

3

4 Heqi Wang^{1#}, Jiarong Li^{1#}, Siyu Jing¹, Ping Lin¹, Yu Li², Haibing Zhang²,
5 Yujie Chen¹, Zhen Wang¹ & Hong Li^{1*}

6

7 Affiliations

⁸ ¹CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and
⁹ Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences,
¹⁰ Shanghai 200031, China

11 ²CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute
12 of Nutrition and Health, University of Chinese Academy of Sciences, Chinese
13 Academy of Sciences, Shanghai, China

14

¹⁵ [#]These authors contributed equally

¹⁶*Correspondence to: lihong01@sinh.ac.cn (H. L.)

17

18 Abstract

19 Advances in spatial omics technologies have brought opportunities to dissect tissue
20 microenvironment, while also posing more requirements and challenges for
21 computational methods. Here we developed a package SOAPy to systematically
22 dissect spatial architecture, dynamics and communication from spatial omics data.
23 Specifically, it provides analysis methods for multiple spatial-related tasks, including
24 spatial domain, spatial expression tendency, spatiotemporal expression pattern,
25 cellular co-localization, multi-cellular niches, and ligand-receptor-mediated and
26 spatial-constrained cell communication. Applying SOAPy on different spatial omics
27 technologies and diverse biological fields has demonstrated its power on elucidation
28 of biological questions about tumors, embryonic development, and normal
29 physiological structures. Overall, SOAPy is a universal tool for spatial omics analysis,
30 providing a foundation for continued investigation of the microenvironment.

31

32 **Keywords**

33 spatial omics, Python package, microenvironment, expression pattern, multi-cellular
34 niche, cell communication
35

36 **Introduction**

37 Spatially resolved transcriptomics has been crowned Method of the Year 2020 by
38 Nature Methods¹. Since then, more and more experimental methods for measuring
39 expression levels of genes, proteins or metabolites in a spatial context have been
40 developed. These technologies include barcode-based and imaging-based ones, which
41 differ in resolution, accuracy and throughout^{2,3}. The most widely used 10X Visium
42 spatial transcriptomics measures thousands of genes in each 55µm spot that typically
43 contains 1-10 cells⁴. And imaging-based methods reach more microscopic resolution,
44 such as MIBI-TOF⁵ and PhenoCycler-Fusion⁶, both detecting dozens of proteins at
45 subcellular resolution. Additionally, spatial multi-omics technologies that
46 simultaneously measure multiple molecular types are emerging, e.g NanoString
47 GeoMx DSP for 18000 RNAs and 140 proteins in the region of interest (usually >100
48 cells)⁷.

49 With the development of experimental methods, corresponding analysis pipelines
50 have been designed for pre-processing raw data from specific experimental platforms,
51 such as Space Ranger for 10X Visium and MCMICRO for multiplexed tissue
52 imaging⁸. Methods adapted from single-cell RNA sequencing (scRNA-seq) data
53 analysis could be used to perform standard dimensional reduction, clustering, cell
54 type annotation and marker selection for spatial-omics data⁹ that do not require spatial
55 information. And for low resolution spatial technologies, various deconvolution
56 methods have been developed to impute cell-type composition from the mixture of
57 cells.

58 After these pre-processing, downstream analyses are largely independent of
59 experimental technologies, focus on the key feature of spatial omics: space. For
60 example, identifying spatial variable genes¹⁰⁻¹², detecting spatial domains¹³, inferring
61 genes or cell-subtypes associated with spatial localization, and so on³. Earlier

62 algorithms were often designed for one specific task, tools that fit in with various
63 analysis tasks are becoming popular. A pioneer work Giotto not only builds a data
64 pre-processing pipeline similar to scRNA-seq data analysis¹⁴, but also provides
65 modules for spatial pattern detection, cell neighborhood analysis, and interactive
66 visualization. Squidpy provides scalable analysis framework for both spatial
67 neighborhood graph and image, along with an interactive visualization tool¹⁵. stlearn
68 is another integrated package for spatial transcriptomic analysis, which adds the
69 functions of spatial trajectories and pseudotime analysis¹⁶. Investigating the spatial
70 organization of tissue microenvironment are important applications of spatial omics,
71 which may gain new insights in various biological fields. However, the related
72 analysis methods are scattered or lacking, a package for integrative analysis of
73 microenvironmental spatial organization is in an urgent need.

74 To address this problem, we present a package SOAPy (Spatial Omics Analysis in
75 Python) to jointly perform multiple tasks for dissecting spatial organization, including
76 spatial domain, spatial expression tendency, spatiotemporal expression pattern,
77 co-localization of paired cell types, multi-cellular niches, and cell-cell communication.
78 SOAPy improves on previous tools in three main areas (**Table S1**): (1) Providing
79 several alternative methods for most tasks to be suitable for complex and diverse
80 biological tissues and various analysis requirements. (2) Offering a factor
81 decomposition strategy for high-order spatial data to discover the major modes of
82 variations in spatial, time, sample or others. (3) Proposing a new method to combine
83 ligand-receptor expression and spatial locations to better infer short-range and
84 long-range cell communications. We also applied SOAPy to a wide range of public
85 datasets to demonstrate its general applicability and interpretability. SOAPy will be
86 one of the fundamental packages for spatial omics analysis in Python.

87

88 **Results**

89 **Overview of the SOAPy package**

90 SOAPy is composed of four modules: ***Data Preprocessing***, ***Molecular Spatial***
91 ***Dynamics*** containing *Spatial Tendency* and *Spatiotemporal Pattern* analysis, ***Cellular***
92 ***Spatial Architecture*** for analyzing *Spatial Proximity* and *Spatial Composition*, and
93 ***Spatial Communication*** that combines spatial distance, expression level and
94 interaction mechanism of ligand-receptors to infer cell interactions (**Figure 1**). In
95 addition, SOAPy provides rich visualization capabilities for all of the analysis
96 methods mentioned above.

97 The flexible ***Data Preprocessing*** module makes SOAPy suitable for various spatial
98 data, fitting with different modalities and different resolutions. To demonstrate the
99 utility of SOAPy, eight public datasets obtained from five state-of-the-art
100 technologies were analyzed (**Table S2**). These datasets involve multiple scenarios
101 with different molecular modalities (protein vs RNA), throughput (dozens to
102 genome-wide), spatial resolution (0.1 ~ 55 μ m), and in physiological and pathological
103 states.

104

105 **Spatial domain analysis recapitulates anatomic and pathological structures**

106 Cells are not randomly distributed in tissues. They are self-organized into specific
107 structures to perform tissue functions. While in disease states, cells form abnormal
108 structures. The *Spatial Domain* analysis provides unsupervised (STAGATE) and
109 supervised (AUCell-LMI) methods to detect these structures (called spatial domains)
110 based on gene expression profiles and spatial locations^{13,17,18}.

111 We first tested STAGATE on Slide-seq V2 data for mouse olfactory bulb and 10x
112 Visium spatial transcriptomic data for human breast cancer¹⁹. Spatial domains
113 identified by STAGATE are highly consistent with the manual-labelled structures . It
114 successfully distinguishes truth anatomical structures (**Figure S1a**), malignant and
115 non-malignant tissues (**Figure S1b**, ARI=0.513), and more sophisticated pathological
116 stages (**Figure S1c**, ARI=0.580). Then we tested AUCell-LMI for finding local
117 structures with known signature genes, such as tertiary lymphoid structure (TLS)²⁰.
118 The results showed that supervised AUCell-LMI based on known TLS signature
119 could more accurate and more convenient identified the TLS region than

120 unsupervised STAGATE (**Figure S1d, e**). Taken together, Spatial domain analysis in
121 SOAPy could extract the interesting anatomic or pathological structures for
122 downstream analysis.

123

124 **Spatial tendency analysis finds genes associated with spatial structures**

125 The aim of *Spatial Tendency* analysis is to assess whether expression features were
126 influenced by spatial proximity to the region of interest (ROI). Expression features
127 could be gene expression, pathway activity, cell proportion and so on. The ROI is
128 defined by manual annotation or automatically detected by the *Spatial Domain*
129 analysis. Two kinds of methods, statistical test and regression model, are available for
130 tendency estimation in the *Spatial Tendency* module (Methods).

131 We used 10X Visium data of mouse dorsolateral prefrontal cortex (DLPFC)²¹ as an
132 example to validate the feasibility of spatial tendency estimation (**Figure 2a**). The
133 sample is consisted of the grey matter of DLPFC (including six cortical layers) and
134 white matter (**Figure S2a**). To find genes whose expression changes along with the
135 distance to the white matter, three strategies were used and compared²² (**Figure S2b,**
136 **c**): 1) cortical layers were divided into two regions and applied Wilcoxon test to
137 identify differential expressed genes; 2) cortical layers were separated to five
138 continuous zones for Spearman correlation test; 3) a polynomial regression model was
139 fitted between gene expressions and distances to the white matter. Some genes
140 identified by Wilcoxon test and Spearman correlation only express in few spots,
141 which may be the results of data sparsity instead of real biological differences (**Figure**
142 **S2e**). The regression model describes the continuous spatial variation of expression,
143 therefore it could find more complex spatial patterns than other methods²³, such as
144 nonlinear “low-high-low” spatial pattern (**Figure S2f**). Next, we analyzed the
145 expression patterns of 2857 significant (FDR < 0.05, range >0.3) genes identified by
146 polynomial regression. K-means clustering grouped them into 10 clusters (**Figure 2b**).
147 The gene clusters were compared with previously reported cortical layer specific
148 genes^{24,25} (**Figure 2c**), showing high consistence. C3 is specifically highly expressed
149 near white matter regions; the expression peaks of C5, C8, C2, and C7 are at layer 6,

150 5, 4, 2, respectively (**Figure 2d**).

151 Considering that there are no predetermined structures in some scenarios, we added
152 three published methods (SpatialDE¹⁰, SPARK¹², and SPARKX¹¹) which identify
153 spatial variable genes (SVGs) but do not need a given ROI. Comparing these SVGs
154 methods with the above mentioned tendency estimation found shared and specific
155 genes among methods (**Figure S2d**). SVG methods were more inclined to show the
156 local differential expression of genes rather than the relationship with distance
157 (**Figure S2g**). Users can select suitable methods based on their requirements.

158

159 **Tensor decomposition reveals the spatiotemporal patterns of gene expression**

160 With advances in omics techniques, spatial-resolved and time-series molecule
161 profilings are becoming available. One of the challenges is how to study the roles of
162 spatial effects and temporal effects simultaneously in biological questions. The
163 *Spatiotemporal Pattern* function in SOAPy employs tensor decomposition to extract
164 components from the three-order expression tensor (“Time-Space-Gene”), revealing
165 hidden patterns and reducing the complexity of data explanation.

166 Here, we used the mouse embryo development dataset from GeoMx Digital Spatial
167 Profiling (DSP)⁷. Limited by the availability of expression profiles, four time points
168 (E9, E11, E13, E15) and eight subtissues (Heart wall, Heart valve, heart trabecula,
169 Lung epithelium, Lung mesenchyme, Midgut epithelium, Midgut mesenchyme, and
170 Midgut neuron) from three organs were included in our analysis (**Figure 3a,b**).
171 Canonical Polyadic (CP) decomposition²⁶ was used to factorize the expression tensor
172 with 1000 high variable genes (a 4*8*1000 tensor) into seven factors, each of which
173 is the outer product of three vectors that contain the loadings for describing the
174 relative contribution of time, subtissues and genes (**Figure 3c**). We observed three
175 empirical spatiotemporal patterns based on the loadings of time and subtissues: pure
176 temporal variation (F1, F2), pure spatial variation (F3, F4), spatial and temporal
177 variation occur together (F5, F6, F7). We also conducted functional enrichment
178 analysis based on the loadings of genes for each factor (**Table S3**) and visualized the
179 typical genes in images (**Figure 3d**).

180 Genes in F1 (e.g. *Hbb-bhl*) highly express in heart and lung sub-tissues at E9, and
181 then gradually decrease in the later stages. Their expression pattern is consistent with
182 the enriched function “regulation of vasculature development”. F1 indicates
183 co-development of heart and lung in the early embryo, which is consistent with
184 previous studies²⁷. The expression of F2 genes (e.g. *Epcam*) increases significantly
185 since E11 in most sub-tissues of three organs, especially in the lungs. Expression of
186 F3 and F4 genes is stable along the developmental time. F4 genes highly express in
187 heart wall and heart trabecula, and their functions are enriched in cardiac cell
188 development as expected. Both F5 and F7 genes are enriched in midgut development.
189 F5 (e.g. *Psd*) slightly decreases from E11 to E15, while F7 (e.g. *Ndrig1*) increases
190 obviously from E11 to E15. F6 genes are specifically highly expressed in the heart
191 valve between E13-E15. In summary, the *Spatiotemporal Pattern* function in SOAPy
192 could reveal spatiotemporal specificity during development and other biological
193 processes.

194

195 **Spatial proximity analysis characterizes co-localization patterns between cell types**

196 Spatial architecture of cells is important for understanding the organization rules
197 from single cells to tissues²⁸⁻³⁰. SOAPy first constructs a cell/spot network
198 from spatial locations; then implements two scenarios for deciphering spatial
199 architecture: *Spatial Proximity* analysis (including neighborhood and infiltration)
200 determines whether two cell types or cell states within an image are significant
201 proximal; *Spatial Composition* analysis identifies multi-cellular niches that composed
202 by cell types with specific proportion.

203 We applied this analysis to a dataset of 41 triple-negative breast cancer (TNBC)
204 patients⁵, which used multiplexed ion beam imaging by time-of-flight (MIBI-TOF) to
205 simultaneously quantify expression of 36 proteins in-situ at sub-cellular resolution.
206 Totally 211,649 cells were annotated to eight types (epithelial cell, endothelial cell,
207 mesenchymal cell, B, CD4 T, CD8 T, macrophage and other) based on the expression
208 of known protein markers.

209 First, *Spatial Neighborhood* analysis was performed to identify significantly
210 adjacent cell types compared to random perturbation²⁹. **Figure 4a** illustrates the
211 neighborhood score of all samples for all cell type pairs, with positive or negative
212 scores corresponding to co-localization or avoidance. Different immune cells types
213 such as B, CD4 T, CD8 T and macrophage have significant co-localization in many
214 patients, which may relate with the formation of inflammatory foci (**Figure 4b**).
215 Endothelial and mesenchymal cells also prefer to co-locate together (**Figure 4c**).
216 Colocalization pattern of malignant epithelial cells and non-parenchymal cells were
217 highly heterogeneous across patients. Taking malignant epithelial cells and
218 mesenchymal cells as an example, samples with less than 200 mesenchymal cells
219 were filtered, others are subjected to *Spatial Infiltration* analysis. Samples with higher
220 and lower infiltration scores indicate mixed (e.g. sample 28) and compartmentalized
221 (e.g. sample 29) patterns between malignant epithelial cells and mesenchymal cells
222 respectively (**Figure 4 d-f**).
223

224 **Spatial composition analysis discovers multi-cellular niches**

225 For *Spatial Composition* analysis of the TNBC dataset, the cell-cell network that
226 connected centroids of the cells within 100 pixels was built to capture the composition
227 pattern of more surrounding cells. Niche of each cell was presented by the proportion
228 of cell types of its surrounding cells, called I-niche. I-niches of 211,649 cells from 41
229 TNBC patients were clustered into 30 niche clusters, named C-niches (**Figure 5a**,
230 **Figure S3a**). The major cell types of the top two C-niches (C-niche13, C-niche18) are
231 mainly composed of malignant epithelial cells, and the percentages of other cell types
232 are less than 15%, showing the characteristics of tumor cell aggregation (**Figure 5b**).
233 Additionally, epithelial cells also form C-niches with other cell types. For example,
234 C-niche25 is composed of 38% epithelial cells, 31% mesenchymal cells, and 9%
235 macrophages; C-niche27 is composed of 23% epithelial, 28% endothelial, 10%
236 mesenchymal cells and 10% macrophages; C-niche15 is composed of 30% epithelial,
237 23% CD4 T, 13% CD8 T cells and 11% macrophages, suggesting different local
238 microenvironment exists among tumors (**Figure 5b**). We also observed four B cell

239 dominated C-niches (C-niche10, C-niche17, C-niche28, C-niche4) that may be related
240 to tertiary lymphoid structures. For example, sample 1 contains C-niche 10, 17, and
241 28 (**Figure 5c**). Around 80% of cells are B cells in C-niche10; C-niche17 majorly
242 consists of 52% B cells, 13% CD8 T cells, 10% CD4 T cells, and 11% epithelial cells;
243 C-niche28 majorly consists of 30% B cells, 10% CD8 T cells, and 37% epithelial
244 cells.

245 In order to investigate the combinational effects of non-parenchymal cell types and
246 niches on patient heterogeneity, the “Niche-CellType-Sample” tensor (30*7*41) was
247 factorized to four factors (**Methods**). All samples were clustered into five groups
248 according to the sample loadings in different factors (**Figure 5d**). Sample groups A, B,
249 C, and E have the highest loadings in factors 3, 2, 1, and 4, respectively. By checking
250 the loadings of cell types and niches in the major factors (**Figure S3b,c**), group B
251 corresponds to the above mentioned B cell enriched samples; group C is characterized
252 by niches with high proportion of mesenchymal cells; group E has niches consisted of
253 T cells and macrophages.

254 Furthermore, survival analysis was performed to explore the clinical indications of
255 niches. Eight c-niches were significantly related to survival time ($P < 0.05$, **Figure**
256 **S4**). For example, patients with a higher proportion of c-niche15 had a longer survival
257 time (**Figure 5e**). There also exists survival differences among the patient groups
258 identified by the “Niche-CellType-Sample” tensor decomposition, such as longer
259 survival time for group C patients than that of group D (**Figure 5f**). Taken together,
260 spatial composition analysis could find multi-cellular niches and yield insight into
261 how cells are organized into tissues.

262

263 **Ligand-receptor-mediated and spatial-constrained cell-cell communications**

264 The above spatial architecture analysis disregards interacting molecules and context,
265 while expression-based methods like CellphoneDB³¹ and CellChat³² infer cell-cell
266 communications by the expression of ligands and receptors (LRs) disregarding spatial
267 proximity. SOAPy develops a new method that simultaneously utilizes spatial
268 location and gene expression to calculate interaction scores (affinity and strength) and

269 then outputs significant LR interactions (**Figure 6a, Methods**). It can not only infers
270 short-range cell communication that relies on contact LRs to directly deliver signaling
271 between adjacent cells; but also infer long-range cell communication that does not
272 require cell-cell contact, rather depending on the diffusion of signaling molecules
273 from one cell to another after secretion^{33,34}.

274 The *Spatial Communication* module was applied to an ovarian cancer dataset
275 generated by the MERSCOPE platform, measuring 500 genes and 71,381 cells
276 (**Figure 6b**). Cells were classified and annotated into ten types or subtypes by Leiden
277 clustering algorithm. The spatial locations of epithelial cells C3 are very special,
278 which clearly separated with most of other cells. Therefore, our method did not find
279 significant contact LRs between epithelial cells C3 and other cell types. However,
280 CellChat, one of the most popular LR communication inference packages using
281 scRNA-Seq data, reported many LR interactions due to lack of spatial constrain
282 (**Table S4**), indicating lower false positives of our method.

283 We used endothelial cell as an example to present its short-range and long-range
284 communication partners. Fibroblasts and macrophages are located closest to
285 endothelial cell, while epithelial cell C3 and C4 are far away from endothelial cell
286 (**Figure 6c**). Consistently, fibroblasts have the largest number of contact LRs with
287 endothelial cells recognized by our algorithm, while there is no contact LRs for
288 distant cell types such as epithelial cells C2, C3, C4 and C5 (**Figure 6d**). For cell
289 types that are not spatially close to endothelial cells, *Spatial Communication* module
290 could infer secreted LRs that mediate long-range cell communications. The average
291 distance from epithelial cells C2 to the closest endothelial cells is significantly larger
292 than the average distance from fibroblasts to the closest endothelial cells ($P <$
293 3.9e-312). There are no contact LRs between epithelial cells C2 and endothelial cells
294 but 6 secreted LRs were identified (**Figure 6 d, e**).

295 Totally, we found 19 contact LRs and 66 secreted LRs that may play key roles in
296 short-range and long-range communication between endothelial cells and others
297 (**Figure 6f**). For example, COL1A1 (type I collagen) and its receptor ITGA1/ITGB1
298 (integrin α/β) highly express on spatial adjacent fibroblasts and endothelial cells, their

299 affinity and strength scores are significantly higher than random scores (**Figure 6g**).
300 Previous studies have reported that binding collagen to integrin may activate
301 downstream signaling pathways contributing to cancer progression³⁵. VEGFB-FLT1
302 is an interesting LR pair for long-range communication between epithelial and
303 endothelial cells (**Figure 6h**). Epithelial cells C2 release ligand VEGFB, and
304 endothelial cells high express FLT1 (also known as VEGFR1). Their interaction may
305 promote tumor angiogenesis and are potential drug targets for anticancer therapy³⁶. In
306 summary, SOAPy provide a new way to study spatial-constrained cell-cell
307 interactions and more accurately identify the related ligand-receptor pairs.

308

309 **Discussion**

310 Tissue microenvironment is critical for understanding homeostasis, development,
311 regeneration and disease. Single-cell and spatial resolved omics are the most
312 promising technologies to investigate microenvironment. Tools for systematically
313 dissecting microenvironment and discover biologically important genes or spatial
314 cellular architecture are still falling behind, SOAPy just fill this gap. SOAPy contains
315 easy-to-use analysis modules for interpreting complex spatial microenvironments,
316 such as the spatial distribution patterns of genes and cells, dynamic changes along
317 with space and time, and cell-cell communications et al. In this article, we
318 demonstrated all SOAPy modules with various types of spatial omics data, and
319 provides complete tutorials to help users get started quickly.

320 The spatial distribution of genes or cells is associated with many elements, such as
321 time, interaction of cells, pathological foci, sample heterogeneity and so on. In the
322 face of these multi-dimensional data, how to extract important and meaningful
323 features is a key task. SOAPy utilizes tensor decomposition to discover the major
324 modes of variations from multi-dimensional data. The cases of mouse embryo
325 development and breast cancer showed that tensor decomposition in SOAPy is
326 powerful for interpret complex biological data. Another significant advantage of
327 SOAPy is the innovative *Spatial Communication* module. It combines spatial distance,

328 expression level and interaction mechanism of ligand-receptors to infer cell-cell
329 communication. The case of ovarian cancer showed that SOAPy could markedly
330 reduce false positives of interacting ligand-receptors compared to existing methods.

331 These advantages makes SOAPy differ from existing spatial data analysis tools.
332 Future extensions of SOAPy could be the integration of multi-modal spatial data to
333 delineate microenvironment, adaptation of methods from geoscience, network science,
334 or artificial intelligence to better extract biological meaningful spatial patterns. We
335 anticipate that SOAPy will be widely used by researchers to discover biological
336 insights from spatial omics data.

337

338 **Methods**

339 **Data preprocessing**

340 **Data Import**

341 The *Data Import* function converts data from different spatial omics technology to
342 a unified data structure that contains expression profiles of molecules
343 (genes/proteins/metabolites) and location of cells/spots. Barcode-based data formats
344 can be read directly by passing in tables representing expression matrix and spatial
345 coordinate information. An image and a cell segmentation mask are provided for
346 imaging-based data, and the representation and coordinate matrix is extracted through
347 the tutorials on our website. We used the Scanpy toolkit³⁷ and generate Anndata data.

348 **Spatial network construction**

349 The *Spatial network* function provides four ways to build a neighborhood network
350 of cells/spots (Figure 1a). 1) Regular network; 2) KNN network that connects each
351 site with its K nearest neighbors; 3) Radius network that all cells/spots within the
352 given distance are connected; 4) Neighbor network based on Voronoi Diagram.

353

354 **Spatial domain identification**

355 **Unsupervised spatial domain identification: STAGATE**

356 STAGATE is a graph attention autoencoder for spatial domain identification¹³. It

357 firstly integrates gene expression profiles and spatial location information to learn
358 low-dimensional latent embedding, and then assigns spatial domains by Louvain
359 clustering.

360 **Supervised spatial domain identification: AUCell-LMI**

361 To detect domains whose signature genes are already known, the score of signature
362 genes for each cell/spot is calculated by AUCell^{38,39}, and then local Moran index¹⁷
363 (LMI) is used to estimate the degree of spatial aggregation. LMI of cell/spot i is
364 defined as:

$$I_i = \frac{x_i - \bar{x}}{s^2} * \sum_{j \in \text{en}_i} w_{ij} (x_j - \bar{x}) \quad \#(1)$$

365 Where x_i is the AUCell score of cell/spot i , $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$, j is any neighbor
366 cells/spots of i based on K nearest neighbors, w_{ij} is the spatial weight between i
367 and j . The P-value is calculated by permutation test and adjusted by
368 Benjamini-Hochberg method⁴⁰ to get the false discovery rate (FDR).

369 LMI of all cells/spots are illustrated by Moran scatterplot (Figure S1e). Each point
370 represents one cell/spot, the horizontal axis shows the normalized AUCell score, and
371 the vertical axis indicates the “spatial lag” which is calculated by spatial weighted
372 normalized score of neighboring sites. Sites with positive AUCell scores, positive
373 spatial lags, and low FDR were picked out as the targeted spatial domain.

374

375 **Spatial tendency analysis**

376 **Definition of ROI and distance**

377 Given a region of interest (ROI), the first step is to generate a binary mask file
378 (**Figure S2a**). Users can manually select ROI using tools like ImageJ to generate a
379 mask file, or get interesting cells/spots via SOAPy *Spatial domain* analysis and then
380 use SOAPy to create a mask file: Discrete cells/spots are converted to continuously
381 connected regions using a series of digital image processing steps in OpenCV library,
382 such as dilation, corrosion, removal of small connected components, and removal of
383 holes.

384 Next, the shortest distance from each cell/spot to the ROI boundary (contour) is
385 calculated. When an ROI contains multiple connected components, the closest
386 connected component is selected to calculate the distance²³.

$$d(i, C) = \min_{p \in C} Enc(i, p) \#(2)$$

387 where i is a cell/spot, C is the boundary of ROI, and p is any pixel on the
388 boundary. $Enc(\)$ is a function of Euclidean distance. Distance with positive or
389 negative signs are used respectively to distinguish cells/spots located outside or inside
390 the ROI boundary. Then we can study the tendency of molecule expression along with
391 distance.

392 **Identification of expression features with spatial tendency**

393 SOAPy provides two statistical testing methods (**Figure S2b**): 1) wilcoxon rank
394 sum test to compare the molecule expression of cells/spots between two regions; 2)
395 spearman correlation between median expression and the rank of continuous zones.
396 To resolve more complex spatial tendency (e.g., nonlinear) or analyze ROIs without
397 prior hypothesis, SOAPy provides a parameter regression method (polynomial
398 regression model) and a non-parametric regression method (locally weighted liner
399 regression, LOESS).

400 Polynomial regression assumes that the output variable can be represented by the
401 sum of powers of the input variable.

$$Y = a_0 + \sum_{k=1}^n a_k d^k \#(3)$$

402 Where d is the distance to the ROI; Y is the vector of molecule expression; n is
403 the degree of the polynomial; a_0 is intercept; a_k are slope coefficients. P-value is
404 calculated by F-test.

405 LOESS is a locally weighted polynomial regression method. Its core concept is to
406 fit weighted linear regression models with each data point using its surrounding data
407 points within the predefined window size and connect the centers of the regression
408 lines. R^2 (coefficient of determination) and residual standard deviation are estimated
409 to measure the goodness of fit.

410 Parameters used in both of the regression models could be customized and adjusted

411 based on the biological scenario and goodness of fit. To summarize the spatial
412 tendency of all molecules, the estimated expression values are fed into the K-means
413 clustering algorithm to obtain gene clusters with similar spatial expression tendency.

414

415 **Spatial architecture analysis**

416 **Spatial neighborhood analysis**

417 For each paired cell types, a neighborhood score (NS) between cell type 1 ($ct1$) and
418 cell type 2 ($ct2$) is calculated as follows²⁹:

$$NS_{ct1,ct2} = \frac{N_{ct1,ct2}}{N_{ct1,other} + N_{ct2,other}} \#(4)$$

419 where $N_{ct1,ct2}$ is the number of direct connections between $ct1$ and $ct2$, $N_{ct1,other}$
420 is the number of direct connections between $ct1$ and all other cell types.
421 Background distribution is generated from 1000 random permutations that fix the
422 numbers of $ct1$ and $ct2$ and randomly change their locations. P-value is the
423 proportion of permutations whose NS is larger or smaller than the observed one,
424 which corresponds to either avoidance or interaction between $ct1$ and $ct2$.

425 **Spatial infiltration analysis**

426 An infiltration score (IS) is defined to present the degree of non-parenchymal
427 (immune or stromal) cells infiltration into malignant tissues:

$$IS_{m,np} = \frac{N_{m,np}}{\min(N_{m,m}, N_{np,np})} \#(5)$$

428 where $N_{m,np}$ is the number of direct connections between malignant cells and
429 non-parenchymal cells. Sample with too few non-parenchymal cells are regarded as
430 cold tumor. Otherwise, larger infiltration score indicates more non-parenchymal cells
431 are mixed into malignant tissues, while smaller infiltration score suggests
432 non-parenchymal cells are more possible to be compartmentalized with malignant
433 tissues.

434 **Spatial composition analysis**

435 Given an index cell, niche is defined as the proportion of cell types for its
436 surrounding cells⁴¹. Taken all cells in one or more images, clustering algorithms like

437 K-means divides their niches into different clusters, called C-niches.

438

439 **Spatial-constrained cell-cell communication inference**

440 Ligand-receptor (LR) pairs were obtained from the CellChat³² package, in which
441 LR pairs were classified into contact and secreted based on their action mechanism.
442 We hypothesized that the contact LR pairs mediate short-range cell communications
443 while secreted LR pairs could mediate long-range cell communications. Therefore,
444 SOAPy infers cell communications based on the types of LR pairs and spatial
445 distance among cells (presented by a cell network). For short-range communication,
446 direct neighbors on Voronoi Diagram are connected to build a cell network. For
447 long-range communication, all cells within the given distance are connected to build a
448 cell network. Once the cell network is built, *Affinity* and *Strength* scores are
449 calculated for LRs on any two cell types. The LR pairs with *Affinity Pvalue* <
450 0.05 and *Strength* > 4.0 are considered to be significant. Paired cell types are
451 ranked based on the number of significant LRs.

452

453 **Cell-level ligand-receptor affinity score**

454 The interaction of LR is variable among cells/spots at different spatial locations,
455 therefore we first define a cell-level ligand-receptor affinity score. Suppose a cell/spot
456 i is a sender of ligand, cells/spots that have connection with i and express the
457 matched receptor are receivers, the *Affinity score* of ligand-receptor at location i
458 is defined as:

$$459 \text{Affinity score}_{l-r,i} = \sum_{j \in n_i} \frac{l_i * r_j}{1 + d_{i,j}}, \quad i \text{ as a ligand sender} \#(6)$$

460 where j is the cell/spot that connect to i in the cell network; l and r are
461 expression levels of the ligand and receptor; d is 0 for contact LR pairs or Euclidean
462 distance between i and j for secreted LR pairs. Similarly, when the cell/spot i is a
463 receptor receiver, the *Affinity score* of receptor-ligand at location i is defined as:

$$Affinity score_{r-l,i} = \sum_{j \in n_i} \frac{r_i * l_j}{1 + d_{i,j}}, \quad i \text{ as a receptor receiver} \#(7)$$

463 The *Affinity Pvalue* is obtained by random permutation:

$$Affinity Pvalue = \frac{\#\{A^{(m)} \leq A^0, m = 1, 2, \dots, M\}}{M} \#(8)$$

464 M is the total number of randomizations, $A^{(m)}$ is the *Affinity score* under the
465 m -th randomization. Each randomization redistributes the expression values of the LR,
466 but keeps topology of the cell network. The affinity scores are calculated for all
467 cells/spots, and the P-values are used to find a subset of cells/spots at which the LR
468 exist interaction.

469

470 CellType-level communication score

471 Suppose $ct1$ and $ct2$ are cell types that express ligands and receptors,
472 respectively. The *Affinity score* between the ligand of $ct1$ and the receptor of
473 $ct2$ is the sum of cell-level scores:

$$Affinity score_{l,r,ct1,ct2} = \sum_{i \in ct1} \sum_{j \in n_i, ct2} \frac{l_i * r_j}{1 + d_{i,j}} \#(9)$$

474 *Affinity Pvalue* is also calculated by random permutation, which randomly assign
475 a pseudo expression value to each cell/spot based on cell-type specific expression
476 distribution.

477 *Affinity* reflects whether spatial connected $ct1$ and $ct2$ relatively more highly
478 express the LR genes. However, if the expression of ligand or receptor is too low in
479 $ct1$ or $ct2$ compared to other cell types, it is difficult to say that the LR is important
480 for cell communications; Additionally, If $ct1$ and $ct2$ are connected by too few
481 edges in the cell network, their communication may be false positive even affinity is
482 significant. To address these problems, another index ‘strength’ is added.
483 $Strength_{l,r,ct1,ct2}$ consists of two components: one is the relative expression level of
484 LR pairs on $ct1$ and $ct2$, and the other indicates the enrichment of real spatial
485 connections between $ct1$ and $ct2$. The detailed definition is as follows:

$$Strength_{l,r,ct1,ct2} = \left(\frac{\overline{exp}_{l,ct1}}{\overline{exp}_{l,all}} * \frac{\overline{exp}_{r,ct2}}{\overline{exp}_{r,all}} \right) * \left(\frac{2E}{1+E} \right) \#(10)$$

$$E = \frac{edge_{ct1,ct2}}{edge_{ct1,ct2}} \#(11)$$

486 where $\overline{exp}_{l,ct1}$ and $\overline{exp}_{l,all}$ are the average expression of ligand in $ct1$ and in all cells;

487 $edge_{ct1,ct2}$ and $edge_{ct1,ct2}$ are the real and expected number of connections between
488 $ct1$ and $ct2$; E is the ratio of real and expected numbers. To constrain the range of
489 E and make the result more stable, a Hill function transforms E into a range of (0, 2)
490 and keeps the transformed E is still 1 when the number of real and expected
491 connections are equal.

492

493 **Tensor decomposition**

494 To discover the major modes of variation in the high-order spatial data, such as the
495 “Time-Space-Gene” tensor or “Niche-CellType-Sample” tensor, SOAPy provides
496 interface functions to conveniently build tensors from AnnData objects and then
497 decomposes tensors into several latent factors or components.

498 SOAPy implements two tensor decomposition methods, CANDECOMP
499 /PARAFAC (CP) and Tucker decomposition^{26,42}. Moreover, SOAPy supports
500 non-negative constraints to make the factors more interpretable. Take non-negative
501 CP⁴³ as an example, an n-order tensor X is expressed as the weighted sum of R
502 (user-defined number of factors) rank-one tensors:

$$X \approx \sum_{r=1}^R \lambda_r a_r^{(1)} \circ a_r^{(2)} \circ \dots \circ a_r^{(n)} \#(12)$$

503 where λ is the weight of each factor; $a_r^{(k)}$ is the non-negative loading values of k-th
504 variable in the r-th factor, indicating the relative contribution of variables to factors.
505 Each factor is the outer product of the loading vectors.

506

507 **Availability**

508 All data and code that produced the findings of the study, including all main and
509 supplemental figures, are available at <https://github.com/LiHongCSBLab/SOAPy>.

510

511 **Acknowledgements**

512 We acknowledge Andrew E. Teschendorff (from Shanghai Institute of Nutrition
513 and Health, Chinese Academy of Sciences) for his advice on our manuscript. We
514 thank Bihan Shen, Xi Yan (from Shanghai Institute of Nutrition and Health, Chinese
515 Academy of Sciences) and Biao Liu (from Center for Excellence in Molecular Cell
516 Sciences, Chinese Academy of Sciences), for their help on programing and result
517 interpretation.

518

519 **Funding**

520 This research was supported by National Natural Science Foundation of China
521 (T2122018, 32170680, 32300555), National Key R&D Program of China
522 (2021YFF1200900), CAS Youth Innovation Promotion Association (Y2022076) and
523 Shanghai Municipal Science and Technology Major Project.

524

525 **References**

- 526 1. Method of the Year 2020: spatially resolved transcriptomics. *Nat. Methods* **18**, 1–1
527 (2021).
- 528 2. Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial
529 transcriptomics. *Nature* **596**, 211–220 (2021).
- 530 3. Moses, L. & Pachter, L. Museum of spatial transcriptomics. *Nat. Methods* **19**, 534–546
531 (2022).
- 532 4. Salmén, F. *et al.* Barcoded solid-phase RNA capture for Spatial Transcriptomics profiling
533 in mammalian tissue sections. *Nat. Protoc.* **13**, 2501–2534 (2018).
- 534 5. Keren, L. *et al.* A Structured Tumor-Immune Microenvironment in Triple Negative
535 Breast Cancer Revealed by Multiplexed Ion Beam Imaging. *Cell* **174**, 1373–1387.e19 (2018).
- 536 6. Keren, L. *et al.* MIBI-TOF: A multiplexed imaging platform relates cellular phenotypes
537 and tissue structure. *Sci. Adv.* **5**, eaax5851 (2019).
- 538 7. Merritt, C. R. *et al.* Multiplex digital spatial profiling of proteins and RNA in fixed tissue.
539 *Nat. Biotechnol.* **38**, 586–599 (2020).
- 540 8. Schapiro, D. *et al.* MCMICRO: a scalable, modular image-processing pipeline for
541 multiplexed tissue imaging. *Nat. Methods* **19**, 311–315 (2022).

542 9. Cang, Z. *et al.* Screening cell–cell communication in spatial transcriptomics via
543 collective optimal transport. *Nat. Methods* **20**, 218–228 (2023).

544 10. Svensson, V., Teichmann, S. A. & Stegle, O. SpatialDE: identification of spatially
545 variable genes. *Nat. Methods* **15**, 343–346 (2018).

546 11. Zhu, J., Sun, S. & Zhou, X. SPARK-X: non-parametric modeling enables scalable and
547 robust detection of spatial expression patterns for large spatial transcriptomic studies. *Genome*
548 *Biol.* **22**, 184 (2021).

549 12. Sun, S., Zhu, J. & Zhou, X. Statistical analysis of spatial expression patterns for spatially
550 resolved transcriptomic studies. *Nat. Methods* **17**, 193–200 (2020).

551 13. Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved
552 transcriptomics with an adaptive graph attention auto-encoder. *Nat. Commun.* **13**, 1739
553 (2022).

554 14. Dries, R. *et al.* Giotto: a toolbox for integrative analysis and visualization of spatial
555 expression data. *Genome Biol.* **22**, 78 (2021).

556 15. Palla, G. *et al.* Squidpy: a scalable framework for spatial omics analysis. *Nat. Methods*
557 **19**, 171–178 (2022).

558 16. Pham, D. *et al.* *stLearn: integrating spatial location, tissue morphology and gene*
559 *expression to find cell types, cell-cell interactions and spatial trajectories within*
560 *undissociated tissues.* <http://biorxiv.org/lookup/doi/10.1101/2020.05.31.125658> (2020)
561 doi:10.1101/2020.05.31.125658.

562 17. Anselin, L. Local Indicators of Spatial Association-LISA. *Geogr. Anal.* **27**, 93–115
563 (2010).

564 18. Jong, P., Sprenger, C. & Veen, F. On Extreme Values of Moran's I and Geary's c. *Geogr.*
565 *Anal.* **16**, 17–24 (2010).

566 19. Stickels, R. R. *et al.* Highly sensitive spatial transcriptomics at near-cellular resolution
567 with Slide-seqV2. *Nat. Biotechnol.* **39**, 313–319 (2021).

568 20. Meylan, M. *et al.* Tertiary lymphoid structures generate and propagate anti-tumor
569 antibody-producing plasma cells in renal cell cancer. *Immunity* **55**, 527–541.e5 (2022).

570 21. Pardo, B. *et al.* spatialLIBD: an R/Bioconductor package to visualize spatially-resolved
571 transcriptomics data. *BMC Genomics* **23**, 434 (2022).

572 22. Bardou, P., Mariette, J., Escudié, F., Djemiel, C. & Klopp, C. jvenn: an interactive Venn
573 diagram viewer. *BMC Bioinformatics* **15**, 293 (2014).

574 23. Hildebrandt, F. *et al.* Spatial Transcriptomics to define transcriptional patterns of
575 zonation and structural components in the mouse liver. *Nat. Commun.* **12**, 7046 (2021).

576 24. He, Z. *et al.* Comprehensive transcriptome analysis of neocortical layers in humans,
577 chimpanzees and macaques. *Nat. Neurosci.* **20**, 886–895 (2017).

578 25. Maynard, K. R. *et al.* Transcriptome-scale spatial gene expression in the human
579 dorsolateral prefrontal cortex. *Nat. Neurosci.* **24**, 425–436 (2021).

580 26. Kolda, T. G. & Bader, B. W. Tensor Decompositions and Applications. *SIAM Rev.* **51**,
581 455–500 (2009).

582 27. Peng, T. *et al.* Coordination of heart and lung co-development by a multipotent
583 cardiopulmonary progenitor. *Nature* **500**, 589–592 (2013).

584 28. Schapiro, D. *et al.* histoCAT: analysis of cell phenotypes and interactions in multiplex
585 image cytometry data. *Nat. Methods* **14**, 873–876 (2017).

586 29. Bäckdahl, J. *et al.* Spatial mapping reveals human adipocyte subpopulations with distinct
587 sensitivities to insulin. *Cell Metab.* **33**, 1869-1882.e6 (2021).

588 30. Yuan, Z. *et al.* SOTIP is a versatile method for microenvironment modeling with spatial
589 omics data. *Nat. Commun.* **13**, 7330 (2022).

590 31. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB:
591 inferring cell-cell communication from combined expression of multi-subunit
592 ligand-receptor complexes. *Nat. Protoc.* **15**, 1484–1506 (2020).

593 32. Jin, S. *et al.* Inference and analysis of cell-cell communication using CellChat. *Nat.*
594 *Commun.* **12**, 1088 (2021).

595 33. Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering cell-cell
596 interactions and communication from gene expression. *Nat. Rev. Genet.* **22**, 71–88 (2021).

597 34. Cheng, J., Yan, L., Nie, Q. & Sun, X. *Modeling and inference of spatial intercellular*
598 *communications and multilayer signaling regulations using stMLnet.*
599 <http://biorxiv.org/lookup/doi/10.1101/2022.06.27.497696> (2022)
600 doi:10.1101/2022.06.27.497696.

601 35. Xu, S. *et al.* The role of collagen in cancer: from bench to bedside. *J. Transl. Med.* **17**,
602 309 (2019).

603 36. Fischer, C., Mazzone, M., Jonckx, B. & Carmeliet, P. FLT1 and its ligands VEGFB and
604 PIGF: drug targets for anti-angiogenic therapy? *Nat. Rev. Cancer* **8**, 942–956 (2008).

605 37. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression
606 data analysis. *Genome Biol.* **19**, 15 (2018).

607 38. Van De Sande, B. *et al.* A scalable SCENIC workflow for single-cell gene regulatory
608 network analysis. *Nat. Protoc.* **15**, 2247–2276 (2020).

609 39. Fang, Z., Liu, X. & Peltz, G. GSEAp: a comprehensive package for performing gene set
610 enrichment analysis in Python. *Bioinformatics* **39**, btac757 (2023).

611 40. Haynes, W. Benjamini–Hochberg Method. in *Encyclopedia of Systems Biology* (eds.
612 Dubitzky, W., Wolkenhauer, O., Cho, K.-H. & Yokota, H.) 78–78 (Springer New York, 2013).
613 doi:10.1007/978-1-4419-9863-7_1215.

614 41. Goltsev, Y. *et al.* Deep Profiling of Mouse Splenic Architecture with CODEX
615 Multiplexed Imaging. *Cell* **174**, 968-981.e15 (2018).

616 42. Zhou, G., Cichocki, A., Zhao, Q. & Xie, S. Efficient Nonnegative Tucker
617 Decompositions: Algorithms and Uniqueness. *IEEE Trans. Image Process.* **24**, 4990–5003
618 (2015).

619 43. Shashua, A. & Hazan, T. Non-negative tensor factorization with applications to statistics
620 and computer vision. in *Proceedings of the 22nd international conference on Machine*
621 *learning - ICML '05* 792–799 (ACM Press, 2005). doi:10.1145/1102351.1102451.

622

623

624

625

626

627 **Figures**

628 **Figure 1.** Schematic diagram of SOAPy. **a**, “Data Preprocessing” module that imports
629 data, generates cell network and identifies spatial domains. Data from different spatial
630 omics technologies are converted to a unified data structure. Cell network can be built
631 by any of the four methods. Spatial domains are inferred by unsupervised learning
632 from expression and morphological data, or supervised classification based on the
633 expression of signature genes. **b**, “Molecular Spatial Dynamics” module. Spatial
634 tendency analysis finds genes or cells whose expression change with spatial distance
635 to the given region. **c**, Spatiotemporal Pattern analysis performs a tensor
636 decomposition to discover the major modes of variation in space and time. **d**,
637 “Cellular Spatial Architecture” module. Neighborhood and infiltration analysis find
638 spatial proximal cell types. Spatial composition reveals conserved niches in which
639 surrounding cells of the index cell are consisted of specific proportion of cell types. **e**,
640 Innovative “Spatial Communication” module that combine spatial distance,
641 expression level and action mechanism of ligand-receptors (LRs) to infer cell
642 interactions. The contact and secreted LRs are considered for short-range and
643 long-range cell communications, respectively. Results at cell/spot level indicate the
644 heterogeneous interaction among different spatial locations, they are further integrated
645 to cell type-level to report significant LRs for any two cell types.

646

647 **Figure 2.** Spatial tendency analysis finds genes associated with spatial structures. **a**,
648 HE image of a human dorsolateral prefrontal cortex (DLPFC) sample. Regions of
649 white matter (WM) and six neuronal layers (L6 to L1) are labeled on the image. **b**,
650 Regression curves between gene expression and the distance to WM. Polynomial
651 regression models were fitted to identify genes whose expression varied along with
652 the distance to WM boundary. These genes were grouped into 10 clusters by K-means
653 clustering algorithm. Each curve present a cluster of genes with similar spatial
654 expression tendency. Zero at the horizontal axis indicates the outer boundary of WM.
655 **c**, Association between gene clusters and previously reported layer specific genes.
656 Each row corresponds to a prior gene-list that specifically expresses in one neuronal
657 layer²⁴. Each red unit indicates the cluster of genes (column) is enriched in the prior

658 gene-list (row). **d**, Spatial distributions and fitted curves of the representative genes.

659

660 **Figure 3.** Tensor decomposition reveals the spatiotemporal patterns of gene expression
661 during mouse embryo development. **a**, The spatiotemporal dataset of mouse
662 development is represented by a three-order tensor (4 time points * 8 sub-tissues *
663 1000 highly variable genes), and then it's decomposed into seven latent factors. **b**,
664 Representative spatial locations of sub-tissues at four time points. Each spot in the
665 subtissues represents an ROI. **c**, Loading vectors of space and time for each factor
666 obtained by tensor decomposition. Higher loading values indicates larger contribution
667 of sub-tissues or time points to the expression variation of this factor. **d**, Spatial
668 expression of example genes for each factor. The contours of heart, lung and midgut
669 are colored by red, blue and green curves. ROIs of gene expression are presented by
670 cyan points. The darker the cyan color, the higher the gene expression level.

671

672 **Figure 4.** Spatial proximity analysis characterizes cellular co-localization patterns.
673 The triple negative breast cancer (TNBC) dataset contains 41 samples and 7 cell types.
674 **a**, Heatmap showing the neighborhood scores of any two cell types in all TNBC
675 samples. **b**, A representative sample with strong co-localization among immune cells.
676 **c**, A representative sample with strong co-localization between endothelial and
677 mesenchymal cells. **d**, The red bars show the number of mesenchymal cells and the
678 blue bars show the infiltration score of mesenchymal cells into malignant epithelial
679 cells. **e**, A representative sample with low infiltration score, suggesting
680 compartmentalization between mesenchymal cells and tumor tissues. **f**, A
681 representative sample with high infiltration score, suggesting mixture of mesenchymal
682 cells into malignant epithelial cells.

683

684 **Figure 5.** Spatial composition analysis discovers multi-cellular niches in TNBC
685 samples. **a**, Heatmap on the left shows the composition of neighbor cells in each
686 C-niche. The right barplot shows the number of cells belonging to each C-niche. **b**,
687 Representative samples of different C-niches, characterizing tumor cell aggregation

688 and different local microenvironment of tumors. **c**, The left image shows an example
689 sample that has B cell dominated C-niches (the region of red box). Cells are colored
690 by C-niches. ‘other’ are low-frequent c-niches whose proportion is less than 2%.
691 Right images are amplified views of three representative C-niches. Black or gray cell
692 contours indicate cells belonging to or not belonging to the C niche. The fill colors of
693 cells represent cell types involved in the definition of the C-niche. **d**, Heatmap
694 showing the loading values and clusters of samples. The three-order
695 ‘Niche-CellType-Sample’ tensor was decomposed to four latent factors (**Figure S3b**,
696 **c**). Samples are clustered into five groups according to their loading vectors. **e**,
697 Survival curves stratified by the proportion of C-niche-15. **f**, Comparison of survival
698 curves between two groups of patients.

699

700 **Figure 6.** Ligand-receptor-mediated and spatial-constrained cell-cell communications.
701 **a**, The brief flow chart of our method. Short-range interaction is mediated by contact
702 LRs on neighbor cells, long-range interaction is mediated by secreted LRs on cells
703 within the given radius. Two new metrics, affinity and strength, are defined to
704 estimate the probability of LR interactions in any two cell types. Only when both
705 metrics are high, the LR is significant to mediate the interactions of these two cell
706 types. **b**, MERSCOPE data from an ovarian cancer sample. **c**, Barplot showing the
707 shortest distance from other cell to the closest endothelial cell. **d**, **e**, Short-range and
708 long-range cell communication networks between endothelial cells and other cell
709 types. Edges in **d** and **e** are the number of contact and secreted LRs. Edge width is the
710 number of significant ligand-receptor pairs (affinity P-value < 0.05, strength > 4). **f**,
711 Dot plot with ligand-receptor interactions corresponding to **d** and **e**. Each row
712 indicates a ligand-receptor pair, with the first and the second genes representing a
713 ligand and a receptor, respectively. Dot size indicates P-value of affinity. Color
714 indicates the strength score. **g**, An example of contact LR that mediates the
715 communication between spatially colocalized fibroblast and endothelial cells.
716 COL1A1 is the ligand on sender fibroblast cells, and ITGA1/ITGB1 is the receptor on
717 receiver endothelial cells. Expression was scaled to the range of 0-1 by normalization.
718 **h**, An example of secreted LR, corresponding to the communication between spatially
719 separate epithelial and endothelial cells. VEGFB is the ligand on sender

720 epithelial-hypoxia cells, and FLT1 is the receptor on receiver endothelial cells.

721

722 **Supplementary Information**

723 **Figure S1.** Spatial domain analysis recapitulates anatomic and pathological structures.

724 **a**, Anatomical structure of mouse olfactory bulb (Slide-seq V2 data) and domains
725 identified by STAGATE. **b-c**, Expert-annotated pathological regions of a breast
726 cancer sample (10x Visium), and the estimated 2-class and 19-class domains based on
727 the results of by STAGATE. **d**, Expert-annotated tertiary lymphoid structure (TLS) on
728 a kidney cancer sample (10x Visium), and the estimated TLS by the AUCell-LMI
729 method. **e**, Moran scatterplot. The x-axis is the Z-transformed AUC, which presents
730 the activity for the signature genes of TLS. The y-axis is the spatial weighted
731 normalized AUC scores of neighboring locations. Hotspot presented by red points
732 (FDR < 0.05, x > 0, y > 0) is regarded as tertiary lymphoid structure.

733

734 **Figure S2.** Spatial tendency analysis. **a**, Steps of image per-processing to generate a
735 binary mask file for the given region of interest (ROI). **b**, Illustration of three spatial
736 tendency analysis strategies: wilcoxon test, spearman correlation, and regression. **c**,
737 Venn diagram shows the overlap of top 1000 genes (FDR q-value < 0.05) obtained
738 from three spatial tendency analysis strategies. There are 380 overlapped genes, 352,
739 209 and 227 genes uniquely identified by a method (**Figure S2c**). **d**, Intersection plot
740 showing the agreement for seven methods. Four methods estimate the tendency of
741 gene expressions changing with the distance to a given region: wilcoxon test,
742 spearman correlation, polynomial regression and LOESS regression. Other three
743 methods identify spatially variable genes (SVGs) whose expressions depend on their
744 spatial locations: SPARK, SPARKX and SpatialDE. The top-ranked genes with equal
745 number obtained from each method were compared. Genes of LOESS are ranked by
746 R-square, and genes of the remaining methods are ranked by FDR values. **e-g**,
747 Representative genes identified by different kinds of methods. **e**: MIAT that is
748 significant by Wilcoxon test and Spearman correlation analysis but not significant by

749 regression methods; **f**: PVALB that is significant by regression methods; **g**:
750 Expression of TFF1 is spatially variable but do not show tendency of change with the
751 distance to WM.

752

753 **Figure S3.** **a**, Heatmap showing the proportion of niches in all TNBC samples. **b-c**,
754 Loadings of cell types and niches obtained from the decomposition of
755 “Niche-CellType-Sample” tensor.

756

757 **Figure S4.** Results of survival analysis.

758

759 **Table S1.** Comparison with existing tools of spatial omics data analysis.

760

761 **Table S2.** Examples datasets that were used in this study.

762

763 **Table S3.** Enriched functional terms by gene set enrichment analysis. Genes were
764 pre-ranked based on the loading values of each factor obtained from tensor
765 (“Time-Space-Gene”) decompositon.

766

767 **Table S4.** Predicted LR interactions between spatial-separated epithelial cells C3 and
768 other cell types by CellChat and SOAPy.

Figure 1

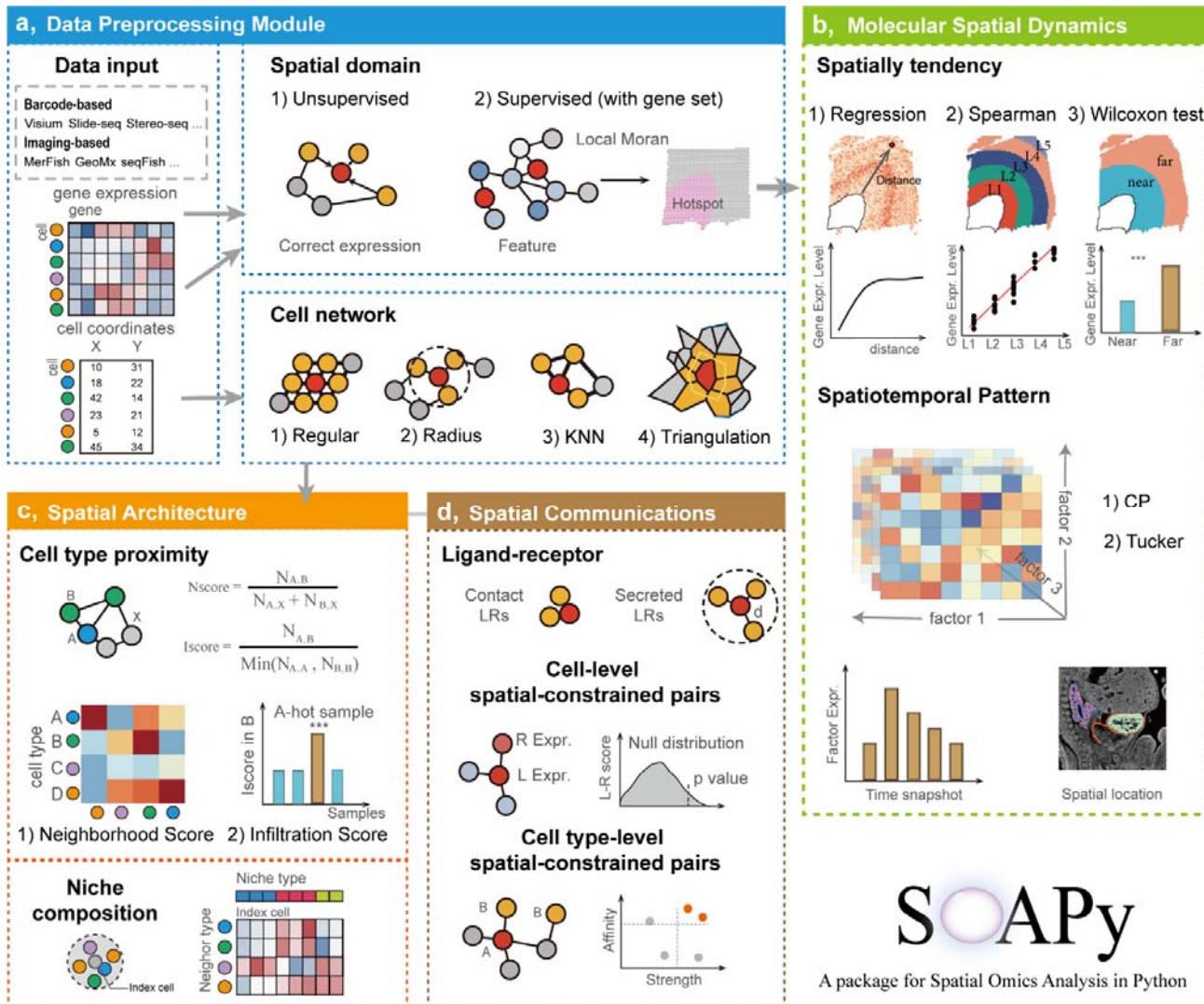


Figure 2

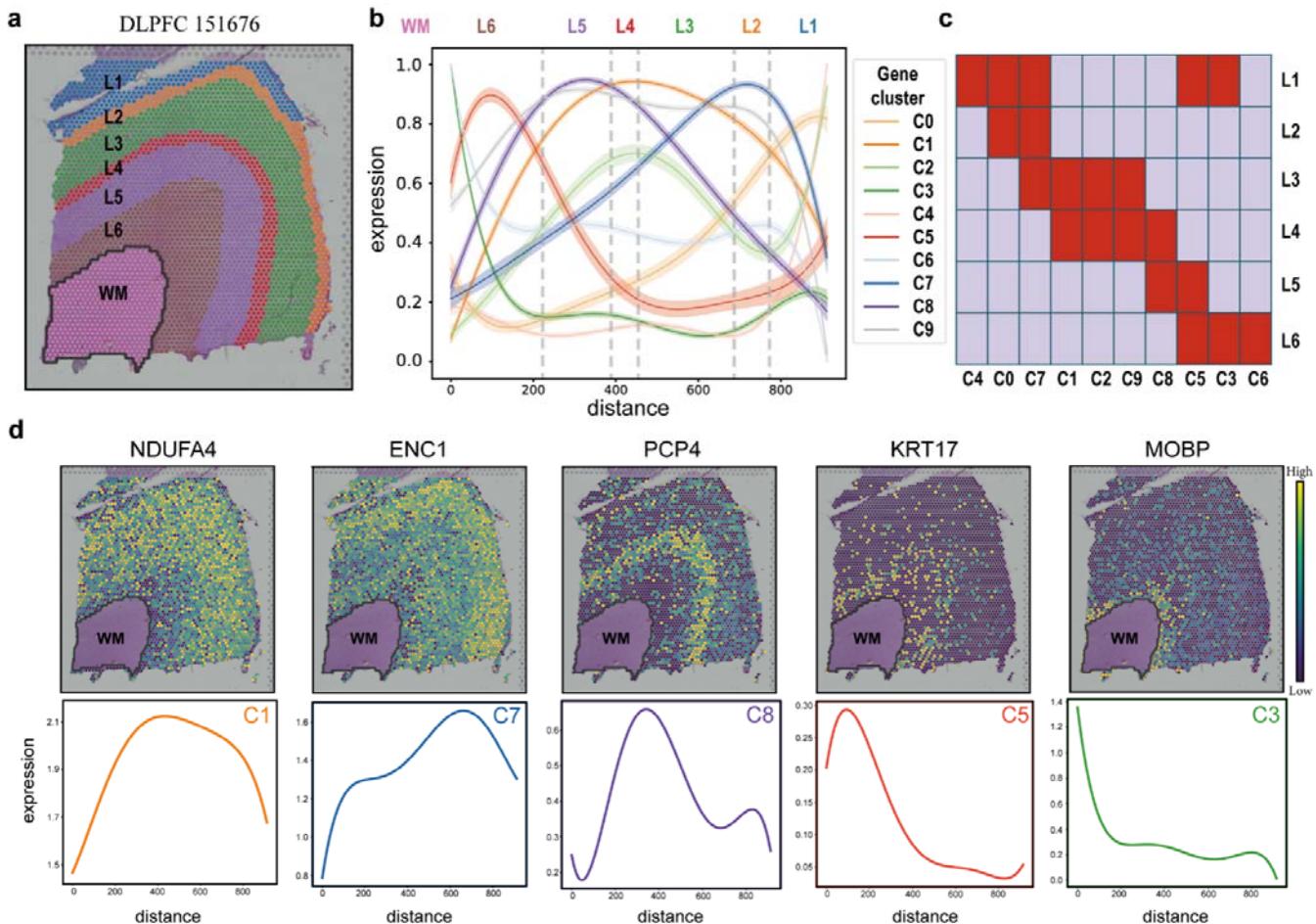


Figure 3

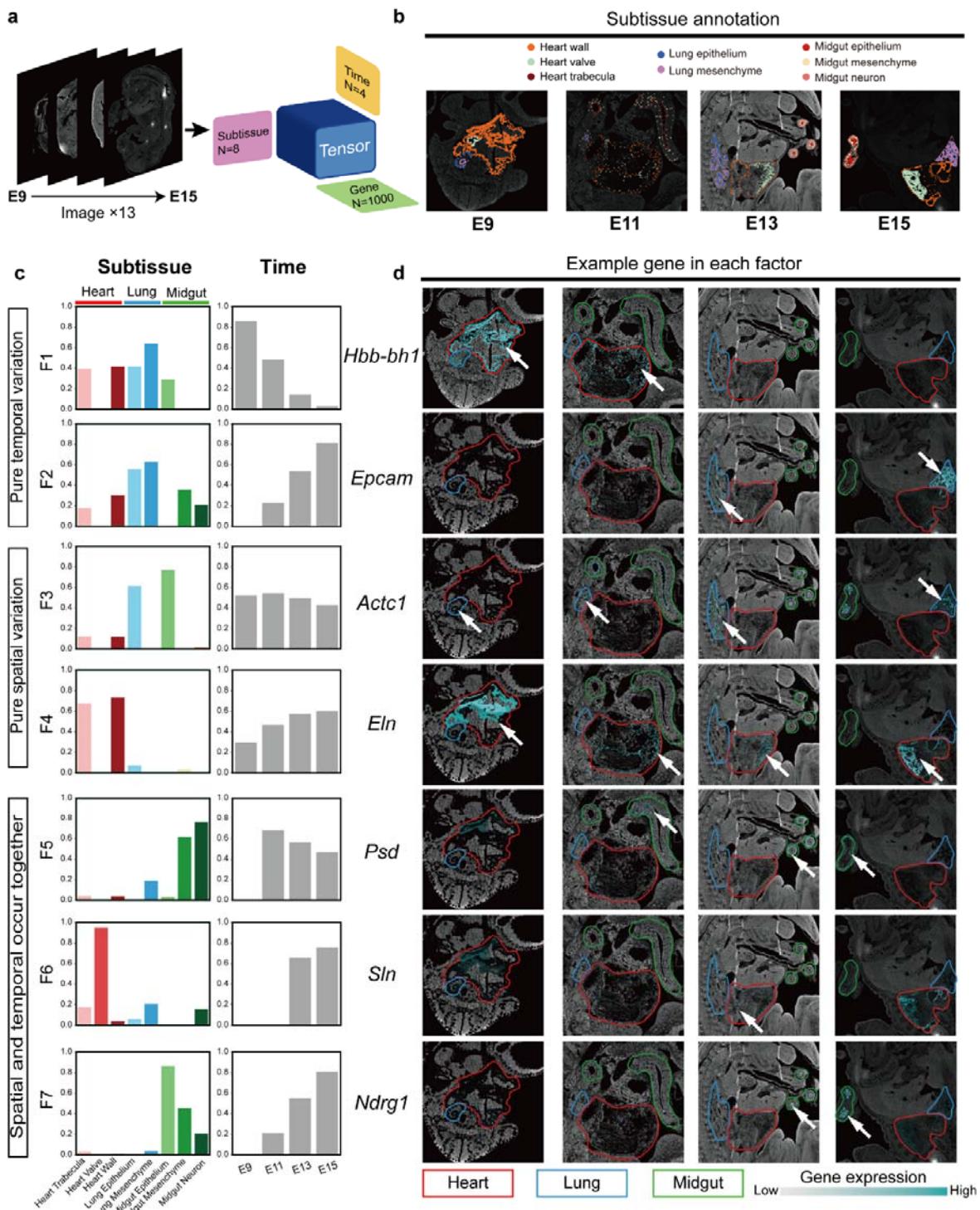


Figure 4

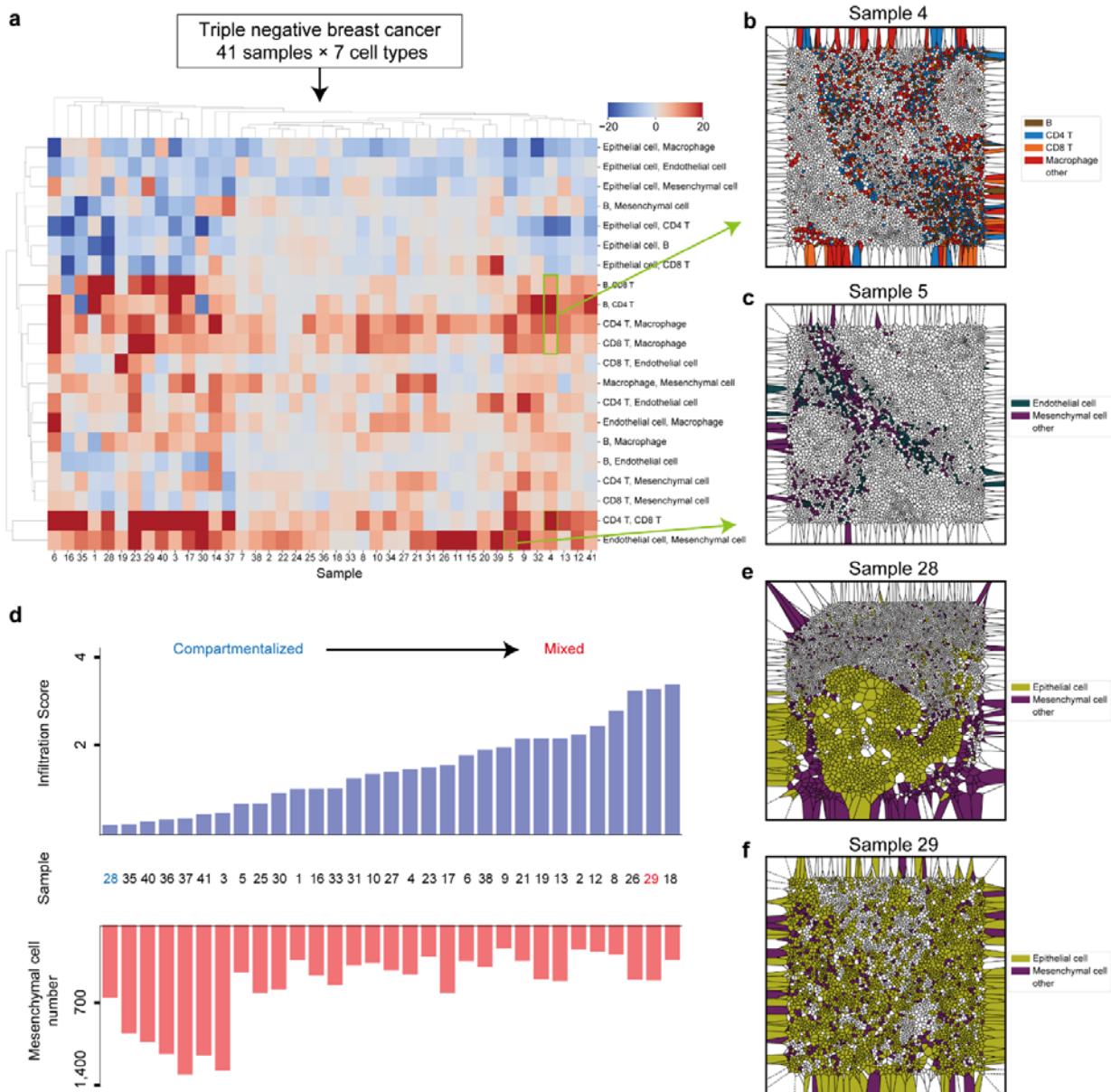


Figure 5

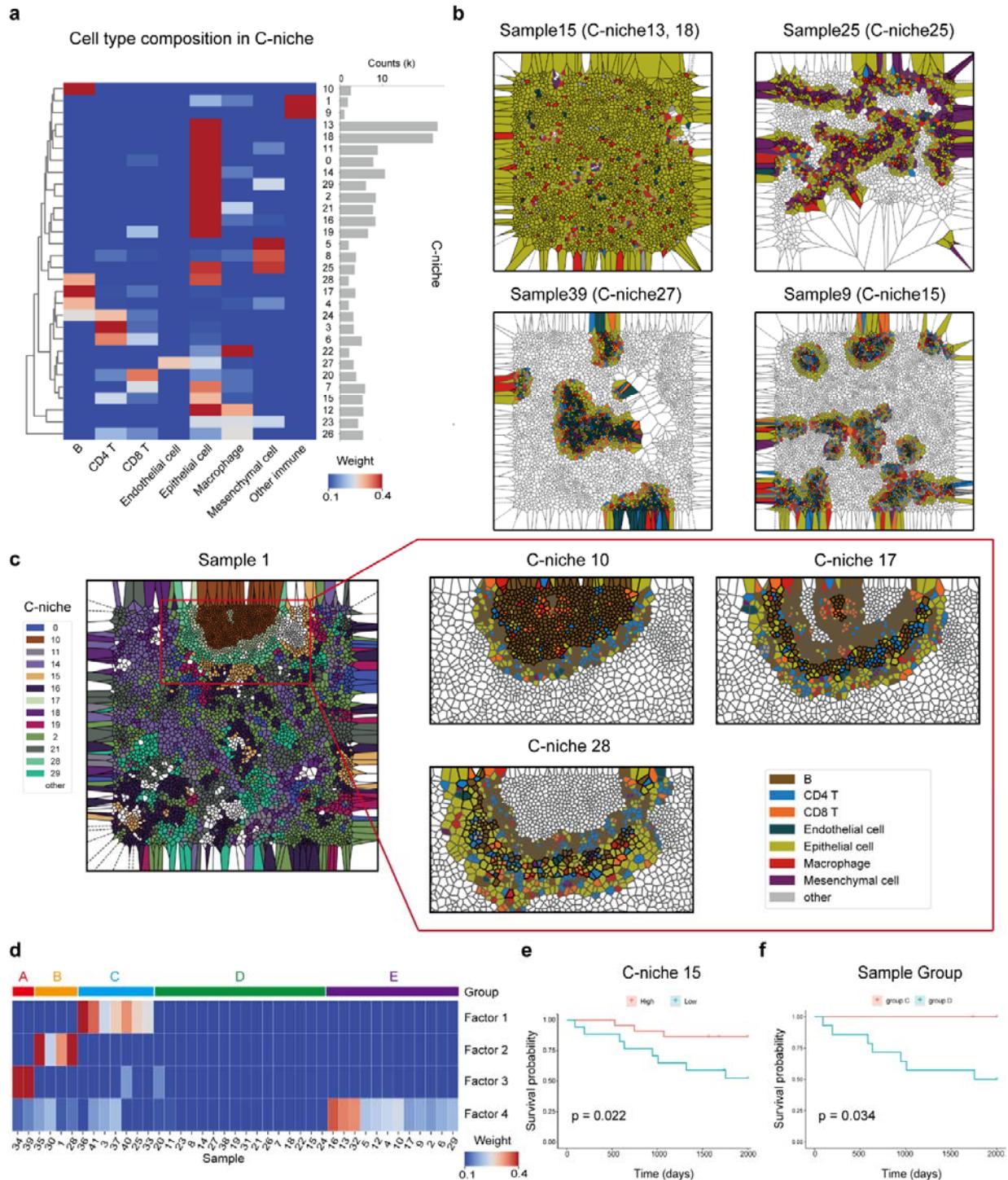


Figure 6

