

1 **CD4⁺ T cells are homeostatic regulators during *Mtb* reinfection**

2 Joshua D. Bromley^{1,2,3,4*}, Sharie Keanne C. Ganchua^{5,6*}, Sarah K. Nyquist^{1,2,3,8}, Pauline
3 Maiello⁵, Michael Chao^{1,9}, H. Jacob Borish^{5,6}, Mark Rodgers^{5,6}, Jaime Tomko^{5,6}, Kara
4 Kracinovsky^{5,6}, Douaa Mugahid^{1,9}, Son Nguyen^{1,2,3}, Dennis Wang², Jacob M. Rosenberg^{1,9},
5 Edwin C. Klein⁷, Hannah P. Gideon^{5,6}, Roisin Floyd-O'Sullivan^{1,2,3}, Bonnie Berger⁸, Charles A
6 Scanga^{5,6}, Philana Ling Lin^{6,10}, Sarah M. Fortune^{1,9,†,‡}, Alex K. Shalek^{1,2,3,11,12,†,‡}, JoAnne L.
7 Flynn^{5,6,13,†,‡}

8 **Affiliations**

9 ¹Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA

10 ²Institute for Medical Engineering and Science (IMES), Massachusetts Institute of Technology,
11 Cambridge, MA, USA

12 ³Broad Institute of MIT and Harvard, Cambridge, MA, USA

13 ⁴Graduate Program in Microbiology, Massachusetts Institute of Technology, Cambridge, MA,
14 USA

15 ⁵Department of Microbiology and Molecular Genetics, University of Pittsburgh School of
16 Medicine, Pittsburgh PA USA

17 ⁶Center for Vaccine Research, University of Pittsburgh, Pittsburgh PA USA

18 ⁷Division of Laboratory Animal Research, University of Pittsburgh, Pittsburgh, PA, USA

19 ⁸Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of
20 Technology, Cambridge, MA, USA

21 ⁹Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public
22 Health, Boston, MA, USA

23 ¹⁰Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh
24 School of Medicine

25 ¹¹Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA

26 ¹²Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology,
27 Cambridge, MA, USA

28 ¹³Lead contact

29 *These authors contributed equally to this work

30 †These senior authors contributed equally to this work.

31 ‡Correspondence: joanne@pitt.edu (J.L.F), shalek@mit.edu (A.K.S),

32 sfortune@hsph.harvard.edu (S.M.F)

33

34 ABSTRACT

35 Immunological priming – either in the context of prior infection or vaccination – elicits
36 protective responses against subsequent *Mycobacterium tuberculosis* (*Mtb*) infection. However,
37 the changes that occur in the lung cellular milieu post-primary *Mtb* infection and their
38 contributions to protection upon reinfection remain poorly understood. Here, using clinical and
39 microbiological endpoints in a non-human primate reinfection model, we demonstrate that prior
40 *Mtb* infection elicits a long-lasting protective response against subsequent *Mtb* exposure and that
41 the depletion of CD4⁺ T cells prior to *Mtb* rechallenge significantly abrogates this protection.

42 Leveraging microbiologic, PET-CT, flow cytometric, and single-cell RNA-seq data from
43 primary infection, reinfection, and reinfection-CD4⁺ T cell depleted granulomas, we identify
44 differential cellular and microbial features of control. The data collectively demonstrate that the
45 presence of CD4⁺ T cells in the setting of reinfection results in a reduced inflammatory lung
46 milieu characterized by reprogrammed CD8⁺ T cell activity, reduced neutrophilia, and blunted
47 type-1 immune signaling among myeloid cells, mitigating *Mtb* disease severity. These results
48 open avenues for developing vaccines and therapeutics that not only target CD4⁺ and CD8⁺ T
49 cells, but also modulate innate immune cells to limit *Mtb* disease.

50

51 INTRODUCTION

52 Management of the tuberculosis (TB) pandemic is limited by the lack of a robust vaccine
53 that protects against *Mycobacterium tuberculosis* (*Mtb*) infection and disease progression.
54 *Bacillus Calmette–Guérin* (BCG) remains the only licensed TB vaccine. BCG offers protection
55 against ~70% of severe miliary and meningeal infections in pediatric TB; however, it fails to
56 confer robust protection against infection or TB disease in adults (Lange et al., 2022). Regardless
57 of BCG vaccination status, the majority (~90%) of infected individuals can control *Mtb* bacilli

58 naturally and experience asymptomatic infection (clinically classified as latent TB infection;
59 LTBI). Only the minority (~5-10%) experience overt clinical manifestations of disease (Lawn
60 and Zumla, 2011). In TB endemic regions – where people are likely repeatedly exposed – the
61 incidence rate of recurrent TB disease, either by relapse or reinfection, after successful treatment
62 with antibiotics was 18 (China) and 14.6 (Spain) times higher than the incidence rate of initial
63 TB disease in the general population (J-P Millet et al., 2009; Shen et al., 2017; Verver et al.,
64 2005). However, the effects of prior *Mtb* infection appear to be contextual: a retrospective
65 epidemiological meta-analyses of healthcare professionals reported a 79% lower risk of
66 developing active TB in LTBI individuals after re-exposure to *Mtb* compared to uninfected
67 individuals (Andrews et al., 2012). This observation is further bolstered by findings from non-
68 human primate (NHP) and murine models, which demonstrate that concomitant immunity
69 (immunological memory conferred by concurrent *Mtb* infection) provides robust protection
70 against *Mtb* reinfection, and that this protection persists to some extent after drug treatment
71 (Cadena et al., 2018; Ganchua et al., 2023; Nemeth et al., 2020).

72 Several factors could explain variation in a host's ability to control TB following *Mtb*
73 reinfection. Examples include intrinsic differences in host susceptibility, differences in the
74 quality of the memory immune response, emergence of TB related structural lung disease, and
75 pathogen characteristics (Abel et al., 2018; Cohen et al., 2022; Coscolla and Gagneux, 2014;
76 Galagan, 2014). Since prior *Mtb* infection provides protection against reinfection in NHPs, we
77 can use this model to dissect the roles that key immune cell subsets play in protection (Cadena et
78 al., 2018). Here, we sought to define the roles and functions of CD4⁺ T cells in the setting of
79 reinfection.

80 The importance of CD4⁺ T cells for protection from *Mtb* infection and TB disease has
81 been established in humans by observing the devastating effects of HIV on TB disease burden
82 worldwide. It is further supported by numerous studies in mice and NHPs, where loss of CD4⁺ T
83 cells leads to increased pathology, bacterial burden, and reactivation of disease (Kwan and Ernst,
84 2011; Lin et al., 2012b; Scanga et al., 2000). However, in NHPs as in humans, the outcome of
85 *Mtb* infection varies significantly across sites of infection, such that there can be simultaneous
86 sterilization and progression of disease in different granulomas within the same host (Gideon et
87 al., 2022; Lin et al., 2014). Likewise, while CD4⁺ T cell depletion in primary infection leads to
88 worsened control on the whole, some lesions are fully sterilized and some animals do well –

89 observations which the current paradigm of protective immunity to *Mtb* cannot explain (Diedrich
90 et al., 2020; Foreman et al., 2022; Larson et al., 2023; Lin et al., 2012b).

91 In this study, we sought to evaluate systematically long-lived immunological
92 reprogramming in pulmonary granulomas after primary and secondary infection and to elucidate
93 the role of CD4⁺ T cells in protection against reinfection. Using *in vivo* perturbations (reinfection
94 and CD4⁺ T cell depletion) and a combination of clinical, microbiologic, and high-dimensional
95 single-cell transcriptomic analyses, we characterized intra- and inter-cellular changes associated
96 with disease outcomes within pulmonary granuloma in cynomolgus macaques. Our analysis
97 helps to unravel the intricacies of host-pathogen dynamics in TB, providing foundational insights
98 for advancing vaccine research and therapeutic modalities.

99

100 RESULTS

101 Experimental design

102 This study aimed to determine the role of CD4⁺ T cells in establishing microbiologic,
103 radiographic, and immunologic outcomes in the setting of *Mtb* reinfection in cynomolgus
104 macaques. We used antibody-based depletion of CD4⁺ T cells (hereafter, α CD4) immediately
105 prior to reinfection to assess CD4⁺ T cells effector functions rather than their roles in establishing
106 adaptive responses to *Mtb* during primary infection. We compared the outcomes of *Mtb*
107 reinfection in the setting of α CD4 (reinfection, CD4⁺ T cell depletion, n=7) with those in animals
108 which received an isotype control (reinfection, IgG antibody infusion, n=6). We also examined
109 primary infection in naïve animals (primary infection only, n=6). Overall, this enabled us to
110 compare the outcome of reinfection to primary infection (IgG vs naïve), and then assess the
111 impact of CD4⁺ T cell depletion (IgG vs α CD4) (**Figure 1A**).

112 We used *Mtb* Erdman for primary infection and reinfection. As previously described,
113 these bacteria were differentially barcoded with a library of randomized tags, enabling us to track
114 the infecting libraries (designated primary (P) and secondary (S)) and each unique founding
115 bacterium within a library via deep sequencing (Martin et al., 2017). Specifically, the reinfection
116 group was infected with ~10 CFU of *Mtb* Library P, and infection was allowed to progress for
117 nine weeks before the animals received the standard four-drug TB treatment regimen (isoniazid,
118 rifampin, pyrazinamide, ethambutol; HRZE) for four to five months, with the duration of
119 treatment guided by the resolution of disease as defined by PET-CT imaging. For this study, the

120 animals were treated with drugs so that subsequent CD4 depletion would not result in
121 overwhelming disease due to the primary infection. Our previous data support that drug
122 treatment of primary infection has a modest effect on protection against reinfection (Ganchua et
123 al., 2023). Subsequently, reinfection animals were randomized into the IgG or α CD4 cohorts.
124 These groups began receiving weekly IgG or α CD4 antibody infusions starting one week before
125 secondary infection with Library S and continuing until necropsy at four weeks post-infection.
126 The naïve group was infected with ~10 CFU of barcoded *Mtb*-Erdman (Library S) at the same
127 time as the reinfection macaques, and infection progressed for four weeks before necropsy.
128 Assessment of total lung FDG activity pre- and post-HRZE indicated that the responses to
129 treatment were similar in each of the two antibody treatment groups (**Figure S1A**). PET-CT was
130 continued over the course of the experiment, enabling the identification of newly formed
131 granulomas following *Mtb* re-challenge and antibody infusions (**Figure 1B**). At necropsy,
132 individual PET-CT scan-matched granulomas and lymph nodes, as well as all lung lobes, were
133 resected and dissociated into single-cell suspensions for flow cytometric, scRNA-seq, and/or
134 microbiologic analyses.

135 Over the course of *Mtb* reinfection and antibody infusion, peripheral blood was sampled
136 weekly to assess CD4 $^{+}$ T cell depletion efficacy and to quantify cell type frequencies. CD4 $^{+}$ T
137 cells were significantly depleted post-infusion (10- to 1,000-fold compared to pre-infusion
138 levels) in the blood of α CD4 animals up until necropsy, while no changes in CD4 $^{+}$ T cell levels
139 were observed in the naïve and IgG cohorts (**Figure 1C and S1B**). CD4 $^{+}$ T cell depletion in
140 macaques also reduced the number of CD4 $^{+}$ T cells, but not CD8 $^{+}$ T cells or B cells in tissues,
141 including granulomas and lymph nodes, as compared to macaques that received IgG Ab infusion
142 (**Figure 1D-G and S1C-F**).

143

144 **Reinfection with *Mtb* reduces granuloma formation, as well as bacterial burden and** 145 **dissemination in a CD4 $^{+}$ T cell dependent manner**

146 Analysis of PET-CT scans after secondary infection showed that a similar number of
147 granulomas formed in animals receiving IgG as compared to naïve and α CD4 treated animals,
148 although there was a trend ($p=0.0714$) towards lower numbers of new granulomas in IgG treated
149 compared to naïve animals (**Figure 2A**). This was in contrast to our previous study of reinfection
150 in non-drug treated animals, where fewer granulomas were established in animals with a

151 concurrent primary infection following reinfection (Cadena et al., 2018). Consistent with our
152 prior data, granulomas in animals receiving IgG had significantly fewer viable bacteria than
153 those in naïve animals, with CD4⁺ T cell depletion partially abrogating protection against
154 reinfection (**Figure 2B, E-G and S2A**). While there was a trend towards lower cumulative
155 bacterial burdens (chromosomal equivalents (CEQ); an estimate of total live and dead bacilli) in
156 granulomas from NHPs receiving IgG infusion, these differences did not reach statistical
157 significance (**Figure 2C and S2B**). The same was true for the CFU:CEQ ratio – a proxy for
158 bacterial killing within a granuloma (**Figure 2D and S2C,D**; Lin et al., 2014). These data are
159 most consistent with a model in which previous infection leads to an immune environment that
160 restricts bacterial growth in a CD4⁺ T cell dependent fashion but does not prevent establishment
161 of infection or drive substantively increased bacterial killing.

162 *Mtb* barcode analysis of samples retrieved at necropsy revealed that previous infection
163 provided enhanced protection against *Mtb* dissemination to lymph nodes and this protection was
164 partially dependent on CD4⁺ T cells (**Figure S2E-G**). We enumerated barcode dissemination and
165 found a lower percentage of shared bacterial barcodes between tissues in the IgG animals as
166 compared to both naïve and αCD4-treated animals, further suggesting that reinfection reduces
167 bacterial dissemination in a CD4⁺ T cell dependent manner (IgG vs naïve, p<0.0001; IgG vs
168 αCD4, p<0.0001, Kruskal Wallis with Dunn's multiple comparison test; **Figure 2I**).
169

170 **Cellular remodeling of the TB granuloma microenvironment following *Mtb* reinfection**
171 To define the cellular features associated with protection in the setting of reinfection and the
172 effects of CD4⁺ T cell depletion, we performed Seq-Well S³-based massively-parallel scRNA-
173 seq on granulomas isolated from the three experimental groups (**Figures 2H, 3A**; Hughes et al.,
174 2020). We analyzed 33 granulomas that were confirmed to arise from the second infection
175 (Library S) (naïve=10, IgG=8, αCD4=15) from 7 cynomolgus macaques (naïve=2, IgG=3,
176 αCD4=3), yielding a total of 88,360 high-quality transcriptomes. We annotated 16 clusters
177 corresponding to distinct immune and non-immune cell types based on known marker genes and
178 reference signatures (**Figure 3A and S3A**; Sikkema et al., 2023). While cellular frequencies
179 varied among individual granulomas and experimental groups, each cluster was represented by
180 multiple samples (**Figure S3B**).

181 We next sought to identify whether there were significant changes in cell type
182 frequencies across granulomas. We implemented multivariate (scCODA), univariate (Mann-
183 Whitney U test), and nonparametric (Fisher's exact test) tests to account for perturbation, cell
184 type codependences, and low sample size, and considered a cell type differentially abundant if
185 significant by at least two tests (Büttner et al., 2021; Smillie et al., 2019). We first assessed the
186 global T cell composition of lesions from the three groups and observed a trend toward higher overall T,
187 NK cell frequencies among IgG granulomas relative to naïve (**Figure 3B**). Given the trend
188 toward increased T, NK cell frequencies among lesions formed in the setting of reinfection
189 relative to naïve granulomas even in the setting of CD4⁺ T cell depletion, we sought to identify
190 whether prior infection promotes CD4⁺ or CD8⁺ T cell recruitment to the granuloma.
191 Surprisingly, the total fraction of CD4⁺ and CD8⁺ T cells among CD3D expressors was
192 significantly lower and higher in IgG granulomas relative to naïve granulomas, respectively
193 (p=0.0014 and p=0.0062, respectively, Mann-Whitney U test, **Figure 3C,D**). The former is in
194 line with flow cytometric data demonstrating a lower frequency of CD4⁺ T cells in IgG
195 granulomas, relative to naïve granulomas (**Figure 1D**). There was no difference in the frequency
196 of total T, NK cells between IgG and αCD4 granulomas, but the latter had significantly fewer
197 CD4⁺ T cells and significantly more CD8⁺ T cells (**Figure 3C,D**).

198 IgG granulomas had lower frequencies of neutrophils relative to naïve granulomas, and
199 depletion of CD4⁺ T cells led to increased frequencies of neutrophils. IgG granulomas also had
200 lower frequencies of cDC2s relative to both naïve and αCD4 granulomas. Finally, there were
201 several differences between naïve and IgG granulomas that were not affected by CD4⁺ T cell
202 depletion. Mast cells were more frequent in IgG lesions compared to naïve granuloma, but this
203 was not altered by CD4⁺ T cell depletion. IgG granulomas also had lower frequencies of cDC1s,
204 alveolar type 2 cells, ciliated cells, and pDCs as compared to naïve granulomas.
205

206 **CD4⁺ T cells regulate immune tone in granulomas formed after reinfection with *Mtb***

207 To better understand how reinfection and CD4⁺ T cell depletion influence the structure of
208 the overall T, NK cell cluster, we next classified all CD3D,E, CD4, CD8A,B T, NK cells into 11
209 major subpopulations based on gene signatures from external single-cell datasets (**Figure 4A** and
210 **S3C** and **Table 1**; Almanzar et al., 2020; Zheng et al., 2021). The proportions of several of these
211 T, NK cell subsets significantly differed among reinfection (IgG) granulomas, particularly the

212 *CD8* enriched ($GZMK^{hi}$ $T_{EM/PEX-like}$) and *CD8*, *CD4* co-expressing ($T_{EMRA-like}$) subsets. We found
213 significant enrichment of immuno-modulatory and -regulatory *CD8* $GZMK^{hi}$ $T_{EM/PEX-like}$ (*GZMK*,
214 *EOMES*, *TOX*, *TIGIT*, *IL10*) (Mogilenko et al., 2021) cells in IgG granulomas relative to naïve
215 ones; *CD4*-depletion significantly impaired either the localization or retention of these cells,
216 suggesting *CD4*-dependence even after immune priming (**Figure 4B**).

217 We next investigated how infection status and immune perturbation altered global T, NK
218 cell responses, as well as those of each cell subpopulation, by performing pairwise (IgG vs naïve;
219 IgG vs α CD4) T, NK pseudobulk (i.e., all T, NK subsets aggregated) differential gene expression
220 (DGE), and pairwise DGE analyses within T cell subpopulations. Pairwise analyses among the
221 11 identified T, NK cell subsets revealed a total of 1,542 DE genes (773 upregulated, 759
222 downregulated) in IgG vs naïve lesions and 1,263 DE genes (783 upregulated, 480
223 downregulated) in IgG vs α CD4 granuloma, demonstrating significant shifts in T cell circuitry in
224 immunologically primed animals relative to naïve (IgG vs naïve) or *CD4*-depletion (IgG vs
225 α CD4) animals (**Figure 4C,D** and **S3F**).

226 To examine the potential functional significance of these DE genes, we systematically
227 queried cytokines canonically associated with protective anti-*Mtb* responses, including *TNF*,
228 *IFNG*, and the pleiotropic cytokine *IL10*, while excluding *IL17* due to its low expression (**Figure**
229 **4C**). There were no significant differences in global (pseudobulk) *TNF* or *IFNG* expression
230 among IgG vs naïve granulomas. We similarly found no significant differences in *IFNG*
231 expression among T, NK subsets. We did observe significant induction of *IL10* expression in
232 IgG compared to naïve granulomas, globally (**Figure 4C**). However, there was no one T, NK
233 subset that was significantly enriched for *IL10* expression among IgG lesions; rather, *IL10* was
234 expressed across several subsets. In addition to higher expression of *IL10*, IgG granulomas were
235 characterized by greater global expression of immunoregulatory (*TIGIT*, *TOX*), costimulatory
236 (*CD2*, *CD28*, *ICOS*), and negative regulators (*CD5*, *CD6*) of T cell activation (**Figure S3D**).
237 Notably, the elevated expression of *TIGIT* and *TOX* was primarily associated with Treg and
238 $GZMK^{hi}$ $T_{EM/PEX-like}$ subsets. Relative to naïve granulomas, IgG granulomas had lower
239 expression of most cytotoxic effector (*GZMA*, *GZMB*, *GZMH*, *PRFI*), hypoxia-induced factors
240 (*HIF1A*, *BHLHE40*, *ENTPD1*), T1T17 transcription factors (TFs) (*RORA*, *RORC*) and
241 interferon-stimulated genes (*ISG15*, *ISG20*, *IFI27*), across several T, NK subsets.

242 In the setting of CD4⁺ T cell depletion, there was a global reduction in the abundance of
243 *IL10*, *PDCD1*, *TIGIT*, and *TOX* gene expression (**Figure 4D**). In α CD4 vs IgG granulomas, there
244 was higher expression levels of cytolytic effector molecules (*GZMA*, *GZMB*, *GZMH*, *PRF1*) and
245 T1T17-associated TFs. There was also increased expression of the PD-1-repressor *SATB1* and
246 *BHLHE40*, a putative negative regulator of *IL10* expression and hypoxia-induced factor (**Figure**
247 **S3E**; Huynh et al., 2018; Stephen et al., 2017). Collectively, these changes suggest CD8⁺ T cell
248 reprogramming following *Mtb* reinfection and that acquisition of aspects of these terminally
249 differentiated and immunoregulatory CD8⁺ T, NK cell gene programs are CD4-dependent.
250

251 **Attenuated type-1 immunity among monocyte-derived transcriptomes in *Mtb* reinfection**
252 **granulomas**

253 Considering the established paradigm where CD4⁺ T cells orchestrate pro-inflammatory myeloid
254 cell responses primarily through IFN- γ and TNF-mediated pathways, we explored whether the
255 observed increase in immunoregulatory T cell phenotypes among IgG granulomas was
256 associated with altered myeloid cellularity and transcriptional programming in reinfection.
257 Monocyte-derived cells partitioned into 6 subpopulations and exhibited varying degrees of
258 expansion or contraction in naïve, IgG, and α CD4 granulomas (**Figure 5A-B, S4A**).

259 To identify global changes in myeloid gene programming following *Mtb* reinfection, we
260 scored all monocyte-derived cells against Hallmark gene sets (**Figure 5C**). Specifically, all
261 monocyte and macrophage subsets were grouped as “macrophages” and subject to gene set
262 enrichment scoring. Our analyses demonstrated a global reduction in inflammatory responses,
263 specifically IFN α -, IL6/JAK/STAT3, and IFN γ -responses, as well as significant enrichment of
264 adipogenesis, fatty acid metabolism, Myc targets, and DNA repair signatures among monocyte-
265 derived subsets in IgG relative to naïve granulomas. In contrast, in CD4-depletion granulomas
266 the macrophages had increased IFN α -, IL6/JAK/STAT3, and IFN γ - inflammatory responses
267 relative to IgG granulomas (**Figure 5D**).

268 Pairwise DGE analyses among monocyte-derived subpopulations revealed a total of
269 2,210 DE genes (1,236 upregulated, 974 downregulated) in IgG vs naïve lesions and 1,234 DE
270 genes (777 upregulated, 457 downregulated) in IgG vs α CD4 granuloma (**Figure S4B**). Myeloid
271 cells from naïve granulomas featured both significant global and subpopulation-specific
272 increases in the expression of interferon-response genes (*ISG15*, *IRF7*), pro-inflammatory

273 mediators (*IL1A*, *ILB*), chemokines and cytokines including the CXCR3 ligands (*CXCL9*,
274 *CXLC10*, *CXCL11*), fibrosis-related genes (*VEGFA*, *TGFB1*), and immunoregulatory molecules
275 (*IDO1*, *CD274* (PD-L1), *IL10*) relative to macrophages in IgG granulomas (**Figure 5E-F** and
276 **S4C**). In the absence of CD4⁺ T cells, a pseudobulk analysis indicated increased type-1 (e.g.,
277 *CXCL9-11*) immune signaling. A subpopulation-specific DE analysis of IgG vs α CD4 revealed
278 various monocyte subsets significantly upregulated expression of CXCR3 ligands (*CXCL9*,
279 *CXLC10*, *CXCL11*), and to a lesser featured upregulation of *IDO1* and *CD274* but not *IL10* in the
280 α CD4 granulomas (**Figure 5F** and **S4D**).

281 Overall, naïve lesions showed enhanced type-1 immune signaling, while IgG granulomas
282 displayed a significant reduction in these responses. The reversion of lesions toward a naïve-like
283 state with CD4⁺ T cell depletion indicates a regulatory role for CD4⁺ T cells over the myeloid-
284 driven inflammatory response during *Mtb* reinfection.

285

286 **Neutrophil heterogeneity in the TB granuloma**

287 Neutrophils play a crucial role as frontline defenders against microbial infections and are quickly
288 recruited to sites of inflammation upon *Mtb* infection. However, their role in TB disease remains
289 enigmatic, as they promote both *Mtb* sterilization and pathology (Ravesloot-Chávez et al., 2021).
290 To evaluate how prior infection modulates neutrophil recruitment and phenotype upon
291 reinfection and the role of CD4⁺ T cells in that modulation, we quantified differences in cellular
292 frequencies and gene expression following sub-clustering. Our analysis identified two neutrophil
293 subpopulations: *ICAM1^{hi}*, *NBN^{hi}* neutrophils (*ICAM1*, *CD274*, *GADD45B*, *CCL3L1*) and
294 *SORL1^{hi}*, *CFD^{hi}* neutrophils (*SORL1*, *CFD*, *CORO1A*, *PLBD1*) (**Figure 6A** and **S4E**; Montaldo
295 et al., 2022). Both neutrophil subpopulations were significantly underrepresented among IgG
296 lesions compared to naïve and α CD4 granulomas, suggesting that either bacterial burden and/or
297 CD4⁺ T cells regulate neutrophilic response and infiltration (**Figure 6B**).

298 To uncover potential differences in neutrophil transcriptional programming, we
299 performed pairwise pseudobulk DGE analysis between these neutrophil subsets (*ICAM1^{hi}*, *NBN^{hi}*
300 vs *SORL1^{hi}*, *CFD^{hi}* neutrophils) and pairwise DGE analyses across conditions (naïve vs IgG, and
301 α CD4 vs IgG) between these neutrophil subsets. Comparisons of *ICAM1^{hi}*, *NBN^{hi}* to *SORL1^{hi}*,
302 *CFD^{hi}* transcriptomes revealed *ICAM1^{hi}*, *NBN^{hi}* neutrophils upregulate type-1 immune
303 chemokines (*CXCL10*, *CXCL11*) and cytokines (*CCL3*, *IL1A*), whereas *SORL1^{hi}*, *CFD^{hi}*

304 neutrophils upregulated molecules implicated in neutrophil trafficking (*CXCR1*, *CXCR2*) and
305 netosis (*MGAM*, *MMP25*) (**Figure 6C**; Carmona-Rivera et al., 2015; Gasperini et al., 1999; Xie
306 et al., 2020). Pairwise DE analyses (naïve vs IgG, and α CD4 vs IgG) revealed few significant
307 differences in gene programming among *ICAM1*^{hi}, *NBN*^{hi} transcriptomes; however, *SORL1*^{hi},
308 *CFD*^{hi} neutrophils had significantly altered transcriptomes among IgG lesions relative to naïve,
309 with naïve granulomas expressing significantly higher levels of inflammatory response genes
310 (*STAT1*, *STAT3*, *CASPI*), type-1 immune chemokines (*CXCL10*, *CXCL11*) and cytokines
311 (*CCL3L1*, *TNF*, *IL1A*) (Ichikawa et al., 2013). CD4 depleted lesions, meanwhile, exhibited
312 similar ‘naïve-like’ neutrophil gene programming compared to IgG lesions (**Figure 6D-E** and
313 **S4F**). We further scored neutrophils against an IFN-inducible neutrophil gene signature
314 previously shown to be upregulated in humans with active TB (**Figure 6F**; Berry et al., 2010). In
315 line with our DE analyses, IgG neutrophils featured significant blunting of IFN-inducible genes.

316 Collectively, our data delineate the diversity among granuloma-localized neutrophils and
317 demonstrate a significant reduction in neutrophilic responses among IgG lesions compared to
318 naïve or α CD4, implying a potential regulatory role for CD4⁺ T cells on neutrophil-driven
319 immunity, pathophysiology, and TB disease progression. Furthermore, these data support the
320 model that increased neutrophilic infiltration may contribute to the formation of *Mtb*-permissive
321 niches, thus contributing to elevated bacillary loads among naïve and α CD4 lesions (Lovewell et
322 al., 2021).

323

324 **Differential cell-cell interactions in immunologically primed granulomas**

325 To assess how the different aforementioned factors act together to modulate host
326 immunity, we investigated differential cell-cell interaction networks among naïve, IgG, and
327 α CD4 granulomas (i.e., IgG vs naïve, and IgG vs α CD4; Browaeys et al., 2023). First, we
328 identified differences among coarse-level cell-cell interactions occurring in primary infection
329 granulomas (naïve) vs those formed in a primed immune environment (IgG). Relative to IgG
330 lesions, naïve cell-cell interaction networks were dominated by signaling from neutrophils,
331 macrophage, and non-immune cells (endothelial cells, fibroblasts), and enriched for type-1
332 immune (*CXCL9-11*, *IL6* *IL1B*, *TNF*) and type-1 IFNs (*IFNB1*, *IFNA1*, *IFNA2*, *IFNA16*)
333 signaling – the latter implicated in TB pathogenesis and having been previously demonstrated to

334 contribute to neutrophil extracellular trap (NET) formation and subsequent *Mtb* proliferation
335 (**Figure 7A,B** and **S5A-E**; Moreira-Teixeira et al., 2020).

336 To identify subpopulation-specific drivers of granuloma immune tone and cytokine flux,
337 we quantified differential cell-cell interactions among all immune cell subpopulations (**Figure**
338 **S5F,G**). This analysis identified several monocyte-derived subpopulations (*S100A4*^{hi}, *CFP*^{hi}
339 monocytes, *FABP4*^{hi}, *MCEMP*^{hi} alveolar Mφ, *CXCL9*^{hi} *IDO1*^{hi} Mφ) “sending” the type-1
340 immune molecules *CXCL9-10*, and neutrophils (*ICAMI*^{hi}, *NBN*^{hi} neutrophils, *SORL1*^{hi}, *CFD*^{hi}
341 neutrophils) “sending” *TNF*, *CSF1*, and *CXCL10*, which targeted both innate and adaptive (e.g.,
342 *CXCR3*⁺ T1T17-like) cellular subpopulations (**Figure S5F**). In addition to the upregulated type-1
343 immune factors, our subpopulation-specific cell-cell interaction analysis identified prominent
344 monocyte-derived (*THBS1*^{hi}, *FCN1*^{hi} Mφ; *LGALS3*^{hi}, *FNI*^{hi} Mφ; *FABP4*^{hi}, *MCEMP*^{hi} alveolar
345 Mφ; *CXCL9*^{hi} *IDO1*^{hi} Mφ) *IL10* “senders” which targeted *ICAMI*^{hi}, *NBN*^{hi} neutrophils, and
346 several monocyte-derived subpopulations as “receivers” (**Figure 7C** and **S5F,G**). Collectively,
347 these data may suggest type-1 immune signaling networks may promote the recruitment of
348 adaptive immune cells and induce a pro-inflammatory immune response to mount an early anti-
349 microbial response, whereas *IL10*⁺ monocyte-derived subpopulations attempt to mitigate this
350 inflammatory response via self-reinforcing innate-innate immune cell circuits.

351 In contrast to naïve lesions, our analysis of coarse-level cell types in IgG granulomas
352 revealed T, NK cells as the dominant “receiver” cell type, and macrophages as the most prolific
353 “senders,” communicating not only with T, NK cells, but also, strikingly, with mast cells (**Figure**
354 **7C,D** and **S5B,D,E**). Outgoing macrophage-derived signaling was dominated by negative
355 regulators of inflammatory response (*CD9*, *CD52*, *CDH1*), wound healing (*MMP14*, *S100A4*),
356 and pro-angiogenic (*PDGFC*) signaling (Ackerman et al., 2019; Atkinson et al., 2007; Rashidi et
357 al., 2018; Suzuki et al., 2009; **Figure S5B,E**). Outgoing mast cell signaling *IL7*, *TYROBP*, and
358 *NECTIN2* largely targeted T, NK cell receivers expressing *TIGIT*, *IL7R*, *PECAMI*, *KLRD1*,
359 suggesting immunoregulatory (*NECTIN2-TIGIT*) and homeostatic (*IL7-IL7R*) signaling axes
360 among these cells. Our analysis also identified prominent B cell-macrophage communication via
361 *TGFB1-SDC2* and *PTPRC-MRC1*, potentially suggesting that B cells contribute to macrophage
362 polarization in the granuloma (Gong et al., 2012). Our subpopulation-specific cell-cell
363 interaction analyses identified: (i) several monocyte-derived and mast cell subpopulations
364 contributed to these wound-healing and anti-inflammatory signaling pathways and (ii) blunted

365 type-1 immune network topologies (**Figure S5F,G**). There was also T, NK signaling to T,NK
366 cells; these circuits were characterized by *IL10-IL10RA* and *IL7-IL7R*, suggesting that reinfection
367 granulomas and the associated cytokine milieu and cellular composition promote self-reinforcing
368 immunosuppressive and homeostatic regulatory T cell interactions (**Figure S7D-E**; Sun et al.,
369 2011). A subpopulation-specific query of these cells revealed that GZMK^{hi} T_{EM/PEX-like} were one
370 of the putative *IL10* “sender” populations and primarily targeted *IL10RA⁺ S100A4^{hi}*, *CFP^{hi}*
371 monocytes, Tc17-like, and T1T17-like cells. This analysis further defined a shift away from
372 *IL10⁺* innate “sender” cellular subsets toward *IL10⁺* adaptive immune cell subpopulations:
373 GZMK^{hi} T_{EM/PEX-like} and NK-like cells, relative to naive granulomas, with these two T, NK cell
374 subsets targeting several T, NK cells subsets (Tc17-like, T1T17-like, Tregs) (**Figure 7F**).

375 In the absence of CD4⁺ T cells, TB granulomas were again dominated by pro-
376 inflammatory neutrophil-derived and type-1 IFN signaling (**Figure 7G,H** and **S5H, S5J-L**).
377 Outgoing neutrophil-derived signaling was enriched for type-1 immune signaling (*TNF*, *IL1B*,
378 *CXCL10*), targeting macrophages and T, NK cells. There was a relative loss of mast cell
379 signaling, including *IL7* signaling to *IL7R* expressing T, NK cells, suggesting a loss of
380 homeostatic cycling of memory T, NK cell subsets, compared to IgG (**Figure 7I,J** and **S5I**).
381 CD4-depletion lesions were further characterized by a relative loss of T, NK-T, NK signaling
382 circuits involving “sender” ligands (*IL7*, *IL10*, *CD40LG*, *CD28*) and corresponding “receiver”
383 receptors (*CD4*, *IL10RA*, *IL10RB*, *B*, *IL7R*, *ITGB1-2*) on T, NK cells (**Figure 7H,I** and **S5K-L**).
384 Given the enrichment of *IL10* among coarse-level T, NK cells, we systematically queried all
385 immune cell subpopulations to identify the putative *IL10* sender subpopulation(s), which
386 revealed two terminally differentiated (GZMK^{hi} T_{EM/PEX-like}, T_{EMRA-like}) and one innate-like (NK-
387 like) T cell subpopulation, as well as two monocyte-derived subpopulations (*S100A4^{hi}*, *CFP^{hi}*
388 monocytes, *FABP4^{hi}*, *MCEMP^{hi}* alveolar Mφ) which “targeted” nineteen immune cell
389 subpopulations, including eight T, NK cell subpopulations, suggesting the presence of CD4⁺ T
390 cells is necessary for *CD8* T, NK cell immunomodulation and regulation in the TB granuloma
391 (**Figure 7K** and **S5M,N**). Strikingly, IgG granulomas also demonstrated robust B cell signaling
392 compared to αCD4 lesions, which lacked B cell contributions, among the top 50 prioritized
393 linkages, to the granuloma cell-cell interactome (**Figure 7H,I**). Compared to αCD4 granulomas,
394 IgG B cell “sender” ligands (*B2M*, *CD40*, *CD72*, *RPS19*, *TGFB1*) targeted four cell types, with
395 two (*CD40*, *CD72*) of the five top-ranked ligands targeting T, NK cell receptors (*CD40LG*, *CD5*)

396 – a potential consequence (direct or indirect) of CD4⁺ T cell depletion (Crotty, 2011; Sangster et
397 al., 2003).

398 In summary, our systematic examination of the TB granuloma microenvironment
399 following *Mtb* reinfection delineated distinct cellular circuitries, presenting a spectrum of
400 responses – from amplification to dampening of the host inflammatory response – and
401 underscoring the intricate balance in immune regulation associated with enhanced TB control.

402

403 DISCUSSION

404 The TB granuloma represents a perturbed immunological niche where tissue resident and
405 nascently recruited cells work together against microenvironmental stressors (e.g., *Mtb*, cellular
406 enrichment/depletion, fibrosis, necrosis, inflammation, hypoxia) in an attempt to restore
407 homeostasis. These responses can either promote bacterial control or dissemination, as well as
408 tissue damage or preservation (Pagán and Ramakrishnan, 2018, 2015). In the present study, we
409 leveraged PET-CT, microbiological assays, flow cytometry, and scRNA-seq of *Mtb* infected
410 cynomolgus granulomas following primary *Mtb* infection and reinfection to identify the cellular
411 features of protection that primary *Mtb* infection provides against *Mtb* reinfection and to examine
412 how CD4⁺ T cell depletion before reinfection modulates host immunity. Collectively, our multi-
413 modal dataset reveals global shifts in cellular composition, gene programming, and *Mtb*
414 dynamics in primary *Mtb* infection and reinfection and nominates mechanisms by which CD4⁺ T
415 cells contribute to a restrictive immunological niche. In doing so, our study yields new insights
416 into the cellular, molecular, and niche features that support anti-*Mtb* activity or promote
417 maladaptive immunity following natural infection – most critically, that CD4⁺ T cells act as
418 homeostatic regulators of inflammation. It also identifies tissue-level cellular response
419 mechanisms that can be targeted in future investigations for the development of improved
420 prophylactics and cures.

421 Our high-dimensional examination of TB reinfection granulomas revealed underlying
422 mechanisms governing granuloma cellularity and cytokine flux, as well as putative cell-cell
423 interactions, providing insights into their roles in modulating anti-mycobacterial immunity.
424 Illustratively, IgG lesions featured robust upregulation of immuno-modulatory and -regulatory
425 genes (*IL10*, *PDCD1*, *TOX*, *TIGIT*) among lymphocyte-derived transcriptomes relative to
426 primary infection (naïve) granulomas, which appeared to be CD4-dependent. Strikingly,

427 cytokines canonically associated with protective TB immunity (*TNF*, *IFNG*) did not distinguish
428 IgG granulomas from naïve or α CD4 lesions. These data corroborate our previous findings
429 demonstrating that reinfection macaques concurrently infected with *Mtb* experienced
430 significantly increased IL-10 secretion and relatively lower levels of TNF and IFN γ production
431 (Cadena et al., 2018). Moreover, recent work assessing the efficacy of pulmonary mucosal BCG
432 delivery identified IL-10 $^{+}$ T cells as the most robust correlate of protection (Dijkman et al.,
433 2019). In both studies (Cadena et al., 2018; Dijkman et al., 2019), the source of IL-10 production
434 among T cells was unknown. Our present work expands these findings, identifying several T,
435 NK cell subpopulations, including terminally differentiated and cytotoxic *CD8*-enriched
436 subpopulations as putative sources of *IL10* production in the TB granuloma. Altogether our data
437 demonstrate a shift in reinfection granuloma cytokine flux, cellularity, and programming, with T,
438 NK cells biasing towards *CD8*-enriched immunoregulatory phenotypes.

439 Our cell-cell interaction analyses further identified roles for the immunoregulatory
440 molecules *IL10* and *TIGIT* – expressed among T, NK cells – following *Mtb* reinfection.
441 Significantly, these molecules were absent among naïve and CD4-depleted signaling networks,
442 suggesting that following immune priming, *CD8* $^{+}$ T, NK cells require *CD4* $^{+}$ T cell help (direct or
443 indirect) to engage in self- and non-self-immunoregulatory circuits. Critically, the
444 immunoregulatory molecule PD-1 has been demonstrated to promote host-resistance to TB, with
445 checkpoint inhibitors (PD-1 blockade) exacerbating TB disease and immunopathology via
446 overproduction of IFN γ from CD4 $^{+}$ CXCR3 $^{+}$, KLRG1 $^{-}$, CX3CR1 $^{-}$ T cells and elevated infiltrates
447 of pro-inflammatory CD8 $^{+}$ T cells (Kauffman et al., 2021; Sakai et al., 2016); this suggests that
448 the immunoregulatory circuits we identified among reinfection T, NK cells may be attempting to
449 balance granuloma equilibria and mitigate tissue damage. While PD-1, IL-10, TIGIT, and other
450 immunosuppressive molecules may mitigate inflammatory pathophysiology associated with TB,
451 they may also inadvertently foster an environment conducive to *Mtb* persistence (Redford et al.,
452 2011, 2010; Wong et al., 2020); this highlights the importance of balanced interplay between IL-
453 10, among other immunoregulatory molecules (e.g., TIGIT, PD-1), and type-1 immunity in anti-
454 TB immunity (Gideon et al., 2015).

455 Our analyses revealed that the immunoregulatory molecules *TIGIT*, *IL10*, and *PDCD1*
456 were upregulated in the *CD8* $^{+}$ GZMK $^{\text{hi}}$ T_{EM/PEX-like} T, NK cell subpopulation. A comparison of
457 GZMK $^{\text{hi}}$ T_{EM/PEX-like} frequencies revealed that immunologically primed (IgG) animals experience

458 significantly elevated recruitment (or retention) of GZMK^{hi} T_{EM/PEX-like} cells relative to naïve or
459 αCD4 lesions, suggesting that GZMK^{hi} T_{EM/PEX-like} localization is CD4⁺ T cell-dependent.
460 Although GZMK^{hi} T_{EM/PEX-like} cells were enriched in granuloma with dampened type-1 immune
461 cellularity and inflammatory response, scRNA-seq analyses of disparate pathologies (e.g.,
462 rheumatoid arthritis, cancer, ulcerative colitis, viral infection) and tissues have suggested
463 GZMK⁺ CD8⁺ T cells promote and potentiate inflammatory sequelae (Jonsson et al., 2022;
464 Thomas et al., 2021; Zheng et al., 2021). Moreover, these scRNA-seq studies have demonstrated
465 GZMK⁺ CD8⁺ TCRs are highly clonal and restricted to sites of inflammation, potentially
466 suggesting that these cells differentiate at the site of disease or become differentiated before
467 recruitment (Cai et al., 2022; Jonsson et al., 2022). An analysis of GZMK⁺ CD8⁺ transcriptomes
468 and TCRs derived from TB pleural fluid showed that clonally expanded GZMK⁺ CD8⁺ cells
469 were restricted to pleural fluid and absent in peripheral blood (Cai et al., 2022). Furthermore, *in*
470 *vitro* experiments leveraging *Mtb*-infected macrophages demonstrated purified GZMK has both
471 cytotoxic and anti-microbial effector functions. While the absence of TCR and PBMC sampling
472 in our study precluded us from identifying the origin of GZMK⁺ CD8⁺ T cells, granuloma
473 GZMK^{hi} T_{EM/PEX-like} cells had only low expression of T cell migration factors (CCR7, SELL,
474 CXCR5), and upregulated expression of genes canonically associated with chronic inflammation
475 and immunoregulation potentially suggesting: (i) granuloma GZMK^{hi} T_{EM/PEX-like} cells have
476 intra-compartment/lesion migratory potential, and (ii) GZMK^{hi} T_{EM/PEX-like} cells acquire a
477 terminally differentiated phenotype at the site of infection. Collectively, these data suggest that
478 GZMK^{hi} T_{EM/PEX-like} recruitment (or retention), differentiation, and state may be CD4⁺ T cell-
479 dependent, further supporting a critical role for CD4⁺ T cells in balancing pro- and anti-
480 inflammatory immunity.

481 Upon *Mtb* exposure, myeloid-derived cells, namely alveolar macrophages, sense and
482 phagocytose invading bacilli, activating cell-intrinsic anti-microbial and inflammatory pathways,
483 thus deviating from homeostasis to clear infection (Cohen et al., 2018; Ravesloot-Chávez et al.,
484 2021). Following failure to clear initial infection, bacilli disseminate to lymphoid tissues and
485 persist in non-restrictive cellular niches (Ganchua et al., 2018). Indeed, in the absence of Th1
486 activation of myeloid-derived cells, microbial growth remains unrestricted; thus, the ‘central
487 dogma’ of anti-mycobacterial immunity has placed significant weight on IFN-γ and TNF Th1
488 CD4⁺ T cell-mediated immunity (Nunes-Alves et al., 2014). In addition to CD4⁺ IFN-γ and TNF

489 production, T cells secrete the immunomodulatory cytokine IL-10 which dampens both adaptive
490 and innate immunity, downregulating MHCs, reactive oxygen and nitrogen intermediates, and
491 type-1 chemokines (e.g., CXCL10), as well as inhibiting phagosome maturation among innate
492 cells (Kessler et al., 2017; O’Leary et al., 2011; Rene de Waal Malefy et al., 1991). In keeping
493 with these findings, we observe reinfection (IgG) granulomas, enriched for *IL10* expressing T,
494 NK cells, experienced significant blunting of type-1 inflammation and type-1 IFN signaling
495 relative to primary infection (naïve) and α CD4 granulomas. Furthermore, our findings
496 demonstrate IgG monocyte-derived transcriptomes downregulate type-1 chemokines (e.g.,
497 CXCL9-11), as well as the IFN- γ and TNF response pathways – potentially a nuanced
498 mechanism wherein the host attempts to achieve an equilibrium between protective immunity
499 and tissue preservation (Gazzinelli et al., 1996; Sun et al., 2009). This modulation, while
500 potentially mitigating tissue damage, may inadvertently reduce the host’s capacity to sterilize
501 phagocytosed *Mtb*. Notably, however, our *Mtb* barcode data demonstrate reinfection (IgG)
502 animals had significantly fewer tissues sharing *Mtb* barcodes, indicative of reduced bacterial
503 dissemination compared to naïve granulomas, and that in the absence of CD4 $^{+}$ T cells,
504 reinfection macaques had significantly elevated sharing of bacterial barcodes, highlighting the
505 pivotal role of CD4 $^{+}$ T cells in modulating an effective host response that can mitigate bacterial
506 establishment during reinfection and *Mtb* dissemination between compartments. The intricate
507 host-pathogen dynamics in TB, as reflected by these findings, necessitate a comprehensive
508 understanding not only of the evident immune markers but also of the broader roles that
509 macrophages play within the inflammatory landscape.

510 Macrophage sensing and phagocytosis of *Mtb* during acute infection triggers the
511 production of pro-inflammatory chemokines (CXCL1, CXCL2) and cytokines that promote
512 vascular permeability, upregulation of adhesion molecules, and subsequent neutrophil
513 recruitment (Cai et al., 2010; Phillipson and Kubes, 2011). Our scRNA-seq analyses uncovered
514 previously unappreciated neutrophil heterogeneity – cell types that have been underrepresented
515 in droplet-based single-cell profiling of TB (Esaulova et al., 2020; Pisu et al., 2021) – in the TB
516 granuloma, including the identification of two neutrophil subsets (*ICAM1* $^{\text{hi}}$, *NBN* $^{\text{hi}}$
517 neutrophils; *SORL1* $^{\text{hi}}$, *CFD* $^{\text{hi}}$ neutrophils), with differential pathway activation and phenotypic
518 signatures. Notably, our data demonstrate that hypoxia- and inflammatory-enriched naïve and
519 α CD4 granulomas have significant neutrophilia, and significant induction of an IFN-responsive

520 module associated with active TB, which may contribute to tissue inflammation and lung
521 structural damage and the formation of an *Mtb*-permissive niche (such as caseum), thus
522 promoting *Mtb* growth and dissemination (Berry et al., 2010; Lovewell et al., 2021). Critically,
523 our data demonstrate reinfection (IgG) granulomas – characterized by reduced neutrophilia – do
524 not support the same level of bacterial growth or dissemination as naïve lesions. They also show
525 that inhibition of *Mtb* outgrowth and dissemination post-reinfection is at least partially CD4⁺ T
526 cell-dependent and independent of CD4⁺ T cell-mediated induction of myeloid IFN γ - and TNF-
527 response pathways.

528 In line with our findings, which demonstrated that 4-week post-primary infection (i.e.,
529 naïve NHP cohort) granulomas feature robust type-1 immune induction (e.g., *IL1B*, *CXCL9-11*)
530 and signaling, previous research has shown that the chemokines CXCL9-11 are enriched among
531 4 week primary granulomas and that those granulomas feature elevated CXCR3⁺ T cell
532 frequencies – putative sources of IFN γ and TNF (Gideon et al., 2022; Lin et al., 2006; Mehra et
533 al., 2010). These findings highlight the critical role of CXCL9-11 during early *Mtb* infection
534 (before immune priming), where they promote the recruitment of protective lymphocyte
535 populations, such as CXCR3⁺ T cells; however, their overexpression may drive TB sequelae via
536 self-reinforcing pro-inflammatory myeloid (neutrophil, macrophage)-T, NK cell (CXCR3⁺ IFN-
537 γ^+ TNF⁺ T1T17-like) circuits, thus potentiating pro-inflammatory response mechanisms and
538 subsequent bacterial dissemination (Esaulova et al., 2020; Sakai et al., 2016). Indeed, the
539 chemokines CXCL9-11 have been identified as potential biomarkers of TB severity, with
540 overexpression reported in human study participants with active TB; however, the temporal
541 dynamics of CXCL9-11 expression during active human TB are unclear as time of infection is
542 frequently unknown (Bhattacharyya et al., 2018; Kumar et al., 2021; Lee et al., 2015;
543 Nonghanphithak et al., 2017; Ruhwald et al., 2007). While there is substantial evidence
544 suggesting that excessive CXCL9-11 may contribute to the early anti-*Mtb* immunity or
545 immunopathology, other studies suggest that CXCL9-11 could serve as markers of trained
546 immunity following BCG vaccination, potentially acting as an initial barrier against invading
547 bacilli, as well as correlate of protection (Joosten et al., 2018). Nevertheless, the precise role of
548 CXCL9-11 in immunity requires further exploration. Future work leveraging single-cell multi-
549 omics data (e.g., scATAC-seq) in BCG-vaccinated and *Mtb*-infected macaques could help

550 determine whether, and possibly when, elevated type-1 immune signaling is indicative of innate
551 training or a correlate of TB pathophysiology and chronic inflammatory stimuli.

552 In summary, we provide the first in-depth characterization of primary infection,
553 reinfection, and CD4⁺ T cell-depleted reinfection macaque granulomas, identifying potential
554 mechanisms by which CD4⁺ T cells contribute to anti-mycobacterial immunity. Our high-
555 dimensional characterization of granuloma transcriptomes and multimodal analyses reveal
556 cellular networks in which CD4⁺ T cells regulate pro- and anti-inflammatory gene programming
557 and cell-cell signaling networks to limit inflammatory sequelae, as well as bacterial
558 establishment, growth, and dissemination. These findings expand beyond the limited purview of
559 the TB ‘central dogma,’ demonstrating that CD4⁺ T cells act not only as effectors secreting IFN-
560 γ and TNF but also as homeostatic regulators, orchestrating both pro- and anti-inflammatory
561 immunity, thus leading to a more nuanced understanding of protective immunity against TB
562 disease, and broader understanding of how CD4⁺ T cells modulate the immune response in
563 reinfection events.

564

565 **Limitations of the study**

566 While our study provides pivotal insights into the role of CD4⁺ T cells in the context of *Mtb*
567 reinfection, it is important to acknowledge several inherent limitations associated with our design
568 and experimental power, including: (i) the need to use a 4–5-month drug treatment to clear
569 primary infection; and, (ii) limited number of NHPs and granulomas for scRNA-seq.
570 Additionally, our study design does not enable us to compare the naïve and α CD4 groups
571 directly since we did not have sufficient numbers of animals or granulomas and cannot
572 disentangle shifts due to immunological priming from those due to CD4⁺ T cell depletion.

573

574 **SUPPLEMENTAL INFORMATION**

575 Supplemental information can be found online.

576

577 **ACKNOWLEDGEMENTS**

578 We extend our appreciation to the technical and veterinary teams of the Flynn, Shalek, and
579 Fortune laboratories for their dedication and assistance. We are particularly indebted to the
580 University of Pittsburgh's Division of Laboratory Animal Research and the Unified Flow Core

581 for their animal husbandry and support. Moreover, we are grateful to the NIH Nonhuman
582 Primate Reagent Resource for providing essential antibody reagents (the CD4 depleting mAb
583 used in this study was developed and provided by the NIH Nonhuman Primate Reagent Resource
584 (ORIP P40 OD028116, U24 AI126683) and their expert guidance on their application. This work
585 was supported in part by the Bill and Melinda Gates Foundation (A.K.S.), NIH R01 AI114674
586 (Flynn and Fortune), and by NIH contract IMPAc-TB; 75N93019C00071 (Fortune, Flynn,
587 Shalek).

588

589 **AUTHOR CONTRIBUTIONS**

590 Conceptualization, J.L.F, S.M.F., and A.K.S.; Data curation J.D.B., S.K.C.G., M.C., H.P.G.,
591 R.F.-O.; formal analysis J.D.B., S.K.C.G., S.K.N., P.M., M.C., D.W.; Investigation J.D.B.,
592 S.K.C.G., S.K.N., P.M., M.C., D.M., S.N., J.R., H.P.G.; Visualization J.D.B., P.M., M.C.;
593 Funding acquisition J.L.F, S.M.F., and A.K.S; Supervision J.L.F, S.M.F., A.K.S., and B.B.;
594 Writing – original draft J.D.B., D.M., J.L.F, S.M.F., and A.K.S.; Writing – review & editing
595 J.D.B., S.K.C.G., S.K.N., M.C., D.M., S.N., J.R., J.L.F, S.M.F., and A.K.S.

596

597 **DECLARATIONS OF INTERESTS**

598 A.K.S. reports compensation for consulting and/or scientific advisory board membership
599 from Honeycomb Biotechnologies, Cellarity, Ochre Bio, Relation Therapeutics, FL86, IntrECate
600 Biotherapeutics, Bio-Rad Laboratories, Senda Biosciences and Dahlia Biosciences unrelated to
601 this work. S.M.F. reports compensation for board of directors membership from Oxford
602 Nanopore unrelated to this work.

603

604 **REFERENCES**

605 Abel, L., Fellay, J., Haas, D.W., Schurr, E., Srikrishna, G., Urbanowski, M., Chaturvedi, N.,
606 Srinivasan, S., Johnson, D.H., Bishai, W.R., 2018. Genetics of human susceptibility to
607 active and latent tuberculosis: present knowledge and future perspectives. Lancet Infect.
608 Dis. 18, e64–e75. [https://doi.org/10.1016/S1473-3099\(17\)30623-0](https://doi.org/10.1016/S1473-3099(17)30623-0)

609 Ackerman, J.E., Nichols, A.E., Studentsova, V., Best, K.T., Knapp, E., Loiselle, A.E., 2019. Cell
610 non-autonomous functions of S100a4 drive fibrotic tendon healing. eLife 8, e45342.
611 <https://doi.org/10.7554/eLife.45342>

612 Ahmed, A., Rakshit, S., Adiga, V., Dias, M., Dwarkanath, P., D’Souza, G., Vyakarnam, A.,
613 2021. A century of BCG: Impact on tuberculosis control and beyond. Immunol. Rev. 301,
614 98–121. <https://doi.org/10.1111/imr.12968>

615 Ahrends, T., Spanjaard, A., Pilzecker, B., Bąbała, N., Bovens, A., Xiao, Y., Jacobs, H., Borst, J.,
616 2017. CD4+ T Cell Help Confers a Cytotoxic T Cell Effector Program Including
617 Coinhibitory Receptor Downregulation and Increased Tissue Invasiveness. *Immunity* 47,
618 848-861.e5. <https://doi.org/10.1016/j.jimmuni.2017.10.009>

619 Almanzar, N., Antony, J., Baghel, A.S., Bakerman, I., Bansal, I., Barres, B.A., Beachy, P.A.,
620 Berdnik, D., Bilen, B., Brownfield, D., Cain, C., Chan, C.K.F., Chen, M.B., Clarke, M.F.,
621 Conley, S.D., Darmanis, S., Demers, A., Demir, K., de Morree, A., Divita, T., du Bois,
622 H., Ebadi, H., Espinoza, F.H., Fish, M., Gan, Q., George, B.M., Gillich, A., Gómez-
623 Sjöberg, R., Green, F., Genetiano, G., Gu, X., Gulati, G.S., Hahn, O., Haney, M.S., Hang,
624 Y., Harris, L., He, M., Hosseinzadeh, S., Huang, A., Huang, K.C., Iram, T., Isobe, T.,
625 Ives, F., Jones, R.C., Kao, K.S., Karkanias, J., Karnam, G., Keller, A., Kershner, A.M.,
626 Khouri, N., Kim, S.K., Kiss, B.M., Kong, W., Krasnow, M.A., Kumar, M.E., Kuo, C.S.,
627 Lam, J., Lee, D.P., Lee, S.E., Lehallier, B., Leventhal, O., Li, G., Li, Q., Liu, L., Lo, A.,
628 Lu, W.-J., Lugo-Fagundo, M.F., Manjunath, A., May, A.P., Maynard, A., McGeever, A.,
629 McKay, M., McNerney, M.W., Merrill, B., Metzger, R.J., Mignardi, M., Min, D.,
630 Nabhan, A.N., Neff, N.F., Ng, K.M., Nguyen, P.K., Noh, J., Nusse, R., Pálovics, R.,
631 Patkar, R., Peng, W.C., Penland, L., Pisco, A.O., Pollard, K., Puccinelli, R., Qi, Z.,
632 Quake, S.R., Rando, T.A., Rulifson, E.J., Schaum, N., Segal, J.M., Sikandar, S.S., Sinha,
633 R., Sit, R.V., Sonnenburg, J., Staehli, D., Szade, K., Tan, M., Tan, W., Tato, C., Tellez,
634 K., Dulgeroff, L.B.T., Travaglini, K.J., Tropini, C., Tsui, M., Waldburger, L., Wang,
635 B.M., van Weele, L.J., Weinberg, K., Weissman, I.L., Wosczyna, M.N., Wu, S.M.,
636 Wyss-Coray, T., Xiang, J., Xue, S., Yamauchi, K.A., Yang, A.C., Yerra, L.P.,
637 Youngyunipatkul, J., Yu, B., Zanini, F., Zardeneta, M.E., Zee, A., Zhao, C., Zhang, F.,
638 Zhang, H., Zhang, M.J., Zhou, L., Zou, J., The Tabula Muris Consortium, 2020. A single-
639 cell transcriptomic atlas characterizes ageing tissues in the mouse. *Nature* 583, 590–595.
640 <https://doi.org/10.1038/s41586-020-2496-1>

641 Andreatta, M., Tjitropranoto, A., Sherman, Z., Kelly, M.C., Ciucci, T., Carmona, S.J., 2022. A
642 CD4+ T cell reference map delineates subtype-specific adaptation during acute and
643 chronic viral infections. *eLife* 11, e76339. <https://doi.org/10.7554/eLife.76339>

644 Andrews, J.R., Noubary, F., Walensky, R.P., Cerdá, R., Losina, E., Horsburgh, C.R., 2012. Risk
645 of Progression to Active Tuberculosis Following Reinfection With *Mycobacterium*
646 tuberculosis. *Clin. Infect. Dis.* 54, 784–791. <https://doi.org/10.1093/cid/cir951>

647 Atkinson, J.J., Toennies, H.M., Holmbeck, K., Senior, R.M., 2007. Membrane type 1 matrix
648 metalloproteinase is necessary for distal airway epithelial repair and keratinocyte growth
649 factor receptor expression after acute injury. *Am. J. Physiol.-Lung Cell. Mol. Physiol.*
650 293, L600–L610. <https://doi.org/10.1152/ajplung.00028.2007>

651 Berry, M.P.R., Graham, C.M., McNab, F.W., Xu, Z., Bloch, S.A.A., Oni, T., Wilkinson, K.A.,
652 Banchereau, R., Skinner, J., Wilkinson, R.J., Quinn, C., Blankenship, D., Dhawan, R.,
653 Cush, J.J., Mejias, A., Ramilo, O., Kon, O.M., Pascual, V., Banchereau, J., Chaussabel,
654 D., O'Garra, A., 2010. An interferon-inducible neutrophil-driven blood transcriptional
655 signature in human tuberculosis. *Nature* 466, 973–977.
656 <https://doi.org/10.1038/nature09247>

657 Bertholet, S., Ireton, G.C., Ordway, D.J., Windish, H.P., Pine, S.O., Kahn, M., Phan, T., Orme,
658 I.M., Vedvick, T.S., Baldwin, S.L., Coler, R.N., Reed, S.G., 2010. A Defined
659 Tuberculosis Vaccine Candidate Boosts BCG and Protects Against Multidrug-Resistant

660 Mycobacterium tuberculosis. *Sci. Transl. Med.* 2, 53ra74-53ra74.
661 <https://doi.org/10.1126/scitranslmed.3001094>

662 Bhattacharyya, C., Majumder, P.P., Pandit, B., 2018. CXCL10 is overexpressed in active
663 tuberculosis patients compared to *M. tuberculosis*-exposed household contacts.
664 *Tuberculosis* 109, 8–16. <https://doi.org/10.1016/j.tube.2018.01.005>

665 Bourgeois, C., 2002. A Role for CD40 Expression on CD8+ T Cells in the Generation of CD8+
666 T Cell Memory. *Science* 297, 2060–2063. <https://doi.org/10.1126/science.1072615>

667 Browaeys, R., Gilis, J., Sang-Aram, C., De Bleser, P., Hoste, L., Tavernier, S., Lambrechts, D.,
668 Seurinck, R., Saeys, Y., 2023. MultiNicheNet: a flexible framework for differential cell-
669 cell communication analysis from multi-sample multi-condition single-cell
670 transcriptomics data (preprint). *Bioinformatics*.
671 <https://doi.org/10.1101/2023.06.13.544751>

672 Büttner, M., Ostner, J., Müller, C.L., Theis, F.J., Schubert, B., 2021. scCODA is a Bayesian
673 model for compositional single-cell data analysis. *Nat. Commun.* 12, 6876.
674 <https://doi.org/10.1038/s41467-021-27150-6>

675 Cadena, A.M., Hopkins, F.F., Maiello, P., Carey, A.F., Wong, E.A., Martin, C.J., Gideon, H.P.,
676 DiFazio, R.M., Andersen, P., Lin, P.L., Fortune, S.M., Flynn, J.L., 2018. Concurrent
677 infection with *Mycobacterium tuberculosis* confers robust protection against secondary
678 infection in macaques. *PLOS Pathog.* 14, e1007305.
679 <https://doi.org/10.1371/journal.ppat.1007305>

680 Cai, S., Batra, S., Lira, S.A., Kolls, J.K., Jeyaseelan, S., 2010. CXCL1 Regulates Pulmonary
681 Host Defense to *Klebsiella* Infection via CXCL2, CXCL5, NF- κ B, and MAPKs. *J.*
682 *Immunol.* 185, 6214–6225. <https://doi.org/10.4049/jimmunol.0903843>

683 Cai, Y., Wang, Y., Shi, C., Dai, Y., Li, F., Xu, Y., Zhang, P., Kong, F., Deng, G., Wen, Z., Zhou,
684 Q., Kang, B.C., Singhal, A., Yang, Q., Feng, C.G., Chen, X., 2022. Single-cell immune
685 profiling reveals functional diversity of T cells in tuberculous pleural effusion. *J. Exp.*
686 *Med.* 219, e20211777. <https://doi.org/10.1084/jem.20211777>

687 Capuano, S.V., Croix, D.A., Pawar, S., Zinovik, A., Myers, A., Lin, P.L., Bissel, S., Fuhrman,
688 C., Klein, E., Flynn, J.L., 2003. Experimental *Mycobacterium tuberculosis* Infection of
689 Cynomolgus Macaques Closely Resembles the Various Manifestations of Human *M.*
690 *tuberculosis* Infection. *Infect. Immun.* 71, 5831–5844.
691 <https://doi.org/10.1128/IAI.71.10.5831-5844.2003>

692 Carmona-Rivera, C., Zhao, W., Yalavarthi, S., Kaplan, M.J., 2015. Neutrophil extracellular traps
693 induce endothelial dysfunction in systemic lupus erythematosus through the activation of
694 matrix metalloproteinase-2. *Ann. Rheum. Dis.* 74, 1417–1424.
695 <https://doi.org/10.1136/annrheumdis-2013-204837>

696 Chakravarty, S.D., Xu, J., Lu, B., Gerard, C., Flynn, J., Chan, J., 2007. The Chemokine Receptor
697 CXCR3 Attenuates the Control of Chronic *Mycobacterium tuberculosis* Infection in
698 BALB/c Mice. *J. Immunol.* 178, 1723–1735.
699 <https://doi.org/10.4049/jimmunol.178.3.1723>

700 Chen, C.Y., Huang, D., Wang, R.C., Shen, L., Zeng, G., Yao, S., Shen, Y., Halliday, L.,
701 Fortman, J., McAllister, M., Estep, J., Hunt, R., Vasconcelos, D., Du, G., Porcelli, S.A.,
702 Larsen, M.H., Jacobs, W.R., Haynes, B.F., Letvin, N.L., Chen, Z.W., 2009. A Critical
703 Role for CD8 T Cells in a Nonhuman Primate Model of Tuberculosis. *PLoS Pathog.* 5,
704 e1000392. <https://doi.org/10.1371/journal.ppat.1000392>

705 Cohen, S.B., Gern, B.H., Delahaye, J.L., Adams, K.N., Plumlee, C.R., Winkler, J.K., Sherman,
706 D.R., Gerner, M.Y., Urdahl, K.B., 2018. Alveolar Macrophages Provide an Early
707 Mycobacterium tuberculosis Niche and Initiate Dissemination. *Cell Host Microbe* 24,
708 439-446.e4. <https://doi.org/10.1016/j.chom.2018.08.001>

709 Cohen, S.B., Gern, B.H., Urdahl, K.B., 2022. The Tuberculous Granuloma and Preexisting
710 Immunity. *Annu. Rev. Immunol.* 40, 589–614. <https://doi.org/10.1146/annurev-immunol-093019-125148>

711 Coleman, M.T., Chen, R.Y., Lee, M., Lin, P.L., Dodd, L.E., Maiello, P., Via, L.E., Kim, Y.,
712 Marriner, G., Dartois, V., Scanga, C., Janssen, C., Wang, J., Klein, E., Cho, S.N., Barry,
713 C.E., Flynn, J.L., 2014a. PET/CT imaging reveals a therapeutic response to
714 oxazolidinones in macaques and humans with tuberculosis. *Sci. Transl. Med.* 6.
715 <https://doi.org/10.1126/scitranslmed.3009500>

716 Coleman, M.T., Maiello, P., Tomko, J., Frye, L.J., Fillmore, D., Janssen, C., Klein, E., Lin, P.L.,
717 2014b. Early Changes by ¹⁸ Fluorodeoxyglucose Positron Emission Tomography
718 Coregistered with Computed Tomography Predict Outcome after Mycobacterium
719 tuberculosis Infection in Cynomolgus Macaques. *Infect. Immun.* 82, 2400–2404.
720 <https://doi.org/10.1128/IAI.01599-13>

721 Coscolla, M., Gagneux, S., 2014. Consequences of genomic diversity in *Mycobacterium*
722 tuberculosis. *Semin. Immunol.* 26, 431–444. <https://doi.org/10.1016/j.smim.2014.09.012>

723 Crotty, S., 2011. Follicular Helper CD4 T Cells (T_{FH}). *Annu. Rev. Immunol.* 29, 621–663.
724 <https://doi.org/10.1146/annurev-immunol-031210-101400>

725 Darrah, P.A., Patel, D.T., De Luca, P.M., Lindsay, R.W.B., Davey, D.F., Flynn, B.J., Hoff, S.T.,
726 Andersen, P., Reed, S.G., Morris, S.L., Roederer, M., Seder, R.A., 2007. Multifunctional
727 TH1 cells define a correlate of vaccine-mediated protection against *Leishmania major*.
728 *Nat. Med.* 13, 843–850. <https://doi.org/10.1038/nm1592>

729 Darrah, P.A., Zeppa, J.J., Maiello, P., Hackney, J.A., Wadsworth, M.H., Hughes, T.K., Pokkali,
730 S., Swanson, P.A., Grant, N.L., Rodgers, M.A., Kamath, M., Causgrove, C.M., Laddy,
731 D.J., Bonavia, A., Casimiro, D., Lin, P.L., Klein, E., White, A.G., Scanga, C.A., Shalek,
732 A.K., Roederer, M., Flynn, J.L., Seder, R.A., 2020. Prevention of tuberculosis in
733 macaques after intravenous BCG immunization. *Nature* 577, 95–102.
734 <https://doi.org/10.1038/s41586-019-1817-8>

735 Darrah, P.A., Zeppa, J.J., Wang, C., Irvine, E.B., Bucsan, A.N., Rodgers, M.A., Pokkali, S.,
736 Hackney, J.A., Kamath, M., White, A.G., Borish, H.J., Frye, L.J., Tomko, J.,
737 Kracinovsky, K., Lin, P.L., Klein, E., Scanga, C.A., Alter, G., Fortune, S.M.,
738 Lauffenburger, D.A., Flynn, J.L., Seder, R.A., Maiello, P., Roederer, M., 2023. Airway T
739 cells are a correlate of i.v. *Bacille Calmette-Guerin*-mediated protection against
740 tuberculosis in rhesus macaques. *Cell Host Microbe* 31, 962-977.e8.
741 <https://doi.org/10.1016/j.chom.2023.05.006>

742 Desvignes, L., Ernst, J.D., 2009. Interferon- γ -Responsive Nonhematopoietic Cells Regulate the
743 Immune Response to *Mycobacterium* tuberculosis. *Immunity* 31, 974–985.
744 <https://doi.org/10.1016/j.immuni.2009.10.007>

745 Diedrich, C.R., Rutledge, T., Maiello, P., Baranowski, T.M., White, A.G., Borish, H.J., Karell,
746 P., Hopkins, F., Brown, J., Fortune, S.M., Flynn, J.L., Ambrose, Z., Lin, P.L., 2020. SIV
747 and *Mycobacterium* tuberculosis synergy within the granuloma accelerates the
748 reactivation pattern of latent tuberculosis. *PLOS Pathog.* 16, e1008413.
749 <https://doi.org/10.1371/journal.ppat.1008413>

751 Dijkman, K., Sombroek, C.C., Vervenne, R.A.W., Hofman, S.O., Boot, C., Remarque, E.J.,
752 Kocken, C.H.M., Ottenhoff, T.H.M., Kondova, I., Khayum, M.A., Haanstra, K.G.,
753 Vierboom, M.P.M., Verreck, F.A.W., 2019. Prevention of tuberculosis infection and
754 disease by local BCG in repeatedly exposed rhesus macaques. *Nat. Med.* 25, 255–262.
755 <https://doi.org/10.1038/s41591-018-0319-9>

756 DiToro, D., Harbour, S.N., Bando, J.K., Benavides, G., Witte, S., Laufer, V.A., Moseley, C.,
757 Singer, J.R., Frey, B., Turner, H., Bruning, J., Darley-Ussmar, V., Gao, M., Conover, C.,
758 Hatton, R.D., Frank, S., Colonna, M., Weaver, C.T., 2020. Insulin-Like Growth Factors
759 Are Key Regulators of T Helper 17 Regulatory T Cell Balance in Autoimmunity.
760 *Immunity* 52, 650-667.e10. <https://doi.org/10.1016/j.immuni.2020.03.013>

761 Dwyer, D.F., Ordovas-Montanes, J., Allon, S.J., Buchheit, K.M., Vukovic, M., Derakhshan, T.,
762 Feng, C., Lai, J., Hughes, T.K., Nyquist, S.K., Giannetti, M.P., Berger, B.,
763 Bhattacharyya, N., Roditi, R.E., Katz, H.R., Nawijn, M.C., Berg, M., Van Den Berge, M.,
764 Laidlaw, T.M., Shalek, A.K., Barrett, N.A., Boyce, J.A., 2021. Human airway mast cells
765 proliferate and acquire distinct inflammation-driven phenotypes during type 2
766 inflammation. *Sci. Immunol.* 6, eabb7221. <https://doi.org/10.1126/sciimmunol.abb7221>

767 Ellis, R.D., Hatherill, M., Tait, D., Snowden, M., Churchyard, G., Hanekom, W., Evans, T.,
768 Ginsberg, A.M., 2015. Innovative clinical trial designs to rationalize TB vaccine
769 development. *Tuberculosis* 95, 352–357. <https://doi.org/10.1016/j.tube.2015.02.036>

770 Esaulova, E., Das, S., Singh, D.K., Chóreñio-Parra, J.A., Swain, A., Arthur, L., Rangel-Moreno,
771 J., Ahmed, M., Singh, B., Gupta, A., Fernández-López, L.A., de la Luz García-
772 Hernandez, M., Bucsan, A., Moodley, C., Mehra, S., García-Latorre, E., Zuniga, J.,
773 Atkinson, J., Kaushal, D., Artyomov, M.N., Khader, S.A., 2020. The immune landscape
774 in tuberculosis reveals populations linked to disease and latency. *Cell Host Microbe*
775 S1931312820306351. <https://doi.org/10.1016/j.chom.2020.11.013>

776 Esmail, H., Riou, C., Du Bruyn, E., Lai, R.P.-J., Harley, Y.X.R., Meintjes, G., Wilkinson, K.A.,
777 Wilkinson, R.J., 2018. The Immune Response to *Mycobacterium tuberculosis* in HIV-1-
778 Coinfected Persons. *Annu. Rev. Immunol.* 36, 603–638. [https://doi.org/10.1146/annurev-immunol-042617-053420](https://doi.org/10.1146/annurev-
779 immunol-042617-053420)

780 Feau, S., Arens, R., Togher, S., Schoenberger, S.P., 2011. Autocrine IL-2 is required for
781 secondary population expansion of CD8+ memory T cells. *Nat. Immunol.* 12, 908–913.
782 <https://doi.org/10.1038/ni.2079>

783 Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A.K., Slichter, C.K., Miller,
784 H.W., McElrath, M.J., Prlic, M., Linsley, P.S., Gottardo, R., 2015. MAST: a flexible
785 statistical framework for assessing transcriptional changes and characterizing
786 heterogeneity in single-cell RNA sequencing data. *Genome Biol.* 16, 278.
787 <https://doi.org/10.1186/s13059-015-0844-5>

788 Flynn, J.L., Chan, J., 2022. Immune cell interactions in tuberculosis. *Cell* 185, 4682–4702.
789 <https://doi.org/10.1016/j.cell.2022.10.025>

790 Flynn, J.L., Gideon, H.P., Mattila, J.T., Lin, P.L., 2015. Immunology studies in non-human
791 primate models of tuberculosis. *Immunol. Rev.* 264, 60–73.
792 <https://doi.org/10.1111/imr.12258>

793 Foreman, T.W., Mehra, S., LoBato, D.N., Malek, A., Alvarez, X., Golden, N.A., Bucsan, A.N.,
794 Didier, P.J., Doyle-Meyers, L.A., Russell-Lodrigue, K.E., Roy, C.J., Blanchard, J.,
795 Kuroda, M.J., Lackner, A.A., Chan, J., Khader, S.A., Jacobs, W.R., Kaushal, D., 2016.
796 CD4⁺ T-cell-independent mechanisms suppress reactivation of latent tuberculosis in a

797 macaque model of HIV coinfection. Proc. Natl. Acad. Sci. 113.
798 <https://doi.org/10.1073/pnas.1611987113>

799 Foreman, T.W., Nelson, C.E., Kauffman, K.D., Lora, N.E., Vinhaes, C.L., Dorosky, D.E., Sakai,
800 S., Gomez, F., Fleegle, J.D., Parham, M., Perera, S.R., Lindestam Arlehamn, C.S., Sette,
801 A., Brenchley, J.M., Queiroz, A.T.L., Andrade, B.B., Kabat, J., Via, L.E., Barber, D.L.,
802 2022. CD4 T cells are rapidly depleted from tuberculosis granulomas following acute
803 SIV co-infection. *Cell Rep.* 39, 110896. <https://doi.org/10.1016/j.celrep.2022.110896>

804 Galagan, J.E., 2014. Genomic insights into tuberculosis. *Nat. Rev. Genet.* 15, 307–320.
805 <https://doi.org/10.1038/nrg3664>

806 Galletti, G., De Simone, G., Mazza, E.M.C., Puccio, S., Mezzanotte, C., Bi, T.M., Davydov,
807 A.N., Metsger, M., Scamardella, E., Alvisi, G., De Paoli, F., Zanon, V., Scarpa, A.,
808 Camisa, B., Colombo, F.S., Anselmo, A., Peano, C., Polletti, S., Mavilio, D., Gattinoni,
809 L., Boi, S.K., Youngblood, B.A., Jones, R.E., Baird, D.M., Gostick, E., Llewellyn-Lacey,
810 S., Ladell, K., Price, D.A., Chudakov, D.M., Newell, E.W., Casucci, M., Lugli, E.,
811 2020a. Two subsets of stem-like CD8+ memory T cell progenitors with distinct fate
812 commitments in humans. *Nat. Immunol.* 21, 1552–1562. <https://doi.org/10.1038/s41590-020-0791-5>

813 Galletti, G., De Simone, G., Mazza, E.M.C., Puccio, S., Mezzanotte, C., Bi, T.M., Davydov,
814 A.N., Metsger, M., Scamardella, E., Alvisi, G., De Paoli, F., Zanon, V., Scarpa, A.,
815 Camisa, B., Colombo, F.S., Anselmo, A., Peano, C., Polletti, S., Mavilio, D., Gattinoni,
816 L., Boi, S.K., Youngblood, B.A., Jones, R.E., Baird, D.M., Gostick, E., Llewellyn-Lacey,
817 S., Ladell, K., Price, D.A., Chudakov, D.M., Newell, E.W., Casucci, M., Lugli, E.,
818 2020b. Two subsets of stem-like CD8+ memory T cell progenitors with distinct fate
819 commitments in humans. *Nat. Immunol.* 21, 1552–1562. <https://doi.org/10.1038/s41590-020-0791-5>

820 Ganchua, S.K.C., Cadena, A.M., Maiello, P., Gideon, H.P., Myers, A.J., Junecko, B.F., Klein,
821 E.C., Lin, P.L., Mattila, J.T., Flynn, J.L., 2018. Lymph nodes are sites of prolonged
822 bacterial persistence during *Mycobacterium tuberculosis* infection in macaques. *PLOS
823 Pathog.* 14, e1007337. <https://doi.org/10.1371/journal.ppat.1007337>

824 Gasperini, S., Marchi, M., Calzetti, F., Laudanna, C., Vicentini, L., Olsen, H., Murphy, M., Liao,
825 F., Farber, J., Cassatella, M.A., 1999. Gene Expression and Production of the Monokine
826 Induced by IFN- γ (MIG), IFN-Inducible T Cell α Chemoattractant (I-TAC), and IFN- γ -
827 Inducible Protein-10 (IP-10) Chemokines by Human Neutrophils. *J. Immunol.* 162,
828 4928–4937. <https://doi.org/10.4049/jimmunol.162.8.4928>

829 Gazzinelli, R.T., Wysocka, M., Hieny, S., Scharton-Kersten, T., Cheever, A., Kühn, R., Müller,
830 W., Trinchieri, G., Sher, A., 1996. In the absence of endogenous IL-10, mice acutely
831 infected with *Toxoplasma gondii* succumb to a lethal immune response dependent on
832 CD4+ T cells and accompanied by overproduction of IL-12, IFN-gamma and TNF-alpha.
833 *J. Immunol.* 157, 798–805. <https://doi.org/10.4049/jimmunol.157.2.798>

834 Giacomini, E., Sotolongo, A., Iona, E., Severa, M., Remoli, M.E., Gafa, V., Lande, R., Fattorini,
835 L., Smith, I., Manganelli, R., Coccia, E.M., 2006. Infection of Human Dendritic Cells
836 with a *Mycobacterium tuberculosis* *sigE* Mutant Stimulates Production of High Levels of
837 Interleukin-10 but Low Levels of CXCL10: Impact on the T-Cell Response. *Infect.
838 Immun.* 74, 3296–3304. <https://doi.org/10.1128/IAI.01687-05>

839 Gideon, H.P., Hughes, T.K., Tzouanas, C.N., Wadsworth, M.H., Tu, A.A., Gierahn, T.M.,
840 Peters, J.M., Hopkins, F.F., Wei, J.-R., Kummerlowe, C., Grant, N.L., Nargan, K., Phuah,
841

843 J.Y., Borish, H.J., Maiello, P., White, A.G., Winchell, C.G., Nyquist, S.K., Ganchua,
844 S.K.C., Myers, A., Patel, K.V., Ameel, C.L., Cochran, C.T., Ibrahim, S., Tomko, J.A.,
845 Frye, L.J., Rosenberg, J.M., Shih, A., Chao, M., Klein, E., Scanga, C.A., Ordovas-
846 Montanes, J., Berger, B., Mattila, J.T., Madansein, R., Love, J.C., Lin, P.L., Leslie, A.,
847 Behar, S.M., Bryson, B., Flynn, J.L., Fortune, S.M., Shalek, A.K., 2022. Multimodal
848 profiling of lung granulomas in macaques reveals cellular correlates of tuberculosis
849 control. *Immunity* 55, 827-846.e10. <https://doi.org/10.1016/j.immuni.2022.04.004>

850 Gideon, H.P., Phuah, J., Junecko, B.A., Mattila, J.T., 2019. Neutrophils express pro- and anti-
851 inflammatory cytokines in granulomas from *Mycobacterium tuberculosis*-infected
852 cynomolgus macaques. *Mucosal Immunol.* 12, 1370-1381.
853 <https://doi.org/10.1038/s41385-019-0195-8>

854 Gideon, H.P., Phuah, J., Myers, A.J., Bryson, B.D., Rodgers, M.A., Coleman, M.T., Maiello, P.,
855 Rutledge, T., Marino, S., Fortune, S.M., Kirschner, D.E., Lin, P.L., Flynn, J.L., 2015.
856 Variability in Tuberculosis Granuloma T Cell Responses Exists, but a Balance of Pro-
857 and Anti-inflammatory Cytokines Is Associated with Sterilization. *PLOS Pathog.* 11,
858 e1004603. <https://doi.org/10.1371/journal.ppat.1004603>

859 Gierahn, T.M., Wadsworth, M.H., Hughes, T.K., Bryson, B.D., Butler, A., Satija, R., Fortune, S.,
860 Love, J.C., Shalek, A.K., 2017. Seq-Well: portable, low-cost RNA sequencing of single
861 cells at high throughput. *Nat. Methods* 14, 395-398. <https://doi.org/10.1038/nmeth.4179>

862 Gong, D., Shi, W., Yi, S., Chen, H., Groffen, J., Heisterkamp, N., 2012. TGF β signaling plays a
863 critical role in promoting alternative macrophage activation. *BMC Immunol.* 13, 31.
864 <https://doi.org/10.1186/1471-2172-13-31>

865 Gopal, R., Monin, L., Torres, D., Slight, S., Mehra, S., McKenna, K.C., Fallert Junecko, B.A.,
866 Reinhart, T.A., Kolls, J., Báez-Saldaña, R., Cruz-Lagunas, A., Rodríguez-Reyna, T.S.,
867 Kumar, N.P., Tessier, P., Roth, J., Selman, M., Becerril-Villanueva, E., Baquera-Heredia,
868 J., Cumming, B., Kasprowicz, V.O., Steyn, A.J.C., Babu, S., Kaushal, D., Zúñiga, J.,
869 Vogl, T., Rangel-Moreno, J., Khader, S.A., 2013. S100A8/A9 Proteins Mediate
870 Neutrophilic Inflammation and Lung Pathology during Tuberculosis. *Am. J. Respir. Crit.
871 Care Med.* 188, 1137-1146. <https://doi.org/10.1164/rccm.201304-0803OC>

872 Grant, N.L., Maiello, P., Klein, E., Lin, P.L., Borish, H.J., Tomko, J., Frye, L.J., White, A.G.,
873 Kirschner, D.E., Mattila, J.T., Flynn, J.L., 2022. T cell transcription factor expression
874 evolves over time in granulomas from *Mycobacterium tuberculosis*-infected cynomolgus
875 macaques. *Cell Rep.* 39, 110826. <https://doi.org/10.1016/j.celrep.2022.110826>

876 Green, A.M., DiFazio, R., Flynn, J.L., 2013. IFN- γ from CD4 T Cells Is Essential for Host
877 Survival and Enhances CD8 T Cell Function during *Mycobacterium tuberculosis*
878 Infection. *J. Immunol.* 190, 270-277. <https://doi.org/10.4049/jimmunol.1200061>

879 Gupta, A., Wood, R., Kaplan, R., Bekker, L.-G., Lawn, S.D., 2012. Tuberculosis Incidence Rates
880 during 8 Years of Follow-Up of an Antiretroviral Treatment Cohort in South Africa:
881 Comparison with Rates in the Community. *PLoS ONE* 7, e34156.
882 <https://doi.org/10.1371/journal.pone.0034156>

883 Hamilton, S.E., Prlic, M., Jameson, S.C., 2004. Environmental conservation: bystander CD4 T
884 cells keep CD8 memories fresh. *Nat. Immunol.* 5, 873-874.
885 <https://doi.org/10.1038/ni0904-873>

886 Hansen, S.G., Zak, D.E., Xu, G., Ford, J.C., Marshall, E.E., Malouli, D., Gilbride, R.M., Hughes,
887 C.M., Ventura, A.B., Ainslie, E., Randall, K.T., Selseth, A.N., Rundstrom, P., Herlache,
888 L., Lewis, M.S., Park, H., Planer, S.L., Turner, J.M., Fischer, M., Armstrong, C., Zweig,

889 R.C., Valvo, J., Braun, J.M., Shankar, S., Lu, L., Sylwester, A.W., Legasse, A.W.,
890 Messerle, M., Jarvis, M.A., Amon, L.M., Aderem, A., Alter, G., Laddy, D.J., Stone, M.,
891 Bonavia, A., Evans, T.G., Axthelm, M.K., Früh, K., Edlefsen, P.T., Picker, L.J., 2018.
892 Prevention of tuberculosis in rhesus macaques by a cytomegalovirus-based vaccine. *Nat. Med.* 24, 130–143. <https://doi.org/10.1038/nm.4473>

893 Hughes, T.K., Wadsworth, M.H., Gierahn, T.M., Do, T., Weiss, D., Andrade, P.R., Ma, F., De
894 Andrade Silva, B.J., Shao, S., Tsoi, L.C., Ordovas-Montanes, J., Gudjonsson, J.E.,
895 Modlin, R.L., Love, J.C., Shalek, A.K., 2020. Second-Strand Synthesis-Based Massively
896 Parallel scRNA-Seq Reveals Cellular States and Molecular Features of Human
897 Inflammatory Skin Pathologies. *Immunity* 53, 878-894.e7.
898 <https://doi.org/10.1016/j.immuni.2020.09.015>

899 Huynh, J.P., Lin, C.-C., Kimmey, J.M., Jarjour, N.N., Schwarzkopf, E.A., Bradstreet, T.R.,
900 Shchukina, I., Shpynov, O., Weaver, C.T., Taneja, R., Artyomov, M.N., Edelson, B.T.,
901 Stallings, C.L., 2018. Bhlhe40 is an essential repressor of IL-10 during *Mycobacterium*
902 *tuberculosis* infection. *J. Exp. Med.* 215, 1823–1838.
903 <https://doi.org/10.1084/jem.20171704>

904 Ichikawa, A., Kuba, K., Morita, M., Chida, S., Tezuka, H., Hara, H., Sasaki, T., Ohteki, T.,
905 Ranieri, V.M., Dos Santos, C.C., Kawaoka, Y., Akira, S., Luster, A.D., Lu, B.,
906 Penninger, J.M., Uhlig, S., Slutsky, A.S., Imai, Y., 2013. CXCL10-CXCR3 Enhances the
907 Development of Neutrophil-mediated Fulminant Lung Injury of Viral and Nonviral
908 Origin. *Am. J. Respir. Crit. Care Med.* 187, 65–77. <https://doi.org/10.1164/rccm.201203-0508OC>

909 Jonsson, A.H., Zhang, F., Dunlap, G., Gomez-Rivas, E., Watts, G.F.M., Faust, H.J., Rupani,
910 K.V., Mears, J.R., Meednu, N., Wang, R., Keras, G., Coblyn, J.S., Massarotti, E.M.,
911 Todd, D.J., Anolik, J.H., McDavid, A., Accelerating Medicines Partnership RA/SLE
912 Network, Wei, K., Rao, D.A., Raychaudhuri, S., Brenner, M.B., 2022. Granzyme K⁺
913 CD8 T cells form a core population in inflamed human tissue. *Sci. Transl. Med.* 14,
914 eabo0686. <https://doi.org/10.1126/scitranslmed.abo0686>

915 Joosten, S.A., Van Meijgaarden, K.E., Arend, S.M., Prins, C., Oftung, F., Korsvold, G.E., Kik,
916 S.V., Arts, R.J.W., Van Crevel, R., Netea, M.G., Ottenhoff, T.H.M., 2018. Mycobacterial
917 growth inhibition is associated with trained innate immunity. *J. Clin. Invest.* 128, 1837–
918 1851. <https://doi.org/10.1172/JCI97508>

919 J-P Millet, À Orcau, P García de Olalla, M Casals, C Rius, J A Caylà, 2009. Tuberculosis
920 recurrence and its associated risk factors among successfully treated patients. *J.*
921 *Epidemiol. Community Health* 63, 799. <https://doi.org/10.1136/jech.2008.077560>

922 Kauffman, K.D., Sakai, S., Lora, N.E., Namasivayam, S., Baker, P.J., Kamenyeva, O., Foreman,
923 T.W., Nelson, C.E., Oliveira-de-Souza, D., Vinhaes, C.L., Yaniv, Z., Lindestam
924 Arleham, C.S., Sette, A., Freeman, G.J., Moore, R., NIAID/DIR Tuberculosis Imaging
925 Program, Sher, A., Mayer-Barber, K.D., Andrade, B.B., Kabat, J., Via, L.E., Barber,
926 D.L., 2021. PD-1 blockade exacerbates *Mycobacterium tuberculosis* infection in rhesus
927 macaques. *Sci. Immunol.* 6, eabf3861. <https://doi.org/10.1126/sciimmunol.abf3861>

928 Kessler, B., Rinchai, D., Kewcharoenwong, C., Nithichanon, A., Biggart, R., Hawrylowicz,
929 C.M., Bancroft, G.J., Lertmemongkolchai, G., 2017. Interleukin 10 inhibits pro-
930 inflammatory cytokine responses and killing of *Burkholderia pseudomallei*. *Sci. Rep.* 7,
931 42791. <https://doi.org/10.1038/srep42791>

934 Khader, S.A., Bell, G.K., Pearl, J.E., Fountain, J.J., Rangel-Moreno, J., Cilley, G.E., Shen, F.,
935 Eaton, S.M., Gaffen, S.L., Swain, S.L., Locksley, R.M., Haynes, L., Randall, T.D.,
936 Cooper, A.M., 2007. IL-23 and IL-17 in the establishment of protective pulmonary CD4+
937 T cell responses after vaccination and during *Mycobacterium tuberculosis* challenge. *Nat.*
938 *Immunol.* 8, 369–377. <https://doi.org/10.1038/ni1449>

939 Kotliar, D., Lin, A.E., Logue, J., Hughes, T.K., Khoury, N.M., Raju, S.S., Wadsworth, M.H.,
940 Chen, H., Kurtz, J.R., Dighero-Kemp, B., Bjornson, Z.B., Mukherjee, N., Sellers, B.A.,
941 Tran, N., Bauer, M.R., Adams, G.C., Adams, R., Rinn, J.L., Melé, M., Schaffner, S.F.,
942 Nolan, G.P., Barnes, K.G., Hensley, L.E., McIlwain, D.R., Shalek, A.K., Sabeti, P.C.,
943 Bennett, R.S., 2020. Single-Cell Profiling of Ebola Virus Disease In Vivo Reveals Viral
944 and Host Dynamics. *Cell* 183, 1383–1401.e19. <https://doi.org/10.1016/j.cell.2020.10.002>

945 Kumar, N.P., Hissar, S., Thiruvengadam, K., Banurekha, V.V., Balaji, S., Elilarasi, S., Gomathi,
946 N.S., Ganesh, J., Aravind, M.A., Baskaran, D., Tripathy, S., Swaminathan, S., Babu, S.,
947 2021. Plasma chemokines as immune biomarkers for diagnosis of pediatric tuberculosis.
948 *BMC Infect. Dis.* 21, 1055. <https://doi.org/10.1186/s12879-021-06749-6>

949 Kwan, C.K., Ernst, J.D., 2011. HIV and Tuberculosis: a Deadly Human Syndemic. *Clin.*
950 *Microbiol. Rev.* 24, 351–376. <https://doi.org/10.1128/CMR.00042-10>

951 Laidlaw, B.J., Craft, J.E., Kaech, S.M., 2016. The multifaceted role of CD4+ T cells in CD8+ T
952 cell memory. *Nat. Rev. Immunol.* 16, 102–111. <https://doi.org/10.1038/nri.2015.10>

953 Lange, C., Aaby, P., Behr, M.A., Donald, P.R., Kaufmann, S.H.E., Netea, M.G., Mandalakas,
954 A.M., 2022. 100 years of *Mycobacterium bovis* bacille Calmette-Guérin. *Lancet Infect.*
955 *Dis.* 22, e2–e12. [https://doi.org/10.1016/S1473-3099\(21\)00403-5](https://doi.org/10.1016/S1473-3099(21)00403-5)

956 Larson, E.C., Ellis-Connell, A.L., Rodgers, M.A., Gubernat, A.K., Gleim, J.L., Moriarty, R.V.,
957 Balgeman, A.J., Ameel, C.L., Jauro, S., Tomko, J.A., Kracinovsky, K.B., Maiello, P.,
958 Borish, H.J., White, A.G., Klein, E., Bucsan, A.N., Darrah, P.A., Seder, R.A., Roederer,
959 M., Lin, P.L., Flynn, J.L., O'Connor, S.L., Scanga, C.A., 2023. Intravenous Bacille
960 Calmette–Guérin vaccination protects simian immunodeficiency virus-infected macaques
961 from tuberculosis. *Nat. Microbiol.* 8, 2080–2092. [https://doi.org/10.1038/s41564-023-01503-x](https://doi.org/10.1038/s41564-023-
962 01503-x)

963 Lawn, S.D., Zumla, A.I., 2011. Tuberculosis. *The Lancet* 378, 57–72.
964 [https://doi.org/10.1016/S0140-6736\(10\)62173-3](https://doi.org/10.1016/S0140-6736(10)62173-3)

965 Lee, K., Chung, W., Jung, Y., Kim, Y., Park, J., Sheen, S., Park, K., 2015. CXCR3 ligands as
966 clinical markers for pulmonary tuberculosis. *Int. J. Tuberc. Lung Dis.* 19, 191–199.
967 <https://doi.org/10.5588/ijtld.14.0525>

968 Lin, P.L., Dartois, V., Johnston, P.J., Janssen, C., Via, L., Goodwin, M.B., Klein, E., Barry, C.E.,
969 Flynn, J.L., 2012a. Metronidazole prevents reactivation of latent *Mycobacterium*
970 *tuberculosis* infection in macaques. *Proc. Natl. Acad. Sci.* 109, 14188–14193.
971 <https://doi.org/10.1073/pnas.1121497109>

972 Lin, P.L., Ford, C.B., Coleman, M.T., Myers, A.J., Gawande, R., Ioerger, T., Sacchettini, J.,
973 Fortune, S.M., Flynn, J.L., 2014. Sterilization of granulomas is common in active and
974 latent tuberculosis despite within-host variability in bacterial killing. *Nat. Med.* 20, 75–
975 79. <https://doi.org/10.1038/nm.3412>

976 Lin, P.L., Pawar, S., Myers, A., Pegu, A., Fuhrman, C., Reinhart, T.A., Capuano, S.V., Klein, E.,
977 Flynn, J.L., 2006. Early Events in *Mycobacterium tuberculosis* Infection in Cynomolgus
978 Macaques. *Infect. Immun.* 74, 3790–3803. <https://doi.org/10.1128/IAI.00064-06>

979 Lin, P.L., Rodgers, M., Smith, L., Bigbee, M., Myers, A., Bigbee, C., Chiosea, I., Capuano, S.V.,
980 Fuhrman, C., Klein, E., Flynn, J.L., 2009. Quantitative Comparison of Active and Latent
981 Tuberculosis in the Cynomolgus Macaque Model. *Infect. Immun.* 77, 4631–4642.
982 <https://doi.org/10.1128/IAI.00592-09>

983 Lin, P.L., Rutledge, T., Green, A.M., Bigbee, M., Fuhrman, C., Klein, E., Flynn, J.L., 2012b.
984 CD4 T Cell Depletion Exacerbates Acute *Mycobacterium tuberculosis* While
985 Reactivation of Latent Infection Is Dependent on Severity of Tissue Depletion in
986 Cynomolgus Macaques. *AIDS Res. Hum. Retroviruses* 28, 1693–1702.
987 <https://doi.org/10.1089/aid.2012.0028>

988 Loebbermann, J., Schnoeller, C., Thornton, H., Durant, L., Sweeney, N.P., Schuijs, M., O'Garra,
989 A., Johansson, C., Openshaw, P.J., 2012. IL-10 Regulates Viral Lung Immunopathology
990 during Acute Respiratory Syncytial Virus Infection in Mice. *PLoS ONE* 7, e32371.
991 <https://doi.org/10.1371/journal.pone.0032371>

992 Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change and dispersion for
993 RNA-seq data with DESeq2. *Genome Biol.* 15, 550. <https://doi.org/10.1186/s13059-014-0550-8>

995 Lovewell, R.R., Baer, C.E., Mishra, B.B., Smith, C.M., Sassetti, C.M., 2021. Granulocytes act as
996 a niche for *Mycobacterium tuberculosis* growth. *Mucosal Immunol.* 14, 229–241.
997 <https://doi.org/10.1038/s41385-020-0300-z>

998 Lu, Y.-J., Barreira-Silva, P., Boyce, S., Powers, J., Cavallo, K., Behar, S.M., 2021. CD4 T cell
999 help prevents CD8 T cell exhaustion and promotes control of *Mycobacterium*
1000 tuberculosis infection. *Cell Rep.* 36, 109696.
1001 <https://doi.org/10.1016/j.celrep.2021.109696>

1002 Lückel, C., Picard, Felix.S.R., Huber, M., 2020. Tc17 biology and function: Novel concepts. *Eur.*
1003 *J. Immunol.* 50, 1257–1267. <https://doi.org/10.1002/eji.202048627>

1004 Lyadova, I.V., Pantaleev, A.V., 2015. Th1 and Th17 Cells in Tuberculosis: Protection,
1005 Pathology, and Biomarkers. *Mediators Inflamm.* 2015, 1–13.
1006 <https://doi.org/10.1155/2015/854507>

1007 Martin, C.J., Cadena, A.M., Leung, V.W., Lin, P.L., Maiello, P., Hicks, N., Chase, M.R., Flynn,
1008 J.L., Fortune, S.M., 2017. Digitally Barcoding *Mycobacterium tuberculosis* Reveals *In*
1009 *Vivo* Infection Dynamics in the Macaque Model of Tuberculosis. *mBio* 8, e00312-17.
1010 <https://doi.org/10.1128/mBio.00312-17>

1011 McCaffrey, E.F., Donato, M., Keren, L., Chen, Z., Delmastro, A., Fitzpatrick, M.B., Gupta, S.,
1012 Greenwald, N.F., Baranski, A., Graf, W., Kumar, R., Bosse, M., Fullaway, C.C.,
1013 Ramdial, P.K., Forgó, E., Jovic, V., Van Valen, D., Mehra, S., Khader, S.A., Bendall,
1014 S.C., Van De Rijn, M., Kalman, D., Kaushal, D., Hunter, R.L., Banaei, N., Steyn, A.J.C.,
1015 Khatri, P., Angelo, M., 2022. The immunoregulatory landscape of human tuberculosis
1016 granulomas. *Nat. Immunol.* 23, 318–329. <https://doi.org/10.1038/s41590-021-01121-x>

1017 Mehra, S., Pahar, B., Dutta, N.K., Conerly, C.N., Philippi-Falkenstein, K., Alvarez, X., Kaushal,
1018 D., 2010. Transcriptional Reprogramming in Nonhuman Primate (Rhesus Macaque)
1019 Tuberculosis Granulomas. *PLoS ONE* 5, e12266.
1020 <https://doi.org/10.1371/journal.pone.0012266>

1021 Micheni, L.N., Kassaza, K., Kinyi, H., Ntulume, I., Bazira, J., 2022. Detection of
1022 *Mycobacterium tuberculosis* multiple strains in sputum samples from patients with
1023 pulmonary tuberculosis in south western Uganda using MIRU-VNTR. *Sci. Rep.* 12,
1024 1656. <https://doi.org/10.1038/s41598-022-05591-3>

1025 Milner, J.J., Toma, C., He, Z., Kurd, N.S., Nguyen, Q.P., McDonald, B., Quezada, L., Widjaja,
1026 C.E., Witherden, D.A., Crowl, J.T., Shaw, L.A., Yeo, G.W., Chang, J.T., Omilusik, K.D.,
1027 Goldrath, A.W., 2020. Heterogenous Populations of Tissue-Resident CD8+ T Cells Are
1028 Generated in Response to Infection and Malignancy. *Immunity* 52, 808-824.e7.
1029 <https://doi.org/10.1016/j.jimmuni.2020.04.007>

1030 Miyamoto, M., Prause, O., Sjöstrand, M., Laan, M., Lötvall, J., Lindén, A., 2003. Endogenous
1031 IL-17 as a Mediator of Neutrophil Recruitment Caused by Endotoxin Exposure in Mouse
1032 Airways. *J. Immunol.* 170, 4665–4672. <https://doi.org/10.4049/jimmunol.170.9.4665>

1033 Mogilenko, D.A., Shpynov, O., Andhey, P.S., Arthur, L., Swain, A., Esaulova, E., Brioschi, S.,
1034 Shchukina, I., Kerndl, M., Bambouskova, M., Yao, Z., Laha, A., Zaitsev, K., Burdess, S.,
1035 Gilliland, S., Stewart, S.A., Colonna, M., Artyomov, M.N., 2021. Comprehensive
1036 Profiling of an Aging Immune System Reveals Clonal GZMK+ CD8+ T Cells as
1037 Conserved Hallmark of Inflammaging. *Immunity* 54, 99-115.e12.
1038 <https://doi.org/10.1016/j.jimmuni.2020.11.005>

1039 Moguche, A.O., Musvosvi, M., Penn-Nicholson, A., Plumlee, C.R., Mearns, H., Geldenhuys, H.,
1040 Smit, E., Abrahams, D., Rozot, V., Dintwe, O., Hoff, S.T., Kromann, I., Ruhwald, M.,
1041 Bang, P., Larson, R.P., Shafiani, S., Ma, S., Sherman, D.R., Sette, A., Lindestam
1042 Arlehamn, C.S., McKinney, D.M., Maecker, H., Hanekom, W.A., Hatherill, M.,
1043 Andersen, P., Scriba, T.J., Urdahl, K.B., 2017. Antigen Availability Shapes T Cell
1044 Differentiation and Function during Tuberculosis. *Cell Host Microbe* 21, 695-706.e5.
1045 <https://doi.org/10.1016/j.chom.2017.05.012>

1046 Montaldo, E., Lusito, E., Bianchessi, V., Caronni, N., Scala, S., Basso-Ricci, L., Cantaffa, C.,
1047 Masserdotti, A., Barilaro, M., Barresi, S., Genua, M., Vittoria, F.M., Barbiera, G.,
1048 Lazarevic, D., Messina, C., Xue, E., Marktel, S., Tresoldi, C., Milani, R., Ronchi, P.,
1049 Gattillo, S., Santoleri, L., Di Micco, R., Ditadi, A., Belfiori, G., Aleotti, F., Naldini,
1050 M.M., Gentner, B., Gardiman, E., Tamassia, N., Cassatella, M.A., Hidalgo, A., Kwok, I.,
1051 Ng, L.G., Crippa, S., Falconi, M., Pettinella, F., Scapini, P., Naldini, L., Ciceri, F., Aiuti,
1052 A., Ostuni, R., 2022. Cellular and transcriptional dynamics of human neutrophils at
1053 steady state and upon stress. *Nat. Immunol.* 23, 1470–1483.
1054 <https://doi.org/10.1038/s41590-022-01311-1>

1055 Moreira-Teixeira, L., Stimpson, P.J., Stavropoulos, E., Hadebe, S., Chakravarty, P., Ioannou, M.,
1056 Aramburu, I.V., Herbert, E., Priestnall, S.L., Suarez-Bonnet, A., Sousa, J., Fonseca, K.L.,
1057 Wang, Q., Vashakidze, S., Rodríguez-Martínez, P., Vilaplana, C., Saraiva, M.,
1058 Papayannopoulos, V., O'Garra, A., 2020. Type I IFN exacerbates disease in tuberculosis-
1059 susceptible mice by inducing neutrophil-mediated lung inflammation and NETosis. *Nat.*
1060 *Commun.* 11, 5566. <https://doi.org/10.1038/s41467-020-19412-6>

1061 Moss, A.R., Hahn, J.A., Tulsky, J.P., Daley, C.L., Small, P.M., Hopewell, P.C., 2000.
1062 Tuberculosis in the Homeless: A Prospective Study. *Am. J. Respir. Crit. Care Med.* 162,
1063 460–464. <https://doi.org/10.1164/ajrccm.162.2.9910055>

1064 Muñoz-Elías, E.J., Timm, J., Botha, T., Chan, W.-T., Gomez, J.E., McKinney, J.D., 2005a.
1065 Replication Dynamics of *Mycobacterium tuberculosis* in Chronically Infected Mice.
1066 *Infect. Immun.* 73, 546–551. <https://doi.org/10.1128/IAI.73.1.546-551.2005>

1067 Muñoz-Elías, E.J., Timm, J., Botha, T., Chan, W.-T., Gomez, J.E., McKinney, J.D., 2005b.
1068 Replication Dynamics of *Mycobacterium tuberculosis* in Chronically Infected Mice.
1069 *Infect. Immun.* 73, 546–551. <https://doi.org/10.1128/IAI.73.1.546-551.2005>

1070 Nemeth, J., Olson, G.S., Rothchild, A.C., Jahn, A.N., Mai, D., Duffy, F.J., Delahaye, J.L.,
1071 Srivatsan, S., Plumlee, C.R., Urdahl, K.B., Gold, E.S., Aderem, A., Diercks, A.H., 2020.
1072 Contained *Mycobacterium tuberculosis* infection induces concomitant and heterologous
1073 protection. *PLOS Pathog.* 16, e1008655. <https://doi.org/10.1371/journal.ppat.1008655>

1074 Nonghanphithak, D., Reechaipichitkul, W., Namwat, W., Naranbhai, V., Faksri, K., 2017.
1075 Chemokines additional to IFN- γ can be used to differentiate among *Mycobacterium*
1076 tuberculosis infection possibilities and provide evidence of an early clearance phenotype.
1077 *Tuberculosis* 105, 28–34. <https://doi.org/10.1016/j.tube.2017.04.005>

1078 Nunes-Alves, C., Booty, M.G., Carpenter, S.M., Jayaraman, P., Rothchild, A.C., Behar, S.M.,
1079 2014. In search of a new paradigm for protective immunity to TB. *Nat. Rev. Microbiol.*
1080 12, 289–299. <https://doi.org/10.1038/nrmicro3230>

1081 O’Leary, S., O’Sullivan, M.P., Keane, J., 2011. IL-10 Blocks Phagosome Maturation in
1082 *Mycobacterium tuberculosis*– Infected Human Macrophages. *Am. J. Respir. Cell Mol.*
1083 Biol. 45, 172–180. <https://doi.org/10.1165/rcmb.2010-0319OC>

1084 Oliveira, G., Stromhaug, K., Klaeger, S., Kula, T., Frederick, D.T., Le, P.M., Forman, J., Huang,
1085 T., Li, S., Zhang, W., Xu, Q., Cieri, N., Clauser, K.R., Shukla, S.A., Neuberg, D.,
1086 Justesen, S., MacBeath, G., Carr, S.A., Fritsch, E.F., Hacohen, N., Sade-Feldman, M.,
1087 Livak, K.J., Boland, G.M., Ott, P.A., Keskin, D.B., Wu, C.J., 2021. Phenotype,
1088 specificity and avidity of antitumour CD8+ T cells in melanoma. *Nature* 596, 119–125.
1089 <https://doi.org/10.1038/s41586-021-03704-y>

1090 Ong, C.W.M., Fox, K., Ettorre, A., Elkington, P.T., Friedland, J.S., 2018. Hypoxia increases
1091 neutrophil-driven matrix destruction after exposure to *Mycobacterium tuberculosis*. *Sci.*
1092 *Rep.* 8, 11475. <https://doi.org/10.1038/s41598-018-29659-1>

1093 Pagán, A.J., Ramakrishnan, L., 2018. The Formation and Function of Granulomas. *Annu. Rev.*
1094 *Immunol.* 36, 639–665. <https://doi.org/10.1146/annurev-immunol-032712-100022>

1095 Pagán, A.J., Ramakrishnan, L., 2015. Immunity and Immunopathology in the Tuberculous
1096 Granuloma. *Cold Spring Harb. Perspect. Med.* 5, a018499.
1097 <https://doi.org/10.1101/cshperspect.a018499>

1098 Pelletier, M., Maggi, L., Micheletti, A., Lazzeri, E., Tamassia, N., Costantini, C., Cosmi, L.,
1099 Lunardi, C., Annunziato, F., Romagnani, S., Cassatella, M.A., 2010. Evidence for a
1100 cross-talk between human neutrophils and Th17 cells. *Blood* 115, 335–343.
1101 <https://doi.org/10.1182/blood-2009-04-216085>

1102 Phillipson, M., Kubes, P., 2011. The neutrophil in vascular inflammation. *Nat. Med.* 17, 1381–
1103 1390. <https://doi.org/10.1038/nm.2514>

1104 Pisu, D., Huang, L., Narang, V., Theriault, M., Lê-Bury, G., Lee, B., Lakudzala, A.E., Mzinza,
1105 D.T., Mhango, D.V., Mitini-Nkhoma, S.C., Jambo, K.C., Singhal, A., Mwandumba,
1106 H.C., Russell, D.G., 2021. Single cell analysis of *M. tuberculosis* phenotype and
1107 macrophage lineages in the infected lung. *J. Exp. Med.* 218, e20210615.
1108 <https://doi.org/10.1084/jem.20210615>

1109 Poon, M.M.L., Caron, D.P., Wang, Z., Wells, S.B., Chen, D., Meng, W., Szabo, P.A., Lam, N.,
1110 Kubota, M., Matsumoto, R., Rahman, A., Luning Prak, E.T., Shen, Y., Sims, P.A.,
1111 Farber, D.L., 2023. Tissue adaptation and clonal segregation of human memory T cells in
1112 barrier sites. *Nat. Immunol.* 24, 309–319. <https://doi.org/10.1038/s41590-022-01395-9>

1113 Rashidi, M., Bandala-Sanchez, E., Lawlor, K.E., Zhang, Y., Neale, A.M., Vijayaraj, S.L.,
1114 O’Donoghue, R., Wentworth, J.M., Adams, T.E., Vince, J.E., Harrison, L.C., 2018.

1115 CD52 inhibits Toll-like receptor activation of NF- κ B and triggers apoptosis to suppress
1116 inflammation. *Cell Death Differ.* 25, 392–405. <https://doi.org/10.1038/cdd.2017.173>

1117 Ravesloot-Chávez, M.M., Van Dis, E., Stanley, S.A., 2021. The Innate Immune Response to
1118 *Mycobacterium tuberculosis* Infection. *Annu. Rev. Immunol.* 39, 611–637.
1119 <https://doi.org/10.1146/annurev-immunol-093019-010426>

1120 Redford, P.S., Boonstra, A., Read, S., Pitt, J., Graham, C., Stavropoulos, E., Bancroft, G.J.,
1121 O'Garra, A., 2010. Enhanced protection to *Mycobacterium tuberculosis* infection in IL-
1122 10-deficient mice is accompanied by early and enhanced Th1 responses in the lung. *Eur.*
1123 *J. Immunol.* 40, 2200–2210. <https://doi.org/10.1002/eji.201040433>

1124 Redford, P.S., Murray, P.J., O'Garra, A., 2011. The role of IL-10 in immune regulation during
1125 *M. tuberculosis* infection. *Mucosal Immunol.* 4, 261–270.
1126 <https://doi.org/10.1038/mi.2011.7>

1127 Rene de Waal Malefy, John Haanen, Hergen Spits, Maria-Grazia Koncarolo, Anje te Velde, Carl
1128 Figdor, Karen Johnson, Rob Kastelein, Hans Ysse, Jan E. de Vries, 1991. Interleukin 10
1129 (IL-10) and Viral IL-10 Strongly Reduce Antigen-specific Human T Cell Proliferation by
1130 Diminishing the Antigen-presenting Capacity of Monocytes via Downregulation of
1131 Class H Major Histocompatibility Complex Expression By Ren6 de WaalMalefy, John
1132 Haanen, HergenSpits., *J. Exp. Med.*

1133 Ruhwald, M., Bjerregaard-Andersen, M., Rabna, P., Kofoed, K., Eugen-Olsen, J., Ravn, P.,
1134 2007. CXCL10/IP-10 release is induced by incubation of whole blood from tuberculosis
1135 patients with ESAT-6, CFP10 and TB7.7. *Microbes Infect.* 9, 806–812.
1136 <https://doi.org/10.1016/j.micinf.2007.02.021>

1137 Sakai, S., Kauffman, K.D., Sallin, M.A., Sharpe, A.H., Young, H.A., Ganusov, V.V., Barber,
1138 D.L., 2016. CD4 T Cell-Derived IFN- γ Plays a Minimal Role in Control of Pulmonary
1139 *Mycobacterium tuberculosis* Infection and Must Be Actively Repressed by PD-1 to
1140 Prevent Lethal Disease. *PLOS Pathog.* 12, e1005667.
1141 <https://doi.org/10.1371/journal.ppat.1005667>

1142 Sakai, S., Mayer-Barber, K.D., Barber, D.L., 2014. Defining features of protective CD4 T cell
1143 responses to *Mycobacterium tuberculosis*. *Curr. Opin. Immunol.* 29, 137–142.
1144 <https://doi.org/10.1016/j.co.2014.06.003>

1145 Sangster, M.Y., Riberdy, J.M., Gonzalez, M., Topham, D.J., Baumgarth, N., Doherty, P.C.,
1146 2003. An Early CD4+ T Cell-dependent Immunoglobulin A Response to Influenza
1147 Infection in the Absence of Key Cognate T–B Interactions. *J. Exp. Med.* 198, 1011–1021.
1148 <https://doi.org/10.1084/jem.20021745>

1149 Scanga, C.A., Mohan, V.P., Yu, K., Joseph, H., Tanaka, K., Chan, J., Flynn, J.L., 2000.
1150 Depletion of CD42 T Cells Causes Reactivation of Murine Persistent Tuberculosis
1151 Despite Continued Expression of Interferon γ and Nitric Oxide Synthase 2. *J. Exp. Med.*
1152 Schoenberger, S.P., Toes, R.E.M., van der Voort, E.I.H., Offringa, R., Melief, C.J.M., 1998. T-
1153 cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. *Nature*
1154 393, 480–483. <https://doi.org/10.1038/31002>

1155 Seiler, P., Aichele, P., Bandermann, S., Hauser, A.E., Lu, B., Gerard, N.P., Gerard, C., Ehlers,
1156 S., Mollenkopf, H.J., Kaufmann, S.H.E., 2003. Early granuloma formation after
1157 aerosol *Mycobacterium tuberculosis* infection is regulated by neutrophils via CXCR3-
1158 signaling chemokines. *Eur. J. Immunol.* 33, 2676–2686.
1159 <https://doi.org/10.1002/eji.200323956>

1160 Shedlock, D.J., Shen, H., 2003. Requirement for CD4 T Cell Help in Generating Functional CD8
1161 T Cell Memory. *Science* 300, 337–339. <https://doi.org/10.1126/science.1082305>

1162 Shen, X., Yang, C., Wu, J., Lin, S., Gao, X., Wu, Z., Tian, J., Gan, M., Luo, T., Wang, L., Yu,
1163 C., Mei, J., Pan, Q., DeRiemer, K., Yuan, Z., Gao, Q., 2017. Recurrent tuberculosis in an
1164 urban area in China: Relapse or exogenous reinfection? *Tuberculosis* 103, 97–104.
1165 <https://doi.org/10.1016/j.tube.2017.01.007>

1166 Sikkema, L., Ramírez-Suástegui, C., Strobl, D.C., Gillett, T.E., Zappia, L., Madissoon, E.,
1167 Markov, N.S., Zaragosi, L.-E., Ji, Y., Ansari, M., Arguel, M.-J., Apperloo, L., Banchero,
1168 M., Bécavin, C., Berg, M., Chichelnitskiy, E., Chung, M., Collin, A., Gay, A.C.A., Gote-
1169 Schniering, J., Hooshiar Kashani, B., Inecik, K., Jain, M., Kapellos, T.S., Kole, T.M.,
1170 Leroy, S., Mayr, C.H., Oliver, A.J., Von Papen, M., Peter, L., Taylor, C.J., Walzthoeni,
1171 T., Xu, C., Bui, L.T., De Donno, C., Dony, L., Faiz, A., Guo, M., Gutierrez, A.J.,
1172 Heumos, L., Huang, N., Ibarra, I.L., Jackson, N.D., Kadur Lakshminarasimha Murthy, P.,
1173 Lotfollahi, M., Tabib, T., Talavera-López, C., Travaglini, K.J., Wilbrey-Clark, A.,
1174 Worlock, K.B., Yoshida, M., Lung Biological Network Consortium, Chen, Y., Hagood,
1175 J.S., Agami, A., Horvath, P., Lundeberg, J., Marquette, C.-H., Pryhuber, G., Samakovlis,
1176 C., Sun, X., Ware, L.B., Zhang, K., Van Den Berge, M., Bossé, Y., Desai, T.J.,
1177 Eickelberg, O., Kaminski, N., Krasnow, M.A., Lafyatis, R., Nikolic, M.Z., Powell, J.E.,
1178 Rajagopal, J., Rojas, M., Rozenblatt-Rosen, O., Seibold, M.A., Sheppard, D., Shepherd,
1179 D.P., Sin, D.D., Timens, W., Tsankov, A.M., Whitsett, J., Xu, Y., Banovich, N.E.,
1180 Barbry, P., Duong, T.E., Falk, C.S., Meyer, K.B., Kropski, J.A., Pe'er, D., Schiller, H.B.,
1181 Tata, P.R., Schultze, J.L., Teichmann, S.A., Misharin, A.V., Nawijn, M.C., Luecken,
1182 M.D., Theis, F.J., 2023. An integrated cell atlas of the lung in health and disease. *Nat.*
1183 *Med.* 29, 1563–1577. <https://doi.org/10.1038/s41591-023-02327-2>

1184 Silveira-Mattos, P.S., Narendran, G., Akrami, K., Fukutani, K.F., Anbalagan, S., Nayak, K.,
1185 Subramanyam, S., Subramani, R., Vinhaes, C.L., Souza, D.O., Antonelli, L.R.,
1186 Satagopan, K., Porter, B.O., Sher, A., Swaminathan, S., Sereti, I., Andrade, B.B., 2019.
1187 Differential expression of CXCR3 and CCR6 on CD4+ T-lymphocytes with distinct
1188 memory phenotypes characterizes tuberculosis-associated immune reconstitution
1189 inflammatory syndrome. *Sci. Rep.* 9, 1502. <https://doi.org/10.1038/s41598-018-37846-3>

1190 Smillie, C.S., Biton, M., Ordovas-Montanes, J., Sullivan, K.M., Burgin, G., Graham, D.B.,
1191 Herbst, R.H., Rogel, N., Slyper, M., Waldman, J., Sud, M., Andrews, E., Velonias, G.,
1192 Haber, A.L., Jagadeesh, K., Vickovic, S., Yao, J., Stevens, C., Dionne, D., Nguyen, L.T.,
1193 Villani, A.-C., Hofree, M., Creasey, E.A., Huang, H., Rozenblatt-Rosen, O., Garber, J.J.,
1194 Khalili, H., Desch, A.N., Daly, M.J., Ananthakrishnan, A.N., Shalek, A.K., Xavier, R.J.,
1195 Regev, A., 2019. Intra- and Inter-cellular Rewiring of the Human Colon during
1196 Ulcerative Colitis. *Cell* 178, 714-730.e22. <https://doi.org/10.1016/j.cell.2019.06.029>

1197 Srivastava, S., Ernst, J.D., 2013. Cutting Edge: Direct Recognition of Infected Cells by CD4 T
1198 Cells Is Required for Control of Intracellular *Mycobacterium tuberculosis* In Vivo. *J.*
1199 *Immunol.* 191, 1016–1020. <https://doi.org/10.4049/jimmunol.1301236>

1200 Stephen, T.L., Payne, K.K., Chaurio, R.A., Allegrezza, M.J., Zhu, H., Perez-Sanz, J., Perales-
1201 Puchalt, A., Nguyen, J.M., Vara-Ailor, A.E., Eruslanov, E.B., Borowsky, M.E., Zhang,
1202 R., Laufer, T.M., Conejo-Garcia, J.R., 2017. SATB1 Expression Governs Epigenetic
1203 Repression of PD-1 in Tumor-Reactive T Cells. *Immunity* 46, 51–64.
1204 <https://doi.org/10.1016/j.jimmuni.2016.12.015>

1205 Sun, J., Cardani, A., Sharma, A.K., Laubach, V.E., Jack, R.S., Müller, W., Braciale, T.J., 2011.
1206 Autocrine Regulation of Pulmonary Inflammation by Effector T-Cell Derived IL-10
1207 during Infection with Respiratory Syncytial Virus. *PLoS Pathog.* 7, e1002173.
1208 <https://doi.org/10.1371/journal.ppat.1002173>

1209 Sun, J., Madan, R., Karp, C.L., Braciale, T.J., 2009. Effector T cells control lung inflammation
1210 during acute influenza virus infection by producing IL-10. *Nat. Med.* 15, 277–284.
1211 <https://doi.org/10.1038/nm.1929>

1212 Sun, K., Xu, R., Ma, F., Yang, N., Li, Y., Sun, X., Jin, P., Kang, W., Jia, L., Xiong, J., Hu, H.,
1213 Tian, Y., Lan, X., 2022. scRNA-seq of gastric tumor shows complex intercellular
1214 interaction with an alternative T cell exhaustion trajectory. *Nat. Commun.* 13, 4943.
1215 <https://doi.org/10.1038/s41467-022-32627-z>

1216 Suzuki, M., Tachibana, I., Takeda, Y., He, P., Minami, S., Iwasaki, T., Kida, H., Goya, S.,
1217 Kijima, T., Yoshida, M., Kumagai, T., Osaki, T., Kawase, I., 2009. Tetraspanin CD9
1218 Negatively Regulates Lipopolysaccharide-Induced Macrophage Activation and Lung
1219 Inflammation. *J. Immunol.* 182, 6485–6493. <https://doi.org/10.4049/jimmunol.0802797>

1220 Szabo, P.A., Levitin, H.M., Miron, M., Snyder, M.E., Senda, T., Yuan, J., Cheng, Y.L., Bush,
1221 E.C., Dogra, P., Thapa, P., Farber, D.L., Sims, P.A., 2019. Single-cell transcriptomics of
1222 human T cells reveals tissue and activation signatures in health and disease. *Nat.*
1223 *Commun.* 10, 4706. <https://doi.org/10.1038/s41467-019-12464-3>

1224 Terekhova, M., Swain, A., Bohacova, P., Aladyeva, E., Arthur, L., Laha, A., Mogilenko, D.A.,
1225 Burdess, S., Sukhov, V., Kleverov, D., Echalar, B., Tsurinov, P., Chernyatchik, R.,
1226 Husarcikova, K., Artyomov, M.N., 2023. Single-cell atlas of healthy human blood
1227 unveils age-related loss of NKG2C+GZMB-CD8+ memory T cells and accumulation of
1228 type 2 memory T cells. *Immunity* S1074761323004533.
1229 <https://doi.org/10.1016/j.immuni.2023.10.013>

1230 Thomas, M.F., Slowikowski, K., Manakongtreeeep, K., Sen, P., Tantivit, J., Nasrallah, M.,
1231 Smith, N.P., Ramesh, S., Zubiri, L., Tirard, A., Arnold, B.Y., Nieman, L.T., Chen, J.H.,
1232 Eisenhaure, T., Pelka, K., Xu, K.H., Jorgji, V., Pinto, C.J., Sharova, T., Glasser, R., Chan,
1233 E.P., Sullivan, R.J., Khalili, H., Juric, D., Boland, G.M., Dougan, M., Hacohen, N.,
1234 Reynolds, K.L., Li, B., Villani, A.-C., 2021. Altered interactions between circulating and
1235 tissue-resident CD8 T cells with the colonic mucosa define colitis associated with
1236 immune checkpoint inhibitors (preprint). *Immunology*.
1237 <https://doi.org/10.1101/2021.09.17.460868>

1238 Van Rie, A., Warren, R., Richardson, M., Victor, T.C., Gie, R.P., Enarson, D.A., Beyers, N.,
1239 Van Helden, P.D., 1999. Exogenous Reinfection as a Cause of Recurrent Tuberculosis
1240 after Curative Treatment. *N. Engl. J. Med.* 341, 1174–1179.
1241 <https://doi.org/10.1056/NEJM199910143411602>

1242 Vargas, R., Freschi, L., Marin, M., Epperson, L.E., Smith, M., Oussenko, I., Durbin, D., Strong,
1243 M., Salfinger, M., Farhat, M.R., 2021. In-host population dynamics of Mycobacterium
1244 tuberculosis complex during active disease. *eLife* 10, e61805.
1245 <https://doi.org/10.7554/eLife.61805>

1246 Verver, S., Warren, R.M., Beyers, N., Richardson, M., Van Der Spuy, G.D., Borgdorff, M.W.,
1247 Enarson, D.A., Behr, M.A., Van Helden, P.D., 2005. Rate of Reinfection Tuberculosis
1248 after Successful Treatment Is Higher than Rate of New Tuberculosis. *Am. J. Respir. Crit.*
1249 *Care Med.* 171, 1430–1435. <https://doi.org/10.1164/rccm.200409-1200OC>

1250 Vignali, P.D.A., DePeaux, K., Watson, M.J., Ye, C., Ford, B.R., Lontos, K., McGaa, N.K.,
1251 Scharping, N.E., Menk, A.V., Robson, S.C., Poholek, A.C., Rivadeneira, D.B., Delgoffe,
1252 G.M., 2023. Hypoxia drives CD39-dependent suppressor function in exhausted T cells to
1253 limit antitumor immunity. *Nat. Immunol.* 24, 267–279. <https://doi.org/10.1038/s41590-022-01379-9>

1254 Weisberg, S.P., Ural, B.B., Farber, D.L., 2021. Tissue-specific immunity for a changing world. *Cell* 184, 1517–1529. <https://doi.org/10.1016/j.cell.2021.01.042>

1255 White, A.G., Maiello, P., Coleman, M.T., Tomko, J.A., Frye, L.J., Scanga, C.A., Lin, P.L.,
1256 Flynn, J.L., 2017. Analysis of ¹⁸FDG PET/CT Imaging as a Tool for Studying
1257 Mycobacterium tuberculosis Infection and Treatment in Non-human Primates. *J. Vis. Exp.* 56375. <https://doi.org/10.3791/56375>

1258 Witney, A.A., Bateson, A.L.E., Jindani, A., Phillips, P.P.J., Coleman, D., Stoker, N.G., Butcher,
1259 P.D., McHugh, T.D., 2017. Use of whole-genome sequencing to distinguish relapse from
1260 reinfection in a completed tuberculosis clinical trial. *BMC Med.* 15, 71.
<https://doi.org/10.1186/s12916-017-0834-4>

1261 Wollenberg, K., Harris, M., Gabrielian, A., Ciobanu, N., Chesov, D., Long, A., Taaffe, J., Hurt,
1262 D., Rosenthal, A., Tartakovsky, M., Crudu, V., 2020. A retrospective genomic analysis of
1263 drug-resistant strains of *M. tuberculosis* in a high-burden setting, with an emphasis on
1264 comparative diagnostics and reactivation and reinfection status. *BMC Infect. Dis.* 20, 17.
<https://doi.org/10.1186/s12879-019-4739-z>

1265 Wong, E.A., Evans, S., Kraus, C.R., Engelman, K.D., Maiello, P., Flores, W.J., Cadena, A.M.,
1266 Klein, E., Thomas, K., White, A.G., Causgrove, C., Stein, B., Tomko, J., Mattila, J.T.,
1267 Gideon, H., Lin, P.L., Reimann, K.A., Kirschner, D.E., Flynn, J.L., 2020. IL-10 Impairs
1268 Local Immune Response in Lung Granulomas and Lymph Nodes during Early
1269 *Mycobacterium tuberculosis* Infection. *J. Immunol.* 204, 644–659.
<https://doi.org/10.4049/jimmunol.1901211>

1270 Xie, X., Shi, Q., Wu, P., Zhang, X., Kambara, H., Su, J., Yu, H., Park, S.-Y., Guo, R., Ren, Q.,
1271 Zhang, S., Xu, Y., Silberstein, L.E., Cheng, T., Ma, F., Li, C., Luo, H.R., 2020. Single-
1272 cell transcriptome profiling reveals neutrophil heterogeneity in homeostasis and infection.
1273 *Nat. Immunol.* 21, 1119–1133. <https://doi.org/10.1038/s41590-020-0736-z>

1274 Xu, W., Snell, L.M., Guo, M., Boukhaled, G., Macleod, B.L., Li, M., Tullius, M.V., Guidos,
1275 C.J., Tsao, M.-S., Divangahi, M., Horwitz, M.A., Liu, J., Brooks, D.G., 2021. Early
1276 innate and adaptive immune perturbations determine long-term severity of chronic virus
1277 and *Mycobacterium tuberculosis* coinfection. *Immunity* 54, 526–541.e7.
<https://doi.org/10.1016/j.jimmuni.2021.01.003>

1278 Yao, S., Huang, D., Chen, C.Y., Halliday, L., Wang, R.C., Chen, Z.W., 2014. CD4+ T Cells
1279 Contain Early Extrapulmonary Tuberculosis (TB) Dissemination and Rapid TB
1280 Progression and Sustain Multieffector Functions of CD8+ T and CD3– Lymphocytes:
1281 Mechanisms of CD4+ T Cell Immunity. *J. Immunol.* 192, 2120–2132.
<https://doi.org/10.4049/jimmunol.1301373>

1282 Yao, Y., Jeyanathan, M., Haddadi, S., Barra, N.G., Vaseghi-Shanjani, M., Damjanovic, D., Lai,
1283 R., Afkhami, S., Chen, Y., Dvorkin-Gheva, A., Robbins, C.S., Schertzer, J.D., Xing, Z.,
1284 2018. Induction of Autonomous Memory Alveolar Macrophages Requires T Cell Help
1285 and Is Critical to Trained Immunity. *Cell* 175, 1634–1650.e17.
<https://doi.org/10.1016/j.cell.2018.09.042>

1295 Yost, K.E., Satpathy, A.T., Wells, D.K., Qi, Y., Wang, C., Kageyama, R., McNamara, K.L.,
1296 Granja, J.M., Sarin, K.Y., Brown, R.A., Gupta, R.K., Curtis, C., Bucktrout, S.L., Davis,
1297 M.M., Chang, A.L.S., Chang, H.Y., 2019. Clonal replacement of tumor-specific T cells
1298 following PD-1 blockade. *Nat. Med.* 25, 1251–1259. <https://doi.org/10.1038/s41591-019-0522-3>

1300 Zander, R., Schauder, D., Xin, G., Nguyen, C., Wu, X., Zajac, A., Cui, W., 2019. CD4+ T Cell
1301 Help Is Required for the Formation of a Cytolytic CD8+ T Cell Subset that Protects
1302 against Chronic Infection and Cancer. *Immunity* 51, 1028-1042.e4.
1303 <https://doi.org/10.1016/j.jimmuni.2019.10.009>

1304 Zheng, L., Qin, S., Si, W., Wang, A., Xing, B., Gao, R., Ren, X., Wang, L., Wu, X., Zhang, J.,
1305 Wu, N., Zhang, N., Zheng, H., Ouyang, H., Chen, K., Bu, Z., Hu, X., Ji, J., Zhang, Z.,
1306 2021. Pan-cancer single-cell landscape of tumor-infiltrating T cells. *Science* 374,
1307 abe6474. <https://doi.org/10.1126/science.abe6474>

1308

1309

1310 **TABLE 1**

T cell subset	Cluster defining genes
Naïve, central memory-like (T _{Naïve/CM-like}) T cells	<i>CCR7, SELL, LEF1, SIP1, PECAM2</i>
T1-T17-like	<i>IFNG, IL23R, BHLHE40, RORA</i>
Memory-like (T _{M-like}) T cells	<i>CD28, IL7R, CAPG, SAMSNI</i>
<i>FURIN</i> ^{hi} Memory-like (T _{M-like}) T cells	<i>FURIN, SPOCK2, RBPJ</i>
Regulatory (T _{reg})	<i>FOXP3, TIGIT, BATF</i>
Effector-like (T _{Eff-like}) T cells	<i>GZMA, GZMB, PRF1</i>
Innate-like cells (ILCs)	<i>XCL1, CD69, EGR1</i>
Natural killer-like (NK-like)	<i>FCGR3A, TYROBP, NKG2C</i>
Effector memory cells re-expressing CD45RA (T _{EMRA-like})	<i>CX3CR1, GZMH, GZMB, PRF1, KLF3</i>
Effector memory/Precursor to exhausted-like (T _{EM/EX-like})	<i>GZMK, GPR183, EOMES, CXCR4, TOX, TIGIT</i>
Cytotoxic T-17-like cells (Tc17-like)	<i>ZBTB16, KLRG1, CCR6, RORA, NR4A1</i>

1311

1312

1313 **KEY RESOURCES TABLE**

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Mouse anti-human CD3, clone SP34-2	BD Biosciences	
Mouse anti-human CD4, clone L200	BD Biosciences	
Rabbit anti-human CD20, polyclonal	ThermoFisher	
Bacterial and virus strains		
<i>Mycobacterium</i> Tuberculosis: Erdman strain	Flynn Lab	N/A
Biological samples		
Cynomolgus macaque granulomas	This study	N/A
Chemicals, peptides, and recombinant proteins		
2-Mercaptoethanol	Sigma	Cat# M3148-25ML
RLT Buffer	QIAGEN	Cat#79216
dNTP	New England BioLabs	Cat#N0447L
RNase Inhibitor	Fisher Scientific	Cat#AM2696
Maxima RNaseH- minus RT Enzyme	Fisher Scientific	Cat#EP0753
AMPure RNAClean XP RNA-SPRI beads	Beckman Coulter	Cat#A63987
AMPure XP SPRI beads	Beckman Coulter	Cat#A63881

Guanidinium thiocynate	Sigma	Cat#AM9422
Sarkosyl	Sigma	Cat#L7414
Exonuclease I	New England BioLabs	Cat#M0293S
Klenow Fragment	New England BioLabs	Cat# M0212L
Accutase	Sigma	Cat#A6964
Dithiothreitol (DTT)	Sigma	Cat#43816
Polycarbonate membrane filters 62x22	Fisher Scientific/Sterlitech Corporation	Cat#NC0927472

Critical commercial

assays

Nextera XT DNA Library Preparation Kit	Illumina	Cat#FC-131-1096
Kapa HiFi HotStart ReadyMix	Kapa Biosystems	Cat#KK2602
MACOSKO-2011-10 mRNA Capture Beads	ChemGenes	Cat#NC0927472
High Sensitivity D5000 ScreenTape	Agilent	Cat#5067-5592
Qubit dsDNA High-Sensitivity kit	Thermo Fisher	Cat#Q32854

Deposited data

Processed and raw scRNA-seq data from primary infection, reinfection, and CD4-depletion animals	This study	Broad Single Cell Portal: SRA: PRJNA900256 https://dataview.ncbi.nlm.nih.gov/object/PRJNA900256?reviewer=slod9p79svi7p1sdcpsskshjs1g
---	------------	--

Experimental models:

Organisms/strains

Cynomolgus macaques	Valley Biosystems	N/A
---------------------	-------------------	-----

Oligonucleotides

Seq-Well ISPCR: AAG CAG TGG TAT CAA CGC AGA GT	Integrated DNA Technologies	N/A
Custom Read 1 Primer: GCC TGT CCG CGG AAG CAG TGG TAT CAA CGC AGA GTA C	Integrated DNA Technologies	N/A
Seq-Well 5' TSO: AAG CAG TGG TAT CAA CGC AGA GTG AAT rGrGrG	Integrated DNA Technologies	N/A
Seq-Well Custom P5- SMART PCR hybrid: AAT GAT ACG GCG ACC ACC GAG ATC TAC ACG CCT GTC CGC GGA AGC AGT GGT ATC AAC GCA GAG TAC	Integrated DNA Technologies	N/A
Seq-Well dN-SMRT oligo: AAG CAG TGG TAT CAA CGC AGA GTG ANN NGG NNN B	Integrated DNA Technologies	N/A

Software and

Algorithms

Python Programming Language	Python	https://www.python.org/
Python package – Scanpy v1.9.5	Github	https://github.com/scverse/scanpy
Python package – gseapy	Wolf et al.	https://gseapy.readthedocs.io/en/latest/introduction.html
R package – Seurat v4.1.1	Browaeys et al., 2023	https://github.com/saeyslab/multinicheptr
R package – Seurat v4.1.1	Github	https://github.com/satijalab/seurat

CellBender	Fleming et al., 2019	https://github.com/broadinstitute/CellBender
Source code	This study	https://github.com/ShalekLab/scRNA_Rei_nfection_CD4_depletion/tree/main
R package – DESeq2 v1.30	Bioconductor	https://bioconductor.org/packages/release/bioc/html/DESeq2
Prism	GraphPad Software	https://www.graphpad.com/scientific-software/prism/E/

1314

1315

1316 **RESOURCE AVAILABILITY**

1317 Further information and requests for resources and reagents should be directed to and will be
1318 fulfilled by the lead contact Dr. JoAnne L Flynn (joanne@pitt.edu).

1319

1320 **Data and Code Availability**

1321 scRNA-seq data is publicly available for download and visualization via the Alexandria and
1322 Broad Institute Single Cell Portal upon publication. Accession numbers and links are listed in the
1323 key resources table. All original code has been deposited at GitHub
1324 (<https://github.com/ShalekLab>) and is publicly available as of the date of publication. Any
1325 additional information required to reanalyze the data from this study is available from the lead
1326 contact upon request. All the data generated in support of the reported findings can be found
1327 at: <https://fairdomhub.org/studies/1239> by the time of publication, including scRNASeq,
1328 barcoding, flow cytometry and PET-CT imaging data

1329

1330 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

1331 **Research Animals**

1332 All experimental manipulations, protocols, and care of the animals were approved by the
1333 University of Pittsburgh School of Medicine Institutional Animal Care and Use Committee
1334 (IACUC). The protocol assurance number for our IACUC is A3187-01. Our specific protocol
1335 approval number for this project is 15066174. The IACUC adheres to national guidelines
1336 established in the Animal Welfare Act (7 U.S.C. Sections 2131–2159) and the Guide for the Care

1337 and Use of Laboratory Animals (8th Edition) as mandated by the U.S. Public Health Service
1338 Policy.

1339 All macaques used in this study were housed at the University of Pittsburgh in rooms
1340 with autonomously controlled temperature, humidity, and lighting. Animals were singly housed
1341 in caging at least 2 square meters apart that allowed visual and tactile contact with neighboring
1342 conspecifics. The macaques were fed twice daily with biscuits formulated for nonhuman
1343 primates, supplemented at least 4 days/week with large pieces of fresh fruits or vegetables.
1344 Animals had access to water *ad libitem*. Because our macaques were singly housed due to the
1345 infectious nature of these studies, an enhanced enrichment plan was designed and overseen by
1346 our nonhuman primate enrichment specialist. This plan has 3 components. First, species-specific
1347 behaviors are encouraged. All animals have access to toys and other manipulata, some of which
1348 will be filled with food treats (e.g., frozen fruit, peanut butter, etc.). These are rotated on a
1349 regular basis. Puzzle feeders foraging boards, and cardboard tubes containing small food items
1350 also are placed in the cage to stimulate foraging behaviors. Adjustable mirrors accessible to the
1351 animals stimulate interaction between animals. Second, routine interaction between humans and
1352 macaques are encouraged. These interactions occur daily and consist mainly of small food
1353 objects offered as enrichment and adhere to established safety protocols. Animal caretakers are
1354 encouraged to interact with the animals (by talking or with facial expressions) while performing
1355 tasks in the housing area. Routine procedures (e.g., feeding, cage cleaning, etc) are done on a
1356 strict schedule to allow the animals to acclimate to a routine daily schedule. Third, all macaques
1357 are provided with a variety of visual and auditory stimulation. Housing areas contain either
1358 radios or TV/video equipment that play cartoons or other formats designed for children for at
1359 least 3 hours each day. The videos and radios are rotated between animal rooms so that the same
1360 enrichment is not played repetitively for the same group of animals.

1361 All animals are checked at least twice daily to assess appetite, attitude, activity level,
1362 hydration status, etc. Following *M. tuberculosis* infection, the animals are monitored closely for
1363 evidence of disease (e.g., anorexia, weight loss, tachypnea, dyspnea, coughing). Physical exams,
1364 including weights, are performed on a regular basis. Animals are sedated prior to all veterinary
1365 procedures (e.g., blood draws, etc.) using ketamine or other approved drugs. Regular PET CT
1366 imaging is conducted on most of our macaques following infection and has proved very useful
1367 for monitoring disease progression. Our veterinary technicians monitor animals especially

1368 closely for any signs of pain or distress. If any are noted, appropriate supportive care (e.g. dietary
1369 supplementation, rehydration) and clinical treatments (analgesics) are given. Any animal
1370 considered to have advanced disease or intractable pain or distress from any cause is sedated
1371 with ketamine and then humanely euthanatized using sodium pentobarbital.

1372

1373 **METHOD DETAILS**

1374 **Necropsy Procedures**

1375 Procedures done during necropsy have been previously described (Lin et al., 2009, 2006).
1376 Briefly, 1-3 days prior to necropsy, a PET CT scan was taken and used to identify the location
1377 and metabolic activity (FDG avidity) of granulomas and lymph nodes; this scan was used as a
1378 map to aid in the individual identification and excision of these samples during necropsy. On the
1379 day of necropsy, macaques were humanely sacrificed with sodium pentobarbital and terminally
1380 bled. Individual granulomas, thoracic and peripheral lymph nodes, lung tissue, spleen and liver
1381 were all excised and homogenized separately into single cell suspensions. New granulomas
1382 determined by PET-CT and uninvolved lung lobes (no granuloma present in the lobe) were
1383 enzymatically homogenized using a human tumor dissociation kit (Miltenyi Biotec) and a
1384 gentleMACS Dissociator (MiltenyiBiotec) following manufacturer's protocols. Homogenates
1385 were aliquoted for plating on 7H11 agar for bacterial burden, freezing for DNA extraction and
1386 staining for flow cytometry analysis. Any remaining samples were frozen for future use.
1387 Homogenates were plated in serial dilutions on 7H11 medium and incubated at 37°C/5% CO₂ for
1388 3 weeks before enumeration of CFU.

1389

1390 **Isolation of genomic DNA from bacteria**

1391 DNA extraction was performed on granuloma and lymph node homogenates, as well as their
1392 scrapates (scraped colonies that grew on 7H11 agar plates) for library identification as described
1393 previously (Lin et al., 2014). Briefly, a small aliquot of the homogenate or scrapate were
1394 vortexed with 0.1mm zirconia-silica beads (BioSpec Products, Inc.) and subsequently extracted
1395 twice with phenol chloroform isoamyl alcohol (25:24:1, Sigma-Aldrich) before precipitating
1396 DNA with molecular grade 100% isopropanol (Sigma-Aldrich) and 3M sodium acetate (Sigma-
1397 Aldrich) and resuspending in nuclease-free water (Invitrogen).

1398

1399 **Library identification**

1400 Identification of library DNA tags have been previously described (Cadena et al., 2018). Briefly,
1401 DNA was amplified by PCR for 24-36 cycles before using in the NanoString nCounter assay
1402 (NanoString Technologies) with custom designed probes (Martin et al., 2017). New granulomas
1403 after reinfection were identified by PET-CT scan comparing pre- and post-reinfection scans and
1404 verified by presence of Library S barcodes.

1405

1406 **Intracellular cytokine staining and flow cytometry**

1407 Because of the abundance of *Mtb* antigens already present in granulomas and involved lymph
1408 nodes (Gideon et al., 2015), these samples were not further stimulated with *Mtb* peptides
1409 (Gideon et al., 2015). Due to low number of cells, uninvolvled lung lobes were also not
1410 stimulated. All samples were incubated in the presence of Brefeldin A (GolgiPlug, BD
1411 Biosciences) at 37°C/5% CO₂ for 3.5-4 hours prior to staining. Cells were stained with a viability
1412 marker (LIVE/DEAD fixable blue dead cell stain kit, Invitrogen) and surface and intracellular
1413 markers. Surface markers include CD3 (clone SP34-2, BD Pharmingen), CD4 (Clone L200, BD
1414 Horizon), CD8 (Clone SK1, BD Biosciences) and CD20 (Clone 2H7, eBioscience).

1415

1416 **Animals, infections, CD4 depletion and disease tracking by PET CT**

1417 Nineteen cynomolgus macaques (*Macaca fascicularis*) with age range of 5.8-9.1 years were
1418 obtained from Valley Biosystems (Sacramento, California). Animals were placed in quarantine
1419 for 1 month where they were monitored to ensure good physical health and no prior *Mtb*
1420 infection. All animals were infected with Library P DNA-tagged *Mtb* Erdman via bronchoscopic
1421 instillation as previously described (Capuano et al., 2003; Lin et al., 2009). Thirteen macaques
1422 received *Mtb* library P as the first infection. Granuloma formation, lung inflammation and
1423 overall disease was tracked using ¹⁸F-fluorodeoxyglucose (FDG) PET-CT every 4 weeks
1424 throughout infection. PET-CT scans were analyzed using OsiriX viewer as previously described
1425 with a detection limit of 1mm (White et al., 2017). The first infection was followed for 9 weeks
1426 before drug-treating all 13 macaques. Based on our previous study (Lin et al., 2012b),
1427 exacerbation of TB disease occurs after CD4⁺ T cell depletion, thus to facilitate identification of
1428 new granulomas arising from the second infection we opted to treat all macaques with anti-TB
1429 drugs. Macaques were given anti-TB drugs orally once daily for 4-5 months (RIF 20mg/kg; INH

1430 15mg/kg; ETH 50mg/kg; PZA 150mg/kg) (Lin et al., 2012a). Compliance ranged from 97-100%.
1431 The 13 macaques were matched by PET CT for disease status and randomized into 2 cohorts:
1432 CD4⁺ T cell depletion (n=7) and IgG control (n=6). After resting for 4 weeks after drug
1433 treatment, CD4R1 (50mg/kg, NHP Reagent Resource), a rhesus recombinant CD4⁺ T cell-
1434 depleting antibody, was administered subcutaneously in 4 animals and intravenously in 3
1435 animals 1 week before the second infection with *Mtb* Library S and then was administered
1436 intravenously every 2 weeks until necropsy. CD4⁺ T cell depletion was monitored by flow
1437 cytometry in the blood and complete blood count weekly. To measure CD4⁺ T cell depletion in
1438 tissues, a peripheral lymph node biopsy was performed before CD4⁺ T cell depletion and the
1439 CD4⁺ T cell level was compared with a peripheral lymph node from the same macaque obtained
1440 at necropsy. Macaques from the IgG control group received rhesus recombinant IgG1 control
1441 antibody (50mg/kg, NHP Reagent Resource) following the same timeline of the CD4⁺ T cell-
1442 depletion group. Six macaques were included as naïve controls infected with *Mtb* Library S only.
1443

1444 Macaques received 4-12 CFU of *Mtb* Library P for the first infection and 8-22 CFU of *Mtb*
1445 Library S for the second infection (or the first infection for the naïve monkeys). Dose was
1446 calculated from colony counts after plating an aliquot of the infection inoculum on 7H11 agar
1447 plates and incubating for 3 weeks at 37°C/5% CO₂.
1448

1449 **Antibody validation**

1450 To test whether the anti-CD4⁺ depletion antibody masks CD4 receptors, peripheral blood
1451 mononuclear cells (PBMC) were incubated with 1X (0.77 mg/ml, the calculated concentration of
1452 αCD4 antibodies in blood of macaques given a dose of 50mg/kg), 0.25X and 4X concentration of
1453 CD4 T cell-depleting antibody for 30 minutes at 37°C before surface staining with CD3 (clone
1454 SP34-2, BD Pharmingen), CD4 (Clone L200, BD Horizon) and CD8 (Clone RPA-T8, BD
1455 Biosciences) surface markers. PBMCs that were not incubated with the αCD4 antibody were
1456 included as a control. Data was acquired using the LSR II (BD) and analyzed using FlowJo
1457 software v10.6.1 (BD).
1458

1459 **Single-cell RNA-sequencing (scRNA-seq) and alignment**

1460 Massively parallel scRNA-seq was performed using the Seq-Well S³ platform, as previously
1461 described (Gierahn et al., 2017; Hughes et al., 2020). Approximately 15,000-20,000 cells were
1462 loaded onto Seq-Well arrays equipped with uniquely barcoded mRNA capture beads
1463 (ChemGenes). Cells were allowed to settle by gravity into wells for 10 minutes, after which the
1464 arrays were washed with PBS and serum-free RPMI. Arrays were then sealed with a semi-
1465 permiable polycarbonate membrane and incubated at 37°C for 30 minutes. Cell lysis was
1466 achieved by incubating the sealed arrays in a lysis buffer (5 M guanidine thiocyanate, 10 mM
1467 EDTA, 0.1% BME, and 0.1% sarkosyl) for 20 minutes. Subsequently, the arrays were rocked in
1468 hybridization buffer (2M NaCl, 8% v/v PEG8000) for 40 minutes. After membrane removal, the
1469 arrays were washed with in Seq-Well wash buffer (2M NaCl, 3 mM MgCl₂, 20 mM Tris-HCl,
1470 and 8% v/v PEG8000) to collect the mRNA capture beads. Reverse transcription was conducted
1471 at 52°C using Maxima H Minus Reverse Transcriptase (ThermoFisher), and excess primers were
1472 removed with an Exonuclease I digestion (New England Biolabs). Whole transcriptome
1473 amplification (WTA) was achieved via PCR using KAPA Hifi PCR Mastermix (Kapa
1474 Biosystems). The WTA product was purified using Agencourt Ampure beads (Beckman
1475 Coulter). For sequencing, dual-indexed 3' DGE libraries were prepared using Nextera XT
1476 (Illumina) and sequenced to depth on the NovaseqS4 platform with a paired-end read structure
1477 (R1: 20 bases; I1: 8 bases; I2: 8 bases; R2: 50 bases) using custom sequencing primers.
1478 Transcript reads were tagged for cell barcode and UMI utilizing DropSeqTools v1.12 (Macosko
1479 et al., 2015). These tagged sequencing reads were subsequently aligned to
1480 the *Macaca fascicularis* v5 genome (https://useast.ensembl.org/Macaca_fascicularis/Info/Index)
1481 using the Dropseq-tools pipeline on the Terra platform (app.terra.bio). By collapsing the aligned
1482 reads based on barcode and UMI sequences, we derived digital gene expression matrices for
1483 each array, covering 10,000 barcodes.

1484

1485 QUANTIFICATION AND STATISTICAL ANALYSIS

1486 Statistical analysis on macaque samples (depletion and CFU)

1487 Test for normality was conducted with a Shapiro-Wilk test. For assessment of depletion over
1488 time, mixed effects model with Dunnett's multiple comparison test adjusted for the comparison
1489 of IgG vs anti-CD4 and IgG vs naïve. For pre- and post-PET data, two-way ANOVA with
1490 Bonferroni multiple comparisons test. For paired analyses, Wilcoxon matched-pairs signed rank

1491 tests were used. For comparison of three groups (IgG vs naïve and IgG vs α CD4), either one-
1492 way ANOVA with Dunnett's multiple comparisons or Kruskal-Wallis with Dunn's multiple
1493 comparisons were used dependent on normality.

1494

1495 **Data processing and quality control**

1496 For individual granuloma, collapsed gene expression matrices containing 10,000
1497 barcodes were subject to CellBender to estimate the fraction of ambient RNA contaminating cell
1498 transcriptomes. The CellBender "remove-background" function was then applied using default
1499 parameters. Individual CellBender "corrected" matrices were then subject to Scrublet, using
1500 default parameters, to identify putative doublets. Transcriptomes with a doublet_score >0.30
1501 were removed from downstream analyses. Sample-specific gene expression matrices were then
1502 combined and analyzed using Scanpy (version 1.8.2). Transcriptomes were filtered using
1503 min_genes > 300, min_counts>500, mitochondrial_threshold=0.05, and genes expressed in fewer
1504 than 10 cells were removed. Gene expression counts were normalized using default Scanpy
1505 parameters (i.e., $\log_2(\text{TP10K}+1)$).

1506

1507 **Dimensionality reduction and batch correction**

1508 Following preliminary filtering processes, we performed coarse-level cell type clustering
1509 and iterative sub-clustering to annotate cell types and identify low-quality transcriptomes (e.g.,
1510 doublets) not identified or removed during preliminary quality control processing, respectively.
1511 The top 2,000 highly-variable genes – identified using the Scanpy "highly_variable_genes
1512 function" – were used for dimensionality reduction. Following variable gene selection, these data
1513 were subject to scaling, principal component analysis (PCA), integration to mitigate sample-
1514 specific batch effects, and Leiden-based clustering. More specifically, data were scaled to 10,
1515 and the top 19 principal components (PCs) were used for dimensionality reduction. PCs were
1516 used to construct a neighborhood graph using the scanpy.pp.neighbors function, setting
1517 n_neighbors=40 and using the top 19 PCs. Leiden-based clustering was then implemented,
1518 setting the resolution= 1.0, which identified 26 distinct clusters.

1519

1520 **Cell clustering and annotation**

1521 From these 26 clusters we identified 14 coarse cell types. The Leiden resolution=1.0
1522 failed to distinguish between several cell types (e.g., cDCs 1 and pDCs; alveolar type-1 and
1523 alveolar type 2 cells). As a result, these preliminary coarse-level cell types were not used as the
1524 final reference but instead used to inform sub-clustering. All coarse-level cell types (e.g., T, NK
1525 cells, macrophages) were subject to sub-clustering to remove low-quality cells. Transcriptomes
1526 classified as doublets featured elevated expression of genes derived from distinct cell ontologies.
1527 These doublets were excluded from downstream analyses.

1528 Following quality control processing, our data set comprised 88,360 high-quality
1529 transcriptomes, which were annotated as 15 distinct cell types, including: alveolar type-1 cells,
1530 alveolar type 2 cells, B cells, ciliated cells, endothelial cells, eosinophils, fibroblasts,
1531 macrophages, mast cells, neutrophils, plasma cells, T, NK cells, cDCs 1, cDCs 2, and pDCs.
1532 Among cDCs 1, cDCs 2, pDCs, and plasma cells additionally subset diversity was not found, as
1533 such these coarse-level annotations are equivalent to cellular subsets. The major cell populations
1534 alveolar type-1 cells, alveolar type 2 cells, B cells, ciliated cells, endothelial cells, eosinophils,
1535 fibroblasts, macrophages, mast cells, neutrophils, and T, NK cells underwent further sub-
1536 clustering to discern cellular subtypes. Sub-clustering resolution was determined by selecting the
1537 most stable/robust silhouette score that uncovered biologically relevant and/or known cell
1538 subsets (e.g., Tregs).

1539

1540 **Differential abundance analysis of scRNA-seq cell type and subset frequencies**

1541 To identify differential cell type frequencies across naïve, IgG, and α CD4 granuloma, we
1542 implemented three distinct statistical frameworks: (1) scCODA, (2) the Mann-Whitney U-test,
1543 and (3) Fischer's exact test.

1544 One inherent challenge in scRNA-seq data is the compositional nature of cell proportions
1545 – they are not mutually exclusive. Illustratively, the elevation of one cell subset's proportion
1546 inherently diminishes the proportions of others due to the requirement that all proportions sum to
1547 one (e.g., antibody-mediated CD4 $^{+}$ T cell depletion results in elevated frequencies of CD8A $^{+}$ T
1548 cells among T, NK cells). To address these limitations, we implemented scCODA, a statistical
1549 framework rooted in a Bayesian hierarchical model, which is adept at dissecting cell type co-
1550 dependencies and the low inputs typically associated with scRNA-seq data, thus ensuring that
1551 observed shifts in cell type or subset frequencies are biologically significant. In addition to

1552 scCODA, we employed the Mann-Whitney U-test and Fischer's exact test. Differentially
1553 abundant cell types and subset had to be identified as significant by at least two of the
1554 aforementioned methods.

1555

1556 **Differential expression analysis**

1557 Pairwise (i.e., naïve vs IgG; α CD4 vs IgG) differential expression (DE) analyses were conducted
1558 using MAST, on $\log_2(TP10K+1)$ normalized gene expression data (Finak et al., 2015; Kotliar et
1559 al., 2020); **Figures 4, 5, 6**). The covariates mitochondrial reads and number of genes we included
1560 when performing DE.

1561

1562 **Pseudobulk differential expression analysis**

1563 To robustly identify DE genes among cell subsets, we performed pseudobulk DE analysis. For
1564 cell subsets of interest, we generated pseudobulk counts from scRNA-seq gene expression
1565 matrices. Psuedobulk counts and associated metadata (e.g., sample, NHP identity) were imported
1566 into R and subject to DE analysis using the DESeq2 package. DE was performed using the Wald
1567 statistical test and highlighted genes where selected using the threshold $pvalue < 0.05$ and
1568 $\log_2(|\text{fold change}|) > 0.3785$.

1569

1570 **Differential cell-cell and receptor-ligand analyses**

1571 To discern putative differential cell-cell interactions from our scRNA-seq dataset, we adopted
1572 MultiNicheNet. Distinct from conventional interaction cell-cell interaction methods,
1573 MultiNicheNet can identify differential, context-dependent cellular communications, leveraging
1574 'pseudobulk' profiles from scRNA-seq data.

1575 Using MultiNicheNet, we assessed the interaction strength between cell types and identified
1576 putative differential cell-cell and ligand-receptor (L-R) pairs – derived from MultiNicheNet's 50
1577 top-prioritized links (i.e., top 50 predictions across contrasts, senders, and receivers). To
1578 highlight highly interconnected cellular populations, we focused on the top 10 (five per
1579 experimental group) – as identified in MultiNicheNet's 50 top-prioritized links – differential
1580 interactions per experimental group. To identify cellular subsets underlying differential coarse-
1581 level cell-cell L-R among reinfection granulomas (IgG vs naïve, and IgG vs α CD4), we removed
1582 all nonimmune cell subsets to identify putative “senders” and “receiver” subsets modulating

1583 immune tone in the reinfection granuloma. The top 50 prioritized links among all *IL10*⁺ T, NK
1584 cell sender subsets were queried to identify putative receivers (among all immune cell
1585 subsets). The same strategy was employed in determining putative receivers of neutrophil- and
1586 monocyte-senders. Interaction matrices were visualized in Python.

1587

1588 FIGURE LEGENDS

1589 **Figure 1. Experimental design.** (A) Overview of cynomolgus macaque sample processing for
1590 clinical, microbiologic, and immunologic data (created with BioRender.com). (B) PET-CT scan
1591 of representative NHPs pre- and post-HRZE treatment. Old granulomas shown with blue arrows;
1592 new granulomas shown with green arrows. Left panel: IgG; middle panel: α CD4; right panel:
1593 naïve. (C) Fraction of CD3 expressing the cell surface marker CD4 post-antibody infusion in
1594 peripheral blood. Median and range shown (****, p<0.0001; mixed-effects model with
1595 Dunnett's multiple comparisons test). (D) CD3⁺, CD4⁺ cells derived from TB granulomas. (E)
1596 CD3⁺, CD4⁺ cells from uninvolved lung tissue from *Mtb* infected macaques. (F) CD3⁺, CD4⁺
1597 cells from the spleen of *Mtb* infected macaques (G) CD3⁺, CD4⁺ cells from CFU⁺ LNs of *Mtb*
1598 infected macaques. (D-G) Transparent smaller dots represent granulomas, colored by animal.
1599 Larger dots represent mean per animal and lines represent medians. One-way ANOVA with
1600 Dunnett's multiple comparisons test.

1601

1602 **Figure 2. Reinfection with *Mtb* reduces granuloma formation, as well as bacterial burden 1603 and dissemination in a CD4⁺ T cell dependent manner**

1604 (A) Number of new granulomas identified using PET-CT following infection with *Mtb* library S.
1605 Lines represent medians. One-way ANOVA with Dunnett's multiple comparison test, adjusted
1606 p-values reported. (B) Median number of viable *Mtb* colony forming units (CFU) per macaque
1607 (Kruskal-Wallis with Dunn's multiple correction). Solid dots represent the median CFU per
1608 animal; lines represent medians. Transparent dots represent the median CFU of individual
1609 granulomas. (C) Median number of chromosomal equivalents (CEQ) per macaque (Kruskal-
1610 Wallis with Dunn's multiple correction). Solid dots represent the median CFU per animal; lines
1611 represent medians. Transparent dots represent the median CFU of individual granulomas. (D)
1612 CFU:CEQ ratio, a proxy for bactericidal activity (Kruskal-Wallis with Dunn's multiple
1613 correction). Solid dots represent the median CFU per animal; lines represent medians.

1614 Transparent dots represent the median CFU of individual granulomas. **(E)** Total CFU from
1615 granuloma, uninvolved lung tissue, and thoracic lymph nodes tissue. **(F)** Lung CFU from
1616 granuloma and uninvolved lung tissue. **(G)** Thoracic lymph node CFU. (E – G) Lines represent
1617 medians. One-way ANOVA with Dunnett's multiple comparisons test. **(H)** Individual granuloma
1618 *Mtb* CFU. Individual dots represent single granuloma subject to Seq-Well S³ scRNA-seq (Mann-
1619 Whitney U Test). **(I)** Fraction of tissues (lymph node, spleen, lung) sharing library S barcodes
1620 (Kruskal Wallis with Dunn's multiple comparison test).

1621
1622 **Figure 3. Cellular remodeling of the TB granuloma microenvironment following *Mtb***
1623 **reinfection.** **(A)** UMAP embedding of Seq-Well S³ derived granuloma transcriptomes colored by
1624 coarse cell type. **(B)** Coarse cell type frequencies colored by experimental group. Individual dots
1625 represent single granuloma. Differentially abundant IgG vs naïve (purple) and IgG vs α CD4
1626 (green) marked with colored square. Cell types are differentially abundant if significant using
1627 two of three methods: Mann-Whitney U test; scCODA Bayesian model, and Fishers exact test.
1628 **(C)** Fraction of granuloma T, NK cells expressing *CD4* from Seq-Well S³ derived transcriptomes
1629 (Mann-Whitney U Test). **(D)** Fraction of granuloma T, NK cells expressing *CD8A* from Seq-
1630 Well S³ derived transcriptomes (Mann-Whitney U Test).

1631
1632 **Figure 4. CD4⁺ T cells regulate T cell cellularity, cytokine flux, and immune tone in in the**
1633 **TB granulomas following *Mtb* reinfection.** **(A)** UMAP embedding depicting T, NK cell
1634 subpopulations identified by sub-clustering. **(B)** Heatmap depicts gene expression levels (mean
1635 z-score) of T cell lineage markers *CD4*, *CD8A*, and *CD8B*. Columns represent gene expression
1636 in individual NHP groups – Naïve (light blue), IgG (yellow), α CD4 (red). Bar plot of T, NK
1637 subpopulation frequencies among all granuloma cellular subpopulations colored by experimental
1638 group. Differentially abundant IgG vs naïve (purple) and IgG vs α CD4 (green) marked with
1639 colored square. Cell types are differentially abundant if significant using two of three methods:
1640 Mann-Whitney U test; scCODA Bayesian model, and Fishers exact test. **(C-D)** T, NK cell
1641 pseudobulk Log₂CPM for naïve (light blue), IgG (yellow), and α CD4 (red) NHP granulomas
1642 (**p<0.001, **p<0.01, *p<0.05; Wilcoxon rank-sum test). Heatmap depicting log₁₀FC of
1643 lineage markers, cytolytic molecules, select transcription factors, immunoregulatory molecules,
1644 and chemokines, and cytokines (rows) for each cell type (columns) in NHP granulomas IgG vs

1645 naïve (C) or IgG vs α CD4 lesions (D). White circles indicate $>\log_{10}|1.3|$ fold change, relative to
1646 naïve or α CD4 granulomas. Black rectangles indicate 0.05 FDR and $>\log_{10}|1.3|$ fold change,
1647 relative to naïve or α CD4 granulomas.

1648

1649 **Figure 5. Attenuated type-1 immunity among monocyte-derived transcriptomes in *Mtb***
1650 **reinfection granulomas.** **(A)** UMAP embedding depicting Monocyte-derived cell identified by
1651 sub-clustering. UMAP embeddings depicting Monocyte-derived cell subpopulation densities,
1652 split by NHP cohort **(B)** Bar plot of Monocyte-derived progenitor frequencies, among all
1653 granuloma cell subpopulations, colored by experimental group. Individual dots represent single
1654 granuloma. Differentially abundant IgG vs naïve (purple) and IgG vs α CD4 (green) marked with
1655 colored square. Cell types are differentially abundant if significant using two of three methods:
1656 Mann-Whitney U test; scCODA Bayesian model, and Fishers exact test. **(C, D)** Enriched
1657 pathways from identified using differentially expressed genes (Mann-Whitney U test (Wilcoxon
1658 rank-sum) (p value <0.05)) from naïve, IgG, and α CD4 Sizes. Circles size represent to the
1659 number of genes in Hallmark Geneset, and color (Red-Blue) represents the geneset enrichment
1660 score. Genesets that are “up” (x-axis) are enriched among IgG granulomas, whereas “down”
1661 genesets are enriched among naïve **(C)** and α CD4 **(D)** granulomas, respectively. **(E-F)**
1662 Monocyte-derived pseudobulk Log₂CPM for naïve (light blue), IgG (yellow), and α CD4 (red)
1663 NHP granulomas (** p <0.001 , ** p <0.01 , *p <0.05 ; Wilcoxon rank-sum test). Heatmap depicting
1664 log₁₀FC of select transcription factors, immunoregulatory molecules, and chemokines, and
1665 cytokines (rows) for each cell type (columns) in NHP granulomas IgG vs naïve (E) or IgG vs
1666 α CD4 lesions (F). White circles indicate $>\log_{10}|1.3|$ fold change, relative to naïve or α CD4
1667 granulomas. Black rectangles indicate 0.05 FDR and $>\log_{10}|1.3|$ fold change, relative to naïve or
1668 α CD4 granulomas.

1669

1670 **Figure 6. Neutrophil heterogeneity in the TB granuloma.** **(A)** UMAP embedding depicting
1671 neutrophil cell subpopulations identified by sub-clustering **(B)** Bar plot of neutrophil subset
1672 frequencies, among all granuloma cell subpopulations, colored by experimental group.
1673 Individual dots represent single granuloma. Differentially abundant IgG vs naïve (purple) and
1674 IgG vs α CD4 (green) marked with colored square. Cell types are differentially abundant if
1675 significant using two of three methods: Mann-Whitney U test; scCODA Bayesian model, and

1676 Fishers exact test. **(C)** Volcano plot depicting pseudobulk differential gene expression (DESeq2)
1677 *ICAMI*^{hi}, *NBN*^{hi} vs , *SORLI*^{hi}, *CFD*^{hi} neutrophils (for all NHP experimental groups). Volcano
1678 plot x-axis indicates the log₂FC and y-axis indicates the -log₁₀(pvalue). Vertical dashed lines
1679 represent log₂FC threshold >|1.3|. Horizontal line indicates -log₁₀(pvalue)>|0.05| threshold. **(D-**
1680 **E)** Neutrophil pseudobulk Log₂CPM for naïve (light blue), IgG (yellow), and α CD4 (red) NHP
1681 granulomas (** p<0.001, ** p<0.01, *p<0.05; Wilcoxon rank-sum test). Heatmap depicting
1682 log₁₀FC of select transcription factors, immunoregulatory molecules, and chemokines, and
1683 cytokines (rows) for each cell type (columns) in NHP granulomas IgG vs naïve (D) or IgG vs
1684 α CD4 lesions (E). White circles indicate >log₁₀|1.3| fold change, relative to naïve or α CD4
1685 granuloma. Black rectangles indicate 0.05 FDR and >log₁₀|1.3| fold change, relative to naïve or
1686 α CD4 granulomas. **(F)** Violin plots of IFN-inducible neutrophil module scores, split by NHP
1687 group. Significance by Mann-Whitney U test.
1688

1689 **Figure 7. Differential cell-cell interactions in immunologically primed granulomas. (A)**
1690 **(A)** Heatmap depiction of differential (naïve vs IgG) cell-cell interaction pairs among coarse cell
1691 types. Columns represent cell-cell interactions from the top-prioritized links – “sender” ligands
1692 and receptors differential L-R pairs specific to IgG or naïve granulomas. Heat map and dot size
1693 represent L-R interactions from the 50 top-prioritized links. Black rectangles indicate the top 5
1694 interactions, based on number of interactions between two cell types, per NHP group. Green
1695 rectangles depict putative T, NK-T, NK interactions. **(B)** Cartoon depiction of (A) with
1696 differential L-R (i.e., top-prioritized linkages) specific to naïve granulomas. **(C)** Barplot
1697 depiction of differential cell-cell interactions among naïve granulomas. Left barplot
1698 depicts *IL10*⁺sender cellular subpopulations; right barplot represents *IL10RA/RB*⁺ cell
1699 subpopulations. Receptor-ligand and inferred interaction pairs are derived from the top 200 top-
1700 prioritized linkages. **(D)** Similar heatmap to that of (A), highlighting linkages specific to IgG (vs
1701 naïve) granulomas. **(E)** Schematic representation of the differential L-R pairs unique to IgG
1702 granulomas from (D). **(F)** Barplot representation of differential *IL10-IL10RA/RB* interactions
1703 among IgG lesions, similar to that of (C). **(G)** Heatmap of α CD4 (vs IgG) granulomas.
1704 **(H)** Schematic representation of the differential L-R pairs unique to α CD4 granulomas from
1705 (G). **(I)** Heatmap of IgG (vs α CD4) granulomas. **(J)** Schematic representation of the differential

1706 L-R pairs unique to IgG granulomas from (I). **(K)** Barplot representation of differential *IL10-*
1707 *IL10RA/RB* interactions among IgG lesions, similar to that of (C).

1708

1709 **SUPPLEMENTAL FIGURE LEGENDS**

1710 **Figure S1. Cellular frequencies across anatomic compartments, related to Figure 1. (A)**

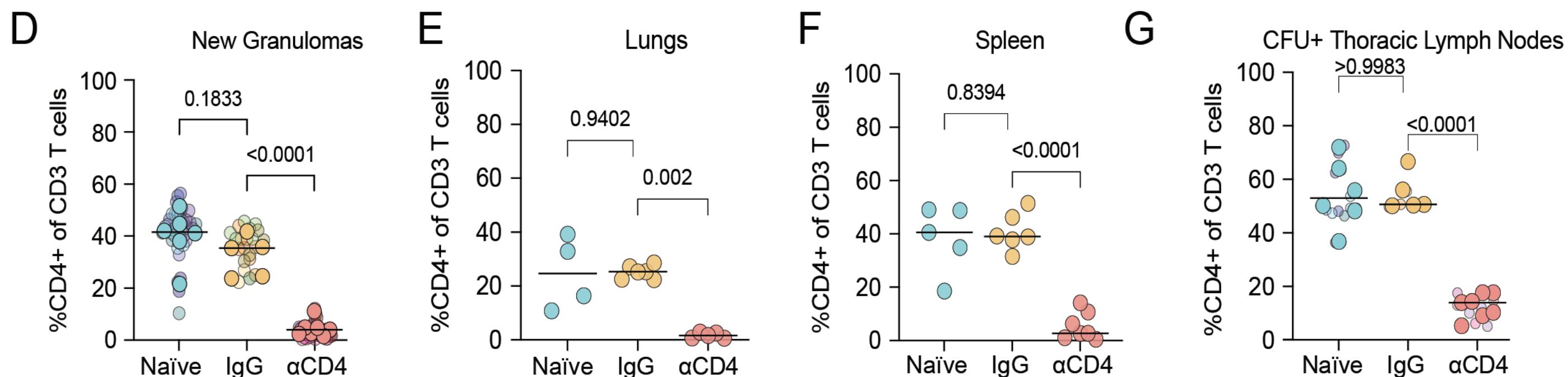
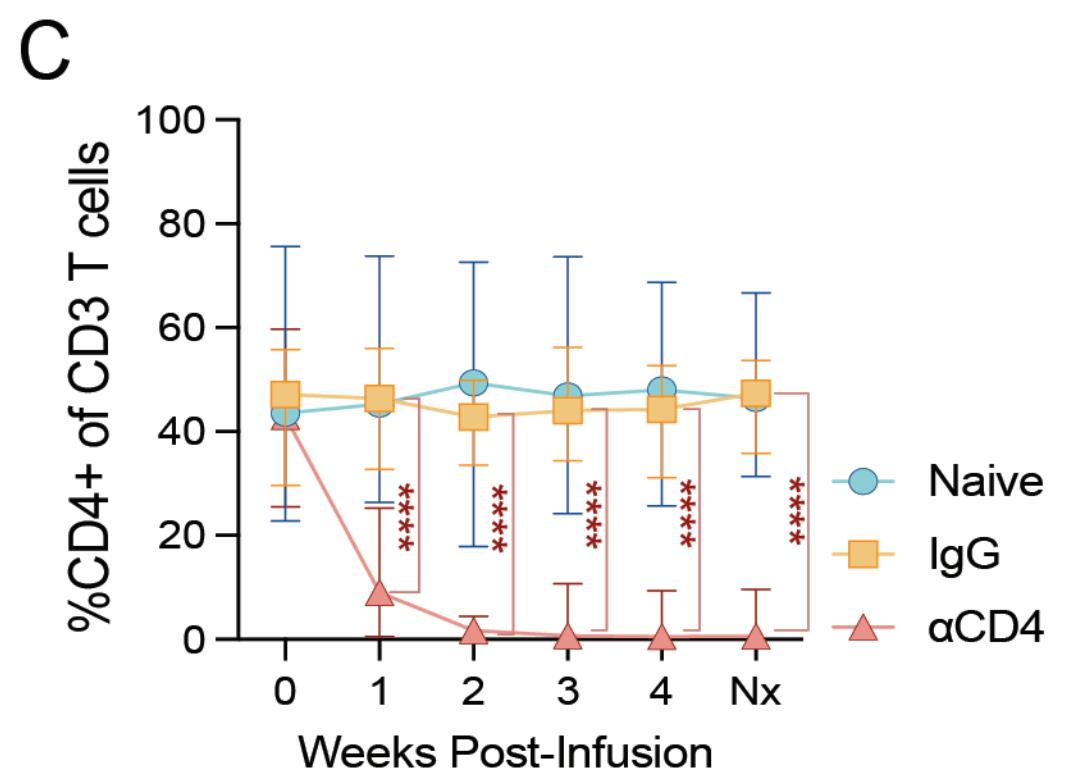
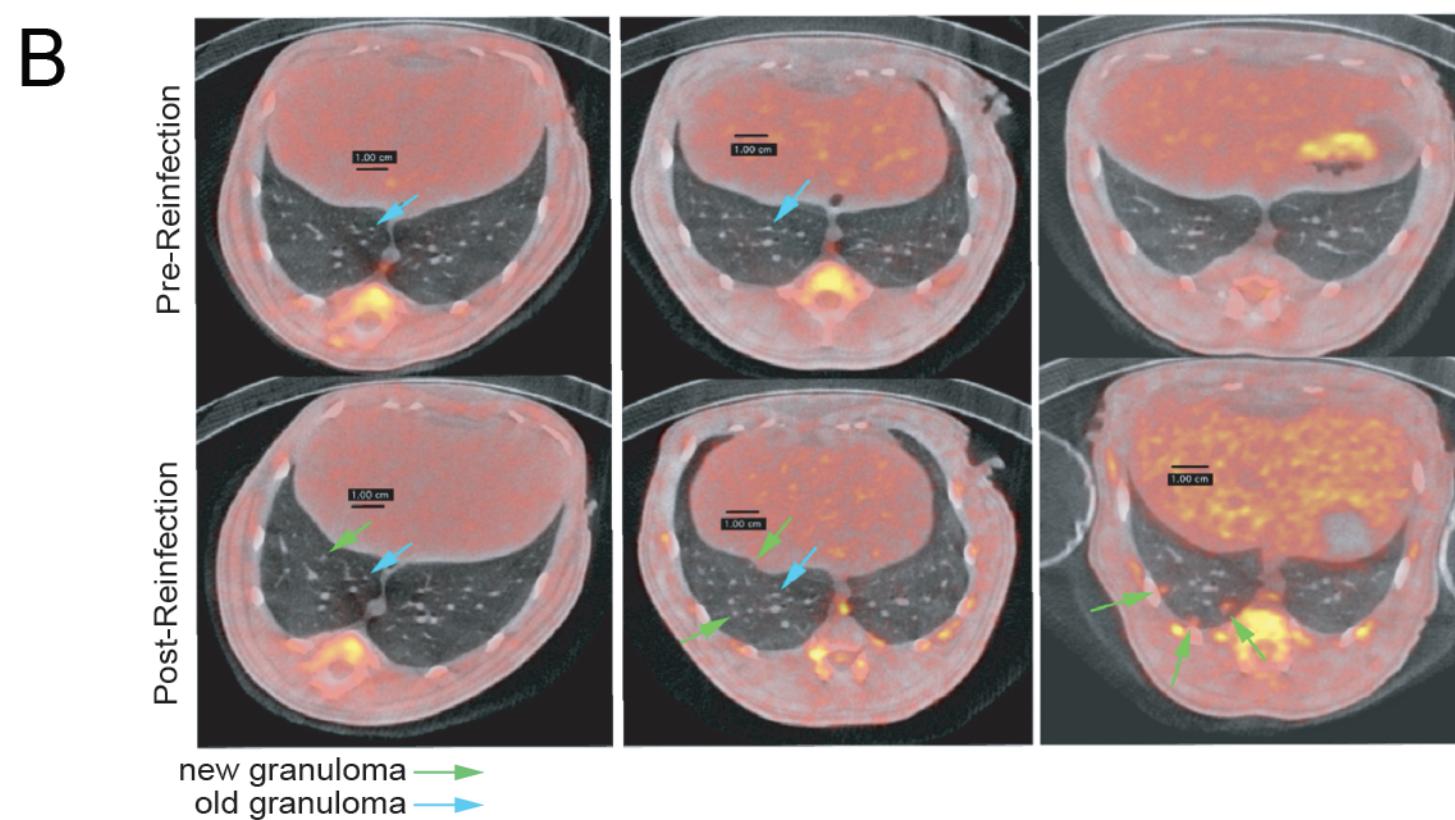
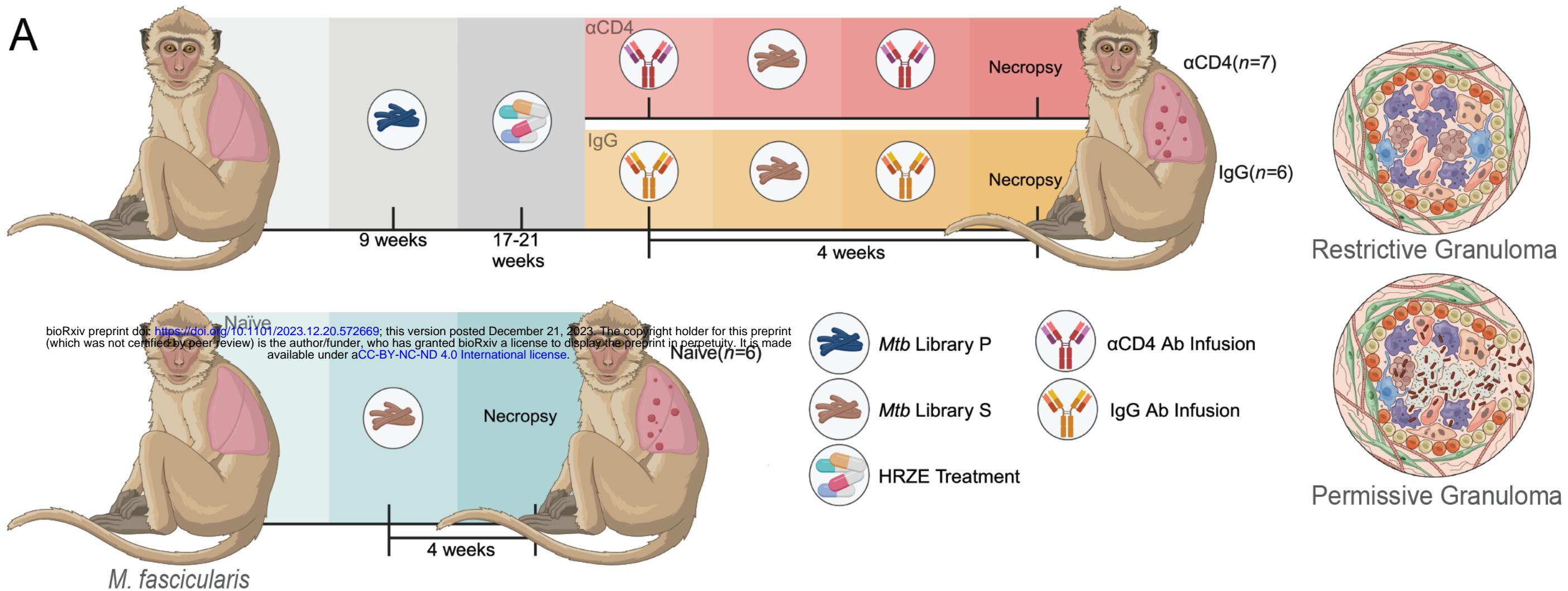
1711 Total lung FDG activity pre- and post-HRZE drug treatment. Two-way ANOVA with
1712 Bonferroni's multiple comparisons test. Dots with connected lines represent individual animals.
1713 **(B)** Absolute counts (count/uL) of CD4⁺ T cells, CD8⁺ T cells, CD20⁺ B cells, monocytes, and
1714 neutrophils post-antibody infusion in peripheral blood. Median and range shown; mixed-effects
1715 model with Dunnett's multiple comparisons test (** p<0.01, ***, p<0.001, **** p<0.0001). **(C)**
1716 Fraction of CD3⁺, CD4⁺ cells from peripheral lymph nodes resected pre- and post-Ab infusion.
1717 Dots with connected lines represent individual animals. Wilcoxon matched-pairs signed rank
1718 test. **(D)** Absolute counts (count/µL) of CD4⁺ T cells in new granuloma, uninvolved lung, CFU⁺
1719 and CFU⁻ thoracic lymph nodes, peripheral lymph nodes, and spleen. **(E)** Absolute counts
1720 (count/µL) of CD8⁺ T cells in new granuloma, uninvolved lung, CFU⁺ and CFU⁻ thoracic lymph
1721 nodes, peripheral lymph nodes, and spleen. **(F)** Absolute counts (count/µL) of CD20⁺ B cells in
1722 new granuloma, uninvolved lung, CFU⁺ and CFU⁻ thoracic lymph nodes, peripheral lymph
1723 nodes, and spleen. **(G)** Fraction of CD3⁺, CD4⁺ cells from CFU⁻ thoracic lymph nodes resected
1724 at necropsy. One-way ANOVA with Dunnett's multiple comparisons test. (D-F) Transparent
1725 smaller dots represent granulomas, colored by animal. Larger dots represent mean per animal
1726 and lines represent medians. Kruskal-Wallis with Dunn's multiple comparisons test adjusted p-
1727 values reported.

1728

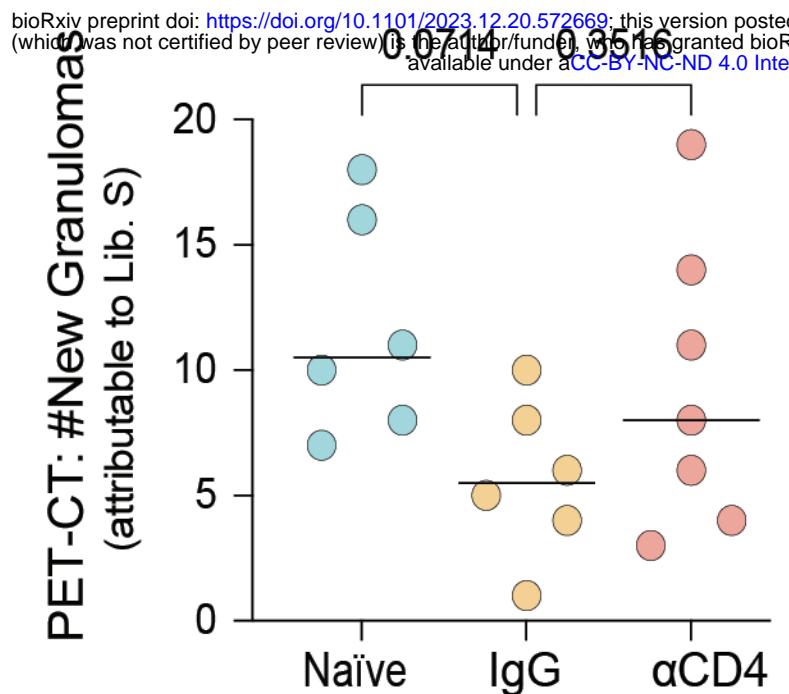
1729 **Figure S2. *Mtb* CFU, CEQ, CFU:CEQ, and dissemination, related to Figure 2. (A)** CEQ
1730 (left), and CFU (right). Individual dots represent individual TB granulomas. Linkages depict
1731 CEQ and CFU within the same lesion. Wilcoxon matched-pairs signed rank test. **(B)** *Mtb* CFU
1732 per granuloma. Integers on the x-axis represent an individual macaque. Colored dots are
1733 individual granuloma. Lines represent median per animal. **(C)** *Mtb* CEQ per granuloma. Integers
1734 on the x-axis represent an individual macaque. Colored dots are individual granuloma. **(D)**
1735 CFU:CEQ per granuloma. Integers on the x-axis represent an individual macaque. Colored dots
1736 are individual granuloma. Lines represent median per animal. **(E-G)** Circos plots depicting *Mtb*

1737 strains shared between anatomical sites in naïve (E), reinfected (F) or reinfected with CD4
1738 depletion (G) animals. Individual circos plots represent a single macaque, labeled with their
1739 study ID. In the plots, each wedge represents a distinct tissue site that was sampled and/or
1740 sequenced for barcodes. There are three tracks in each plot. The outer ring defines tissue samples
1741 as being from lungs (red), thoracic lymph nodes (blue) or distal extrapulmonary sites (green).
1742 Lighter shades represent tissues that were plated for *Mtb* but were sterile. The middle ring
1743 represents lesions that were detected by PET-CT during primary infection with the first *Mtb*
1744 library ('old lesion'), new lesions detected by PET-CT after re-infection ('new lesion'), or new
1745 lesions (as defined by Library S barcode sequencing) that were also found at sites where old
1746 lesions had previously formed (detected by PET-CT). The innermost ring represents distinct
1747 barcodes found in each tissue, where each unique barcoded *Mtb* strain (from the secondary *Mtb*
1748 library) is given a different color. Tissues that share the same *Mtb* strain by sequencing are
1749 linked by ribbons. Lung tissues are further grouped by lobe, abbreviated as follows: RUL, right
1750 upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LML, left
1751 middle lobe; LLL, left lower lobe; Acc, accessory lobe.

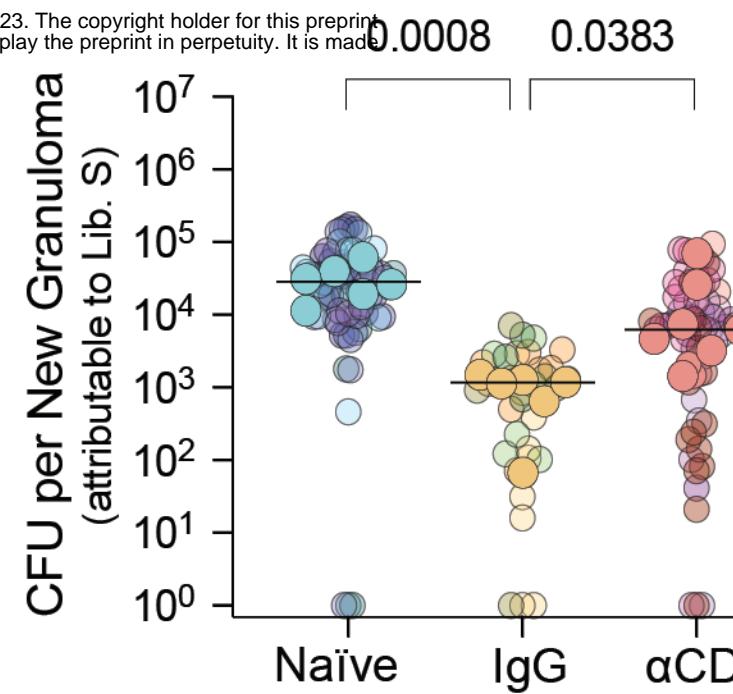
1752

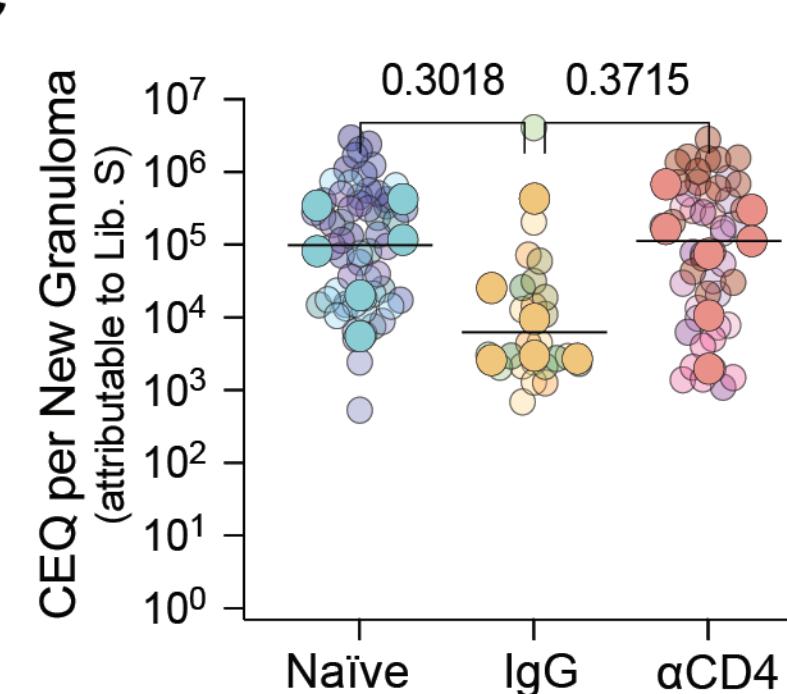




1753 **Figure S3. Coarse-level cell types and T, NK cell diversity in the TB granuloma, related to**
1754 **Figures 3, 4. (A)** Heatmap depicting gene expression profiles (mean z-score) of coarse cell-type
1755 markers. Marker genes are depicted on the x-axis, and coarse-cell types on the y-axis. **(B)**
1756 Coarse-level cell type frequencies in the TB granuloma (naïve (left), IgG (middle), α CD4
1757 (right)). Individual bars represent a single TB granuloma profiled using Seq-Well S³. **(C)**
1758 Heatmap depicting gene expression profiles (mean z-score) of T,NK subpopulation markers, as
1759 well as select transcription factors, cytokine and chemokine receptors, co-inhibitory and co-
1760 activation markers. **(D)** T, NK cell pseudobulk Log₂CPM for naïve (light blue), IgG (yellow),
1761 and α CD4 (red) NHP granulomas (**p<0.001, **p<0.01, *p<0.05; Wilcoxon rank-sum test).
1762 Heatmap depicting log₁₀FC of lineage markers, cytolytic molecules, select transcription factors,
1763 immunoregulatory molecules, and chemokines, and cytokines (rows) for each cell type
1764 (columns). White circles indicate >log₁₀|1.3| fold change, relative to naïve or α CD4 granulomas.
1765 Black rectangles indicate 0.05 FDR and >log₁₀|1.3| fold change, relative to naïve or α CD4
1766 granulomas. **(F)** Number of differentially expressed genes among T, NK cell subpopulations
1767 with 0.05 FDR< and >log₁₀|1.3| fold change, naïve (light blue), IgG (yellow), and α CD4 (red).

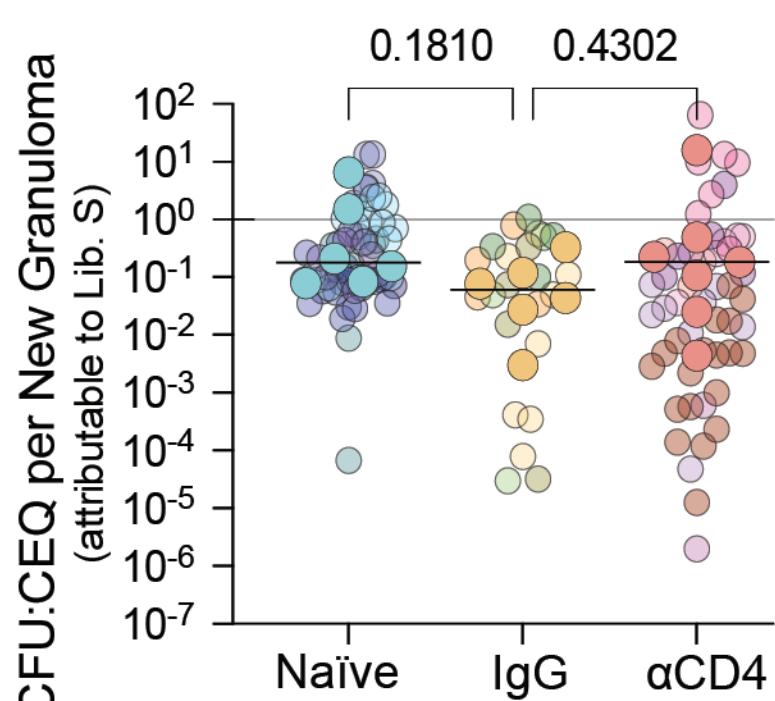
1768

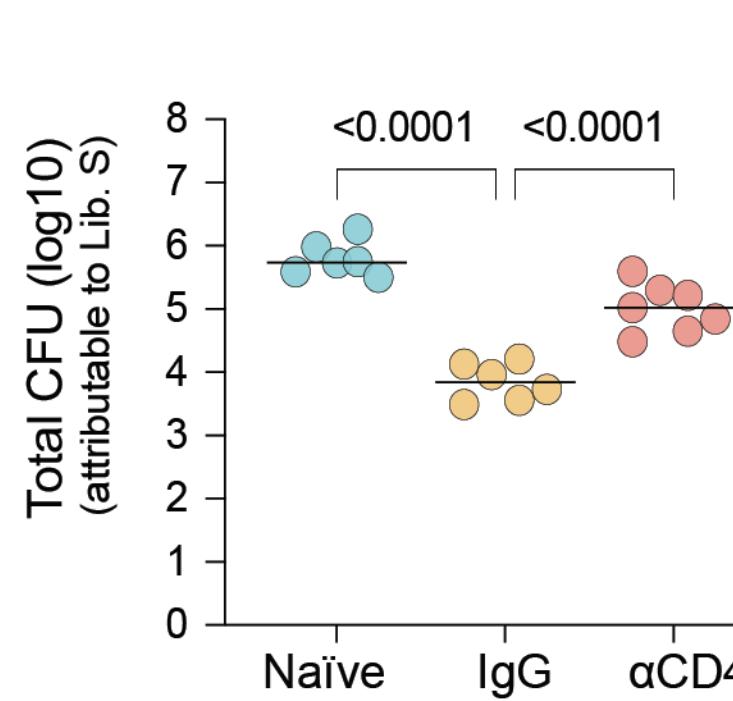

1769 **Figure S4. Monocyte-derived gene programming and neutrophil heterogeneity, related to**
1770 **Figures 5, 6.** **(A)** Heatmap depicting gene expression profiles (mean z-score) of monocyte-
1771 derived subpopulation markers. **(B)** Number of differentially expressed genes among monocyte-
1772 derived subpopulations with $0.05 \text{ FDR} <$ and $>\log_{10}|1.3|$ fold change, naïve (light blue), IgG
1773 (yellow), and αCD4 (red). **(C-D)** Monocyte-derived pseudobulk Log_2CPM for naïve (light blue),
1774 IgG (yellow), and αCD4 (red) NHP granulomas (** $p < 0.001$, ** $p < 0.01$, * $p < 0.05$; Wilcoxon
1775 rank-sum test). Heatmap depicting $\log_{10}\text{FC}$ of select chemokines and cytokines, bacterial
1776 response genes (Yao et al., 2018), adipogenesis, and reactive oxygen species (rows) for each cell
1777 type (columns) in NHP granulomas, IgG vs naïve (C) or IgG vs αCD4 lesions (D). White circles
1778 indicate $>\log_{10}|1.3|$ fold change, relative to naïve or αCD4 granulomas. Black rectangles indicate
1779 0.05 FDR and $>\log_{10}|1.3|$ fold change, relative to naïve or αCD4 granulomas. **(E)** Heatmap
1780 depicting neutrophil subpopulation marker gene expression profiles (mean z-score). **(F)** Number
1781 of differentially expressed genes among neutrophil subpopulations with $0.05 \text{ FDR} <$ and
1782 $>\log_{10}|1.3|$ fold change, naïve (light blue), IgG (yellow), and αCD4 (red).
1783

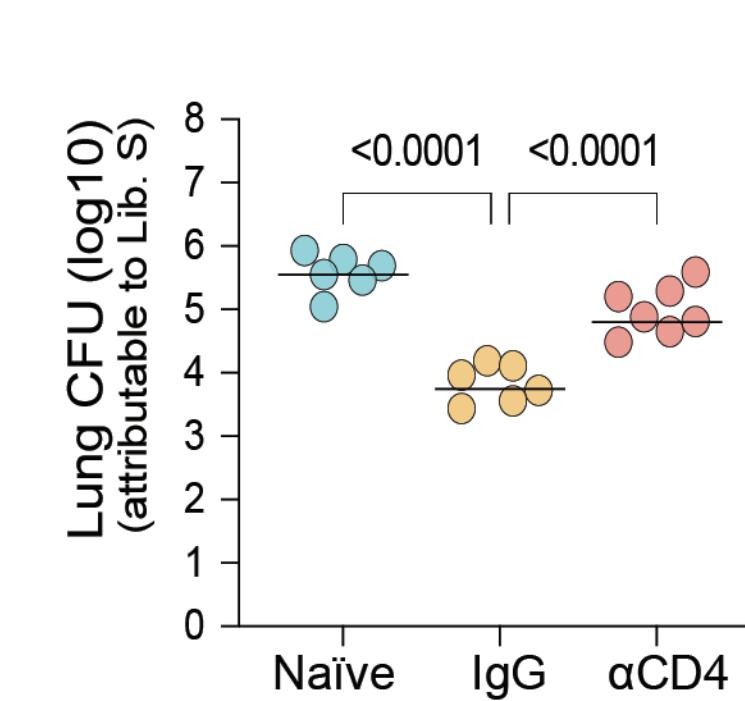
1784 **Figure S5. Cell-cell and ligand-receptor interactions during *Mtb* reinfection, related to**
1785 **Figure 7.** **(A)** Circos plot depicting differential network interactions among coarse-level cell type
1786 annotations in naïve granulomas (naïve vs IgG). Ribbon arrows indicate directionality (sender to
1787 receiver) populations. The outer edge color among senders denotes the sender cell type, with the
1788 inner edge color representing the receiver cell type. Circos plot depicts the 50 top-prioritized
1789 linkages. **(B)** Differential cell-cell interactions among IgG lesions (IgG vs naïve). **(C)** Heatmap
1790 depicting type 1 interferon ligand-activity among coarse cell types. **(D)** Heatmap (left) depiction
1791 of scaled ligand-receptor expression among the top 50 prioritized linkages among T, NK cells
1792 from IgG granulomas, relative to naïve. Columns represent individual granulomas. Heatmap split
1793 by NHP group. Heatmaps (right) are representations of the scaled ligand activity among putative
1794 receiver populations. **(E)** Heatmap similar to (D) but depicting the top 50 prioritized linkages
1795 among all coarse-level cell types. **(F)** Circos plot showing differential network interactions
1796 among immune cell subpopulations in naïve granulomas (naïve vs IgG). Top 100 prioritized
1797 linkages are plotted. **(G)** Differential cell-cell interactions among all immune cell subpopulations
1798 IgG vs naïve. **(H)** Differential cell-cell interactions among αCD4 lesions (αCD4 vs

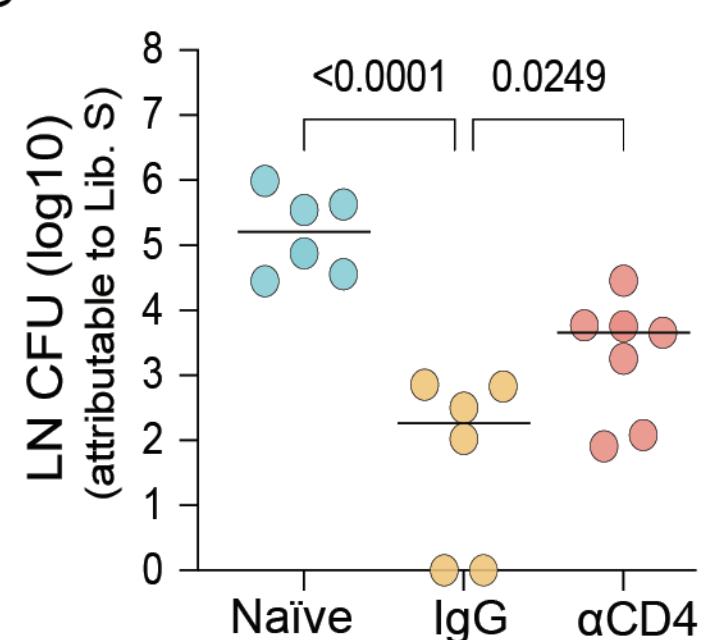

1799 IgG). **(I)** Differential cell-cell interactions among IgG lesions (IgG vs α CD4). **(J)** Heatmap
1800 depicting type 1 interferon ligand-activity among coarse cell types, IgG vs α CD4. **(K)** Heatmap
1801 similar to (D) but displaying the top 50 prioritized linkages among T, NK cells from IgG
1802 granulomas, relative to α CD4. **(L)** Heatmap similar to (D) but depicting the top 50 prioritized
1803 linkages among all coarsely annotated cell types from IgG granulomas relative to
1804 α CD4. **(M)** Circos plot depicting differential network interactions among immune cell
1805 subpopulations in α CD4 granulomas (α CD4vs IgG). Top 100 prioritized linkages are
1806 plotted. **(N)** Differential cell-cell interactions among all immune cell subpopulations IgG vs
1807 α CD4.

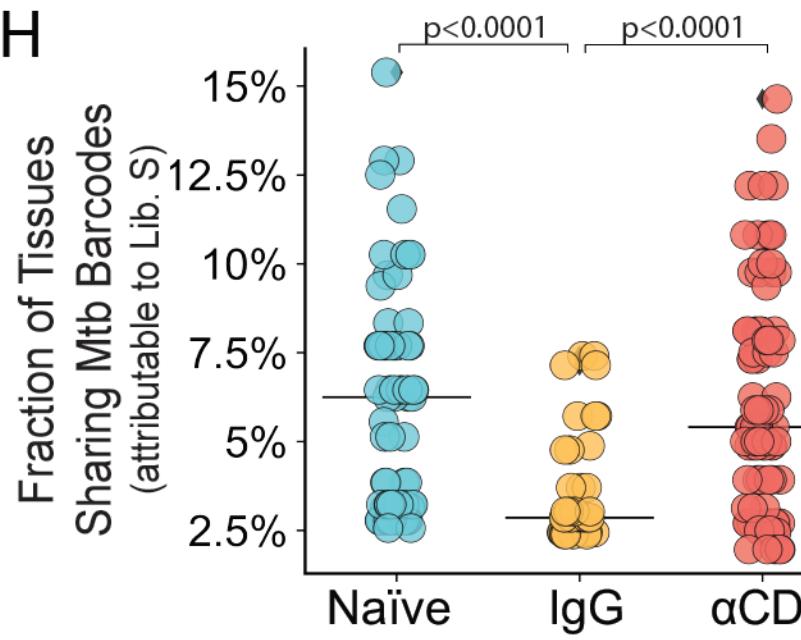

A

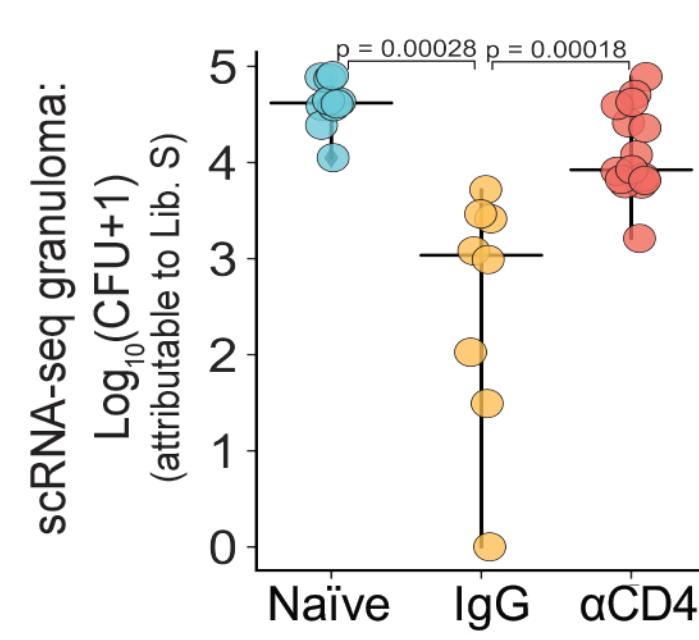

B

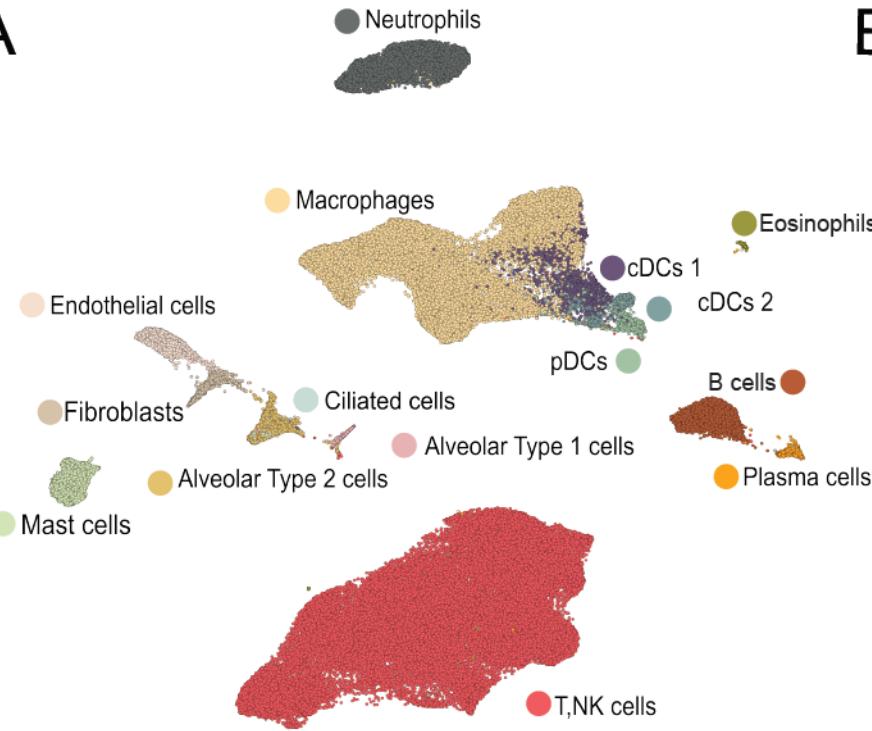
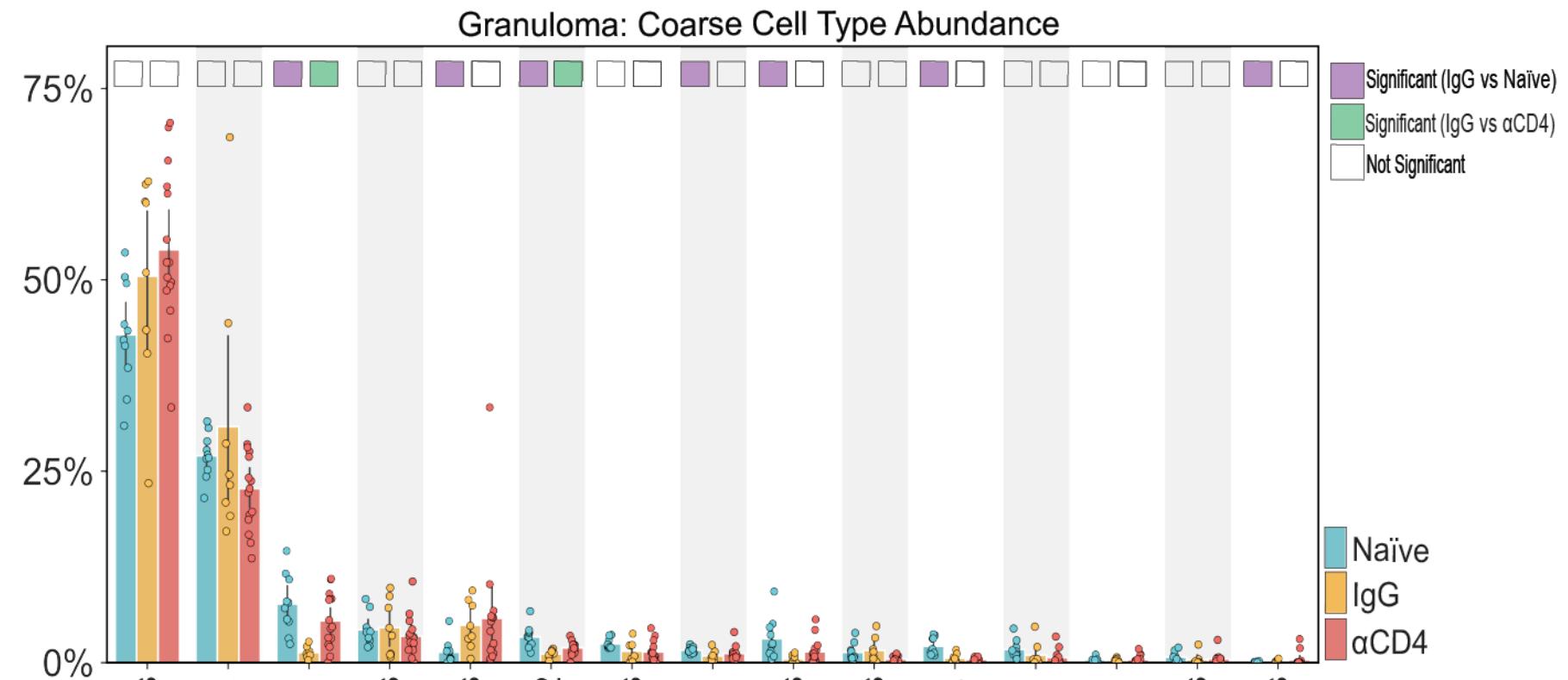
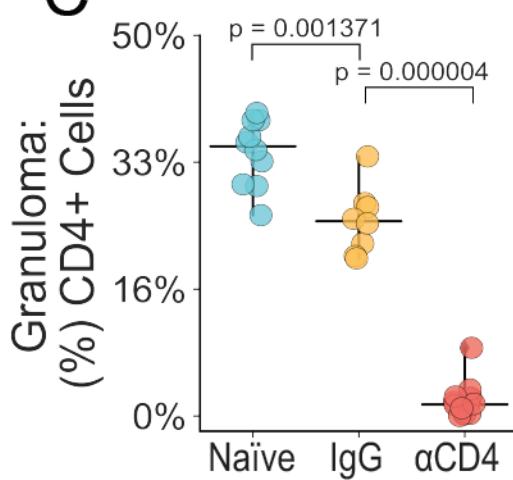
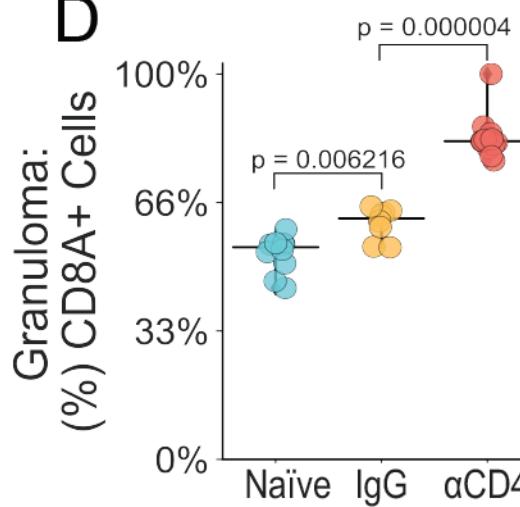

C

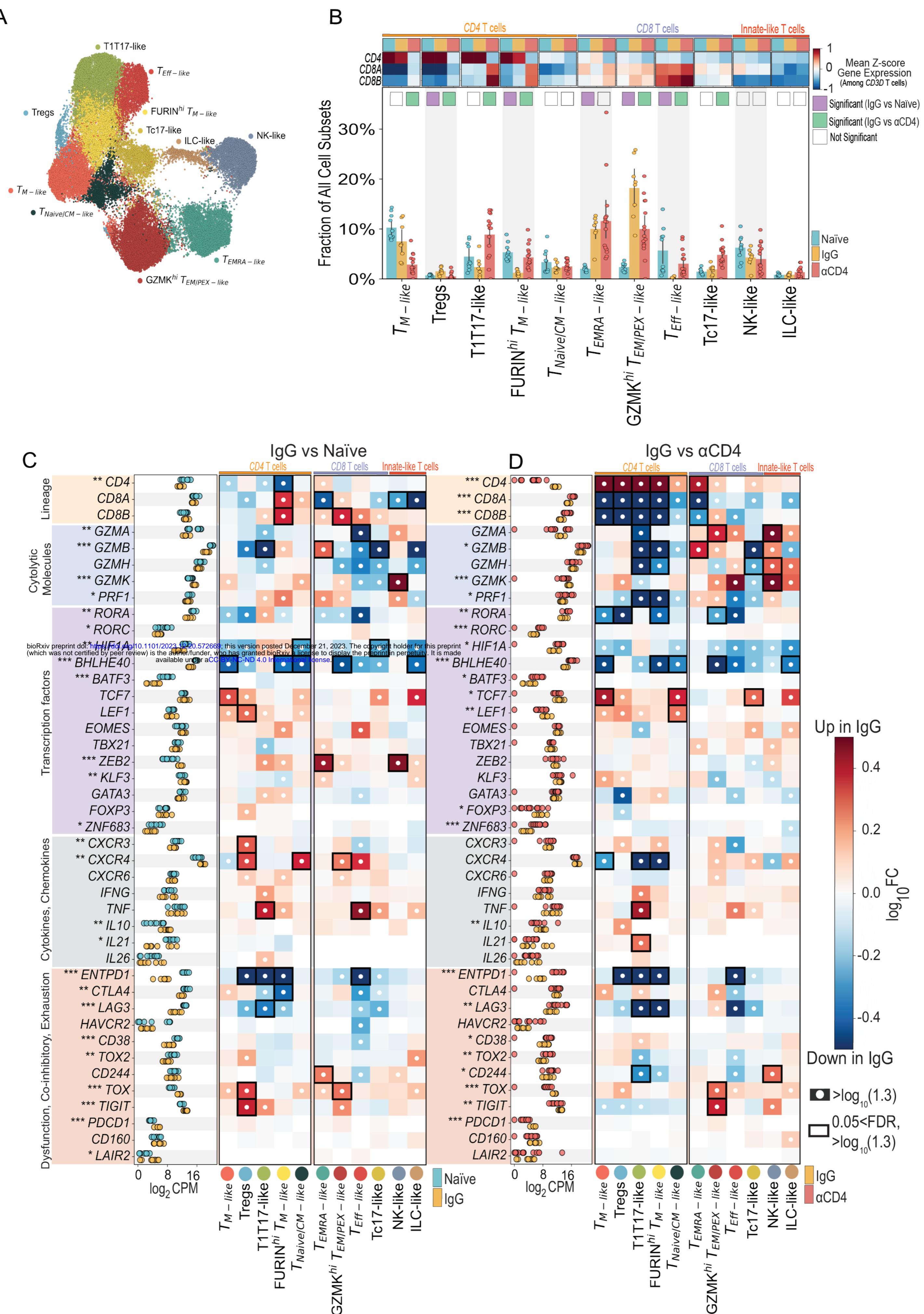

D

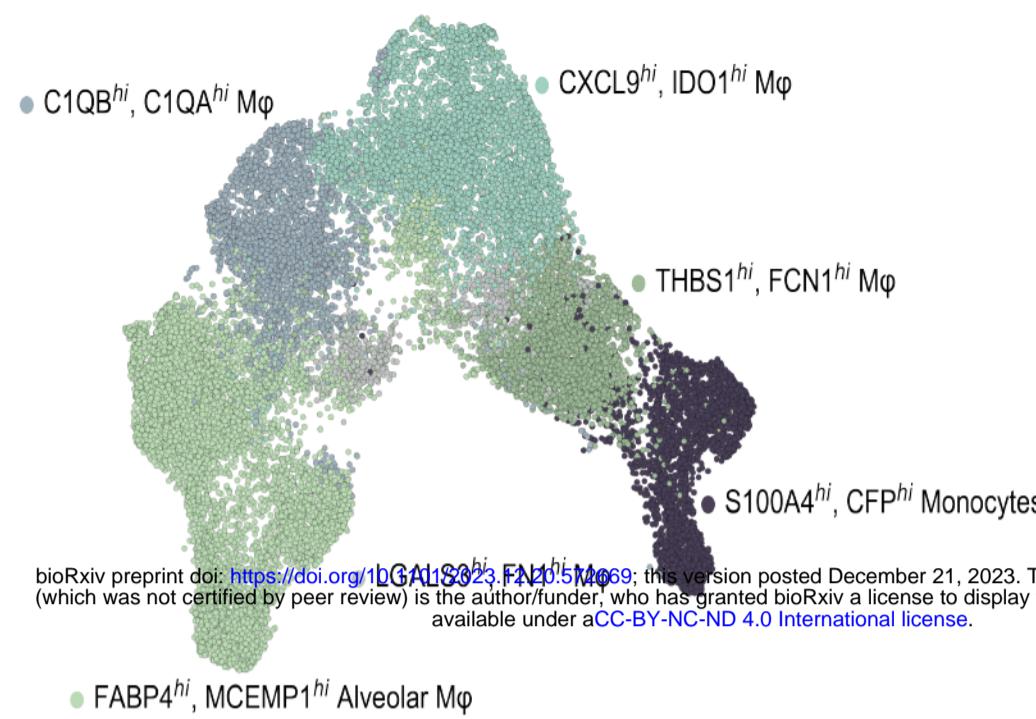
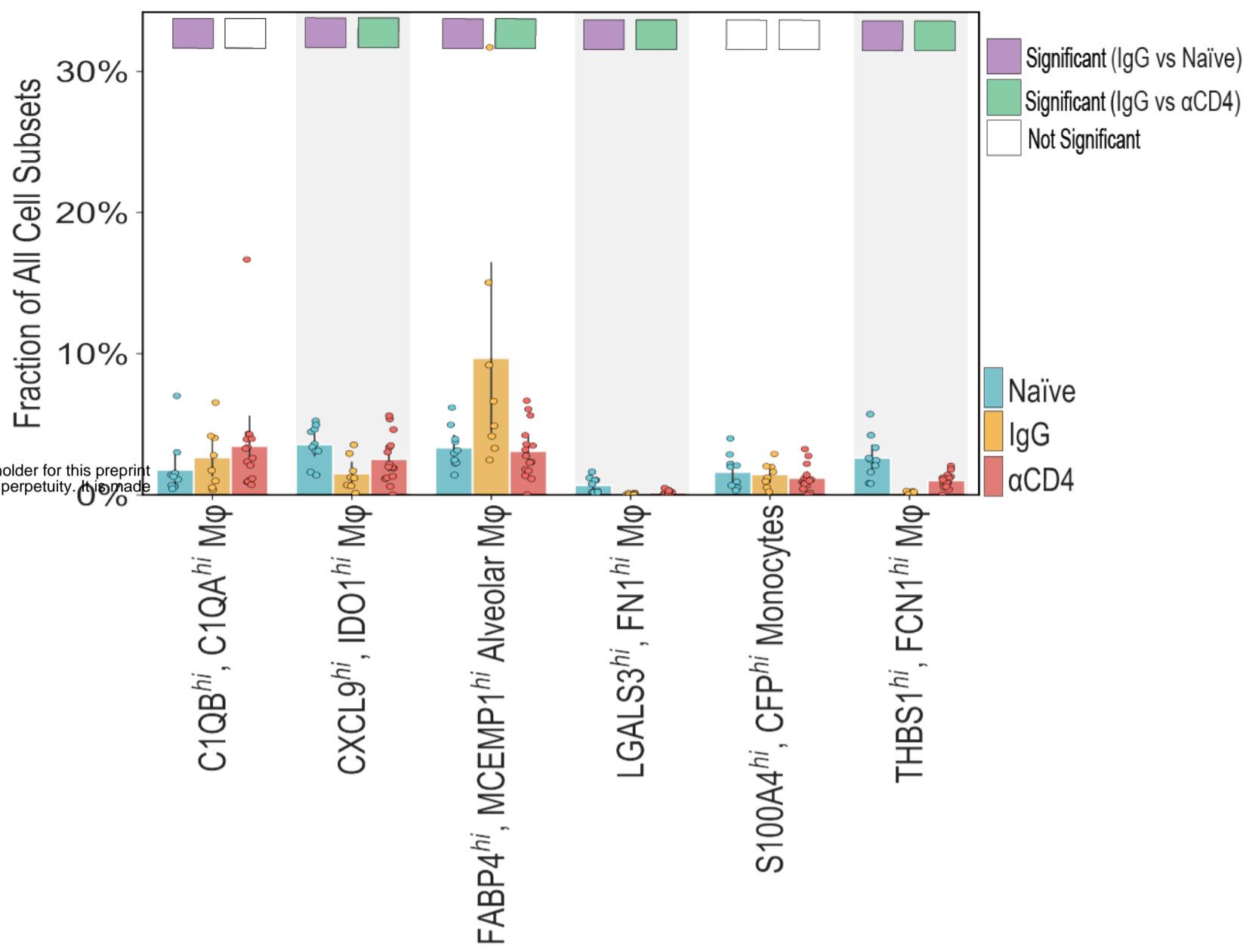
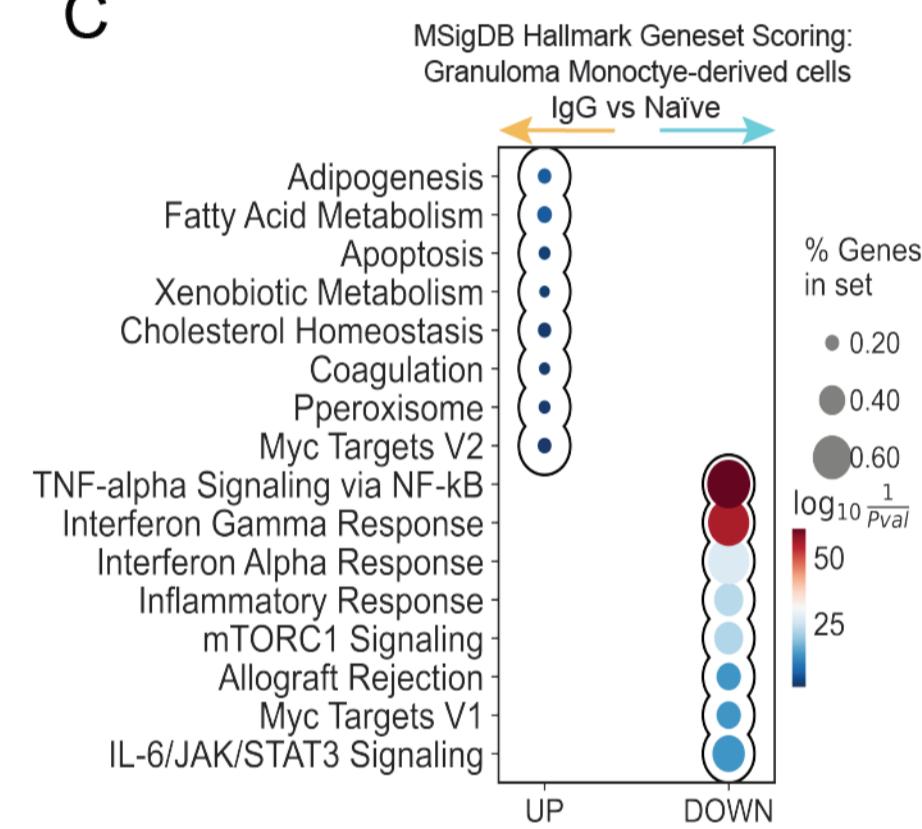
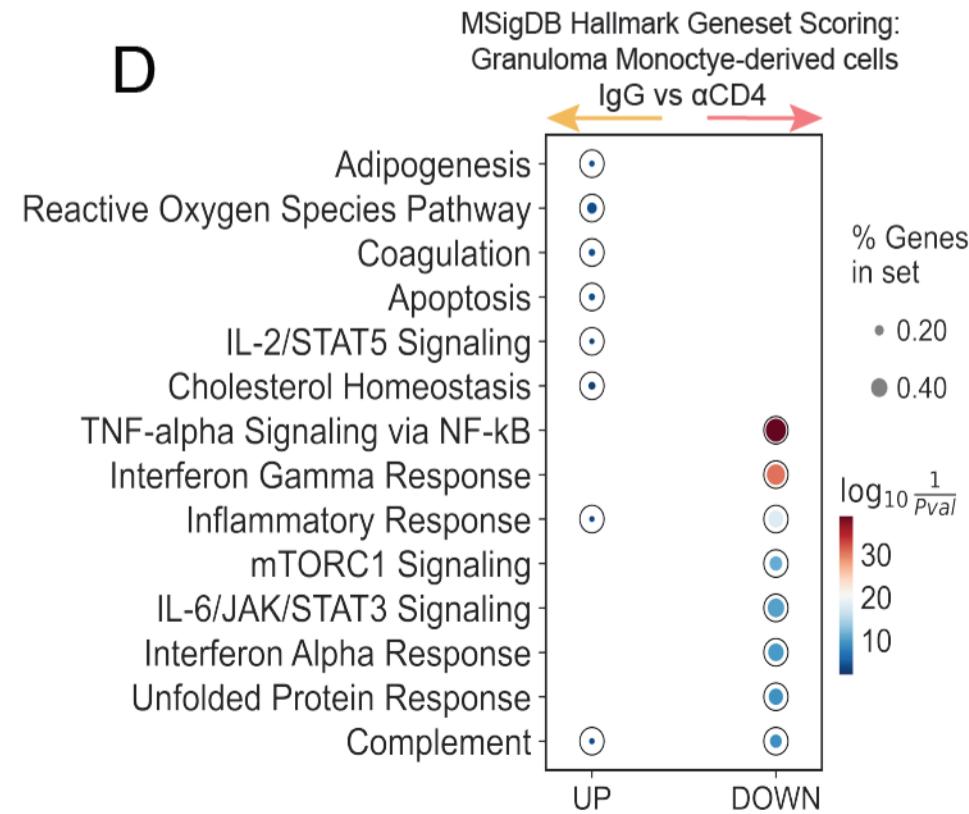
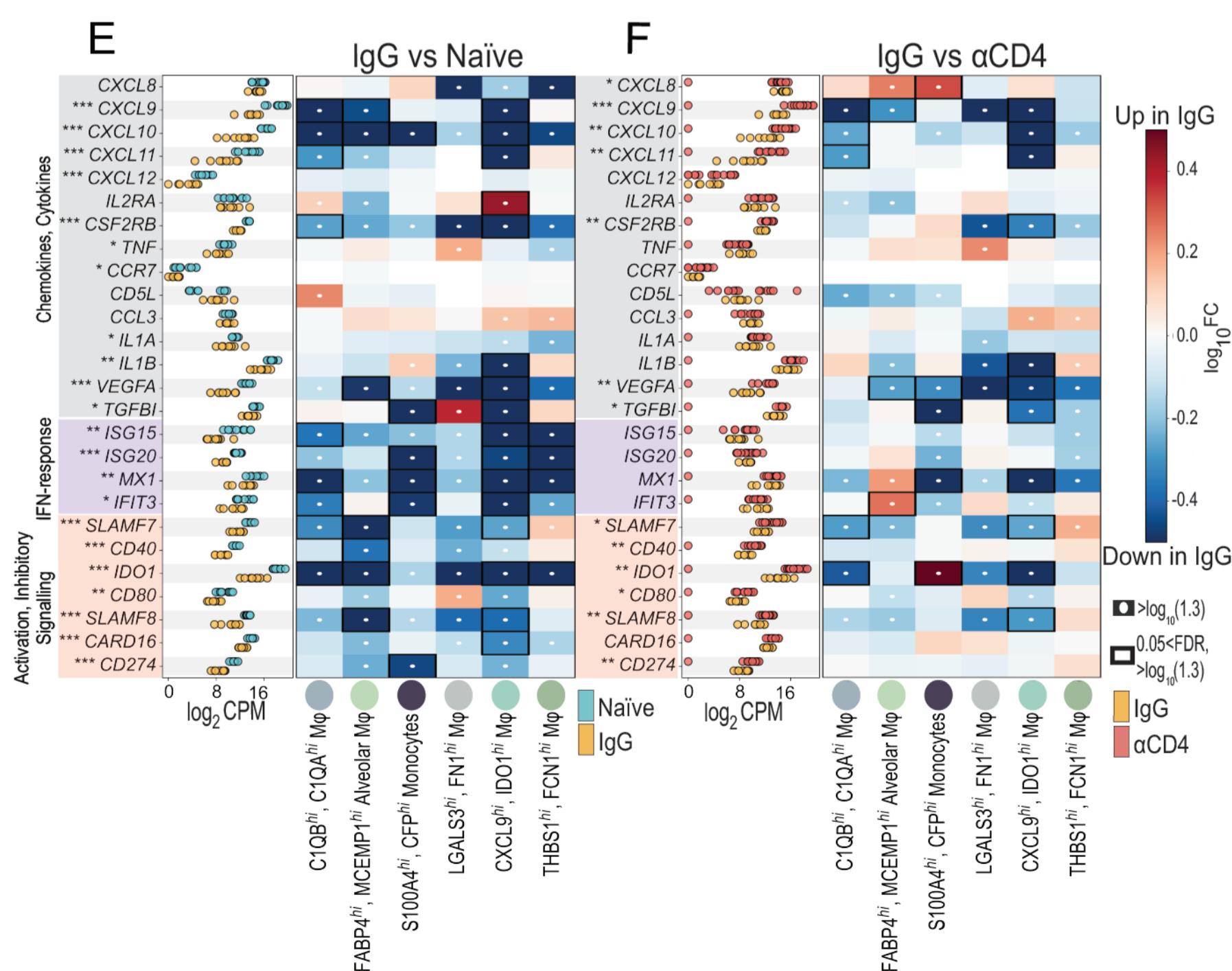

E

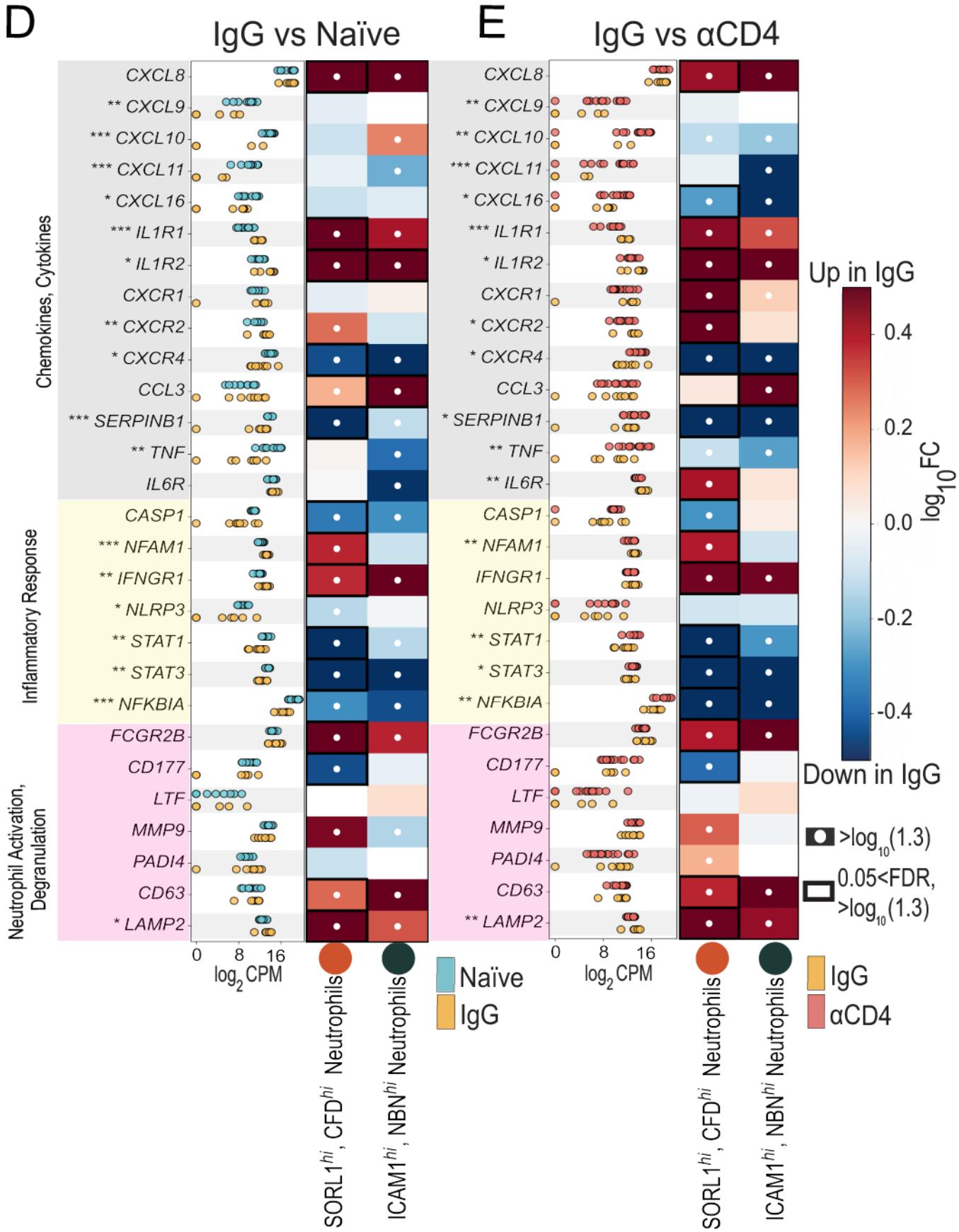
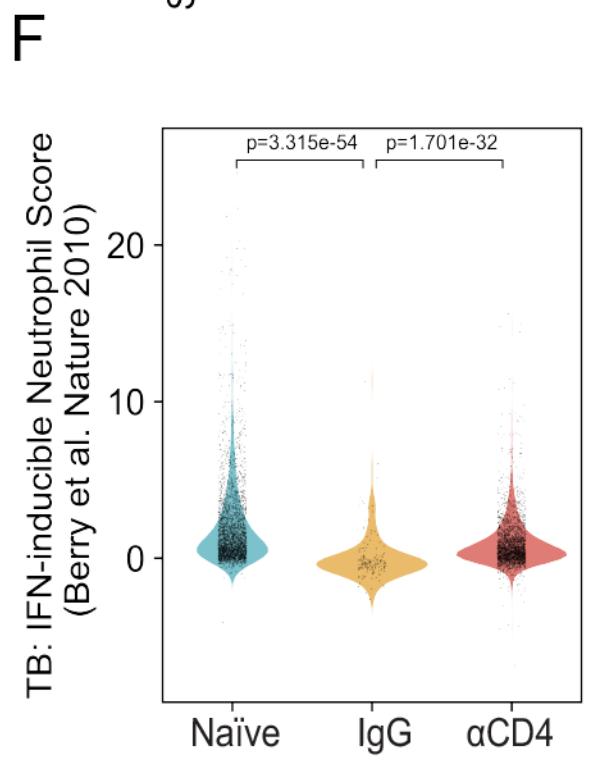
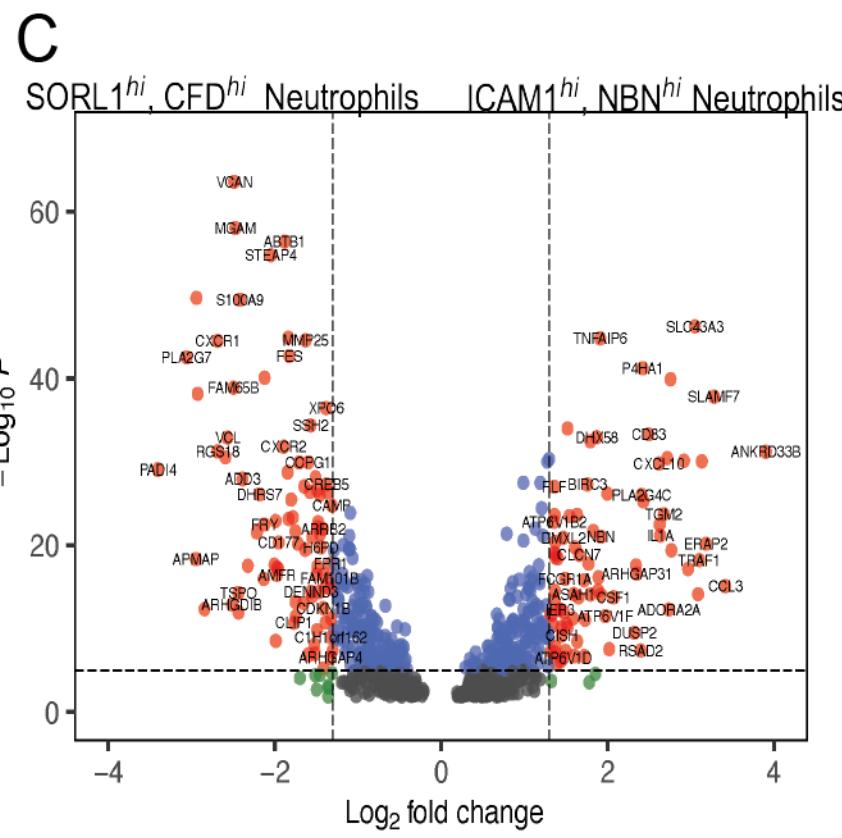
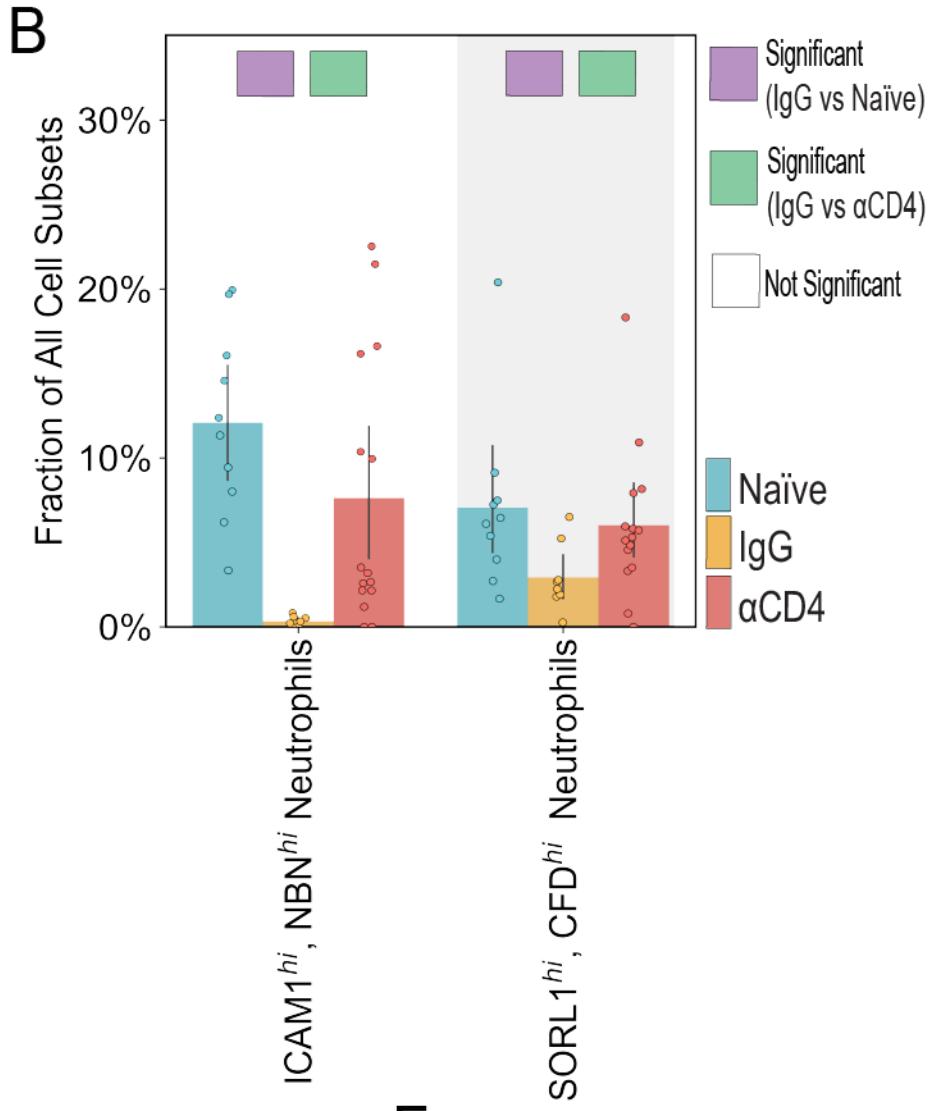
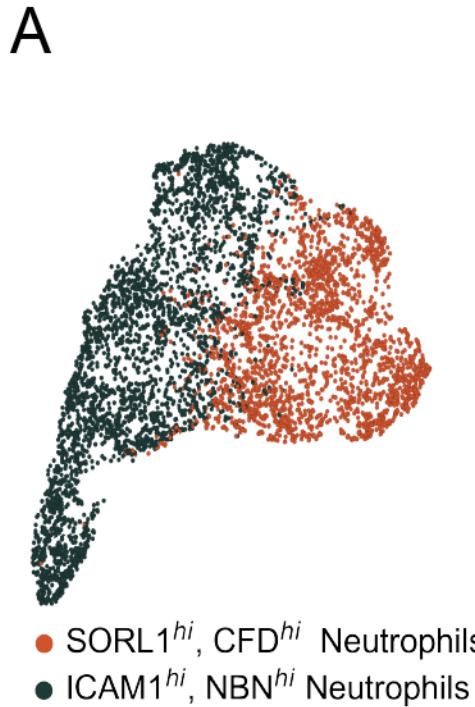

F

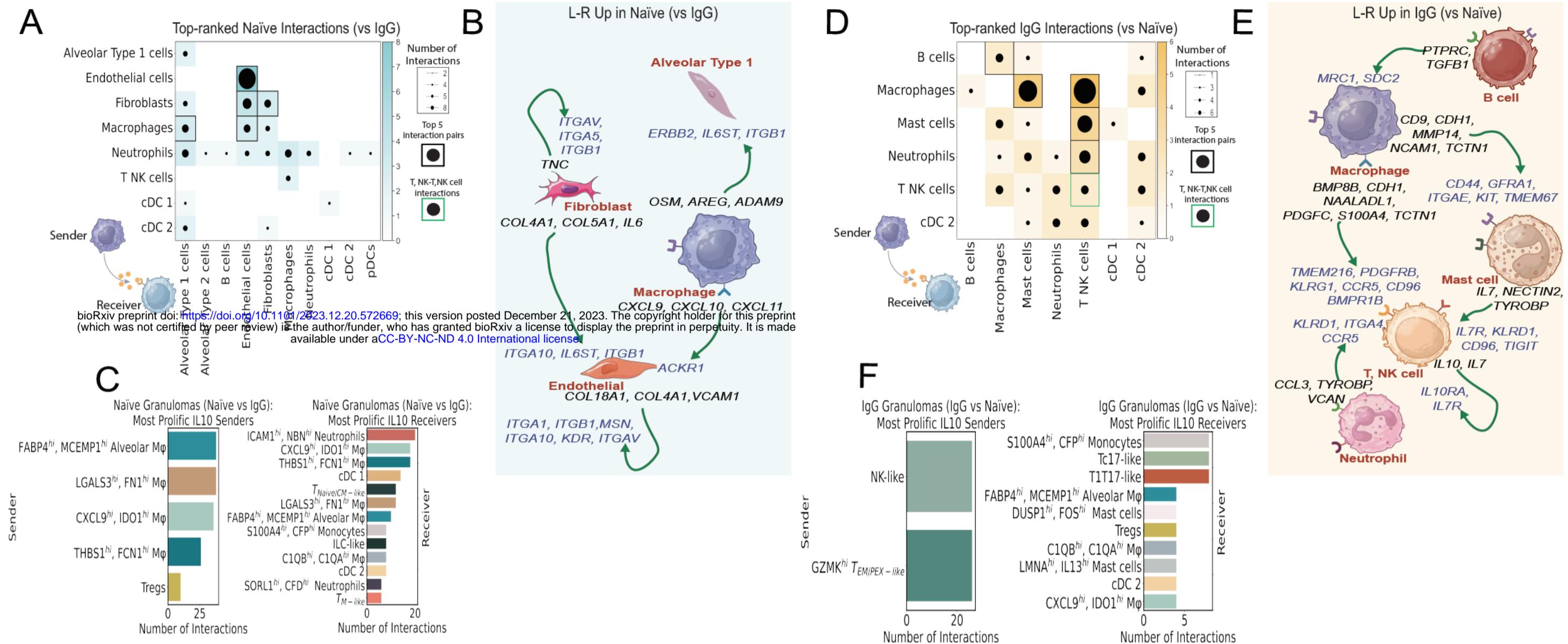

G

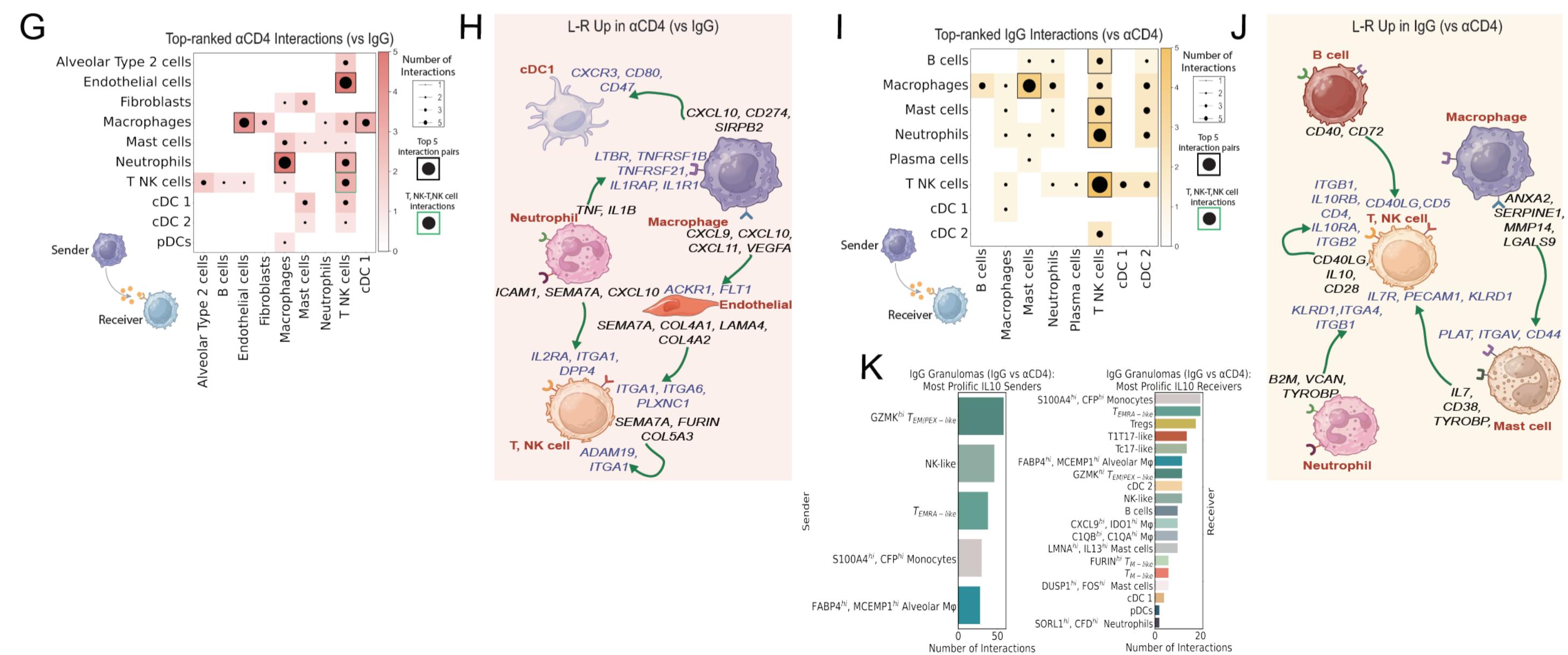





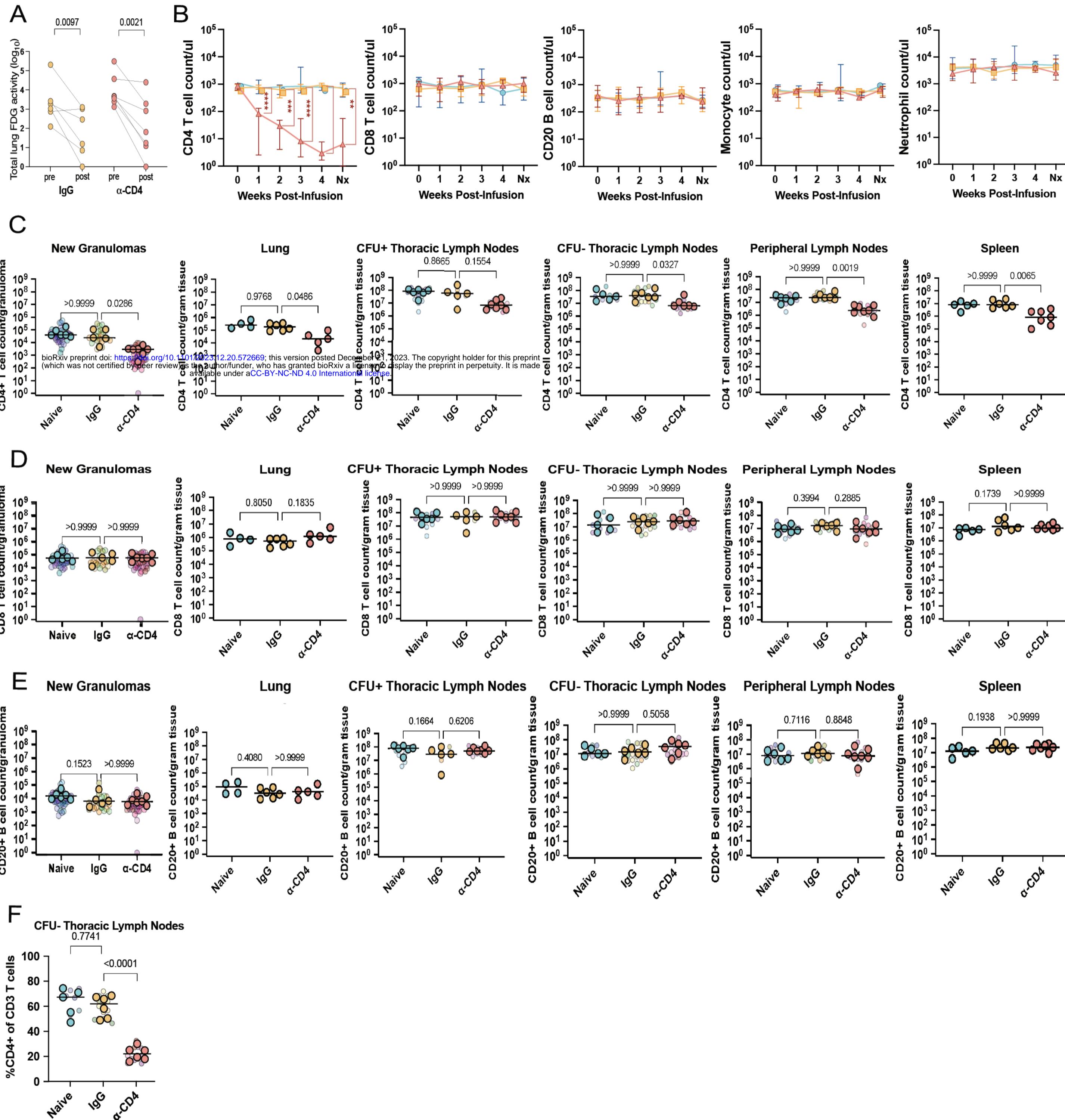

H

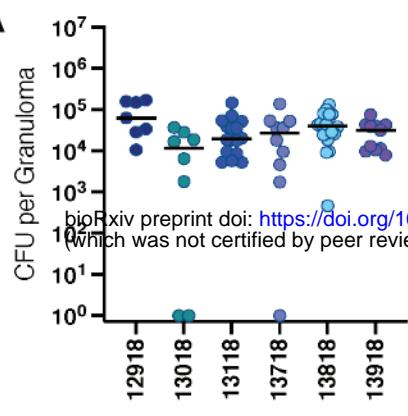
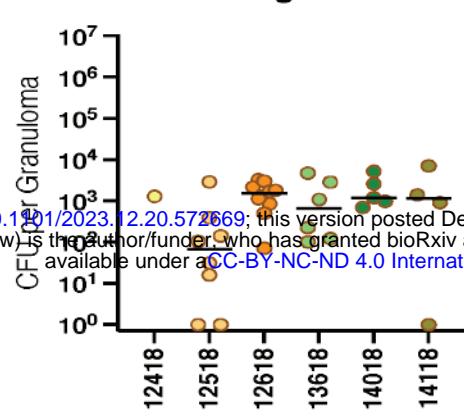
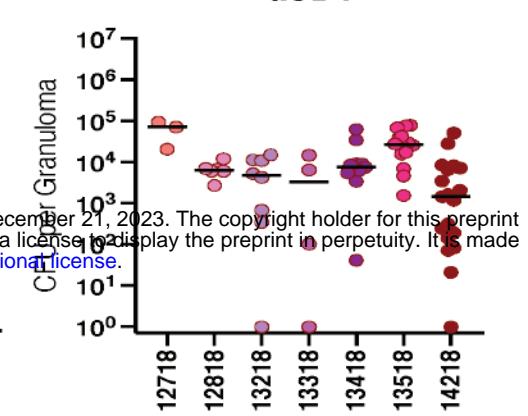
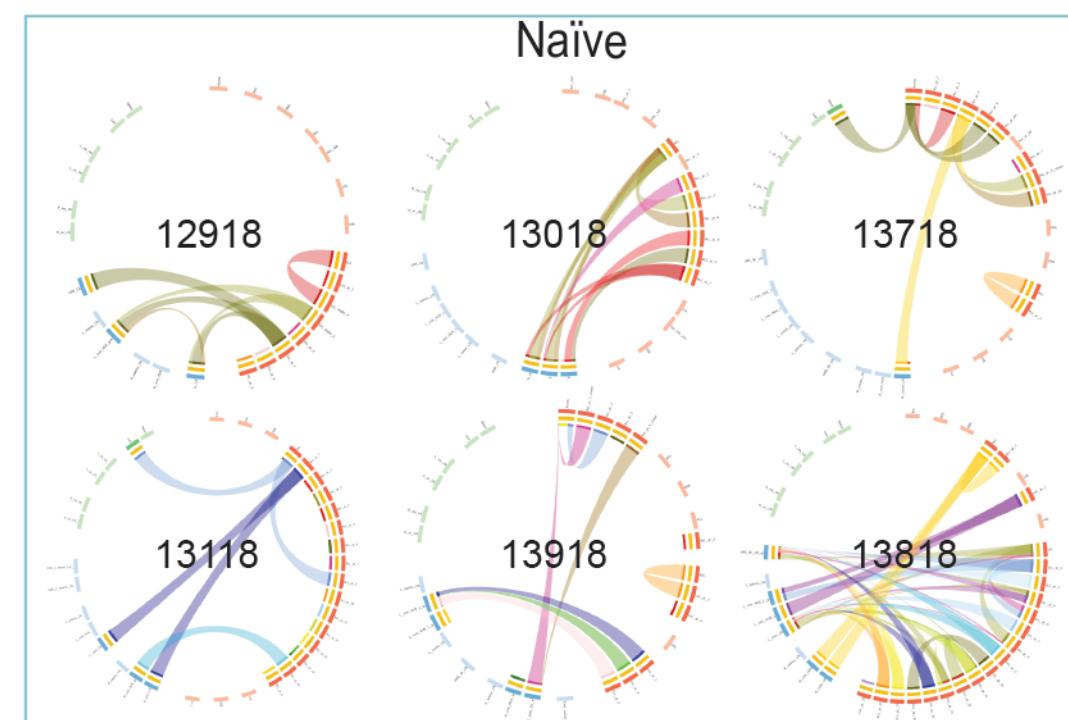
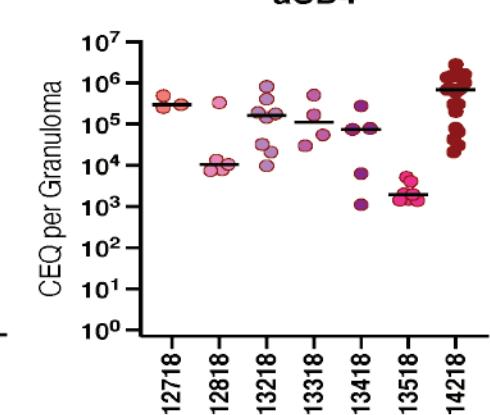
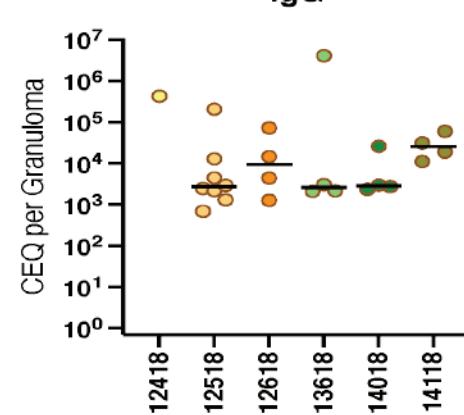
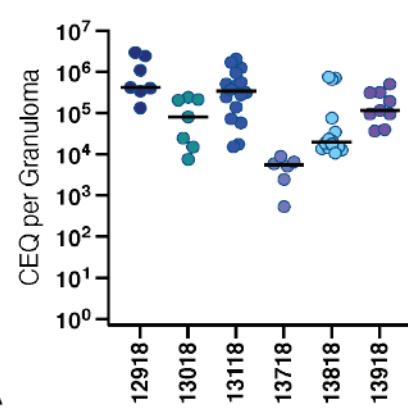
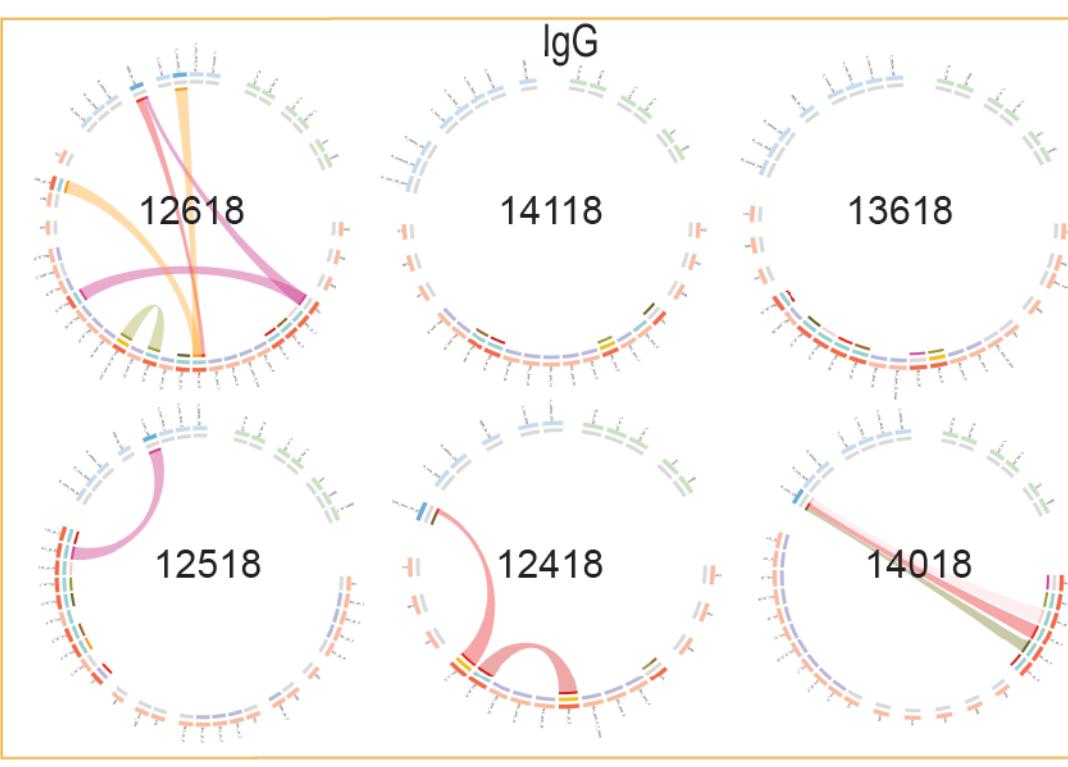
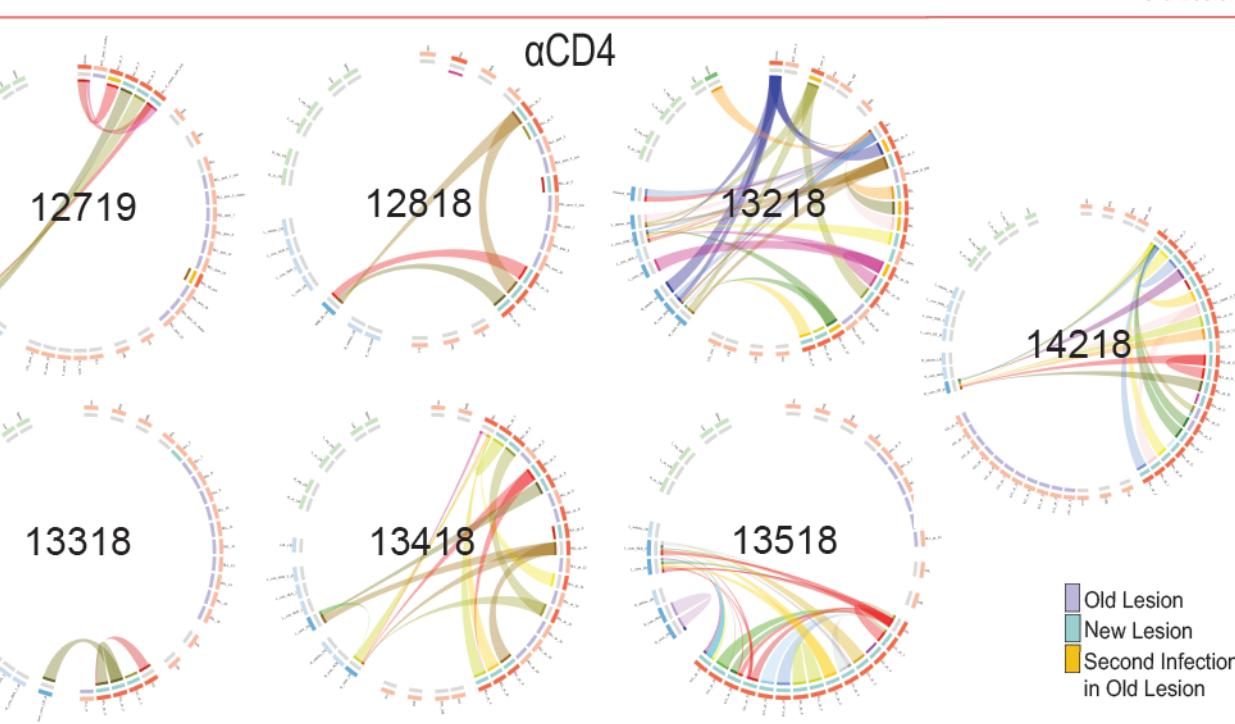






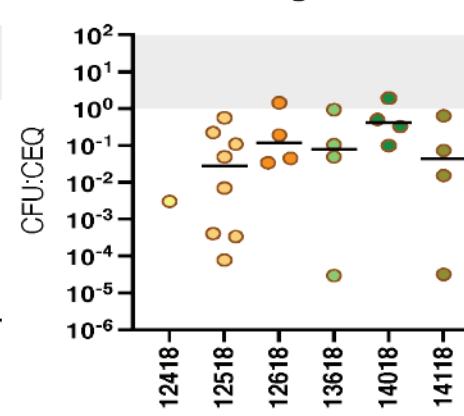
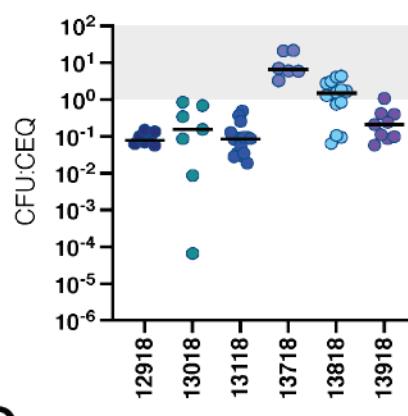
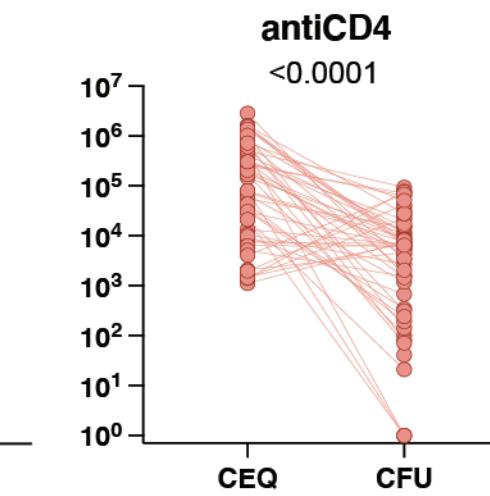
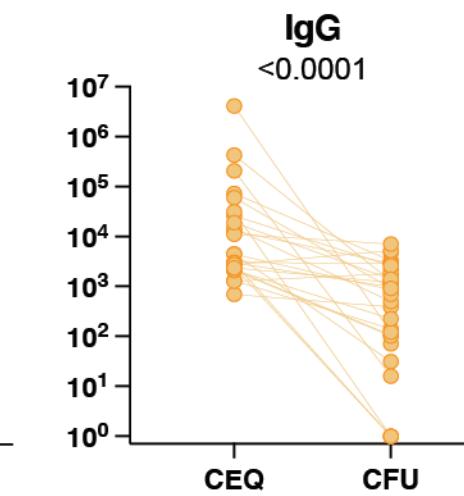
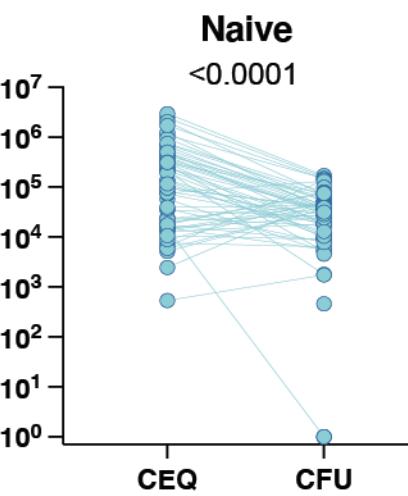





I

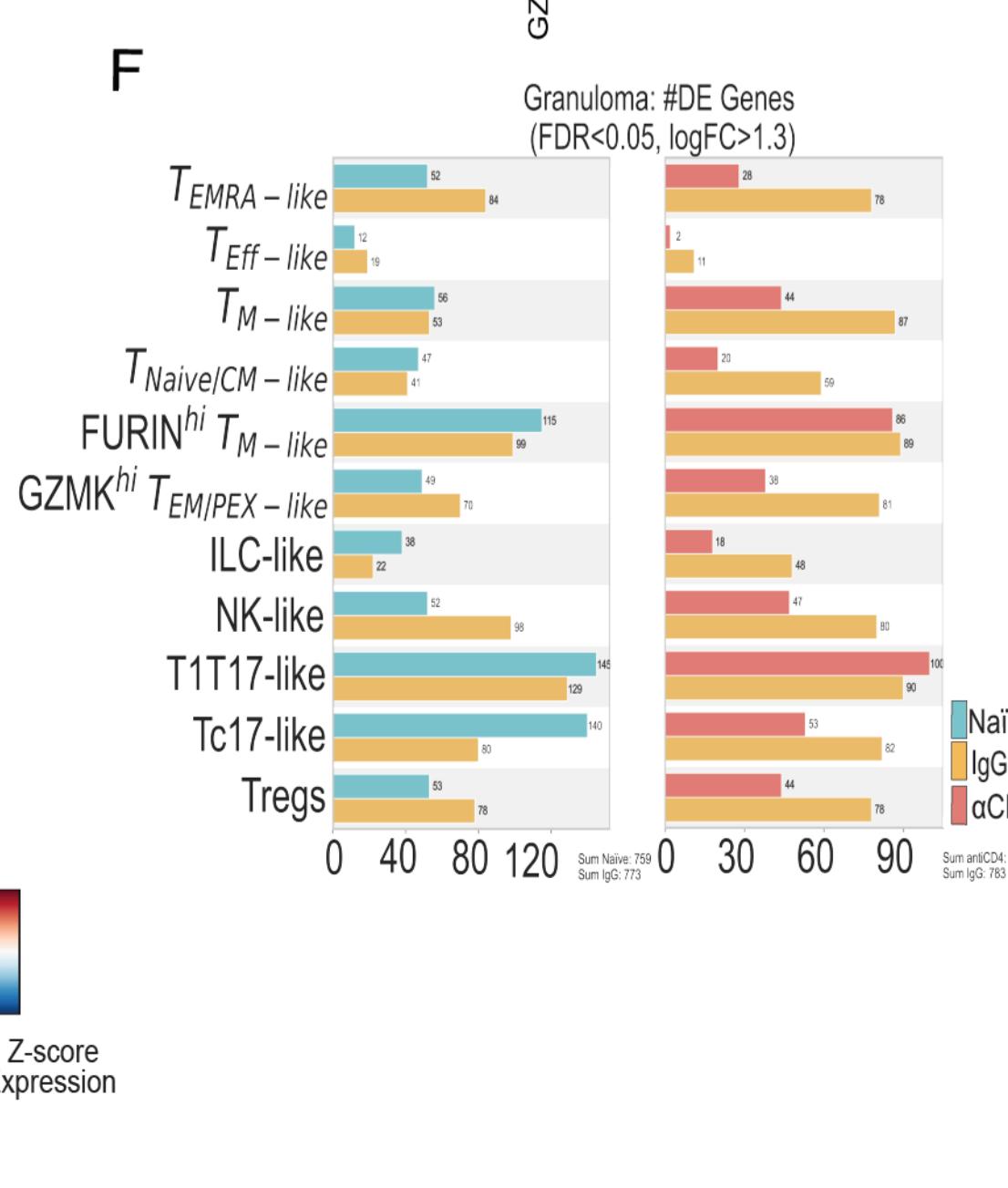
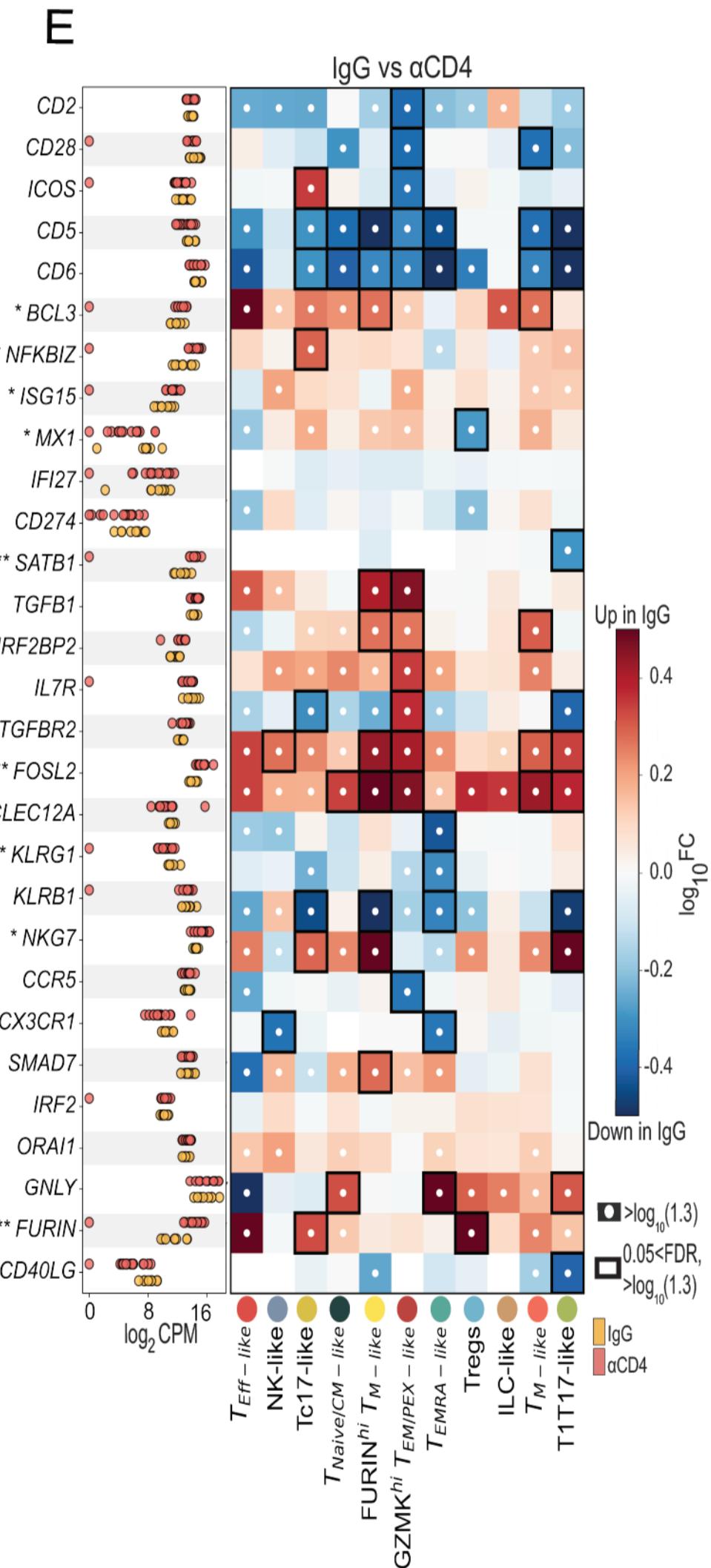
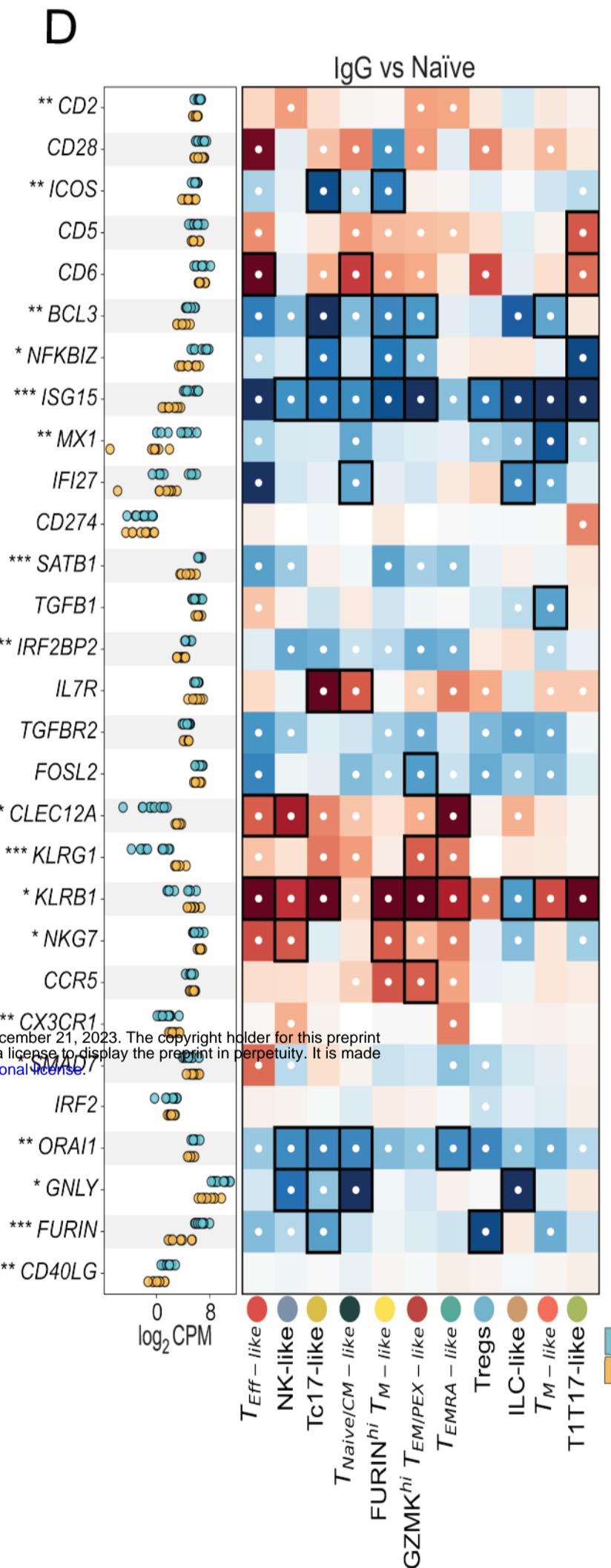
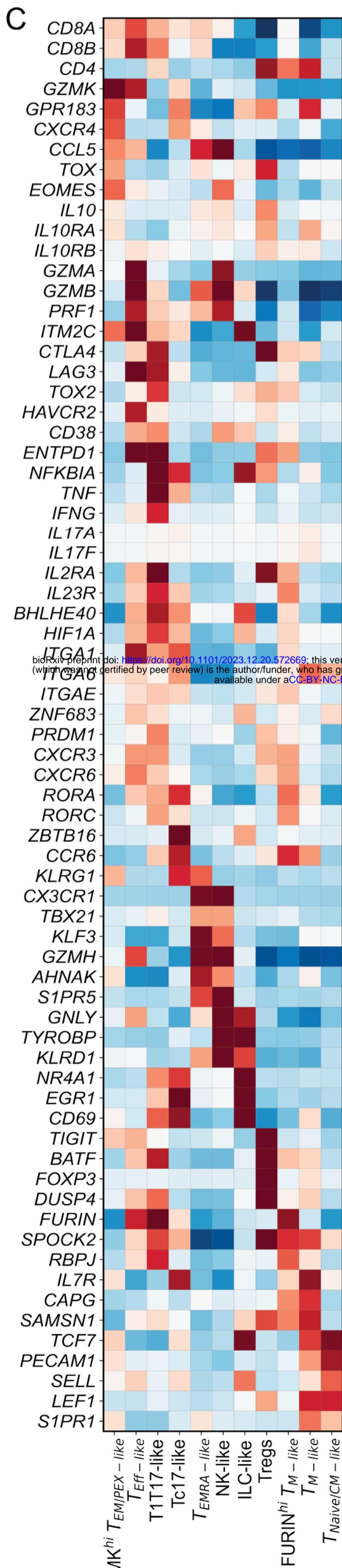
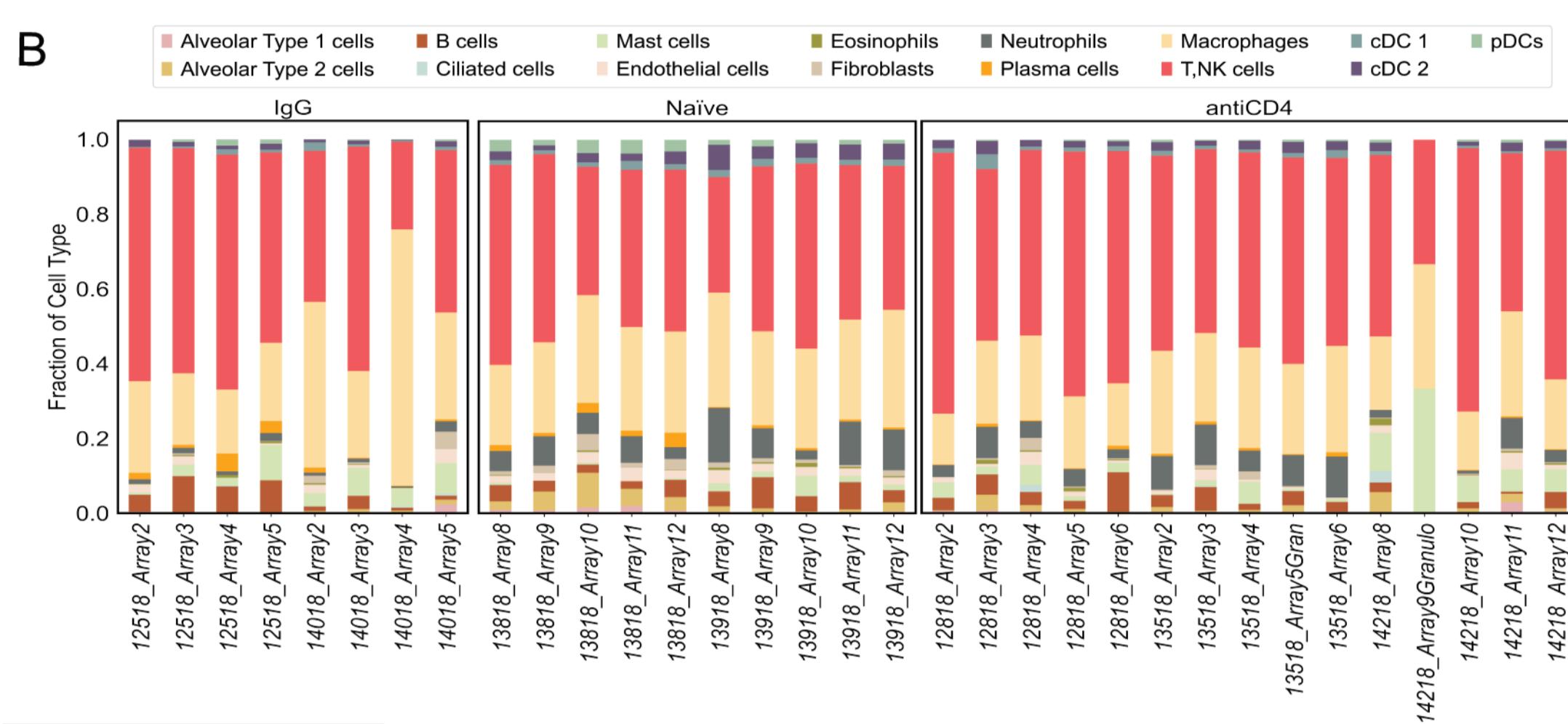
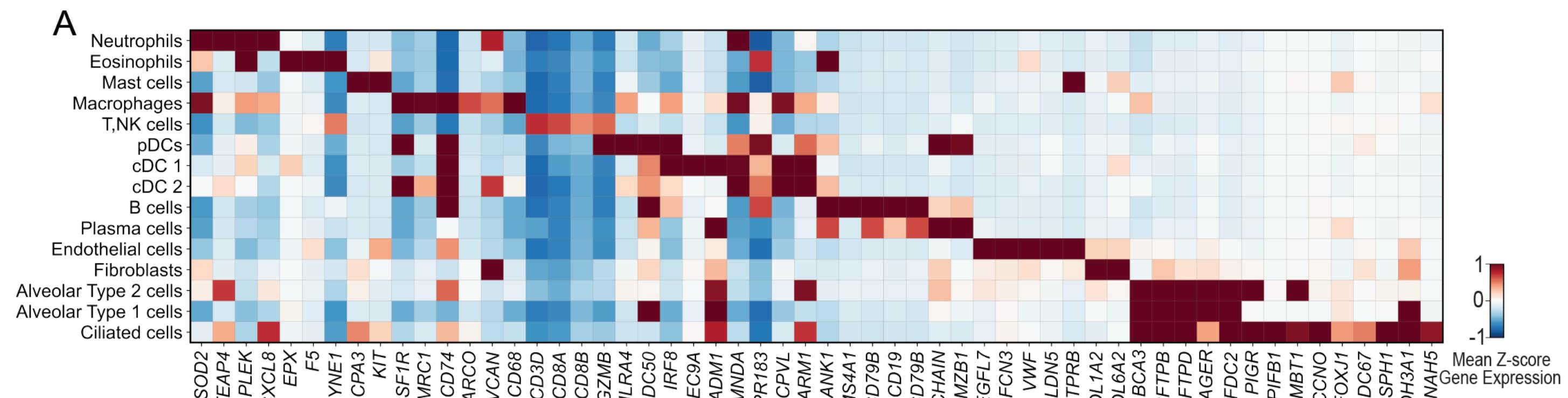

A**B****C****D**


A**B****C****D****E**

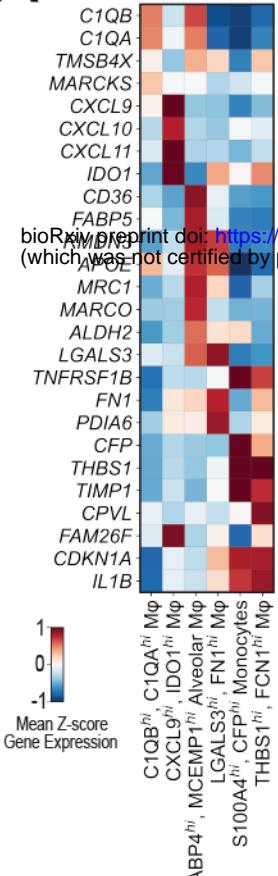


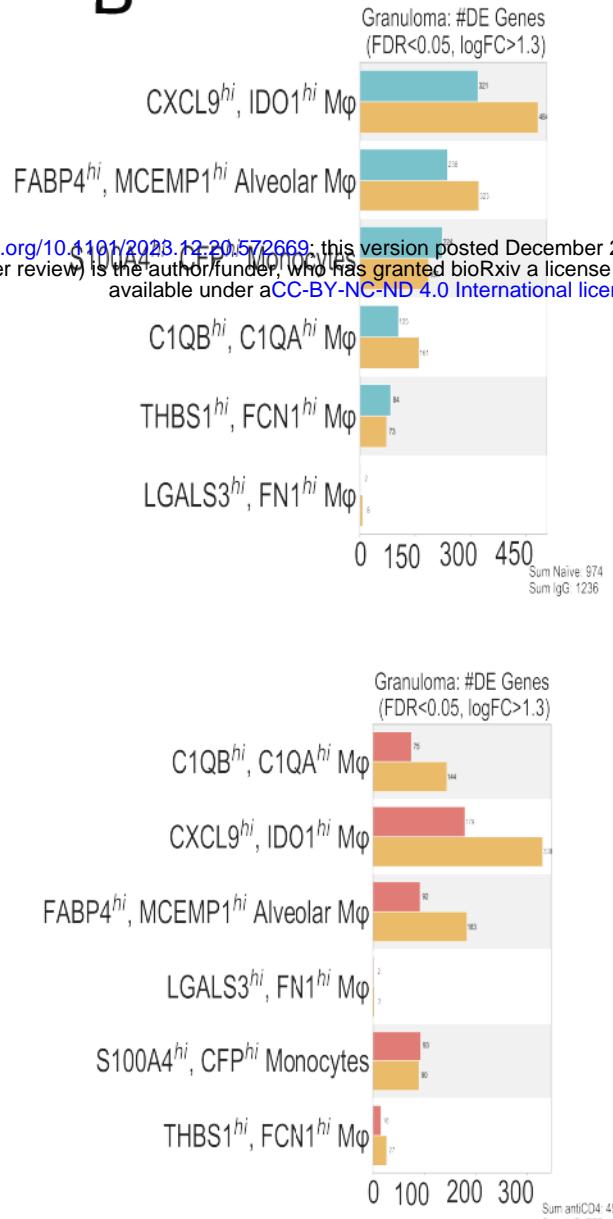










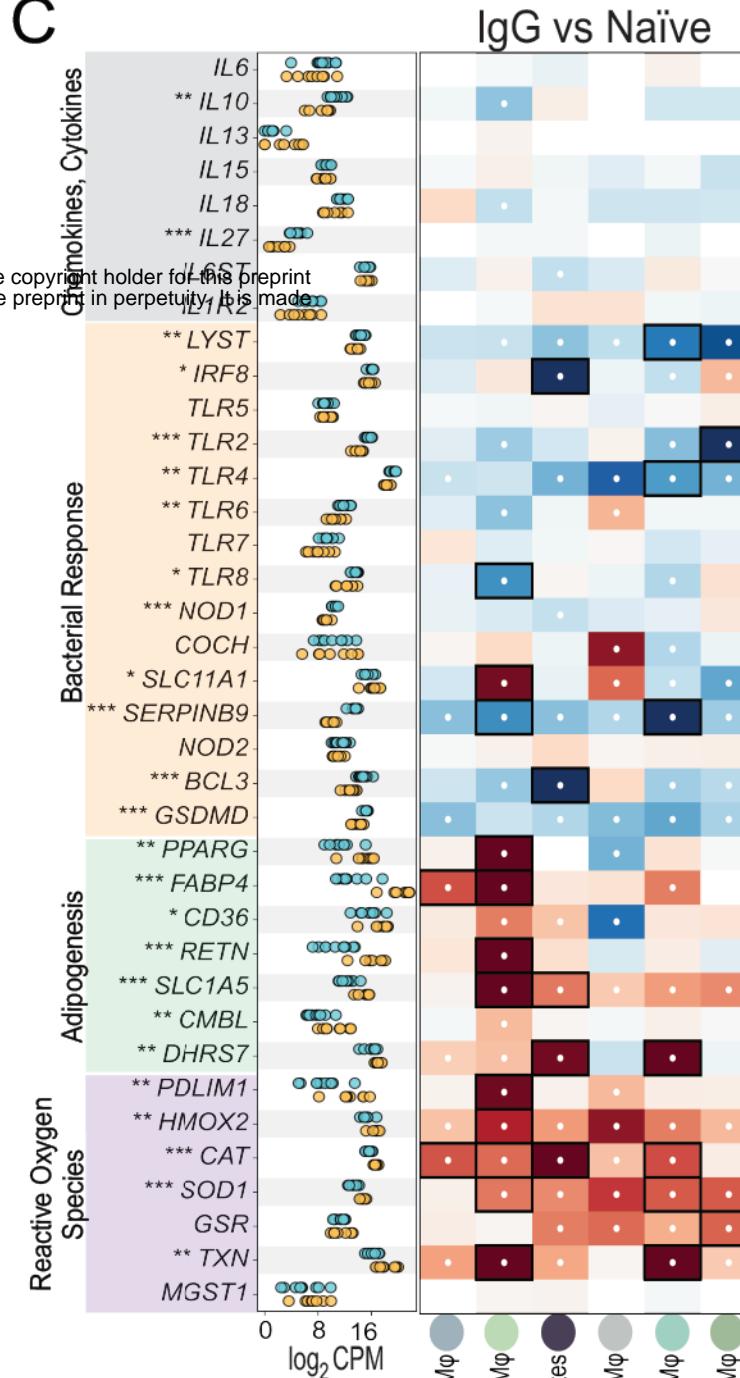





Cell-Cell Interactions (IgG vs Naïve)

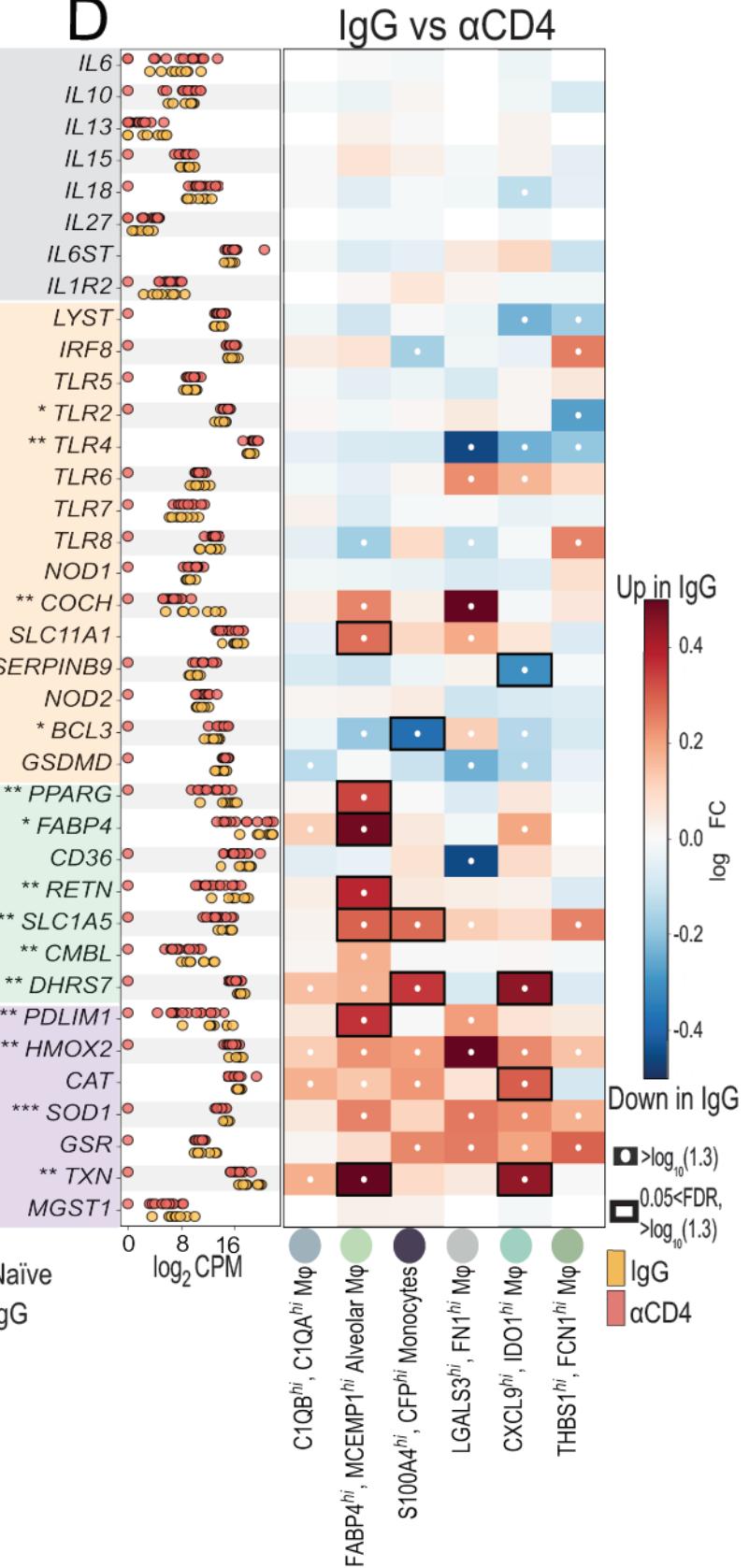







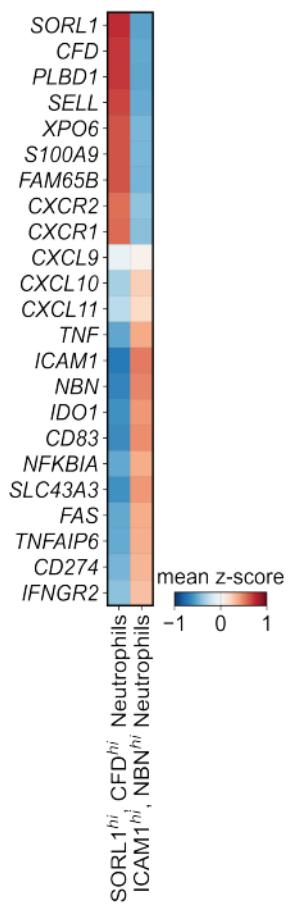
Cell-Cell Interactions (IgG vs α CD4)

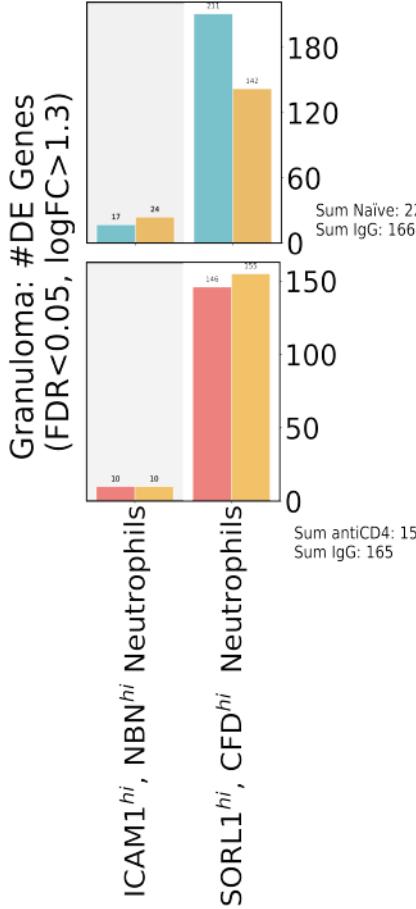


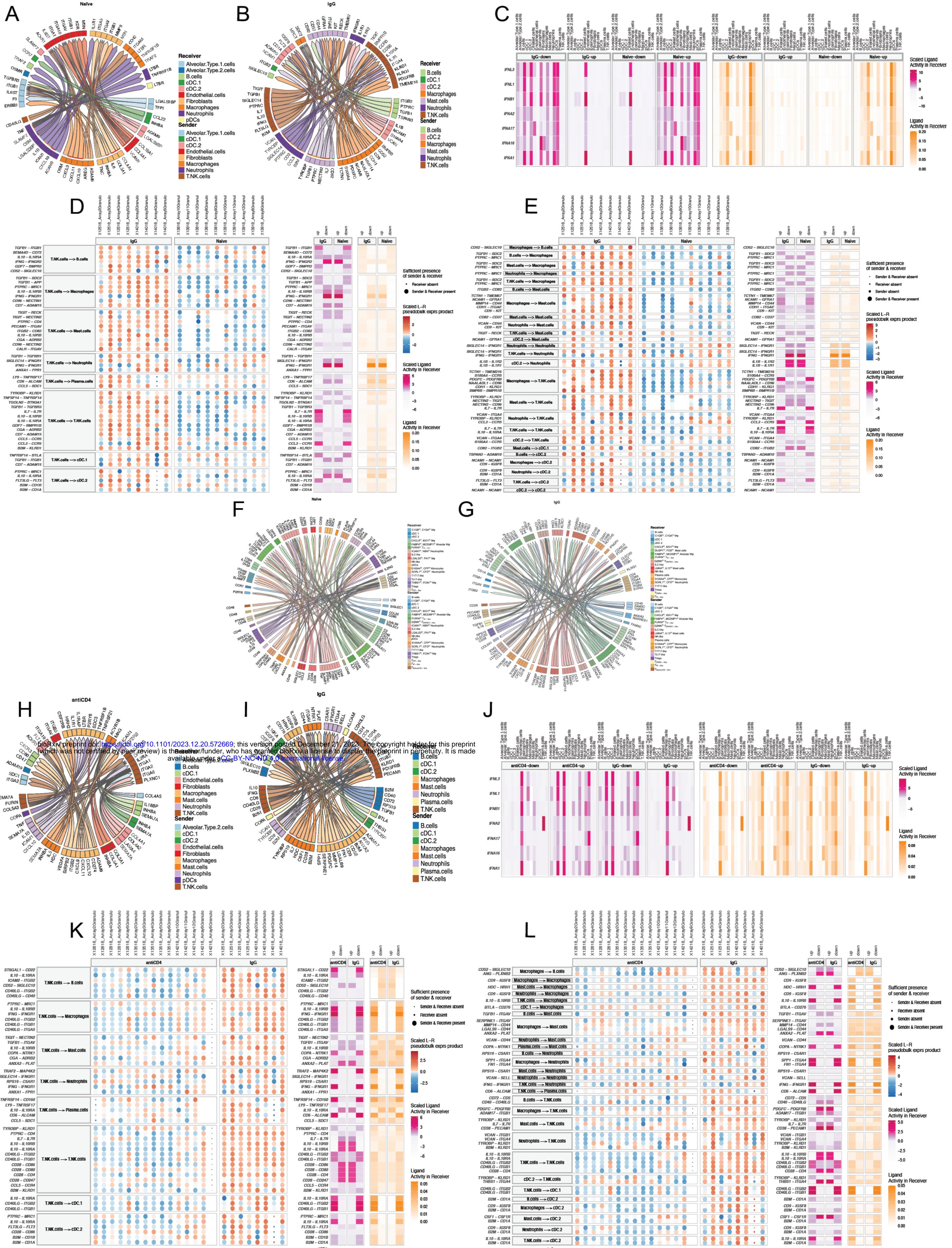

A**IgG****aCD4****E****B****F****G****C****D**


A


B


C


D



E

F

