

== REVIEW COMMONS MANUSCRIPT ==

IMPORTANT:

- Manuscripts submitted to Review Commons are peer reviewed in a journal-agnostic way.
- Upon transfer of the peer reviewed preprint to a journal, the referee reports will be available in full to the handling editor.
- The identity of the referees will NOT be communicated to the authors unless the reviewers choose to sign their report.
- The identity of the referee will be confidentially disclosed to any affiliate journals to which the manuscript is transferred.

GUIDELINES:

- For reviewers: <https://www.reviewcommons.org/reviewers>
- For authors: <https://www.reviewcommons.org/authors>

CONTACT:

The Review Commons office can be contacted directly at: office@reviewcommons.org

1 **Nitrogen signaling factor triggers a respiration-like gene expression program**

2 Shin Ohsawa¹, Michaela Schwaiger^{1,2}, Vytautas lesmantavicius¹, Rio Hashimoto^{3,4}, Hiromitsu

3 Moriyama⁴, Hiroaki Matoba⁵, Go Hirai^{5,6}, Mikiko Sodeoka⁶, Atsushi Hashimoto^{3,7}, Akihisa

4 Matsuyama³, Minoru Yoshida^{3,8,9}, Yoko Yashiroda^{3,7,*}, Marc Bühlér^{1,10,*}

5 ¹ Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel,

6 Switzerland

7 ² Swiss Institute of Bioinformatics, 4058 Basel, Switzerland

8 ³ Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako,

9 351-0198, Saitama, Japan

10 ⁴ Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu,

11 183-8538, Tokyo, Japan

12 ⁵ Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi Higashi-ku, 812-

13 8582 Fukuoka, Japan

14 ⁶ Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science,

15 Wako, 351-0198, Saitama, Japan

16 ⁷ Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science,

17 Wako, 351-0198, Saitama, Japan

18 ⁸ Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, 113-

19 8657, Tokyo, Japan

20 ⁹ Collaborative Research Institute for Innovative Microbiology, The University of Tokyo,

21 Bunkyo-ku, 113-8657, Tokyo, Japan

22 ¹⁰ University of Basel, Petersplatz 10, 4003 Basel, Switzerland

23 *Corresponding Authors: Marc Bühlér, email: marc.buehler@fmi.ch

24 Yoko Yashiroda, email: ytyy@riken.jp

25 **ABSTRACT**

26 **Microbes have evolved intricate communication systems that enable individual cells of a**
27 **population to send and receive signals in response to changes in their immediate**
28 **environment. In the fission yeast *Schizosaccharomyces pombe*, the oxylipin Nitrogen**
29 **Signaling Factor (NSF) is part of such communication system, which functions to regulate**
30 **the usage of different nitrogen sources. Yet, the pathways and mechanisms by which NSF**
31 **acts are poorly understood. Here, we show that NSF physically interacts with the**
32 **mitochondrial sulfide:quinone oxidoreductase Hmt2 and that it prompts a change from a**
33 **fermentation- to a respiration-like gene expression program independently of the carbon**
34 **source. Our results suggest that NSF activity is not restricted to nitrogen metabolism alone**
35 **and that it could function as a rheostat to prepare a population of *S. pombe* cells for an**
36 **imminent shortage of their preferred nutrients.**

37

38 INTRODUCTION

39 Unicellular organisms must be able to sense and react to changes in their immediate
40 environments to maximize growth and survival. Classic examples are acute responses to
41 starvation or other stressful conditions such as osmotic, oxidative, or temperature stress,
42 heavy metals, or DNA damage. Besides shortage of nutrients, they must also accommodate
43 changes in the abundance of nutrients that they favor. For this, catabolite repression (CR)
44 strategies are utilized by various species of bacteria and fungi, which enables them to
45 preferentially utilize high-quality nutrients (Nair & Sarma, 2021). By modulation of CR, they
46 can accommodate nutritional changes in their environment.

47 Carbon and nitrogen are the main energy sources for sustaining biosynthetic processes and
48 must be taken up in large quantities from the environment. Different species have
49 preferences for certain carbon and nitrogen sources that they rapidly metabolize to
50 generate energy for growth and niche colonization. In the presence of these favored energy
51 sources, utilization of less preferred carbon and nitrogen sources is repressed, phenomena
52 referred to as carbon and nitrogen catabolite repression (CCR and NCR, respectively).
53 Because of the impact CCR and NCR have on virulence of human pathogens, a good
54 mechanistic understanding of carbon and nitrogen metabolism in microbes is of great
55 biomedical importance (Ries *et al*, 2018). It is also highly relevant for industrial applications
56 that rely on microorganisms for the generation of valuable bio-products (Nair & Sarma,
57 2021).

58 The selective usage of one energy source over another is generally considered to be
59 transient, acute, and cell autonomous. However, recent studies revealed the existence of
60 chemical communication between cells that transforms metabolic responses (Jarosz *et al*,
61 2014; Takahashi *et al*, 2012). This can occur between cells of the same or across species, or

62 even kingdoms, as exemplified by the bacterial metabolite lactic acid, which serves as a
63 diffusible signal that enables neighboring *Saccharomyces cerevisiae* cells to bypass CCR
64 (Jarosz *et al*, 2014; Garcia *et al*, 2016). An intra-species chemical communication system that
65 regulates NCR was discovered in the fission yeast *Schizosaccharomyces pombe* (Sun *et al*,
66 2016; Takahashi *et al*, 2012). Here, uptake of the branched-chain amino acids (BCAA)
67 isoleucine (Ile), leucine (Leu), and valine (Val) is suppressed in the presence of high-quality
68 nitrogen sources such as ammonium or glutamate, because the expression of transporters
69 or permeases that are needed for the uptake of poorer nitrogen sources are down-
70 regulated (Zhang *et al*, 2018). Thus, *S. pombe* cells rely on their own BCAA synthesis to
71 sustain growth. Therefore, auxotrophic mutants, such as Leu-auxotrophic *leu1-32* or BCAA-
72 auxotrophic *eca39Δ* cells, are unable to grow on minimal medium containing a high-quality
73 nitrogen source, even when supplemented with BCAA (Takahashi *et al*, 2012; Sun *et al*,
74 2016). Notably, though, growth of *leu1-32* and *eca39Δ* cells can be restored when
75 prototrophic cells are plated adjacent to the mutant cells. This adaptive growth is not
76 observed near *S. cerevisiae* cells (Takahashi *et al*, 2012; Sun *et al*, 2016). This intriguing
77 observation suggested that the prototrophic cells secrete a diffusible molecule that revokes
78 NCR in the auxotrophic cells. Indeed, the fatty acids 10(*R*)-acetoxy-8(*Z*)-octadecenoic acid
79 and 10(*R*)-hydroxy-8(*Z*)-octadecenoic acid were found to be secreted by the prototrophic
80 cells, now referred to as Nitrogen Signaling Factors (NSFs). Importantly, synthetic NSFs are
81 sufficient to bypass NCR, i.e. *leu1-32* and *eca39Δ* cells can grow on minimal medium
82 containing a high-quality nitrogen source when supplemented with BCAA and synthetic NSF
83 (Sun *et al*, 2016). Thus, NSFs are part of a species-specific communication system that
84 enables *S. pombe* cells adapting to changing nutritional conditions by evading NCR.
85 However, the pathways in which NSFs function in such adaptation are not known.

86 Here, we employed forward genetics, genomics, and chemical biology approaches to gain
87 insights into NSF-mediated adaptive growth of *S. pombe* cells. We show that mitochondrial
88 respiration counteracts NCR, that NSF exposure triggers a change from a fermentation- to a
89 respiration-like gene expression program, and that the mitochondrial sulfide:quinone
90 oxidoreductase Hmt2 is a direct target of NSF. Thus, NSF is a transmissible signal that turns
91 on mitochondrial respiration to maximize growth in response to changes in the availability
92 of nutrients.

93

94 **RESULTS**

95 **Identification of genes that are required for NSF-mediated adaptive growth**

96 Because cellular uptake of BCAA is suppressed in the presence of high ammonium
97 concentrations, *leu1-32* auxotrophs are unable to grow unless they are exposed to a
98 diffusible signal such as NSF that is secreted by neighboring prototrophs (Figure 1A). To
99 identify genes that are required for NSF-mediated adaptive growth, we decided to perform
100 genetic screens using the BIONEER haploid *S. pombe* Genome-wide Deletion Mutant Library
101 that covers 3420 non-essential gene knock-out strains (Kim *et al*, 2010) (Table. S1). Notably,
102 this library harbors auxotrophic mutations not only in *leu1⁺*, but also in the *ura4⁺* and *ade6⁺*
103 genes (*leu1-32*, *ura4-D18*, and *ade6-M210* or *M216*). To exclude potential confounding
104 effects that might stem from the *ura4⁺* and *ade6⁺* auxotrophic alleles (Takahashi *et al*, 2012),
105 we first crossed the *h⁺* BIONEER library with a *h⁻* strain that had an auxotrophic mutation in
106 the *leu1⁺* gene only and a nourseothricin resistance marker downstream of the *mat1-Mc*
107 gene (*leu1-32 mat1<<natMX*, Figure 1B). From these crosses, we could recover 3225
108 individual *h⁻* knock-out strains that are auxotrophic for leucine specifically (Leu-auxotrophic
109 knock-out library; Figure 1B, Table S1).

110 We performed a first screen to identify those genes that are required when auxotrophs must
111 communicate with prototrophs to sustain growth under high ammonium conditions (cell-to-
112 cell communication, CCC). For this, the 3225 Leu-auxotrophic knock-out strains were spotted
113 in 48-well high ammonium agar plates (EMM(748mM NH₄Cl)+Leu) either alone, or in the
114 vicinity of a wild type (*wt*) prototroph. This revealed three different growth phenotypes
115 (Figure 1B, middle): i) 2885 mutants that grew only in the presence of *wt* prototrophs (wild
116 type phenotype; Table. S1), ii) 137 mutants that grew irrespective of neighboring *wt*
117 prototrophs (genes required for NCR; Table S1), and iii) 203 mutants that failed to grow

118 either alone or in the presence of neighboring *wt* prototrophs (genes required for the

119 avoidance of NCR; Table S1). Thus, we have identified 203 genes that are necessary for *leu1-*

120 32 auxotrophs to respond to signals, sent out by *wt* prototrophs, that enable them to take

121 up leucine from the environment (avoidance of NCR).

122 Although NSF has been identified as a diffusible signaling molecule that is sufficient to

123 sustain the growth of leucine auxotrophs under high ammonium conditions (Sun *et al*,

124 2016), it remains unknown whether other signals are secreted that could function

125 redundantly to NSF. To test how many of the 203 genes required for the avoidance of NCR

126 would be specifically required for NSF-mediated adaptive growth, we performed a second

127 screen (Figure 1B, bottom). For this, the 203 mutant strains were spotted on EMM(748mM

128 NH₄Cl)+Leu plates coated either with synthetic NSF (10(*R*)-hydroxy-8(*Z*)-octadecenoic acid)

129 (Sun *et al*, 2016) or methanol as a mock control. The strains were also spotted onto plates

130 lacking ammonium (EMM(0 mM NH₄Cl)+Leu) to check abilities of growth on EMM, and

131 leucine uptake and utilization. As expected, none of the strains grew on high ammonium

132 plates (EMM(748mM NH₄Cl)+Leu). Of those, 29 mutants grew under neither condition

133 tested, indicating that these genes are related to EMM growth, leucine uptake, or utilization

134 of ammonium as the sole nitrogen source (“genes required for growth on EMM” in Figure

135 1B). Growth on high ammonium plates was rescued for 57 mutants in the presence of NSF

136 (NSF-independent adaptive growth in Figure 1B). That is, these genes are not needed to

137 respond to NSF. Yet, because they are needed for adaptive growth (1st screen), they are likely

138 required to respond to a transmissible signal that is different from NSF (Sun *et al*, 2016; Chiu

139 *et al*, 2022). This was not the case for 117 mutants, which grew normally without

140 ammonium, but not at high ammonium concentrations despite the addition of NSF. Thus, we

141 have identified 117 genes that are required for NSF-mediated adaptive growth (referred to

142 as “NSF-linked genes” listed in Tables S1 and S3).

143

144 **Mitochondrial respiration counteracts NCR**

145 Analyzing the list of 117 NSF-linked genes with AnGeLi (Bitton *et al*, 2015), we noticed

146 enrichment of genes that are encoding proteins that are related to mitochondrial respiration

147 (Figure 1C and Table S2). Interestingly, 33 NSF-linked genes have been previously implicated

148 in respiratory growth when glycerol serves as carbon source (Malecki *et al*, 2016) (Figure 1D

149 and Table S3). This suggests that NSF-mediated adaptive growth depends on mitochondrial

150 respiration. To test this directly, we assessed NSF-mediated adaptive growth under high

151 ammonium conditions by the addition of antimycin A, which is a potent mitochondrial

152 electron transport inhibitor and can thus be used to block respiration (Heslot *et al*, 1970;

153 Malecki *et al*, 2016). As shown in Figure 1E, antimycin A blocked NSF-mediated adaptive

154 growth in the presence of high ammonium concentrations. In the absence of ammonium,

155 0.4 μ M antimycin A had no effect on cell growth. *Vice versa*, when we induced respiration by

156 lowering the glucose concentration (0.08%) (Takeda *et al*, 2015), NSF even became

157 dispensable for growth under high ammonium conditions (Figure 1F). To check whether NSF

158 treatment stimulates respiration, we measured oxygen consumption rates (OCR). Indeed, we

159 observed an increased OCR after 8 hours NSF treatment (Figure 1G). From these results we

160 conclude that mitochondrial respiration counteracts NCR, and that this is positively

161 influenced by NSF signaling.

162

163 **Changes in gene expression upon exposure to NSF**

164 To investigate global changes in gene expression in response to NSF exposure, we performed
165 total RNA sequencing with cells that were grown in the presence of high ammonium
166 concentrations and exposed to synthetic NSF for two, four, or six hours. Already after 2 hours
167 exposure to NSF, we observed 98 and 74 genes that were significantly up- or downregulated,
168 respectively (Figure 2A). This remained largely unchanged when cells were exposed to NSF
169 for longer (Figure S1). Thus, NSF-induced changes in gene expression can be observed within
170 the first 2 hours already. Of the 117 NSF-linked genes described above, only *hsr1*⁺ was
171 differentially expressed upon NSF exposure. Expression of respiration-related genes that
172 were revealed by the screen remained unchanged. Yet, we noted that global differential
173 gene expression patterns between NSF-treated cells (this study) and cells that had been
174 shifted to respiration by glycerol feeding (Malecki *et al*, 2016) correlated positively (Figure
175 2B). Interestingly, genes previously shown to be upregulated in respiratory conditions
176 tended to be upregulated in response to NSF exposure as well (Figure 2C). Likewise, genes
177 downregulated in respiratory conditions appeared to be less expressed also in cells exposed
178 to NSF (Figure 2C). These results reveal that NSF triggers a change from a fermentation- to a
179 respiration-like gene expression program. GO enrichment analysis (Table S2) of the 92
180 downregulated genes revealed an overrepresentation of GO terms related to flocculation or
181 adhesion (Figure 2D). The 156 upregulated genes were enriched for GO terms related to
182 cellular fusion or mating, trehalose synthesis, or detoxification of ROS. For example, Catalase
183 (Ctt1) and glutathione peroxidase (Gpx1) function as ROS scavengers in mitochondria (Paulo
184 *et al*, 2014). Coherent with the induction of a respiration-like gene expression program, the
185 trehalose synthesis pathway is also upregulated under respiratory conditions, in which
186 trehalose functions as an antioxidant (Malecki *et al*, 2016). Enrichment of these GO terms
187 thus suggests that NSF contributes to the induction of expression of antioxidants for ROS

188 that is generated by the respiration pathway in mitochondria. We find it interesting that two
189 major cell-cell adhesion events, mating and flocculation, are oppositely enriched in up- and
190 down-regulated genes, respectively. Because flocculation enhances mating efficiency
191 (Goossens *et al*, 2015), we envision that the downregulation of flocculation/adhesion-
192 related genes by NSF could serve to avoid undesirable mating during growth.

193

194 **The NSF-responsive amino acid transporter 1 gene**

195 Of the genes with a gene expression level higher than 100 cpm, *SPBPB2B2.01*⁺ and *mei2*⁺
196 were the two most highly upregulated genes, whereas *gsf2*⁺ and *pfl3*⁺ were the two most
197 strongly downregulated genes (Figure 2A). Further analyses revealed that expression of all
198 four genes changed in an NSF dose-dependent manner (Figure 3A). Notably, *SPBPB2B2.01*⁺ is
199 an uncharacterized gene whose protein product has an inferred biological role in amino acid
200 transmembrane transport (<https://www.pombase.org/gene/SPBPB2B2.01>). This is
201 interesting in the light of BCAA uptake regulation being a hallmark of the NCR pathway.
202 Because *SPBPB2B2.01*⁺ is strongly induced by NSF, we suggest naming it “NSF-responsive
203 amino acid transporter 1” (*nrt1*⁺). To confirm the specificity of *nrt1*⁺ induction by NSF, we
204 used oleic acid as a negative control for NSF. Oleic acid is a fatty acid with an identical 18
205 carbon chain and a chemical structure like NSF, but it does not induce adaptive growth (Sun
206 *et al*, 2016). Even with three times the amount of NSF (150 ng/ml), oleic acid did not induce
207 an increase or decrease in the expression of NSF responsive genes (Figure 3B).
208 We also noted that the stimulatory effect of synthetic NSF on *nrt1*⁺ expression was highest at
209 low cell density (OD 0.01) and ceased at higher concentrations (OD 0.05, 0.1). Yet,
210 expression of *nrt1*⁺ increased with increasing cell density (Figure 3C). This might indicate that
211 *S. pombe* cells produce and secrete NSF, which accumulates with increasing cell density and

212 thereby negating any stimulatory effect of synthetic NSF. Indeed, when grown at low cell
213 density, *nrt1*⁺ expression was induced by NSF irrespective of the nitrogen concentration, or
214 whether cells were grown in rich medium (YES) or synthetic defined minimal medium (EMM)
215 (Figure 3D). Finally, we constructed a strain harboring a YFP gene controlled by either the
216 *nrt1*⁺ or *adh1*⁺ promoter (Figure 3E). Exposure to synthetic NSF induced YFP expression if
217 driven by the *nrt1*⁺ but not the *adh1*⁺ promoter. In conclusion, *nrt1*⁺ exemplifies an NSF-
218 responsive gene that is controlled at the level of transcription.

219

220 **NSF treatment affects transcription factor occupancy on NSF-responsive genes**

221 Coherent with the above finding that NSF triggers changes in gene expression at the level of
222 transcription, our genetic screen revealed eight transcription factor (TF) genes that are
223 required for NSF-mediated adaptive growth. Specifically, these genes encode the TFs Atf1,
224 Adn2, Adn3, Fil1, Hsr1, Php3, Php5, and Reb1 (Table S3). Consistent with a potential role of
225 Atf1 in activating transcription of NSF-responsive genes, we found the GO term “Atf1
226 activated” enriched among the group of genes that we found to be upregulated in response
227 to NSF treatment (Table S2). *Vice versa*, Adn2 and Adn3 have previously been linked to
228 flocculation and adhesion (Kwon *et al*, 2012), two other GO terms that we found enriched
229 among the genes that are downregulated upon exposure to NSF (Table S2). As mentioned
230 above, *hsr1*⁺ was the only gene required for NSF-mediated adaptive growth that was also
231 expressed more upon NSF treatment (Figure 2A). That is, cellular abundance of the TFs Atf1,
232 Adn2, Adn3, Fil1, Php3, Php5, and Reb1 remains unchanged, raising the question how they
233 contribute to changing the transcriptional program. One possibility is that they remain
234 bound to their target genes but become activated or deactivated by NSF directly, or a
235 posttranslational modification, such as phosphorylation in the case of Atf1 (Lawrence *et al*,

236 2007, 2009a). Alternatively, NSF exposure might strengthen or weaken the binding to their

237 target genes or redirect binding to other genes. To explore this, we tagged Adn2, Atf1, Fil1,

238 Hsr1, Php3, and Reb1 with a 3xFLAG tag at their C-termini and performed chromatin

239 immunoprecipitation coupled to next-generation sequencing (ChIP-seq) with and without

240 NSF treatment. Previously determined target genes of these TFs were significantly enriched

241 in our data set, demonstrating that the experiment has worked (Figure S2A). Globally, TF

242 binding patterns were not grossly altered by NSF treatment. Yet, at a few specific gene

243 promoters we observed a modest increase or decrease in TF enrichment (Figure S2B). These

244 differences in TF occupancy were positively correlated with target gene expression changes.

245 That is, individual genes that were upregulated by NSF tended to be more strongly bound by

246 the TFs, whereas downregulated genes were less occupied by the respective TFs (Figure 4A).

247 For example, increased TF occupancy at the *pex7*⁺ promoter correlated with increased *pex7*⁺

248 mRNA levels, whereas decreased TF occupancy at the *yhb1*⁺ promoter correlated with

249 reduced *yhb1*⁺ mRNA expression (Figure 4B). This was particularly pronounced for Hsr1

250 (Figure 4A), which indicates that NSF treatment does not only stimulate *hsr1*⁺ expression but

251 also increases as well as reduces Hsr1 binding at specific genes. For Adn2, NSF mainly caused

252 reduced binding at its target genes, which correlated with reduced target gene expression.

253 Occupancy of the other TFs at NSF-responsive genes remained largely the same (Figure 4A

254 and Figure S2B). These results imply that NSF exposure rewires the recipient cell's

255 transcriptional program, for which the TFs Atf1, Adn2, Adn3, Fil1, Hsr1, Php3, Php5, and

256 Reb1 are indispensable (Table S3).

257

258 **Ayr1 may metabolize NSF**

259 The foregoing results establish NSF-mediated adaptive growth as a paradigm to investigate

260 how external factors such as chemicals or metabolites in a cell's environment can lead to

261 transcriptional network changes. To get first insights into the mode of action of NSF, we

262 functionalized NSF with an alkyne tag to generate a probe that can be used for click

263 chemistry, fluorescence microscopy, and affinity purification of putative proteins that might

264 physically interact with NSF (AlkNSF, Figure 5A). Alkyne probes are commonly used in

265 chemical biology because structures and physicochemical properties of small molecules are

266 minimally affected (Wright & Sieber, 2016). Compared to the minimum efficient

267 concentration (MEC) that was previously determined for NSF (12 ng/ml) (Sun *et al*, 2016),

268 we had to use 30-fold higher concentrations of AlkNSF to sustain growth (Figure S3A). Yet,

269 although the MEC of AlkNSF was higher than that of NSF, AlkNSF promoted adaptive growth

270 on EMM(374 mM NH₄Cl)+Leu plates (Figure 5B) and induced *nrt1*⁺ expression in a dose-

271 dependent manner (Figure 5C). Furthermore, we observed cellular uptake of azide fluor 488-

272 labelled AlkNSF by fluorescence microscopy (Figure S3B). These results indicated that AlkNSF

273 could indeed be successfully employed as a probe in a chemical biology experiment.

274 Therefore, we coupled AlkNSF to azide beads (FG beads[®]) and incubated these with *S.*

275 *pombe* whole cell lysates to affinity purify putative NSF interacting proteins. As a control, we

276 preincubated a fraction of the lysate with non-alkylated NSF, which is expected to compete

277 off AlkNSF. Following separation and washing of the AlkNSF-beads, we subjected the

278 immobilized samples to mass spectrometry. This revealed Ayr1 as the sole protein that was

279 co-purifying with AlkNSF and that was competed away with NSF significantly (Figure 5D).

280 Interestingly, *ayr1*⁺ was not among the genes that our screen has identified to be required

281 for adaptive growth (Table S1), which we confirmed in a newly generated *ayr1Δ* strain

282 (Figure 5E). Consistent with this phenotype, NSF-mediated gene expression changes were

283 not abrogated in *ayr1Δ* cells. In contrast, the stimulatory effect of NSF on *nrt1⁺* or *mei2⁺*
284 expression was enhanced in the absence of Ayr1 (Figure 5F), suggesting that Ayr1 might
285 function as a negative regulator of NSF-linked changes in gene expression. Because Ayr1 is
286 annotated as a 1-acyldihydroxyacetone phosphate reductase that has been connected to
287 lipid metabolism in yeast (Athenstaedt & Daum, 2000; Ploier *et al*, 2013), it is tempting to
288 speculate that Ayr1 dampens adaptive responses by metabolizing NSF.

289

290 **NSF physically and functionally interacts with Hmt2**

291 Because Ayr1 could avert the interaction of AlkNSF with other true interaction partners, we
292 repeated the experiment described above with whole cell lysates generated from an *ayr1Δ*
293 strain. Indeed, this experiment revealed several additional proteins that were significantly
294 enriched compared to the control sample that contained competitive NSF (Figure 5G). Yet, a
295 potential caveat of this result is the hydrophobicity of AlkNSF, which could result in false
296 positive NSF-protein interactions upon prolonged incubation with cell lysates. Therefore, we
297 included an oleic acid alkyne probe (AlkOle), which is similar to AlkNSF but has no biological
298 activity (Figure 5B) and repeated the experiment with *wt* cell lysates to assess which of the
299 above proteins would specifically associate with the AlkNSF but not the AlkOle probe.
300 Reassuringly, Ayr1 was again specifically interacting with AlkNSF. The other proteins that
301 were significantly enriched in the AlkNSF sample were Hmt2 and Gst3 (Figure 5H and Figure
302 S3C). *gst3⁺* was not required for NSF-mediated adaptive growth, neither in our screen nor in
303 growth assays performed with newly generated *gst3Δ* cells (Figure S3D). *hmt2⁺* was
304 identified by our genetic screen to be required for growth on EMM media (Table S1 and
305 Figure S3D), which can be explained by the cysteine auxotrophy of *hmt2Δ* cells (Pluskal *et al*,
306 2016). Because our screen was conducted in EMM, *hmt2⁺* was thus not revealed as a gene

307 necessary for NSF-mediated adaptive growth. Therefore, we reassessed NSF-mediated
308 adaptive growth of *hmt2Δ* and *gst3Δ* cells in YES medium supplemented with 93.5 mM
309 NH₄Cl. Whereas wild type and *gst3Δ* cells grew in the presence of NSF but not in its absence,
310 *hmt2Δ* cells did not show NSF-mediated adaptive growth (Figure 5I). Consistent with this
311 phenotype, neither *nrt1⁺* nor *mei2⁺* expression was induced in the absence of Hmt2 (Figure
312 5J).

313 These results identify Hmt2 as a direct target of NSF that is necessary for the activation of
314 NSF-responsive genes. Hmt2 is localized at the inner membrane of mitochondria where it
315 functions as a sulfide:quinone oxidoreductase (SQR) by which hydrogen sulfide acts as an
316 electron donor to the electron transfer chain (ETC) via reduction of a quinone to a
317 hydroquinone (Zhang *et al*, 2021; Weghe & Ow, 1999). Notably, Hmt2 is required for
318 respiratory growth (Malecki *et al*, 2016), which is coherent with our finding that
319 mitochondrial respiration enables evasion of NCR. Thus, the identification of Hmt2 as direct
320 functionally relevant target of NSF provides a first insight into how the NSF signal is received
321 by the recipient cells. How this affects mitochondrial respiration and how this leads to
322 changes in the cell's transcriptional program are exciting questions that should become
323 subject to future investigations.

324

325

326

327

328

329 **DISCUSSION**

330 Cell-to-cell communication is a widely observed phenomenon among microbes. It is used to
331 react to changes in the environment and to coordinate such responses at the population
332 level to keep the organism thriving. This is often linked to morphological changes such as
333 biofilm formation in bacteria (Miller & Bassler, 2001; Hammer & Bassler, 2003; Mukherjee &
334 Bassler, 2019), mating, or filamentation in fungi (Chen *et al*, 2004; Hornby *et al*, 2001;
335 Merlini *et al*, 2013; Ramage *et al*, 2002). In this study we have focused on cell-to-cell
336 communication mediated by NSF, a diffusible oxylipin that is produced and secreted by *S.*
337 *pombe* cells to their extracellular milieu. In contrast to other communication systems, NSF
338 does not induce noticeable changes in *S. pombe*'s morphology. A characteristic effect of NSF
339 is that it enables the uptake of BCAA, which is essential for cells that cannot produce their
340 own BCAA. Because excess ammonium supplementation in the media leads to the inhibition
341 of BCAA uptake, a phenomenon known as nitrogen catabolite repression or NCR (Mitsuzawa,
342 2006; Magasanik & Kaiser, 2002; Ljungdahl & Daignan-Fornier, 2012), it is generally assumed
343 that NSF functions to control the usage of different nitrogen sources (Takahashi *et al*, 2012).
344 However, the pathways and mechanisms by which NSF functions and whether these are
345 restricted to nitrogen metabolism have remained elusive. We have performed a genetic
346 screen with a non-essential gene deletion library to identify factors that are required for
347 NSF-mediated adaptive growth at high ammonium concentrations. Essentially, the screen
348 was designed such that every mutation that disables the uptake of a BCAA would score. This
349 has revealed 117 mutants that grew normally without ammonium, but not at high
350 ammonium concentrations despite the addition of synthetic NSF and the presence of
351 exogenous BCAA. Interestingly, many of the genes identified in this screen are required for
352 mitochondrial respiration (Figure 1C), suggesting that NSF-mediated adaptation to high

353 ammonium concentrations depends on the respiratory capacity of the cell. This hypothesis is
354 further supported by our observation that inhibition of mitochondrial electron transport by
355 antimycin A stops cells from growing in the presence of high ammonium concentrations.
356 Conversely, indirect induction of respiration by glucose limitation makes NSF dispensable for
357 growth. Moreover, we found that NSF triggers a respiration-like gene expression pattern, and
358 that NSF physically interacts with the mitochondrial sulfide:quinone oxidoreductase Hmt2.
359 Therefore, we propose a model in which NSF activates mitochondrial respiration, which
360 eventually leads to global changes in gene expression, the evasion of NCR, and the uptake of
361 BCAA. The latter is reminiscent of previous work conducted in budding yeast, which revealed
362 that the induction of respiration by glucose de-repression demands and increases the uptake
363 of leucine for intermediates of the TCA cycle (Hothersall & Ahmed, 2013).
364 We find it interesting that NSF triggers a change from a fermentation- to a respiration-like
365 gene expression program independently of the carbon source. This raises the question how
366 *S. pombe* could benefit from respiration in the presence of glucose, which is well known to
367 promote rapid proliferation by fermentation (Pfeiffer & Morley, 2014; Hagman & Piškur,
368 2015). Importantly, the concentration of NSF in the milieu is positively correlated with cell
369 density. That is, the fewer cells the less NSF will be secreted. Therefore, the switch from
370 fermentation to respiration would be expected to occur only when cells become denser and
371 the concentration of NSF increases. Indeed, *nrt1*⁺ expression increased with higher cell
372 density without the addition of extra NSF (Figure 3B). Moreover, the stimulatory effect of
373 synthetic NSF was highest at low cell density and ceased when the population grew denser.
374 This raises the possibility that NSF may function as a rheostat to prepare a population of *S.*
375 *pombe* cells for a foreseeable shortage of glucose when they grow exponentially. Thereby,
376 reaching a certain NSF concentration would cause a switch to respiration, also known as

377 diauxic shift (Brauer *et al*, 2005; Dickinson & Schweizer, 2019; Bartolomeo *et al*, 2020),

378 preparing the cells to utilize other carbon sources such as ethanol, because glucose will

379 eventually become limiting. Whereas diauxic shifts are well-established, to our knowledge

380 this phenomenon has not been linked to cell-to-cell communication. Because NSF is an

381 intraspecies-specific signal (Yashiroda & Yoshida, 2019; Takahashi *et al*, 2012; Sun *et al*,

382 2016), the NSF-mediated shift from fermentation to respiration would exemplify a “social

383 interaction” between cells of the same species, preparing them for an imminent shortage of

384 their preferred carbon source. This would increase the population’s fitness and thus confer

385 *S. pombe* a competitive advantage in such environment. In that sense, NSF would not strictly

386 revoke NCR only, but also CCR, and it could thus be considered as a general mediator of

387 catabolite repression.

388 An important question that will need to be addressed in the future is how NSF exposure

389 triggers the observed change in *S. pombe*’s gene expression program. Because our chemical

390 biology approach has not revealed transcription factors or chromatin regulators as direct

391 targets of NSF, it is unlikely signaling directly to the nucleus. Rather, identification of Hmt2 as

392 a physical interaction partner of NSF suggests that the transcriptional changes observed in

393 the nucleus are a consequence of altered metabolic activity of mitochondria. Hmt2 is a

394 sulfide:quinone oxidoreductase (SQR), which couples sulfide oxidation to coenzyme Q₁₀

395 reduction in the ETC. This reaction generates highly reactive sulfur species (RSS) such as

396 glutathione persulfide, which can be further oxidized or can modify cysteine residues in

397 proteins by persulfidation (Filipovic *et al*, 2018; Cuevasanta *et al*, 2017; Mishanina *et al*,

398 2015; Mustafa *et al*, 2009a, 2009b). Interestingly, there are several reports that

399 persulfidation of transcription factors could regulate their activities (Yao *et al*, 2023; Tian *et*

400 *al, 2021; Shimizu et al, 2023).* Thus, persulfide signalling is an attractive hypothesis for how

401 NSF signaling could be relayed to the cell nucleus that will be worthwhile testing.

402 **MATERIALS AND METHODS**

403 **Yeast strains and growth media**

404 *S. pombe* strains were generated following a PCR-based protocol (Bähler *et al*, 1998) and
405 strains were validation by colony PCR. For a list of strains generated in this study see Table
406 S4. Cells were grown in rich yeast extract (YE) medium with 3% glucose, YE with 2 mM each
407 adenine and uracil (YES), or in minimal (EMM) medium with 2% glucose and 0.5% (93.5 mM)
408 ammonium chloride (NH₄Cl). Appropriate leucine, adenine, uracil and glutamate (2 mM)
409 were added to EMM medium. For nitrogen catabolite repression (NCR) condition, EMM was
410 supplemented with extra NH₄Cl (final concentration 187~748mM) and for non NCR
411 condition, EMM without ammonium sulfate (0 mM NH₄Cl) with 2 mM Leu as a sole nitrogen
412 source. For supplementation of NSF, 100 µL of 10 µg/mL synthesized NSF (10(R)-hydroxy-
413 8(Z)-octadecenoic acid) (Sun *et al*, 2016) dissolved in 50% methanol was added onto 20 mL
414 agar media (final concentration 50 ng/mL). Where indicated, media were supplemented
415 with antimycin A (0.4 µM) for inhibition of respiration or with lower glucose (0.08%) for
416 induction of respiration. For cell mating, sporulation agar (SPA) medium was used.

417

418 **Plasmids**

419 Plasmids were cloned by standard molecular biology techniques. For a list of plasmids
420 generated in this study see Table S5.

421

422 **Genetic screening for adaptive growth**

423 To enable selection for the *h*⁻ mating type in the Leu-auxotrophic knock-out library, an *h*⁻
424 strain having the drug-resistant markers at the *mat1* locus was generated. The kanamycin
425 resistance (kanMX) marker was inserted downstream of the *mat1-Mc* gene, which was

426 subsequently replaced with the nourseothricin resistance marker (natMX) by the marker
427 switch technique. First, two homology arms were amplified from genomic DNA by PCR using
428 two primer sets: insert-kanR-F1 and insert-kanR-F2, and insert-kanR-R1 and insert-kanR-R2.
429 The purified PCR products were then used for assembling the disruption fragment by
430 amplifying the kanMX cassette by PCR. The resultant PCR products were introduced into the
431 JY265 strain. The strain in which the kanMX marker was replaced by the natMX marker were
432 generated as previously described (Sato *et al*, 2005). We prepared the PCR product using
433 MS-TEP and MS-TET as primers and pCR2.1-nat as a template. The Leu-auxotrophic knock-
434 out library (3225 mutants) was made from the BIONEER haploid deletion mutant library v5.0
435 (3420 mutants) by mating with *leu1-32* auxotroph on SPA+Ade+Ura+Leu (2 mM each)
436 medium. For selection after mating, mutants were grown on SD+Leu media, twice on YE +
437 G418 and nourseothricin, twice. For the first screening, mutants are spotted onto 48-well
438 plate solid EMM (748 mM NH₄Cl) +Leu (2 mM) media with or without a prototroph spotted
439 next to mutant spot. Plates were incubated at 30 °C, and images were acquired after 5 or 6
440 days. For the second screening, mutants were spotted onto 48-well plate solid EMM (0 mM
441 or 748 mM NH₄Cl) +Leu media with NSF or methanol. Plates were incubated at 30 °C, and
442 images were acquired after 5 or 6 days. GO category enrichments in each mutant cluster
443 were calculated using the AnGeLi web tool (Bitton *et al*, 2015)

444

445 **Oxygen consumption rate measurement**

446 The respiratory capacity was assessed using the Seahorse XF HS mini analyzer (Agilent
447 Technologies). Seahorse XFp cell culture miniplate was coated with 50 µg/mL poly-lysine (50
448 µL each well) for 30 min at room temperature and then aspirated followed by air drying at 4
449 °C overnight. The Seahorse XFp extracellular flux cartridge was hydrated with sterile water

bioRxiv preprint doi: <https://doi.org/10.1101/2023.12.18.572203>; this version posted December 19, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [CC-BY 4.0 International license](#).

450 and incubated overnight at 30 °C and Seahorse XF calibrant solution (Agilent Technologies).
451 After this, the water was removed, then added the calibrant solution to the sensor cartridge
452 and incubated at 30 °C for 1 hour before measurement.

453 Yeast cultures were grown in YES media at 30 °C for 16 hours, followed by subculturing in
454 EMM(561 mM NH₄Cl)+Leu+Ade+ura media with or without NSF (50 ng/mL) for 30 °C for 8
455 hours, start OD_{600nm} at 0.01. For measurement, all cultures were diluted in EMM(561 mM
456 NH₄Cl)+Leu+Ade+ura to seed an OD_{600nm} at 0.01 into a poly-lysine coated Seahorse XFp cell
457 culture miniplate in 50 µL of Seahorse XF assay media (Agilent Technologies). For
458 background measurement, two wells containing only assay media were included. The loaded
459 plate was centrifuged at 300 x g for 3 min at room temperature. After centrifugation, the
460 volume of the media was made up to 150 µL, and the loaded plate was incubated for 30 min
461 at 30 °C to facilitate the transition of the plate into the Seahorse machine's temperature.

462 Measurements by Seahorse were performed for 10 cycles.

463

464 **RNA isolation and cDNA synthesis**

465 Total RNA was isolated using the MasterPure Yeast RNA Purification Kit (Epicentre). cDNA
466 was synthesized using the PrimeScript RT Master Mix (Takara).

467

468 **Total RNA sequencing and analysis**

469 Total RNA libraries were prepared with TruSeq Stranded Total RNA kit (Illumina) according to
470 the manufacturer's instructions and sequenced with an Illumina HiSeq2500 (50 bp single-
471 end). RNA-seq reads were aligned to the *S. pombe* genome (ASM294 version 2.24) using
472 STAR (Dobin *et al*, 2013) (version 2.7.3a) (STAR—runMode alignReads—outFilterType
473 BySJout—outFilterMultimapNmax 100—outFilterMismatchNoverLmax 0.05—

474 outSAMmultNmax 1—outMultiMapperOrder Random—outSAMtype BAM

475 SortedByCoordinate—outSAMattributes NH HI NM MD AS nM—outSAMunmapped Within).

476 The reads per gene were counted with featureCounts (Liao *et al*, 2014) of uniquely mapping

477 reads only (useMetaFeatures = TRUE, allowMultiOverlap = FALSE, minOverlap = 5,

478 countMultiMappingReads = FALSE, fraction = FALSE, minMQS = 255, strandSpecific = 2,

479 nthreads = 20, verbose = FALSE, isPairedEnd = FALSE). An external feature annotation file for

480 *S. pombe* was used based on a GFF3 file from PomBase (Lock *et al*, 2018) that was converted

481 to a GTF file with rtracklayer (Lawrence *et al*, 2009b). Differential gene expression analysis

482 was performed using DESeq2 (Love *et al*, 2014). Each MA plot depicts log2 fold changes of

483 cells with NSF treatment against cells without NSF treatment. For GO term enrichment

484 analysis, we downloaded GO term annotation for *S. pombe* genes from Pombase and used

485 the GO.db R package to build a GO annotation map for *S. pombe*. Then we used the enricher

486 function from the ClusterProfiler package to test for enriched GO terms in up or down

487 regulated genes compared to all tested genes. Total RNA sequencing data have been

488 deposited at the NCBI Gene Expression Omnibus (GEO) database and are accessible through

489 GEO series number GSE250095.

490

491 **RT-PCR**

492 PCR on cDNA was performed using the fast-cycling PCR kit (Qiagen). Primer sequences are

493 listed in Table S6.

494

495 **Chromatin immunoprecipitation (ChIP) and ChIP-sequencing**

496 ChIP experiments were performed as described previously (Kuzdere *et al*, 2023) with 2.5 µg

497 anti-FLAG M2 antibodies (Sigma). ChIP-sequencing libraries were generated using the

498 NEBNext Ultra II DNA Library Prep Kit (New England Biolabs) and sequenced with an Illumina

499 HiSeq2500 (50 bp single-end). Raw data were demultiplexed, converted to fastq format

500 using bcl2fastq2 (v1.17), and mapped using STAR (Genome_build: Spombe.ASM294v2.24).

501 For bigwig track generation by bedtools (v2.26.0) and bedGraphToBigWig (from UCSC binary

502 utilities), nonaligned reads were discarded and read coverage was normalized to 1 million

503 genome mapping reads (RPM). Peak finding was done using MACS2 (Gaspar, 2018) and

504 peaks with a score above 100 were used. Differential binding was calculated using Limma –

505 Voom and the total number of mapped reads as library size. To find the corresponding gene

506 promoters under TF binding peaks, we used R package GenomicFeatures and the “nearest”

507 function of GenomicRanges. *S. pombe* genomic range file was downloaded from Pombase

508 (Lock *et al*, 2018) and non-coding RNA genes were removed from the list. And then, genomic

509 ranges of protein coding gene were changed to promoter range (200 bp upstream from

510 transcription start site).

511

512 **Microscopic observation of AlkNSF with click chemistry**

513 Cells were inoculated into EMM (187mM NH₄Cl)+Leu+Ade+Ura, with 5 μM AlkNSF

514 (manuscript in preparation) adjusted to OD_{600nm} at 0.01. The culture was incubated at 30 °C

515 for 4 hours. Subsequently, cells were harvested and fixed in 70% ethanol. After fixation, cells

516 were washed twice with TBS buffer, followed by incubation in a solution containing 20 μM

517 Azide fluor (Sigma), 2 mM CuSO₄ (Sigma), and 10 mM ascorbate in TBS buffer in the dark for

518 30 min. Following three washes with TBS, cells were observed under a fluorescence

519 microscope.

520

521 **Affinity purification of AlkNSF**

522 To make AlkNSF pre-coupled beads, 2.5 mg (125 μ L) azide beads (Tamagawa Seiki) with 125
523 μ M AlkNSF or Alkyne oleic acid (AlkOle) (Cayman), 62.5 μ M tris[(1-benzyl-1H-1,2,3-triazol-4-
524 yl)methyl]amine (TBTA) (Sigma), 1.25 mM CuSO₄, and 1.25 mM (+)-sodium L-ascorbate
525 (Sigma) were incubated for 16 hours at room temperature. The pre-coupled beads were
526 three-time washed with t-BuOH(Supelco)/DMSO/water (4:1:5) and three-time washed with
527 50% (v/v) methanol. The washed beads were washed and resuspended with Lysis buffer
528 (150 mM NaCl, 20 mM HEPES pH 7.5, 5 mM MgCl₂, 1 mM EDTA pH 8.0, 10% glycerol, 0.25%
529 (v/v) Triton X-100, 0.5 mM DTT, and 1x HALT protease inhibitor cocktail (Thermo Fisher
530 Scientific)).

531 Cells grew in YES media for 16 hours and were harvested at 2500 rpm. Harvested cells were
532 washed with TBS (50 mM Tris-HCl pH 7.5, 150 mM NaCl) twice. Cells were resuspended in
533 Lysis buffer and were disrupted with silica beads by bead-beating machine (MP
534 Biomedicals™ FastPrep-24™ 5G Instrument, 3x 20s at 6.5m/s, 3min breaks on ice in between
535 rounds). Cell lysates were collected from tube having punched a hole in the bottom with a
536 needle followed by centrifugation. Crude lysates were centrifugated with 13000 rpm for 10
537 min at 4 °C. Protein concentration of clear lysates was measured by Bradford assay. As
538 competition assay, cell lysates were incubated with NSF (100 μ M for parent cell lysate or 250
539 μ M for *ayr1Δ* cell lysate) for 2 hours at 4 °C. Pre-coupled beads of AlkNSF or AlkOle were
540 added and were incubated for 2 hours at room temperature. The beads were washed twice
541 each with lysis buffer and wash buffer (100 mM NaCl, 20 mM HEPES pH 7.5, 5 mM MgCl₂, 1
542 mM EDTA pH 8.0, 10% glycerol, 0.25% (v/v) Triton X-100). Washed beads were resuspended
543 with 6 μ L digest buffer (3 M guanidine HCl, 20 mM HEPES pH 8.5, 10 mM CAA, 5 mM TCEP)
544 and supplemented with 0.2 μ g LysC. After incubation for 4 hours at room temperature, 17 μ L

bioRxiv preprint doi: <https://doi.org/10.1101/2023.12.18.572203>; this version posted December 19, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

545 of 50 mM HEPES pH 8.5 and 20 ng trypsin were added to further digest the proteins.

546 Trypsin digestion was conducted overnight at 37 °C.

547

548 **Mass spectrometry**

549 The generated peptides were acidified with TFA to a final concentration of 0.8% and

550 analyzed by LC–MS/MS on an Orbitrap FUSION LUMOS or ECLIPSE tribrid mass spectrometer

551 (Thermo Fisher Scientific) connected to a Vanquish Neo UHPLC (Thermo Fisher Scientific)

552 with a two-column set-up. The peptides were applied onto a C18 trapping column in 0.1%

553 formic acid and 2% acetonitrile in H₂O. Using a flow rate of 200 nL/min, peptides were

554 separated at RT with a linear gradient of 2–6% buffer B in buffer A in 1 min followed by a

555 linear increase from 6 to 20% in 42 min, 20–35% in 22 min, 35–45% in 2 min, 40–100% in 1

556 min, and the column was finally washed for 10 min at 100% buffer B in buffer A (buffer A:

557 0.1% formic acid; buffer B: 0.1% formic acid in 80% acetonitrile) on a 15 cm EASY-Spray

558 column (Thermo Fisher Scientific) mounted on an EASY-SprayTM source (Thermo Fisher

559 Scientific). The survey scan was performed using a 120,000 resolution in the Orbitrap

560 followed by an HCD fragmentation of the most abundant precursors. The fragments mass

561 spectra were recorded in the ion trap according to the recommendation of the manufacturer

562 (Thermo Fisher Scientific). Protein identification and relative quantification of the proteins

563 was performed with MaxQuant v.2.2.0.0 using Andromeda as search engine (Cox *et al*,

564 2011), and label-free quantification (LFQ) (Cox *et al*, 2014). The fission yeast subset of the

565 UniProt v.2021_05 combined with the contaminant database from MaxQuant was searched

566 and the protein and peptide FDR were set to 0.01. The LFQ intensities estimated by

567 MaxQuant were analyzed with the einprot R package

568 (<https://github.com/fmicompbio/einprot>) v0.7.6 as previously described (Welte *et al*, 2023).

569

570 **Data availability**

571 All custom codes used to analyze data and generate figures are available upon reasonable
572 request.

573 RNA-Seq and ChIP-seq data sets have been deposited to the Gene Expression Omnibus with
574 the data set identifier GSE250095. The mass spectrometry proteomics data have been
575 deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol *et al*, 2021)
576 partner repository with the dataset identifier PXD047795.

577

578

579 **ACKNOWLEDGEMENTS**

580 We thank the members of the Bühler lab for their constant support and discussions. Special
581 thanks go to Fabio Mohn for data deposition, and Yukiko Shimada and Nathalie Laschet for
582 technical support. We are also grateful to the FMI Functional Genomics facility for library
583 construction and next-generation sequencing and to Laurent Gelman for assistance with
584 fluorescence microscopy. This work was supported by the Novartis Research Foundation
585 (M.B.), the Japan Society for the Promotion of Science (JSPS; KAKENHI Grant Numbers
586 18H02131 and 22K05397 to Y.Y. and G.H., 19K15755 to S.O, and 23H05473 and 23H04882 to
587 M.Y.) and the Ohsumi Frontier Science Foundation (to Y.Y.).

588

589 **AUTOR CONTRIBUTIONS**

590 **Marc Bühler:** Conceptualization; resources; supervision; funding acquisition; visualization;
591 project administration; writing—original draft, review and editing. **Yoko Yashiroda:**
592 Conceptualization; resources; supervision; funding acquisition; project administration;
593 writing—review and editing. **Shin Ohsawa:** Conceptualization; formal analysis; validation;
594 investigation; visualization; methodology; funding acquisition; writing—original draft;
595 writing—review and editing. **Vytautas Iesmantavicius:** Formal analysis; investigation.
596 **Michaela Schwaiger:** Formal analysis; investigation, **Rio Hashimoto:** Formal analysis;
597 investigation. **Hiromitsu Moriyama:** Conceptualization; supervision; writing—review and
598 editing. **Hiroaki Matoba:** Conceptualization; methodology; writing—review and editing, **Go**
599 **Hirai:** Conceptualization; methodology; funding acquisition; writing—review and editing.
600 **Mikiko Sodeoka:** Conceptualization; supervision; writing— review and editing. **Atsushi**
601 **Hashimoto:** Formal analysis; investigation. **Akihisa Matsuyama:** Formal analysis;

602 investigation. **Minoru Yoshida**: Conceptualization; resources; supervision; funding

603 acquisition; project administration; writing—review and editing

604 **FIGURE LEGENDS**

605 **Figure 1. NSF-mediated adaptive growth is linked to respiration.**

606 **(A)** Scheme illustrating NCR. Cellular uptake of branched-chain amino acids (BCAA) is
607 suppressed in the presence of glutamate (Glu) or ammonium (NH_4) (left). This is bypassed
608 upon exposure to NSF (right). **(B)** Outline of the genetic screens performed in this study. **(C)**
609 GO enrichment analyses of NSF-linked genes by AnGeLi (Bitton *et al*, 2015). GO terms linked
610 to mitochondria are written in bold letters. **(D)** Venn diagram showing the overlap of NSF-
611 linked genes revealed by this study and genes that were previously shown affect respiratory
612 growth (Malecki & Bähler, 2016). **(E)** NSF-mediated adaptive growth under high ammonium
613 conditions when respiration is inhibited. **(F)** Cellular growth under high ammonium
614 conditions when respiration is induced by low glucose concentrations (0.08%). **(G)** Oxygen
615 consumption rate of cells that were exposed to synthetic NSF. *p*-value was calculated using a
616 two-sided t-test.

617

618 **Figure 2. NSF-induced changes in gene expression.**

619 **(A)** MA plot showing differential gene expression ($\log_2\text{FC}$) in cells treated with MeOH or NSF
620 for 2 hours (y-axis). x-axes denotes total transcript abundance in counts per million (cpm) in
621 both conditions. *p*-values were calculated using the wald test and adjusted with the
622 Benjamini and Hochberg (BH) method. Up- or down-regulated genes ($\text{FC} > 1.5$ and adjusted
623 *p*-value < 0.05) are highlighted in pink or blue, respectively. NSF-linked genes revealed by the
624 genetic screen are marked with a black outline. The names of the top two upregulated and
625 downregulated genes are written red and blue, respectively. Green color was used to label
626 the genes encoding transcription factors. **(B)** Scatter plot comparing $\log_2\text{FC}$ gene expression
627 changes induced by NSF (y-axes, this study) or glycerol feeding (x-axes) (Malecki *et al*, 2016).

628 **(C)** Box plot showing logFC distribution of NSF-induced gene expression changes, grouped by
629 gene expression changes induced by respiration (Malecki *et al*, 2016). *p*-values were
630 calculated using a two-sided t-test and were adjusted using the holm method. **(D)** GO
631 enrichment analysis of genes that are differentially expressed upon NSF exposure. GO term
632 enrichment is shown on the x-axis (as -log10 adjusted *p*-value) for all GO terms enriched
633 (adj.*p*-val < 0.05) among upregulated (left) or downregulated (right) genes. Representative
634 GO groups are highlighted with indicated color.

635

636 **Figure 3. Relative gene expression levels of the two most up- or downregulated genes.**

637 **(A)** NSF dose-dependent changes in gene expression. Total mRNA was prepared from cells
638 cultured in EMM(187 mM NH₄Cl)+Leu+Ade+Ura with increasing concentration of NSF (0, 5,
639 15, 50 ng/mL) for 6 hours. **(B)** Gene expression changes in response to NSF or oleic acid (Ole)
640 treatment. Total mRNA was prepared from cells cultured in EMM(187 mM
641 NH₄Cl)+Leu+Ade+Ura with NSF (50 ng/mL) or Ole (50, 100 ng/mL) for 6 hours. **(C)** *nrt1*⁺
642 expression in cultures with increasing cell density. Total mRNA was prepared from cells
643 cultured in EMM(187 mM NH₄Cl)+Leu+Ade+Ura and harvested at different cell densities
644 (OD_{600nm} = 0.01, 0.05, 0.1). **(D)** *nrt1*⁺ expression in YES or EMM medium with various NH₄Cl
645 concentrations. Total mRNA was prepared from cells cultured in YES, YES+93.5mM NH₄Cl,
646 EMM(9.35 mM NH₄Cl)+Leu+Ade+Ura, and EMM(187 mM NH₄Cl)+Leu+Ade+Ura. **(E)** Yellow
647 fluorescent protein (YFP) gene expression under the control of *nrt1*⁺ or *adh1*⁺ promoters.
648 The YFP reporter gene was integrated 13 kb from the endogenous *nrt1*⁺ locus. Total mRNA
649 was prepared from cells cultured in EMM(187 mM NH₄Cl)+Leu+Ade+Ura for 6 hours. The
650 mean and standard deviation from three independent experiments are shown. *p*-values
651 were calculated using a two-sided t-test.

652

653 **Figure 4. NSF affects occupancy of NSF-linked TFs on NSF-responsive genes.**

654 **(A)** Box plots showing log2FC distributions of the respective TF ChIP-seq signals, grouped by
655 NSF-induced gene expression changes shown in Figure 2A (down-regulated, no change, up-
656 regulation). *p*-values were calculated using a two-sided t-test and adjusted using the holm
657 method. **(B)** ChIP enrichments of NSF-linked TFs that were revealed by our screen on the
658 promoters of two representative genes that are either up- or down-regulated by 2 hours NSF
659 treatment (RNA-seq track).

660

661 **Figure 5. A chemical biology approach identifies potential NSF target proteins.**

662 **(A)** Chemical structures of NSF and alkyne-adducted NSF. 10(*R*)-hydroxy-8(*Z*)-octadecenoic
663 acid (NSF) on the left and alkyne-adducted NSF (AlkNSF) on the right. The minimum effective
664 concentration (MEC) was determined by cellular growth assays (see Figure S3A). **(B)**
665 Bioactivity assessments for AlkNSF, Ole, and AlkOle. Leu-auxotrophic cells were spotted onto
666 EMM(374 mM or 0 mM NH₄Cl)+Leu+Ade+Ura containing either NSF (10ng/mL), alkyne-
667 adducted NSF (AlkNSF) (10 or 400 ng/mL), Ole (10 or 400 ng/mL), or alkyne-adducted oleic
668 acid (AlkOle) (10 or 400 ng/mL). Plates were incubated at 30°C. **(C)** Stimulation of *nrt1*⁺
669 expression by increasing concentrations of NSF (15, 50 ng/mL, lightpink) or AlkNSF (15, 50,
670 150, 500, 1500 ng/mL, orange) was measured from cells that were grown in EMM(187 mM
671 NH₄Cl)+Leu+Ade+Ura for 6 hours. Mean and standard deviation from three independent
672 experiments are shown. **(D)** Whole cell lysates were incubated with AlkNSF in the presence
673 or absence of NSF that we used as a competitor. Proteins co-purifying with the AlkNSF probe
674 were identified by mass spectrometry. The data is displayed with enrichment values on the
675 x-axis (AlkNSF versus AlkNSF+NSF) and the *p*-values (moderated t-statistic) on the y-axis.

676 Significantly enriched proteins are labeled by their name. Significance level is indicated by

677 orange (FC >1.5 and adjusted *p*-value <0.01) or light orange color (FC >1.5 and adjusted *p*-

678 value <0.05). **(E)** NSF-mediated adaptive growth in *ayr1Δ* cells. **(F)** Transcript levels of NSF-

679 responsive genes in *ayr1Δ* cells. Total mRNA was prepared from cells cultured in

680 EMM(187mM NH₄Cl)+Leu+Ade+Ura. Cells were exposed to 50 ng/mL NSF for 6 hours. **(G)**

681 Whole *ayr1Δ* cell lysates were incubated with AlkNSF. Proteins co-purifying with the AlkNSF

682 probe were identified by mass spectrometry. The data is displayed with enrichment values

683 on the x-axes (AlkNSF versus AlkNSF+NSF) and the BH-adjusted *p*-values (moderated t-

684 statistic) on the y-axis. Significantly enriched proteins are labeled by their name or the

685 systematic gene ID. Significance level is indicated by orange (FC >1.5 and adjusted *p*-value

686 <0.01) or light orange color (FC >1.5 and adjusted *p*-value <0.05). **(H)** iBAQ values of proteins

687 copurifying with AlkNSF and AlkOle. Whole cell lysates were prepared from wild type cells.

688 *p*-values were calculated using a two-sided t-test. **(I)** NSF-mediated adaptive growth in

689 *hmt2Δ* and *gst3Δ* cells in YES medium. **(J)** Transcript levels of NSF-responsive genes in *hmt2Δ*

690 cells. Total mRNA was prepared from cells cultured in EMM(187mM NH₄Cl)+Leu+Ade+Ura.

691 Cells were exposed to 50 ng/mL NSF for 6 hours. The mean and standard deviation from

692 three independent experiments are shown. *p*-values were calculated using a two-sided t-

693 test.

694

695

696

697

698

699

700 **Figure S1. Differential gene expression analysis of cells treated with NSF for 4 and 6 hours.**

701 MA plot showing differential gene expression (log2FC) in cells treated with MeOH or NSF for
702 4 and 6 hours (y-axis). The 2-hour treatment is shown in Figure 2A. x-axis denotes total
703 transcript abundance in counts per million (cpm) in both conditions. *p*-values were
704 calculated using the wald test and adjusted with the Benjamini and Hochberg method. Up-
705 or down-regulated genes (FC >1.5 and adjusted *p*-value <0.05) are highlighted in pink or
706 blue, respectively. NSF-linked genes revealed by the genetic screen are marked with a black
707 outline. The names of the top two upregulated and downregulated genes are written red
708 and blue, respectively. Green color was used to label the genes encoding transcription
709 factors.

710

711 **Figure S2. ChIP-seq analysis of TFs required for NSF-mediated adaptive growth.**

712 **(A)** ChIP enrichments of Hsr1-FLAG, Adn2-FLAG, Php3-FLAG, Atf1-FLAG, Reb1-FLAG, and
713 Fil1-FLAG on NSF-linked genes. RNA-seq tracks show expression changes after 2 hours NSF
714 treatment (gray versus blue track). **(B)** Changes in ChIP-seq signal of the respective
715 transcription factors are shown in MA plots. Log2 fold-changes are shown on the y-axis. *p*-
716 values were calculated using the wald test and adjusted with the BH method. The x-axis
717 shows the average normalized read counts (log10) of samples with and without NSF
718 treatment. Significantly changing ChIP-seq signals (FC >|1.5| and adjusted *p*-value <0.05) are
719 highlighted in orange.

720

721 **Figure S3. Finding NSF interacting proteins with a chemical biology probe.**

722 **(A)** Determination of the minimum effective concentration of AlkNSF. *eca39Δ* cells were
723 spotted onto EMM(Glu)+ILV+Ade+Ura with decreasing AlkNSF concentrations. As a positive

724 control for this assay (PC), cells were exposed to secreted signalling factors that were purified
725 from the supernatant of an *S. pombe* culture with the ethyl acetate method (Sun *et al*,
726 2016). 50% methanol (MeOH) served as a negative control. The plate was incubated for 6
727 days at 30 °C. **(B)** Visualization of cellular AlkNSF uptake by fluorescence microscopy. Cells
728 were incubated with 5 μ M AlkNSF in EMM(187 mM NH₄Cl)+Leu+Ade+Ura for 4 hours.
729 Subsequently, AlkNSF was conjugated with azide-flour 488 by click chemistry. **(C)** iBAQ
730 values of proteins that co-purify with AlkNSF and AlkOle probes when incubated with wild
731 type cell lysates. *p*-values were calculated using a two-sided t-test. **(D)** NSF-mediated
732 adaptive growth of *hmt2Δ* or *gst3Δ* cells.

733

734 **REFERENCES**

735 Athenstaedt K & Daum G (2000) 1-Acyldihydroxyacetone-phosphate Reductase (Ayr1p) of
736 the Yeast *Saccharomyces cerevisiae* Encoded by the Open Reading Frame *YIL124w* Is a Major
737 Component of Lipid Particles. *J Biol Chem* 275: 235–240

738 Bähler J, Wu J, Longtine MS, Shah NG, III AM, Steever AB, Wach A, Philippson P &
739 Pringle JR (1998) Heterologous modules for efficient and versatile PCR-based gene
740 targeting in *Schizosaccharomyces pombe*. *Yeast* 14: 943–951

741 Bartolomeo FD, Malina C, Campbell K, Mormino M, Fuchs J, Vorontsov E, Gustafsson CM
742 & Nielsen J (2020) Absolute yeast mitochondrial proteome quantification reveals trade-off
743 between biosynthesis and energy generation during diauxic shift. *Proc Natl Acad Sci* 117:
744 7524–7535

745 Bitton DA, Schubert F, Dey S, Okoniewski M, Smith GC, Khadayate S, Pancaldi V, Wood V
746 & Bähler J (2015) AnGeLi: A Tool for the Analysis of Gene Lists from Fission Yeast.
747 *Front Genet* 6: 330

748 Brauer MJ, Saldanha AJ, Dolinski K & Botstein D (2005) Homeostatic Adjustment and
749 Metabolic Remodeling in Glucose-limited Yeast Cultures. *Mol Biol Cell* 16: 2503–2517

750 Chen H, Fujita M, Feng Q, Clardy J & Fink GR (2004) Tyrosol is a quorum-sensing
751 molecule in *Candida albicans*. *Proc Natl Acad Sci* 101: 5048–5052

752 Chiu P-C, Nakamura Y, Nishimura S, Tabuchi T, Yashiroda Y, Hirai G, Matsuyama A &
753 Yoshida M (2022) Ferrichrome, a fungal-type siderophore, confers high ammonium
754 tolerance to fission yeast. *Sci Rep* 12: 17411

755 Cox J, Hein MY, Luber CA, Paron I, Nagaraj N & Mann M (2014) Accurate Proteome-wide
756 Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio
757 Extraction, Termed MaxLFQ. *Mol Cell Proteom* 13: 2513–2526

758 Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV & Mann M (2011) Andromeda:
759 A Peptide Search Engine Integrated into the MaxQuant Environment. *J Proteome Res* 10:
760 1794–1805

761 Cuevasanta E, Möller MN & Alvarez B (2017) Biological chemistry of hydrogen sulfide and
762 persulfides. *Arch Biochem Biophys* 617: 9–25

763 Dickinson & Schweizer M (2019) Metabolism and Molecular Physiology of *Saccharomyces*
764 *Cerevisiae*.

765 Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M &
766 Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 29: 15–21

767 Filipovic MR, Zivanovic J, Alvarez B & Banerjee R (2018) Chemical Biology of H₂S
768 Signaling through Persulfidation. *Chem Rev* 118: 1253–1337

769 Garcia DM, Dietrich D, Clardy J & Jarosz DF (2016) A common bacterial metabolite elicits
770 prion-based bypass of glucose repression. *Elife* 5: e17978

771 Gaspar JM (2018) Improved peak-calling with MACS2. *bioRxiv*: 496521

772 Goossens KVY, Ielasi FS, Nookaew I, Stals I, Alonso-Sarduy L, Daenen L, Mulders SEV,
773 Stassen C, Eijsden RGE van, Siewers V, *et al* (2015) Molecular Mechanism of
774 Flocculation Self-Recognition in Yeast and Its Role in Mating and Survival. *mBio* 6:
775 e00427-15

776 Hagman A & Piškur J (2015) A Study on the Fundamental Mechanism and the Evolutionary
777 Driving Forces behind Aerobic Fermentation in Yeast. *PLoS ONE* 10: e0116942

778 Hammer BK & Bassler BL (2003) Quorum sensing controls biofilm formation in *Vibrio*
779 *cholerae*. *Mol Microbiol* 50: 101–104

780 Heslot H, Goffeau A & Louis C (1970) Respiratory Metabolism of a “Petite Negative” Yeast
781 *Schizosaccharomyces pombe* 972h⁻. *J Bacteriol* 104: 473–481

782 Hornby JM, Jensen EC, Liseck AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P &
783 Nickerson KW (2001) Quorum Sensing in the Dimorphic Fungus *Candida albicans* Is
784 Mediated by Farnesol. *Appl Environ Microbiol* 67: 2982–2992

785 Hothersall JS & Ahmed A (2013) Metabolic Fate of the Increased Yeast Amino Acid Uptake
786 Subsequent to Catabolite Derepression. *J Amino Acids* 2013: 461901

787 Jarosz DF, Brown JCS, Walker GA, Datta MS, Ung WL, Lancaster AK, Rotem A, Chang A,
788 Newby GA, Weitz DA, *et al* (2014) Cross-Kingdom Chemical Communication Drives a
789 Heritable, Mutually Beneficial Prion-Based Transformation of Metabolism. *Cell* 158:
790 1083–1093

791 Kim D-U, Hayles J, Kim D, Wood V, Park H-O, Won M, Yoo H-S, Duhig T, Nam M,
792 Palmer G, *et al* (2010) Analysis of a genome-wide set of gene deletions in the fission yeast
793 *Schizosaccharomyces pombe*. *Nat Biotechnol* 28: 617–623

794 Kuzdere T, Flury V, Schalch T, Iesmantavicius V, Hess D & Bühler M (2023) Differential
795 phosphorylation of Clr4SUV39H by Cdk1 accompanies a histone H3 methylation switch
796 that is essential for gametogenesis. *EMBO Rep* 24: e55928

797 Kwon E-JG, Laderoute A, Chatfield-Reed K, Vachon L, Karagiannis J & Chua G (2012)
798 Deciphering the Transcriptional-Regulatory Network of Flocculation in
799 *Schizosaccharomyces pombe*. *PLoS Genet* 8: e1003104

800 Lawrence CL, Jones N & Wilkinson CRM (2009a) Stress-Induced Phosphorylation of *S.*
801 *pombe* Atf1 Abrogates Its Interaction with F Box Protein Fbh1. *Curr Biol* 19: 1907–1911

802 Lawrence CL, Maekawa H, Worthington JL, Reiter W, Wilkinson CRM & Jones N (2007)
803 Regulation of *Schizosaccharomyces pombe* Atf1 Protein Levels by Sty1-mediated
804 Phosphorylation and Heterodimerization with Pcr1. *J Biol Chem* 282: 5160–5170

805 806 Lawrence M, Gentleman R & Carey V (2009b) rtracklayer: an R package for interfacing with genome browsers. *Bioinformatics* 25: 1841–1842

807 808 Liao Y, Smyth GK & Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. *Bioinformatics* 30: 923–930

809 810 Ljungdahl PO & Daignan-Fornier B (2012) Regulation of Amino Acid, Nucleotide, and Phosphate Metabolism in *Saccharomyces cerevisiae*. *Genetics* 190: 885–929

811 812 813 Lock A, Rutherford K, Harris MA, Hayles J, Oliver SG, Bähler J & Wood V (2018) PomBase 2018: user-driven reimplementation of the fission yeast database provides rapid and intuitive access to diverse, interconnected information. *Nucleic Acids Res* 47: gky961–

814 815 Love MI, Huber W & Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol* 15: 550

816 817 Magasanik B & Kaiser CA (2002) Nitrogen regulation in *Saccharomyces cerevisiae*. *Gene* 290: 1–18

818 819 Malecki M & Bähler J (2016) Identifying genes required for respiratory growth of fission yeast. *Wellcome Open Res* 1: 12

820 821 822 Malecki M, Bitton DA, Rodríguez-López M, Rallis C, Calavia NG, Smith GC & Bähler J (2016) Functional and regulatory profiling of energy metabolism in fission yeast. *Genome Biol* 17: 240

823 824 Merlini L, Dudin O & Martin SG (2013) Mate and fuse: how yeast cells do it. *Open Biol* 3: 130008

825 826 Miller MB & Bassler BL (2001) QUORUM SENSING IN BACTERIA. *Annu Rev Microbiol* 55: 165–199

827 828 Mishanina TV, Libiad M & Banerjee R (2015) Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. *Nat Chem Biol* 11: 457–464

829 830 831 Mitsuzawa H (2006) Ammonium transporter genes in the fission yeast *Schizosaccharomyces pombe*: role in ammonium uptake and a morphological transition. *Genes Cells* 11: 1183–1195

832 833 Mukherjee S & Bassler BL (2019) Bacterial quorum sensing in complex and dynamically changing environments. *Nat Rev Microbiol* 17: 371–382

834 835 Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, Barrow RK, Yang G, Wang R & Snyder SH (2009a) H₂S Signals Through Protein S-Sulphydrylation. *Sci Signal* 2: ra72

836 837 Mustafa AK, Gadalla MM & Snyder SH (2009b) Signaling by Gasotransmitters. *Sci Signal* 2: re2

838 839 Nair A & Sarma SJ (2021) The impact of carbon and nitrogen catabolite repression in microorganisms. *Microbiol Res* 251: 126831

840 841 Paulo E, García-Santamarina S, Calvo IA, Carmona M, Boronat S, Domènech A, Ayté J & Hidalgo E (2014) H₂O₂ scavenging in fission yeast. *Mol Microbiol* 92: 246–257

842 843 844 845 Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S, Kundu DJ, Prakash A, Frericks-Zipper A, Eisenacher M, *et al* (2021) The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. *Nucleic Acids Res* 50: D543–D552

846 847 Pfeiffer T & Morley A (2014) An evolutionary perspective on the Crabtree effect. *Front Mol Biosci* 1: 17

848 849 850 Ploier B, Scharwey M, Koch B, Schmidt C, Schatte J, Rechberger G, Kollroser M, Hermetter A & Daum G (2013) Screening for Hydrolytic Enzymes Reveals Ayr1p as a Novel Triacylglycerol Lipase in *Saccharomyces cerevisiae*. *J Biol Chem* 288: 36061–36072

851 852 853 Pluskal T, Sajiki K, Becker J, Takeda K & Yanagida M (2016) Diverse fission yeast genes required for responding to oxidative and metal stress: Comparative analysis of glutathione-related and other defense gene deletions. *Genes Cells* 21: 530–542

854 855 856 Ramage G, Saville SP, Wickes BL & López-Ribot JL (2002) Inhibition of *Candida albicans* Biofilm Formation by Farnesol, a Quorum-Sensing Molecule. *Appl Environ Microbiol* 68: 5459–5463

857 858 859 Ries LNA, Beattie S, Cramer RA & Goldman GH (2018) Overview of carbon and nitrogen catabolite metabolism in the virulence of human pathogenic fungi. *Mol Microbiol* 107: 277–297

860 861 Sato M, Dhut S & Toda T (2005) New drug-resistant cassettes for gene disruption and epitope tagging in *Schizosaccharomyces pombe*. *Yeast* 22: 583–591

862 863 864 865 Shimizu T, Ida T, Antelo GT, Ihara Y, Fakhoury JN, Masuda S, Giedroc DP, Akaike T, Capdevila DA & Masuda T (2023) Polysulfide metabolizing enzymes influence SqrR-mediated sulfide-induced transcription by impacting intracellular polysulfide dynamics. *PNAS Nexus* 2: pgad048

866 867 868 Sun X, Hirai G, Ueki M, Hirota H, Wang Q, Hongo Y, Nakamura T, Hitora Y, Takahashi H, Sodeoka M, *et al* (2016) Identification of novel secreted fatty acids that regulate nitrogen catabolite repression in fission yeast. *Sci Rep-uk* 6: 20856

869 870 871 Takahashi H, Sun X, Hamamoto M, Yashiroda Y & Yoshida M (2012) The SAGA Histone Acetyltransferase Complex Regulates Leucine Uptake through the Agp3 Permease in Fission Yeast. *J Biol Chem* 287: 38158–38167

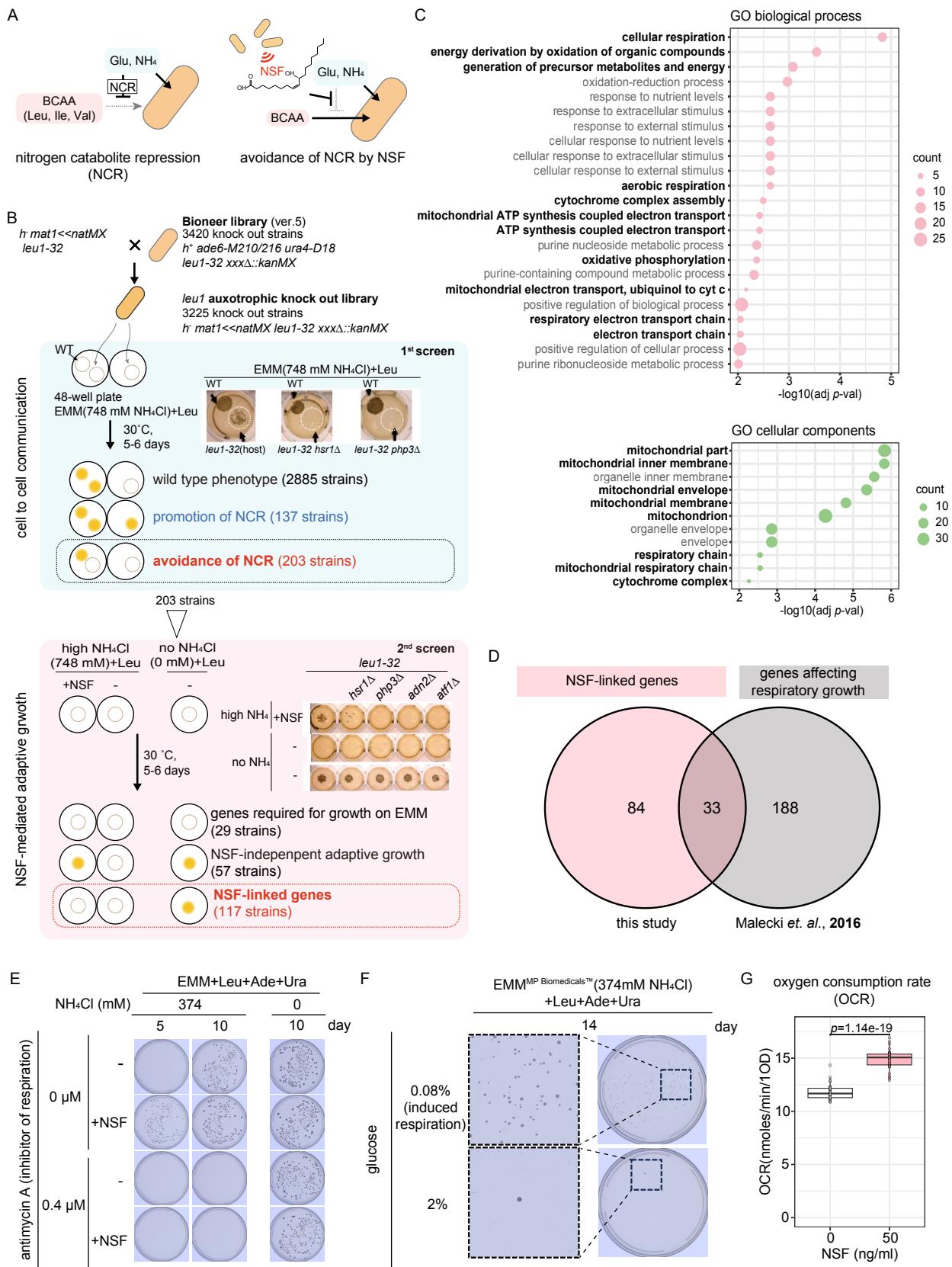
872 873 874 Takeda K, Starzynski C, Mori A & Yanagida M (2015) The critical glucose concentration for respiration-independent proliferation of fission yeast, *Schizosaccharomyces pombe*. *Mitochondrion* 22: 91–95

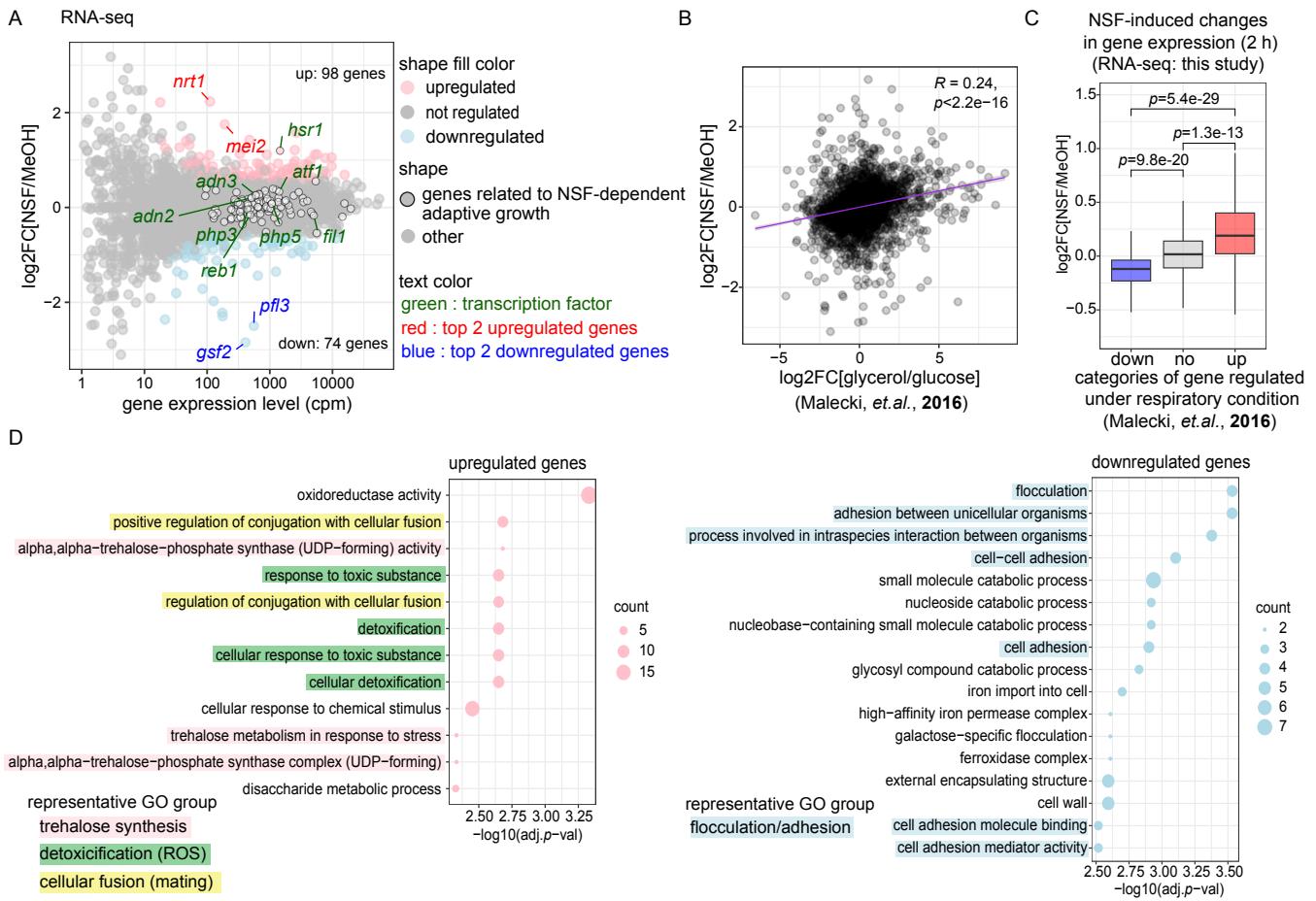
875 876 877 Tian X, Zhou D, Zhang Y, Song Y, Zhang Q, Bu D, Sun Y, Wu L, Long Y, Tang C, *et al* (2021) Persulfidation of transcription factor FOXO1 at cysteine 457: A novel mechanism by which H₂S inhibits vascular smooth muscle cell proliferation. *J Adv Res* 27: 155–164

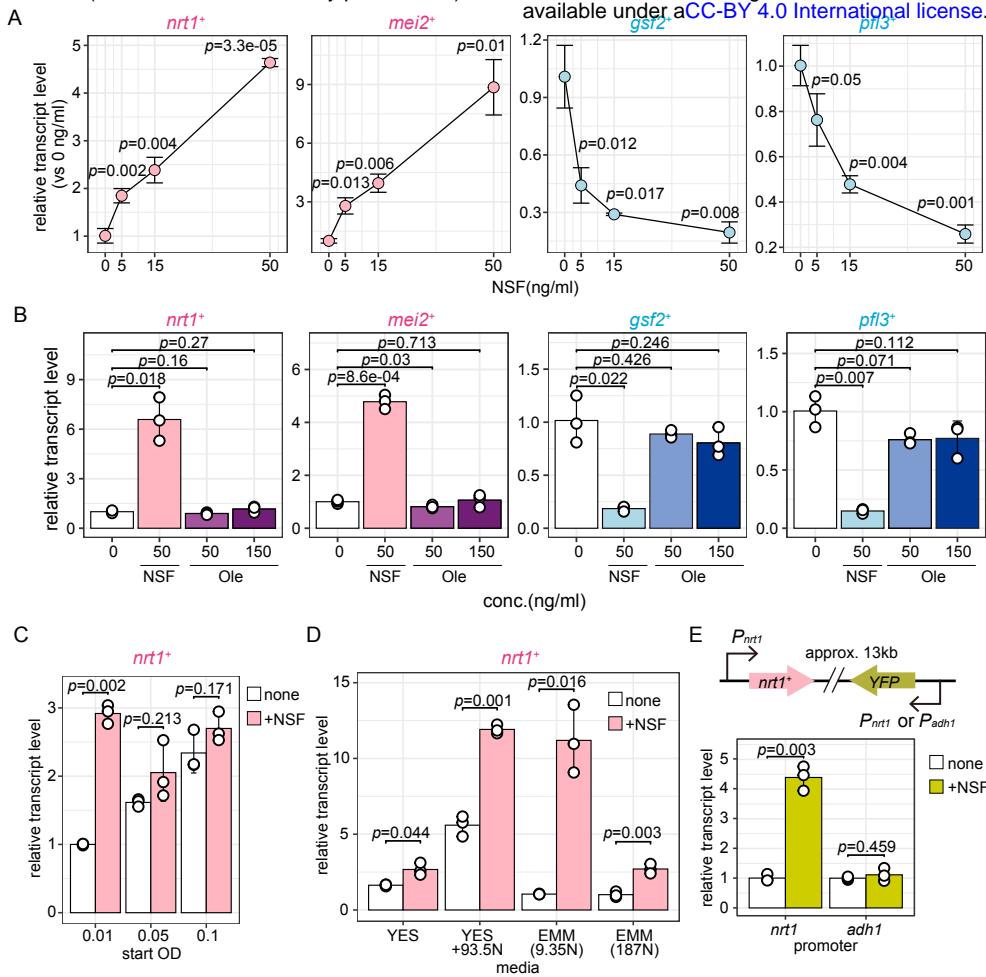
878 Weghe JGV & Ow DW (1999) A Fission Yeast Gene for Mitochondrial Sulfide Oxidation. *J*
879 *Biol Chem* 274: 13250–13257

880 Welte T, Goulois A, Stadler MB, Hess D, Soneson C, Neagu A, Azzi C, Wisser MJ,
881 Seebacher J, Schmidt I, *et al* (2023) Convergence of multiple RNA-silencing pathways on
882 GW182/TNRC6. *Mol Cell* 83: 2478-2492.e8

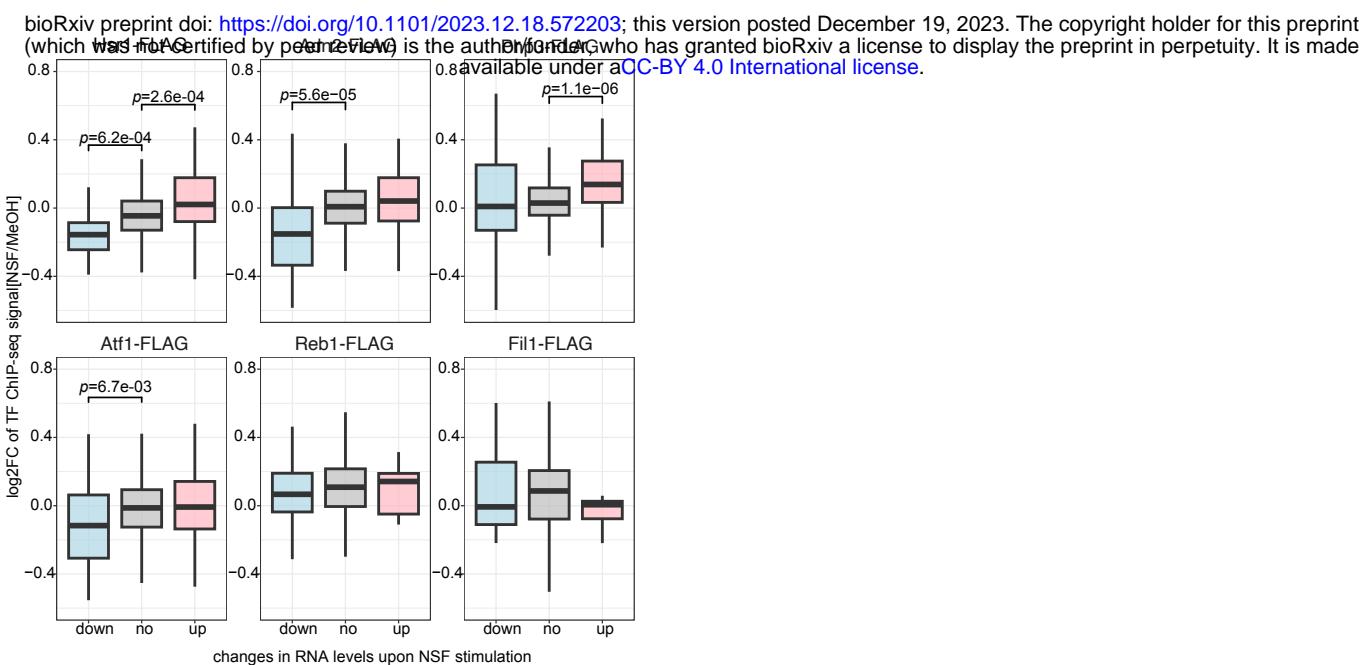
883 Wright MH & Sieber SA (2016) Chemical proteomics approaches for identifying the cellular
884 targets of natural products. *Nat Prod Rep* 33: 681–708

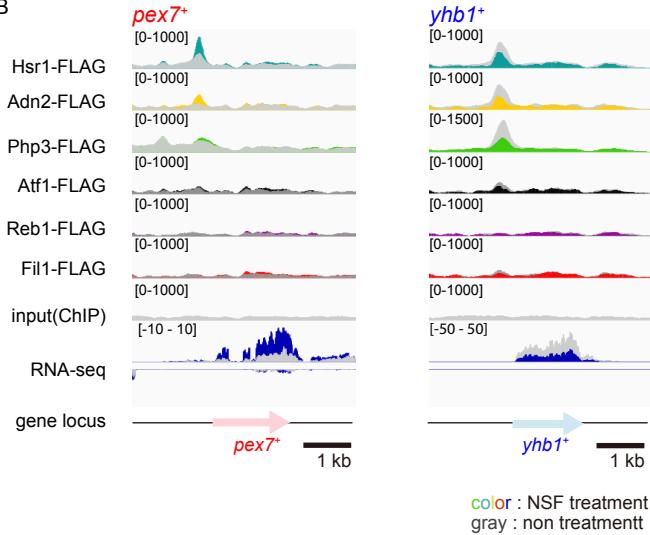

885 Yao G, Gou S, Zhong T, Wei S, An X, Sun H, Sun C, Hu K & Zhang H (2023) Persulfidation
886 of transcription factor MYB10 inhibits anthocyanin synthesis in red-skinned pear. *Plant*
887 *Physiol* 192: 2185–2202

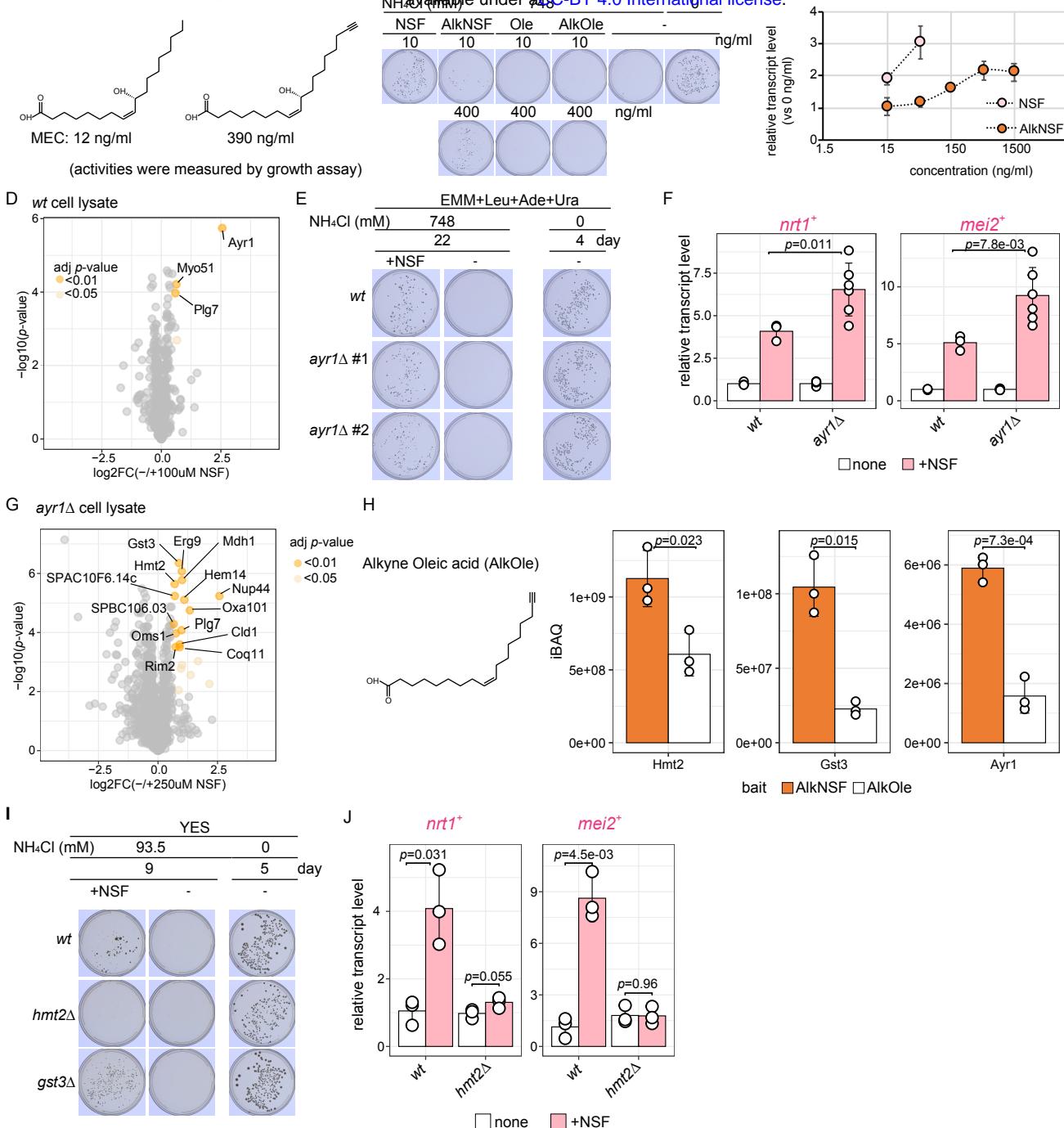

888 Yashiroda Y & Yoshida M (2019) Intraspecies cell–cell communication in yeast. *FEMS*
889 *Yeast Res* 19: foz071


890 Zhang W, Du G, Zhou J & Chen J (2018) Regulation of Sensing, Transportation, and
891 Catabolism of Nitrogen Sources in *Saccharomyces cerevisiae*. *Microbiol Mol Biol R* 82:
892 e00040-17

893 Zhang X, Xin Y, Chen Z, Xia Y, Xun L & Liu H (2021) Sulfide-quinone oxidoreductase is
894 required for cysteine synthesis and indispensable to mitochondrial health. *Redox Biol* 47:
895 102169


896





A

B

