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Abstract 18 

Advances in spatial omics technologies have brought opportunities to dissect tissue 19 

microenvironment, while also posing more requirements and challenges for 20 

computational methods. Here we developed a package SOAPy to systematically 21 

dissect spatial architecture, dynamics and communication from spatial omics data. 22 

Specifically, it provides analysis methods for multiple spatial-related tasks, including 23 

spatial domain, spatial expression tendency, spatiotemporal expression pattern, 24 

cellular co-localization, multi-cellular niches, and ligand-receptor-mediated and 25 

spatial-constrained cell communication. Applying SOAPy on different spatial omics 26 

technologies and diverse biological fields has demonstrated its power on elucidation 27 

of biological questions about tumors, embryonic development, and normal 28 

physiological structures. Overall, SOAPy is a universal tool for spatial omics analysis, 29 

providing a foundation for continued investigation of the microenvironment.  30 

 31 
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.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2023. ; https://doi.org/10.1101/2023.12.21.572725doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.21.572725
http://creativecommons.org/licenses/by-nc-nd/4.0/


spatial omics, Python package, microenvironment, expression pattern, multi-cellular 33 
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 35 

Introduction 36 

Spatially resolved transcriptomics has been crowned Method of the Year 2020 by 37 

Nature Methods1. Since then, more and more experimental methods for measuring 38 

expression levels of genes, proteins or metabolites in a spatial context have been 39 

developed. These technologies include barcode-based and imaging-based ones, which 40 

differ in resolution, accuracy and throughout2,3. The most widely used 10X Visium 41 

spatial transcriptomics measures thousands of genes in each 55μm spot that typically 42 

contains 1-10 cells4. And imaging-based methods reach more microscopic resolution, 43 

such as MIBI-TOF5 and PhenoCycler-Fusion6, both detecting dozens of proteins at 44 

subcellular resolution. Additionally, spatial multi-omics technologies that 45 

simultaneously measure multiple molecular types are emerging, e.g NanoString 46 

GeoMx DSP for 18000 RNAs and 140 proteins in the region of interest (usually >100 47 

cells)7.  48 

With the development of experimental methods, corresponding analysis pipelines 49 

have been designed for pre-processing raw data from specific experimental platforms, 50 

such as Space Ranger for 10X Visium and MCMICRO for multiplexed tissue 51 

imaging8. Methods adapted from single-cell RNA sequencing (scRNA-seq) data 52 

analysis could be used to perform standard dimensional reduction, clustering, cell 53 

type annotation and marker selection for spatial-omics data9 that do not require spatial 54 

information. And for low resolution spatial technologies, various deconvolution 55 

methods have been developed to impute cell-type composition from the mixture of 56 

cells. 57 

After these pre-processing, downstream analyses are largely independent of 58 

experimental technologies, focus on the key feature of spatial omics: space. For 59 

example, identifying spatial variable genes10–12, detecting spatial domains13, inferring 60 

genes or cell-subtypes associated with spatial localization, and so on3. Earlier 61 
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algorithms were often designed for one specific task, tools that fit in with various 62 

analysis tasks are becoming popular. A pioneer work Giotto not only builds a data 63 

pre-processing pipeline similar to scRNA-seq data analysis14, but also provides 64 

modules for spatial pattern detection, cell neighborhood analysis, and interactive 65 

visualization. Squidpy provides scalable analysis framework for both spatial 66 

neighborhood graph and image, along with an interactive visualization tool15. stlearn 67 

is another integrated package for spatial transcriptomic analysis, which adds the 68 

functions of spatial trajectories and pseudotime analysis16. Investigating the spatial 69 

organization of tissue microenvironment are important applications of spatial omics, 70 

which may gain new insights in various biological fields. However, the related 71 

analysis methods are scattered or lacking, a package for integrative analysis of 72 

microenvironmental spatial organization is in an urgent need. 73 

To address this problem, we present a package SOAPy (Spatial Omics Analysis in 74 

Python) to jointly perform multiple tasks for dissecting spatial organization, including 75 

spatial domain, spatial expression tendency, spatiotemporal expression pattern, 76 

co-localization of paired cell types, multi-cellular niches, and cell-cell communication. 77 

SOAPy improves on previous tools in three main areas (Table S1): (1) Providing 78 

several alternative methods for most tasks to be suitable for complex and diverse 79 

biological tissues and various analysis requirements. (2) Offering a factor 80 

decomposition strategy for high-order spatial data to discover the major modes of 81 

variations in spatial, time, sample or others. (3) Proposing a new method to combine 82 

ligand-receptor expression and spatial locations to better infer short-range and 83 

long-range cell communications. We also applied SOAPy to a wide range of public 84 

datasets to demonstrate its general applicability and interpretability. SOAPy will be 85 

one of the fundamental packages for spatial omics analysis in Python. 86 

 87 

Results 88 

Overview of the SOAPy package 89 
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SOAPy is composed of four modules: Data Preprocessing, Molecular Spatial 90 

Dynamics containing Spatial Tendency and Spatiotemporal Pattern analysis, Cellular 91 

Spatial Architecture for analyzing Spatial Proximity and Spatial Composition, and 92 

Spatial Communication that combines spatial distance, expression level and 93 

interaction mechanism of ligand-receptors to infer cell interactions (Figure 1). In 94 

addition, SOAPy provides rich visualization capabilities for all of the analysis 95 

methods mentioned above.  96 

The flexible Data Preprocessing module makes SOAPy suitable for various spatial 97 

data, fitting with different modalities and different resolutions. To demonstrate the 98 

utility of SOAPy, eight public datasets obtained from five state-of-the-art 99 

technologies were analyzed (Table S2). These datasets involve multiple scenarios 100 

with different molecular modalities (protein vs RNA), throughput (dozens to 101 

genome-wide), spatial resolution (0.1 ~ 55μm), and in physiological and pathological 102 

states. 103 

 104 

Spatial domain analysis recapitulates anatomic and pathological structures 105 

Cells are not randomly distributed in tissues. They are self-organized into specific 106 

structures to perform tissue functions. While in disease states, cells form abnormal 107 

structures. The Spatial Domain analysis provides unsupervised (STAGATE) and 108 

supervised (AUCell-LMI) methods to detect these structures (called spatial domains) 109 

based on gene expression profiles and spatial locations13,17,18.  110 

We first tested STAGATE on Slide-seq V2 data for mouse olfactory bulb and 10x 111 

Visium spatial transcriptomic data for human breast cancer19. Spatial domains 112 

identified by STAGATE are highly consistent with the manual-labelled structures . It 113 

successfully distinguishes truth anatomical structures (Figure S1a), malignant and 114 

non-malignant tissues (Figure S1b, ARI=0.513), and more sophisticated pathological 115 

stages (Figure S1c, ARI=0.580). Then we tested AUCell-LMI for finding local 116 

structures with known signature genes, such as tertiary lymphoid structure (TLS)20. 117 

The results showed that supervised AUCell-LMI based on known TLS signature 118 

could more accurate and more convenient identified the TLS region than 119 
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unsupervised STAGATE (Figure S1d, e). Taken together, Spatial domain analysis in 120 

SOAPy could extract the interesting anatomic or pathological structures for 121 

downstream analysis. 122 

 123 

Spatial tendency analysis finds genes associated with spatial structures 124 

The aim of Spatial Tendency analysis is to assess whether expression features were 125 

influenced by spatial proximity to the region of interest (ROI). Expression features 126 

could be gene expression, pathway activity, cell proportion and so on. The ROI is 127 

defined by manual annotation or automatically detected by the Spatial Domain 128 

analysis. Two kinds of methods, statistical test and regression model, are available for 129 

tendency estimation in the Spatial Tendency module (Methods). 130 

We used 10X Visium data of mouse dorsolateral prefrontal cortex (DLPFC)21 as an 131 

example to validate the feasibility of spatial tendency estimation (Figure 2a). The 132 

sample is consisted of the grey matter of DLPFC (including six cortical layers) and 133 

white matter (Figure S2a). To find genes whose expression changes along with the 134 

distance to the white matter, three strategies were used and compared22 (Figure S2b, 135 

c): 1) cortical layers were divided into two regions and applied Wilcoxon test to 136 

identify differential expressed genes; 2) cortical layers were separated to five 137 

continuous zones for Spearman correlation test; 3) a polynomial regression model was 138 

fitted between gene expressions and distances to the white matter. Some genes 139 

identified by Wilcoxon test and Spearman correlation only express in few spots, 140 

which may be the results of data sparsity instead of real biological differences (Figure 141 

S2e). The regression model describes the continuous spatial variation of expression, 142 

therefore it could find more complex spatial patterns than other methods23, such as 143 

nonlinear “low-high-low” spatial pattern (Figure S2f). Next, we analyzed the 144 

expression patterns of 2857 significant (FDR < 0.05, range >0.3) genes identified by 145 

polynomial regression. K-means clustering grouped them into 10 clusters (Figure 2b). 146 

The gene clusters were compared with previously reported cortical layer specific 147 

genes24,25 (Figure 2c), showing high consistence. C3 is specifically highly expressed 148 

near white matter regions; the expression peaks of C5, C8, C2, and C7 are at layer 6, 149 
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5, 4, 2, respectively (Figure 2d).  150 

Considering that there are no predetermined structures in some scenarios, we added 151 

three published methods (SpatialDE10, SPARK12, and SPARKX11) which identify 152 

spatial variable genes (SVGs) but do not need a given ROI. Comparing these SVGs 153 

methods with the above mentioned tendency estimation found shared and specific 154 

genes among methods (Figure S2d). SVG methods were more inclined to show the 155 

local differential expression of genes rather than the relationship with distance 156 

(Figure S2g). Users can select sutiable methods based on their requirements. 157 

 158 

Tensor decomposition reveals the spatiotemporal patterns of gene expression 159 

With advances in omics techniques, spatial-resolved and time-series molecule 160 

profilings are becoming available. One of the challenges is how to study the roles of 161 

spatial effects and temporal effects simultaneously in biological questions. The 162 

Spatiotemporal Pattern function in SOAPy employs tensor decomposition to extract 163 

components from the three-order expression tensor (“Time-Space-Gene”), revealing 164 

hidden patterns and reducing the complexity of data explanation. 165 

Here, we used the mouse embryo development dataset from GeoMx Digital Spatial 166 

Profiling (DSP)7. Limited by the availability of expression profiles, four time points 167 

(E9, E11, E13, E15) and eight subtissues (Heart wall, Heart valve, heart trabecula, 168 

Lung epithelium, Lung mesenchyme, Midgut epithelium, Midgut mesenchyme, and 169 

Midgut neuron) from three organs were included in our analysis (Figure 3a,b). 170 

Canonical Polyadic (CP) decomposition26 was used to factorize the expression tensor 171 

with 1000 high variable genes (a 4*8*1000 tensor) into seven factors, each of which 172 

is the outer product of three vectors that contain the loadings for describing the 173 

relative contribution of time, subtissues and genes (Figure 3c). We observed three 174 

empirical spatiotemporal patterns based on the loadings of time and subtissues: pure 175 

temporal variation (F1, F2), pure spatial variation (F3, F4), spatial and temporal 176 

variation occur together (F5, F6, F7). We also conducted functional enrichment 177 

analysis based on the loadings of genes for each factor (Table S3) and visualized the 178 

typical genes in images (Figure 3d).  179 
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Genes in F1 (e.g. Hbb-bh1) highly express in heart and lung sub-tissues at E9, and 180 

then gradually decrease in the later stages. Their expression pattern is consistent with 181 

the enriched function “regulation of vasculature development”. F1 indicates 182 

co-development of heart and lung in the early embryo, which is consistent with 183 

previous studies27. The expression of F2 genes (e.g. Epcam) increases significantly 184 

since E11 in most sub-tissues of three organs, especially in the lungs. Expression of 185 

F3 and F4 genes is stable along the developmental time. F4 genes highly express in 186 

heart wall and heart trabecula, and their functions are enriched in cardiac cell 187 

development as expected. Both F5 and F7 genes are enriched in midgut development. 188 

F5 (e.g. Psd) slightly decreases from E11 to E15, while F7 (e.g. Ndrg1) increases 189 

obviously from E11 to E15. F6 genes are specifically highly expressed in the heart 190 

valve between E13-E15. In summary, the Spatiotemporal Pattern function in SOAPy 191 

could reveal spatiotemporal specificity during development and other biological 192 

processes.  193 

 194 

Spatial proximity analysis characterizes co-localization patterns between cell types 195 

Spatial architecture of cells is important for understanding the organization rules 196 

from single cells to tissues28–30. SOAPy first constructs a cell/spot network 197 

fromspatial locations; then implements two scenarios for deciphering spatial 198 

architecture: Spatial Proximity analysis (including neighborhood and infiltration) 199 

determines whethe two cell types or cell states within an image are significant 200 

proximal; Spatial Composition analysis identifies multi-cellular niches that composed 201 

by cell types with specific proportion. 202 

We applied this analysis to a dataset of 41 triple-negative breast cancer (TNBC) 203 

patients5, which used multiplexed ion beam imaging by time-of-flight (MIBI-TOF) to 204 

simultaneously quantify expression of 36 proteins in-situ at sub-cellular resolution. 205 

Totally 211,649 cells were annotated to eight types (epithelial cell, endothelial cell, 206 

mesenchymal cell, B, CD4 T, CD8 T, macrophage and other) based on the expression 207 

of known protein markers. 208 
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First, Spatial Neighborhood analysis was performed to identify significantly 209 

adjacent cell types compared to random perturbation29. Figure 4a illustrates the 210 

neighborhood score of all samples for all cell type pairs, with positive or negative 211 

scores corresponding to co-localization or avoidance. Different immune cells types 212 

such as B, CD4 T, CD8 T and macrophage have significant co-localization in many 213 

patients, which may relate with the formation of inflammatory foci (Figure 4b). 214 

Endothelial and mesenchymal cells also prefer to co-locate together (Figure 4c). 215 

Colocalization pattern of malignant epithelial cells and non-parenchymal cells were 216 

highly heterogeneous across patients. Taking malignant epithelial cells and 217 

mesenchymal cells as an example, samples with less than 200 mesenchymal cells 218 

were filtered, others are subjected to Spatial Infiltration analysis. Samples with higher 219 

and lower infiltration scores indicate mixed (e.g. sample 28) and compartmentalized 220 

(e.g. sample 29) patterns between malignant epithelial cells and mesenchymal cells 221 

respectively (Figure 4 d-f).  222 

 223 

Spatial composition analysis discovers multi-cellular niches 224 

For Spatial Composition analysis of the TNBC dataset, the cell-cell network that 225 

connected centroids of the cells within 100 pixels was built to capture the composition 226 

pattern of more surrounding cells. Niche of each cell was presented by the proportion 227 

of cell types of its surrounding cells, called I-niche. I-niches of 211,649 cells from 41 228 

TNBC patients were clustered into 30 niche clusters, named C-niches (Figure 5a, 229 

Figure S3a). The major cell types of the top two C-niches (C-niche13, C-niche18) are 230 

mainly composed of malignant epithelial cells, and the percentages of other cell types 231 

are less than 15%, showing the characteristics of tumor cell aggregation (Figure 5b). 232 

Additionally, epithelial cells also form C-niches with other cell types. For example, 233 

C-niche25 is composed of 38% epithelial cells, 31% mesenchymal cells, and 9% 234 

macrophages; C-niche27 is composed of 23% epithelial, 28% endothelial, 10% 235 

mesenchymal cells and 10% macrophages; C-niche15 is composed of 30% epithelial, 236 

23% CD4 T, 13% CD8 T cells and 11% macrophages, suggesting different local 237 

microenvironment exists among tumors (Figure 5b). We also observed four B cell 238 
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dominated C-niches (C-niche10, C-niche17, C-niche28, C-niche4) that may be related 239 

to tertiary lymphoid structures. For example, sample 1 contains C-niche 10, 17, and 240 

28 (Figure 5c). Around 80% of cells are B cells in C-niche10; C-niche17 majorly 241 

consists of 52% B cells, 13% CD8 T cells, 10% CD4 T cells, and 11% epithelial cells; 242 

C-niche28 majorly consists of 30% B cells, 10% CD8 T cells, and 37% epithelial 243 

cells.  244 

In order to investigate the combinational effects of non-parenchymal cell types and 245 

niches on patient heterogeneity, the “Niche-CellType-Sample” tensor (30*7*41) was 246 

factorized to four factors (Methods). All samples were clustered into five groups 247 

according to the sample loadings in different factors (Figure 5d). Sample groups A, B, 248 

C, and E have the highest loadings in factors 3, 2, 1, and 4, respectively. By checking 249 

the loadings of cell types and niches in the major factors (Figure S3b,c), group B 250 

corresponds to the above mentioned B cell enriched samples; group C is characterized 251 

by niches with high proportion of mesenchymal cells; group E has niches consisted of 252 

T cells and macrophages.  253 

Furthermore, survival analysis was performed to explore the clinical indications of 254 

niches. Eight c-niches were significantly related to survival time (P < 0.05, Figure 255 

S4). For example, patients with a higher proportion of c-niche15 had a longer survival 256 

time (Figure 5e). There also exists survival differences among the patient groups 257 

identified by the “Niche-CellType-Sample” tensor decomposition, such as longer 258 

survival time for group C patients that that of group D (Figure 5f). Taken together, 259 

spatial composition analysis could find multi-cellular niches and yield insight into 260 

how cells are organized into tissues.  261 

 262 

Ligand-receptor-mediated and spatial-constrained cell-cell communications  263 

The above spatial architecture analysis disregards interacting molecules and context, 264 

while expression-based methods like CellphoneDB31 and CellChat32 infer cell-cell 265 

communications by the expression of ligands and receptors (LRs) disregarding spatial 266 

proximity. SOAPy develops a new method that simultaneously utilizes spatial 267 

location and gene expression to calculate interaction scores (affinity and strength) and 268 
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then outputs significant LR interactions (Figure 6a, Methods). It can not only infers 269 

short-range cell communication that relies on contact LRs to directly deliver signaling 270 

between adjacent cells; but also infer long-range cell communication that does not 271 

require cell–cell contact, rather depending on the diffusion of signaling molecules 272 

from one cell to another after secretion33,34. 273 

The Spatial Communication module was applied to an ovarian cancer dataset 274 

generated by the MERSCOPE platform, measuring 500 genes and 71,381 cells 275 

(Figure 6b). Cells were classified and annotated into ten types or subtypes by Leiden 276 

clustering algorithm. The spatial locations of epithelial cells C3 are very special, 277 

which clearly separated with most of other cells. Therefore, our method did not find 278 

significant contact LRs between epithelial cells C3 and other cell types. However, 279 

CellChat, one of the most popular LR communication inference packages using 280 

scRNA-Seq data, reported many LR interactions due to lack of spatial constrain 281 

(Tabls S4), indicating lower false positives of our method. 282 

We used endothelial cell as an example to present its short-range and long-range 283 

communication partners. Fibroblasts and macrophages are located closest to 284 

endothelial cell, while epithelial cell C3 and C4 are far away from endothelial cell 285 

(Figure 6c). Consistently, fibroblasts have the largest number of contact LRs with 286 

endothelial cells recognized by our algorithm, while there is no contact LRs for 287 

distant cell types such as epithelial cells C2, C3, C4 and C5 (Figure 6d). For cell 288 

types that are not spatially close to endothelial cells, Spatial Communication module 289 

could infer secreted LRs that mediate long-range cell communications. The average 290 

distance from epithelial cells C2 to the closet endothelial cells is significantly larger 291 

than the average distance from fibroblasts to the closet endothelial cells (P < 292 

3.9e-312). There are no contact LRs between epithelial cells C2 and endothelial cells 293 

but 6 secreted LRs were identified (Figure 6 d, e). 294 

Totally, we found 19 contact LRs and 66 secreted LRs that may play key roles in 295 

short-range and long-range communication between endothelial cells and others 296 

(Figure 6f). For example, COL1A1 (type I collagen) and its receptor ITGA1/ITGB1 297 

(integrin α/β) highly express on spatial adjacent fibroblasts and endothelial cells, their 298 
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affinity and strength scores are significantly higher than random scores (Figure 6g). 299 

Previous studies have reported that binding collagen to integrin may activate 300 

downstream signaling pathways contributing to cancer progression35. VEGFB-FLT1 301 

is an interesting LR pair for long-range communication between epithelial and 302 

endothelial cells (Figure 6h). Epithelial cells C2 release ligand VEGFB, and 303 

endothelial cells high express FLT1 (also known as VEGFR1). Their interaction may 304 

promote tumor angiogenesis and are potential drug targets for anticancer therapy36. In 305 

summary, SOAPy provide a new way to study spatial-constrained cell-cell 306 

interactions and more accurately identify the related ligand-receptor pairs. 307 

 308 

Discussion 309 

Tissue microenvironment is critical for understanding homeostasis, development, 310 

regeneration and disease. Single-cell and spatial resolved omics are the most 311 

promising technologies to investigate microenvironment. Tools for systematically 312 

dissecting microenvironment and discover biologically important genes or spatial 313 

cellular architecture are still falling behind, SOAPy just fill this gap. SOAPy contains 314 

easy-to-use analysis modules for interpreting complex spatial microenvironments, 315 

such as the spatial distribution patterns of genes and cells, dynamic changes along 316 

with space and time, and cell-cell communications et al. In this article, we 317 

demonstrated all SOAPy modules with various types of spatial omics data, and 318 

provides complete tutorials to help users get started quickly. 319 

The spatial distribution of genes or cells is associated with many elements, such as 320 

time, interaction of cells, pathological foci, sample heterogeneity and so on. In the 321 

face of these multi-dimensional data, how to extract important and meaningful 322 

features is a key task. SOAPy utilizes tensor decomposition to discover the major 323 

modes of variations from multi-dimensional data. The cases of mouse embryo 324 

development and breast cancer showed that tensor decomposition in SOAPy is 325 

powerful for interpret complex biological data. Another significant advantage of 326 

SOAPy is the innovative Spatial Communication module. It combines spatial distance, 327 
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expression level and interaction mechanism of ligand-receptors to infer cell-cell 328 

communication. The case of ovarian cancer showed that SOAPy could markedly 329 

reduce false positives of interacting ligand-receptors compared to existing methods.  330 

These advantages makes SOAPy differ from existing spatial data analysis tools. 331 

Future extensions of SOAPy could be the integration of multi-modal spatial data to 332 

delineate microenvironment, adaptation of methods from geoscience, network science, 333 

or artificial intelligence to better extract biological meaningful spatial patterns. We 334 

anticipate that SOAPy will be widely used by researchers to discover biological 335 

insights from spatial omics data. 336 

 337 

Methods 338 

Data preprocessing 339 

Data Import 340 

The Data Import function converts data from different spatial omics technology to 341 

a unified data structure that contains expression profiles of molecules 342 

(genes/proteins/metabolites) and location of cells/spots. Barcode-based data formats 343 

can be read directly by passing in tables representing expression matrix and spatial 344 

coordinate information. An image and a cell segmentation mask are provided for 345 

imaging-based data, and the representation and coordinate matrix is extracted through 346 

the tutorials on our website. We used the Scanpy toolkit37 and generate Anndata data.  347 

Spatial network construction 348 

The Spatial network function provides four ways to build a neighborhood network 349 

of cells/spots (Figure 1a). 1) Regular network; 2) KNN network that connects each 350 

site with its K nearest neighbors; 3) Radius network that all cells/spots within the 351 

given distance are connected; 4) Neighbor network based on Voronoi Diagram.  352 

 353 

Spatial domain identification 354 

Unsupervised spatial domain identification: STAGATE 355 

STAGATE is a graph attention autoencoder for spatial domain identification13. It 356 
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firstly integrates gene expression profiles and spatial location information to learn 357 

low-dimensional latent embedding, and then assigns spatial domains by Louvain 358 

clustering.  359 

Supervised spatial domain identification: AUCell-LMI 360 

To detect domains whose signature genes are already known, the score of signature 361 

genes for each cell/spot is calculated by AUCell38,39, and then local Moran index17 362 

(LMI) is used to estimate the degree of spatial aggregation. LMI of cell/spot � is 363 

defined as: 364 

�� � �� � ��
��

� 	 
����� � ���
�����

 #�1�  

Where ��  is the AUCell score of cell/spot � , �� � �

�
∑ ��

�
�	� , �  is any neighbor 365 

cells/spots of � based on K nearest neighbors, 
�� is the spatial weight between � 366 

and � . The P-value is calculated by permutation test and adjusted by 367 

Benjamini-Hochberg method40 to get the false discovery rate (FDR).  368 

LMI of all cells/spots are illustrated by Moran scatterplot (Figure S1e). Each point 369 

represents one cell/spot, the horizontal axis shows the normalized AUCell score, and 370 

the vertical axis indicates the “spatial lag” which is calculated by spatial weighted 371 

normalized score of neighboring sites. Sites with positive AUCell scores, positive 372 

spatial lags, and low FDR were picked out as the targeted spatial domain. 373 

 374 

Spatial tendency analysis  375 

Definition of ROI and distance 376 

Given a region of interest (ROI), the first step is to generate a binary mask file 377 

(Figure S2a). Users can manually select ROI using tools like ImageJ to generate a 378 

mask file, or get interesting cells/spots via SOAPy Spatial domain analysis and then 379 

use SOAPy to create a mask file: Discrete cells/spots are converted to continuously 380 

connected regions using a series of digital image processing steps in OpenCV library, 381 

such as dilation, corrosion, removal of small connected components, and removal of 382 

holes.  383 
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Next, the shortest distance from each cell/spot to the ROI boundary (contour) is 384 

calculated. When an ROI contains multiple connected components, the closest 385 

connected component is selected to calculate the distance23. 386 

���, �� � ��n
��������, ��#�2�  

where �  is a cell/spot, �  is the boundary of ROI, and �  is any pixel on the 387 

boundary. ���� � is a function of Euclidean distance. Distance with positive or 388 

negative signs are used respectively to distinguish cells/spots located outside or inside 389 

the ROI boundary. Then we can study the tendency of molecule expression along with 390 

distance.  391 

Identification of expression features with spatial tendency 392 

SOAPy provides two statistical testing methods (Figure S2b): 1) wilcoxon rank 393 

sum test to compare the molecule expression of cells/spots between two regions; 2) 394 

spearman correlation between median expression and the rank of continuous zones. 395 

To resolve more complex spatial tendency (e.g., nonlinear) or analyze ROIs without 396 

prior hypothesis, SOAPy provides a parameter regression method (polynomial 397 

regression model) and a non-parametric regression method (locally weighted liner 398 

regression, LOESS).  399 

Polynomial regression assumes that the output variable can be represented by the 400 

sum of powers of the input variable.  401 

� � ��  	 �


�


	�

�
#�3�  

Where � is the distance to the ROI; Y is the vector of molecule expression; � is 402 

the degree of the polynomial; �� is intercept; �
 are slope coefficients. P-value is 403 

calculated by F-test. 404 

LOESS is a locally weighted polynomial regression method. Its core concept is to 405 

fit weighted linear regression models with each data point using its surrounding data 406 

points within the predefined window size and connect the centers of the regression 407 

lines. #� (coefficient of determination) and residual standard deviation are estimated 408 

to measure the goodness of fit. 409 

Parameters used in both of the regression models could be customized and adjusted 410 
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based on the biological scenario and goodness of fit. To summarize the spatial 411 

tendency of all molecules, the estimated expression values are fed into the K-means 412 

clustering algorithm to obtain gene clusters with similar spatial expression tendency. 413 

 414 

Spatial architecture analysis 415 

Spatial neighborhood analysis 416 

For each paired cell types, a neighborhood score ($%) between cell type 1 (�&1) and 417 

cell type 2 (�&2) is calculated as follows29: 418 

$%���,��� � $���,���$���,�����    $���,�����

#�4�  

where $���,��� is the number of direct connections between �&1 and �&2, $���,�����  419 

is the number of direct connections between �&1  and all other cell types.  420 

Background distribution is generated from 1000 random permutations that fix the 421 

numbers of �&1  and �&2  and randomly change their locations. P-value is the 422 

proportion of permutations whose $% is larger or smaller than the observed one, 423 

which corresponds to either avoidance or interaction between �&1 and �&2. 424 

Spatial infiltration analysis 425 

An infiltration score (�%) is defined to present the degree of non-parenchymal 426 

(immune or stromal) cells infiltration into malignant tissues: 427 

�%�,�
 � $�,�


����$�,� , $ �
,�
� #�5�  

where $�,�
  is the number of direct connections between malignant cells and 428 

non-parenchymal cells. Sample with too few non-parenchymal cells are regarded as 429 

cold tumor. Otherwise, larger infiltration score indicates more non-parenchymal cells 430 

are mixed into malignant tissues, while smaller infiltration score suggests 431 

non-parenchymal cells are more possible to be compartmentalized with malignant 432 

tissues. 433 

Spatial composition analysis 434 

Given an index cell, niche is defined as the proportion of cell types for its 435 

surrounding cells41. Taken all cells in one or more images, clustering algorithms like 436 
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K-means divides their niches into different clusters, called C-niches.  437 

 438 

Spatial-constrained cell-cell communication inference 439 

Ligand-receptor (LR) pairs were obtained from the CellChat32 package, in which 440 

LR pairs were classified into contact and secreted based on their action mechanism. 441 

We hypothesized that the contact LR pairs mediate short-range cell communications 442 

while secreted LR pairs could mediate long-range cell communications. Therefore, 443 

SOAPy infers cell communications based on the types of LR pairs and spatial 444 

distance among cells (presented by a cell network). For short-range communication, 445 

direct neighbors on Voronoi Diagram are connected to build a cell network. For 446 

long-range communication, all cells within the given distance are connected to build a 447 

cell network. Once the cell network is built, )**���&+ and %&,-�.&/ scores are 448 

calculated for LRs on any two cell types. The LR pairs with )**���&+ 01�23- < 449 

0.05 and %&,-�.&/ > 4.0 are considered to be significant. Paired cell types are 450 

ranked based on the number of significant LRs.  451 

 452 

Cell-level ligand-receptor affinity score 453 

The interaction of LR is variable among cells/spots at different spatial locations, 454 

therefore we first define a cell-level ligand-receptor affinity score. Suppose a cell/spot 455 

� is a sender of ligand, cells/spots that have connection with � and express the 456 

matched receptor are receivers, the )**���&+ ��4,- of ligand-receptor at location � 457 

is defined as: 458 

)**���&+ ��4,-���,� � 	 2� � ,�1  ��,�
����

 ,   � �� � 2�.��� �-��-,#�6�  

where �  is the cell/spot that connect to �  in the cell network; 2  and ,  are 459 

expression levels of the ligand and receptor; � is 0 for contact LR pairs or Euclidean 460 

distance between � and � for secreted LR pairs. Similarly, when the cell/spot � is a 461 

receptor receiver, the )**���&+ ��4,- of receptor-ligand at location � is defined as: 462 
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)**���&+ ��4,-���,� � 	 ,� � 2�1  ��,�
����

 ,   � �� � ,-�-�&4, ,-�-�1-,#�7�  

The )**���&+ 01�23- is obtained by random permutation: 463 

)**���&+ 01�23- � #�7)��� 8 )�, � � 1,2, 9 , :;
: #�8�  

: is the total number of randomizations, )��� is the )**���&+ ��4,- under the 464 

�-th randomization. Each randomization redistributes the expression values of the LR, 465 

but keeps topology of the cell network. The affinity scores are calculated for all 466 

cells/spots, and the P-values are used to find a subset of cells/spots at which the LR 467 

exist interaction. 468 

 469 

CellType-level communication score  470 

Suppose �&1  and �&2  are cell types that express ligands and receptors, 471 

respectively. The )**���&+ ��4,- between the ligand of �&1 and the receptor of 472 

�&2 is the sum of cell-level scores: 473 

)**���&+ ��4,-�,�,���,��� � 	 	 2� � ,�1  ��,�
����,��������

#�9�  

)**���&+ 01�23- is also calculated by random permutation, which randomly assign 474 

a pseudo expression value to each cell/spot based on cell-type specific expression 475 

distribution. 476 

)**���&+ reflects whether spatial connected �&1 and �&2 relatively more highly 477 

express the LR genes. However, if the expression of ligand or receptor is too low in 478 

�&1 or �&2 compared to other cell types, it is difficult to say that the LR is important 479 

for cell communications; Additionally, If �&1 and �&2 are connected by too few 480 

edges in the cell network, their communication may be false positive even affinity is 481 

significant. To address these problems, another index ‘strength’ is added. 482 

%&,-�.&/�,�,���,���  consists of two components: one is the relative expression level of 483 

LR pairs on �&1 and �&2, and the other indicates the enrichment of real spatial 484 

connections between �&1 and �&2. The detailed definition is as follows: 485 
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%&,-�.&/�,�,���,��� � >-��
�,���-��
�,���

� -��
�,���-��
�,���

? � @ 2�
1  �A #�10�  

� � -�.-���,���

-�.-
���,���

#�11�  

where ���
�,���

and ���
�,���

 are the average expression of ligand in �&1 and in all cells; 486 

�������,��	 and ����
���,��	

 are the real and expected number of connections between 487 

�&1 and �&2; � is the ratio of real and expected numbers. To constrain the range of 488 

� and make the result more stable, a Hill function transforms � into a range of (0, 2) 489 

and keeps the transformed �  is still 1 when the number of real and expected 490 

connections are equal.  491 

 492 

Tensor decomposition 493 

To discover the major modes of variation in the high-order spatial data, such as the 494 

“Time-Space-Gene” tensor or “Niche-CellType-Sample” tensor, SOAPy provides 495 

interface functions to conveniently build tensors from AnnData objects and then 496 

decomposes tensors into several latent factors or components.  497 

SOAPy implements two tensor decomposition methods, CANDECOMP 498 

/PARAFAC (CP) and Tucker decomposition26,42. Moreover, SOAPy supports 499 

non-negative constraints to make the factors more interpretable. Take non-negative 500 

CP43 as an example, an n-order tensor X is expressed as the weighted sum of R 501 

(user-defined number of factors) rank-one tensors: 502 

� ��λ�a����
�

���

� a���� � … � a����#
12
  

where λ is the weight of each factor; a�
��� is the non-negative loading values of k-th 503 

variable in the r-th factor, indicating the relative contribution of variables to factors. 504 

Each factor is the outer product of the loading vectors.  505 

 506 

Availability 507 
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All data and code that produced the findings of the study, including all main and 508 

supplemental figures, are available at https://github.com/LiHongCSBLab/SOAPy. 509 

 510 

Acknowledgements 511 

We acknowledge Andrew E. Teschendorff (from Shanghai Institute of Nutrition 512 

and Health, Chinese Academy of Sciences) for his advice on our manuscript. We 513 

thank Bihan Shen, Xi Yan (from Shanghai Institute of Nutrition and Health, Chinese 514 

Academy of Sciences) and Biao Liu (from Center for Excellence in Molecular Cell 515 

Sciences, Chinese Academy of Sciences), for their help on programing and result 516 

interpretation. 517 

 518 

Funding 519 

This research was supported by National Natural Science Foundation of China 520 

(T2122018, 32170680, 32300555), National Key R&D Program of China 521 

(2021YFF1200900), CAS Youth Innovation Promotion Association (Y2022076) and 522 

Shanghai Municipal Science and Technology Major Project. 523 

 524 

References 525 

1. Method of the Year 2020: spatially resolved transcriptomics. Nat. Methods 18, 1–1 526 

(2021). 527 

2. Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial 528 

transcriptomics. Nature 596, 211–220 (2021). 529 

3. Moses, L. & Pachter, L. Museum of spatial transcriptomics. Nat. Methods 19, 534–546 530 

(2022). 531 

4. Salmén, F. et al. Barcoded solid-phase RNA capture for Spatial Transcriptomics profiling 532 

in mammalian tissue sections. Nat. Protoc. 13, 2501–2534 (2018). 533 

5. Keren, L. et al. A Structured Tumor-Immune Microenvironment in Triple Negative 534 

Breast Cancer Revealed by Multiplexed Ion Beam Imaging. Cell 174, 1373-1387.e19 (2018). 535 

6. Keren, L. et al. MIBI-TOF: A multiplexed imaging platform relates cellular phenotypes 536 

and tissue structure. Sci. Adv. 5, eaax5851 (2019). 537 

7. Merritt, C. R. et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. 538 

Nat. Biotechnol. 38, 586–599 (2020). 539 

8. Schapiro, D. et al. MCMICRO: a scalable, modular image-processing pipeline for 540 

multiplexed tissue imaging. Nat. Methods 19, 311–315 (2022). 541 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2023. ; https://doi.org/10.1101/2023.12.21.572725doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.21.572725
http://creativecommons.org/licenses/by-nc-nd/4.0/


9. Cang, Z. et al. Screening cell–cell communication in spatial transcriptomics via 542 

collective optimal transport. Nat. Methods 20, 218–228 (2023). 543 

10. Svensson, V., Teichmann, S. A. & Stegle, O. SpatialDE: identification of spatially 544 

variable genes. Nat. Methods 15, 343–346 (2018). 545 

11. Zhu, J., Sun, S. & Zhou, X. SPARK-X: non-parametric modeling enables scalable and 546 

robust detection of spatial expression patterns for large spatial transcriptomic studies. Genome 547 

Biol. 22, 184 (2021). 548 

12. Sun, S., Zhu, J. & Zhou, X. Statistical analysis of spatial expression patterns for spatially 549 

resolved transcriptomic studies. Nat. Methods 17, 193–200 (2020). 550 

13. Dong, K. & Zhang, S. Deciphering spatial domains from spatially resolved 551 

transcriptomics with an adaptive graph attention auto-encoder. Nat. Commun. 13, 1739 552 

(2022). 553 

14. Dries, R. et al. Giotto: a toolbox for integrative analysis and visualization of spatial 554 

expression data. Genome Biol. 22, 78 (2021). 555 

15. Palla, G. et al. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 556 

19, 171–178 (2022). 557 

16. Pham, D. et al. stLearn: integrating spatial location, tissue morphology and gene 558 

expression to find cell types, cell-cell interactions and spatial trajectories within 559 

undissociated tissues. http://biorxiv.org/lookup/doi/10.1101/2020.05.31.125658 (2020) 560 

doi:10.1101/2020.05.31.125658. 561 

17. Anselin, L. Local Indicators of Spatial Association-LISA. Geogr. Anal. 27, 93–115 562 

(2010). 563 

18. Jong, P., Sprenger, C. & Veen, F. On Extreme Values of Moran’s I and Geary’s c. Geogr. 564 

Anal. 16, 17–24 (2010). 565 

19. Stickels, R. R. et al. Highly sensitive spatial transcriptomics at near-cellular resolution 566 

with Slide-seqV2. Nat. Biotechnol. 39, 313–319 (2021). 567 

20. Meylan, M. et al. Tertiary lymphoid structures generate and propagate anti-tumor 568 

antibody-producing plasma cells in renal cell cancer. Immunity 55, 527-541.e5 (2022). 569 

21. Pardo, B. et al. spatialLIBD: an R/Bioconductor package to visualize spatially-resolved 570 

transcriptomics data. BMC Genomics 23, 434 (2022). 571 

22. Bardou, P., Mariette, J., Escudié, F., Djemiel, C. & Klopp, C. jvenn: an interactive Venn 572 

diagram viewer. BMC Bioinformatics 15, 293 (2014). 573 

23. Hildebrandt, F. et al. Spatial Transcriptomics to define transcriptional patterns of 574 

zonation and structural components in the mouse liver. Nat. Commun. 12, 7046 (2021). 575 

24. He, Z. et al. Comprehensive transcriptome analysis of neocortical layers in humans, 576 

chimpanzees and macaques. Nat. Neurosci. 20, 886–895 (2017). 577 

25. Maynard, K. R. et al. Transcriptome-scale spatial gene expression in the human 578 

dorsolateral prefrontal cortex. Nat. Neurosci. 24, 425–436 (2021). 579 

26. Kolda, T. G. & Bader, B. W. Tensor Decompositions and Applications. SIAM Rev. 51, 580 

455–500 (2009). 581 

27. Peng, T. et al. Coordination of heart and lung co-development by a multipotent 582 

cardiopulmonary progenitor. Nature 500, 589–592 (2013). 583 

28. Schapiro, D. et al. histoCAT: analysis of cell phenotypes and interactions in multiplex 584 

image cytometry data. Nat. Methods 14, 873–876 (2017). 585 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2023. ; https://doi.org/10.1101/2023.12.21.572725doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.21.572725
http://creativecommons.org/licenses/by-nc-nd/4.0/


29. Bäckdahl, J. et al. Spatial mapping reveals human adipocyte subpopulations with distinct 586 

sensitivities to insulin. Cell Metab. 33, 1869-1882.e6 (2021). 587 

30. Yuan, Z. et al. SOTIP is a versatile method for microenvironment modeling with spatial 588 

omics data. Nat. Commun. 13, 7330 (2022). 589 

31. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: 590 

inferring cell–cell communication from combined expression of multi-subunit 591 

ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020). 592 

32. Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. 593 

Commun. 12, 1088 (2021). 594 

33. Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering cell–cell 595 

interactions and communication from gene expression. Nat. Rev. Genet. 22, 71–88 (2021). 596 

34. Cheng, J., Yan, L., Nie, Q. & Sun, X. Modeling and inference of spatial intercellular 597 

communications and multilayer signaling regulations using stMLnet. 598 

http://biorxiv.org/lookup/doi/10.1101/2022.06.27.497696 (2022) 599 

doi:10.1101/2022.06.27.497696. 600 

35. Xu, S. et al. The role of collagen in cancer: from bench to bedside. J. Transl. Med. 17, 601 

309 (2019). 602 

36. Fischer, C., Mazzone, M., Jonckx, B. & Carmeliet, P. FLT1 and its ligands VEGFB and 603 

PlGF: drug targets for anti-angiogenic therapy? Nat. Rev. Cancer 8, 942–956 (2008). 604 

37. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression 605 

data analysis. Genome Biol. 19, 15 (2018). 606 

38. Van De Sande, B. et al. A scalable SCENIC workflow for single-cell gene regulatory 607 

network analysis. Nat. Protoc. 15, 2247–2276 (2020). 608 

39. Fang, Z., Liu, X. & Peltz, G. GSEApy: a comprehensive package for performing gene set 609 

enrichment analysis in Python. Bioinformatics 39, btac757 (2023). 610 

40. Haynes, W. Benjamini–Hochberg Method. in Encyclopedia of Systems Biology (eds. 611 

Dubitzky, W., Wolkenhauer, O., Cho, K.-H. & Yokota, H.) 78–78 (Springer New York, 2013). 612 

doi:10.1007/978-1-4419-9863-7_1215. 613 

41. Goltsev, Y. et al. Deep Profiling of Mouse Splenic Architecture with CODEX 614 

Multiplexed Imaging. Cell 174, 968-981.e15 (2018). 615 

42. Zhou, G., Cichocki, A., Zhao, Q. & Xie, S. Efficient Nonnegative Tucker 616 

Decompositions: Algorithms and Uniqueness. IEEE Trans. Image Process. 24, 4990–5003 617 

(2015). 618 

43. Shashua, A. & Hazan, T. Non-negative tensor factorization with applications to statistics 619 

and computer vision. in Proceedings of the 22nd international conference on Machine 620 

learning  - ICML ’05 792–799 (ACM Press, 2005). doi:10.1145/1102351.1102451. 621 

 622 

 623 

 624 

 625 

 626 

Figures 627 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2023. ; https://doi.org/10.1101/2023.12.21.572725doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.21.572725
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Schematic diagram of SOAPy. a, “Data Preprocessing” module that imports 628 

data, generates cell network and identifies spatial domains. Data from different spatial 629 

omics technologies are converted to a unified data structure. Cell network can be built 630 

by any of the four methods. Spatial domains are inferred by unsupervised learning 631 

from expression and morphological data, or supervised classification based on the 632 

expression of signature genes. b, “Molecular Spatial Dynamics” module. Spatial 633 

tendency analysis finds genes or cells whose expression change with spatial distance 634 

to the given region. c,Spatiotemporal Pattern analysis performs a tensor 635 

decomposition to discover the major modes of variation in space and time. d, 636 

“Cellular Spatial Architecture” module. Neighborhood and infiltration analysis find 637 

spatial proximal cell types. Spatial composition reveals conserved niches in which 638 

surrounding cells of the index cell are consisted of specific proportion of cell types. e, 639 

Innovative “Spatial Communication” module that combine spatial distance, 640 

expression level and action mechanism of ligand-receptors (LRs) to infer cell 641 

interactions. The contact and secreted LRs are considered for short-range and 642 

long-range cell communications, respectively. Results at cell/spot level indicate the 643 

heterogeneous interaction among different spatial locations, they are further integrated 644 

to cell type-level to report significant LRs for any two cell types. 645 

 646 

Figure 2. Spatial tendency analysis finds genes associated with spatial structures. a, 647 

HE image of a human dorsolateral prefrontal cortex (DLPFC) sample. Regions of 648 

white matter (WM) and six neuronal layers (L6 to L1) are labeled on the image. b, 649 

Regression curves between gene expression and the distance to WM. Polynomial 650 

regression models were fitted to identify genes whose expression varied along with 651 

the distance to WM boundary. These genes were grouped into 10 clusters by K-means 652 

clustering algorithm. Each curve present a cluster of genes with similar spatial 653 

expression tendency. Zero at the horizontal axis indicates the outer boundary of WM. 654 

c, Association between gene clusters and previously reported layer specific genes. 655 

Each row corresponds to a prior gene-list that specifically expresses in one neuronal 656 

layer24. Each red unit indicates the cluster of genes (column) is enriched in the prior 657 
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gene-list (row). d, Spatial distributions and fitted curves of the representative genes. 658 

 659 

Figure 3. Tensor decomposition reveals the spatiotemporal patterns of gene expression 660 

during mouse embryo development. a, The spatiotemporal dataset of mouse 661 

development is represented by a three-order tensor (4 time points * 8 sub-tissues * 662 

1000 highly variable genes), and then it’s decomposed into seven latent factors. b, 663 

Representative spatial locations of sub-tissues at four time points. Each spot in the 664 

subtissues represents an ROI. c, Loading vectors of space and time for each factor 665 

obtained by tensor decomposition. Higher loading values indicates larger contribution 666 

of sub-tissues or time points to the expression variation of this factor. d, Spatial 667 

expression of example genes for each factor. The contours of heart, lung and midgut 668 

are colored by red, blue and green curves. ROIs of gene expression are presented by 669 

cyan points. The darker the cyan color, the higher the gene expression level. 670 

 671 

Figure 4. Spatial proximity analysis characterizes cellular co-localization patterns. 672 

The triple negative breast cancer (TNBC) dataset contains 41 samples and 7 cell types. 673 

a, Heatmap showing the neighborhood scores of any two cell types in all TNBC 674 

samples. b, A representative sample with strong co-localization among immune cells. 675 

c. A representative sample with strong co-localization between endothelial and 676 

mesenchymal cells. d, The red bars show the number of mesenchymal cells and the 677 

blue bars show the infiltration score of mesenchymal cells into malignant epithelial 678 

cells. e, A representative sample with low infiltration score, suggesting 679 

compartmentalization between mesenchymal cells and tumor tissues. f, A 680 

representative sample with high infiltration score, suggesting mixture of mesenchymal 681 

cells into malignant epithelial cells. 682 

 683 

Figure 5. Spatial composition analysis discovers multi-cellular niches in TNBC 684 

samples. a. Heatmap on the left shows the composition of neighbor cells in each 685 

C-niche. The right barplot shows the number of cells belonging to each C-niche. b, 686 

Representative samples of different C-niches, characterizing tumor cell aggregation 687 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2023. ; https://doi.org/10.1101/2023.12.21.572725doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.21.572725
http://creativecommons.org/licenses/by-nc-nd/4.0/


and different local microenvironment of tumors. c, The left image shows an example 688 

sample that has B cell dominated C-niches (the region of red box). Cells are colored 689 

by C-niches. ‘other’ are low-frequent c-niches whose proportion is less than 2%. 690 

Right images are amplified views of three representative C-niches. Black or gray cell 691 

contours indicate cells belonging to or not belonging to the C niche. The fill colors of 692 

cells represent cell types involved in the definition of the C-niche. d, Heatmap 693 

showing the loading values and clusters of samples. The three-order 694 

‘Niche-CellType-Sample’ tensor was decomposed to four latent factors (Figure S3b, 695 

c). Samples are clustered into five groups according to their loading vectors. e, 696 

Survival curves stratified by the proportion of C-niche-15. f, Comparison of survival 697 

curves between two groups of patients. 698 

 699 

Figure 6. Ligand-receptor-mediated and spatial-constrained cell-cell communications.  700 

a, The brief flow chart of our method. Short-range interaction is mediated by contact 701 

LRs on neighbor cells, long-range interaction is mediated by secreted LRs on cells 702 

within the given radius. Two new metrics, affinity and strength, are defined to 703 

estimate the probability of LR interactions in any two cell types. Only when both 704 

metrics are high, the LR is significant to mediate the interactions of these two cell 705 

types. b, MERSCOPE data from an ovarian cancer sample. c, Barplot showing the 706 

shortest distance from other cell to the closest endothelial cell. d, e. Short-range and 707 

long-range cell communication networks between endothelial cells and other cell 708 

types. Edges in d and e are the number of contact and secreted LRs. Edge width is the 709 

number of significant ligand-receptor pairs (affinity P-value < 0.05, strength > 4). f, 710 

Dot plot with ligand-receptor interactions corresponding to d and e. Each row 711 

indicates a ligand-receptor pair, with the first and the second genes representing a 712 

ligand and a receptor, respectively. Dot size indicates P-value of affinity. Color 713 

indicates the strength score. g, An example of contact LR that mediates the 714 

communication between spatially colocalized fibroblast and endothelial cells. 715 

COL1A1 is the ligand on sender fibroblast cells, and ITGA1/ITGB1 is the receptor on 716 

receiver endothelial cells. Expression was scaled to the range of 0-1 by normalization. 717 

h, An example of secreted LR, corresponding to the communication between spatially 718 

separate epithelial and endothelial cells. VEGFB is the ligand on sender 719 
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epithelial-hypoxia cells, and FLT1 is the receptor on receiver endothelial cells.  720 

 721 

Supplementary Information 722 

Figure S1. Spatial domain analysis recapitulates anatomic and pathological structures. 723 

a, Anatomical structure of mouse olfactory bulb (Slide-seq V2 data) and domains 724 

identified by STAGATE. b-c, Expert-annotated pathological regions of a breast 725 

cancer sample (10x Visium), and the estimated 2-class and 19-class domains based on 726 

the results of by STAGATE. d, Expert-annotated tertiary lymphoid structure (TLS) on 727 

a kidney cancer sample (10x Visium), and the estimated TLS by the AUCell-LMI 728 

method. e, Moran scatterplot. The x-axis is the Z-transformed AUC, which presents 729 

the activity for the signature genes of TLS. The y-axis is the spatial weighted 730 

normalized AUC scores of neighboring locations. Hotspot presented by red points 731 

(FDR < 0.05, x > 0, y > 0) is regarded as tertiary lymphoid structure. 732 

 733 

Figure S2. Spatial tendency analysis. a, Steps of image per-processing to generate a 734 

binary mask file for the given region of interest (ROI). b, Illustration of three spatial 735 

tendency analysis strategies: wilcoxon test, spearman correlation, and regression. c, 736 

Venn diagram shows the overlap of top 1000 genes (FDR q-value < 0.05) obtained 737 

from three spatial tendency analysis strategies. There are 380 overlapped genes, 352, 738 

209 and 227 genes uniquely identified by a method (Figure S2c). d, Intersection plot 739 

showing the agreement for seven methods. Four methods estimate the tendency of 740 

gene expressions changing with the distance to a given region: wilcoxon test, 741 

spearman correlation, polynomial regression and LOESS regression. Other three 742 

methods identify spatially variable genes (SVGs) whose expressions depend on their 743 

spatial locations: SPARK, SPARKX and SpatialDE. The top-ranked genes with equal 744 

number obtained from each method were compared. Genes of LOESS are ranked by 745 

R-square, and genes of the remaining methods are ranked by FDR values. e-g, 746 

Representative genes identified by different kinds of methods. e: MIAT that is 747 

significant by Wilcoxon test and Spearman correlation analysis but not significant by 748 
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regression methods; f: PVALB that is significant by regression methods; g: 749 

Expression of TFF1 is spatially variable but do not show tendency of change with the 750 

distance to WM. 751 

 752 

Figure S3. a, Heatmap showing the proportion of niches in all TNBC samples. b-c, 753 

Loadings of cell types and niches obtained from the decomposition of 754 

“Niche-CellType-Sample” tensor. 755 

 756 

Figure S4. Results of survival analysis. 757 

 758 

Table S1. Comparison with existing tools of spatial omics data analysis. 759 

 760 

Table S2. Examples datasets that were used in this study. 761 

 762 

Table S3. Enriched functional terms by gene set enrichment analysis. Genes were 763 

pre-ranked based on the loading values of each factor obtained from tensor 764 

(“Time-Space-Gene”) decompositon. 765 

 766 

Table S4. Predicted LR interactions between spatial-separated epithelial cells C3 and 767 

other cell types by CellChat and SOAPy.768 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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