111 We first tested STAGATE on Slide-seq V2 data for mouse olfactory bulb and 10x
112 Visium spatial transcriptomic data for human breast cancer'®. Spatial domains
113 identified by STAGATE are highly consistent with the manual-labelled structures . It
114  successfully distinguishes truth anatomical structures (Figure Sla), malignant and
115  non-malignant tissues (Figure S1b, ARI=0.513), and more sophisticated pathological
116  stages (Figure Slc, ARI=0.580). Then we tested AUCell-LMI for finding local
117  structures with known signature genes, such as tertiary lymphoid structure (TLS)%.
118  The results showed that supervised AUCell-LMI based on known TLS signature

119 could more accurate and more convenient identified the TLS region than
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120  unsupervised STAGATE (Figure S1d, €). Taken together, Spatial domain analysisin
121 SOAPy could extract the interesting anatomic or pathological structures for
122 downstream analysis.

123

124  Spatial tendency analysis finds genes associated with spatial structures

125 The aim of Spatial Tendency analysis is to assess whether expression features were
126  influenced by spatial proximity to the region of interest (ROI). Expression features
127  could be gene expression, pathway activity, cell proportion and so on. The ROI is
128 defined by manual annotation or automatically detected by the Spatial Domain
129  analysis. Two kinds of methods, statistical test and regression model, are available for
130  tendency estimation in the Spatial Tendency module (M ethods).

131 We used 10X Visium data of mouse dorsolateral prefrontal cortex (DLPFC)? as an
132  example to validate the feasibility of spatial tendency estimation (Figure 2a). The
133  sample is consisted of the grey matter of DLPFC (including six cortical layers) and
134  white matter (Figure S2a). To find genes whose expression changes along with the
135  distance to the white matter, three strategies were used and compared® (Figure S2b,
136  C): 1) cortical layers were divided into two regions and applied Wilcoxon test to
137  identify differential expressed genes; 2) cortical layers were separated to five
138 continuous zones for Spearman correlation test; 3) a polynomial regression model was
139  fitted between gene expressions and distances to the white matter. Some genes
140 identified by Wilcoxon test and Spearman correlation only express in few spots,
141 which may be the results of data sparsity instead of real biological differences (Figure
142 S2e). The regression model describes the continuous spatial variation of expression,
143 therefore it could find more complex spatial patterns than other methods®, such as
144  nonlinear “low-high-low” spatia pattern (Figure S2f). Next, we analyzed the
145  expression patterns of 2857 significant (FDR < 0.05, range >0.3) genes identified by
146  polynomial regression. K-means clustering grouped them into 10 clusters (Figure 2b).
147  The gene clusters were compared with previously reported cortical layer specific
148 genes”™*® (Figure 2c), showing high consistence. C3 is specifically highly expressed
149  near white matter regions; the expression peaks of C5, C8, C2, and C7 are at layer 6,
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150 5, 4, 2, respectively (Figure 2d).

151 Considering that there are no predetermined structures in some scenarios, we added
152 three published methods (Spatia DE'®, SPARK™, and SPARKX™) which identify
153  gpatial variable genes (SVGs) but do not need a given ROI. Comparing these SVGs
154  methods with the above mentioned tendency estimation found shared and specific
155  genes among methods (Figure S2d). SVG methods were more inclined to show the
156  local differential expression of genes rather than the relationship with distance
157  (Figure S2g). Users can select sutiable methods based on their requirements.

158

159  Tensor decomposition reveals the spatiotemporal patterns of gene expression

160 With advances in omics techniques, spatial-resolved and time-series molecule
161  profilings are becoming available. One of the challenges is how to study the roles of
162  gspatial effects and temporal effects smultaneously in biological questions. The
163  Spatiotemporal Pattern function in SOAPy employs tensor decomposition to extract
164  components from the three-order expression tensor (“Time-Space-Gene”), revealing
165  hidden patterns and reducing the complexity of data explanation.

166 Here, we used the mouse embryo development dataset from GeoMx Digital Spatial
167 Profiling (DSP)’. Limited by the availability of expression profiles, four time points
168 (B9, E11, E13, E15) and eight subtissues (Heart wall, Heart valve, heart trabecula,
169  Lung epithelium, Lung mesenchyme, Midgut epithelium, Midgut mesenchyme, and
170  Midgut neuron) from three organs were included in our analysis (Figure 3a,b).
171 Canonical Polyadic (CP) decomposition® was used to factorize the expression tensor
172 with 1000 high variable genes (a 4*8* 1000 tensor) into seven factors, each of which
173 s the outer product of three vectors that contain the loadings for describing the
174  relative contribution of time, subtissues and genes (Figure 3c). We observed three
175  empirica spatiotemporal patterns based on the loadings of time and subtissues. pure
176  tempora variation (F1, F2), pure spatia variation (F3, F4), spatial and temporal
177  variation occur together (F5, F6, F7). We aso conducted functional enrichment
178  analysis based on the loadings of genes for each factor (Table S3) and visualized the
179  typical genesinimages (Figure 3d).
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180 Genesin F1 (e.g. Hbb-bhl) highly express in heart and lung sub-tissues at E9, and
181  then gradually decrease in the later stages. Their expression pattern is consistent with
182 the enriched function “regulation of vasculature development”. F1 indicates
183  co-development of heart and lung in the early embryo, which is consistent with
184  previous studies®. The expression of F2 genes (e.g. Epcam) increases significantly
185  since E11 in most sub-tissues of three organs, especidly in the lungs. Expression of
186  F3 and F4 genes is stable aong the developmental time. F4 genes highly express in
187  heart wall and heart trabecula, and their functions are enriched in cardiac cell
188  development as expected. Both F5 and F7 genes are enriched in midgut development.
189 F5 (e.g. Psd) slightly decreases from E11 to E15, while F7 (e.g. Ndrgl) increases
190 obviously from E11 to E15. F6 genes are specifically highly expressed in the heart
191  valve between E13-E15. In summary, the Spatiotemporal Pattern function in SOAPy
192  could reveal spatiotemporal specificity during development and other biological
193  Processes.

194

195  Spatial proximity analysis characterizes co-localization patterns between cell types

196 Spatial architecture of cells is important for understanding the organization rules
197 from single cells to tissues”®®. SOAPy first constructs a cell/spot network
198  fromspatial locations; then implements two scenarios for deciphering spatial
199  architecture: Spatial Proximity analysis (including neighborhood and infiltration)
200 determines whethe two cell types or cell states within an image are significant
201 proximal; Spatial Composition analysis identifies multi-cellular niches that composed
202 by cell types with specific proportion.

203 We applied this analysis to a dataset of 41 triple-negative breast cancer (TNBC)
204  patients’, which used multiplexed ion beam imaging by time-of-flight (MI1BI-TOF) to
205  simultaneously quantify expression of 36 proteins in-situ at sub-cellular resolution.
206 Totally 211,649 cells were annotated to eight types (epithelia cell, endothelial cell,
207  mesenchymal cell, B, CD4 T, CD8 T, macrophage and other) based on the expression

208  of known protein markers.
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209 First, Spatial Neighborhood analysis was performed to identify significantly
210  adjacent cell types compared to random perturbation”. Figure 4a illustrates the
211 neighborhood score of all samples for al cell type pairs, with positive or negative
212 scores corresponding to co-localization or avoidance. Different immune cells types
213  suchas B, CD4 T, CD8 T and macrophage have significant co-localization in many
214  patients, which may relate with the formation of inflammatory foci (Figure 4b).
215  Endothelial and mesenchymal cells also prefer to co-locate together (Figure 4c).
216  Colocalization pattern of malignant epithelial cells and non-parenchymal cells were
217  highly heterogeneous across patients. Taking malignant epithelial cells and
218 mesenchymal cells as an example, samples with less than 200 mesenchymal cells
219  were filtered, others are subjected to Spatial Infiltration analysis. Samples with higher
220 and lower infiltration scores indicate mixed (e.g. sample 28) and compartmentalized
221 (e.g. sample 29) patterns between malignant epithelial cells and mesenchymal cells
222 respectively (Figure 4 d-f).

223

224  Spatial composition analysis discovers multi-cellular niches

225 For Spatial Composition analysis of the TNBC dataset, the cell-cell network that
226 connected centroids of the cells within 100 pixels was built to capture the composition
227  pattern of more surrounding cells. Niche of each cell was presented by the proportion
228 of cell types of its surrounding cells, called I-niche. I-niches of 211,649 cells from 41
229 TNBC patients were clustered into 30 niche clusters, named C-niches (Figure 5a,
230 Figure S3a). The mgor cell types of the top two C-niches (C-nichel3, C-nichel8) are
231 mainly composed of malignant epithelial cells, and the percentages of other cell types
232 areless than 15%, showing the characteristics of tumor cell aggregation (Figure 5b).
233  Additionaly, epithelial cells also form C-niches with other cell types. For example,
234  C-niche25 is composed of 38% epithelia cells, 31% mesenchymal cells, and 9%
235  macrophages; C-niche27 is composed of 23% epithelial, 28% endothelial, 10%
236 mesenchymal cells and 10% macrophages; C-nichel5 is composed of 30% epithelial,
237 23% CD4 T, 13% CD8 T cells and 11% macrophages, suggesting different local

238  microenvironment exists among tumors (Figure 5b). We also observed four B cell
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239  dominated C-niches (C-nichel0, C-nichel?7, C-niche28, C-niched) that may be related
240  to tertiary lymphoid structures. For example, sample 1 contains C-niche 10, 17, and
241 28 (Figure 5c). Around 80% of cells are B cells in C-nichel0O; C-nichel7? majorly
242  consists of 52% B cells, 13% CD8 T cells, 10% CD4 T cells, and 11% epithelial cells;
243 C-niche28 majorly consists of 30% B cells, 10% CD8 T cells, and 37% epithelial
244  cells.

245 In order to investigate the combinational effects of non-parenchymal cell types and
246 niches on patient heterogeneity, the “Niche-CellType-Sample” tensor (30*7*41) was
247  factorized to four factors (Methods). All samples were clustered into five groups
248  according to the sample loadings in different factors (Figure 5d). Sample groups A, B,
249  C, and E have the highest loadings in factors 3, 2, 1, and 4, respectively. By checking
250 the loadings of cell types and niches in the major factors (Figure S3b,c), group B
251  corresponds to the above mentioned B cell enriched samples; group C is characterized
252 by niches with high proportion of mesenchymal cells; group E has niches consisted of
253 T cells and macrophages.

254 Furthermore, survival analysis was performed to explore the clinical indications of
255  niches. Eight c-niches were significantly related to survival time (P < 0.05, Figure
256  $4). For example, patients with ahigher proportion of c-nichel5 had alonger survival
257  time (Figure 5€). There aso exists survival differences among the patient groups
258  identified by the “Niche-CellType-Sample” tensor decomposition, such as longer
259  survival time for group C patients that that of group D (Figure 5f). Taken together,
260  spatial composition analysis could find multi-cellular niches and yield insight into
261 how cells are organized into tissues.

262

263  Ligand-receptor-mediated and spatial-constrained cell-cell communications

264 The above spatial architecture analysis disregards interacting molecules and context,
265  while expression-based methods like CellphoneDB*! and CellChat® infer cell-cell
266  communications by the expression of ligands and receptors (LRS) disregarding spatial
267  proximity. SOAPy develops a new method that simultaneously utilizes spatial

268  location and gene expression to calculate interaction scores (affinity and strength) and


https://doi.org/10.1101/2023.12.21.572725
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.21.572725; this version posted December 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

269  then outputs significant LR interactions (Figur e 6a, M ethods). It can not only infers
270  short-range cell communication that relies on contact LRs to directly deliver signaling
271 between adjacent cells; but also infer long-range cell communication that does not
272 require cell—cell contact, rather depending on the diffusion of signaling molecules
273 from one cell to another after secretion®™*,

274 The Spatial Communication module was applied to an ovarian cancer dataset
275 generated by the MERSCOPE platform, measuring 500 genes and 71,381 cells
276 (Figure 6b). Cells were classified and annotated into ten types or subtypes by Leiden
277  clustering algorithm. The spatial locations of epithelia cells C3 are very special,
278 which clearly separated with most of other cells. Therefore, our method did not find
279  dignificant contact LRs between epithelial cells C3 and other cell types. However,
280  CellChat, one of the most popular LR communication inference packages using
281  scRNA-Seq data, reported many LR interactions due to lack of spatia constrain
282  (Tabls $4), indicating lower false positives of our method.

283 We used endothelial cell as an example to present its short-range and long-range
284 communication partners. Fibroblasts and macrophages are located closest to
285  endothelial cell, while epithelial cell C3 and C4 are far away from endothelia cell
286  (Figure 6¢). Consistently, fibroblasts have the largest number of contact LRs with
287  endothelial cells recognized by our agorithm, while there is no contact LRs for
288  distant cell types such as epithelial cells C2, C3, C4 and C5 (Figure 6d). For cell
289  typesthat are not spatialy close to endothelial cells, Spatial Communication module
290  could infer secreted LRs that mediate long-range cell communications. The average
291 distance from epithelial cells C2 to the closet endothelia cells is significantly larger
292 than the average distance from fibroblasts to the closet endothelial cells (P <
293 3.9e-312). There are no contact LRs between epithelial cells C2 and endothelia cells
294  but 6 secreted LRs were identified (Figure 6 d, €).

295 Totally, we found 19 contact LRs and 66 secreted LRs that may play key roles in
296 short-range and long-range communication between endothelial cells and others
297  (Figure 6f). For example, COL1A1 (type | collagen) and its receptor ITGA1/ITGB1
298  (integrin o/B) highly express on spatial adjacent fibroblasts and endothelial cells, their


https://doi.org/10.1101/2023.12.21.572725
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.21.572725; this version posted December 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

299  affinity and strength scores are significantly higher than random scores (Figure 6g).
300 Previous studies have reported that binding collagen to integrin may activate
301  downstream signaling pathways contributing to cancer progression®. VEGFB-FLT1
302 is an interesting LR pair for long-range communication between epithelia and
303 endothelial cells (Figure 6h). Epithelia cells C2 release ligand VEGFB, and
304  endothelial cells high express FLT1 (also known as VEGFR1). Their interaction may
305  promote tumor angiogenesis and are potential drug targets for anticancer therapy™. In
306 summary, SOAPy provide a new way to study spatia-constrained cell-cell
307  interactions and more accurately identify the related ligand-receptor pairs.

308

309 Discussion

310 Tissue microenvironment is critical for understanding homeostasis, development,
311 regeneration and disease. Single-cell and spatial resolved omics are the most
312 promising technologies to investigate microenvironment. Tools for systematically
313 dissecting microenvironment and discover biologicaly important genes or spatial
314  celular architecture are still falling behind, SOAPy just fill this gap. SOAPy contains
315  easy-to-use analysis modules for interpreting complex spatial microenvironments,
316  such as the spatia distribution patterns of genes and cells, dynamic changes along
317 with space and time, and cell-cell communications et a. In this article, we
318  demonstrated all SOAPy modules with various types of spatial omics data, and
319  provides complete tutorials to help users get started quickly.

320 The gpatial distribution of genes or cells is associated with many elements, such as
321 time, interaction of cells, pathological foci, sample heterogeneity and so on. In the
322 face of these multi-dimensional data, how to extract important and meaningful
323 features is a key task. SOAPy utilizes tensor decomposition to discover the mgor
324 modes of variations from multi-dimensional data. The cases of mouse embryo
325 development and breast cancer showed that tensor decomposition in SOAPy is
326  powerful for interpret complex biological data. Another significant advantage of

327  SOAPy istheinnovative Spatial Communication module. It combines spatial distance,
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328 expression level and interaction mechanism of ligand-receptors to infer cell-cell
329 communication. The case of ovarian cancer showed that SOAPy could markedly
330 reduce false positives of interacting ligand-receptors compared to existing methods.
331 These advantages makes SOAPy differ from existing spatial data analysis tools.
332 Future extensions of SOAPy could be the integration of multi-modal spatial data to
333 delineate microenvironment, adaptation of methods from geoscience, network science,
334 or atificial intelligence to better extract biological meaningful spatial patterns. We
335  anticipate that SOAPy will be widely used by researchers to discover biological
336  insights from spatial omics data.

337

333 Methods

339  Data preprocessing

340 Data Import

341 The Data Import function converts data from different spatial omics technology to
342 a unified data structure that contains expression profiles of molecules
343 (genes/proteins/metabolites) and location of cells/spots. Barcode-based data formats
344  can be read directly by passing in tables representing expression matrix and spatial
345  coordinate information. An image and a cell segmentation mask are provided for
346  imaging-based data, and the representation and coordinate matrix is extracted through
347  thetutorials on our website. We used the Scanpy toolkit®” and generate Anndata data.

348  Spatial network construction

349 The Spatial network function provides four ways to build a neighborhood network
350 of cells/spots (Figure 1a). 1) Regular network; 2) KNN network that connects each
351 dite with its K nearest neighbors,; 3) Radius network that all cells/spots within the
352  given distance are connected; 4) Neighbor network based on Voronoi Diagram.

353

354  Spatial domain identification

355  Unsupervised spatial domain identification: STAGATE

356 STAGATE is a graph attention autoencoder for spatial domain identification™. It
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357  firstly integrates gene expression profiles and spatial location information to learn
358 low-dimensional latent embedding, and then assigns spatial domains by Louvain
359  clustering.

360 Supervised spatial domain identification: AUCell-LMI

361 To detect domains whose signature genes are already known, the score of signature

[ 38,39

362 genes for each cell/spot is calculated by AUCE!I®**, and then local Moran index®’

363 (LMI) is used to estimate the degree of spatial aggregation. LMI of cell/spot i is
364  defined as:
Xi — X

I = * Z wij (% — %) #(1)

52
Jjenj

365 Where x; is the AUCell score of cell/spot i, x:% * ., x;, j is any neighbor

366  cells/spots of i based on K nearest neighbors, w;; is the spatia weight between i
367 andj . The P-value is caculated by permutation test and adjusted by
368 Benjamini-Hochberg method™ to get the false discovery rate (FDR).

369 LMI of al cells/spots are illustrated by Moran scatterplot (Figure Sle). Each point
370  represents one cell/spot, the horizontal axis shows the normalized AUCell score, and
371  the vertical axis indicates the “spatia lag” which is calculated by spatia weighted
372 normalized score of neighboring sites. Sites with positive AUCell scores, positive
373 gpatial lags, and low FDR were picked out as the targeted spatial domain.

374

375 Spatial tendency analysis

376  Definition of ROl and distance

377 Given a region of interest (ROI), the first step is to generate a binary mask file
378  (Figure S2a). Users can manually select ROI using tools like Imagel to generate a
379 mask file, or get interesting cells/spots via SOAPy Spatial domain analysis and then
380 use SOAPy to create a mask file: Discrete cells/spots are converted to continuously
381  connected regions using a series of digital image processing steps in OpenCV library,
382  such as dilation, corrosion, removal of small connected components, and removal of

383 holes.
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384 Next, the shortest distance from each cell/spot to the ROl boundary (contour) is
385 calculated. When an ROI contains multiple connected components, the closest
386  connected component is selected to calcul ate the distance®.

d(i,C) = min,e cEnc(i,p)#(2)
387 where i is a cell/spot, € is the boundary of ROI, and p is any pixel on the
388  boundary. Enc( ) is a function of Euclidean distance. Distance with positive or
389  negative signs are used respectively to distinguish cells/spots located outside or inside
390 the ROI boundary. Then we can study the tendency of molecule expression along with
391  distance.
392 Identification of expression features with spatial tendency
393 SOAPy provides two statistical testing methods (Figure S2b): 1) wilcoxon rank
394  sum test to compare the molecule expression of cells/spots between two regions; 2)
395  spearman correlation between median expression and the rank of continuous zones.
396  To resolve more complex spatia tendency (e.g., nonlinear) or analyze ROIs without
397  prior hypothesis, SOAPy provides a parameter regresson method (polynomial
398  regression model) and a non-parametric regression method (locally weighted liner
399  regression, LOESS).
400 Polynomial regression assumes that the output variable can be represented by the

401  sum of powers of the input variable.

n
Y=a,+ Z a, d*#(3)
k=1

402  Where d is the distance to the ROI; Y is the vector of molecule expression; n is
403  the degree of the polynomial; a, is intercept; a, are slope coefficients. P-value is
404  calculated by F-test.

405 LOESS is alocally weighted polynomial regression method. Its core concept is to
406 fit weighted linear regression models with each data point using its surrounding data
407  points within the predefined window size and connect the centers of the regression
408 lines. R? (coefficient of determination) and residual standard deviation are estimated
409  to measure the goodness of fit.

410 Parameters used in both of the regression models could be customized and adjusted
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411 based on the biological scenario and goodness of fit. To summarize the spatial
412  tendency of al molecules, the estimated expression values are fed into the K-means
413  clustering algorithm to obtain gene clusters with similar spatial expression tendency.
414

415  Spatial architecture analysis

416  Spatial neighborhood analysis

417 For each paired cell types, aneighborhood score (NS) between cell type 1 (ct1) and
418 cell type 2 (ct2) is calculated as follows™:

NS _ N, ctl,ct2
ctl,ct2 —

#(4)
thl,other + thz,other

419  where N ., iSthe number of direct connections between ct1 and ct2, Neqother
420 is the number of direct connections between ctl and all other cell types.
421  Background distribution is generated from 1000 random permutations that fix the
422  numbers of ctl and ct2 and randomly change their locations. P-value is the
423  proportion of permutations whose NS is larger or smaller than the observed one,
424  which corresponds to either avoidance or interaction between ct1 and ct2.

425  Spatial infiltration analysis

426 An infiltration score (IS) is defined to present the degree of non-parenchymal

427  (immune or stromal) cells infiltration into malignant tissues:

Np, np
IS = . #(5
™ min (Npymo Noponp) ®)

428  where Ny, ,, is the number of direct connections between malignant cells and
429  non-parenchymal cells. Sample with too few non-parenchymal cells are regarded as
430  cold tumor. Otherwise, larger infiltration score indicates more non-parenchymal cells
431 are mixed into malignant tissues, while smaller infiltration score suggests
432 non-parenchymal cells are more possible to be compartmentalized with malignant
433  tissues.

434  Spatial composition analysis

435 Given an index cell, niche is defined as the proportion of cell types for its

436  surrounding cells*. Taken all cellsin one or more images, clustering algorithms like
g
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437 K-meansdividestheir nichesinto different clusters, called C-niches.

438

439  Spatial-constrained cell-cell communication inference

440 Ligand-receptor (LR) pairs were obtained from the CellChat™ package, in which
441 LR pairs were classified into contact and secreted based on their action mechanism.
442  We hypothesized that the contact LR pairs mediate short-range cell communications
443 while secreted LR pairs could mediate long-range cell communications. Therefore,
444  SOAPy infers cell communications based on the types of LR pairs and spatial
445  distance among cells (presented by a cell network). For short-range communication,
446  direct neighbors on Voronoi Diagram are connected to build a cell network. For
447  long-range communication, all cells within the given distance are connected to build a
448  cell network. Once the cell network is built, Af finity and Strength scores are
449  caculated for LRs on any two cell types. The LR pairs with Af finity Pvalue <
450 0.05 and Strength > 4.0 are considered to be significant. Paired cell types are
451  ranked based on the number of significant LRs.

452

453  Cell-level ligand-receptor affinity score

454 The interaction of LR is variable among cells/spots at different spatial locations,
455  therefore we first define a cell-level ligand-receptor affinity score. Suppose a cell/spot
456 i is a sender of ligand, cells/spots that have connection with i and express the
457  matched receptor are receivers, the Af finity score of ligand-receptor at location i
458  isdefined as:

L x1;
Af finity score;_,; = 1l+—dj , iasaligand sender#(6)
ij

jen;
459  where j is the cell/spot that connect to i in the cell network; [ and r are
460  expression levels of the ligand and receptor; d is O for contact LR pairs or Euclidean
461  distance between i and j for secreted LR pairs. Similarly, when the cell/spot i isa

462  receptor receiver, the Affinity score of receptor-ligand at location i isdefined as:
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1 *
Affinity score,_;; = Z T il— d] , lLas areceptor receiver#(7)
. ij
Jen;

463 The Affinity Pvalue isaobtained by random permutation:

#m{A™ < A°m =12, M

464 M is the total number of randomizations, A®™ is the Affinity score under the

Af finity Pvalue =

465  m-th randomization. Each randomization redistributes the expression values of the LR,
466  but keeps topology of the cell network. The affinity scores are calculated for all

467  cells/spots, and the P-values are used to find a subset of cells/spots at which the LR
468  existinteraction.

469

470  CellType-level communication score

471 Suppose ctl and ct2 are cell types that express ligands and receptors,
472 respectively. The Affinity score between the ligand of ct1 and the receptor of

473  ¢t2 isthe sum of cell-level scores:

. . ll " 7'}
Afflnlty SCOTerct1,ct2 = z z 14d;: #(9)
Lj

icctl jenct2

474  Affinity Pvalue is aso calculated by random permutation, which randomly assign
475  a pseudo expression value to each cell/spot based on cell-type specific expression
476  distribution.

477 Af finity reflects whether spatial connected ct1 and ct2 relatively more highly
478  express the LR genes. However, if the expression of ligand or receptor istoo low in
479  ctl or ct2 compared to other cell types, it is difficult to say that the LR is important
480 for cell communications; Additionaly, If ct1 and ct2 are connected by too few
481  edgesin the cell network, their communication may be false positive even affinity is
482  dignificant. To address these problems, another index ‘strength’ is added.
483  Strength;, .y 2 CONSiSts of two components: one is the relative expression level of
484 LR pairs on ctl and ct2, and the other indicates the enrichment of real spatial

485  connections between ct1l and ct2. The detailed definition is as follows:
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%lctl %r ct2 2E
Strength . ce1,cc2 = (— e > *( ) #(10)
€XPran  €XPran 1+E
edge
E = g ctl,ct2 #(11)
edgectl,ctz

486  where exp, ,,and exp, ,, are the average expression of ligand in ct1 and in all cells;

487  edgeci o, AN edge are the real and expected number of connections between

ct1ce2
488 ctl and ct2; E istheratio of real and expected numbers. To constrain the range of
489  E and make the result more stable, a Hill function transforms E into arange of (0, 2)
490 and keeps the transformed E is still 1 when the number of rea and expected
491  connections are equal.

492

493  Tensor decomposition

494 To discover the major modes of variation in the high-order spatial data, such as the
495  “Time-Space-Gene” tensor or “Niche-CellType-Sample” tensor, SOAPy provides
496 interface functions to conveniently build tensors from AnnData objects and then
497  decomposes tensors into several latent factors or components.

498 SOAPy implements two tensor decomposition methods, CANDECOMP
499 /PARAFAC (CP) and Tucker decomposition®®*. Moreover, SOAPy supports
500 non-negative constraints to make the factors more interpretable. Take non-negative
500  CP® as an example, an n-order tensor X is expressed as the weighted sum of R

502  (user-defined number of factors) rank-one tensors:

R
X = Z ralP oa® o 0a™y(12)

=
503 where A isthe weight of each factor; aﬁk) is the non-negative loading values of k-th
504 variable in the r-th factor, indicating the relative contribution of variables to factors.
505  Each factor isthe outer product of the loading vectors.

506

507  Availability
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508 All data and code that produced the findings of the study, including all main and
509  supplemental figures, are available at https://github.com/LiHongCSBLab/SOAPy.
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628  Figure 1. Schematic diagram of SOAPYy. a, “Data Preprocessing” module that imports
629  data, generates cell network and identifies spatial domains. Data from different spatial
630  omics technologies are converted to a unified data structure. Cell network can be built
631 by any of the four methods. Spatial domains are inferred by unsupervised learning
632  from expression and morphological data, or supervised classification based on the
633 expression of signature genes. b, “Molecular Spatial Dynamics’ module. Spatial
634  tendency analysis finds genes or cells whose expression change with spatial distance
635 to the given region. c,Spatiotemporal Pattern anaysis performs a tensor
636  decomposition to discover the major modes of variation in space and time. d,
637 “Cdlular Spatial Architecture” module. Neighborhood and infiltration analysis find
638  gpatial proximal cell types. Spatial composition reveals conserved niches in which
639  surrounding cells of the index cell are consisted of specific proportion of cell types. e,
640 Innovative “Spatial Communication” module that combine spatial distance,
641 expression level and action mechanism of ligand-receptors (LRs) to infer cell
642 interactions. The contact and secreted LRs are considered for short-range and
643  long-range cell communications, respectively. Results at cell/spot level indicate the
644  heterogeneous interaction among different spatial locations, they are further integrated
645  to cell type-level to report significant LRs for any two cell types.

646

647  Figure 2. Spatial tendency analysis finds genes associated with spatial structures. a,
648 HE image of a human dorsolateral prefrontal cortex (DLPFC) sample. Regions of
649  white matter (WM) and six neuronal layers (L6 to L1) are labeled on the image. b,
650 Regression curves between gene expression and the distance to WM. Polynomial
651  regression models were fitted to identify genes whose expression varied along with
652  thedistance to WM boundary. These genes were grouped into 10 clusters by K-means
653  clustering algorithm. Each curve present a cluster of genes with similar spatial
654  expression tendency. Zero at the horizontal axis indicates the outer boundary of WM.
655 C, Association between gene clusters and previously reported layer specific genes.
656  Each row corresponds to a prior gene-list that specifically expresses in one neuronal

657 layer®. Each red unit indicates the cluster of genes (column) is enriched in the prior
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658  gene-list (row). d, Spatial distributions and fitted curves of the representative genes.
659

660  Figure 3. Tensor decomposition reveals the spatiotemporal patterns of gene expression
661 during mouse embryo development. a, The spatiotemporal dataset of mouse
662 development is represented by a three-order tensor (4 time points * 8 sub-tissues *
663 1000 highly variable genes), and then it's decomposed into seven latent factors. b,
664  Representative spatial locations of sub-tissues at four time points. Each spot in the
665  subtissues represents an ROI. ¢, Loading vectors of space and time for each factor
666  obtained by tensor decomposition. Higher loading values indicates larger contribution
667 of sub-tissues or time points to the expression variation of this factor. d, Spatial
668  expression of example genes for each factor. The contours of heart, lung and midgut
669  are colored by red, blue and green curves. ROIs of gene expression are presented by
670  cyan points. The darker the cyan color, the higher the gene expression level.

671

672  Figure 4. Spatial proximity analysis characterizes cellular co-localization patterns.
673  Thetriple negative breast cancer (TNBC) dataset contains 41 samples and 7 cell types.
674 a, Heatmap showing the neighborhood scores of any two cell types in al TNBC
675 samples. b, A representative sample with strong co-localization among immune cells.
676 C. A representative sample with strong co-localization between endothelia and
677  mesenchymal cells. d, The red bars show the number of mesenchymal cells and the
678  blue bars show the infiltration score of mesenchymal cells into malignant epithelial
679 cells. e A representative sample with low infiltration score, suggesting
680 compartmentalization between mesenchyma cells and tumor tissues. f, A
681  representative sample with high infiltration score, suggesting mixture of mesenchymal
682  cellsinto malignant epithelial cells.

683

684  Figure 5. Spatial composition analysis discovers multi-cellular niches in TNBC
685 samples. a. Heatmap on the left shows the composition of neighbor cells in each
686  C-niche. The right barplot shows the number of cells belonging to each C-niche. b,

687 Representative samples of different C-niches, characterizing tumor cell aggregation
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688  and different local microenvironment of tumors. ¢, The left image shows an example
689  sample that has B cell dominated C-niches (the region of red box). Cells are colored
690 by C-niches. ‘other’ are low-frequent c-niches whose proportion is less than 2%.
691  Right images are amplified views of three representative C-niches. Black or gray cell
692  contours indicate cells belonging to or not belonging to the C niche. The fill colors of
693  cells represent cell types involved in the definition of the C-niche. d, Heatmap
694 showing the loading values and clusters of samples. The three-order
695 ‘Niche-CellType-Sample’ tensor was decomposed to four latent factors (Figure S3b,
696 C). Samples are clustered into five groups according to their loading vectors. e,
697  Survival curves stratified by the proportion of C-niche-15. f, Comparison of survival
698  curves between two groups of patients.

699

700  Figure 6. Ligand-receptor-mediated and spatial-constrained cell-cell communications.

701 a, The brief flow chart of our method. Short-range interaction is mediated by contact
702 LRs on neighbor cells, long-range interaction is mediated by secreted LRs on cells
703 within the given radius. Two new metrics, affinity and strength, are defined to
704  estimate the probability of LR interactions in any two cell types. Only when both
705  metrics are high, the LR is significant to mediate the interactions of these two cell
706  types. b, MERSCOPE data from an ovarian cancer sample. ¢, Barplot showing the
707  shortest distance from other cell to the closest endothelial cell. d, e. Short-range and
708  long-range cell communication networks between endothelial cells and other cell
709  types. Edgesin d and e are the number of contact and secreted LRs. Edge width isthe
710  number of significant ligand-receptor pairs (affinity P-value < 0.05, strength > 4). f,
711 Dot plot with ligand-receptor interactions corresponding to d and e. Each row
712 indicates a ligand-receptor pair, with the first and the second genes representing a
713 ligand and a receptor, respectively. Dot size indicates P-value of affinity. Color
714  indicates the strength score. g, An example of contact LR that mediates the
715 communication between spatially colocalized fibroblast and endothelial cells.
716  COL1ALl istheligand on sender fibroblast cells, and ITGAL/ITGBL1 is the receptor on
717  receiver endothelial cells. Expression was scaled to the range of 0-1 by normalization.
718 h, An example of secreted LR, corresponding to the communication between spatially
719 separate epithelial and endothelial cells. VEGFB is the ligand on sender
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720  epithelial-hypoxiacells, and FLT1 is the receptor on receiver endothelial cells.

721

722 Supplementary Information

723 Figure S1. Spatial domain analysis recapitulates anatomic and pathological structures.
724  a, Anatomical structure of mouse olfactory bulb (Slide-seq V2 data) and domains
725 identified by STAGATE. b-c, Expert-annotated pathological regions of a breast
726  cancer sample (10x Visium), and the estimated 2-class and 19-class domains based on
727  theresults of by STAGATE. d, Expert-annotated tertiary lymphoid structure (TLS) on
728 a kidney cancer sample (10x Visium), and the estimated TLS by the AUCell-LMI
729  method. e, Moran scatterplot. The x-axis is the Z-transformed AUC, which presents
730 the activity for the signature genes of TLS. The y-axis is the spatial weighted
731 normalized AUC scores of neighboring locations. Hotspot presented by red points
732  (FDR<0.05, x>0,y >0) isregarded as tertiary lymphoid structure.

733

734  Figure S2. Spatia tendency analysis. a, Steps of image per-processing to generate a
735  binary mask file for the given region of interest (ROI). b, Illustration of three spatial
736  tendency analysis strategies: wilcoxon test, spearman correlation, and regression. c,
737  Venn diagram shows the overlap of top 1000 genes (FDR g-value < 0.05) obtained
738  from three spatial tendency analysis strategies. There are 380 overlapped genes, 352,
739 209 and 227 genes uniquely identified by a method (Figure S2c). d, Intersection plot
740  showing the agreement for seven methods. Four methods estimate the tendency of
741  gene expressions changing with the distance to a given region: wilcoxon test,
742 spearman correlation, polynomial regresson and LOESS regression. Other three
743  methods identify spatially variable genes (SVGs) whose expressions depend on their
744  gpatial locations: SPARK, SPARKX and Spatial DE. The top-ranked genes with equal
745  number obtained from each method were compared. Genes of LOESS are ranked by
746  R-sguare, and genes of the remaining methods are ranked by FDR values. e-g,
747  Representative genes identified by different kinds of methods. e MIAT that is

748  significant by Wilcoxon test and Spearman correlation analysis but not significant by
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749  regression methods, f: PVALB that is significant by regresson methods; g:
750  Expression of TFF1 is spatially variable but do not show tendency of change with the
751  distanceto WM.

752

753  Figure S3. a, Heatmap showing the proportion of niches in al TNBC samples. b-c,
754  Loadings of cell types and niches obtained from the decomposition of
755  “Niche-CellType-Sample” tensor.

756

757  Figure S4. Results of survival anaysis.

758

759  Table S1. Comparison with existing tools of spatial omics data analysis.

760

761  Table S2. Examples datasets that were used in this study.

762

763  Table S3. Enriched functional terms by gene set enrichment analysis. Genes were
764  pre-ranked based on the loading values of each factor obtained from tensor
765  (“Time-Space-Gene’) decompositon.

766

767 Table $4. Predicted LR interactions between spatial-separated epithelial cells C3 and
768  other cell types by CellChat and SOAPy.


https://doi.org/10.1101/2023.12.21.572725
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.21.572725; this version posted December 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figurel

Data input Spatial domain Spatially tendency
. :r B_am_oo‘:-b_a,s;d _____ 1 1) Unsupervised
i | Visium Slide-seq Sterec-seq ...
1 | Imaging-based

| MerFish GeoMx seqFish ...

o M ——

H gene expression

1) Regression 2) Spearman 3) Wilcoxon test

Gene Expr. Level
Gene Expr. Lavel

g
5
TR, DTG O Near Far
Spatiotemporal Pattern
C, Spatial Architecture d, Spatial Communications 1cp
' 2) Tucker

Cell type proximity Ligand-receptor

Nar . | s S
I i Contact Secreted “
: LRs LRs | Wd/

: i
Nscore = ]
'
:
Al Nan - 3 0,
———— i M
i
!
!
!
i
!
'

8 Iax+ Nix

Iscore = =
Min(Ny.» » Nuu) Cell-level

i spatial-constrained pairs e
A & A—hos_s:ample Co X w
3:1) = P RExpr. &Nl distribution | %
) C.h 8 : i @ LExpr. g p value :
k D@ = J E 4 i 7’ Time snapshot Spatial location
' o0 0@ Samples | | O | Mmmmmmemesmmecesemsemsmemmm—————4
1) Neighborhood Score 2) Infiltration Score © Cell type-level :
et e e b Lt L i | spatial-constrained pairs :
E Niche | : -
. composition bl | gl-.aile S _ APy
! Dol £ H .
: ‘o0 .. °i e :
: R e— o Strength i A package for Spatial Omics Analysis in Python



https://doi.org/10.1101/2023.12.21.572725
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.21.572725; this version posted December 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 2

a DLPEC 151676 bw s 5 4 13 L2 LU c
1.0 Gene i
cluster
0.8 co
L2
5 —_—
E 0.6 — 3 L3
[}]
= C4
5 04 — ¢ L4
C6
—_ C7 LS
0.2 — C8
o L6
0.0 |
= e o — —~ C4 C0 C7 C1 C2 C9 C8 C5 C3 C6
d distance
NDUFA4 ENC1 PCP4 KRT17 MOBP
2 C c7| ., cs| ™ cs| ., c3
5 14 = 10
3 18 o) oml "
o
o 12 04 (3 08
§ 17 04
0 W0 a0 60 60 ) ) B0 80 - L ] £ ) UQTW

distance distance distance distance distance


https://doi.org/10.1101/2023.12.21.572725
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.21.572725; this version posted December 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure3

a b Subtissue annotation
¢ :“: walll @ Lung epithelium . ﬂ':g": e”""e"”;“
eart valve . idgut masenchyme
E% ® Heart trabecula ® Lung mesenchyme ® Midgut neuron
5q
P> uptissue
N=8

E9 ——— »E15

Image =13

9 E11 E13 E15
c Subtissue Time Example gene in each factor
Heart Lung Midgut

N 10 1

o8 oB
&
A= o8 (1]
5 = Hbb-bh1
= L oa o4
E 0z 02
E 00 o0
=] 10 10
=1
E ag 8
2

06 (1]
D] ™
5| L os 04
o o2 oz
L} o0 o0
1 10 ]

oe e
5 o 08 (13
m| W os o4
E oz 0z
>
@ e o0
I 10 0
o
w 08 08
g - o8 (.11
0| W oo . Ein

a2 oz
o 0o 00

7 | ¥

~

: Gene expression
Midgut |Law - s High

-]
E 08 1]
| o ¢ 06
=
%‘ oo 04 Psd
Q LE 01 3
5 LT+ oo e
8 1 10
o 08 a8
E o8 o8
w

6| i ., o Sin
ol
E 02 02
2 00 1]
‘g 10 1.0
E os a8
@
=| po 08 1]
=
g L 04 o4 Ndrg?
0] 02 I.-::

00 L1

I
@
o
a
-
c
3
@

- P S Lo 9 g g3 gid
é\«(}ifa"*@f;ﬁﬁ?g& e eV
Lo \.éjﬁ‘{f;s‘ w


https://doi.org/10.1101/2023.12.21.572725
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.21.572725; this version posted December 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure4

Sample 4

a Triple negative breast cancer b -
41 samples = 7 cell types

-20 0 20

1]
- CDaT
BB oo con, Macropnage — O
Eﬂllﬂiﬂ cell, Endothedal cell - :M[
0 - Epithelal cell, Mesenchymal cel
B, 4 mal coll
B e o
- Epahelial cell, B
n s
-

- - CD4 T, Endothehal cell
1 - Endothelial cel. Macrophage
- B, Macrophage

- B, Endothelial cell

l - CD4 T, Mesenchymal cel
COE T, Mesenchymal coll

Co4T COBT
T
G 16351 26192329 40 3 17301437 7 .382 222425% 1833 8 10342’?2|3|26|| 152039 5 0 324 131241
Sample
d
< Compartmentalized »  Mixed
:
1=
2
£
E
2
g 283540363741 3 52530 11633311027 4 2317 6 38 9 211913 212 & 262018
w

Mesenchymal cell
number
700

1,400



https://doi.org/10.1101/2023.12.21.572725
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.21.572725; this version posted December 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure5

Cell type composition in C-niche

Sample15 (C-niche13, 18) Sample25 (C-niche25)

N ) vy

Counts (k)
10

=
|

—_—

g
NEGPN R INGAO A=

(=R

Mo (MMM R St

&R

Weight

01 o4

c
C-niche
- 0
. 10
L_Ii}
L)
L .15
-G
17
-
L]
- 2
-
- 26
L]
- = B
B CD4T
B COST
BN Endothelial cell
B Epithehal cell
BN Macrophage
I Mesenchymal cell
| other
e f
C-niche 15 Sample Group
Group
B i ¥ gapc * gupn
Factor 1 o] — = W =
E‘HL"- %_|_1
Factor2 & om — L | L
— GF
% e 40—
Factor3 B8 0% — . .
: z |
Factor 4 o = "R | =
. | a p=0.022 2 | p=0.034
LYy Shanyed  Weight oo s
[ B 000 1500 o0 [] 00 1000 1500 o0

0.1 0.4 Time (days) Time (days)


https://doi.org/10.1101/2023.12.21.572725
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.21.572725; this version posted December 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 6

a @ b )
. { o-e Ovarian Cancer MERSCOPE Cell type

1) Contact LRs Neighbor network 4

‘I ®.@ P
30 .—»@@%o - | |

2) Secreted LRs

B

Endothelial cell
Epithelial cell_C1
Epithelial cell_C2

Epithelial cell_C3
Epithelial cell_C4

Affinity i Epithelial coll_C5
Strength Fibroblast
Macrophage

THK

_ FF .
o ® Type! calls

; Receptor & @ Type2 cells

. ® Other colls

Distants between endothelial cell and others

3500
20 1 l
3000
1600
1280

‘;ié%

P LSS el

PEGAM1 PEGAM1
ches coze
FCER2CR2
LAMBYITGA1AITGEY
FNTITGASSITGE
FNTITGASRITGEY
COLBATITGAIRITGET
COLAAY ITGAIBITGHT
COLIATITGAISITGRET

FKITLGKIT
| ANGPTZ ITGASSITGE1
L ANGPT2 TEK
L ANGPT1-TEK
SPP1ITGASSITGDY
SPP1ITGAGBITGE1
TNFSF4 TNFRSFA
b CSF1.CSFIR 60
b exCLIZ ACKRS
f CXCL11ACKRS
| CXCL1Z CXCR4 5
q
-

co @
co0@eed®

LI N« Y

@
Y ]
Y ]

Contact
' EERE R
.

B

L

IR R
.

distance
« 0 |@@ s 0@ e

Y ‘D..""
[ERT AR ETY TRX Jol ]
[ ] .

o0 -
et O

s s s am|@
Y I3
«sooe 009
Qe s 0=
ETTTYY)
O

LR L [ el DX JoRN Y ]

L]
@e0

B LR T X3
..
LR e
LERERETY TNl
L
-0

| CxoLe.CXCRI 4.0

| coLacens

F GOLS GORS

F COLS CORA

tCOLITCOR 2.0

t coLICorY < 2.0

kcoLs conrt

k VEGFC:FLT4AKDR

F PGFFLTY

F VEGFC:KDR

t VEGFC:FLT4

b VEGFEFLT1 Affinity

| POGFBPOGFRD 05
POGFBPOGFRA by
FOGFA POGFRE o
PLGRAPUGFRA o0
FGF1FGFRI .

L'plmclll.lccll_l.'l l-ri":lialﬂll_f-'ﬁ tplnullal.«ll_c: l-';“ﬂial“ll_t'f O
I.pu'lheli.ll(e: & I';m:linlnll 4 L pithelisl rr:!'l lp':m;nl«u C4 %‘% %K%%%W% Sign:c':;;mr:?:arm
a%%%%% %&,‘%K %&*% Strength > 4.0 )

0 G WY G S

PEREE )
.

Secretory
EEN N

[elel 111}

Short-range e Long-range

LE 3 T X I
ias s s acnnnl SO0

N FRORE N I RO N )
TR

.
@r0s:-10 GO+

Macrophage  Fibroblast Macrophage  Fibeoblast
L] a L] a

.
L]
.
.
L]
.
[
.
[ ]

TNK B TNK H
[ ) L] - L

00
—-aoooc L L K-l L]

L L] L »
Epithelial cell €1 Endothelial cell Fpithelial eell C1 Frdothelial cell

-..0. [eee -0 -

R

.8
o]
L ]
-
L]
s

E TTTT T NY P Y
ELETRN BT [ I
F

Je00«
S P N

q_. A

”)

Short-range communications Long-range communications
Ligand: Fibroblast (COL1A1) , Ligand: Epithelial cell_C2 (VEGFB)
Receptor: Endothelial cell (ITGA1 and ITGB1) Receptor: Endothelial cell (FLT1)
0.92 0.51
o =
g 2
s &
078 0.0
07 049
-i =
B 2
g
El
0.0 " 0.0



https://doi.org/10.1101/2023.12.21.572725
http://creativecommons.org/licenses/by-nc-nd/4.0/

