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Abstract. Single cells are typically typed by clustering in reduced dimensional transcriptome
space. Here we introduce Stator, a novel method, workflow and app that reveals cell types, subtypes
and states without relying on local proximity of cells in gene expression space. Rather, Stator derives
higher-order gene expression dependencies from a sparse gene-by-cell expression matrix. From these
dependencies the method multiply labels the same single cell according to type, sub-type and state
(activation, differentiation or cell cycle sub-phase). By applying the method to data from mouse
embryonic brain, and human healthy or diseased liver, we show how Stator first recapitulates other
methods’ cell type labels, and then reveals combinatorial gene expression markers of cell type, state,
and disease at higher resolution. By allowing multiple state labels for single cells we reveal cell type
fates of embryonic progenitor cells and liver cancer states associated with patient survival.

1. Introduction

To attribute disease to cell type, and molecular features of cells to disease state, we need to define
and distinguish cell types, sub-types and states (Dann et al., 2023). The Human Cell Atlas (Regev
et al., 2017) has taken a step in this direction by seeking definition of all human cell types and their
molecular features, most often gene expression, within a multidimensional ‘cell space’ (Regev et al.,
2017). Typing of cells is easiest when their lineages are well separated, and hardest when they are
distinguished only by state (such as cell cycle phase, level of maturity, or response to stimulus) or
spatial location. A common approach, whose theory is however problematic (Chari and Pachter,
2023), defines a cell type as a collection of cells that group more closely in gene expression space
than other cells. This approach has yielded cell type definitions at relatively low-resolution, but
requires additional analyses to begin resolving states within continuous trajectories of cell-state
change (Ponting, 2019; Dann et al., 2022; Kotliar et al., 2019).

Cells adopt a continuum of states, representing cellular activities such as the cell cycle or re-
sponses to stimuli (Kotliar et al., 2019; Xia and Yanai, 2019). Labelling cells only by type thus
does not finely resolve their dynamic behaviour such as during development or disease (Morris,
2019). Cell states are currently predicted by Principal Component Analysis (PCA) (Shalek et al.,
2014; Steuerman et al., 2018), Independent Component Analysis (ICA) or Non-Negative Matrix
Factorization (NMF) (Puram et al., 2017; Saunders et al., 2018). However, components or factors
inferred by these algorithms may not faithfully or finely resolve cellular processes. States previously
predicted by NMF among cancer cells, for example, include non-specific descriptors, for example
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STATOR 2

‘stress’, ‘metal response’, and ‘basal’ (Barkley et al., 2022).

To identify cell (sub)types and states at high resolution, we introduce Stator, which eschews
cell clustering and instead defines states using the coordinated expression and non-expression of
genes in single cells. Higher resolution is achieved by taking advantage of expression interactions at
higher than pairwise order (3 ≤ n ≤ 7). Expression interactions that commonly co-occur in cells are
gathered together as a single state label. The method yields biologically compelling labels of type,
sub-type and state for cells in healthy and disease contexts without invoking concepts of expression
space or pseudotime. These states are neither necessarily proximal in gene expression space nor
necessarily categorical, thereby capturing the continuous nature of cell states and, in some cases,
previously defined types. As with all cell state or (sub)type markers, Stator labels do not necessarily
imply molecular mechanism. Rather, Stator reveals molecular and cellular heterogeneity and dy-
namics that would otherwise have been overlooked but can now be investigated experimentally. We
show how Stator predicts, in a data-driven manner, sub-phases of the cell cycle, the future neuronal
type and sub-type fate of mouse embryonic radial glial-like cell precursors, rare human endothelial
cell sub-types and cycling transformed hepatocytes whose gene expression signatures are prognostic
in liver cancer.

2. Results

Stator’s high-level workflow is illustrated in Fig. 1 with each step detailed in the Methods. Briefly,
after performing standard Quality Control (QC) (Luecken and Theis, 2019), including doublet re-
moval (Wolock et al., 2019), it initially restricts consideration to the most highly variable genes
(HVG; often N = 1,000) (Wolf et al., 2018) followed by binarisation of gene expression. Binari-
sation does not substantially alter conclusions when analysing sparse data (Bouland et al., 2023,
2021; Qiu, 2020). Input to Stator is a cell (M) by binary gene expression (G) matrix (Fig. 1A).
The model-free estimator of higher-order interactions (MFI) we introduced in (Beentjes and Kham-
seh, 2020) then estimates n-point interactions among n = 2, 3, . . . , 7 genes (Fig. 1B). Comparison
between this estimator of dependence and other estimators such as correlation and mutual infor-
mation is presented in Fig. S1 and Fig. S2 (Jansma, 2023a). In the next step (Fig. 1C), d-tuples
are extracted. These are gene tuples significantly driving these interactions (Methods). This step
is achieved by comparing expression of each tuple of genes in the MFI estimator to their expression
under the null distribution of independence. Next, a new matrix of cell (M)-by-binary d-tuple
(K) is created (Fig. 1D). Entries with 1 in the matrix indicate cells with that particular d-tuple
gene expression combination; entries with 0 do not contain that given gene expression combination.
Stator next performs hierarchical clustering of gene d-tuples based on these d-tuples’ co-occurrence
in single cells (Fig. 1E). Crucially, this clustering takes place in a restricted space of d-tuples. Con-
sequently, rather than a cell being placed at a single location in gene expression space, as is usual in
scRNA-seq analyses, Stator allows for cells to adopt multiple biological states (Fig. 1F). We show
below that a single cell can be thrice (or more) labelled (Fig. S3), for example as a radial glial-like
precursor cell, as an astrocyte progenitor and a cell in G2/M cell cycle phases. Once groups of
combinatorial gene signatures are identified, users can tune the modularity parameter that varies
the granularity at which Stator states are resolved. Stator’s memory and run time are discussed in
the Methods and Supplementary Material, 7.1, Fig.S4-S5.

Stator states are definable not just by d-tuple genes but also by other genes that are significantly
differentially expressed relative to all other or one other state (Fig. 1G): these are state-to-other
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Figure 1: Workflow of Stator. Steps (A-E) are fully data-driven; steps (F,G) require biological
interpretation. (A) A quality controlled, cell (M) by binarised gene expression (G) matrix is used
as input. (B) n-point model-free interactions (MFI) are estimated (n = 2, . . . , 7) from the graph
of conditional dependencies among the genes. Prior to this, the graph is inferred with an MCMC
graph-optimisation algorithm on an initial structure obtained by the Peter–Clark causal discovery
algorithm. The graph itself is not used to claim causation, rather to improve the statistical power
of detecting n-point interactions among genes with strong inter-dependencies. (C) Tuples that
are significantly deviating (default FDR < 0.05, log2FC=3) as compared to the null hypothesis of
independence (interaction = 0) are extracted. These gene combinations are deviating tuples, or
“d-tuples”. The significant tuple in this example is (G1, G2, G3) = (1, 1, 1) but d-tuples containing
zero-values representing unexpressed genes are also possible. (D) A binary cell (M)-by-d-tuple (K)
matrix is created. Entries with 1 indicate a cell containing a significant given tuple, in this example
cells with (G1, G2, G3) = (1, 1, 1). Entries with a zero represent cells not containing the d-tuple. The
matrix is created using all K significant interactions and corresponding d-tuples. (E) Hierarchical
clustering of d-tuples (rather than cells) is performed to group any d-tuples that co-occur unusually
often in single cells. The dendrogram is cut, by default, at a Dice-similarity that maximises the
modularity score (Newman, 2006), but is adjustable. This procedure results in groups of d-tuples
that can contain both the presence and absence of a gene’s expression. (F) At this stage, the user
annotates and interprets the groups of d-tuple genes to infer cell states. Unlike clustering of cells,
this procedure can result in cells that exist in multiple biological states simultaneously. [Continued]
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Figure 1: (G) A Shiny App in R enables the user to compare Stator states against external anno-
tations, such as other data-driven or expert annotations. Left: The horizontal box represents the
significant enrichment of several Stator states in cells with a specific externally annotated cell type,
demonstrating the existence of multiple cell subtypes that could be explored further. The vertical
box represents Stator states spanning multiple externally annotated cell types, representing non-
cell-type restricted biological states, e.g., cell-cycle phases. The user can also choose to compare
Stator state enrichment against biological conditions of an experiment. Stator’s Shiny App allows
further integrative analyses, such as differential expression of Stator states or Gene Ontology term
enrichment (Ashburner et al., 2000; Aleksander et al., 2023; Yu et al., 2012; Wu et al., 2021; Sayols,
2023).

DEGs (s2o-DEGs, adjusted p-value < 0.05, |Log2FC| > 0.25) and state-to-state differentially ex-
pressed genes (s2s-DEGs, adjusted p-value < 0.05, |Log2FC| > 0.25), respectively (Fig. 1G). For
this analysis, the unbinarised expression values of all genes (not only the 1,000 HVG) are consid-
ered using existing methods, e.g., Stuart et al. (2019). The app further permits Stator states to
be queried for their enrichment in previously-derived annotations, such as experimental condition
(healthy versus disease, different time points), or cell (sub)type or biological state labels.

To demonstrate Stator’s ability to identify cell types, subtypes and states we investigated three
published scRNA-seq data sets in normal and disease contexts, in embryological or adult tissue,
and in human or mouse. This first set contains astrocyte and neuron progenitors from mouse late
embryonic (E18) brain (10x Genomics, 2017), chosen because this is the developmental stage when
astrocytogenesis occurs and when cortical radial glial precursors (RPs) asymmetrically divide to
generate neurons in the developing mouse cortex (Akdemir et al., 2020; Rubenstein and Campbell,
2020). The second is scRNA-seq data from human liver cells from control and disease (cirrhosis)
donors (Ramachandran et al., 2019). Thirdly, we applied Stator to human liver cancer (hepatocel-
lular carcinoma) cells (Barkley et al., 2022). Biological validity of a Stator state is provided when
its d-tuple genes, s2o-DEGs and/or s2s-DEGs occur in a common cellular process and/or marker
gene set. We start by showing how Stator identifies cells present in portions of cell cycle phases
before then revealing cell subtypes and states that had hitherto not been inferred from these data
sets.

2.1. Stator identifies states in seemingly homogeneous cells. We first applied Stator to
11,950 E18 mouse brain cells (Methods 4.6). These highly express canonical markers (e.g., Slc1a3,
Mt3 and Mfge8 (Yuzwa et al., 2017)) of embryonic radial glial precursors (RPs), which later de-
velop into astrocytes or neurons via intermediate progenitor (IP) cells. Upon clustering, these cells
appear to be highly homogeneous without being separable into, for example, cells in cell cycle
phases. Specifically, they could not be discriminated, using hierarchical clustering with significance
quantification of clusters (Gao et al., 2022) on the original (unbinarised) expression space, beyond
two significantly different (p <0.05 Bonferroni corrected, Methods) and robust clusters of 6,485 and
5,465 cells, respectively (Fig. S6).

By contrast, Stator predicted 25 States (Fig. 2A; Supplementary Table 1; Supplementary Table
2), with the optimal Dice similarity of 0.95. The majority (75.7%; N = 9, 044) of cells occupy one
or more state, and 34.7% (4,151) of cells are unique to a single state (Fig. S3). Some states (e.g.,
#1 and #2) are localised in a PCA embedding, but most are not (e.g., #3 and #4). D-tuples in
7 states contained known cell cycle marker genes (Tirosh et al., 2016; Fischer et al., 2016): in the
largest (#11; 2,168 cells), nearly all d-tuples contained one or more known G1/S phase markers’
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Figure 2: Stator identifies cell states in seemingly homogeneous mouse embryo radial
glial cell-like precursor cells. (A) Stator identifies 25 signatures at maximum modularity.
[Continued]
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Figure 2: We have labelled 23 of 25 Stator states by performing differential gene expression analysis
between cells in one state and all other cells, followed by gene enrichment (GO/KEGG) analyses.
The significant differentially expressed genes were also compared with known gene markers of cell
types and states. In such cases, we required at least 3 marker genes to be highly expressed. Every
Stator state is highlighted in a PCA embedding of the unbinarised expression data, and annotated
with the total number of cells and d-tuples it is composed of, as well as the five most common
individual gene states across the states’ d-tuples. (B) Numbers of cells labelled with any one of 7
cell cycle states (# 3, 4, 6, 7, 8, 9 and 11); areas of circles are proportional to their number (see
legend). Filled circles indicate numbers of cells labelled with only one of these single cell cycle states.
Grey circles’ areas indicate numbers of cells labelled with two cell cycle states, those indicated by
lines. Numbers of significantly differentially expressed genes between cell cycle state pairs (i.e., s2s-
DEGs) are provided between the two states being compared; their colours refer to the state showing
higher expression. State pairs with ≤ 25 cells are not shown. Right: s2s-DEGs are indicated by
“>” or “<” symbols; for example, Hells mRNA expression is significantly higher in State 4 over
States 11, 6, 9, 8 and 7. Early/late G1/S or G2/M cell cycle phase labels (top) were assigned using
these mRNAs’ cell cycle phases known from high-throughput (top right; (Giotti et al., 2018)) and
targeted experiments (Ung mRNA in late G1/S (Slupphaug et al., 1991) and Cenpa in G2 (Shelby
et al., 1997)). (C) Heatmap of expression level (z-score) for genes up-regulated in state #18, versus
other states, for cells in state #18 and a random selection of cells from other groups (n = 1,500).
Z-scores are computed on a gene-by-gene basis by subtracting the mean and then dividing by the
standard deviation throughout this study. Genes were ordered by hierarchical clustering. Up-
regulated genes are significantly involved in Cilium assembly (GO:0060271; q = 3 × 10−11). (D)
Heatmap of expression level (z-score) for genes up-regulated in state #22, versus other states, for
cells in state #22 and a random selection of cells from other groups (n=500). Genes were ordered
by hierarchical clustering. Up-regulated genes reveal state of metaphase/anaphase. (E) Dot plot
illustrating differential expression of astrocytogenesis marker genes across all Stator states. The
size of the dots represents the -log10(Seurat p-val-adj) from differential expression testing between
a state and all other states. Colour intensity represents the log2(FC) of gene expression.

genes (33 of 36 d-tuples; 92%): 23 d-tuples contained either Gins2 or Gmnn or both (20, 14 or 11
d-tuples, respectively). For illustration, one d-tuple contains three known S-phase expressed genes
(Dnmt1, Hells Pcna; (Giotti et al., 2018)) with their co-ordinated expression (i.e., 1-values) in 258
cells, which corresponds to > 6.5-fold deviation from the null hypothesis of independent expression
(FDR < 0.01); 35 other d-tuples co-occur sufficiently with this d-tuple in these cells to be combined
into this single Stator state (#11).

To assess biological validity of these Stator predictions—whether they might indicate cell types,
subtypes or states—we undertook differential gene expression analysis (Supplementary Table 3,
Supplementary Table 4, Supplementary Table 5). The 7 states’ s2o-DEGs were predominantly cell
cycle markers, confirming them as cell cycle states. Many s2s-DEGs were also cell cycle marker
genes (Fig. 2B). Pairs of Stator states with s2s-DEGs are transcriptomically non-identical, even if
they show some transcriptomic similarity, as expected for states located along a continuum. Note
that pairs of states are concluded to be transcriptomically non-identical when they have significant
s2s-DEGs (beyond the Stator state-defining d-tuple genes), thus contrasting these two states’ gene
regulatory programs.

In the second largest prediction (state #9; 2,145 cells), all 34 d-tuples contained G2/M phase
marker genes (Tirosh et al., 2016; Giotti et al., 2018; Fischer et al., 2016): 23 contained Pbk, 17
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contained Cenpa, and 9 contained both. Stator predicted these states as G1/S (#11) and G2/M
phases (#9), respectively, by their cells’ transcriptomes differing by 429 and 249 s2s-DEGs Fig. 2B)
including for #11: G1/S phases’ marker genes (e.g. Tuba1b, Rpa2, Mcm4, Tipin, Mcm2, Hat1, Rfc3
and Rfc2 ); and, for #9: G2/M phases’ marker genes (e.g. H2afv, Arl6ip1, Stmn1, Ccdc34, Tacc3,
Racgap1, Hmgb3, Calm3, and Cenpe), all genes that did not contribute to d-tuple definition. As
expected, cells co-labelled with both states #9 and #11 preferentially expressed G1/S marker genes
(Pclaf, Mcm6, Gins2 and Gmnn, for example) or G2/M markers (Pbk, Cenpa, Ccnb2 and Cdca3,
for example) compared with cells only labelled with state #9 or with #11, respectively. Stator thus
not only identifies cells that are cycling, but further differentiates cells into G1/S versus G2/M cell
cycle phases. This justified labelling our method’s predictions as “Stator states”.

Applying the same approach (comparing Stator states’ expressed d-tuple genes and s2s-DEGs
with known cell cycle phase marker genes) identified five less-populated states (#3-4, #6-8) as
additional cell cycle states, each transcriptionally non-equivalent with respect to states #11 (G1/S-
phases) and/or #9 (G2/M-phases) and to each other, Fig. 2B. These five states’ s2s-DEGs again
included marker genes for G1/S phases (states #3-4) or G2/M phases (states #6-8) relative to #11
(G1/S) and/or #9 (G2/M). In particular, 2 G1/S cell cycle phases’ marker genes (Hells, Mcm5 )
are significantly more highly expressed in cells in state #4 over #11, and indeed in states #3, 6, 9,
7 and 8; similarly, Gins2 has higher expression in #11 than in #3, 6, 9 and 8, Fig. 2B.

Demanding that at least 3 s2o-DEGs are known markers of an annotation (Supplementary Tables
2-4), we labelled the other states as either Intermediate progenitor cells (IPC) (Ruan et al., 2021),
radial glial cell-like cells (RGC-like) (Zheng et al., 2022), or astrocyte progenitor cells (APC) (Liu
et al., 2022); or in the metaphase/anaphase of the cell cycle (significant enrichment of GO:0045841
(Ashburner et al., 2000), FDR< 0.05) or apoptosing or activated cells (expressing mitochondrial
genome genes or intermediate early genes or activation markers (Lacar et al., 2016), respectively);
or blood cell contaminants that highly expressed not just globin genes (Biagioli et al., 2009) but
also Alas2, an erythroid-specific gene (Fig. 2). More specifically, from differential expression of
s2s-DEGs Sparc and Sparcl1 (Supplementary Table 6), states #12 and #13 appear to label two
known astrocyte progenitor cell types (Liu et al., 2022), and state #21 is associated with higher
expression of truncated radial glial cell markers (Anxa2, Cryab, and Tmem47 (Yang et al., 2022))
relative to APC1 cells (state #12). We illustrate raw gene expression differences defining states
#18 (Cilia) and #22 (Metaphase/Anaphase) in Fig. 2C, D. In Fig. 2E, we show how expression of
the few established markers of precursor and intermediate cell states (Akdemir et al., 2020; Götz
et al., 2015) varies across the 25 Stator states.

Stator was also applied to a second subset (N = 11,950) of the E18 RPs, independent of the
first, replicating APC1, APC2, IPC, and RGC-like states, multiple G1/S and G2/M cell cycle
phases’ states, and activated and blood contamination states (Fig. S7, Supplementary Table 7,
Supplementary Table 8, Supplementary Table 9, Fig. S3B).

2.2. Cell cycle states in embryonic neurons and RPs. We next showed that Stator can also
identify cells in G1/S or G2/M phases within an admixture of two cell types, neurons and RPs
(n = 13,605 and 5,395), from a single E18 mouse brain (10x Genomics, 2017) (Methods). In all,
Stator predicted 110 states from these combined cells (Supplementary Table 10, Supplementary
Table 2), of which 57 were common to both neurons and RPs, 34 were highly-specific (≥ 99%)
to neurons, and 19 to RPs. The median number of predicted states for a cell was 3 (Fig. S3C).
Among 12 cell cycle Stator predictions were G1/S (#51), S/G2 (#55), early G2/M (#58) and late
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G2/M (#59) states (Fig. 3, Fig.S8, Supplementary Tables 10-12). RP cells in G1/S cell cycle phases
(States #51 and #55) had not previously been detected in this embryonic stage by cell cycle clas-
sification (Yuzwa et al., 2017). An additional state (#57) involving cells that were predominantly
labelled neurons (86%) showed multiple s2s-DEG markers for both newborn neurons (e.g., Dcx,
Tubb3, Gad2, Stmn2 ) and G2/M phases (e.g., Cenpa and Cdca3 ) and hence is likely a post-G0
phase neuron state (Supplementary Tables 10-12).

Eight G2/M states contained minus gene markers (i.e., those without expression evidence) that
are nonetheless known markers of G2/M phases: Cenpa for States #1 and #2, Cks2 #53 and #54,
Cenpf #56, Racgap1 #58, Ube2c #60, or Cdca8 #61. We found similar combinatorial markers for
the cell cycle in RPs, which included S-phase states with a lack of expression of the S-phase markers
Ung, Mcm3, Gins2. To investigate whether these states demarcate portions (sub-phases) of G2/M
cell cycle phases, we highlighted cells from an external data set along a cell cycle projection that
expressed all but one G2/M or S-phase cell cycle marker genes, specifically the minus gene marker
(Fig. 3, Fig. S8). This illustrated that cells in these Stator states differentially occupied parts of
the cell cycle continuum, consistent with cell cycle sub-phases. For example, Stator states differen-
tiated between early G2/M (d-tuples with an absence of Ube2c or Cenpa expression, i.e., Ube2c-,
or Cenpa-), early- or mid-G2/M (Cdc25c- or Racgap1-), or mid-to-late G2/M (Cks2- or Cdca8- or
Cenpf-) or early S-phase (Gins2-), mid-S-phase (Mcm3-), and late S-phase (Ung-) (Fig. 3B). Rather
than single genes, it is the combinatorial gene expression pattern that provides high resolution of cell
states. This is because populations of cells defined only by the expression of various combinations
of cell cycle marker genes, without requiring that the minus gene is unexpressed, are not localised
to a cell cycle (sub)-phase (Fig. S9).

Having successfully identified cell cycle sub-phases for RPs and for a combined RP and neu-
ron data set, we next used Stator to identify additional cell states within the combined data set.
Embryonic RPs were previously described as homogeneous at E17.5 (Yuzwa et al., 2017). By con-
trast, 47 Stator states could be labelled as RPs either because their d-tuple genes were embryonic
RP markers (Yuzwa et al., 2017) or else they significantly more highly expressed such genes over
all other states (Supplementary Tables 10-11, Supplementary Table 2). Of these 47 RP states,
21 were transcriptionally heterogeneous owing to their d-tuples including a minus gene marker,
such as Hes5 (states #26-27), Qk (#29), and Pax6 (#34), each of which is involved in neural pro-
genitor cell fate choice ((Imayoshi and Kageyama, 2014; Takeuchi et al., 2020; Ericson et al., 1997)).

These RP states were transcriptionally heterogeneous (Fig. S10, Supplementary Tables 13): (i)
13 RP states yielded large number of s2s-DEGs, compared with the most populous RP state (#44);
(ii) 3 states (#13, #36 and #39) showed significantly lower expression of 7 core RP genes, Mt3,
Phgdh, Slc1a3, Ddah1, Aldoc, Vim, and Fabp7 (Yuzwa et al., 2017) than state #44; (iii) 15 states
contained G2/M cell cycle phases’ marker genes among their s2s-DEGs relative to state #40; (iv)
and 15 states yielded large ribosomal subunit genes as s2s-DEGs with state #40, a transcriptional
signature of embryonic RP reactivation to become activated neural stem cells (Borrett et al., 2022;
Dulken et al., 2017).

Thirty-four RP states had neuronal marker genes among their s2s-DEGs with states #40 or #44
(Supplementary Tables 12-13), consistent with these embryonic RPs having a future neuronal fate.
Seventeen states co-express Ascl1 and Neurog2 (often with Gadd45g, a transcriptional target of
ASCL1), two genes that are expressed in more mature cells in a mutually-exclusive manner (Parras
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et al., 2002). These states thus likely label early neural progenitor cells that have yet to acquire
their GABAergic (Ascl1 ) or glutamatergic (Neurog2 ) neuronal fate in the forebrain.

2.3. Neuronal states. For our final analysis of embryonic mouse brain cells, we analysed two dis-
joint subsets each containing 19,000 mouse E18 neurons. As the modularity was maximised at Dice
similarity of 0.97 and 0.91, respectively, we applied a mean similarity of 0.94, resulting in 29 states
in each (Supplementary Tables 14-15), allowing us to compare the disjoint subsets at equivalent
resolution.

This number of Stator states was five-fold more than the 4 pairwise significantly distinct clusters
found by hierarchical clustering in expression space for the first disjoint dataset (Fig. S11). Sta-
tor successfully distinguished striatal medium spiny neurons (MSN) from interneurons by known
marker genes’ expression (e.g., Ngef, Nrxn1, Pou3f1, Tshz2 (Arlotta et al., 2008; Fuccillo et al.,
2015; Su-Feher et al., 2022), versus Arx, Epha5, Lhx6, Prox1 (Poirier et al., 2004; Li et al., 2022;
Miyoshi et al., 2015), Fig. 4A, Supplementary Table 2, Supplementary Tables 16-17). It further
separated MSNs into their two known sub-types, Direct or Indirect pathway cells (Cui et al., 2013;
Cirnaru et al., 2021) via markers: Direct: Ebf1, Foxp1, Isl1, Nrxn1, Zfhx3, and Zfp503 (Li et al.,
2022; Fuccillo et al., 2015; Zhang et al., 2019; Shang et al., 2022; Precious et al., 2016) and Indirect:
Adora2, Ebf1, Gucy1a3 and Gucy1b3 (Li et al., 2022) (Fig. 4B), and separated interneurons into
Htr3a and/or Npy expressing subtypes (Tremblay et al., 2016) (Supplementary Table 2, Supple-
mentary Tables 16-17). Three RP-like states were additionally detected (Fig. 4C). States could be
further labelled as early or late via markers of neuronal maturation (Rubenstein and Campbell,
2020), specifically the temporal sequence of expression of Dlx2, Dlx1, Dlx6os1 and Dlx6 genes, and
the later expression of MSN or interneuron markers (Fig. 4D, (Liu et al., 1997)).

Increasing the resolution of Stator state identification can resolve multiple constituent biological
states. At a Dice similarity of 0.94, Stator’s state # 26 labelled neural precursor cells, as evidenced
by high expression of Zeb2, Mdk, Ctnna1, Arx, and Prox1. Nevertheless, this state was found to
be a composite of three component sub-states largely following the branching order of co-occurring
d-tuples (see Fig. 1 D and E; Methods). From their d-tuple genes, these sub-states are readily dis-
tinguished as labelling G2/M cell cycle phases, neural stem cells and newborn neuronal precursors,
respectively (Fig.S12).

Stator states representing the same neuronal subtypes (e.g., interneurons, direct or indirect MSNs
and late born neurons) for the second disjoint dataset are shown in (Fig. S13, Supplementary Tables
18-19).

2.4. Stator resolves cell (sub)types in human liver disease at higher resolution. To
demonstrate application of Stator in a human disease context, we analysed 20,000 cells from pa-
tients with uninjured or cirrhotic livers. These cells had previously been annotated as one of 12
types (Ramachandran et al., 2019). Stator identified 53 states (Supplementary Table 20), 28 that
were differentially enriched between cirrhotic and uninjured liver sample cells (Fig. 5A). Enrich-
ment of these states showed that Stator retrieved previous cell type annotations, yet also found
multiple states for each previous annotation (Fig. 5B). For example, cells previously annotated as
being endothelial are uniquely enriched in 7 states (#4-6, #23, #32-34; green box in Fig. 5B). To
cross-reference the same states in panels A and B we use an alluvial plot. Rather than calculating
enrichments for disease status (panel A) or cell type annotations (panel B) separately, Stator also
can perform an enrichment analysis for cells with Stator state labels with both previous cell type
and disease/uninjured status annotations (panel C). This shows, for example, that whereas state
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Figure 3: Stator identifies states present in two different cell types. (A) Stator states
labelling both developmental neurons and radial glial cell precursors (RPs) from an E18 mouse
brain data set (10x Genomics, 2017). Stator identifies 12 states that include one or more cell cycle
phase gene markers as d-tuple genes, and that delocalise throughout expression space. State #51’s
d-tuple genes (Lig1+, Mcm3+, Smc2+) encode proteins active in S phase, while the remaining 11
express known markers of G2/M phase (Riba et al., 2022; Tirosh et al., 2016; Giotti et al., 2018).
It is notable that many G2/M states are defined by an absence of expression of d-tuple genes that
are nevertheless known G2/M marker genes (Cenpa, Cks2, Cenpf, Racgap1, Cdc25c, Ube2c and
Cdca8). (B) Left: Externally-derived cell cycle annotations of a mouse brain data set sourced
from five different experiments (Schmitz et al., 2022), with cells from the 10X Genomics E18 mouse
data set GSE93421 removed, mostly separate along principal components 1 and 4. Right: Cells
and embedding as left, but marked by the expression of all but one of the marker genes. Different
intensities of blue represent ‘densities’ of cells in the 2D embedding. Note that since embeddings
can distort distances, densities cannot be directly interpreted so no legend or axis is shown. Each
state contains expression of known cell cycle markers as well as a single non-expressed cell cycle
marker gene (indicated above each box), predicted to be a combinatorial marker by Stator in RPs
and/or neurons. These gene combinations thus demarcate cell cycle sub-phases, and a suggested
ordering is shown here.
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Figure 4: Stator identified states for developmental neurons. (A) Stator states for 19,000
E18 mouse cells, previously annotated as neurons. States were labelled by matching s2s- and s2o-
DEGs with literature gene markers, as before (Fig. 2). [Continued]
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Figure 4: Abbreviations: IC, intercalated cells of amygdala (Erbb4+, Tshz1+, Foxp2+, Pbx3+
(Peters et al., 2023; Kuerbitz et al., 2018); IN, interneurons; Late, late born neurons; MNP, mi-
gratory neuronal precursors (Vax1+, Shtn1+, Pcdh9+, Tiam2+ (Coré et al., 2020; Sapir et al.,
2013; Asahina et al., 2012; Kawauchi et al., 2003); MSN, medium spiny neurons; NPC, neural pre-
cursor cells; RP, radial glial cell precursors. (B) Heatmap of expression level (z-score) for genes
up-regulated in state #13: Mid Direct MSN, versus other states, for cells in state #13 and a random
selection of n = 500 cells from other groups. (C) Heatmap of expression level (z-score) for genes
up-regulated in state #24, versus other states, for cells in state #24 and a random selection of
n = 500 cells from other groups. (D) Dot plot illustrating differential expression of neurogenesis
marker genes (Rubenstein and Campbell, 2020) across all Stator states. The size of the dots repre-
sents the -log10(Seurat p-val-adj) from differential expression testing between a state and all other
states. Colour intensity represents the log2(FC) of gene expression.

#4 is enriched among cirrhotic sample cells (Fig. 5A) and among annotated endothelial cells (ECs)
(Fig. 5B), it is enriched not just in cirrhotic but also uninjured ECs (Fig. 5C).

None of the 7 EC-labelled Stator states co-occur in 5 or more cells (Fig. 5D) suggesting that each of
the 7 represents a distinctive EC subtype. Cross-referencing these states’ s2s-DEGs (Supplementary
Table 21) to literature EC gene markers (Przysinda et al., 2020; Trimm and Red-Horse, 2023)
predicted state #5 to be PDPN, FOXC2, and PROX2 -expressing lymphatic-specific ECs; state #6
to be a subpopulation expressing PLAT, whose protein level is increased in patients with liver disease
(Leiper et al., 1994); states #23, #32 and #34 to be liver-specific liver sinusoidal ECs (LSECs); and,
state #33 to be a WNT2, COL3A1, COL6A2 and ACKR1 -expressing fibrotic niche subpopulation
whose cirrhosis-associated expansion was discussed in (Ramachandran et al., 2019) (Fig. 5E). Using
s2o-DEG analysis (Supplementary Table 22), the most populous state (#4) appears to label ECs
that are not tissue or organ specific. Differential expression of these EC subtype marker genes across
these ECs is illustrated in Fig. 5F. In summary, Stator has labelled cell subtypes from among a
previously homogeneous set of ECs that were scarce in this dataset (<2.5%), demonstrating how
rare subtypes can be discerned even within an under-represented cell type.

2.5. Stator recapitulates cancer cell types and NMF state annotations, yet at higher
resolution. Finally, we applied Stator to a cancer data set, defining cancer cell states that were then
compared against two sets of annotations defined previously by (i) clustering (Stuart et al., 2019)
and comparison against reference datasets using SingleR (Aran et al., 2019), or (ii) non-smooth,
non-negative matrix factorization (nsNMF; (Pascual-Montano et al., 2006)). For this analysis, 51
Stator states were predicted from 14,698 cells derived from 4 patients’ hepatocellular carcinoma
(HCC) samples (Barkley et al., 2022) (Supplementary Table 23). These states were enriched for 11
of 12 cell types previously annotated using clustering and SingleR (Barkley et al., 2022) (Fig. 6A);
the exception, epithelial cells, were low in number (n = 21). As before, Stator resolved single cell
types into multiple subtypes, for example a single B-cell annotation into 12 sub-states. Myeloid
lineage (macrophages, dendritic cells [DC] and neutrophils) states and lymphoid lineage (T cells,
natural killer [NK] cells and B cells) states were distinct, highlighted in Fig. 6A by blue and red
boxes respectively. Stator states were often easily annotated by their d-tuple genes. For exam-
ple, state #43’s d-tuple genes contained CD4 and other T cell markers; the myeloid lineage state
#32 [PLBD1+, SPI1+, LYZ+, MS4A6A+] is in part defined by MS4A6A, a known marker for
neutrophils, macrophage and dendritic cells (Franzén et al., 2019); and the lymphoid lineage state
#48 [IGHG4+, IGKC+, FGFBP2+, IGHG1+] is largely defined by immunoglobulin genes, known
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Figure 5: Stator states in cirrhotic and healthy human liver cells previously annotated
by Ramachandran et al. (2019). (A) States (columns) enriched in single cells from cirrhotic
or healthy liver samples (rows). (B) Heatmap showing states significantly enriched in these cells’
previous annotations (indicated by asterisks). Seven states (#4, #5, #6, #23, #32, #33, and #34)
are significantly enriched only in the endothelial cell (EC) annotation (green box). (C) States sig-
nificantly enriched in both cirrhotic/uninjured status and a previous cell type annotation (indicated
by asterisks). (D) Virtually all cells with previous EC annotations are labelled with just one of the 7
EC specific cell states. These states were not detected by the original study (Ramachandran et al.,
2019) or differential abundance analysis by Milo (Dann et al., 2022). [Continued]
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Figure 5: (E) Numbers of cells labelled with EC states (#4, #5, #6, #23, #32, #33 and #34);
areas of circles are proportional to their number (see panel legend). For states #5 to #34, numbers
of significantly differentially expressed genes between cell cycle state pairs (i.e., s2s-DEGs) are
indicated relative to state #4; colours refer to the state showing higher expression. Coloured
numbers indicate significantly differentially expressed genes in cells labelled with state #4 compared
to cells in any other EC state (i.e., s2o-DEGs); numbers of significantly differentially expressed genes
between state #4 and all other EC states (increased and decreased expression) are shown in grey.
Colour coded marker genes used to annotate cell states are provided adjacent to each state’s circle;
a red box contains 3 genes whose expression is decreased in state #4 relative to the other EC states.
(F) Heatmap of expression levels (z-scores) for marker genes used to annotate each EC state. Genes
are grouped and colour coded by their associated annotation from the literature (Supplementary
Table 2). The five categories of gene markers are colour coded as indicated in the panel legend.
Cells (columns) are enclosed within a coloured box designating the EC state labelling that cell.

markers for terminally differentiated B cells, i.e., plasma cells (MacParland et al., 2018).

The most populous state, #45, labels C1Q+ macrophages, an immunosuppressive population (Revel
et al., 2022), annotated because 24 of 25 gene markers for these macrophages (cluster 10 of (Sharma
et al., 2020)) are s2s-DEGs relative to state #40 (Supplementary Table 24). These are tissue-
resident, rather than tumour-associated, C1Q+ macrophages because state #45 cells significantly
more highly express FOLR2, rather than TREM2, relative to state #40 (Revel et al., 2022).

Twelve Stator states were enriched among cells labelled previously as hepatocytes (Barkley et al.,
2022). These states labelled largely distinct sets of cells (Fig. 6B) that are transcriptionally distin-
guishable, as evidenced for example by large numbers of s2s-DEGs (Fig. 6C, D). A large minority
(8%-23%) of these states’ s2s-DEGs are not expressed in normal hepatocytes (Methods), thereby
reflecting their transformed status. The 12 transformed hepatocyte states showed considerable cell
cycle gene expression heterogeneity. For example, State #7 expressed 6 cell cycle genes (BIRC5,
CCNA2, CCNB2, CDK1, TOP2A and UBE2C ) significantly more highly than the most populous
State #37 (Supplementary Table 25). Other states (#17, 18, 19, 38) showed lower expression of
these genes. These 6 cell cycle genes are rarely expressed in normal liver samples (Methods) and
each gene’s high expression is known to be prognostic of worse outcome in liver cancer (Uhlén et al.,
2017).

In the previously published analysis, these HCC cells were annotated both by type and state
(Barkley et al., 2022). To investigate whether Stator could resolve these cells more finely, we anal-
ysed only those with both ‘Hepatocytes’ and ‘Cycle’ annotations, finding them to be enriched in 7
Stator states, most frequently in #37 (39% of 1,650 cells) and/or #7 (36%) (Fig. S14). Despite their
previous identical annotation, cells in these 2 Stator states are transcriptionally divergent, with 78
s2s-DEGs separating them (Supplementary Table 26). State #37 more highly expressed transcripts
that are abundant in normal hepatocytes (34 of 34 s2s-DEGs e.g., AHSG, PLA2G2A, CYP2E1 and
HPD) whereas state #7 more highly expressed genes that are rarely or never expressed in normal
hepatocytes (13 of 44 s2s-DEGs, e.g., TFF1, TFF2, TFF3 and NDUFA4L2 ). This suggests that
Stator state #7 cells are in a more advanced state of cellular transformation than #37 cells.

To test this hypothesis we used TCGA liver cancer prognosis data (Uhlén et al., 2017, 2015),
plotting s2s-DEGs’ mean expression fold-change (state #7 over #37, this study; Fig. 6E, X-axis)
against the 5-year percentage survival rate (Y-axis) for TCGA patients whose expression of this
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gene is above a pre-determined threshold (Y-axis, (Uhlén et al., 2017)). This showed that genes
that are more highly expressed in state #7 over #37 tend to be those genes that are more highly
expressed, at diagnosis, in liver cancer samples of patients with lower survival rates. Conversely,
genes that are more highly expressed in state #37 over #7 tend to be genes that are more highly
expressed in liver samples of patients with higher survival rates. In summary, Stator has revealed
previously unappreciated HCC cancer states whose differential expression involves genes that are
predictive of patient survival.
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Figure 6: Stator identifies HCC cell types and states at higher resolution than clustering
followed by SingleR (A) and NMF followed by expert annotation (D) respectively.
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Figure 6: (A) Heatmap showing significant enrichment (asterisks) among 51 Stator states with 12
cell type annotations previously defined by clustering followed by SingleR annotation (Barkley et al.,
2022; Aran et al., 2019; Stuart et al., 2019). Stator identified multiple subpopulations for previously
identified single cell types; for example, 11 Stator states occur unusually often only among cells
previously annotated as hepatocytes. (B) Since Stator allows for cells to exist in multiple states,
hepatocyte states can co-label single cells. Nevertheless, in the main these cells are only labelled
with single Stator states. (C) Numbers of s2s-DEGs and their mean log2-fold change between Stator
states enriched in cells previously annotated as hepatocytes. The 12 hepatocyte-enriched states are
transcriptionally distinguishable. (D) Statistically significant enrichment (notified by asterisks) of
Stator states (Y-axis) in cells previously annotated (Barkley et al., 2022; Gaujoux and Seoighe, 2010;
Puram et al., 2017) into 16 NMF-defined states (X-axis). (E) Two Stator states are differentiated
by genes that are predictive of liver cancer patient survival. Mean s2s-DEG expression fold-change
(X-axis) for state #7 over #37 plotted against the percentage of 5-year survival (Y-axis) for TCGA
patients whose expression of this gene lies above a pre-determined threshold (Uhlén et al., 2017).
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3. Discussion

In flow or mass cytometry, cells are typed from heterogeneous samples by the presence or absence
of one or more labelled antibodies, all chosen a priori. Single cell transcriptomics types cells in a
more data-driven manner, first clustering cells’ transcriptomes and then identifying genes that are
differentially expressed between clusters. Nevertheless, this approach: (i) types cells using only
gene expression and not non-expression, (ii) when combined with projection to a low-dimensional
2D space for visualisation, suffers from significant distortions (Chari and Pachter, 2023), and (iii)
relies on localisation of cells in expression space. The latter presents an additional problem because
cells need then to be given multiple labels, for example type, sub-type, cell cycle phase, maturity
and activity (Kotliar et al., 2019), which, however, need not be localised in expression space.

We have shown how Stator provides multiple type and state labels for heterogeneous samples
of single cells by identifying combinations of genes that are co-ordinately expressed and/or non-
expressed in single cells. These states are provably different from correlations Fig. S1. Rather than
supplying a single cell type marker, which can mislead as when Aldh1l1 or Gfap only is used for
astrocyte identification (Akdemir et al., 2020), and rather than requiring a hierarchy of cell types
(Zeisel et al., 2018), Stator differentiates cells by primary (cell type), secondary (sub-type) and
tertiary (cell state, activity, cell cycle phase, or maturity) markers. States are treated as entities
drawn from a continuum, which more accurately reflects the progression from radial precursor cells
to neurons, for example, due to processes of activation and differentiation (Dulken et al., 2017;
Yuzwa et al., 2017).

Gao et al. (2022) recently solved the issue of selective inference bias, or double-dipping, specifi-
cally when cells are clustered by optimising their transcriptional differences before calculating their
transcriptional differences. Each of these two operations occurs on gene expression space. Stator
clusters not cells, but rather d-tuple gene signatures, prior to s2s-DEG analysis. Even if present,
Stator will mitigate selective inference, at least in part, by differences not being maximised on the
same space, and by demanding significant s2s-DEGs to not just be d-tuple genes, when states are
declared to be transcriptomically non-identical. The Gao et al. method is also not immediately ap-
plicable here due to its reliance on clustering algorithms that compute Euclidean distances, whereas
Stator relies on Dice similarity.

Due to current computational constraints, Stator is limited to approximately 1,000 HVG and
40,000 cells to estimate higher-order n-point interactions (n = 2, 3, . . . , 7). Estimation of condi-
tional dependencies contributes most to computational cost, so Stator’s efficiency and accuracy
could be greatly improved as new causal discovery methods are developed. In addition, accuracy
could be improved by integrating biological knowledge into the dependency graphs. The limitation
of up to 7-point interactions is statistical rather than computational: we did not find evidence for sig-
nificant 7-point interactions in the datasets analysed. Stator takes advantage of sparse gene-by-cell
matrices, and so is not intended for analysing deep coverage transcriptomes until more sophisticated
binarisation schemes are explored (e.g., (Li and Quon, 2019)). Other challenges relate to how Stator
predictions should be interpreted, particularly those states lying on a continuum whose biology is
poorly understood. Further, the resolution (i.e., Dice similarity) at which states should be defined
and can be interpreted will vary by data set. Lastly, conditioning on absent gene expression in the
Markov blanket (Eq. 1, Methods) may overlook some states despite large numbers of biologically
plausible states being returned.
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Stator results show that a wealth of biological information can be inferred from the higher-order
statistics of single-cell expression data. Evidence exists for higher-order and combinatorial genetic
interactions (Kuzmin et al., 2018; Antebi et al., 2017; Arnosti et al., 1996; Watkinson et al., 2009)
and pairwise quantities at different pseudotimes have been investigated (Ghazanfar et al., 2020).
Nevertheless, the biological value of higher-order statistics in single-cell gene expression has not
previously been shown.

The picture emerging from applying Stator is of cells adopting a spectrum of states (or colours,
in this metaphor) with their primary colour representing their strongest transcriptomic signature,
most often indicating cell type. Differential expression between cells of the same type, but in two
different states, filters out their primary colour thereby revealing secondary colours, representing
cellular dynamics differences. This metaphor can be continued with respect to tertiary and quater-
nary colours, representing even more finely resolved aspects of cell state.

Stator can be applied to a variety of scRNA-seq data sets in biomedicine, including those with a
temporal label (e.g., developmental or disease progression), as well as data from different individuals,
to compare and contrast cell states of individuals with different disease progression trajectories, or
responders and non-responders to therapy. Finally, Stator’s general methodology can also be applied
to other datasets with variables that are binary or can be approximated well by binarisation, such
as disease comorbidities, scATAC-seq, or sparse single cell proteomics.

4. Methods

4.1. n-point interaction estimation. In previous work we developed a model-independent esti-
mator of higher-order interactions amongst binary variables (Beentjes and Khamseh, 2020). Here,
we refer to the multiplicative interaction in (Beentjes and Khamseh, 2020) as Model-Free Interac-
tion (MFI) due to its definition being without reference to any subjective parametric model, but in
terms of probabilities and their expectation values. Similar notions (for 2-point interactions) have
been proposed in the statistics literature (Hernan and Robins, 2023; VanderWeele and Knol, 2014).
For completeness, we summarise the main definitions and interpretations of MFIs (Beentjes and
Khamseh, 2020) below. A 2-point MFI is defined, and can be rewritten, as follows:

IGi,Gj = log
(

p(Gi = 1, Gj = 1|G = 0)p(Gi = 0, Gj = 0|G = 0)
p(Gi = 0, Gj = 1|G = 0)p(Gi = 1, Gj = 0|G = 0)

)
(1)

= log
(

p(Gi = 1, Gj = 1|G = 0)
p(Gi = 0, Gj = 1|G = 0)

)
− log

(
p(Gi = 1, Gj = 0|G = 0)
p(Gi = 0, Gj = 0|G = 0)

)

= E[Gi|Gj = 1, G = 0]
E[Gi|Gj = 0, G = 0]

(
1 − E[Gi|Gj = 0, G = 0]

)(
1 − E[Gi|Gj = 1, G = 0]

) ,
where G is the set of all other genes, aside from Gi and Gj , that are not independent of Gi and
Gj . The first line in Eq. 1 has the interpretation of a generalised conditional log-odds ratio and is
symmetric in Gi and Gj . The second line provides the following interpretation: “Does the likelihood
of gene Gi’s expression being on vs off depend on the status of gene Gj ’s expression?”. To elaborate
further, the first term represents the likelihood of gene Gi being on vs off, whilst gene Gj is on, while
the second term represented the same quantity with gene Gj is off. If the expression of the two genes
Gi and Gj are completely independent of each other, then these two terms cancel and result in a zero
interaction as desired. The third line represents the same quantity in terms of expectation values,
which are then taken as averages over the data for estimating the interactions. Uncertainties in
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these estimates are quantified via the bootstrap procedure (Efron, 1979). In (Beentjes and Khamseh,
2020) we generalised this definition and estimator to n-point interactions. For example, a 3-point
interaction, where p(Gi,j,k = 1, 1, 1) is shorthand for p(Gi = 1, Gj = 1, Gk = 1|G = 0) and so on, is
defined as follows:

IGi,Gj ,Gk
= log

(
p(Gi,j,k = 1, 1, 1)p(Gi,j,k = 1, 0, 0)p(Gi,j,k = 0, 1, 0)p(Gi,j,k = 0, 0, 1)
p(Gi,j,k = 1, 1, 0)p(Gi,j,k = 1, 0, 1), p(Gi,j,k = 0, 1, 1)p(Gi,j,k = 0, 0, 0)

)
, (2)

and has the interpretation of whether the expression status of a third gene, Gk, changes the 2-
point interaction between Gi and Gj expression. We presented previously (Beentjes and Khamseh,
2020) that this definition recovers, in a data-driven manner, known ground truth interactions in
statistical physics systems such as the Ising model, and more generally energy-based models, as
well as any other Markovian complex system. We further demonstrated that our MFI definition,
used to directly estimate the interaction, results in the same estimate as when training a Restricted
Boltzmann Machine, both analytically and numerically within statistics. The advantage of the MFI
direct estimation on binary data is its model-independent definition interpretability and its avoid-
ance of having to fit the joint probability distribution amongst the variables. The latter is a much
more complex quantity to estimate robustly than the combination of expectation values in the MFI
estimator. Finally, we note that conditioning on G = 0 in Eq. 1 is equivalent to finding the ‘pure’
2-point interaction between Gi and Gj without the influence of the other genes’ expression. Note
that G need not contain the set of all other genes when estimating the interaction. Indeed, it is
sufficient to only condition on the Markov blanket (MB) of Gi and Gj , i.e., the smallest set of genes
G conditional on which Gi and Gj are independent of all other genes. Once conditioned on the MB,
the information from other genes no longer influences the interaction between Gi and Gj . Therefore,
restricting G to only contain the MB of genes for each pair Gi and Gj , improves statistical power,
whilst simultaneously ensures that the 2-point interaction remains stable by measuring the direct
dependence between Gi and Gj , rather than indirect correlations. The same argument holds for
higher-order interactions. Fig. S1 presents a comparison between MFIs, correlation, partial corre-
lation and mututal information, computed on data generated from a set of DAGs in accordance to
Fig. S2, first presented in (Jansma, 2023a). The set of MFIs is distinct between distinct DAGs,
whereas other dependence metrics are only able to distinguish some, but not all, distinct DAGs.

Currently, performing conditional independence tests amongst all groups of genes to determine
their MBs, is statistically and computationally prohibitive. For this reason, we restrict the esti-
mation of n-point interactions to the top 1,000 HVGs, after quality control. Stator then infers
the MBs of the HVGs via a hybrid Bayesian network inference technique (Kuipers et al., 2022)
which sequentially performs (conditional) independence testing, starting from a fully connected
undirected graph of genes (Peter-Clark algorithm (Spirtes et al., 2001)), followed by a score and
search MCMC approach to obtain the optimal completed partially directed acyclic graph (CPDAG),
introduced in Kuipers et al. (2022). We emphasise that we do not claim any causal inference or
regulatory relationships amongst these genes based on the inferred network. Instead, we utilise
this algorithm to infer a gene signature dependence network structure to obtain the MB and es-
timate higher-order interactions with sufficient statistical power, with the final aim of inferring
cell (sub)types and states. Inferring this dependence network massively reduces the search space
for potentially significant interactions. For run-time considerations see Supplementary Material 7.1.

Finally, we note that MFIs are symmetric. Therefore, when estimating, e.g., a 2-point interaction
using line 3 in Eq. 1, one can choose to estimate the terms E[Gi|Gj = 1, GMB

i ] or E[Gj |Gi = 1, GMB
j ],

whichever results in the greatest statistical power, i.e., when either the MB of Gi or Gj is smaller,
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or more generally, when the MB of Gi or Gj is more populated.

Having identified the set of MBs, Stator then estimates up to 7-point interactions amongst the
genes in the expression data. The 2-point interactions are estimated between all pairs of genes, the
3-, 4-, and 5-point interactions are estimated amongst all gene tuples that are in each other’s MB
(the interaction amongst Markov disconnected genes vanishes (Jansma, 2023a)), and 6- and 7-point
interactions are calculated amongst genes that are in the MB of a tuple of genes with a significant
5- or 6-point interaction. Every interaction is estimated using the smallest possible MB.

In order to prioritise candidate interactions for the next step (“Deviating gene tuples (d-tuples)”),
each interaction is estimated 1,000 times by bootstrap resampling the data. An interaction is
prioritised as a ‘non-zero’ candidate for the next step if the fraction λ of bootstrap estimated
interactions with a different sign from the original estimate is less than 0.05. This procedure is more
permissive than testing for the hypothesis that the 95% two-sided percentile bootstrap confidence
interval does not contain zero. For the data sets studied in this work, we verify numerically that
this procedure is equivalent to demanding 90 − 95% confidence, depending on the order of the
interaction.

4.2. Deviating gene tuples (d-tuples). In a finite sample of N cells, the observed frequency Φs

of a tuple s = {s1, . . . , sn} of n independently expressed binarised genes is binomially distributed
as:

P (Φs = k) =
(

N

k

)
πk

s (1 − πs)N−k, where πs =
n∏

i=1
(siµi + (1 − si)(1 − µi)) , (3)

and µi is the mean expression of gene i across all cells under consideration (i.e., the cells for which
the relevant MB is zero). Equation 3 describes the null hypothesis that the observed cell counts
are the result of independently expressed genes, and gives the expected number of cells under this
null: E[Φs] = πsN . An observation Φs = ϕs of one of the 2n joint states of n genes can be assigned
a p-value:

p = 1 −
ϕs−1∑
k=0

P (Φs = k), (4)

and log 2-fold change, or deviation:

Log2FC = log2

(
ϕs

πsN

)
∈ (−∞, ∞). (5)

The p-values are calculated for all tuples with a positive Log2FC, and corrected for multiple hypoth-
esis testing with the Benjamini-Yekutieli procedure (Benjamini and Yekutieli, 2001). A non-zero
interaction can thus have one or more deviating-tuples (d-tuples), those tuples of genes that sig-
nificantly deviate from the null hypothesis. Since a non-zero interaction reflects a higher-order
dependency in the data, its d-tuple describes the gene expression patterns that are (at least in part)
responsible for this dependency. The set of cells that have the n genes in that particular expression
state—ignoring the state of the MB—form the associated set of cells. Note that cells carrying a
certain combination of d-tuples need not cluster in expression space: whilst these cells all share a
particular gene expression pattern among the n genes, the expression of all other genes can vary
greatly. This makes it in principle possible for a cell state to be widely dispersed in expression space.
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4.3. Hierarchical clustering of d-tuples. Given all d-tuples, Stator creates a cell-by-d-tuple
matrix, with binary entries 1 or 0, representing whether or not a cell contains a particular gene
d-tuple. Stator then hierarchically clusters these d-tuples (rather than cells) based on a notion of
distance, here the Sørensen–Dice coefficient, to identify d-tuples that more commonly co-label the
same cells. This hierarchy of separation among d-tuples can be visualised in a dendrogram. Note
that the Sørensen–Dice coefficient, sometimes referred to as the Dice similarity coefficient, is not
a distance metric because it does not satisfy the triangle inequality. More specifically, the Dice
similarity between two boolean vectors X and Y is defined as:

d(X, Y ) = 1 − 2|X ∧ Y |
|X| + |Y |

. (6)

In order to group the cells together, we cut the dendrogram at a Dice similarity that, by default, is
set at the value that maximises the weighted modularity score of the resulting clustering (Newman,
2006), where a pair of d-tuples is assigned an edge weight of one minus their Dice similarity. At
the set Dice similarity threshold, cells expressing these gene d-tuples are grouped together forming
Stator states. In particular, cells can exist in multiple multiple Stator states depending on different
gene signature similarities. Lowering the Dice value threshold increases granularity, the resolution
by which states are predicted, which we have shown, in some instances (e.g., Fig. S12), to better
resolve subtypes or substates for large and transcriptionally heterogeneous groups of cells.

4.4. Stator pipeline. Stator is a Nextflow pipeline (written using Nextflow version 21.04)
that consists of a main Nextflow script (DSL1) managing a number of Python and R scripts
and modules (see Figure S4 for an overview of the pipeline). Stator aims to balance modularity
and ease-of-use with flexibility, so is fully containerised (Docker images hosted on Dockerhub) and
allows the user to specify different preferences and settings in a separate json file, meaning that
it should run reproducibly on any Sun Grid Engine compatible cluster. The only file that has to
be supplied by the user is a .csv file (called rawDataPath in the json settings file) containing the
expression data of G genes (columns) and C cells (rows), where the first row contains the column/-
gene names. Optionally, the user can provide a file userGenes that contains the names of genes that
should be included in the final analysis regardless of their variability, a file genesToOne containing
genes whose Markov blanket state should be 1 instead of 0 (not used in this paper) which allows
for conditioning on different Markov blanket states, and a file doubletFile containing a Boolean
exclusion list, for example based on a doublet annotation, that indicates which cells should be ex-
cluded, regardless of other QC metrics. The user should further specify the total number of cells
(nCells) and genes (nGenes) to be used in the analysis.

The pipeline then initiates the first process in the pipeline, defined in the makeTraining-
Data.py script. By default, Stator assumes that the data is already quality controlled (QCed)
and only performs very basic data preparation (specified by the setting datatype=‘agnostic’): all
cells specified by doubletFile are excluded, PCA and UMAP embeddings are calculated, and up to
nGenes genes are included, starting with those specified in userGenes. A total of nCells is then ran-
domly selected for downstream analysis. Alternatively, Stator can run in datatype=‘expression’
mode and perform basic scRNA-seq QC, where parameters such as the threshold of mitchondrial
gene reads can be set by the user. In expression mode, Stator first includes the userGenes, but
then adds the most highly variable genes until nGenes are included. The final count matrix of size
nCells × nGenes is then binarised and sent to the next process.
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Stator then aims to estimate the graph of conditional dependencies among the genes. It does
this by generating a first guess using a parallelised implementation of the Peter-Clark (PC) algo-
rithm (parallelPCscript.R, based on (Le et al., 2016)). The PC-algorithm starts with the fully
connected graph of dependencies, and then iteratively performs dependency tests among connected
pairs, removing an edge when no evidence for dependence is found (delaying removal until all tests
are done to ensure order-independence. In addition, we use the majority-rule suggested by (Colombo
et al., 2014)). Somewhat counter-intuitively, a larger significance threshold for the dependency tests
corresponds to a more conservative estimate, since preserving more edges will result in larger MBs
which are necessarily more conservative. The default threshold is set at p < 0.05, not corrected for
multiple hypothesis testing, but can be adjusted by the user. Reducing this threshold makes the esti-
mate less conservative, but can significantly speed up the estimation procedure by eliminating more
edges and reducing the size of the estimated MBs. This initial guess is then iteratively improved
upon using the score-based MCMC method outlined in (Kuipers et al., 2022) (iterMCMCscript.R).
This method is based on an efficient exploration and scoring of the space of possible DAGs, and
allows new edges to be introduced into the initial guess if they significantly increase the score. The
CPDAG equivalence class corresponding to the graph found by parallelPCscript.R is used as
the starting point, and the script iterates until increasing the search space no longer increases the
score. To be as conservative as possible in our estimates, the final MBs used in all downstream
analysis are those based on the full final search space on which this algorithm terminated (not, for
example, only the maximum-a-posteriori estimate or its associated CPDAG).

Using these MBs, all 2-to-5-point interactions are calculated among genes that are mutually
Markov connected (calcHOIsWIthinMB.py). By default, uncertainty is quantified by bootstrap re-
sampling, but this can be done more efficiently using an estimate for the asymptotic error rate of
the MFIs by setting asympBool=1 in the settings; agreement with bootstrapped confidence intervals
was confirmed previously (Jansma, 2023b).

The higher-order interactions are analysed (createHOIsummaries.py) and used to calculate the
significant d-tuples and final Stator states (identifyStates.py). In addition, if there are interact-
ing 5-tuples that are Markov connected to additional genes, a targeted search for 6- and 7-point
interactions is performed. Run time using reasonable settings is discussed in Appendix 7.1.

Stator’s output includes files containing both the binarised and unbinarised QCed expression
data, a list of all d-tuples, and cell embedding coordinates. These can then be used for further
downstream analysis, for which we provide an R Shiny app. More information on the various
settings available to the user, as well as a complete list of output files, is available at https:
//github.com/AJnsm/NF_TL_pipeline/tree/main.

4.5. Stator’s R Shiny App. The Stator App was implemented as a web application for down-
stream analyses, using the R Shiny package (v1.7.4) from R studio (shiny.rstudio.com). As an
open-source application, the code is available through GitHub at github.com/YuelinYao/MFIs. The
Docker container image could be found from Dockerhub: hub.docker.com/r/yuelinyao120/stator-
app. Stator App is hosted at shiny.igc.ed.ac.uk/MFIs/. A complete list of packages used can be
found at github.com/YuelinYao/MFIs/blob/main/renv.lock. The app consists of twelve main pan-
els (About, Table, Heatmap-Cells, Heatmap-Genes, GO & KEGG, Using rrvgo, Upset Plot, DE
analysis, Find Markers, Automatic Annotation, Markov Blanket, UMAP Plot).

4.5.1. Data upload and file input. The app begins with an About page, providing general informa-
tion about the app and a tutorial on its use. It includes a liver cancer dataset (Barkley et al., 2022)
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already uploaded, and users can upload their own files in ‘.csv’ format (size <100GB running from
server); most of these are output files from the Stator Nextflow pipeline. The Tutorial explains how
to prepare a dataset, and provides information on the app’s parameters and statistical tools.

4.5.2. Summary Table. The app generates a statistics summary table by filtering and clustering
significantly deviating tuples (d-tuples) after file upload and parameter setting. The minimum
enrichment factors in Log2 transformation has a default value of 3, i.e., 8-fold change, the minimum
number of cells labelled by each d-tuple has a default value of 0, and the FDR is by default set to
0.05. These parameters are used to filter d-tuples. The Dice similarity is employed for hierarchical
clustering of d-tuples. This table presents tuple genes and their state, along with their respective
enrichment factor in log2 transformation, adjusted enrichment p-value, the number of cells labelled
by each d-tuple, and the cluster that includes this d-tuple. The d-tuples in each cluster define a
Stator cell state.

4.5.3. Cell states with external annotations. The Shiny App offers the ability to explore cells and
genes in each state using externally provided annotation through Heatmap-Cells and Heatmap-
Genes panels, respectively. Users can additionally specify the type of analysis they wish to perform,
such as annotation term enrichment analysis (over-representation test), depletion analysis (under-
representation test), or a two-sided Fisher’s exact test.

(a) Enrichment analysis for cells: Enrichment analysis allows users to test for the enrichment
of external annotation terms in Stator states. We use the following notation:

N : Total number of cells.
m: Number of cells (of total N) in a given Stator cell state.
k: Number of cells (of total N) in the external annotation.
q: Number of cells shared between a given Stator cell state and an external annotation.

The corresponding random variable is denoted by X. The null hypothesis is that the
observed overlap between the identified cell state and the external annotation is no greater
than is expected by chance. The p-value is calculated as the probability of observing more
overlapping cells than expected under this null hypothesis:

P (X ≥ q) = 1 − P (X ≤ q − 1) = 1 −
q−1∑
i=0

(
k
i

)(
N − k
m − i

)
(

N
m

) . (7)

The probability is computed with the R function:
phyper(q-1, m, N-m, k, lower.tail = FALSE, log.p = FALSE)
Once the p-value is computed for all pairs, we use the Benjamini and Hochberg (BH) method
(Benjamini and Hochberg, 1995) for correcting for false positives arising from multiple tests.
The corrected p-values are transformed by taking the negative logarithm (base 10) before
then being visualised as a heatmap, using ComplexHeatmap (v2.14.0) (Gu et al., 2016; Gu,
2022).

(b) Depletion analysis for cells: the null hypothesis is that the observed overlap between the
identified cell state and the external annotation is no fewer than would be expected by
chance. The p-value is computed with the R function:
phyper(q, m, N-m, k, lower.tail = TRUE, log.p = FALSE).
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(c) The two-sided Fisher’s exact test: As an option, a two-sided Fisher’s test may be performed
with following R function and the heatmap provided from this test is coloured by the log10
transformed odds ratio:
fisher.test(matrix(c(q, m-q, k-q, N-m-k+q), 2, 2), alternative=‘two.sided’)

A similar statistical test is performed, using the Heatmap-Genes function, to test for the overlap
between an externally supplied gene list with genes listed among Stator state d-tuples.

4.5.4. Gene Ontology and KEGG Pathway Enrichment analysis. The Shiny App allows users to per-
form Gene Ontology (GO) and KEGG Pathway Enrichment analysis for d-tuple genes in each Stator
state using the R package clusterProfiler (v4.6.2) (Yu et al., 2012). Users can specify the cell state(s)
of interest and reference genome for the dataset (e.g., hsapiens_gene_ensembl, org.Hs.eg.db, and
hsa for human), or background genes. Significantly enriched terms (FDR < 0.05) are displayed in
the app. The app also implements Rrvgo (Sayols, 2023) to reduce redundancy of GO terms and for
their visualisation as word cloud, treemap or scatter plots.

4.5.5. Cell Upset plot. The app shows Upset plots, with rows corresponding to numbers of cells
labelled by each state, and columns providing the number of cells labelled in common. This uses
the ComplexHeatmap package (v2.14.0) (Gu et al., 2016) in R.

4.5.6. Differential expression analysis. The Shiny App allows users to perform differential analysis:
i) between two cell states, disregarding all cells co-labelled with both states (termed s2s) from the
DE analysis tab, or ii) between cells labelled with a state and all cells without this label (termed
s2o) from the Find Markers tab. Differential gene expression analysis was implemented using the
FindMarkers function from Seurat (v4.3.0) (Stuart et al., 2019). Users can define log2 fold change
and adjusted p-value thresholds. The app then displays an expression heatmap of differentially
expressed genes, a volcano plot, a summary statistics table for differential expression, and Gene
Ontology and KEGG term enrichment significance results for differentially expressed genes.

In the automatic annotation tab, users can provided a table of genes of interest, and the app will
identify s2oDEGs for all Stator states, and automatically return the DEGs in the provided gene list
for easy anotatation.

4.5.7. Markov Blanket, MB. The app provides the functionality for users to extract and visualise
the MB for a particular gene. For this visualisation it imports the inferred MCMC graph and
extracts the MB covering all parents, children and spouses of this gene. This was implemented by
the R package, igraph (v1.4.1)(Csardi et al., 2006).

4.5.8. UMAP plot. The app allows users to visualise a cell state of interest within an uploaded set
of UMAP cell coordinates. This was implemented using the DimPlot function from Seurat (v4.3.0)
(Stuart et al., 2019).

4.6. Datasets. To showcase Stator’s prediction of cell types, subtypes and/or states in diverse nor-
mal and disease samples, we chose three diverse datasets: (i) Normal brain tissue E18 mice from the
10X Genomics ‘1.3 Million Brain Cells from E18 Mice’ dataset (10x Genomics, 2017), downloaded
from https://www.10xgenomics.com/resources/datasets, (ii) human liver tissue from control
and disease (cirrhosis) samples (Ramachandran et al., 2019), and (iii) human liver cancer (hepato-
cellular carcinoma) tissue from Barkley et al. (2022). Dataset (i) contains an unannotated Louvain
clustering (60 clusters in total) (Blondel et al., 2008) of 1,306,127 transcriptomes distributed over
133 libraries, sequenced on an Illumina HiSeq 4000 using paired-end sequencing at a moderate read
depth of 18,500 reads per cell, keeping only uniquely mapped reads. To annotate these clusters by
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cell type, we identified upregulated (with respect to all other cells) marker genes using the R-function
scran::findMarkers (Lun et al., 2016). Cluster 7 had top 10 marker genes (all at FDR< 10−10)
{Syt6, Gm27032, Slain1, Pbx3, Rgs8, Fgf3, Nkx2-3, Otor, Six3, Myh7}. Gene symbols shown
in bold are listed on mousebrain.org/adolescent/genes.html (Zeisel et al., 2018) as markers for
CNS-neurons, while the other genes are not markers for any cell type (except for Rgs8 which marks
trilaminar cells). Furthermore, when inferring markers against specific other clusters, Dlx2, Dlx5
and Dlx6os1 appeared as top markers; these genes control GABAergic neuron differentiation in
developing mice (Petryniak et al., 2007). Cluster 10 had top 10 marker genes (all at FDR< 10−6)
{Gm11627, Abhd4, Mpv17, Cldn10, Dhrs1, Thbs3, Aldoc, Prdx6, Gm20515, Chil1}; gene names
in bold show upregulated expression in radial glial cell precursors at E17.5 (Yuzwa et al., 2017). Al-
though, radial glial cell precursors and astrocytes are challenging to distinguish by differential gene
expression (Dulken et al., 2017), mature astrocytes are not abundant at this early developmental
stage (E18) (Akdemir et al., 2020). We therefore concluded that clusters 7 and 10 are composed of
neurons and radial glial cell precursors (RPs), respectively. To create a merged dataset containing
both neurons and RPs, we first merged both clusters, and then downsampled these to 19,000 cells,
of which 13,905 were neurons, and 5,395 were RPs.

Dataset (ii) was generated downsampled from 58,358 to 20,000 cells, specifically by sampling
10,000 cells from uninjured samples and 10,000 cells from cirrhotic samples. When Stator states
were compared with expert annotations, lineage annotations from the original publication were
used (Ramachandran et al., 2019). No cells annotated as “cycling” by Ramachandran et al. (2019)
remained after sub-sampling. Stator states for dataset (ii) used a Dice similarity of 0.97, with a
minimum 8-fold enrichment of tuples over expected, a maximum FDR corrected enrichment signif-
icance of 0.05, and a minimum of 10 cells labelled by each d-tuple.

Dataset (iii) was generated from a pan-cancer dataset by selecting the liver tumor type, resulting
in 14,698 cells (Barkley et al., 2022). Three types of annotations were defined in the original
study: a.) cell type by clustering (Stuart et al., 2019) and SingleR (Aran et al., 2019), b.) cell
state by nsNMF (Puram et al., 2017; Gaujoux and Seoighe, 2010), and c.) malignant or not by
inferCNV (Patel et al., 2014). We defined a gene as being normally expressed in untransformed
hepatocytes when it was expressed (≥ 1 read) in > 0.1% of hepatocytes (Andrews et al., 2022).
Stator states for dataset (iii) used a Dice similarity of 0.85, with a minimum 8-fold enrichment of
tuples over expected, a maximum FDR corrected enrichment significance of 0.05, and a minimum
of 0 cells labelled by each d-tuple.

4.7. Quality Control (QC) and expression binarisation. Data used as input to Stator was
pre-processed using standard Quality Control (QC) best practice (Luecken and Theis, 2019). When
doublet removal was not performed in a study, or this information was absent, we removed doublets
using Scrublet (Wolock et al., 2019). We restricted analysis to the 1,000 most highly variable genes
(HVG), quantified using Scanpy (Wolf et al., 2018), followed by binarisation of gene expression.
Droplet-based protocols commonly result in sparse data with many dropouts. Justification for
gene expression binarisation has been previously demonstrated for a variety of scRNA-seq analyses
including dimensionality reduction, clustering, differential gene expression and pseudotime analyses
(Bouland et al., 2023, 2021; Qiu, 2020). Following the literature, we binarise expression values, with
genes without expression evidence as zeros, and those with evidence of expression as ones.

4.8. Comparison with clustering. We applied hierarchical clustering on the two mouse brain
datasets to compare Stator with the conventional clustering approach. We processed and selected
the 2000 most HVG to compute principal components (Stuart et al., 2019), and then the top 20 PCs
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were used to calculate the Euclidean distances. Specifically, we used Ward’s method for hierarchical
clustering, which is based on minimizing the loss of information from joining two groups (Murtagh
and Legendre, 2014).

Using the same data to both cluster cells and test the differential expression will result in an
extremely inflated type I error rate (Gao et al., 2022). To compare Stator with robust clustering
results, we applied a selective inference approach to test for a pairwise significant difference between
two clusters (Gao et al., 2022). This approach protects against selective inference by correcting for
the hypothesis selection procedure (Gao et al., 2022). We applied Bonferroni method to correct the
p-values for multiple comparisons. Ideal clustering should result in a significant p-value for any pair
of clusters. To declare the final number of distinct clusters, we take the largest number of clusters
such that all clusters are pairwise significantly distinct as the total number of clusters is tuned.

5. Acknowledgements

CPP and JCW were funded by the MRC (MC_UU_00007/15). AK was supported by the XDF
Programme from the University of Edinburgh and Medical Research Council (MC_UU_00009/2) and
is supported by a Langmuir Talent Development Fellowship from the Institute of Genetics and
Cancer, and a philanthropic donation from Hugh and Josseline Langmuir. AJ was supported by
an MRC Precision Medicine Grant (MR/N013166/1). AJ thanks Øyvind Almelid for many helpful
discussions on Nextflow. YY thanks Xinyi Jiang for improving the Dockerfile of the shiny app.

6. Competing interests

No competing interests declared.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2023. ; https://doi.org/10.1101/2023.12.18.572232doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.18.572232
http://creativecommons.org/licenses/by-nc-nd/4.0/


STATOR 28

7. Supplementary Material
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Figure S1: Extended Fig. 1. Comparison of MFIs with other estimators of dependence.
Different causal dynamics lead to different association metrics, and only MFIs can distinguish all
6 scenarios and reveal the combinatorial effect of a multiplicative interaction. Green edges denote
positive values, red edges denote negative values, circles denote a 3-point quantity, and dashed
lines show edges that show marginal significance that depends on the level of simulated noise.
Correlations and mutual information cannot distinguish between most dynamics, and while partial
correlation can, for certain noise levels, identify the correct pairwise relationships, it falls short of
distinguishing additive from multiplicative dynamics. See Fig.S2 for the simulation parameters and
precise values. Reproduced from Jansma (2023a) with permission from the author.
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Causal graph

0 1

2

Chain
Genes Interaction F ρp p-val Partial ρp p-val MI

[0, 1] 4.281 0.000 0.790 0.0 0.635 0.000e+00 0.515
[0, 2] 0.056 0.117 0.622 0.0 0.031 2.261e-23 0.301
[1, 2] 4.249 0.000 0.786 0.0 0.628 0.000e+00 0.510
[0, 1, 2] -0.052 0.217 NaN NaN NaN NaN 0.300

Causal graph

0 1

2

Fork
Genes Interaction F ρp p-val Partial ρp p-val MI

[0, 1] 4.268 0.000 0.789 0.0 0.634 0.000e+00 0.514
[0, 2] 4.257 0.000 0.788 0.0 0.632 0.000e+00 0.512
[1, 2] -0.014 0.376 0.622 0.0 0.028 6.518e-19 0.300
[0, 1, 2] 0.020 0.376 NaN NaN NaN NaN 0.300

Causal graph

0 1

2

Additive collider
Genes Interaction F ρp p-val Partial ρp p-val MI

[0, 1] 2.144 0.000 0.395 0.000 0.505 0.000e+00 1.154e-01
[0, 2] -0.989 0.000 -0.002 0.593 -0.070 5.172e-109 2.059e-06
[1, 2] 2.144 0.000 0.395 0.000 0.505 0.000e+00 1.154e-01
[0, 1, 2] 0.003 0.438 NaN NaN NaN NaN -2.678e-02

Causal graph

0 1

2

Multiplicative collider
Genes Interaction F ρp p-val Partial ρp p-val MI

[0, 1] 0.032 0.140 0.427 0.000 0.478 0.000e+00 1.403e-01
[0, 2] -2.156 0.000 -0.005 0.145 -0.087 1.463e-166 1.529e-05
[1, 2] 0.036 0.109 0.429 0.000 0.480 0.000e+00 1.415e-01
[0, 1, 2] 4.237 0.000 NaN NaN NaN NaN -1.150e-01

Causal graph

0 1

2

Additive collider + chain
Genes Interaction F ρp p-val Partial ρp p-val MI

[0, 1] 2.103 0.000 0.705 0.0 0.362 0.0 0.396
[0, 2] 3.288 0.000 0.790 0.0 0.599 0.0 0.515
[1, 2] 2.113 0.000 0.706 0.0 0.364 0.0 0.397
[0, 1, 2] 0.050 0.162 NaN NaN NaN NaN 0.335

Causal graph

0 1

2

Multiplicative collider + chain
Genes Interaction F ρp p-val Partial ρp p-val MI

[0, 1] -0.017 0.342 0.709 0.0 0.365 0.0 0.403
[0, 2] 2.094 0.000 0.786 0.0 0.596 0.0 0.510
[1, 2] -0.057 0.092 0.707 0.0 0.361 0.0 0.401
[0, 1, 2] 4.359 0.000 NaN NaN NaN NaN 0.293

Figure S2: Here listed are the precise values that led to Fig. S1. From each graph, we
generated 100k samples from a Bernoulli distribution with p = 0.5 and added zero-mean Gaussian
noise (σ = 0.4) before binarising. To quantify the significance value of the interactions, we generated
1,000 bootstrap resamples of the data, and calculated F : the fraction of resampled interactions that
have a different sign from the original interaction. A smaller F corresponds to a more significant
interaction.
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Figure S3: Histograms of the number of cells labelled with variable numbers of states.
Results are for two disjoint embryonic radial glial cell-like cells (A and B), for the merged RP and
neuron set (C), and for two disjoint sets of developmental neurons (D and E). Numbers shown above
the bars indicate how the number of cells with the specific number of labels (X-axis).
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7.1. Nextflow runtime on HPC cluster. Stator’s nextflow pipeline is represented in Fig. S4.

 

Pipeline manager

(Nextflow)
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(makeTrainingData.py)
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Figure S4: Stator’s nextflow pipeline. From data preparation to groupings of d-tuples used for
state identification. Abbreviations: HOI, Higher-order interactions; MB, Markov blanket.

Stator computes combinatorial 2-point up to 7-point gene interactions, if estimable. The complete
set of interactions among 1,000 HVGs is not computationally tractable: half a million 2-point in-
teraction (1,000 choose 2), 166 million 3-point interactions, 41 billion 4-point interactions, 8 trillion
5-point interactions and so on. Instead, Stator first uses the Peter-Clark constraint-based algorithm
(Spirtes et al., 2001), in order to perform (conditional) independence tests in order of increasing
complexity, starting from a fully connected (undirected) graph of genes. Once a primary skeleton
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is obtained via the PC algorithm, Stator then uses a score based MCMC algorithm to improve the
accuracy of an estimated Directed Acyclic Graph (DAG), using the hybrid approach introduced
in Kuipers et al. (2022). This massively reduces the search space for potentially significant inter-
actions. Note that memory requirements and runtime depend on gene expression connectivity in
the given tissue and condition of interest. The sparser the dependence structure, the lower are the
memory and runtime requirements which are unknown prior to running Stator’s nextflow pipeline.
For a mouse embryonic brain dataset with 19,000 cells, the maximum memory requirement was 32G
for running the nextflow pipeline.

Running time (fixed resources) for  paper fig
Linear in number of cellsExponential in number of genes

Figure S5: Runtime of Stator’s nextflow pipeline for increasing numbers of cells (left)
or genes (right), using a fixed set of HPC resource. Runtime is linear in the number of cells
and exponential in the number of genes. The ‘wall clock’ time in red shows the total amount of time
lapsed between the beginning and end of the nextflow process, including the scheduling time on the
HPC, and corresponds to the real time spent to obtain results. CPU time includes only the hours
taken for tasks spent on the CPU. However, due to parallelisation, the CPU time will be longer
than the wall clock. The wall clock depends on availability of HPC parallelisation resources. For
example, for the 10X data set with 19,000 cells and 1,000 genes, the run time was approximately
5 days on the Edinburgh University High Performance Compute Cluster (Eddie), parallelised over
multiple cores corresponding to 2,500 CPU hours, as reported by the Nextflow pipeline manager.
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Figure S6: Embryonic radial glial cell precursor cell hierarchical clustering analysis,
with p-value quantification bounding for selective inference (Gao et al., 2022). We
applied standard single cell clustering to the non-binarised data, followed by pair-wise p-value
quantification of cluster significance (Gao et al., 2022). In panels B-F, light blue represents pairwise
significantly distinct clusters with Bonferroni corrected p-value < 0.05, whereas dark blue represents
not significantly distinct clusters. (A) According to the clustering analysis this dataset is relatively
homogeneous, containing two significantly distinct clusters, shown in a PCA plot. (B) Heatmap
showing the p-value between clusters when choosing k = 2 clusters. (C-D) Heatmaps showing
statistical support for clusters when choosing k = 4, 6, 8, 10 (C, D, E, F). Under these scenarios, not
every cluster pair is significantly separated (p < 0.05 after correction with the Bonferroni method).
To declare the final number of distinct clusters, we take the largest number of clusters such that
all clusters are pairwise significantly distinct as k changes. In this case, it can be observed from
panels B and C, that clusters #1, 2 are significantly pairwise distinct, but clusters #3, 4 are not.
Therefore, we declare k = 2 distinct clusters.
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Figure S7: Extended Figure for Fig. 2. Disjoint RP dataset tested for reproducibility.
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Figure S7: (A) Stator identifies 27 states for a disjoint N = 11, 950 embryonic radial glial-like cells
at maximum modularity, annotated on the basis of d-tuple and s2o-DE genes as markers for cell
types or cell cycle phases. (B) Dot plot illustrating differential expression of astrocytogenesis marker
genes across all 27 Stator states. The size of the dots represents the -log10(Seurat p-val-adj) from
differential gene expression testing between a state and all other states. Colour intensity reflects
the log2(FC) of gene expression. (C) Heatmap showing the significance of d-tuple enrichment for
d-tuples shown in Fig. 2 (Y-axis) among cells represented in panel A (X-axis). Significance was
assessed using the hypergeometric test. (D) As C, but the significance of d-tuple enrichment for
d-tuples shown in panel A among cells represented in Fig. 2. These two disjoint datasets show a
good degree of replication.
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Figure S8: Extended Figure 3. s2s-DEG analysis for 5 cell cycle states. Numbers of cells
labelled with any one of 5 cell cycle states (#57, 51, 55, 58, and 59) in embryonic RPs and neurons;
areas of circles are proportional to their number (see legend). Filled circles indicate numbers of
cells labelled with only of these single cell cycle states. Grey circles’ areas indicate numbers of cells
labelled with two cell cycle states, those indicated by lines. Numbers of significantly differentially
expressed genes between cell cycle state pairs (i.e., s2s-DEGs) are provided between the two states
being compared; their colours refer to the state showing higher expression. State pairs with ≤ 25
cells are not shown. Right: s2s-DEGs are indicated by “>” or “<” symbols; for example, Hells
mRNA expression is significantly higher in State #51 over States #57, 55, 58 and 59. Early/late
G1/S or G2/M cell cycle phase labels (top) were assigned using these mRNAs’ cell cycle phases
known from high-throughput (top right; (Giotti et al., 2018)) and targeted experiments (Ung mRNA
in late G1/S (Slupphaug et al., 1991) and Cenpa in G2 (Shelby et al., 1997)).
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Figure S9: Extended Figure 3. Minus gene expression is required to specify cell cycle sub-
phases. Left: External cell cycle annotations of a merged mouse brain data set sourced from five
different experiments (Schmitz et al., 2022), with the cells from data set GSE93421 removed. Right:
In contrast to Fig. 3C, highlighting cells based only on the expression of all but one of the marker
genes, leaving the gene indicated above each plot (the ‘minus’ gene) unrestricted, results in more
diffuse cell cycle specificity, and simply marks cells in G1/S or G2M phases.

* * * * * * * * * * * * N* *** * **** *** ** ** *** ** * * ***

Figure S10: Heatmap of unbinarised single cell gene expression across 47 embryonic
radial glial precursor cell (eRP) states and, for comparison, a single Tubb3+ neuron
state (State 68 [“N”]: Slain1 [1], Phgdh [0], Tubb3 [1]). Top: Asterisks indicate states with
higher expression of neuronal marker s2s-DEGs than State 44 (black) or State 40 (purple). Numbers
indicate States. Right: The 20 highest differentially expressed genes per state in s2oDEGs analysis,
with, in addition, E17.5 eRP expressing genes listed in Supplementary Table S3 of Yuzwa et al.
(2017) are shown. Horizontal lines reflect genes that are not expressed (blue) or always expressed
(red) in a State’s cells. Heterogeneous gene expression across states is evident, for example, due
to high expression of ribosomal protein and other genes (indicated by a bracket, lower left), an
indicator of activated neural stem cells (Borrett et al., 2022; Dulken et al., 2017).
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Figure S11: Hierarchical clustering of E18 developmental neurons, with p-value quan-
tification bounding for selective inference (Gao et al., 2022). We applied standard single
cell clustering to the non-binarised data, followed by pair-wise p-value quantification of cluster
significance (Gao et al., 2022). In panels B-F, light blue represents pairwise significantly distinct
clusters with Bonferroni correction p-value < 0.05, whereas dark blue represents not significantly
distinct clusters. (A) PCA plot showing clustering of cells. According to this clustering analysis
the dataset contains two significantly distinct clusters. (B) Heatmap showing the p-value for k = 2
clusters. It leads to significant differences between the clusters. (C-F) Heatmaps showing p-values
between cluster pairs for k = 4, 6, 8, 10. Under these scenarios, not every cluster pair is significantly
separated (p < 0.05 after correction with the Bonferroni method). To declare the final number of
distinct clusters, we take the largest number of clusters such that all clusters are pairwise signifi-
cantly distinct as k changes. In this case, it can be observed from panel D that clusters #1, 2, 3, 4 are
significantly pairwise distinct, but not clusters #5, 6. Therefore, we declare k = 4 distinct clusters.
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Figure S12: Example of a Stator state (#26), identified using a high Dice similarity
(0.94), which can be further separated into biological states, here G2/M cell cycle
phase, neural stem cells (NSC) and newborn progenitor (NPC) cells. Differential expres-
sion across embryonic (E) day 16.5 to postnatal day 1 of genes specifying d-tuples in neuron devel-
opmental data set #26. The heatmap indicates gene expression in NSCs, basal progenitor cells and
newborn neurons (NBN) taken from NeuroStemX, an external data set https://neurostemx.ethz.ch
(Mukhtar et al., 2022); expression data for Lockd, Dlx1as and Hist1h2bc was not available. Based
on literature markers for G2/M cell cycle phase (green asterisk), NSCs and NB progenitors (NBP;
Btg2 (Micheli et al., 2015); Mdk (Winkler and Yao, 2014)), #26 d-tuples were partitioned into
G2/M, NSC and NB progenitor states (in green, blue and grey, respectively); tuples are indicated
by vertical lines linking either three or four genes (filled circle signifies expressed, unfilled circle not
expressed genes). High cyclin D2 (Ccnd2 ; purple asterisk) mRNA levels separates self-renewing
cells from NBNs (Tsunekawa et al., 2014); Ccnd2 -/- mice lack newly born neurons (Kowalczyk
et al., 2004). Three tuples containing Dll1 are notable in specifying newborn progenitor cells. Dll1
is known to segregate asymmetrically during mitosis of NSCs, subsequently being inherited by dif-
ferentiating cells (Kawaguchi et al., 2013).
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Figure S13: Extended Figure 4. A second dataset of developmental neurons testing for
reproducibility. [Continued]
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Figure S13: Disjoint neurons dataset for reproducibility. (A) Stator identifies 29 signatures
at a Dice similarity of 0.94, annotated when d-tuple and/or s2o-DEGs are marker genes for cell
(sub)types or states. (B) Dot plot illustrating differential expression of neurogenesis marker genes
across all Stator states. The size of the dots represents the -log10(Seurat p-val-adj) from differential
expression testing between a state and all other states. Colour intensity represents the log2(FC) of
gene expression. (C) Heatmap showing the significance of d-tuple enrichment for d-tuples shown
in Fig. 4 (Y-axis) among cells represented in panel A (X-axis). Significance was assessed using the
hypergeometric test and Benjamini-Hochberg procedure was applied to calculate the False Discovery
Rate (FDR). (D) As C, but the significance of d-tuple enrichment for d-tuples shown in panel A
among cells represented in Fig. 4. These two disjoint datasets show a good degree of replication

.
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Figure S14: Extended Figure 6. Stator states (columns) that are significantly enriched in
HCC cells previously doubly-annotated by cell type (right) and cell state (left) inferred
using singleR and NMF, respectively.
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Coré, N., Erni, A., Hoffmann, H. M., Mellon, P. L., Saurin, A. J., Beclin, C., and Cremer, H. (2020).
Stem cell regionalization during olfactory bulb neurogenesis depends on regulatory interactions
between Vax1 and Pax6. eLife, 9:e58215.

Csardi, G., Nepusz, T., et al. (2006). The igraph software package for complex network research.
InterJournal, complex systems, 1695(5):1–9.

Cui, G., Jun, S. B., Jin, X., Pham, M. D., Vogel, S. S., Lovinger, D. M., and Costa, R. M. (2013).
Concurrent activation of striatal direct and indirect pathways during action initiation. Nature,
494(7436):238–242.

Dann, E., Cujba, A.-M., Oliver, A. J., Meyer, K. B., Teichmann, S. A., and Marioni, J. C. (2023).
Precise identification of cell states altered in disease using healthy single-cell references. Nature
Genetics.

Dann, E., Henderson, N. C., Teichmann, S. A., Morgan, M. D., and Marioni, J. C. (2022). Differen-
tial abundance testing on single-cell data using k-nearest neighbor graphs. Nature Biotechnology,
40(2):245–253.

Dulken, B. W., Leeman, D. S., Boutet, S. C., Hebestreit, K., and Brunet, A. (2017). Single-cell
transcriptomic analysis defines heterogeneity and transcriptional dynamics in the adult neural
stem cell lineage. Cell Reports, 18(3):777–790.

Efron, B. (1979). Computers and the theory of statistics: Thinking the unthinkable. SIAM Review,
21(4):460–480.

Ericson, J., Rashbass, P., Schedl, A., Brenner-Morton, S., Kawakami, A., van Heyningen, V., Jessell,
T. M., and Briscoe, J. (1997). Pax6 controls progenitor cell identity and neuronal fate in response
to graded shh signaling. Cell, 90(1):169–180.

Fischer, M., Grossmann, P., Padi, M., and DeCaprio, J. A. (2016). Integration of TP53, DREAM,
MMB-FOXM1 and RB-E2F target gene analyses identifies cell cycle gene regulatory networks.
Nucleic Acids Research, 44(13):6070–6086.

Franzén, O., Gan, L.-M., and Björkegren, J. L. M. (2019). PanglaoDB: a web server for exploration
of mouse and human single-cell RNA sequencing data. Database, 2019:baz046.
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