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Abstract

Predicting binding of a small molecule to the human proteome by reverse docking

methods, we can predict the target interactions of drug compounds in the human body,

as well as further evaluate their potential off-target effects or toxic side effects. In this

study, we constructed 11 pipelines to evaluate and benchmark thoroughly the predic-

tive capabilities of these reverse docking pipelines. The pipelines were built using site

prediction tools (PointSite and SiteMap) based on the AF2 human proteome, docking

programs (Glide and AutoDock Vina), and scoring functions (Glide, Autodock Vina,

RTMScore, DeepRMSD, OnionNet-SFCT). The results show that pipeline glide_sfct

(PS) exhibited the best target prediction ability and successfully predicted the similar

proteins of native targets. This finding provides important clues for understanding the

promiscuity between the drug ligand and the whole human proteome. In general, our
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study has the potential to increase the success rate and reduce the development timeline

of drug discovery, thereby saving costs.

Introduction

Drug discovery is time-consuming and requires a significant amount of funding, with an

average duration of over 10 years and a cost of approximately $350 million per drug to

reach the market. Furthermore, approximately 90% of drug candidates studied in humans

do not successfully progress through clinical trials due to concerns regarding their safety

and efficacy.1,2 Toxic side effects or ineffectiveness of drugs often stem from the promiscuity

of the drug itself. A promiscuous ligand is typically described as a small molecule that

exhibits activity against two or more distinct protein targets.3 In the past decades, the

one-target, one-drug paradigm has been the dominating drug discovery approach. However,

recent advances in experimental and computational studies have shown that small-molecule

drugs are rarely selective enough to interact solely with their designated targets.4–6 More

than 50% drugs interact with more than five targets, usually resulting in unexpected side

effects or toxicity.5,7–10 This is likely a conservative view of drug selectivity which is limited

by the lack of completeness of drug–target interaction data. After entering the human

body, each drug interacts with a series of proteins. Among these interactions, the ones with

protein targets relevant to the disease contribute to the main therapeutic effects known as

polypharmacology. The most successful long-established antibiotics actually act on multiple

targets.11,12 However, interactions of drugs with other non-disease-related targets often result

in side effects. Drugs may also interact with targets related to other diseases, known as drug

repurposing. The essence of all these phenomena can be attributed to the promiscuity of

the ligand. Thus, it is critical to identify all potential targets or weaker binders in humans

for small molecules to better understand ligand promiscuity. It can anticipate and explain

side effects in advance, avoid off-target effects, enhance drug efficacy, and have a higher
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probability to obtain favorable clinical results.

Protein target prediction, also known as target fishing, helps to identify the potential

targets of a query molecule.13 As we all know, experimental methods for predicting targets

are time-consuming and expensive. Thus, computational target prediction has become an

indispensable tool that can rapidly profile a ligand against various macromolecular targets

and guide experimental design by only testing fewer proteins. These computational methods

can be classified into ligand-based and structure-based methods.14 Ligand-based methods

simplify the problem to a similarity-searching problem, only utilizing ligand information to

predict targets indirectly.15 Compared to other methods, structure-based methods, such as

reverse docking, have significant advantages. They utilize the three-dimensional structure

of proteins and information about ligand binding pockets to predict the binding mode and

strength of a ligand.

Reverse virtual screening has increasingly become a key approach for polypharmacology,

drug repurposing, and the identification of new drug targets.16 With the rapid growth of

available experimental protein structures and the development of reliable protein structure

prediction tools,17,18 the accuracy of reverse docking to predict the protein-ligand inter-

action could be enhanced. For example, Cai et al. successfully identified anti-Helicobacter

pylori agent targets of an active natural product and its derivative compound using a reverse

docking approach. The result was confirmed with the X-ray crystallography.19 In a study

conducted in 2012, Eric and colleagues employed Tarfisdock to perform reverse docking based

on a set of protein targets. Through this approach, they successfully identified potential tar-

gets that could elucidate the cytotoxic effects of aryl-aminopyridines and their derivatives.20

These successful cases demonstrate the significant contribution of reverse docking to predict-

ing protein targets for small molecules. Reverse docking has emerged as a valuable tool in

small-molecule target predictions.

Despite significant advances in reverse docking, this method still faces practical limi-

tations. For instance, there is limited availability of three-dimensional target structures,
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difficulties in determining the binding sites for small molecules and side-chain orientations,

and challenges in selecting appropriate docking programs and scoring functions. In addition,

the scoring functions of current docking programs are primarily designed for docking or vir-

tual screening of small molecules, and there are few specifically optimized scoring functions

for reverse docking6 . Interestingly, in large and ultra-large ligand screening practices, cur-

rent scoring functions suffer from very high false positive rates21 . Therefore, the same or

worse situations would be anticipated in reverse screening tasks.

Here, to comprehensively evaluate the current state of reverse docking for target fish-

ing, we systematically evaluated the impact of various factors using AlphaFold2 predicted

structures at the human proteome level (Figure 1). Several factors including binding sites

as well as pocket residue flexibilities, docking/sampling methods, and scoring functions may

affect the pipeline performance. Our findings provide key insights into the current capabili-

ties and future opportunities for target fishing and drug discovery powered by AI-predicted

protein structures. Moreover, the optimal protocol for reverse docking could be selected as a

proteome-level target fishing platform, which can be used to discover potential drug targets,

evaluate side effects and off-target effects, and accelerate the discovery and development of

drugs, including drug repositioning and multi-target or polypharmacological ones.

Materials and Methods

Benchmark Datasets

Benchmark Dataset of the Human Proteome

The structures of the proteins in human proteome were downloaded from the AlphaFold

Protein Structure Database (https://alphafold.ebi.ac.uk/).22 The total number of proteins is

23,391, and each protein has a unique Uniprot ID. Low-quality structures, such as disordered

protein structures or those lacking well-defined ligand binding pockets, were removed. After
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Figure 1: The workflow of reverse docking pipelines in the present study.

this filtration, 14,424 protein structures retained (with individual structure sequence lengths

of no more than 1,500 amino acids), representing a total of 12,195 actual proteins.

Benchmark Dataset of Ligands

The unique ligand dataset for benchmarking was adopted from the PDBbind Core set, version

2016.23 It consists of 91 small molecules in complex with 25 human protein targets, where

the affinity values (Ki, Kd or IC50) for these complexes are below 1 uM. The structures of

the 91 complexes and the SDF files of ligands were collected from the PDBbind database.

By comparing the predicted protein structure from AlphaFold2 (AF2) with the experimental
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structure, we observed that the native structure of protein Q15370 (PDB ID 4w9h24) consists

of three domains. However, the AF2 prediction only identified one domain, which does not

correspond to the domain involved in binding the small molecule 3JF. Consequently, 90

ligands were selected for the subsequent calculations.

Binding Site Determination

The docking-site centers were determined using two distinct algorithmic approaches, SiteMap

(SM)25,26 or PointSite (PS).27 SiteMap is geometry-based and employs a scoring function

called SiteScore, which assesses and ranks the suitability of different sites for ligand binding

by searching non-protein grid point clusters. Here, with the default setting, we retained a

maximum of the top five potential sites for each protein based on the SiteScore ranking.

PointSite is a template-free ligand-binding site prediction algorithm based on a point

cloud deep learning model that can provide the probability of each atom in a protein for lig-

and binding. The pocket region of the protein is defined as the area around atoms with high

probabilities. Unlike other geometry-based algorithms (such as Fpocket28), PointSite is a

protein-centric prediction method that has shown good performance on multiple test sets. In

this paper, we employed a method to determine the pocket location based on protein atoms.

The specific steps were as follows. PointSite was used to predict the atoms forming the bind-

ing sites by assigning scores/probability to each atom. Atoms with binding site probability

larger than 0.7 were assigned as binding site atoms. If one binding-site atom is larger than 10

Å away from all found centers of the binding pockets, a new binding pocket will be assigned

whose center is the position of this binding site atom. New binding site atoms will be added

to the binding site if the distance between the atom and the center of the binding pocket is

less than 10 Å. The center of the binding pocket was updated by averaging all constituent

binding site atoms. The center position of all found binding pockets was taken as the center

for docking. The Uniprot IDs of the proteins and the predicted binding sites by PointSite

have been deposited at https://github.com/molu851-luo/Reverse-docking-benchmark.
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Molecular Docking and Rescoring

Docking with Autodock Vina

Both normal and flexible docking experiments were conducted using Autodock Vina, a ver-

satile docking software widely utilized in the field. The former involved docking a flexible

ligand to a rigid protein, while the latter entailed docking a flexible ligand to a flexible

protein. The docking box centers were determined by PS, and the docking box size was 15

Å and the exhaustiveness was 32. For Vina-based flexible docking, the flexible residues were

chosen based on the distance between the side-chain atoms and the center of the binding

pocket. Three residues with the shortest distance to the binding pocket center were chosen

as the flexible residues. Gly, Ala, and Pro residues were not considered flexible residues.

Docking with Glide in Maestro

The proteins were prepared using Rosetta, and the Schrodinger LigPrep program29 (Schrödinger

Release 2023-4: LigPrep, Schrödinger, LLC, New York, NY, 2023.) was utilized for the

preparation of ligands with the OPLS4 force field.30 The docking box center was determined

using two site prediction methods: an internal tool in Maestro, SiteMap, and an exter-

nal tool, PS. For the reverse docking task, the Standard Precision (SP) docking mode of

Glide31–33 in Maestro was utilized, employing the default docking parameters. The entire

reverse-docking process was executed using the XDOCK script, ensuring a streamlined and

efficient workflow. XDOCK is a reverse global docking tool based on the Schrödinger suite

of software (https://github.com/Wang-Lin-boop/XDOCK/blob/main/XDOCK).

Rescoring Docking Poses of Ligands with Scoring Functions Beyond the Built-in

Ones

In addition to the default scoring functions in AutoDock Vina (Vina score) and Glide (Glide-

SP Score), alternative methods have also been considered for rescoring the ligand docking
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poses, including some machine learning-based or deep learning-based scoring methods, such

as OnionNet-SFCT (SFCT),34 RTMscore35 and DeepRMSD.36 In this case, SFCT is a correc-

tion term used to combine with other existing traditional scoring functions. The combination

of Vina with a weight of 0.8.34 Here, in the combination of scoring functions Glide-SP and

SFCT (with a weight of 0.8). Through a step-wise increment in the proportion of scoring

function SFCT from 0.1 to 0.9 at intervals of 0.1, we observed that the optimal performance

was attained when its weight reached 0.8, as shown in Figure S1. This finding suggests that

SFCT significantly contributed to the achieved results. So, when comparing the performance

of the Glide-SP and SFCT combinations with other pipelines, setting SFCT at 0.8 consis-

tently yielded superior results. For each scoring approach, only the best docking pose of a

particular protein was kept for data analysis.

In summary, we considered the distinct combination of Glide-SP/AutoDock Vina dock-

ing poses, PointSite/SiteMap site prediction methods, and other scoring functions, such as

RTMscore, deepRMSD, the combination of SFCT with Glide-SP/AutoDock Vina (Figure

1).

Assessment Methods

Protein Classification

Due to the fact that any scoring function used in molecular docking cannot give reliable

predictions for all protein families, the tested proteins were clustered into different protein

families, and the prediction accuracy for individual protein families was assessed. In order

to explore docking programs and scoring functions’ performance among different protein

families, proteins in the test set were clustered into several protein families utilizing the

Structural Classification of Proteins extended (SCOPe) database.37 As a result, 90 true

targets were classified into 15 protein families.

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2023. ; https://doi.org/10.1101/2023.12.16.572027doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.16.572027
http://creativecommons.org/licenses/by-nc-nd/4.0/


Evaluation of Distinct Reverse Docking Protocols

The success rate (SR) is a metric that measures the ability to correctly identify the true

target from the top N rankings. The following equation quantitatively defines it:

SRtopx =
ntopx

ntotal

here, the ntopx is the number of true targets ranked in top x. The ntotal is the total number

of true targets, and the predicted site is in the right pocket. For each ligand, the top 100

ranked proteins are considered as predicted targets. Proteins that are ranked in the top 100

and correctly identified with pockets are considered True Positives (TP), while those that

are not correctly identified with pockets are considered False Positives (FP).

The conformation-searching ability and scoring function of current docking programs are

not precise enough to reproduce the experimental conformation of all ligands. To focus on

the scoring effects, we considered ligands with a small root mean square deviation (RMSD)

between their docking and experimental conformations to evaluate the target prediction

effect of the 11 reverse docking pipelines.

Results

1. Distribution of the Protein and Ligand Test Datasets

Classifying proteins based on their folds enables a detailed and comprehensive understanding

of their structural and evolutionary relationships. It is important to note that the perfor-

mance of docking tools and scoring functions may vary across different types of protein

targets.38,39 Therefore, to account for these variations, we utilized SCOPe (Structural Clas-

sification of Proteins - extended), a hierarchical classification system, to classify the proteins

in our test set. The classification allows us to better understand the results within specific

protein fold categories. As a result, the 25 targets were classified into 14 protein families
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Figure 2: Hierarchical cluster analysis heatmap: The result of cluster analysis of the simi-
larity for (A) small molecules and (B) proteins. Proteins from the same protein family are
displayed in the chart using the same color. There are 25 proteins belonging to 15 different
families, categorized according to Scope.

belonging to five main classes (Figure 2A): a, all alpha proteins; b, all beta proteins; c, alpha

and beta proteins (a/b); d, alpha and beta proteins (a+b); g, small proteins. However, our

test set does not include proteins classified under the main classes e (multi-domain proteins)

and f (membrane and cell surface proteins and peptides) in SCOPe. In detail, the tar-

get dataset includes a.123.1.1 (Nuclear receptor ligand-binding domain, 1 protein), b.47.1.2

(Eukaryotic proteases, 2 proteins), b.50.1.2 (Pepsin-like, 1 protein), b.74.1.1 (Carbonic anhy-

drase, 1 protein), c.45.1.2 (Higher-molecular-weight phosphotyrosine protein phosphatases,

1 protein), d.92.1.11 (Matrix metalloproteases, catalytic domain, 1 protein), d.122.1.1 (Heat

shock protein 90, HSP90, N-terminal domain, 1 protein), d.144.1.7 (Protein kinases, cat-

alytic subunit, 7 proteins) and g.3.11.1(EGF-type module, 1 protein). Additionally, there

are automated matches in the following protein families: a.29.2.0 (1 protein), a.211.1.0 (1

protein), b.47.1.0 (1 protein), c.94.1.0 (1 protein), and d.144.1.0 (2 proteins).
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Then, to examine the distribution of proteins and small molecules in the test set, we

calculated their similarity (Figure 2A). First, DeepAlign40 was used to calculate the similarity

(TM-score41) between the experimental structure of a specific target and the entire set of

AF2-predicted human protein structures.22 Among the multiple experimental structures of a

protein, the one with the lowest resolution was selected for comparison. In our test set, three

protein groups exhibit structural similarity among the 25 proteins. The first group consists of

the following proteins: Q16539, P24941, O14757, O14965, P11309, O60674, P23458, P00519,

and Q08881. All of these proteins belong to the d.144.1.0 and d.144.1.7 families. The

second group comprises P00749, P00734, P00742, P03951. Lastly, the third group consists

of P37231, P03372, and P10275. The remaining proteins show relatively low structural

similarity to each other. Specifically, the experimental structure of Q9H2K2 exhibits poor

similarity to the AF2 structure, with a similarity score of only TM-score=0.743. Based on

an examination of the experimental structure of Q9H2K2 and the AF2 structure, it has been

observed that there is a significant difference in the pocket region where the small molecule

AJ6 binds. This discrepancy is primarily due to the lower quality of the AF2 predicted

structure. Consequently, the identification of the native target Q9H2K2 of AJ6 becomes

challenging due to these structural variations.

Next, we used the Morgan fingerprint in RDKit to calculate the similarity matrix of

the molecules and assessed their similarity using the Tanimoto similarity score.42 As Figure

2B shows, the majority of small molecules have similarity scores concentrated in the lower

range, below 0.4 among the 90 small molecules. However, 25 pairs of small molecules have a

similarity greater than 0.5 (Figure S2 ). Among them, 22 pairs share the same protein target.

For example, among the five ligands (15T, 1J5, 1J6, 0NT, and 1Q4 ) targeting P23458, three

of them (15T, 1J6, and 1J5) have a similarity greater than 0.8. In addition, ligands targeting

the same protein family might also be similar. For example, JAK and 0NV target O60674

which belongs to the same protein family (non-receptor tyrosine-protein kinase, d.144.1.0)

with another target protein (Uniprot ID P23458). Interestingly, the similarity between JAK
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and 1J5/1J6 is about 0.5 while the similarity between 0NV and 0NT is 0.56. However, a pair

of molecules, DFL and WST, is not in complex with the same protein or the same protein

family. They are ligands of two unrelated proteins.

In summary, we selected strong binding complexes (where only human proteins were

considered) from the PDBbind core set as the test set for reverse docking.23 Regarding

similarity, except for the low-quality AF2-predicted structure of Q9H2K2, the experimental

and AF2-predicted structures exhibited a high structure similarity with TM-scores larger

than 0.8. This shows that the structural quality of the AF2 predictions is of high quality.

Similar small molecules are consistently bound to the same protein or protein family in our

test set. This observation reflects the general principle that similar small molecules tend to

bind to structurally similar proteins.43–45 Despite this, there is one exception where the DFL

and WST molecules are similar but bind to two unrelated proteins. These examples highlight

the promiscuity of interactions between small molecules and proteins. Most of the small

molecules in our test set exhibit low similarity, showcasing diverse structures. This diversity

is advantageous for our benchmarking purposes as it enables us to assess the performance of

our algorithm across a wide variety of compounds and obtain robust conclusions.

2. The Performance of Binding-Site Prediction

In the present work, two ligand-binding site prediction tools, PointSite and SiteMap, have

been employed in combination with Glide docking to evaluate the importance of site predic-

tion reliably and accuracy in reverse docking. Our results showed that the performance of

the two prediction tools is slightly different (Figure 3). For the 25 predicted protein struc-

tures, PointSite predicted a total of 208 binding sites, with 76 of them correct. Successful

predictions were made for 71 structures and 21 proteins, resulting in a success rate of 84.0%.

On the other hand, SiteMap predicted a total of 452 binding sites, with 70 of them being

correct. Successful predictions were made for 70 structures and 22 proteins, resulting in a

success rate of 88.0%. In terms of individual proteins, SiteMap has a slightly higher success
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P00742Coagulation factor X (4)

SiteMapPointSite
Num: 208
Right: 76
Hit structures: 71
Hit rate:78.9%
Hit proteins: 21
Hit rate: 84.0%

Num: 452
Right: 70
Hit structures: 70
Hit rate:77.8%
Hit proteins: 22
Hit rate: 88%

Prediction failure: non-native pocket

UIDProtein names

Q9H2K24Poly… (5)

P37231
P03372
P10275
Q9Y233

O60885Bromodomain-containing protein 4 (3)
1Peroxisome… (4)
Estrogen receptor (4)
Androgen receptor (4)
2cAMP… (3)

Serine/threonine-protein kinase pim-1 (5)

P07900
O60674
P23458
O14965
P11309
P24941
Q16539
O14757
P00519
Q08881

P39900

Tyrosine-protein kinase JAK1 (5)
Tyrosine-protein kinase JAK2 (5)
Heat shock protein HSP 90-alpha (3)

Aurora kinase A (5)

Cyclin-dependent kinase 2 (4)
Mitogen-activated protein kinase 14 (4)
Serine/threonine-protein kinase Chk1 (2)
Tyrosine-protein kinase ABL1 (3)
Tyrosine-protein kinase ITK/TSK (4)

Macrophage metalloelastase (3)

P03951
P00749
P00734
P56817
P00918Carbonic anhydrase 2 (3)

Beta-secretase 1 (3)
Prothrombin (3)
Urokinase-type plasminogen activator (2)
Coagulation factor XI (4)

P18031
P39086Glutamate receptor ionotropic, kainate 1 (2)

3Tyrosine-protein … (3)

Number
0 2 4 6 8 10 0 2 4 6 8 10

Peroxisome proliferator-activated receptor gamma (4)
cAMP and cAMP-inhibited cGMP 3',5' -cyclic 
phosphodiesterase 10A (3)
Tyrosine-protein phosphatase non-receptor type 1 (3)
Poly [ADP-ribose] polymerase tankyrase-2 (5)

3. 
4. 

2. 
1. 

Figure 3: The overview of ligand binding site prediction by SiteMap and PointSite. The red
and blue line indicates the number of predicted sites located in the native pocket and non-
native pocket, respectively. The total number of sites considered in the docking experiments
is 208 and 453 for PointSite and SiteMap, respectively. For each method, there are a few
proteins for which the original binding sites were not accurately predicted, and the hit rates
for PointSite and SiteMap are 84.0% and 88.0%, respectively.
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rate. Although both methods achieved high hit rates, 84.0% for PointSite and 88.0% for SM,

there were a few proteins in each method where the original binding sites were not accurately

predicted.

However, PointSite predicts a lower total number of binding sites in our work. 32 ligands

were predicted to have a single binding site that aligns perfectly with the corresponding

experimental structure. Furthermore, five ligands were predicted to have two binding sites,

and both predictions were successful. The successful site percentage for PointSite is 36.54%.

In SM, except for carbonic anhydrase 2 (Uniprot ID P00918), the remaining proteins have

5 sites, with at most one successful prediction, resulting in a successful site percentage of

15.49%. Although the predicted binding sites for the proteins are similar, PointSite has

a higher percentage of successful sites, making it easier for the scoring function to select

correctly predicted pockets. In addition, there are overlapping and complementary aspects

between SiteMap and PointSite. As shown in Figure S5, only SiteMap successfully predicted

the binding pocket of protein P39086, while only PointSite successfully predicted the binding

pocket of protein Q16539. Additionally, both SiteMap and PointSite successfully predicted

the binding pocket of protein P03372.

3. Overall Performance of Different Reverse Docking Pipelines

For proteins in the human proteome, we performed systematic docking utilizing two repre-

sentative docking programs: commercial, Glide (version 67011);31–33 academic, AutoDock

Vina (version 1.1.2).46 The 90 small molecules were docked against the predicted binding

sites of each predicted protein structure in the human proteome. For Autodock Vina, pro-

tein flexibility was considered in flexible docking (FLX_vina). As illustrated in Figure 4A,

whether it was rigid docking or flexible docking, each molecule was successfully docked with

the target by Autodock Vina, yielding pose and ranking results. However, after docking with

Glide-PS, only 85 compounds could successfully be docked with the original targets, while

Glide (SM) yielded docking successfully for 89 ligands. Assuming the top-ranked proteins as
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Figure 4: Comprehensive performance assessment of distinct reverse-docking pipelines.
(A–B) The plot of hit number as a function of ranking. (C) Radar chart of the perfor-
mance according to EF. (D) Venn diagram depicting the commonalities and differences
among the hits in the top 100 ranking of four representative pipelines, NML_vina_sfct,
FLX_vina_sfct, glide_sfct (PS), and glide_sfct (SM).
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potential targets, Figure 4B provides a clear visualization of the performance of all pipelines

with various binding-site prediction methods, docking methods, and scoring functions. As

can be seen, the performance of different pipelines exhibits significant variations. Here, to

give a more realistic guide for reverse docking and further experimental validation of the

predicted targets, we hypothesized that the top-100 ranked targets are potential targets for

the query small molecule. Based on the results for the number of origin targets in the top

100, the performance of the pipelines follows the following order: glide_sfct (PS) (27.8%)

≈ glide_sfct (SM) (24.4%) > FLX_vina_sfct (15.6%) = NML_vina_sfct (15.6%) > glide

(SM) (10.0%) ≈ glide (PS) (8.9%) ≈ deepRMSD_NML_vina (8.9%) > NML_vina (1.1%)

≈ FLX_vina (1.1%) ≈ deepRMSD (0.0%).

Furthermore, these pipelines can be categorized into four groups based on performance.

The group performed the worst for the top 100 predictions, including NML_vina, FLX_vina,

and deepRMSD. Among them, NML_vina and FLX_vina only successfully identified one

original target each, while deepRMSD did not make any correct predictions. The second

group includes glide (PS), glide (SM), and deepRMSD_NML_vina. Among the top 100,

the respective hit numbers for these three pipelines are 8, 9, and 8. Compared to Vina, Glide

seems to exhibit superior target prediction ability. However, when Vina was combined with

deepRMSD, the performance was close to and even better than Glide. For example, three

of the top ten targets are correct in the results of deepRMSD_NML_vina. The third group

includes NML_vina_sfct and FLX_vina_sfct. In the top 10 predictions, NML_vina_sfct

recognized 5 correct targets, while FLX_vina_sfct had 9. The latter showed a 44.4% im-

provement over the former one. However, both pipelines successfully predicted 14 targets in

the top 100. The fourth group exhibited the best performance, including glide_sfct (PS) and

glide_sfct (SM). Surprisingly, Glide_sfct (SM) successfully predicted 13 targets within the

top 10 rankings, and Glide_sfct (PS) achieved 18 successful predictions. Overall, glide_sfct

(SM) successfully predicted 22 targets, while glide_sfct (PS) performed even better, suc-

cessfully predicting 25 targets.
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It should be noted that before combining with Vina, deepRMSD’s performance was

equally poor compared to that of Vina. The number of hits in the top 100 predictions for

Vina, both rigid docking (NML_vina) and flexible docking (FLX_vina), was 1. However,

when NML_vina was combined with deepRMSD, the number increased to 8, surpassing the

performance of Vina and deepRMSD alone. This improvement moved it from the fourth

tier to the third tier and produced results comparable to Gscore. After combining with

SFCT, the prediction abilities of Vina and Gscore were greatly improved. The glide_sfct

(PS) demonstrated the best performance, with an EF value of 33.9. Its performance was

outstanding in the top 10 predictions, with an EF value reaching 243.9. Additionally, before

the correction by SFCT, glide (SM) performed better than glide (PS). However, the glide

(PS) outperformed the glide (SM) in prediction accuracy after SFCT correction. Overall,

the integration of the SFCT correction term effectively improved the performance of both

Vina and Glide in reverse docking, emphasizing the importance of post-docking rescoring to

enhance the effectiveness of reverse docking.

To compare the similarities and differences among the predicted targets of NML_vina_sfct,

FLX_vina_sfct, glide_sfct (PS), and glide_sfct (SM), we can refer to the Venn diagram

(Figure 4D). Different methods may not achieve a high level of protein structural alignment

independently. This indicates that they can complement each other to some extent. Based

on the specific screening results shown in FigureS6, we can conclude that the combination

SFCT with Glide demonstrates stronger robustness in handling small molecules compared

to Vina. When targeting the same protein, Glide often achieves stable and successful pre-

dictions of the binding sites for several small molecules. Our reverse docking experiment

suggests that using as many as possible ligands in reverse docking is worthwhile in finding

unknown drug targets or unexpected mode-of-action even though it costs high computation

costs.
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Figure 5: The distribution of similarity between each testing protein and the top 100 hits.
In each subplot, red and gray dots represent the successfully and unsuccessfully captured
original target by the pipeline, respectively. Each subplot consists of four violins, representing
the comparison before and after SFCT correction. Different protein families are represented
by UniProt ID in different colors, starting from class a and arranged in sequential order. The
red dot represents successful predictions of the original targets and the gray dot represents
failed predictions.
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4. Reverse Docking Performance on Each Test Target

Many proteins in the human body have homologous proteins that perform different physio-

logical functions.47,48 For example, there are various steroid hormone receptors in the human

body with a remarkably high level of structural similarity. This creates a situation where

small-molecule drugs may display diverse activities when interacting with these homologous

proteins.49,50 Consequently, this can lead to varying degrees of side effects caused by the

drug molecules. However, in specific drug development contexts, the small-molecule drug

needs to exhibit a suitable affinity spectrum across a wide range of homologous proteins, and

this places extremely high demands on algorithms that predict the affinity and specificity

between small molecules and proteins.51–53

Proteins exhibit structural similarities and, in many cases, share a common evolutionary

origin. According to the structural similarity between the highest-resolution experimental

structure of each test target and all AF2-predicted structures, it is evident that the distri-

butions of each evaluated target class are distinct (Figure S4). Some test proteins exhibit

a high degree of structural similarity to other proteins in the human proteome, whereas

others do not show significant levels of similarity. In our test set, class d (alpha and beta

proteins (a+b)) proteins account for the highest proportion. Compared to other protein

families, this particular family also shows a relatively high number of similar proteins in the

human proteome (Figure S4). Hence, the interaction network between these targets and

small molecules tends to be more complex, and proteins similar to the original target have

a high probability of being identified through reverse docking.

To further evaluate the ability of different scoring functions to recognize homologous pro-

teins in our reverse-docking benchmark, we analyzed the distribution of similarity between

the highest-resolution experimental structure of the original target for each small molecule

and the top 100 predicted targets. Receptors derived from the same UniProt ID were consol-

idated into a single entity. Figure 5 shows that the uncorrected pipelines of Vina and Glide

rarely identified targets with high protein similarity. However, after correction, the situation
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is completely different, and many proteins similar to the original target were successfully

identified, especially for targets such as O60674, P23458, and P24941. Interestingly, after

SFCT correction, although some targets were not successfully predicted, there were often

proteins with high similarity that were predicted, such as P10275, P03951, O14757, and

Q9H2K2. Among these pipelines, glide_sfct (PS) performed the best. Out of the 25 pro-

teins with a similar structure to the original target, analogous proteins were successfully

predicted for 23 of them, resulting in an impressive success rate of 92%. Among the 90

small molecules, 70 of them had results that included proteins with a similarity score of over

0.6 to the target, resulting in a success rate of 77.78%. In conclusion, the scoring function

corrected by SFCT demonstrates greater robustness in predicting targets.

Different protein families exhibit varying performance with the same scoring function.

The class d has the highest number of proteins, and many proteins, including those with high

similarity, are successfully predicted. The four pipelines combined with SFCT show good

prediction results in this family. However, the remaining families perform poorly because

they have fewer proteins with high similarity. If the quality of the AF2 pocket is not high,

it is challenging to predict targets in these families.

Discussion

1. Reverse Docking Accuracy in the Global Queue Scenario

In our work, we used protein structures predicted by AF2 and predicted the binding pockets

of small molecules using tools such as PointSite or SiteMap. Therefore, although some native

targets are ranked within the top 100, this does not necessarily mean that the small molecules

are located in the default pockets. It would be interesting to know (1) whether the ligand

binds in the anticipated binding regions (when aligned to the experimental structures) in its

destined target protein, and (2) how these accuracies would affect the overall reverse-docking

performance.
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Here, the docking site (or binding pocket) is thought to be correctly predicted, when

the RMSD value of the docked ligands with respect to the corresponding native ligand

conformation in the original PDB structure is below 10.0 Å. We consider such reverse docking

successful. As shown in Figures 3 and 6, PointSite successfully predicted the binding sites

of 76 small molecules, and then the NML_vina_sfct pipeline performed the best with 53

small molecules successfully reverse-docked into the original binding pocket. Additionally,

SiteMap successfully predicted the binding sites of 70 small molecules, with the glide (SM)

pipeline (47 successfully reverse-docked ligands) performing better than the glide_sfct (PS)

one. Therefore, the success rate of reverse docking is quite good. Autodock Vina and Glide

perform similarly and do not show significant differences. However, the pipelines involving

SiteMap (glide_sfct and glide_sfct (SM)) identified fewer correct binding regions than those

of PointSite (Figure 6). There may be two reasons for this: first, Pointsite has a higher success

rate in predicting binding sites for small molecules compared to Sitemap; second, SiteMap

predicts a larger number of binding sites, making it more challenging to rank the correct site

as the best one.

Among the top 100 predicted targets, there are occasional FPs. For example, FLX_vina

has only one target ranked at 100, and it is considered FP (RMSD > 10 Å). The remaining

pipelines also have one or two FPs. Nonetheless, the limited occurrence of false positive

outcomes does not substantially influence the general pattern of results across the differ-

ent pipeline approaches. However, the limited FPs did not affect the performance of these

reverse docking processes. In our tests, Autodock Vina had almost no predictive ability,

while Glide showed some predictive ability. After the SFCT correction, the performance

of both approaches improved significantly, with glide_sfct performing the best. Although

NML_vina_sfct had the highest number of successful reverse docking results, overall per-

formance was better with glide_sfct (PS). This shows that both site prediction and scor-

ing functions can impact reverse docking performance, but the superior ranking power of

glide_sfct has a greater influence compared to site prediction.
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NML_vina FLX_vina glide (PS) glide (SM) NML_vina_sfct FLX_vina_sfct glide_sfct (PS) glide_sfct (SM)
RMSD < 10 50 48 51 47 53 47 51 39
top 100 & RMSD < 10 1 0 7 7 12 14 25 20
top 100 1 1 8 9 14 14 25 22

NML_vina_sfct FLX_vina_sfct glide_sfct (SM)glide_sfct (PS)

glide (PS) glide (SM)FLX_vinaNML_vina

Figure 6: Reverse docking performance of the best pose of each test ligand and its original
target. Each method was assessed based on its ability to correctly identify the binding pocket
(RMSD < 10 Å) within the native target.

2. The Impact of AF2 Structure Quality: Overall Accuracy and

Side-chain Flexibility

To verify the effects of ginseng, Park et al.54 performed reverse docking on a disease database

with 1078 PDTD and kinase proteins. Li et al.39 selected 7769 protein-ligand complexes from

the PDBbind database (version 2018) as the structure pool to evaluate the performance

of 4 classical docking programs. In 2023, Trawally et al.55 conducted reverse docking to

understand the mechanism of action of a potent antimycobacterial compound 6g. The protein

database consists of nine putative targets with fifteen different experimental structures. In

these previous reverse docking studies, experimental structures were commonly used.

However, our work utilized structures predicted by AF2. Although AF2 generally achieves

a confidence score of approximately 85 (plddt) for most protein structure predictions, indi-

cating a significant level of accuracy in predicting overall protein structures, there is still
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room for improvement, particularly in predicting ligand binding pockets. For example, er-

rors in predicting individual aromatic amino acid side chains during pocket prediction can

lead to the closure of the entire pocket,56,57 which presents challenges for semi-flexible dock-

ing and can result in poor docking outcomes and potential false negative rates. In a study

by Holcomb et al., AutoDock-GPU was used to redock AF2-predicted structures against

experimental co-crystal structures.58 Their results revealed subpar docking performance of

the predicted structures. In our results, macrophage metalloelastase (UniProt ID P39900)59

has not been correctly identified by any pipelines (Figure S4). While the pocket prediction

method, SiteMap, successfully predicted the binding site of the ligand, the AF2 structure

has two additional structural domains compared to the experimental structure (Figure 7A).

The ligand-binding site is occupied by a loop in the AF2 structure, preventing the successful

docking of the small molecule at this site.

According to Figure 4D, FLX_vina_sfct is able to identify multiple targets that other

pipelines fail to recognize. We speculate that this ability may be related to the flexibility of

pocket side chains. For example, in the case of P03372, which has four ligands (WST, EST,

JJ3, and EZT), NML_vina_deepRMSD, NML_vina_sfct, and FLX_vina_sfct pipelines

successfully predict the first three ligands. However, for EZT, only flexible docking produced

accurate predictions. In the FLX_vina_sfct, P03372 achieves the second highest rank,

while in the NML_vina_sfct, it is ranked 11,518th. To investigate the reason, we compared

the experimental structures and rigid and flexible docking poses (Figure 7B). After flexible

docking, the amino acid residues that undergo changes were L346, L384, M388, F404, and

M421. Among them, M421 exhibited the most significant variation. In the AF2 structure,

the side chain of M421 occupied the position of the benzene ring in the experimental structure

of EZT, causing the benzene ring of EZT to shift downward after rigid docking. However,

the Cα-Cβ bond of M421 rotated in flexible docking, allowing the ligand’s benzene ring to

maintain its original orientation. This case demonstrates that flexible docking might serve

as an important complement to improve hit rates when AF2 exhibits low pocket accuracy.
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EZT

M421

F404
L346

L384

M388

A B

Figure 7: The quality performance of the structure predicted by AF2. (A) Structural com-
parison of the experimental and predicted structures of P39900. The experimental and
AF2 predicted structures are colored in cyan and blue-violet, respectively. The ligand in
the experimental complex is shown as balls and sticks, while the center of the predicted
ligand-binding site is indicated by a green ball. (B) A study case of the effects of side-chain
orientation of pocket residues on ligand binding: P03372 and EZT (PDB ID: 2p15). The
protein is shown as cartoon, and ligands and key pocket residues are represented as sticks.
The crystal structure is colored in cornflower blue, and the rigid and flexible docking poses
generated by vina are colored in white and hot pink, respectively.

3. The Limits and Future Directions of Our Reverse Docking Pipeline

Previous reverse docking works utilize experimental protein structures, which ensured high

structure quality and correct binding sites. However, the protein pool used had a limited

number of protein targets that are not available at the human proteome level. Additionally,

due to the limited ranking power of the existing scoring functions, the screening results often

have a high rate of FPs. In our present work, we used human protein structures predicted

by AF2 for reverse docking, which might rise the following concerns.

First, the binding sites are unknown and need to be predicted. The presence of multiple

binding pockets and the failure to predict these pockets can lead to failures in reverse docking

predictions. For example, PointSite failed to predict the binding sites of proteins O60885,

P39086, P39900, and Q9H2K2. Consistently, all pipelines involving PointSite were unable

to predict these targets. For SiteMap, it did not successfully predict the binding sites of
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the proteins O60674, P24941, and Q16539. Among them, the pipeline containing SiteMap

successfully predicted the binding site of O60674, but failed to predict the binding sites of the

remaining targets. After conducting a detailed examination of the results, we found that the

protein O60674 was ranked among the top 58 hypothetical targets of JAK (PDB ID: 4f09)

according to glide (SM). The RMSD between the experimental structure of JAK and the

AF2 docking structure was 59.64. This indicates that the prediction of O60674 also failed,

albeit being one of the two FPs in glide (SM). Another interesting case is that only SiteMap

successfully predicted the binding site of bromodomain-containing protein 4 (UniProt ID

O60885).60 Therefore, even after SFCT correction, NML_vina_sfct, FLX_vina_sfct, and

glide_sfct (PS), which predicted the binding site using PointSite, did not predict the target.

However, glide_sfct (SM) successfully predicted the target. Therefore, if the site prediction

fails, the overall prediction is unlikely to be successful.

Second, the side-chain quality of AF2-predicted structures might not be optimal, which

can result in potential false negatives during docking. Flexible docking methods can predict

targets that rigid docking cannot accurately predict, rigid docking methods can also predict

targets that flexible docking cannot accurately predict. Although they complement each

other in terms of predictive capabilities, there is no significant advantage in terms of the

number of predictions made. Furthermore, it is unknown whether the proteins exist in an

active or inactive conformation.

According to our findings, there are three considerations that may help address the

aforementioned potential problems. Firstly, the AF2 human protein database is vast and

contains structurally similar proteins. When a sizable set of proteins similar to the target of

a particular ligand is available, they can fully showcase the commonalities and diversities of

binding pockets in various proteins that interact with the compound, as well as the potential

inclusion of both active and inactive conformations. Secondly, the test set consists of multiple

structurally similar small molecules targeting the same protein. Similar small molecules

have similar skeletons. Due to the appropriate redundancy of protein and small molecule
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structures, conformational sampling is enhanced, which helps us to discover a certain skeleton

that can match multiple shared pockets in terms of geometry and energy. This promiscuity

is the core of the problem. Lastly, the novel scoring approach that integrates a scoring

correction such as SFCT provides more powerful and robust results.

Based on the work of Wang’s group, among the reported scoring functions, GlideScore-

SP ranks second in terms of reverse screening capability, with ChemPLP@GOLD being

only slightly higher than GlideScore-SP.21 Li et al.39 evaluated the performance of 4 popular

docking programs (AutoDock, Auto-Dock Vina, Glide and GOLD) in reverse docking. Their

results show that Glide had the best capacity to find native targets. Thus, it is reasonable

to speculate that glide_sfct (PS) is currently the most suitable pipeline for reverse docking

tasks.

Conclusion and Perspective

In the traditional drug development process, there is often a lack of a comprehensive eval-

uation of the interaction between drug small molecules and the human proteome. This can

result in off-target effects and excessive toxicity when drugs are applied clinically, leading to

failures. Reverse docking is an important tool to fill this gap. Here, we conducted an exten-

sive reverse docking benchmark on AF2-predicted human proteins and 90 small molecules

by utilizing two well-regarded docking programs, AutoDock Vina and Glide. By integrating

the Vina, Gscore, SFCT, deepRMSD, and RTMscore scoring functions with two binding site

prediction methods, we developed 11 different reverse-docking pipelines. Our results empha-

size that each stage in reverse docking is vital, including the quality of protein structure and

predicted binding site, and the evaluation of binding strength between ligands and recep-

tors. Particularly, the combination of SFCT exhibits a higher ranking power than Gscore

or Vina itself, two current state-of-art scoring functions. Our results also suggest that it is

challenging to screen a specific target from thousands of proteins currently, but it is much
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easier to find proteins that have similar structures with the target. For example, in our work,

the success rate of glide_sfct (PS) is only 27.8%, but when considering protein structures

similar to the target, the success rate increases to 77.78%. Considering multiple similar

small molecules to the query molecule for prediction, 92% of the targets can be successfully

predicted. Therefore, in our future work, we can use the predictions of all human proteins as

a starting point, and then filter the candidates for experimental evaluation by full-structure

and pocket similarity. To summarize, our research revealed the performance of using AF2

for structure-based reverse docking to predict targets, and provided a highly useful pipeline

for drug development. However, there are some limitations to this work. For example, the

testing set primarily focuses on enzymes and receptors, considering no membrane proteins,

such as GPCRs and ion channels, and the potential target database in the present work

only considered single chain proteins and does not yet fully cover the human proteome by

excluding some structures of poor quality.
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Figure S2: 25 pairs of molecules with a similarity greater than 0.5. The deer color represents
small molecules that are ligands for the target P23458. There are a total of 4 molecules in
this category, and among them, 3 pairs have a similarity greater than 0.8. The sky blue
represents pairs with the target O60674. P23458 and O60674 belong to the same protein
family. The green indicates two similar small molecules, but their targets are unrelated. The
remaining similar pairs of small molecules all target the same protein. The red numbers
between each pair of molecules represent the similarity between them.
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Figure S3: The performance assessment of distinct reverse-docking pipelines. (A–B) The
plot of hit number as a function of ranking.
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Figure S4: The distribution of the protein structure similarity (TM-score41,61 calculated by
DeepAlign40) of each evaluated target and all processed human proteins.
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Figure S5: The study cases of binding site prediction: (A) P39086; (B) Q16539; (C) P03372.
The AF2-predicted structures are colored in pink, and the experimental structures in blue,
green, and white, respectively. Ligands in the experimental complexes are shown as sticks,
and the sites predicted by PointSite (red) and SiteMap (yellow) are indicated by balls .

40

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2023. ; https://doi.org/10.1101/2023.12.16.572027doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.16.572027
http://creativecommons.org/licenses/by-nc-nd/4.0/


NM
L_v
ina_
sfct

FLX
_vin
a_sf
ct

Glid
e_sf
ct (P

S)

Glid
e_sf
ct (S

M)

O60885_EAM
O60885_3P2
P37231_C03
P03372_WST
P03372_EST

P03372_JJ3
P03372_EZT

Q9Y233_C1L
Q9Y233_0CV
P00749_UI1
P00749_239
P56817_BSD
P00918_EZL
P00918_RYJ
P00918_FBV
P18031_910
P39086_DYH
P39086_NDZ
P07900_4BC
O60674_0NV
O60674_JAK
P23458_1J6
P23458_15T
P23458_1J5
P23458_0NT
P23458_1Q4
O14965_EML
O14965_VX6
O14965_0C8
P11309_5H7
P11309_LWG
P11309_VX3
P24941_Y8L
Q16539_LM4
P00519_AXI
P00519_627
P00519_3YY
Q08881_3P6
Q08881_30T
P00742_XLD
P00742_IK8

2 3 8 9

Figure S6: The four pipelines, which incorporate SFCT correction, successfully predicted
ligands and targets. Within each box, the points represent small molecules that target the
same protein
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