

1 Hybrid adaptation is hampered by Haldane's sieve

2
3 Carla Bautista^{1,2,3,4}, Isabelle Gagnon-Arsenault^{1,2,3,4,5}, Mariia Utrobina^{1,2,6}, Anna Fijarczyk^{1,2,3,4},
4 Devin P. Bendixsen⁷, Rike Stelkens⁷, Christian R. Landry^{1,2,3,4,5}

5
6 1 Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC,
7 Canada.

8 2 Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec,
9 QC, Canada.

10 3 Regroupement québécois de recherche sur la fonction, la structure et l'ingénierie des
11 protéines (PROTEO), Université Laval, Québec, QC, Canada.

12 4 Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, QC,
13 Canada.

14 5 Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des
15 Sciences et de Génie, Université Laval, Québec, QC, Canada.

16 6 National University of Kyiv-Mohyla Academy, Kyiv, Ucrania.

17 7 Department of Zoology, Stockholm University, Stockholm, Sweden.

18
19 20 Corresponding authors: carla.bautista-rodriguez.1@ulaval.ca and Christian.landry@bio.ulaval.ca

21 **Abstract**

22
23 Hybrids between species exhibit plastic genomic architectures that foster phenotypic diversity. Their
24 genomic instability also incurs costs, potentially limiting adaptation. When challenged to evolve in
25 an environment containing a UV mimetic drug, yeast hybrids have reduced adaptation rates
26 compared to parents. We hypothesized that this reduction could result from a faster accumulation
27 of genomic changes, but we found no such association. Alternatively, we proposed that hybrids
28 might lack access to adaptive mutations occurring in the parents, yet, we identified mutations in the
29 same genes (*PDR1* and *YRR1*), suggesting similar molecular adaptation mechanisms. However,
30 mutations in these genes tended to be homozygous in the parents but heterozygous in the hybrids.
31 We hypothesized that a lower rate of loss of heterozygosity (LOH) in hybrids could limit fitness gain.
32 Using genome editing, we demonstrated that mutations display incomplete dominance, requiring
33 homozygosity to show full impact and to circumvent Haldane's sieve, which favors the fixation of
34 dominant mutations. We used frozen 'fossils' to track genotype frequency dynamics and confirmed
35 that LOH occurs at a slower pace in hybrids than in parents. Together, these findings show that
36 Haldane's sieve slows down adaptation in hybrids, revealing an intrinsic constraint of hybrid genomic
37 architecture that can limit the role of hybridization in adaptive evolution.
38

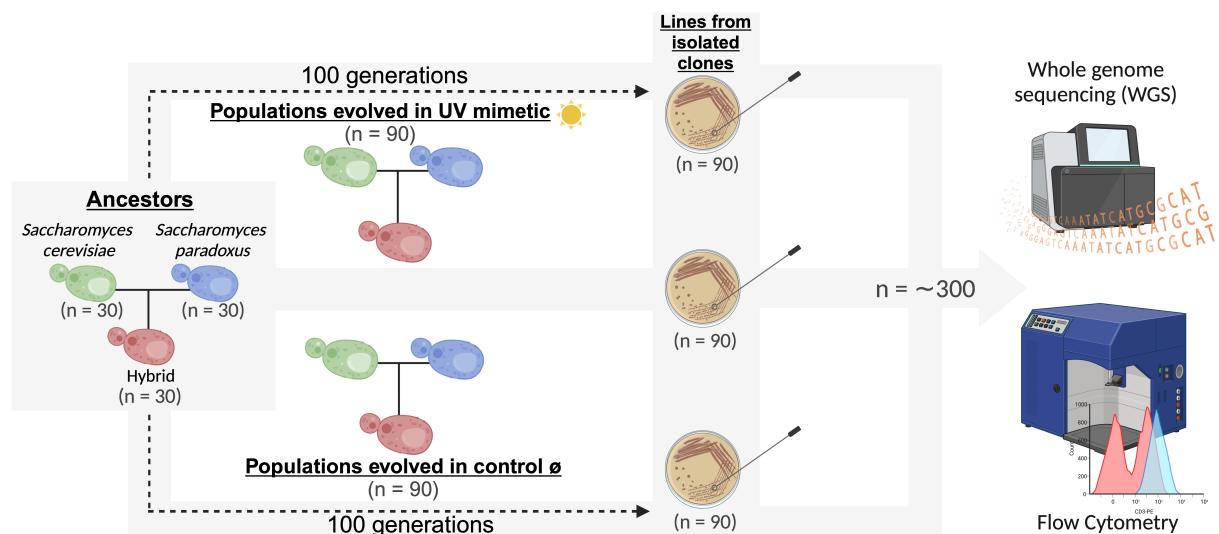
39 **Keywords:** Hybridization; Adaptation; DNA damage; Experimental evolution; Genomic instability,
40 Haldane's sieve; Loss of heterozygosity (LOH); Pleiotropic Drug Resistance 1 (*PDR1*)

41 Introduction

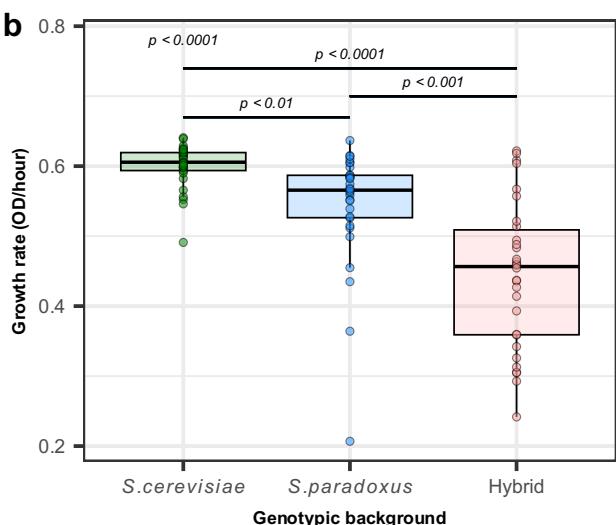
42
43 Hybridization rapidly generates novel genotypes that can also lead to new and sometimes extreme
44 phenotypes^{1–5}. As a result, hybrids may thrive and often outcompete their parents^{6–8}. Empirical and
45 theoretical work has shown that hybridization can promote rapid evolution^{2,3,9–15}, including during
46 evolutionary rescue, species diversification, and adaptive radiations^{2,12,16–19}. The generation of
47 adaptive diversity through hybridization has long been successfully employed in biotechnology for
48 fermentation^{20–22} and in agriculture for crop improvement^{23–25}.

49
50 The combination of divergent genomes in the same organism can also lead to genomic instability^{26,27}.
51 From microorganisms^{28,29} to multicellular eukaryotes such as plants³⁰ and vertebrates³¹, genomic
52 instability has been frequently observed in hybrids. While the causes of instability are not always
53 clear, evidence points to the alteration of the molecular pathways and components responsible for
54 genome stability themselves. For instance, cell cycle checkpoints and DNA repair pathways
55 observed to be altered in hybrids^{32,33} can lead to inaccurate chromosome segregation^{34,35}, resulting
56 in changes in ploidy^{36–39}, aneuploidies^{40–42}, and elevated mutation rates^{43–46}.

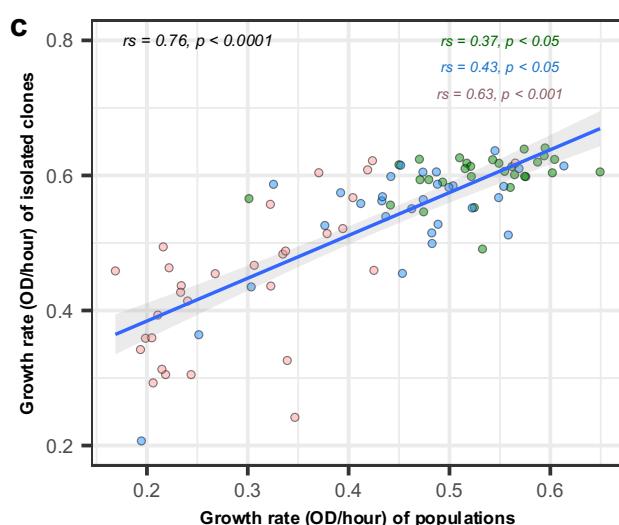
57 In spite of these potential negative consequences, genomic instability can also paradoxically
58 enhance F1 hybrid traits. One example is the restoration of meiotic recombination through genome
59 homogenization, which contributes to rescuing hybrid fertility⁴⁷. Similarly, whole-genome duplication
60 can restore fertility in interspecific hybrids⁴⁸. However, the enhancement of these hybrid traits is
61 typically observed under stable laboratory conditions. Some environmental conditions and stresses
62 could further enhance genome instability, so what appears as a feature that enhances adaptability
63 in benign conditions could become a liability in extreme ones. Motivated by this question, in a
64 previous study⁴⁹, we produced F1 hybrids between the budding yeast *Saccharomyces cerevisiae*
65 and *S. paradoxus* to measure their adaptive potential in an environment containing a drug that
66 increases genomic instability by mimicking UV radiation^{50,51}. These two species diverged 5–10 million
67 years ago^{52–56}, live in similar ecological niches in nature⁵⁷, and carry signs for introgression in their
68 mitochondrial and nuclear genomes with adaptive potential in some cases^{47,58–61}. Replicated
69 experimental evolution across 100 generations revealed that hybrids showed smaller fitness gains
70 than their parents in conditions mimicking UV radiation⁴⁹.


71
72 Here, we investigated the genomic and genetic basis of differential adaptive rates in hybrids by
73 testing two non-mutually exclusive hypotheses: 1) Hybrid adaptation to UV radiation is hampered by
74 genomic instability, and 2) Hybrids do not have access to the same adaptive mutations as the
75 parental species. We used whole genome sequencing of 270 ancestral and evolved hybrid and
76 parental genotypic backgrounds to: 1) Investigate major genomic changes in copy number such as
77 ploidy changes, aneuploidies, or loss of heterozygosity (LOH), to determine if they are more
78 prevalent in hybrid genomes, and 2) Identify potentially differential *de novo* mutations in hybrids
79 compared to parents. We functionally validated seven putative adaptive mutations with site-directed
80 mutagenesis in both *S. cerevisiae* and *S. paradoxus* haploid backgrounds and by CRISPR-Cas9
81 genome editing. We ultimately determined differences in the genetic architecture of adaptive
82 mutations between hybrids and parents by tracking the allelic frequency over time through historical
83 resurrection of frozen fossils. We found that none of our two starting hypotheses were supported.
84 Rather, we found that adaptation to UV mimetic conditions often proceeds through two types of
85 mutations, the second occurring more slowly in the hybrids, and thus slowing down their rate of
86 adaptation.

87 Results


88 Hybrid and Parent Fitness in UV mimetic conditions

91 We previously evolved 90 populations (30 F1 hybrid replicates and 30 replicates of each of the
 92 parental *S. cerevisiae* and *S. paradoxus* genotypic backgrounds) for 100 generations in the presence
 93 of a DNA damaging agent, the UV mimetic drug 4-nitroquinoline 1-oxide (4-NQO), and in a control
 94 condition (rich medium) (Fig. 1a)⁴⁹. We found that hybrids achieved a lower rate of adaptation
 95 compared to the parental genotypic backgrounds, with a lower average gain of fitness over the
 96 course of evolution⁴⁹.


a

b

c

● *S. cerevisiae* ● *S. paradoxus* ● Hybrid

97 **Fig. 1. Hybrids show reduced adaptive potential in UV mimetic conditions.** a, Experimental evolution in UV mimetic
 98 and control conditions was performed in hybrid and parents for about 100 generations⁴⁹ (n = 30 replicated lines for each
 99 genotypic background: *S. cerevisiae*, *S. paradoxus* or hybrid). Lines from isolated clones derived from each population
 100 were analyzed by Whole Genome Sequencing (WGS) and flow cytometry (n = 300). b, Growth rate of lines from isolated
 101 clones derived from each population evolved in UV mimetic conditions (4 μ M of 4-NQO) (n = 30 for each genotypic
 102 background: *S. cerevisiae*, *S. paradoxus* or hybrid). p-value for ANOVA (above) and Tukey post hoc pairwise p-values are
 103 shown. c, Growth rates of lines from isolated clones derived from each population correlate with growth rates of their
 104 populations of origin. Spearman's rank correlation coefficients (rs) and associated p-values are shown (n = 30 for each
 105 genotypic background: *S. cerevisiae*, *S. paradoxus* or hybrid). Illustrations in a were created with [BioRender.com](https://biorender.com).

106 To compare the number and type of genetic changes between evolved hybrid and parental
 107 populations, we measured DNA content by flow cytometry and sequenced the genomes of 300
 108 isolated clones derived from the evolved populations and their ancestors (Fig. 1a and Supplementary
 109 Table S1) (average genome-wide coverage of 100X, Supplementary Fig. 1). In parallel, we
 110 111

112 measured the fitness of these isolated clones in control and UV mimetic conditions (*Extended Data*
113 *Fig. 1*). We confirmed our previous finding that evolved hybrids showed significantly lower growth
114 rate improvements than both parental replicated populations when evolved under UV mimetic
115 conditions (*Fig. 1b*, all $p < 0.001$). The growth rates of isolated clones and that of their populations
116 of origin were strongly correlated (*Fig. 1c*: $rs = 0.76$, $p < 0.0001$), confirming that the fitness of isolated
117 clones is representative of the general fitness dynamics observed in the previous evolution
118 experiment⁴⁹. From now on, we will refer to lines when discussing observations on these isolated
119 clones derived from their populations of origin.

120

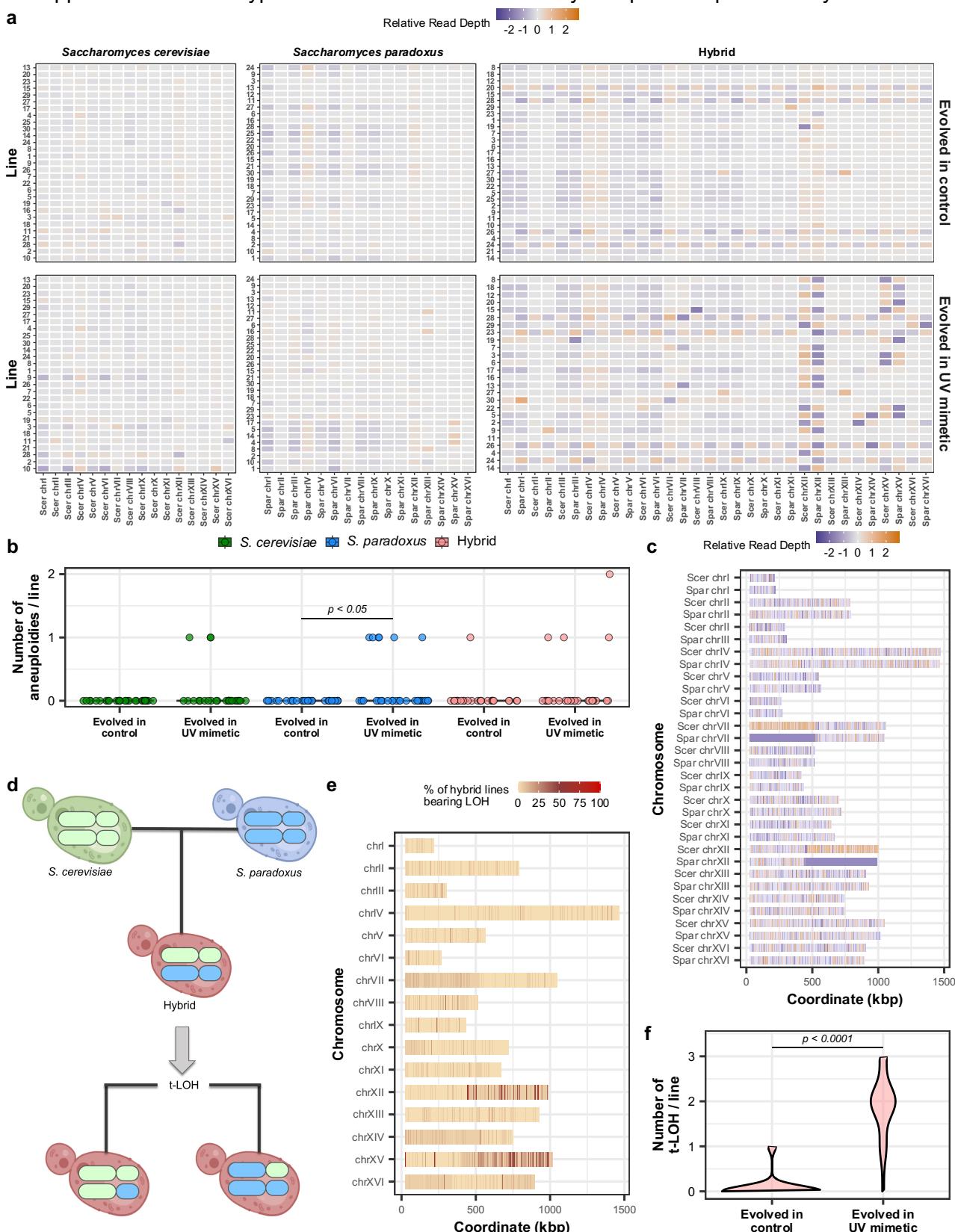
121 Major Genomic Changes in Copy Number Reveal Increased Genomic Instability in UV 122 Mimetic Conditions

123

124 The majority of lines remained diploid during evolution. Ploidy changes were generally not more
125 frequent under UV mimetic conditions (*Extended Data Fig. 2*, *Supplementary Fig. 2*). Likewise, we
126 did not see a larger number of genomic changes in copy number in hybrids in UV mimetic compared
127 to control conditions, suggesting that ploidy changes do not account for the observed reduction in
128 hybrid adaptive potential. Conversely, evolution under UV mimetic conditions did result in a larger
129 number of lines with aneuploidies in hybrid and both parental genotypic backgrounds when
130 compared to control conditions (*Fig. 2a and 2b*), confirming that the UV mimetic treatment affected
131 genome stability. However, the number of aneuploidies did not correlate with fitness changes
132 observed in any group (*Supplementary Fig. 3*, $rs = -0.18$, $p > 0.5$; $rs = -0.22$, $p > 0.5$ and, $rs = -0.27$,
133 $p > 0.5$; for *S. cerevisiae*, *S. paradoxus* and hybrid respectively). Hybrids also did not show a higher
134 number of aneuploidies compared to the parents, making it unlikely to explain their reduced
135 adaptability (*Fig. 2b*).

136

137 The analysis of the sequence depth of coverage revealed a particular type of alteration, for instance,
138 in chromosomes XII and XV (*Fig. 2a*). Intriguingly, gains and losses occurred simultaneously in the
139 homologous chromosomes of *S. cerevisiae* and *S. paradoxus*, i.e., when a hybrid lost a portion of
140 the *S. cerevisiae* chromosome, it simultaneously gained a portion of the homologous *S. paradoxus*
141 one. This prompted us to map the chromosome coverage to determine patterns in the distribution of
142 species-specific chromosome gains and losses. The observed changes affected large regions of
143 chromosomes (*Fig. 2c*). These patterns can be caused by the non-reciprocal exchange of
144 homologous chromosomes in diploids during mitosis, resulting in loss of heterozygosity (LOH) (*Fig.*
145 *2d*)^{62,63}. We identified LOH as regions where there were simultaneous increases and decreases in
146 read depth in homologous chromosomes along a size threshold of 20 kb (*Extended Data Fig. 3*). We
147 detected two types of LOH, interstitial LOHs (i-LOH), which often originate from gene conversion
148 involving short exchanges, and terminal LOHs (t-LOH), typically resulting from mitotic crossovers
149 that encompass larger regions^{62,64}. We identified some large i-LOHs (for example in line 17 on
150 chromosome XIV, *Extended Data Fig. 3*) but here we focused on t-LOHs, which were more frequent.


151

152 The frequency of t-LOH events in hybrid genomes was significantly positively correlated with
153 chromosome size (*Extended Data Fig. 4a*, $rs = 0.81$, $p < 0.05$). The pattern of t-LOHs showed
154 similarities across hybrid lines, with specific regions concentrated on chromosomes VII, XII, and XV
155 (*Fig. 2e*). These regions have been previously identified to be susceptible for t-LOHs⁶⁵. Certain t-
156 LOHs were found to cluster around particular positions enriched with repetitive loci, such as the
157 rDNA locus on chromosome XII^{62,66} or the *STE4* gene, another common t-LOH-target on
158 chromosome XV⁶⁷. We found a much larger number of hybrid lines with t-LOHs when evolved under
159 UV mimetic conditions (96% of the lines) compared to control conditions (8% of the lines) (*Fig. 2f*, p
160 < 0.0001). Only one line evolved under UV mimetic conditions did not show any t-LOH (4%).

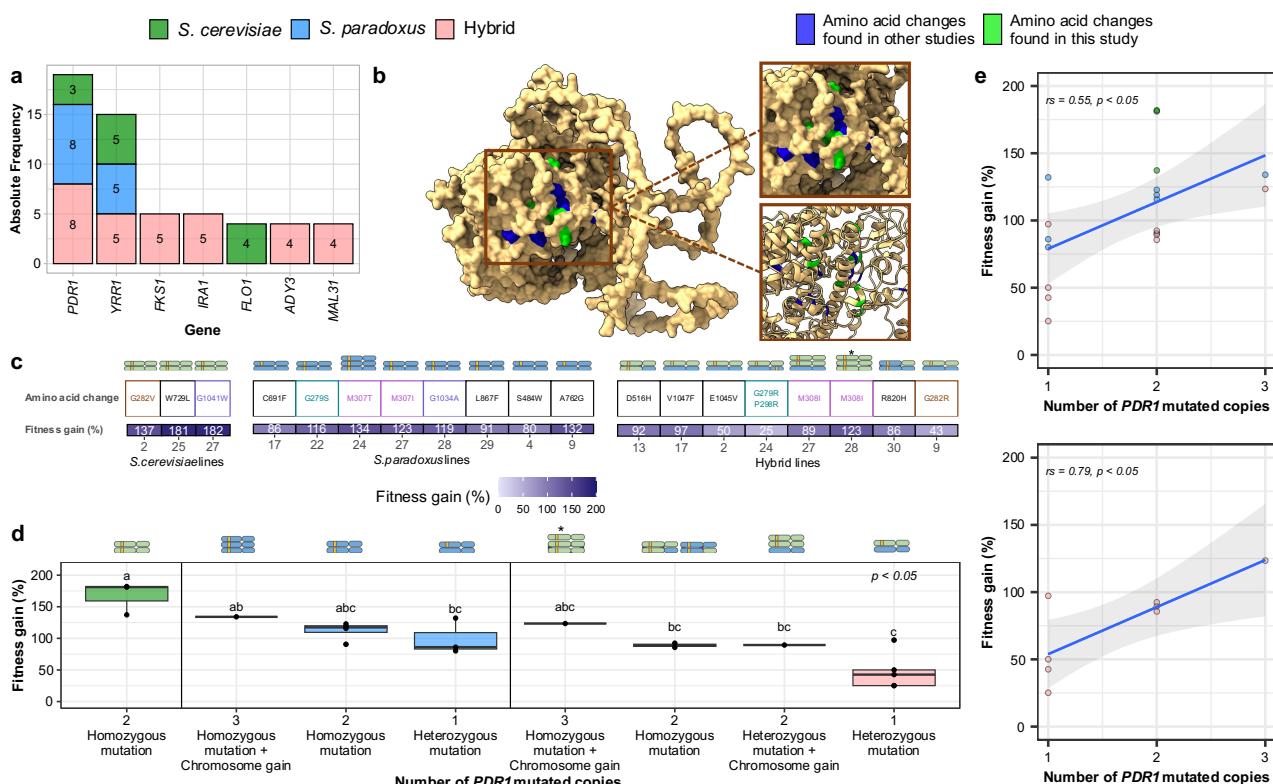
161

162 Overall, our data indicates that t-LOHs are a specific outcome of evolution in UV mimetic conditions.
163 This suggests that either DNA damage triggers t-LOH, thus enhancing its occurrence rate, or that t-
164 LOH is particularly advantageous under these conditions and selected for. Advantageous LOHs
165 have been associated with fitness increases in both lab and natural settings^{65,68}. However, LOHs in
166 themselves may not cause variation in the rates of adaptation among hybrid lines. We indeed did
167 not find a significant correlation between the increase in fitness and the number of t-LOH events
168 (*Extended Data Fig. 4b*, $rs = 0.33$, $p > 0.05$).

169 In summary, although we cannot examine t-LOHs in parental genomes due to their starting
 170 homozigosity, we found that aneuploidy frequencies are similar across parental species and hybrids,
 171 suggesting that overall genome instability is not specifically increased in hybrids. There is therefore
 172 no support for our initial hypothesis that increased instability hampers adaptation in hybrids.

173
 174 **Figure 2. Genomic changes observed during experimental evolution.** a, Relative read depth per chromosome and
 175 evolved line. Colored squares show the relative read depth between evolved and ancestor lines (log2 fold change). Values
 176 with an increase in 30% fold change represent gains in DNA content (gradient towards orange) and values with a decrease
 177 in 30% fold change represent losses in DNA content (gradient towards purple). Rows are individual genomes and columns
 178 are the chromosomes. Hybrid lines have two sets of chromosomes, since a concatenated hybrid genome was used for

179 mapping. Homologous chromosomes are positioned side-by-side: *S. cerevisiae* (Scer) chromosomes on the left and *S.
180 paradoxus* (Spar) on the right (See methods for details). Top panels show control lines and the bottom ones show lines
181 evolved in UV mimetic conditions. Lines are ranked according to their fitness gain under UV mimetic conditions (with top
182 lines indicating greater fitness). This same ranking order is preserved under control conditions, enabling a direct
183 comparison between conditions ($n = \sim 30$ lines per genotypic background and condition). **b**, Number of aneuploidies per
184 line after evolution under control and UV mimetic conditions for the three genotypic backgrounds ($n = \sim 30$ lines for each
185 genotypic background and condition). Fisher's Exact Test (within conditions for the same genotypic background) was
186 performed. Only significant p -values are shown. **c**, Example of read depth variation across chromosomes for a single hybrid
187 line (13) evolved in UV mimetic conditions, highlighting the detection of t-LOH through simultaneous increase and decrease
188 in read depth (deviations of 30% from the genome-wide median read depth). **d**, Illustrative scheme of t-LOH produced in
189 hybrid genomes. **e**, Percentage of hybrid lines carrying t-LOHs on each chromosome region ($n = 24$ hybrid lines). **f**, Number
190 of t-LOHs per hybrid line after evolution under control and UV mimetic conditions. Wilcoxon test p -value is shown ($n = 27$
191 hybrid lines evolved in control and $n = 24$ hybrid lines evolved in UV mimetic). Illustrations in **d** were created with
192 [BioRender.com](https://biorender.com).
193


194 **Parents and Hybrids have Parallel Access to Adaptive *De Novo* Mutations in the same 195 Genes**

196 Lower rates of adaptation to UV mimetic conditions may also be explained by hybrids not having
197 access to the same adaptive mutations as the parental lines, as per our alternative hypothesis. For
198 instance, some mutations could have strong genetic background-dependent effects. We investigated
199 whether hybrids show parallel or distinct patterns in potentially adaptive single nucleotide
200 polymorphisms (SNPs), focusing on missense variants, as their potential impacts are easier to
201 interpret, and data is more robust in this category. We found a median of 20 missense variants per
202 line in *S. cerevisiae*, 12 in *S. paradoxus*, and 42 in the hybrids (*Extended Data Fig. 5*) with a
203 comparable trend in control conditions. A gene ontology (GO) analysis revealed differences in terms
204 of the biological functions affected by mutations but also some similarities (*Supplementary Fig. 4*).
205 Although non-significant, the most enriched GO terms for *S. cerevisiae* included double-strand break
206 repair via sister chromatid exchange (GO:1990414), potentially aiding in coping with 4-NQO-induced
207 DNA breaks, and the regulation of cell differentiation (GO:0045595). For *S. paradoxus*, the most
208 enriched terms included ER-associated misfolded protein catabolic processes (GO:0071712) and
209 endocytic vesicles (GO:0030139), potentially disrupting the invagination of extracellular substances,
210 such as the 4-NQO drug (UV mimetic conditions). In the hybrid, the most enriched terms comprised
211 trehalose metabolic process (GO:0005991) and ABC-type transporter activity (GO:0140359),
212 comprising efflux pumps involved in expelling xenobiotic compounds, such as 4-NQO.
213

214 We found that mutations occurred in parallel in two specific genes across all three genotypic
215 backgrounds (*Fig. 3a*), suggesting that the same molecular changes provide strong selective
216 advantages in all three genotypic backgrounds. The most frequent parallel changes involved the
217 pleiotropic drug response genes *PDR1* and *YRR1* (*Fig. 3a*). *PDR1* and *YRR1* encode zinc finger
218 transcription factors regulating multidrug and stress responses^{69–71}. Among targets, they modulate
219 the expression of *PDR5*, a well-characterized yeast efflux pump that actively transports toxic
220 compounds out of the cell^{72,73}. Three *S. cerevisiae* lines, eight *S. paradoxus* lines, and eight hybrid
221 lines had non-synonymous mutations in *PDR1*, while each genotypic background had five lines with
222 *YRR1* mutations (*Fig. 3a*). This is a surprising level of parallelism, given that drug resistance
223 mutations have been shown to be genotype-specific⁷⁴ and that *S. cerevisiae* and *S. paradoxus*
224 diverged 10 million years ago.
225

226 From here on, we will focus on the analysis of *PDR1* since it was the most often mutated gene. Non-
227 synonymous mutations in *PDR1* were not randomly scattered along the gene but instead occurred
228 in particular clusters that overlapped among all three genotypic backgrounds (*Extended Data Fig.*
229 6). To identify the specific locations of the mutations, we analyzed the protein structure of Pdr1 (*Fig.*
230 3b). We found identical or similar substitutions as revealed in previous studies on *S. cerevisiae*
231 exposed to different drugs, ethanol and antifungal molecules^{75–79} (*Fig. 3b*). Localization on the protein
232 structure revealed the presence of a cluster also found in other fungal species, for instance, in the
233 pathogenic fungus *Nakaseomyces glabratus* (*Extended Data Fig. 7a and 7b*), for which antifungal
234 resistance often arises from mutations in *PDR1*^{80–86}. Parallelism even occurred at the level of amino
235 acid changes across genotypic backgrounds (*Fig. 3c*). For instance, a mutation at amino acid
236 308/307 (corresponding to the respective *S. cerevisiae* and *S. paradoxus* coordinates)
237

238 independently occurred up to four times. This specific amino acid change has also been observed
 239 in other studies⁷⁶, conferring resistance to the same UV mimetic drug we employed (4-NQO)⁷⁵.
 240
 241 The identification of shared mutational hotspots and shared amino acid changes suggests a common
 242 adaptive landscape across genotypic backgrounds, indicating that specific regions within *PDR1* and
 243 *YRR1* harbor similar potential for adaptive mutations to occur in both hybrid and parents.

244
 245 **Figure 3. *PDR1* shows parallel adaptive changes among genotypic backgrounds.** **a**, Absolute frequency of the most
 246 recurrent mutated genes in parents and hybrids. **b**, *Pdr1p* structure modeled with AlphaFold featuring amino acid changes
 247 identified in this study, alongside amino acid changes previously reported. All changes occur in the same regions. Cluster
 248 of amino acid changes is shown in the insets. **c**, Mutations and chromosomal changes occur together and impact fitness
 249 in the three genotypic backgrounds. A schematic of the chromosomal changes for each individual line is shown ($n = 3$ for
 250 *S. cerevisiae*, $n = 8$ for *S. paradoxus* and, $n = 8$ for hybrid). The number of *PDR1* mutated copies is shown in yellow.
 251 Identical amino acid changes are indicated by matching colors across the different genotypic backgrounds. **d**, Fitness gain
 252 (% change in growth rate between initial and final time points) as a function of the number of *PDR1* mutated copies ($n = 3$
 253 for *S. cerevisiae* homozygous mutation, $n = 1$ for *S. paradoxus* homozygous mutation + chromosome gain, $n = 4$ for *S.*
 254 *paradoxus* homozygous mutation, $n = 3$ for *S. paradoxus* heterozygous mutation, $n = 1$ for hybrid homozygous mutation +
 255 chromosome gain, $n = 2$ for hybrid homozygous mutation, $n = 1$ for hybrid heterozygous mutation + chromosome gain, and n
 256 = 4 for hybrid heterozygous mutation). p -value for Kruskal-Wallis test (above) and adjusted p -values after false discovery
 257 rate (FDR) multiple test correction (above each boxplot) are shown. The number of *PDR1* mutated copies is also shown in
 258 yellow. **e**, Fitness gain (% change in growth rate between initial and final time points) as a function of the number of *PDR1*
 259 mutated copies in the three genotypic backgrounds (top) or only in hybrid (bottom). Spearman's rank coefficient (rs) and
 260 p -value are shown ($n = 3$ for *S. cerevisiae*, $n = 8$ for *S. paradoxus*, and $n = 8$ for hybrid).

261 Fitness increases with Copy Number of *PDR1* Adaptive Alleles

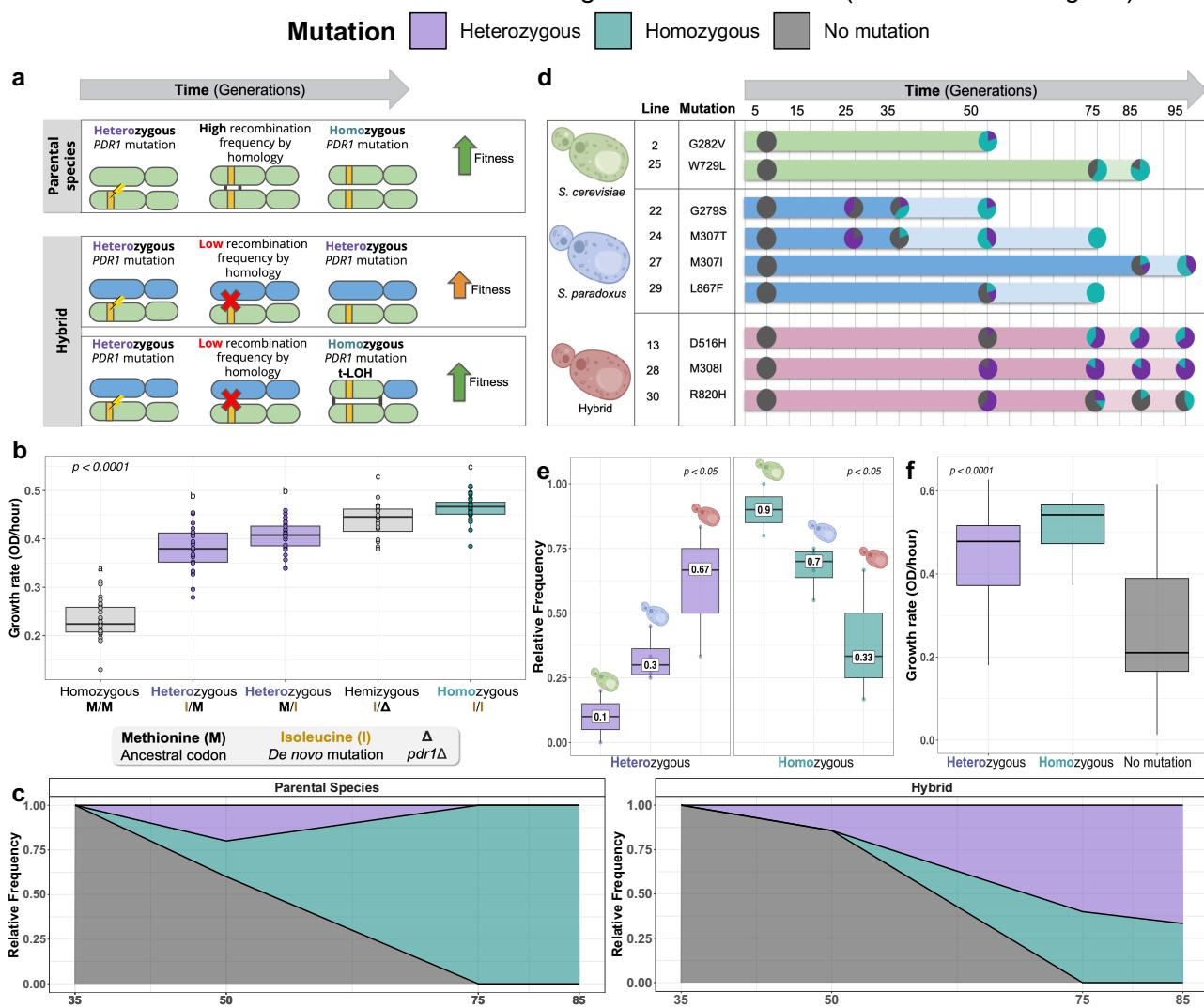
262 The occurrence of mutations in the *PDR1* gene across all three (hybrid and two parental) genotypic
 263 backgrounds raises an intriguing question: Why do these mutations not confer similar adaptive
 264 benefits to hybrids as they do to the parental species? We observed that some lines carrying *PDR1*
 265 mutations showed particularly high fitness gains under UV mimetic conditions. Specifically, lines 2,
 266 25, and 27 for *S. cerevisiae*, lines 22, 24, 27, and 28 for *S. paradoxus*, and lines 13, 27, 28, and 30
 267 for the hybrids show notable improvements (Fig. 3c). A closer genomic analysis revealed that all
 268 these lines share a common characteristic, namely the presence of multiple mutated copies of *PDR1*
 269 (Fig. 3c). Although mutations are expected to initially be heterozygous, we observed a diversity of
 270 genotypes at the *PDR1* locus. While some lines have undergone LOH that made the mutations
 271 homozygous, others show changes in ploidy resulting in an increased number of chromosomes
 272 harboring *PDR1* mutations (Fig. 3c). It is worth noting that an exception is observed in line 9 of *S.*
 273

275 *paradoxus* (Fig. 3c). While being heterozygous for the *PDR1* mutation, this line's high fitness is likely
276 due to an additional mutation in the *YRR1* transcription factor, resulting in enhanced copies of these
277 two transcription factors simultaneously.
278

279 Fitness increased as a function of the number of *PDR1* mutated copies in all three genotypic
280 backgrounds (Fig. 3d and Fig. 3e top panel $rs = 0.55$, $p < 0.05$). This effect was particularly strong
281 in hybrids (Fig. 3e bottom panel, $rs = 0.79$, $p < 0.05$). The two lines with the largest observed fitness
282 gain within their respective genotypic contexts (134% in *S. paradoxus* line 24 and 123% in hybrid
283 line 28) each carried three copies of the *PDR1* mutant alleles (Figure 3c and 3d). Hybrid line 28
284 showed a complex pattern in which a whole-chromosome t-LOH was combined with an increase in
285 ploidy (Fig. 3c*, Supplementary Fig. 5 and Extended Data Fig. 3).
286

287 The likelihood and rate of a mutation becoming fixed in a population is shaped by the strength of
288 selection and the architecture of the trait under selection, including allelic dominance. Therefore, not
289 only does an adaptive mutation need to occur, but it also needs to be in a proper genotype for the
290 individuals to fully benefit from it. Mutations with greater dominance are more likely to become fixed,
291 a principle referred to as Haldane's sieve⁸⁷⁻⁸⁹. This poses a problem to non-obligate sexual species
292 and in systems that only rarely reproduce sexually, like many unicellular microbes such as fungi. In
293 asexual populations, recessive or incompletely dominant beneficial mutations can bypass Haldane's
294 sieve by achieving homozygosity through LOH⁹⁰, although completely recessive alleles would be
295 invisible to selection and could thus be lost before an LOH occurs. The rate of LOH is not uniform
296 among genotypes and it has been shown to be lower in heterozygous genotypes⁹¹. In hybrids, which
297 are highly heterozygous, successful LOH rates are even more limited (Fig. 4a)^{42,45}. Once a beneficial
298 mutation occurs in the parental genomes, high rates of mitotic recombination can rapidly lead to LOH
299 at the site where the mutation occurred and make a mutation homozygous. This would occur at a
300 lower rate in hybrids, slowing down the rate of adaptation.
301

302 Taken together, our findings demonstrate an association between genomic changes leading to the
303 amplification of mutated *PDR1* copies and fitness gains in UV mimetic conditions. Hybrids with *PDR1*
304 mutations do show fitness gains but to a smaller extent than both parental lines. This advantage
305 could derive from the fact that parental genomes achieve higher levels of homozygosity for these
306 mutations (Fig. 3c): The LOH rate in hybrids containing *PDR1* mutations was 37.5% (3/8 hybrid lines
307 had a homozygous *PDR1* mutation), whereas it was 100% across the parental *S. cerevisiae* lines
308 (3/3) and 62.5% across *S. paradoxus* lines (5/8), making *PDR1* mutations more visible to selection
309 in parental lines. Thus, the limiting factor may not be the rate and type of mutation but their limited
310 allelic amplification in hybrids (Fig. 4a).
311


312 **The Challenge of Attaining Homozygosity Accounts for the Reduced Adaptive 313 Potential of Hybrids**

314

315 In order to test if Haldane's sieve slows down adaptation in hybrids, we rely on the following key
316 assumptions: 1) The initial *PDR1* mutation is recessive or incomplete dominant, requiring
317 homozygosity to unlock its full fitness benefits. We thus predict that homozygous *PDR1* mutants will
318 display higher fitness than heterozygous *PDR1* mutants; 2) LOH occurs at a slower pace in hybrid
319 genomes^{42,45,91}.
320

321 We first validated the adaptiveness of specific *PDR1* mutations. Site-directed mutagenesis was used
322 to introduce seven candidate mutations (G280R, G280S, M308I, and G1042W for *S. cerevisiae*;
323 G279R, G279S, and G281V for *S. paradoxus*) on a plasmid carrying either *S. cerevisiae* or *S.*
324 *paradoxus* *PDR1* gene. After introducing these plasmids into a *S. cerevisiae* strain (BY4741) deleted
325 for *PDR1* (*pdr1* Δ); we found that the mutations conferred significantly higher growth rates in the
326 presence of the UV mimetic drug compared to the wild-type (WT) (Extended Data Fig. 8a). These
327 mutations also conferred fitness benefits in the parental backgrounds with slight variations in the
328 extent of effects (Supplementary Fig. 6). To further confirm the effects derived from the transcription
329 factor activity of *PDR1*, we measured expression of the downstream drug efflux pump Pdr5^{72,73}. We
330 fused Pdr5 to a Green Fluorescent Protein (mEGFP) and measured its expression in the same strain
331 (BY4741) containing *PDR1* mutations on a plasmid. The Pdr5-mEGFP strain exhibited higher

332 fluorescence levels when carrying a plasmid containing specific *PDR1* mutations, compared to wild-
 333 type (WT) (Extended Data Fig. 8b). Consistent with this observation, we found that the same *PDR1*
 334 mutations also lead to resistance to several drugs other than 4-NQO (Extended Data Fig. 7c).

335 **Figure 4. *PDR1* mutations show additive phenotypes such that allele copy number correlates with fitness gain.** **a**,
 336 Schematic of the hypotheses tested. Rapid homozygosity through LOH allows fitness to increase rapidly in parents. Hybrids
 337 achieve homozygosity more slowly and it occurs through major genomic changes in copy number (t-LOH). A single-parent
 338 species is depicted for simplicity of visualization. **b**, Growth rate in UV mimetic conditions (4 μ M of 4-NQO) of the four types
 339 of zygosity (homozygous WT, heterozygous M308I, hemizygous M308I, and homozygous M308I) of *PDR1* constructed by
 340 CRISPR-cas9 genome editing ($n = 22-28$ per zygosity). *p*-value for ANOVA test (above) and Tukey post hoc pairwise
 341 groups (above each boxplot) are shown. **c**, Temporal dynamics of the evolutionary history of hybrid line 13 and *S.*
 342 *paradoxus* line 29 evolved in UV mimetic conditions. Relative frequencies through time (measured in generations) of the
 343 three detected zygosity types are shown (heterozygous *PDR1* mutation in purple, homozygous *PDR1* mutation in turquoise, or
 344 no mutation on *PDR1* in grey). The relative frequency is displayed from one time point before the first detection of the
 345 *PDR1* mutation to up to two time points after. Panel shows a representative example for simplicity but see Extended Data
 346 Fig. 9 for a comprehensive analysis of all lines ($n = 5-10$ isolated clones per time point). **d**, Temporal dynamics of the
 347 evolutionary history across the three types of zygosity ($n = 2$ lines for *S. cerevisiae*, $n = 4$ lines for *S. paradoxus*, and $n =$
 348 3 lines for hybrid, each line has $n = 5-10$ isolated clones per time point). The dark-colored interval represents the number
 349 of generations in which the first homozygous mutation appears. **e**, Relative frequency of homozygous and heterozygous
 350 lines across genotypic backgrounds (*S. cerevisiae*, *S. paradoxus*, and hybrid). The relative frequency was determined by
 351 calculating the median value of relative frequencies across time points, starting from the first detection of *PDR1* mutations
 352 until reaching a homozygous level exceeding 80% or the frequency detected in the last resequenced time point (95
 353 generations). The median values for each genotypic background are highlighted in squares ($n = 2$ lines for *S. cerevisiae*,
 354 $n = 4$ lines for *S. paradoxus*, and $n = 3$ lines for hybrid, each line has $n = 5-10$ isolated clones per time point). *p*-value for
 355 ANOVA test (above) is shown. **f**, Growth rate in UV mimetic conditions (4 μ M of 4-NQO) of hybrid zygosity types (heterozygous
 356 *PDR1* mutation, homozygous *PDR1* mutation or no mutation on *PDR1*) through time (from isolated clones of the
 357 experimental evolution frozen fossils) ($n = 40-80$ isolated clones / line from three hybrid lines evolved in UV mimetic
 358 conditions containing *PDR1* mutations: 13, 28 and 30). *p*-value for ANOVA test (above) is shown. Illustrations in **b**, **d**, **e**, and **f**
 359 were created with [BioRender.com](https://biorender.com).

361 To assess the dominance of *PDR1* mutations in a neutral genomic background, independent from
362 potential interference by other mutations as might occur in our lines, we generated homozygous and
363 heterozygous diploid mutants by mating BY4741 and BY4742 haploids and using CRISPR-Cas9
364 genome editing. We focused on the M308I mutation because it showed the most significant fitness
365 gain and activation of the Pdr5 efflux pump (*Extended Data Fig. 8*). We found that in the homozygous
366 state, this mutation conferred a higher fitness advantage than in the heterozygous state (*Fig. 4b*),
367 confirming its incomplete dominance. The hemizygote also showed a higher growth rate than the
368 heterozygote, suggesting that the mutated allele confers higher benefits in the absence of the WT
369 allele. Taken together, our findings confirm the first key assumption: 1) The initial *PDR1* mutation
370 exhibits incomplete dominance and requires homozygosity to fully contribute to adaptation.
371

372 We archived populations regularly over the course of experimental evolution⁴⁹, so we could revive
373 the frozen fossils and isolate some clones to determine the timing of appearance of the various
374 *PDR1* mutations. We revived ~350 clones from nine hybrid and parental populations that harbor
375 homozygous *PDR1* mutations based on WGS data and sequenced the *PDR1* locus using amplicon
376 Sanger sequencing. We identified three types of zygosity at the *PDR1* locus at intermediate time
377 points of experimental evolution (*Fig. 4c*): heterozygous, homozygous WT, and homozygous mutant.
378 As expected for *de novo* mutations in diploids, mutations were consistently first detected as
379 heterozygous (*Fig. 4d*) but in some cases, the LOH was so rapid that we also detected homozygous
380 mutants (*Fig. 4c left*).
381

382 This trend aligns with the increase in fitness recorded during the experimental evolution in their
383 populations of origin but also when analyzing specific isolated clones⁴⁹ (*Extended Data Fig. 9* and
384 *Extended Data Fig. 10*, respectively). Mutations only became homozygous later (*Fig. 4d*) but with
385 the important difference that the parents become homozygous at a higher frequency than the
386 hybrids. This pattern persisted across all experimental populations: Homozygous genotypes
387 appeared quickly after the initial *PDR1* mutations occurred, and spread rapidly in the parental
388 populations, whereas in the hybrids, even by generation 95, a high proportion of heterozygotes were
389 still observed (*Fig. 4d*, see *Extended Data Fig. 9* for detailed analysis). Supporting this trend, we saw
390 in some of the parents (population 2 and 25 of *S. cerevisiae*, population 27 and 29 of *S. paradoxus*)
391 that the emergence of homozygous and heterozygous coincide, indicating that the mechanism of
392 adaptation through LOH can operate quickly (*Fig. 4c* and *4d*). The relative frequency of each
393 mutation in each population through time further shows that the proportion of homozygous mutants
394 was much lower in hybrids compared to parental species (*Fig. 4e*). Remarkably, these proportions
395 (*Fig. 4e*) closely mirror those calculated above from the genome sequences, averaged for each
396 genotypic background (100% vs. 90% in *S. cerevisiae*; 62.5% vs. 70% in *S. paradoxus* and 37.5%
397 vs. 33% in hybrids). To verify that the low homozygote frequency in hybrids was not due to reduced
398 homozygote fitness in the specific hybrid genotypic background, we compared hybrid fitness across
399 generations and populations and confirmed that homozygotes were fitter than heterozygotes and
400 homozygotes WT (*Fig. 4f* and *Extended Data Fig. 10* for fitness across generations). These findings
401 validate our final assumption that 2) LOH occurs at a slower pace in hybrids.

402 Discussion

403

404 Hybridization is a recurring phenomenon in nature that has captured the interest of scientists for
405 decades^{1,9,14,92–95} in fundamental fields but also in applied research such as in agriculture and
406 medical microbiology^{24,25,28,96,97}. The adaptive and non-adaptive roles of hybridization have been
407 studied extensively^{8,98–107}. However, the negative consequences have mostly focused on
408 reproductive isolation^{108,109} and less on the potential reduction in adaptive rates of hybrids. We
409 previously evolved hybrids of *S. cerevisiae* and *S. paradoxus* species during 100 generations in a
410 stress that mimics UV radiation and observed a reduced adaptive potential of hybrids. We used this
411 system to investigate what could reduce the hybrid rate of adaptation.

412

413 Our results reveal that hybrids and parental species have access to the same adaptive changes in
414 key genes. In principle, adaptation can therefore occur through the same mechanisms and at the
415 same rate. We examined the cases of mutations that impacted a transcriptional factor involved in
416 drug resistance because they displayed strong parallelism. The mutations displayed incomplete
417 dominance and could only avoid Haldane's sieve - the bias against the establishment of recessive
418 beneficial mutations^{87–89} - by achieving homozygosity through LOH. Because LOH depends on
419 recombination and recombination depends on high sequence identity^{42,45,91}, this second event (LOH)
420 occurs at a slower rate in hybrids, ultimately contributing to slowing down hybrid adaptation. This is
421 opposite to *de novo* mutations, which accumulate in yeast hybrid genotypes at rates that are not
422 greater than those observed in these parental species¹¹⁰. Experiments involving the evolution of
423 heterozygous yeast populations have also shown that LOH frequently unmasks beneficial recessive
424 alleles which can confer significant fitness advantages^{90,111–113}. Although not explored here, LOH in
425 hybrids could also limit adaptation in other ways. Since mitotic recombination often extends along
426 the entire length of a chromosome arm^{62,64}, especially in heterozygous genomes⁶³, an LOH that
427 renders a beneficial mutation homozygous could also bring along other molecular changes or
428 combination of changes that would negatively impact fitness. These could include for instance
429 recessive genetic interactions between the two species that would be revealed following a long
430 LOH⁶⁷.

431

432 Our findings contribute to the understanding of the genomic factors shaping asexual microbes. Such
433 hybrids often evolve during domestication, for instance, many beer yeasts are among-species
434 hybrid^{114,115} and these hybrids are known to be largely sterile, i.e. to not have access to sexual
435 reproduction¹¹⁶. Even fungal pathogens evolve through recurrent hybridization events^{28,97,117–121} and
436 acquire antifungal resistance and adapt to new hosts with *de novo* mutations and LOH^{122–126}. It has
437 indeed been shown that to confer full resistance to antifungals, a mutation in a transcriptional
438 regulator needed to be followed by LOH¹²⁷. Antimicrobial resistance has also been shown to depend
439 on an LOH event in *S. cerevisiae*, in order to render a loss-of-function mutation homozygous¹²⁸.
440 Understanding which conditions could slow down the rate of LOH, such as heterozygosity along the
441 chromosome as we exemplify here, or the linkage to other potentially deleterious mutations¹²⁹, is
442 there key to understanding evolution in an applied context such as antimicrobial resistance. Other
443 asexual cells that evolve in a similar manner are somatic cells. Cancer cells reproduce somatically
444 and usually evolve by LOH, since most of the mutations associated with tumor progression need to
445 remove the dominant alleles of tumor suppressors to become active^{130,131}. The phenomenon we
446 uncovered here, whereby some genotypes experience lower rates of LOH, thus has also
447 consequences that extend beyond the study of hybrids.

448 Methods

449

450 Experimental Crosses and Previous Experimental Evolution

451 The *S. cerevisiae* and *S. paradoxus* strains used were described in⁴⁹ and were derived from the
452 natural strains LL13_054 and MSH-604 isolated in North American forests^{13,48} (*Supplementary*
453 *Table S2*). To prevent mating type switching in haploids, the *HO* locus was replaced with resistance
454 cassettes (HPHNT1 for Hygromycin B resistance and NATMX4 for Nourseothricin resistance)¹³²
455 through homologous recombination as described in *Table S1*. A total of 90 experimental strains
456 were constructed by crossing haploid strains (30 *S. cerevisiae*, 30 *S. paradoxus* and 30 hybrid), so
457 that each starting parental and hybrid diploid population is the result of an independent mating event
458 as described in⁴⁹. The 90 populations were evolved for 100 generations (*Fig. 1a*) as described in
459⁴⁹. Briefly, we used a non-DNA damaging growth condition called control (YPD 1% yeast extract,
460 Fisher BioReagentsTM, USA; 2% tryptone, BioShop[®], Canada; and 2% D-glucose, BioShop[®],
461 Canada) and a DNA damaging growth condition supplemented with a UV mimetic molecule⁵⁰ 4-
462 Nitroquinoline 1-oxide (4-NQO) (Sigma–Aldrich, cat. no. N8141, batch #WXBC3635V, Canada)⁵⁰.

463 Fitness Assays on Individual Clones

464 Growth assays were conducted on individual clones, which were used for genome sequencing and
465 isolated from the glycerol stocks from experimental evolution⁴⁹ (*Supplementary Table S1*). Ancestor
466 strains ($n = 90$) as well as the populations evolved in YPD ($n = 90$) and in YPD + 4-NQO ($n = 90$)
467 were pre-cultured in 1 mL of YPD in 96 deep-well plates and incubated for 24 h at 25 °C.
468 Subsequently, 20 μ L of these pre-cultures were grown in 96-well flat-bottomed culture plates in 180
469 μ L of medium (YPD or YPD + 4 μ M of 4-NQO), resulting in an initial OD₅₉₅ of approximately 0.1. A
470 transfer cycle was performed at 24 h after approximately ~ 5 generations in rich conditions. Each
471 culture was diluted approximately 30-fold by transferring 6 μ L of grown culture into 194 μ L of fresh
472 medium to initiate a new round of growth at an OD₅₉₅ starting at about 0.03. Incubation at 25 °C was
473 performed directly in three temperature-controlled spectrophotometers (Infinite[®] 200 PRO, Tecan,
474 Reading, UK) that read the OD₅₉₅ at intervals of 15 min throughout the two cycles performed. All
475 samples were randomized across plates, temperature-controlled spectrophotometers and days.

476 DNA Extraction, Library Construction and Whole Genome Sequencing

477 We obtained whole-genome sequences of 270 individual clones derived from the 270 experimental
478 lines⁴⁹ (*Supplementary Table S1*). We extracted genomic DNA from overnight YPD cultures derived
479 from each clone according to the manufacturer's instructions (MasterPureTM Yeast DNA Purification
480 Kit, Biosearch Technologies - Lucigen, Wisconsin, USA) and purified on AxygenTM AxyPrep
481 Magnetic PCR Clean-up SPRI beads (Axygen Inc, New York ,USA). Five DNA libraries were
482 prepared using RIPTIDETM High Throughput rapid DNA library prep in 96-well plate format
483 (iGenomX, South San Francisco, USA)¹³³. The quality of the libraries was verified using an Agilent
484 BioAnalyzer 2100 electrophoresis system (Genomic Analysis Platform of the Institute of Integrative
485 Biology and Systems of Université Laval, Quebec, Canada). Pooled libraries were sequenced using
486 paired-end 150 bp reads on different lanes of an Illumina NovaSeq 6000 (Illumina, San Diego, USA)
487 at the Genome Quebec Innovation Center (Montreal, Canada).

488 Flow Cytometry Analysis of Ploidy

489 DNA content was measured by flow cytometry using the SYTOXTM green staining assay (Thermo
490 Fisher, Waltham, USA) as in^{42,48}. Haploid and diploid strains of the *S. cerevisiae* isolate LL13_054
491 were used as haploid and diploid controls, respectively. As triploid control, we used a cross between
492 *S. paradoxus* subspecies B (MSH-604) and *S. paradoxus* subspecies C (LL11_004) strains. As
493 tetraploid control, we used a cross between *S. paradoxus* subspecies B (91_202) and
494 *Saccharomyces cerevisiae* (LL13_054) strains⁴⁸. Because we do not have controls from each
495 genetic background, there may be slight differences in DNA content measurements and thus we
496 inferred ploidy between our lines and the controls. The 270 individual clones derived from the 270
497 experimental lines (*Supplementary Table S1*) from⁴⁹ and used for whole-genome sequencing were
498 thawed from glycerol stocks and grown on solid YPD omnitrays plates (25°C, 72 h). They were
499 inoculated in 1 mL of YPD in 96 deepwell plates and incubated for 24 h at 25 °C. Cells were
500 subsequently prepared for flow cytometry as in¹³⁴. They were fixed in 70% ethanol and kept frozen
501 at -20 °C for further analysis. RNA was eliminated using 0.25 mg mL⁻¹ RNase A during an overnight

502 incubation at 37 °C. Cells were washed twice with sodium citrate (50 mM, pH 7) and stained with a
503 SYTOX™ green concentration of 0.6 µM for 1 h at 25 °C in the dark. Cell concentration was adjusted
504 in sodium citrate (50 mM, pH 7) to be less than 500 cells/µL. Five thousand cells from each of the
505 300 samples were analyzed in 96-well plates in a CytoFLEX Platform flow cytometer (Beckman
506 Coulter, California, USA) at the Feldan Therapeutics facility (Quebec, Canada). Cells were excited
507 with the blue laser at 488 nm and fluorescence was measured in a green fluorescence detection
508 channel (525/40 nm). The distributions of the green fluorescence values were processed to find the
509 two main density peaks, which correspond to the two cell populations in G1 and G2 phases,
510 respectively. DNA content value was calculated as a median of the fluorescence of the two main
511 density peaks.

512 **Quality Assessment and Read Mapping of Next-Generation Sequencing Data**

513 Raw reads from barcoded samples of the five libraries were demultiplexed using DemuxFastqs from
514 fgbio tools¹³⁵ v1.5.0 (*Supplementary Table S3*). Reads were trimmed using Trimmomatic¹³⁶ v0.36
515 with parameters ILLUMINACLIP:Trimm_seqs.fa:6:20:10 and using Trimm_seqs.fa (*Source Data 1*)
516 as a list of adapter sequences used. To assess the quality of both pre- and post-trimming sequencing
517 reads, we used FastQC v0.11.9¹³⁷ and MultiQC v1.11¹³⁸.

518 Reads from *S. cerevisiae* samples were mapped on the indexed reference genome of *S. cerevisiae*
519 strain YPS128¹³⁹, which in our study is named LL13_054, and *S. paradoxus* samples were mapped
520 on the *S. paradoxus* *SpB* (named MSH-604) genome^{139,140}. Reads from hybrid lines were mapped
521 on a concatenated genome comprising the two respective parental genomes end to end. The BWA-
522 MEM algorithm¹⁴¹ v0.7.17 was used for mapping. Mapped reads were processed by genome-sorting
523 algorithms using samtools v1.8¹⁴² and quality was assessed by mapping coverage with goleft
524 v0.2.2¹⁴³. The average mean read depth across samples was about 100X (*Supplementary Fig. 1*).
525 We excluded line 16 from the *S. cerevisiae* population evolved under UV mimetic conditions due to
526 its low quality. We used Picard tools v2.26.11¹⁴⁴ for adding Read Groups groups with
527 AddOrReplaceReadGroups, and we removed duplicate reads with MarkDuplicates with parameter
528 REMOVE_DUPLICATES = true.

529 **Analysis of Read Depth (Aneuploidies and Loss of Heterozygosity)**

530 Mean read depth over 1 kbp windows were obtained with BamStats04 from Jvarkit tools
531 v2021.08.10¹⁴⁵ and makewindows from bedtools tools v2.30.0¹⁴⁶. We first eliminated some
532 sequences of the hybrid lines evolved in UV mimetic because the sequencing was weak (lines 1
533 and 21) or because the content of one of the parental genomes was the majority (lines 10 and 25)
534 (*Supplementary Fig. 7, 8 and 9*). We also verified the results of **Flow Cytometry Analysis of Ploidy**
535 section and compared DNA content by measuring average read depth across genomes
536 (*Supplementary Fig. 10*). We computed the median chromosome read depth and the median whole
537 genome read depth for each line. In order to detect the number of gained or lost chromosomes, we
538 divided each chromosome's median read depth by the genome-wide median read depth. We
539 standardized this value by the value of the corresponding ancestors to obtain the relative read depth
540 (log2 fold change). Values with a chromosome median read depth higher than the genome-wide
541 median represent gains in DNA content (gradient towards red in *Fig. 2a*, *Fig. 2c* and *Extended Data*
542 *Fig. 3*) and values with a median read depth lower than the genome-wide median represent losses
543 in DNA content (gradient towards purple in *Fig. 2a*, *Fig. 2c* and *Extended Data Fig. 3*) for each
544 individual chromosome. We also computed the number of chromosomes with aneuploidies per line
545 by considering an aneuploidy as a deviation (increase or decrease) of 30% with respect to the
546 genome-wide median read depth as in²⁶. The positional coverage mapping of hybrid genomes
547 unveiled terminal regions with pronounced increases in read depth in one parental chromosome
548 copy and concurrent decreases in the other copy (*Extended Data Fig. 3*), revealing the presence of
549 reciprocal crossovers between chromosomes. These tracts that extend to the telomeres and usually
550 measure between 50-100 kb correspond to Terminal-Loss of Heterozygosity (t-LOH) regions^{62,63,66}.
551 To quantitatively assess the number of t-LOH events in hybrid lines, we identified regions with
552 simultaneous increases and decreases in read depth (deviation of 30% with respect to the genome-
553 wide median read depth) in both chromosomal copies exceeding a size threshold of 20 kb.

554
555

556 **Functional Analysis of *de novo* Mutations**

557 SNP calling was performed with Haplotype Caller (gatk-v4.1.4.1)^{147,148}. Before generating the
558 GVCFs, we added a RG (read group) tag to individual BAM files. After SNP calling, genotyping of
559 GCVFs was performed with GenotypeGVCFs. For variant filtration, we applied standard hard filters
560 with options: QUAL by depth (QD) < 2.0, mapping quality (MQ) < 40.0, Fisher's exact tests of strand
561 bias (FS) > 60.0, symmetric odds ratio test of strand bias (SOR) > 3.0, mapping quality rank sum
562 test (MQRankSum) < -12.5, rank sum test for site position within reads (ReadPosRankSum) < -8.0,
563 Genotype Quality (GQ) < 20, and Coverage (DP) < 3. We selected variants which passed the above
564 filters and we excluded INDELS focusing exclusively on substitutions (SNP) for subsequent
565 analysis. We excluded the pre-existing genetic variation with respect to the reference genome, by
566 removing any variant that was already present in the ancestral strain for each evolved line (*Extended*
567 *Data Fig. 5*). For annotation purposes, we used the *S. cerevisiae* genome assembly R64-1-1
568 (*Saccharomyces cerevisiae* S288c assembly from *Saccharomyces* Genome Database, INSDC
569 Assembly GCA_000146045.2, Sep 2011) for *S. cerevisiae* genomes. Subsequently, we generated
570 maps annotations with Liftoff (v1.6.3)¹⁴⁹ of *S. paradoxus* genome from the *S. cerevisiae* genome
571 assembly R64-1-1 (*Saccharomyces cerevisiae* S288c assembly from *Saccharomyces* Genome
572 Database, INSDC Assembly GCA_000146045.2, Sep 2011). We finally generated a combined
573 annotated genome for hybrid analysis. The variants were ultimately annotated using Ensembl
574 Variant Effect Predictor (VEP) v110¹⁵⁰. We examined missense variants to perform Gene Ontology
575 (GO) using bioMart¹⁵¹ and clusterProfiler¹⁵².

576 **Validation of the Adaptiveness of Mutations**

577 We used ChimeraX v1.5¹⁵³ to visualize Pdr1p amino acid changes we found throughout the
578 experimental evolution and other mutations found in the literature⁷⁵⁻⁷⁹ (*Source Data 2*) on the
579 AlphaFold^{154,155} generated structure for Pdr1p (AF-P12383-F1, *Source Data 3*). Subsequently, we
580 analyzed Pdr1 *Nakaseomyces glabratus* protein by superimposing structures and amino acid
581 changes^{80,83,84} across species (*Source Data 4*; AF-B9VI40-F1, *Source Data 5*). We next used a set
582 of plasmids derived from MoBy-ORF library, in which genes are controlled by its native promoter and
583 terminator¹⁵⁶, to express the *PDR1* sequences from either *S. cerevisiae* (BY4741) or *S. paradoxus*
584 (MSH-604). Candidate mutations (G280R, G280S, M308I, and G1042W, being G1041W in LL1304
585 strain for *S. cerevisiae* sequence, G279R, G279S, and G281V for *S. paradoxus* sequence) were
586 inserted by site-directed mutagenesis. As controls, we used the plasmid without the *PDR1* gene
587 cloned (Empty) or the plasmid containing the Wild-Type (WT) *PDR1* sequence. We introduced these
588 plasmids following a modified lithium acetate transformation protocol¹⁵⁷ in a *S. cerevisiae* lab strain
589 BY4741, and natural strains *S. cerevisiae* LL13_054 and *S. paradoxus* MSH-604 in both WT and
590 *pdr1* Δ (previously constructed by replacing *PDR1* locus with a NATMX4 module) backgrounds.
591 Fitness assays were performed following the same steps as described above in the **Fitness Assays**
592 **on Individual Clones** section. We added extra conditions to the ones previously used (4 μ M of 4-
593 NQO); 8 μ M and 10 μ M of 4-NQO (*Supplementary Fig. 6*). We also conducted an assay on the *S.*
594 *cerevisiae* lab strain BY4741 *pdr1* Δ containing the same mutations on the same plasmids and
595 exposed them to antifungal azoles. After adjusting cell density to an OD₅₉₅ of 1, we made three serial
596 dilutions 1/5 in 200 μ L of water (40 μ L of cells in 160 μ L of water). We spotted 5 μ L of each dilution
597 on YPD + 0.2% DMSO, as a control, YPD + 16 μ g/mL Fluconazole (FLC), YPD + 2 μ g/mL
598 Itraconazole (ITR) or YPD + 0.5 μ g/mL Voriconazole (VRC) and incubated at 30 °C for 48h. We
599 assessed the expression of the downstream Pdr5p drug efflux pump by fusing Pdr5 to a Green
600 Fluorescent Protein (mEGFP) (Pdr5-mEGFP) in a BY4741 *pdr1* Δ lab strain expressing *PDR1*
601 mutants from the above described pMoBY plasmids. For a comprehensive list of strains refer to
602 *Supplementary Table S2* and for a comprehensive list of oligonucleotide sequences refer to
603 *Supplementary Table S4*.
604

605 **Incomplete-Dominance Assay**

606 To evaluate the dominance of the *PDR1* mutations, we created *S. cerevisiae* diploids harboring
607 either homozygous or heterozygous M308I substitutions using CRISPR-Cas9 genome editing and
608 mating strategy involving BY4741 and BY4742 haploids (*Supplementary Table S2*). We replaced
609 the *PDR1* locus with NATMX4 (in BY4741) or HPHNT1 (in BY4742) modules specifically targeted
610 by two different gRNA using a modified protocol from¹⁵⁸. Yeast cells were transformed following a
611 modified lithium acetate transformation protocol¹⁵⁷ with a pCAS-NAT or pCAS-HPH plasmid

612 (Addgene plasmid 6084747 modified by ¹⁵⁹ and ¹⁶⁰ using the same approach as in ¹⁶¹) expressing
613 both the gRNA of interest (NATMX4 or HPHNT1), the *Streptococcus pyogenes* Cas9 ¹⁶² and a donor
614 DNA sequence featuring 40 bp homology arms flanking the *PDR1* DNA sequence. The donor DNA
615 sequences were WT (*PDR1*), the mutation desired (M308I) or a stop codon in the first methionine
616 (M1Stop) (Oligonucleotide sequences can be found in *Supplementary Table S4*). Finally, we mated
617 BY4741 and BY4742 haploids with the desired mutations to create diploids WT homozygous
618 (*pdr1Δ::PDR1/pdr1Δ::PDR1*), M308I homozygous (*pdr1Δ::PDR1(M308I)/pdr1Δ::PDR1(M308I)*),
619 heterozygous (*pdr1Δ::PDR1/pdr1Δ::PDR1(M308I)* or *pdr1Δ::PDR1(M308I)/pdr1Δ::PDR1*) or
620 hemizygous (*pdr1Δ::PDR1(M308I)/pdr1Δ::M1Stop*) (refer to *Supplementary Table S2* for a
621 comprehensive list of strains).
622

623 **Allele frequency dynamics on *PDR1* mutants**

624 Whole population samples were archived regularly during the evolution experiment⁴⁹. From these,
625 we isolated clones to estimate the timing of the appearance of the various *PDR1* mutations and to
626 track the dynamics between homozygous and heterozygous zygosity in the population. We revived
627 approximately 350 clones from nine lines (*Supplementary Table S1*) and sequenced the *PDR1* locus
628 using amplicon Sanger sequencing (Oligonucleotide sequences can be found in *Supplementary*
629 *Table S5*). We designed specific primers for each mutation (Oligonucleotide sequences can be found
630 in *Supplementary Table S4*) and used PCR to amplify those regions. We performed an exhaustive
631 zygosity analysis across time points (each time point represents five generations) to quantify the
632 ratio of homozygous to heterozygous variants. We sequenced clones from the first detection of
633 *PDR1* mutations until reaching a homozygous frequency exceeding 80%, or if this does not occur,
634 we sequenced up to time point 19 (95 generations). Fitness assays in hybrid lines were performed
635 following the same steps as described above in **Fitness Assays on Individual Clones**.
636

637 **Data availability**

638 Supplementary material including Supplementary tables and Source data can be found at Zenodo¹⁶³
639 (<https://zenodo.org/records/10389558>). Sequencing data is accessible at the NCBI Sequence Read
640 Archive (SRA) under BioProject PRJNA1045261. The demultiplexing process details are available
641 at Zenodo¹⁶³ and *Supplementary Table S3*. Tables and scripts for figure generation can be found at
642 Zenodo¹⁶³ and GitHub (https://github.com/cbautistaro/Bautista2023_LOH_project). PDB-formatted
643 files of the AF2-generated models can be found at Zenodo¹⁶³. Strains are available upon request.
644 Data was analyzed using bash and R version 4.2.0.

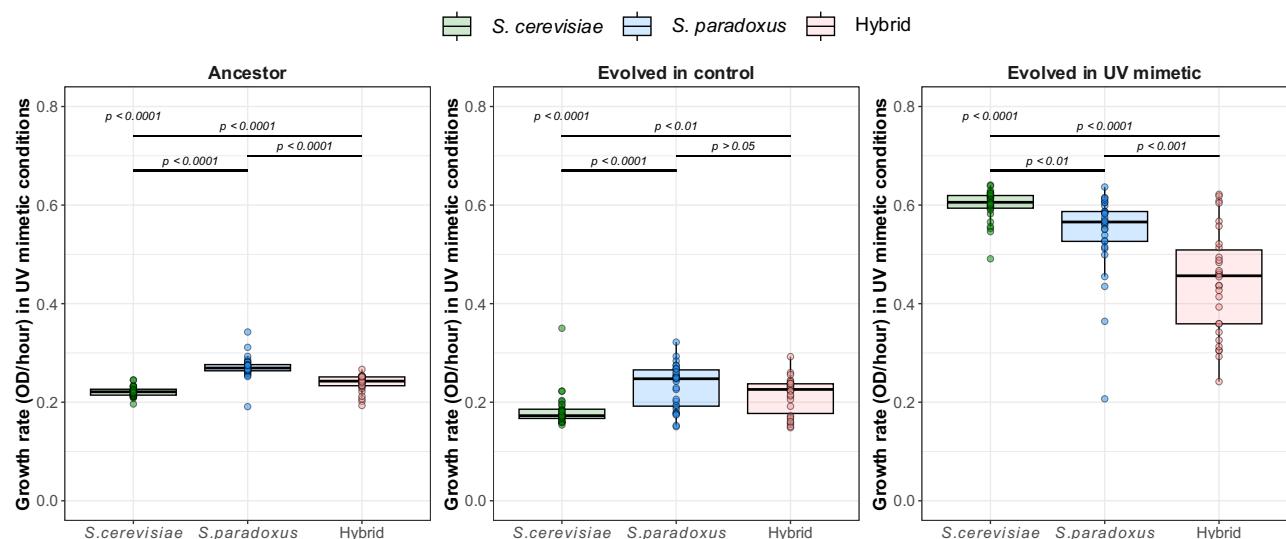
645 **Acknowledgments**

646 We thank Nadia Aubin-Horth for feedback on the manuscript, Alexandre Dubé for assistance in the
647 laboratory work, Angel Cisneros, Lorena Ament, Alexandre Andreas Rego, Damien-Biot Pelletier,
648 Adarsh Jay, and David Bradley for help with data analysis and members of the Landry Lab for helpful
649 discussions.
650

651 **Author's contributions**

652 CB, IGA, and CRL designed the research. CB performed the experiments, collected, and analyzed
653 the data with the assistance of IGA, MU, AF, DB, RS and CRL. CB wrote the manuscript with the
654 assistance of CRL. CB, IGA, MU, AF, DB, RS, and CRL edited the manuscript. CRL was responsible
655 for funding acquisition. All authors read and approved the final manuscript.
656

657 **Funding**


658 This work was funded by a National Sciences and Engineering Research Council of Canada
659 (NSERC) grant to CRL RGPIN-2020-04844. CB is supported by "la Caixa" Foundation (ID
660 100010434), under agreement (LCF/BQ/AA16/11580051) and by the Fonds de recherche du
661 Québec - Nature et technologies (FRQNT) (#274987) doctoral fellowships. MU was funded by the
662 HFSPO initiative "Science for Scientists". CRL holds the Canada Research Chair in Cellular Systems
663 and Synthetic Biology.
664

665 **Competing interests**

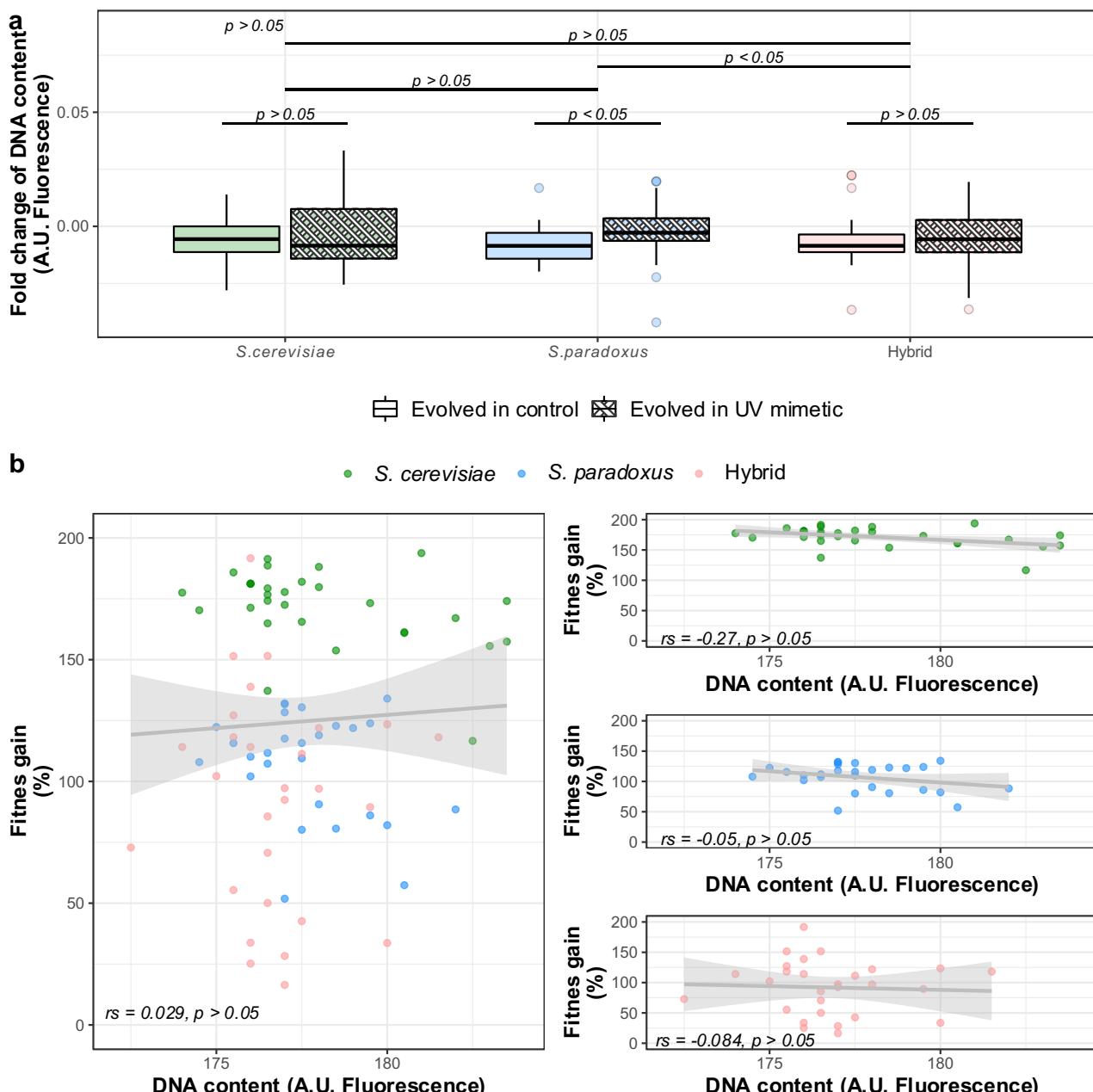
666 The authors declare no competing interests.

667

Extended Data

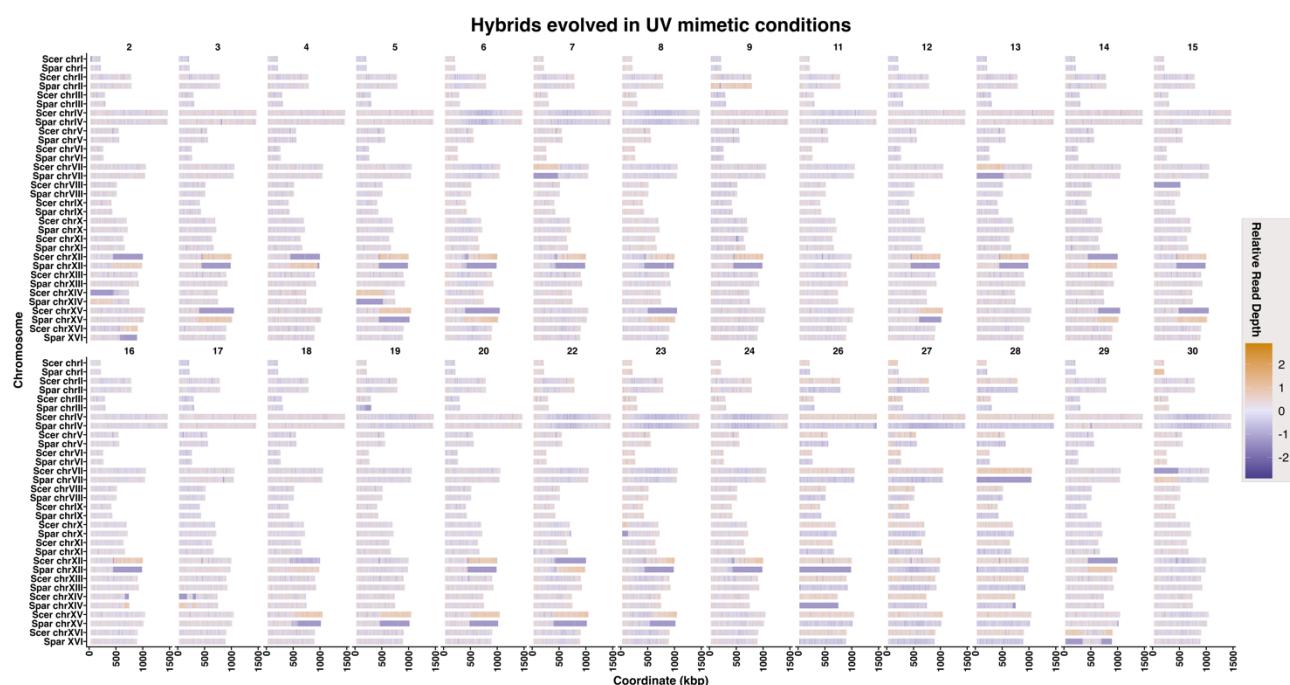
668

669

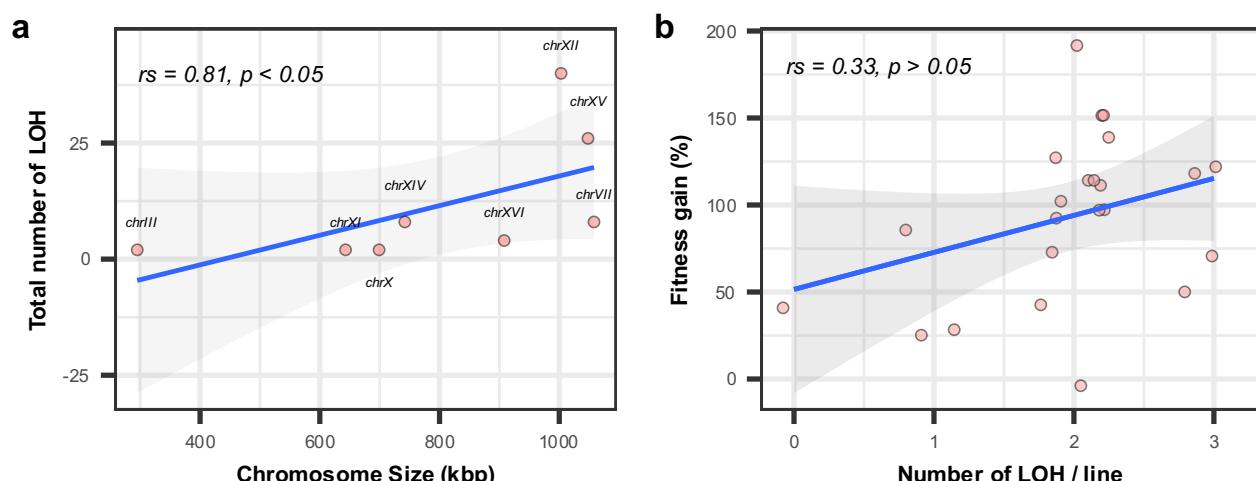

670

671

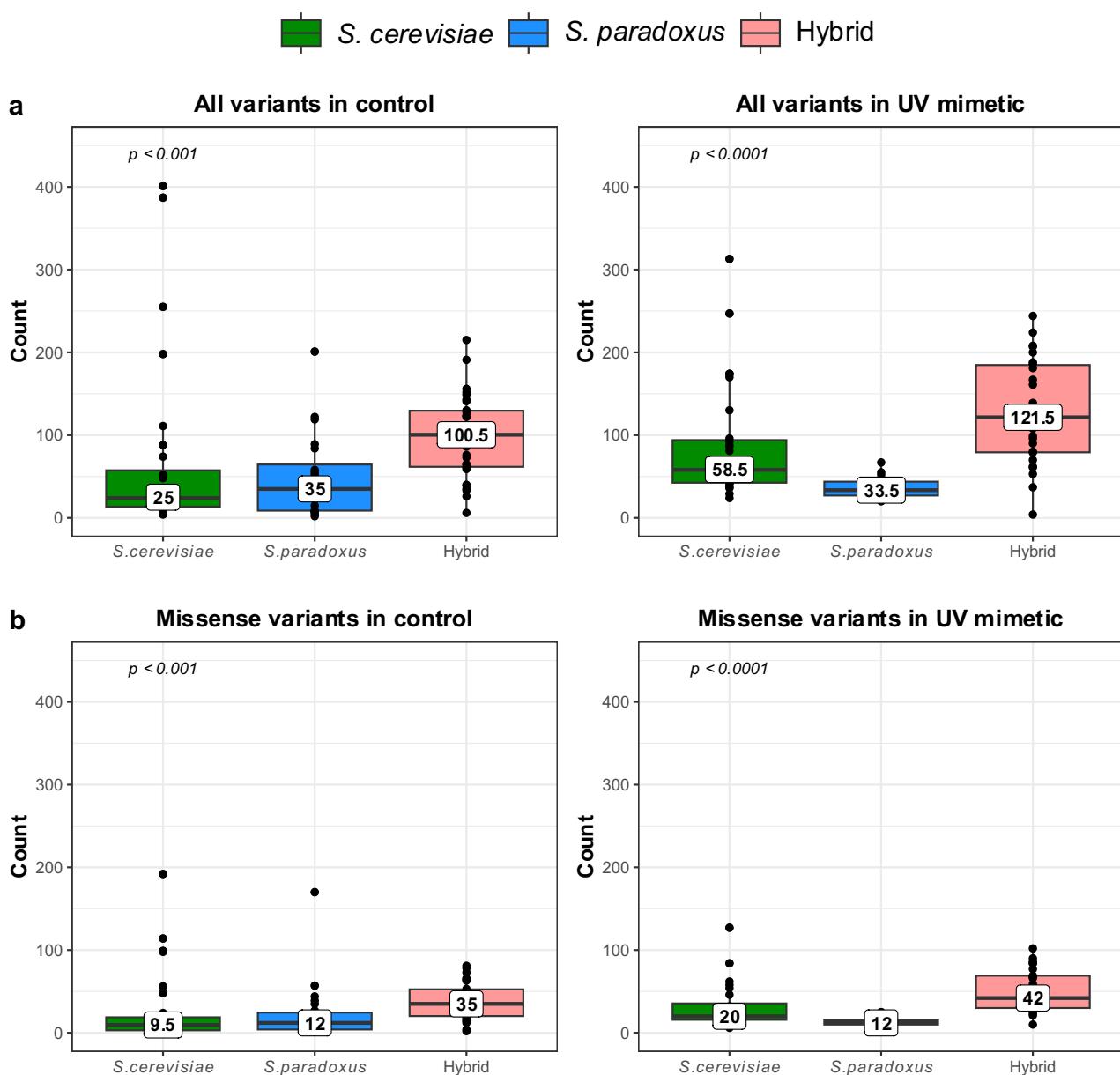
672


673

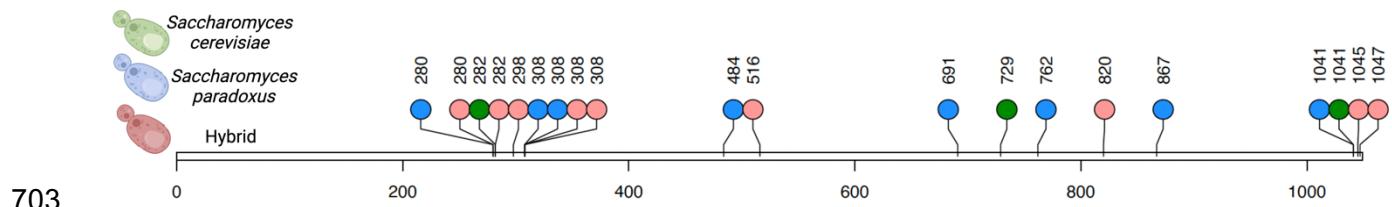
Extended Data Fig. 1. Growth rate of evolved lines in UV mimetic conditions. Growth rate of lines from isolated clones derived from each ancestor population and from each evolved population in control or UV mimetic conditions in the presence of a UV mimetic (4 μ M of 4-NQO) ($n = 30$ lines for each genotypic background and condition). p -values for ANOVA (above) and t-test for paired lines (below) are shown.


674
675
676
677
678
679
680
681
682
683
684
685

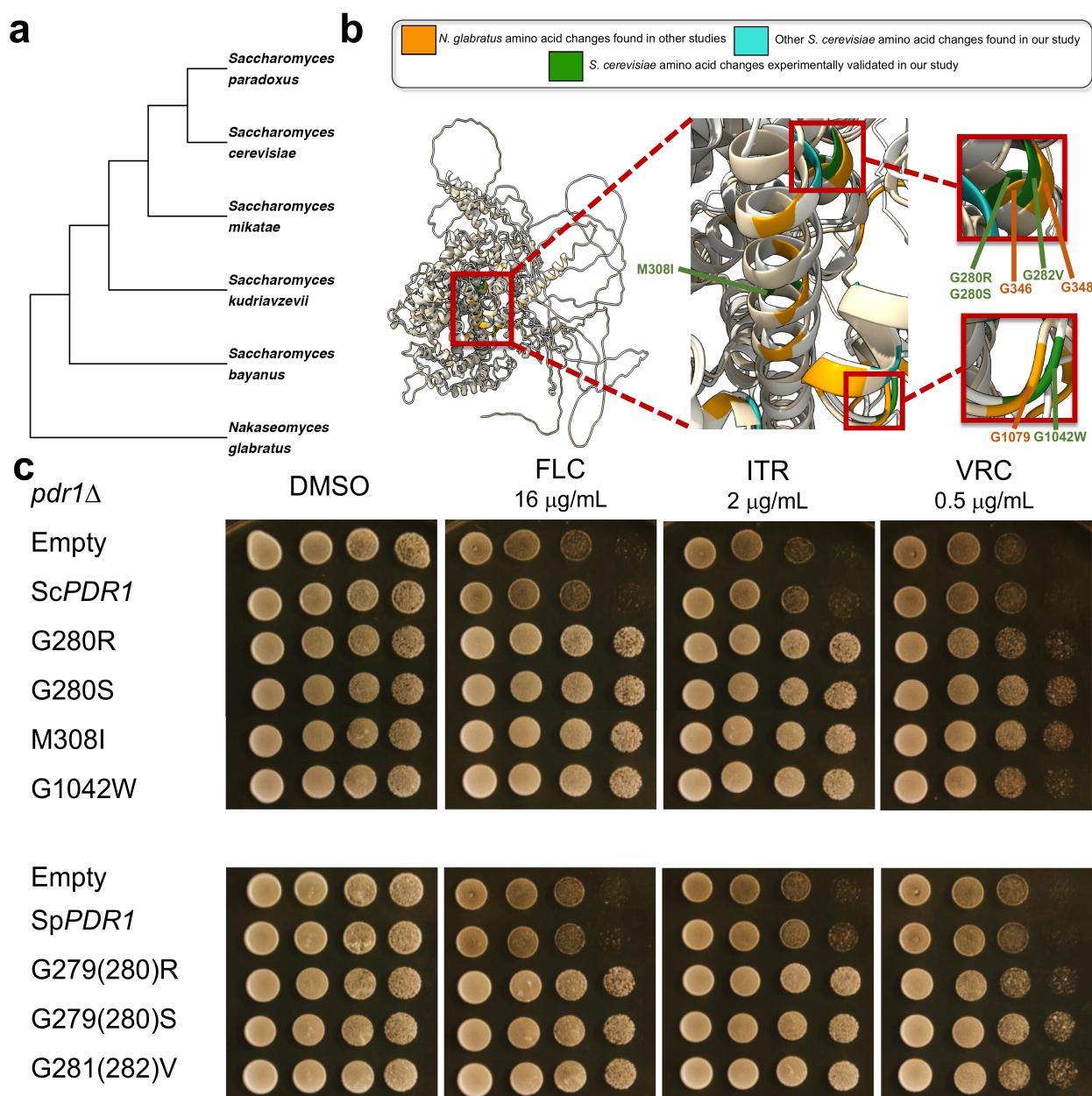
Extended Data Fig. 2. Low frequency of ploidy changes during experimental evolution. **a**, Fold change of DNA content is shown for each genotypic background and condition ($n = 30$ lines for each genotypic background and condition). Fold change of DNA content is represented by the natural log of the ratio between the median DNA content of the lines evolved in UV mimetic conditions and that of the ancestor lines. p -values for ANOVA (above) and t-test for paired lines and conditions are shown ($n = 30$ lines for each genotypic background and condition). **b**, Fitness gain (% change in growth rate between initial and final time points) under UV mimetic conditions is not correlated with ploidy level. Ploidy is measured as the median of the distance surrounding the fluorescence peaks (G1 and G2 cell cycle phases) of DNA content (A.U. Fluorescence). The correlation for the three genotypic backgrounds and the individual correlations for each genotypic background are shown. Spearman's rank coefficients (rs) and associated p -values are shown ($n = 30$ lines for each genotypic background). A.U. refers to arbitrary units.


686
687
688
689
690

Extended Data Fig. 3. Display of read depth variation across chromosomes for hybrid lines. Detection of Terminal LOH (t-LOH) through simultaneous increases and decreases in read depth (deviations of 30% from the genome-wide median read depth). Lines 26, 27, and 28 are non-diploid genomes showing an increased copy of *S. cerevisiae* genome across all chromosomes.

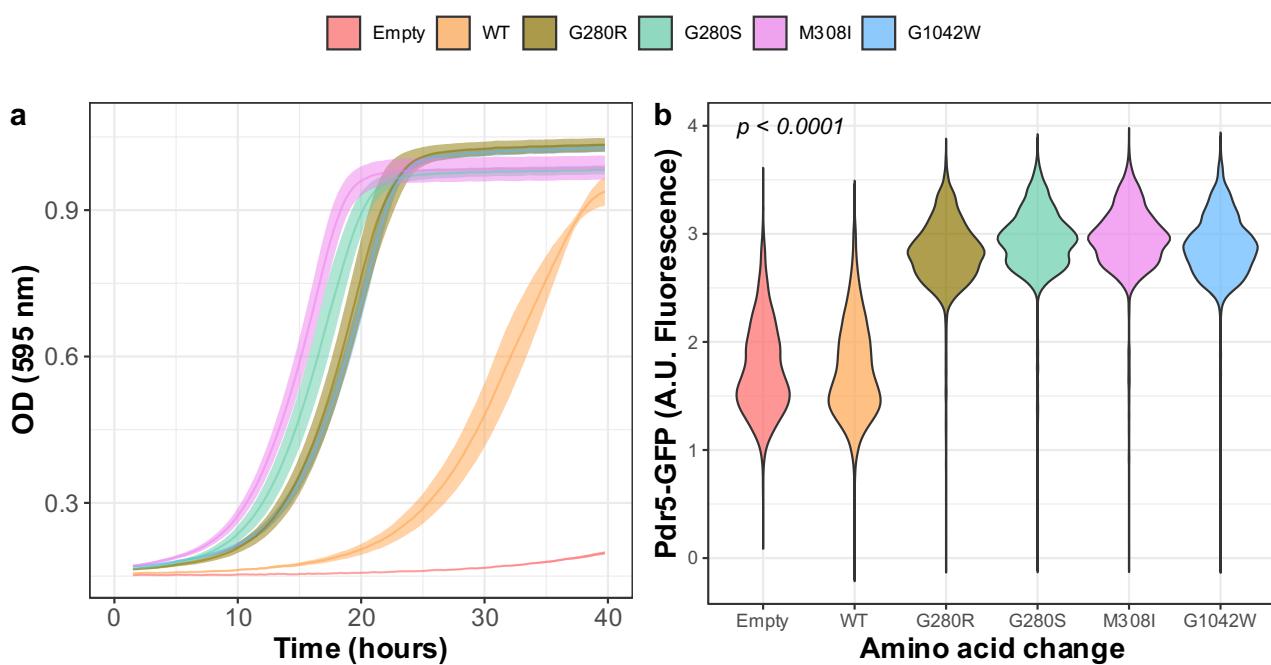

691
692
693
694
695
696

Extended Data Fig. 4. LOH dynamics across hybrid lines in UV mimetic conditions. **a**, Total number of LOH correlates with chromosome size (kbp). Spearman's rank correlation coefficients (rs) and p -values are shown for hybrids evolved in UV mimetic conditions ($n = 8$ chromosomes, the ones affected by t-LOHs). **b**, Fitness gain (% change in growth rate between initial and final time points) as a function of the number of t-LOHs/line. Spearman's rank correlation coefficient and p -value are displayed ($n = 26$ hybrid lines).

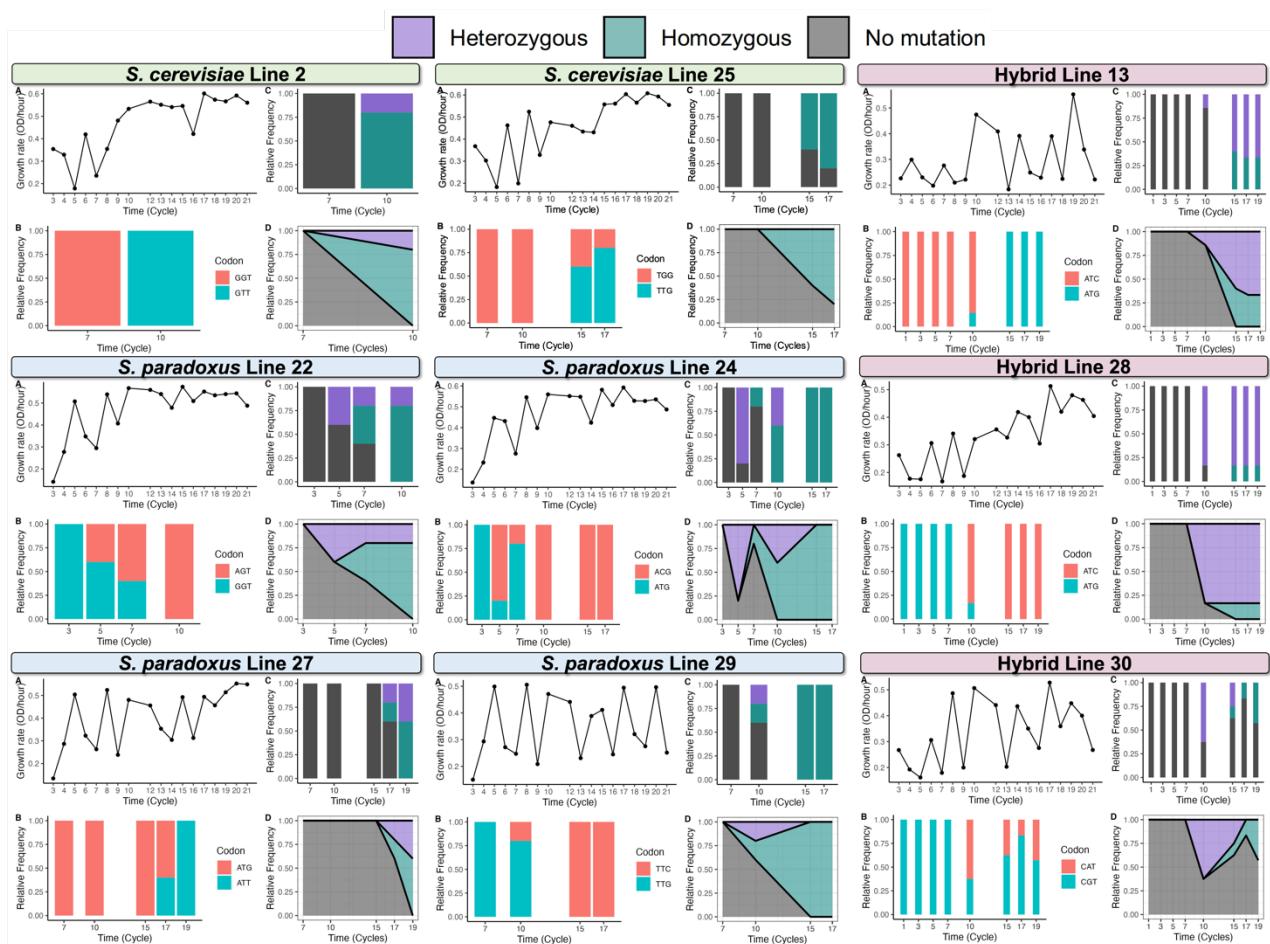


697
698
699
700
701
702

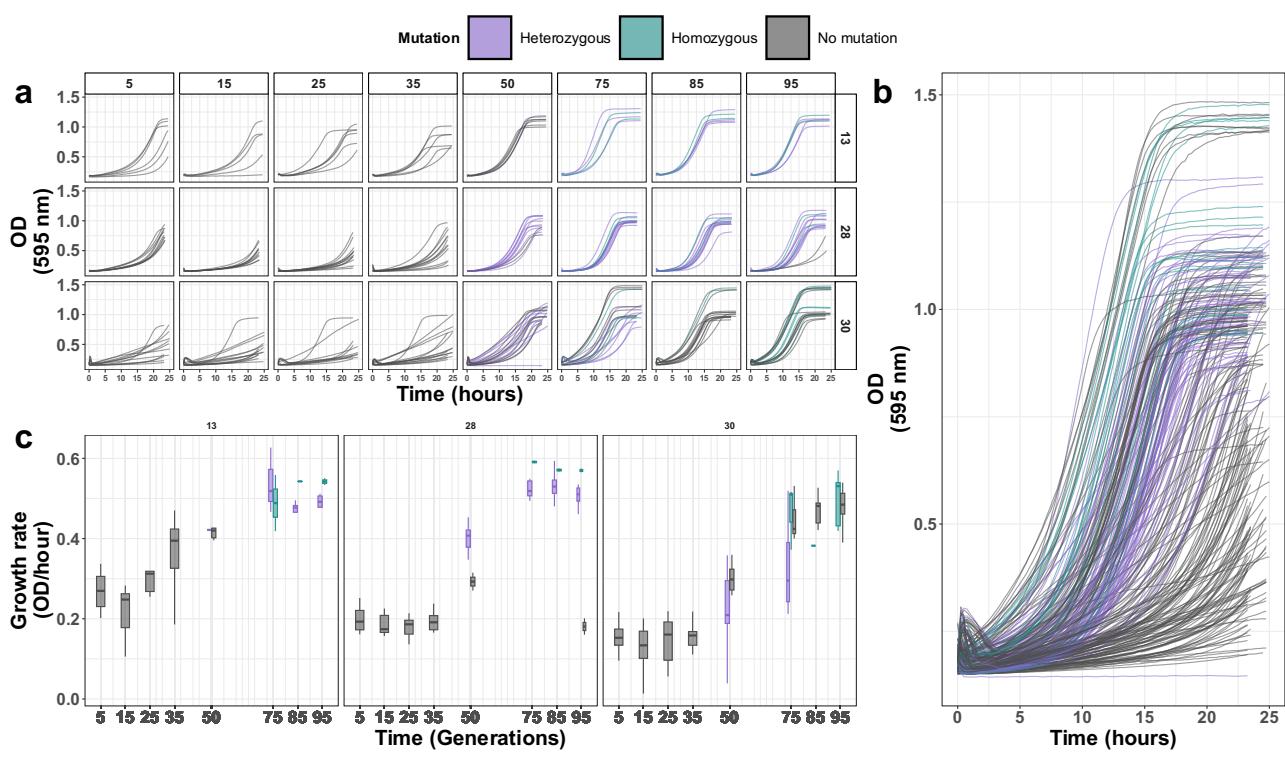
Extended Data Fig. 5. SNPs count through genotypic backgrounds. a, Count of SNPs across genotypic backgrounds in both control and UV mimetic conditions. b, Count of total missense SNPs across genotypic backgrounds in both control and UV mimetic conditions (n=30 lines per genotypic background). *p*-value for Kruskal-Wallis test (among genotypic backgrounds) is shown.



Extended Data Fig. 6. Amino acid changes in Pdr1 protein. Identified non-synonymous mutations are represented along Pdr1p. Each data point is a mutation and numbers represent the amino acid position. Illustration was created with [BioRender.com](https://biorender.com).

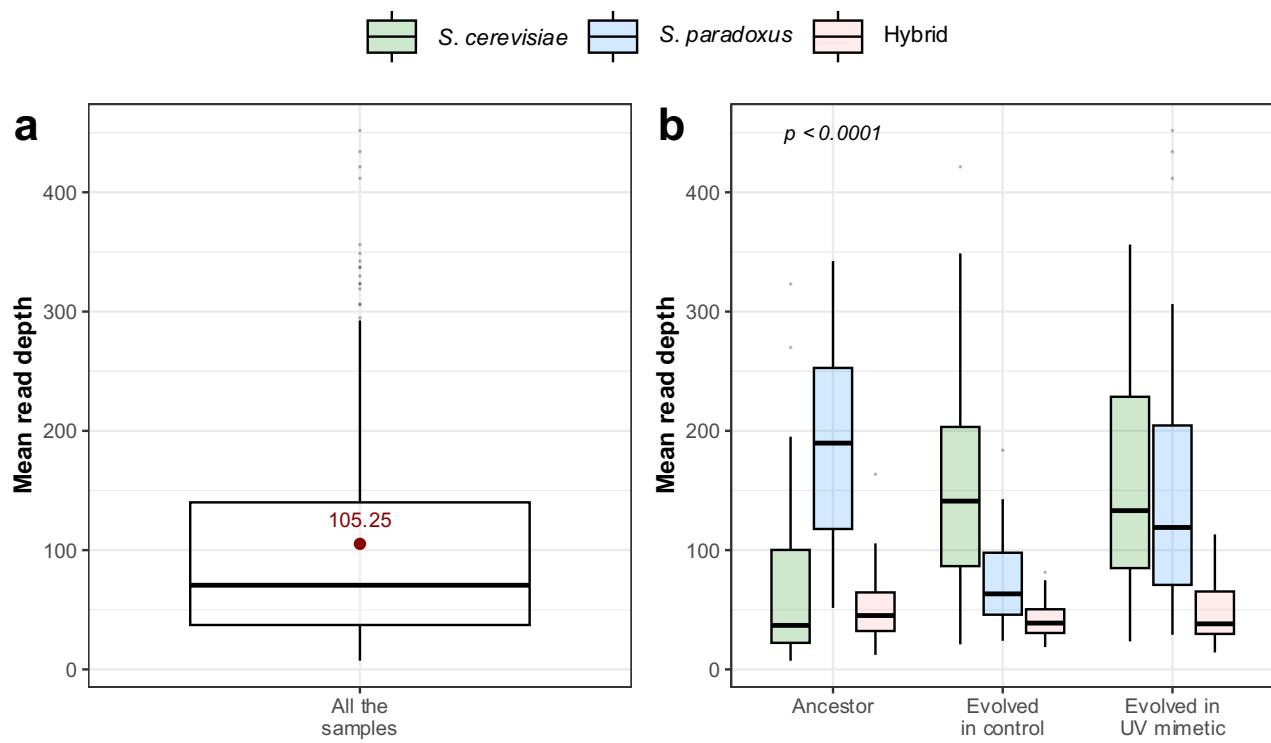

708
709
710
711
712
713
714
715
716
717
718
719

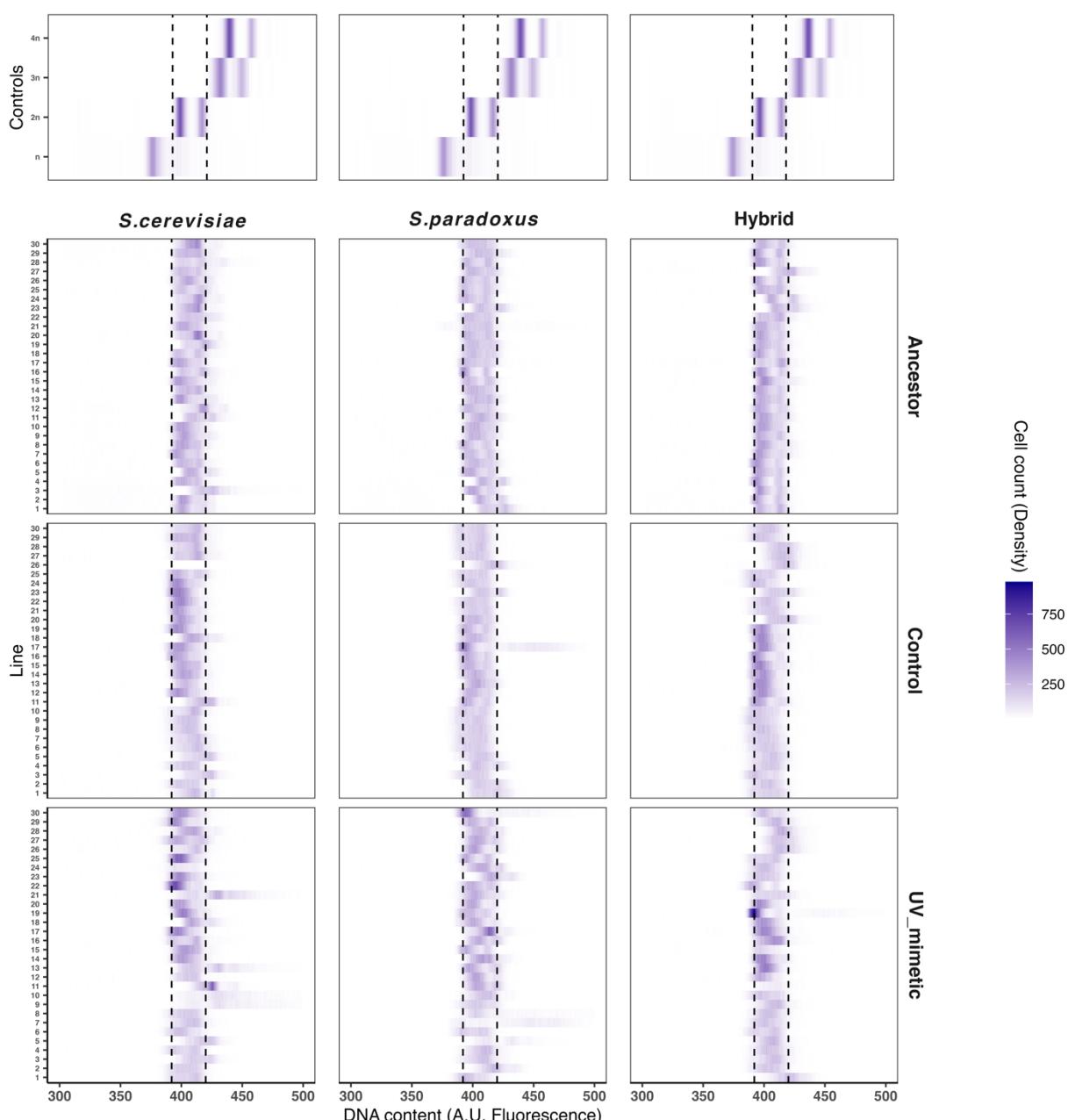
Extended Data Fig. 7. Functional analysis of *PDR1* mutations in *S. cerevisiae* and *Nakaseomyces glabratu*. **a**, Phylogenetic tree showing the relationships between *S. cerevisiae* and *N. glabratu*¹⁶⁴. **b**, Pdr1p structure aligned between *S. cerevisiae* (white colored) and *N. glabratu* (cream colored) modeled with AlphaFold featuring amino acid changes identified in this study, alongside amino acid changes reported in the literature for *N. glabratu*^{80–86}. Cluster of amino acid changes is shown in the insets. **c**, Spot assay of the *S. cerevisiae* BY4741 *pdr1 Δ* lab strain expressing *PDR1* variants from a pMoBY plasmid in which the *PDR1* gene is controlled by its native promoter and terminator¹⁵⁶. This plasmid contains *PDR1* gene from *S. cerevisiae* (Empty: plasmid without the *PDR1* gene; ScPDR1: Wild-Type; G280R, G280S; M308I or G1042W) or from *S. paradoxus* (Empty: plasmid without the *PDR1* gene; SpPDR1: Wild-Type; G279R; G279S or G281V). Growth conditions were DMSO (as a control) and antifungal azoles: Fluconazole (FLC), Itraconazole (ITR), and Voriconazole (VRC).

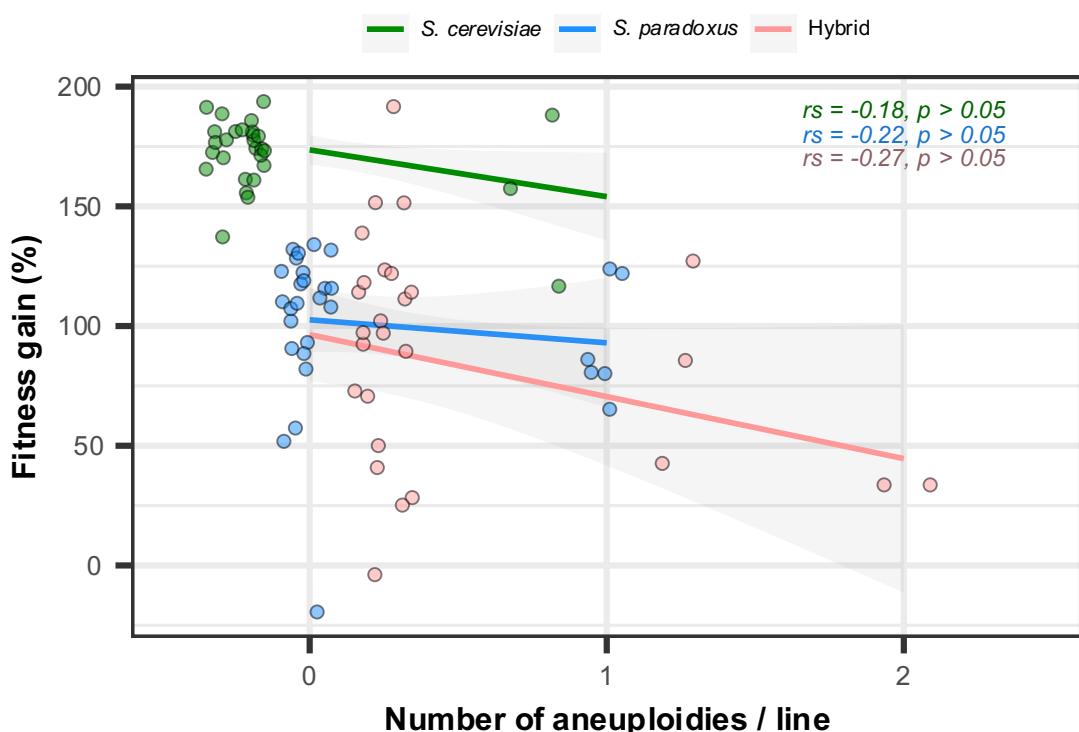


720
721
722
723
724
725
726
727

Extended Data Fig. 8. Functional analysis of *PDR1* mutations. a, Optical density as a function of time in UV mimetic conditions (4 μ M of 4-NQO) of the *S. cerevisiae* BY4741 *pdr1* Δ lab strain expressing *PDR1* variants from a pMoBY plasmid in which the *PDR1* gene is controlled by its native promoter and terminator¹⁵⁶. b, Distribution of cell fluorescence (A.U. Fluorescence) in the population of cells (BY4741 *pdr1* Δ) expressing Pdr5-mEGFP and *PDR1* various mutants from a pMoBY plasmid ($n = 6$). As controls, we used the plasmid without the *PDR1* gene cloned (Empty) or Wild-Type (WT), which is the plasmid containing the *PDR1* gene without mutation. A.U. refers to arbitrary units.

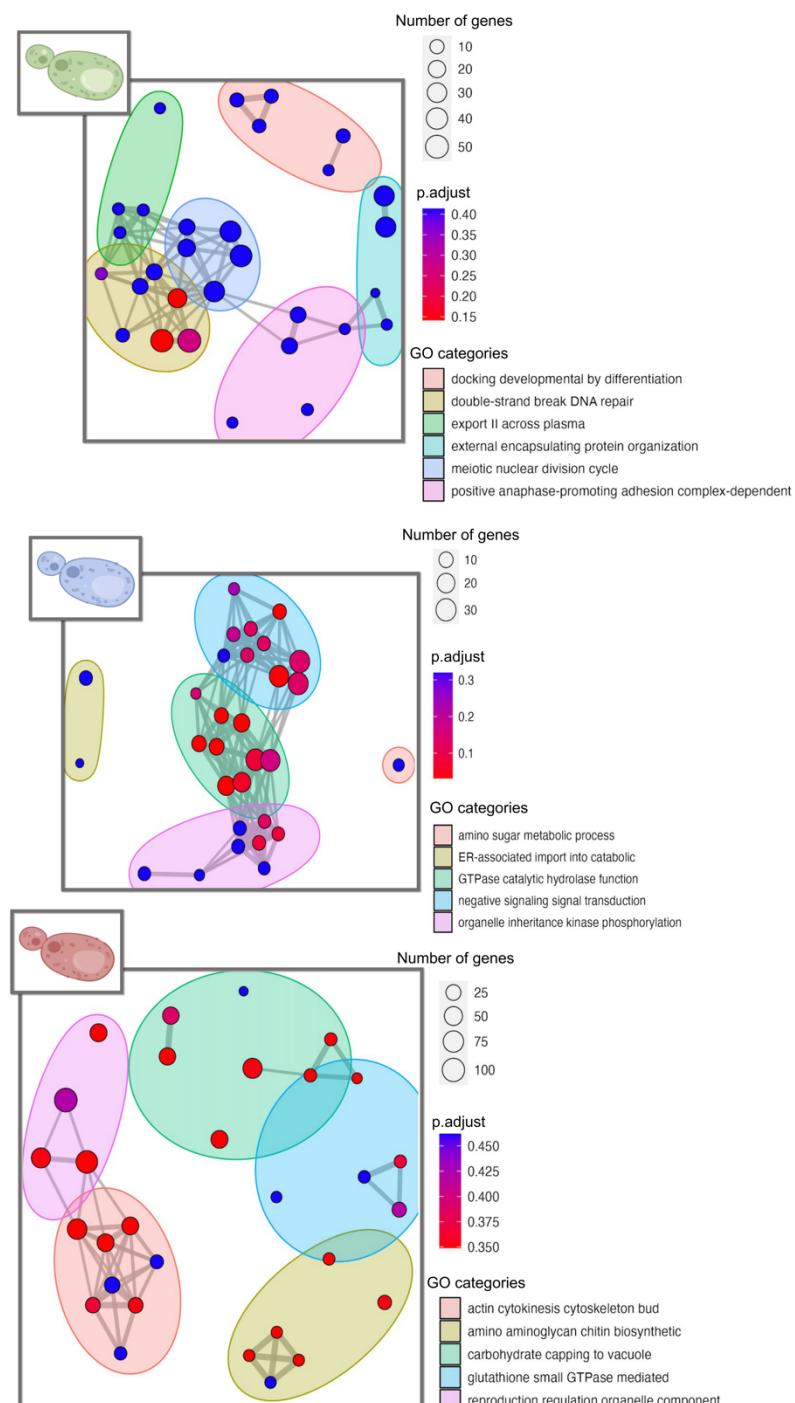

728
729
730
731
732
733
734
735
736
737
738
739




740
741
742
743
744
745
746
747
748
749
750

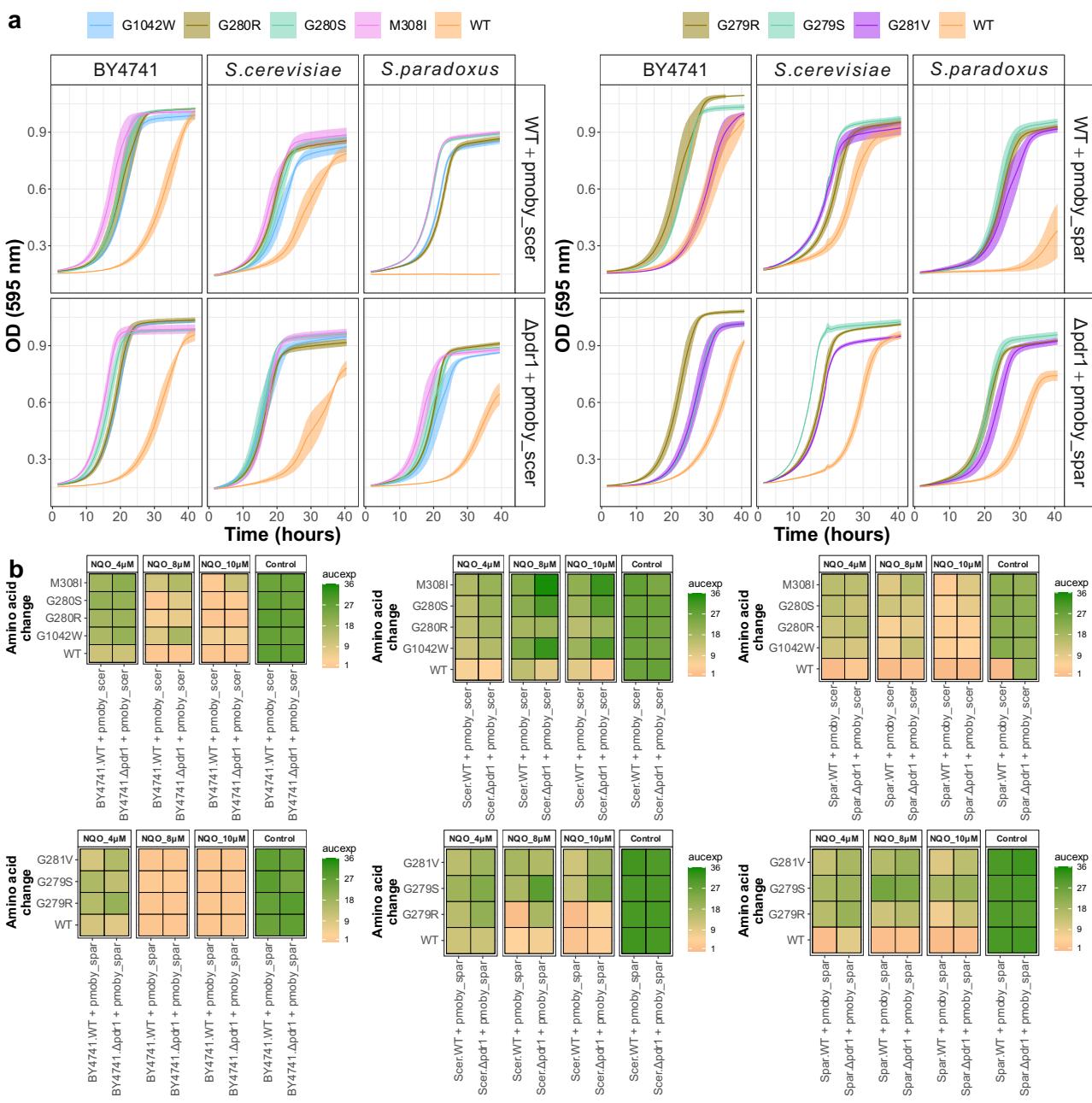
Extended Data Fig. 10. Fitness dynamics of *PDR1* mutants across hybrid lines in which an LOH was detected (Fig. 3b). **a**, Optical density as a function of time in UV mimetic conditions (4 μ M of 4-NQO) of single colonies isolated through time (5, 15, 25, 35, 50, 75, 85, and 95 generations) in different lines (13, 28, and 30) ($n = 270$). **b**, Optical density as a function of time (measured in hours) in UV mimetic conditions (4 μ M of 4-NQO) across all generations and lines. A pattern emerges, where homozygous lines exhibit superior growth compared to heterozygous or lines with ancestral WT sequence. **c**, Growth rate as a function of time (measured in generations) in UV mimetic conditions (4 μ M of 4-NQO) for each line (13, 28, and 30) ($n = 270$). Colors across the figure represent different genotypes detected for the *PDR1* locus: heterozygous (*PDR1* mutation present on only one chromosome), homozygous (resulting from an LOH event where both chromosomes have the same *PDR1* mutation), and ancestral WT sequence (no *PDR1* mutation detected).

751 **Supplementary Figures**



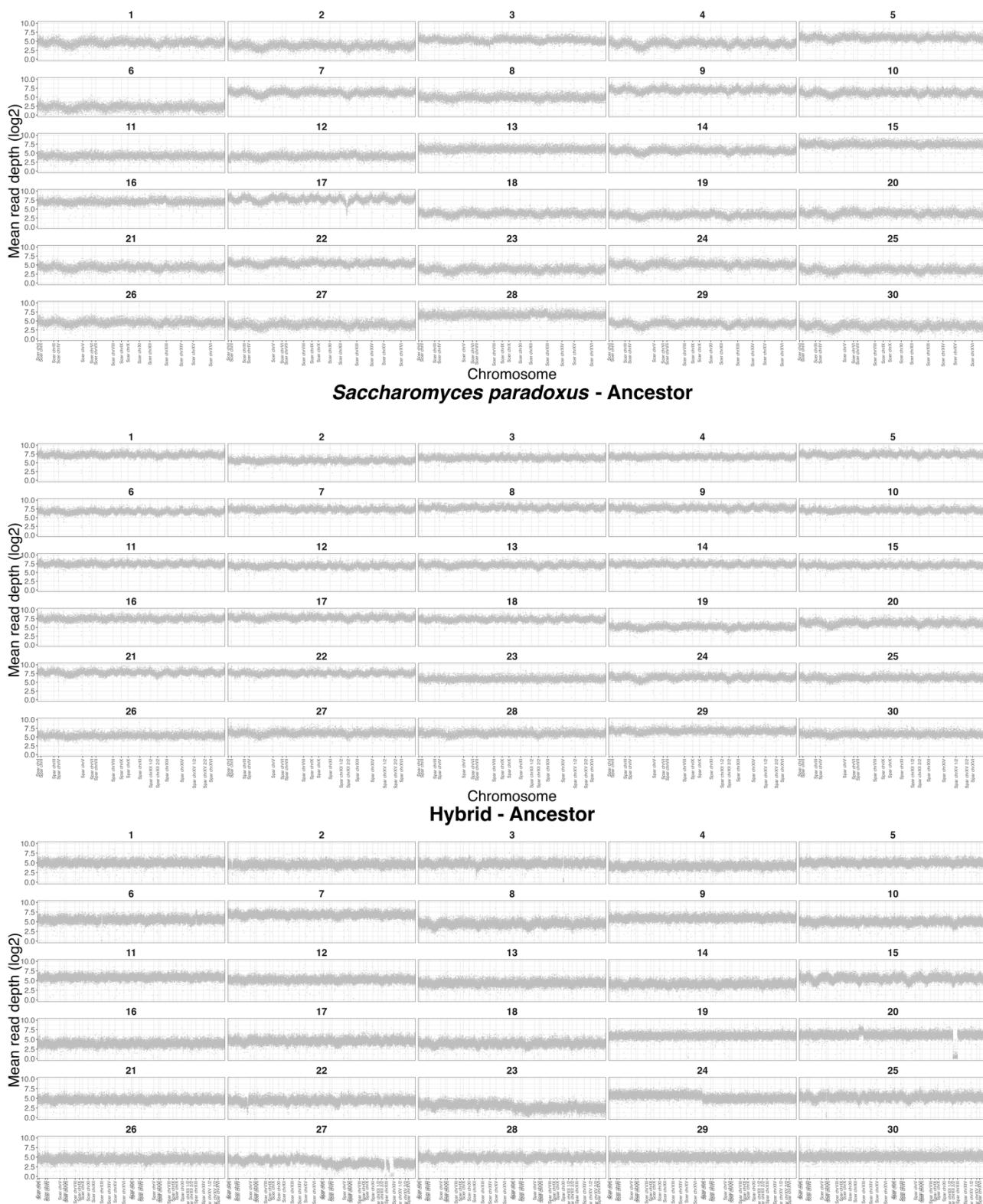
762
763
764
765

Supplementary Fig. 3. Aneuploidy dynamics. Fitness gain (% change in growth rate between initial and final time points) as a function of the number of aneuploidies/line. Spearman's rank correlation coefficients (rs) and p-values for each genotypic background ($n = 30$ lines for each genotypic background) are shown.


766
767
768
769
770
771
772
773
774
775
776
777
778

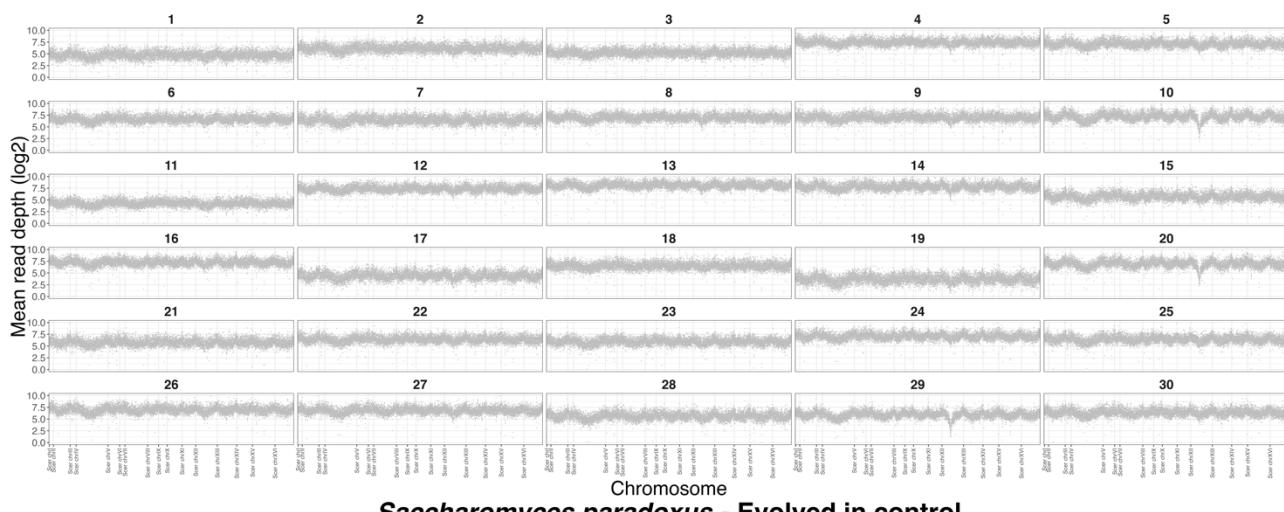
Supplementary Fig. 4. Gene Ontology (GO) enrichment of non-synonymous mutations found in each genotypic background in UV mimetic conditions. Most representative groups are colored for each genotypic background (*S. cerevisiae*, *S. paradoxus*, and hybrid). They are named by *clusterprofiler* function¹⁵² creating a word cloud of the higher frequency words present in the descriptions of the gene sets included. Each data point symbolizes a distinct GO term, with the associated p-adjust values showcased alongside. False Discovery Rate (FDR) was performed within each genotypic background and adjusted p-values are shown ($n = 765$ total non-synonymous mutations for *S. cerevisiae*, $n = 270$ total non-synonymous mutations for *S. paradoxus*, and $n = 1326$ total non-synonymous mutations for the hybrid). Enrichment ratio was calculated as the foreground fraction to background fraction to detect the most enriched terms: *S. cerevisiae* included double-strand break repair via sister chromatid exchange (GO:1990414) and the regulation of cell differentiation (GO:0045595). *S. paradoxus* included ER-associated misfolded protein catabolic processes (GO:0071712) and endocytic vesicles (GO:0030139). Hybrid comprised trehalose metabolic process (GO:0005991) and ABC-type transporter activity (GO:0140359). Illustrations were created with [BioRender.com](https://biorender.com).

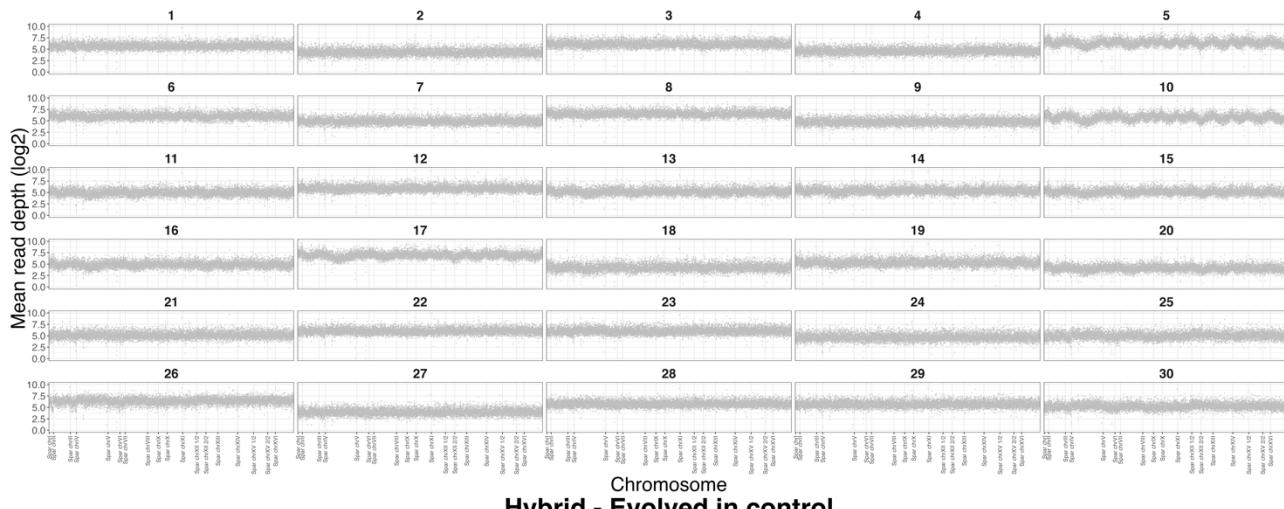
779
780
781
782


Supplementary Fig. 5. Whole t-LOH in chromosome VII harboring a *PDR1* mutation in hybrid line 28. **a**, Display of relative read depth across chromosomes. **b**, Mean read depth (\log_2) as a function of chromosome position. **c**, Density of cell count (density) as a function of DNA content (A.U. Fluorescence). A.U. refers to arbitrary units.

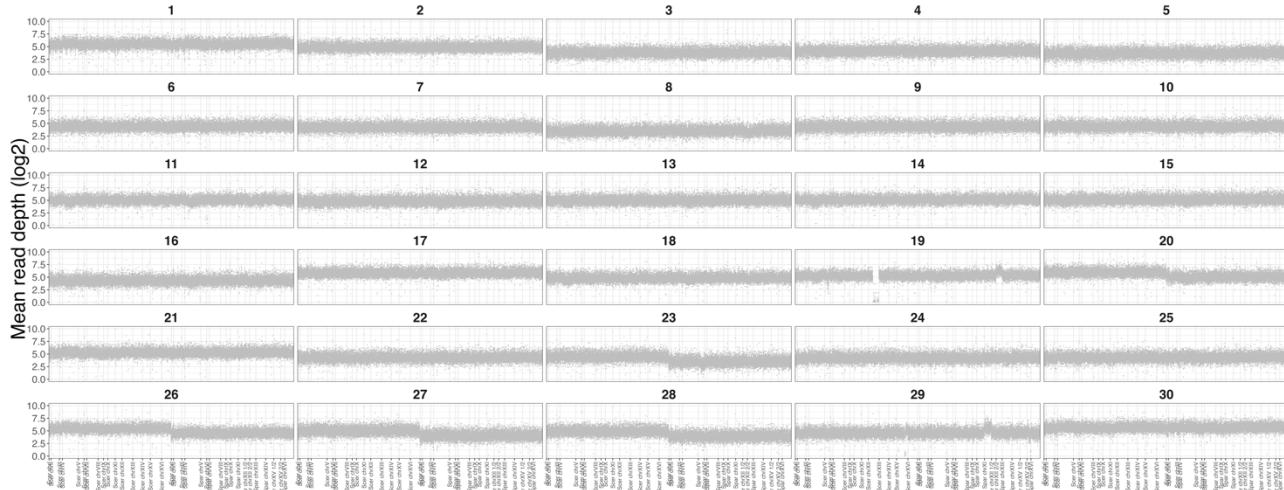
783
784
785
786
787
788
789
790
791
792

Supplementary Fig. 6. Fitness assay of *PDR1* mutations across genotypic backgrounds. a, Optical density as a function of time in UV mimetic conditions (4 μ M of 4-NQO) of the *S. cerevisiae* lab strain BY4741 and the natural parental strains (LL13_054 for *S. cerevisiae* and MSH-604 for *S. paradoxus*), all of them, WT (top) or *pdr1* Δ (bottom), expressing *PDR1* variants from a pMoBY plasmid in which the *PDR1* gene is controlled by its native promoter and terminator¹⁵⁶. The *PDR1* gene was cloned from *S. cerevisiae* background (pmoby_scer) or *S. paradoxus* background (pmoby_spar) ($n = 4$ per growth curve represented with standard error, in total $n = 216$). **b**, Exponential area under curve (AUCExp) across backgrounds (BY4741, *S. cerevisiae*, and *S. paradoxus*) and conditions (4 μ M of 4-NQO, 8 μ M of 4-NQO, and 10 μ M of 4-NQO and control) in both WT or *pdr1* Δ backgrounds expressing *PDR1* mutants from the same plasmids ($n = 4$ per squared, in total $n = 864$).

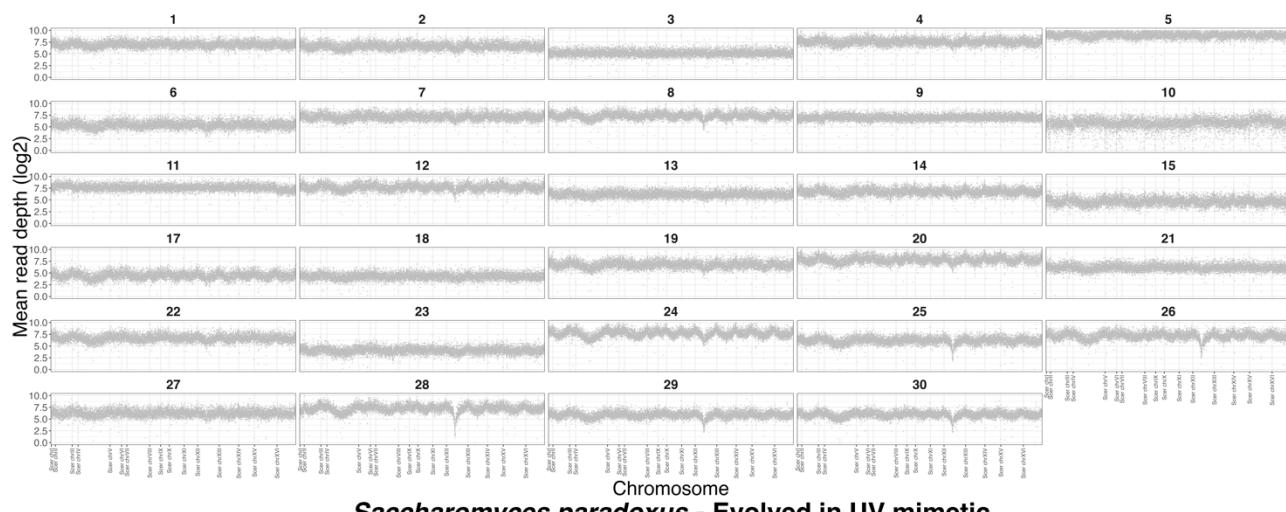

***Saccharomyces cerevisiae* - Ancestor**

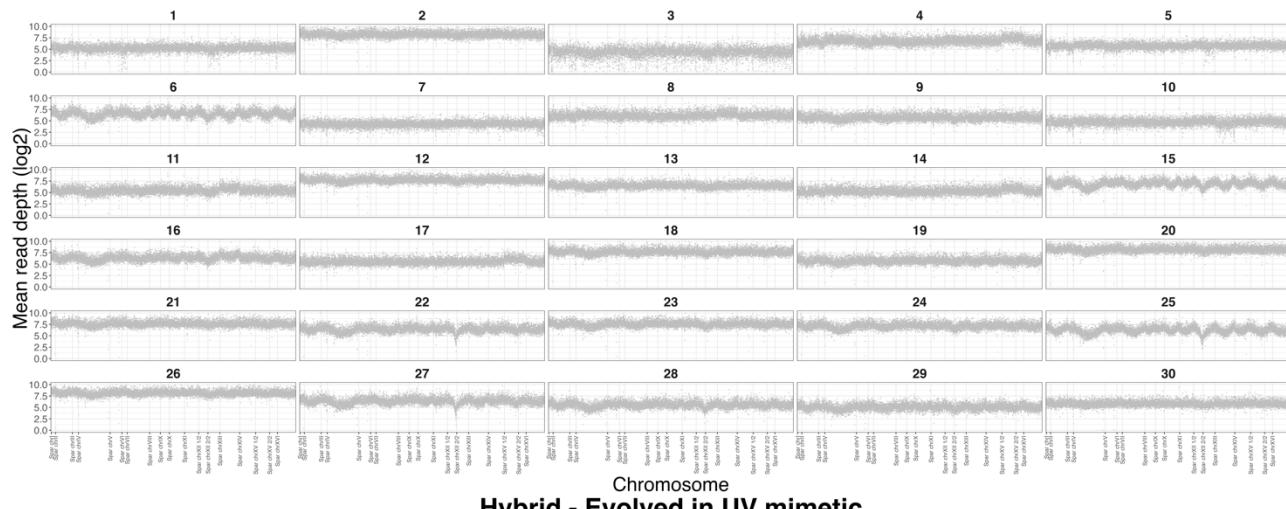

793
794
795
796
797
798

Supplementary Fig. 7. Visualization of average read depth of ancestor lines. Display of mean read depth (log2) across chromosomes ($n = 30$ lines per genotypic background). Chromosomes XII and XV are divided into 1/2 and 2/2 in *S. paradoxus* lines, following the structure of the reference genome (to eliminate repetitive regions). In the hybrid lines, all *S. cerevisiae* chromosomes are positioned on the right, while those of *S. paradoxus* are on the left, facilitating the visualization of ploidy changes (i.e., an increase in one of these complete copies).

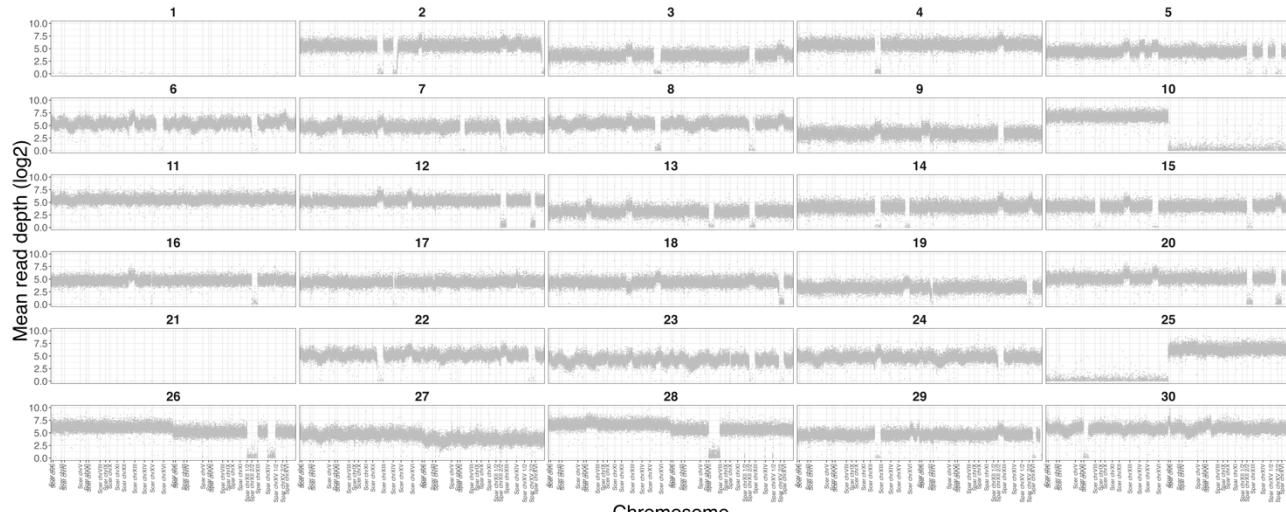

Saccharomyces cerevisiae - Evolved in control

Saccharomyces paradoxus - Evolved in control

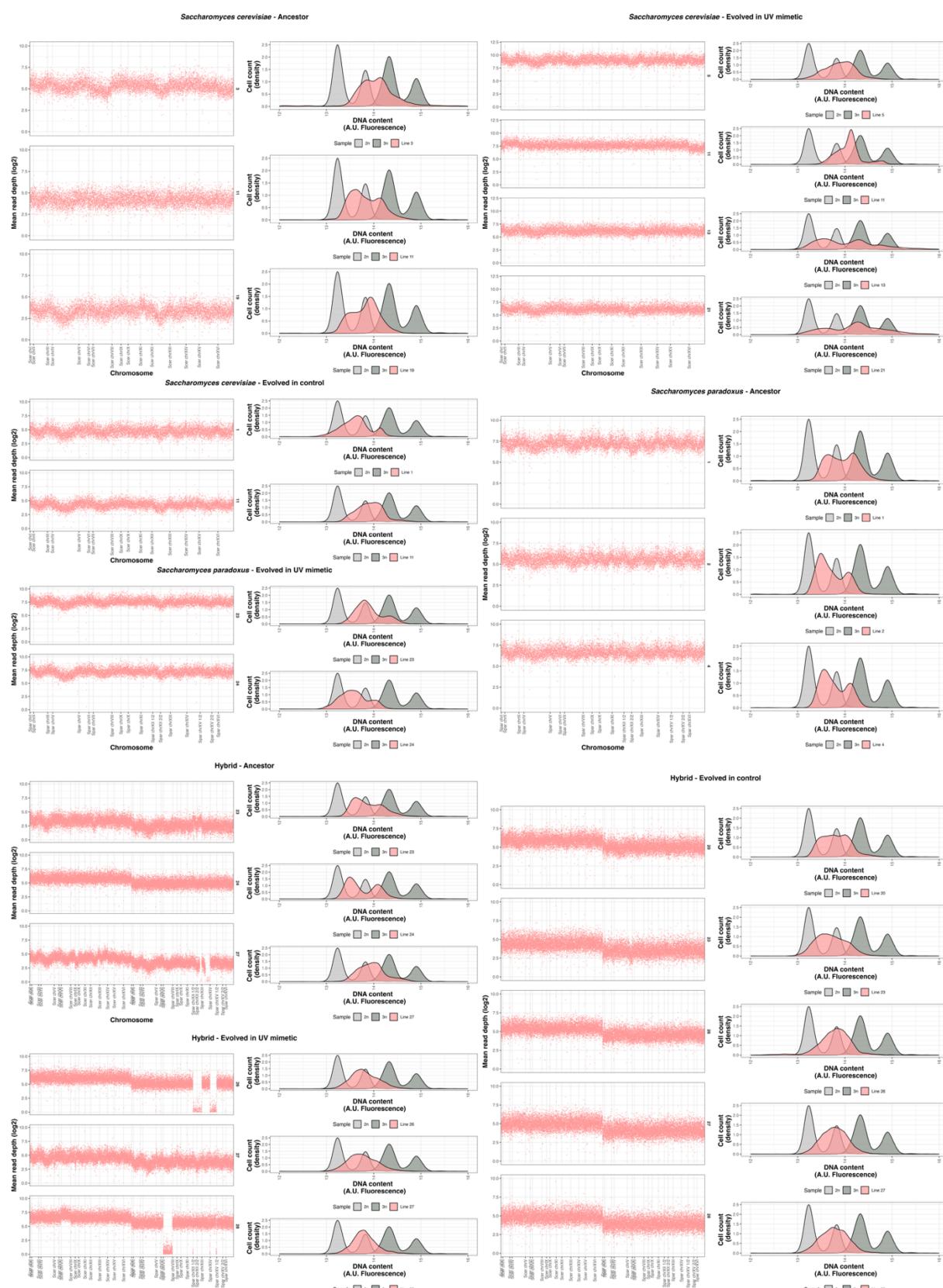

Hybrid - Evolved in control


799
800
801
802
803
804
805

Supplementary Fig. 8. Visualization of average read depth of lines evolved in control conditions. Display of mean read depth (log2) across chromosomes ($n = 30$ lines per genotypic background). Chromosomes XII and XV are divided into 1/2 and 2/2 in *S. paradoxus* lines, following the structure of the reference genome (to eliminate repetitive regions). In the hybrid lines, all *S. cerevisiae* chromosomes are positioned on the right, while those of *S. paradoxus* are on the left, facilitating the visualization of ploidy changes (i.e., an increase in one of these complete copies).


Saccharomyces cerevisiae - Evolved in UV mimetic

Saccharomyces paradoxus - Evolved in UV mimetic



Hybrid - Evolved in UV mimetic

806
807
808
809
810
811
812

Supplementary Fig. 9. Visualization of average read depth of lines evolved in UV mimetic conditions. Display of mean read depth (log2) across chromosomes ($n = 30$ lines per genotypic background). Chromosomes XII and XV are divided into 1/2 and 2/2 in *S. paradoxus* lines, following the structure of the reference genome (to eliminate repetitive regions). In the hybrid lines, all *S. cerevisiae* chromosomes are positioned on the right, while those of *S. paradoxus* are on the left, facilitating the visualization of ploidy changes (i.e., an increase in one of these complete copies).

813
814
815
816
817
818
819
820
821
822
823

Fig. Supplementary 10. Examples of lines with higher DNA content across conditions and genotypic backgrounds. Mean sequencing read depth (log2) as a function of chromosome position on the left and density of cell count as a function of DNA content (A.U. Fluorescence) on the right ($n = 3$ *S. cerevisiae* ancestor, $n = 4$ *S. cerevisiae* evolved in UV mimetic, $n = 2$ *S. cerevisiae* evolved in control; $n = 3$ *S. paradoxus* ancestor, $n = 2$ *S. paradoxus* evolved in UV mimetic, and $n = 3$ Hybrid ancestor, $n = 3$ Hybrid evolved in UV mimetic, $n = 5$ Hybrid evolved in control). Individual data points indicate window read depth of ~ 1 kbp. 2n and 3n ploidy controls are shown in grey. Chromosomes XII and XV are divided into 1/2 and 2/2 in *S. paradoxus* lines, following the structure of the reference genome (to eliminate repetitive regions). In the hybrid lines, all *S. cerevisiae* chromosomes are positioned on the right, while those of *S. paradoxus* are on the left, facilitating the visualization of ploidy changes (i.e., an increase in one of these complete copies). A.U. refers to arbitrary units.

824 References

- 825 1. Lewontin, R. C. & Birch, L. C. Hybridization as a source of variation for adaptation to new
826 environments. *Evolution* **20**, 315–336 (1966).
- 827 2. Ballerini, E. S. Natural hybridization as a catalyst of rapid evolutionary change. *Rapidly Evolving
828 Genes and Genetic Systems* 256–265 (2012).
- 829 3. Kagawa, K. & Takimoto, G. Hybridization can promote adaptive radiation by means of
830 transgressive segregation. *Ecol. Lett.* **21**, 264–274 (2018).
- 831 4. Steensels, J., Gallone, B. & Verstrepen, K. J. Interspecific hybridization as a driver of fungal
832 evolution and adaptation. *Nat. Rev. Microbiol.* **19**, 485–500 (2021).
- 833 5. Porretta, D. & Canestrelli, D. The ecological importance of hybridization. *Trends Ecol. Evol.* **38**,
834 1097–1108 (2023).
- 835 6. François, J. M. et al. A Quasi-Domesticate Relic Hybrid Population of *Saccharomyces
836 cerevisiae* *S. paradoxus* Adapted to Olive Brine. *Functional and Comparative Genomics of
837 Saccharomyces and non-Saccharomyces Yeasts: Potential for Industrial and Food
838 Biotechnology* (2020).
- 839 7. Martin-Roy, R., Nygård, E., Nouhaud, P. & Kulmuni, J. Differences in Thermal Tolerance
840 between Parental Species Could Fuel Thermal Adaptation in Hybrid Wood Ants. *Am. Nat.* **198**,
841 278–294 (2021).
- 842 8. Stelkens, R. & Bendixsen, D. P. The evolutionary and ecological potential of yeast hybrids. *Curr.
843 Opin. Genet. Dev.* **76**, 101958 (2022).
- 844 9. Grant, B. R. & Grant, P. R. High survival of Darwin's finch hybrids: Effects of beak morphology
845 and diets. *Ecology* **77**, 500–509 (1996).
- 846 10. Seehausen, O. Hybridization and adaptive radiation. *Trends Ecol. Evol.* **19**, 198–207 (2004).
- 847 11. Schumer, M., Rosenthal, G. G. & Andolfatto, P. How common is homoploid hybrid speciation?
848 *Evolution* **68**, 1553–1560 (2014).
- 849 12. Stelkens, R. B., Brockhurst, M. A., Hurst, G. D. D. & Greig, D. Hybridization facilitates
850 evolutionary rescue. *Evol. Appl.* **7**, 1209–1217 (2014).
- 851 13. Leducq, J.-B. et al. Speciation driven by hybridization and chromosomal plasticity in a wild yeast.
852 *Nat Microbiol* **1**, 15003 (2016).
- 853 14. Mitchell, N., Owens, G. L., Hovick, S. M., Rieseberg, L. H. & Whitney, K. D. Hybridization speeds
854 adaptive evolution in an eight-year field experiment. *Sci. Rep.* **9**, 6746 (2019).
- 855 15. Kulmuni, J., Wiley, B. & Otto, S. P. On the fast track: hybrids adapt more rapidly than parental
856 populations in a novel environment. *Evol Lett* qrad002 (2023).
- 857 16. Rieseberg, L. H. et al. Major ecological transitions in wild sunflowers facilitated by hybridization.
858 *Science* **301**, 1211–1216 (2003).
- 859 17. Schumer, M., Rosenthal, G. G. & Andolfatto, P. How common is homoploid hybrid speciation?
860 *Evolution* **68**, 1553–1560 (2014).
- 861 18. Meier, J. I. et al. Ancient hybridization fuels rapid cichlid fish adaptive radiations. *Nature
862 Communications* vol. 8 Preprint at <https://doi.org/10.1038/ncomms14363> (2017).
- 863 19. Vedder, D. et al. Hybridization may aid evolutionary rescue of an endangered East African
864 passerine. *Evol. Appl.* **15**, 1177–1188 (2022).
- 865 20. Peris, D. et al. Hybridization and adaptive evolution of diverse *Saccharomyces* species for
866 cellulosic biofuel production. *Biotechnol. Biofuels* **10**, 78 (2017).
- 867 21. Sipiczki, M. Interspecies Hybridisation and Genome Chimerisation in *Saccharomyces*:
868 Combining of Gene Pools of Species and Its Biotechnological Perspectives. *Front. Microbiol.* **9**,
869 3071 (2018).
- 870 22. Lopandic, K. *Saccharomyces* interspecies hybrids as model organisms for studying yeast
871 adaptation to stressful environments. *Yeast* **35**, 21–38 (2018).
- 872 23. Crow, J. F. 90 years ago: the beginning of hybrid maize. *Genetics* **148**, 923–928 (1998).
- 873 24. Campbell, L. G., Snow, A. A. & Ridley, C. E. Weed evolution after crop gene introgression:
874 greater survival and fecundity of hybrids in a new environment. *Ecol. Lett.* **9**, 1198–1209 (2006).

875 25. Matsuoka, Y. Evolution of polyploid *triticum* wheats under cultivation: the role of domestication,
876 natural hybridization and allopolyploid speciation in their diversification. *Plant Cell Physiol.* **52**,
877 750–764 (2011).

878 26. Devin P, B., Peris, D. & Stelkens, R. Patterns of Genomic Instability in Interspecific Yeast
879 Hybrids With Diverse Ancestries. *Comput. Struct. Biotechnol. J.* **2**, (2021).

880 27. Baack, E. J. & Rieseberg, L. H. A genomic view of introgression and hybrid speciation. *Curr.*
881 *Opin. Genet. Dev.* **17**, 513–518 (2007).

882 28. Pryszcz, L. P. et al. Correction: The Genomic Aftermath of Hybridization in the Opportunistic
883 Pathogen *Candida* metapsilosis. *PLoS Genet.* **12**, e1006202 (2016).

884 29. Morard, M. et al. Genomic instability in an interspecific hybrid of the genus *Saccharomyces*: a
885 matter of adaptability. *Microbial Genomics* vol. 6 Preprint at
886 <https://doi.org/10.1099/mgen.0.000448> (2020).

887 30. Anisimova, I. N. et al. Genomic instability in sunflower interspecific hybrids. *Russian Journal of*
888 *Genetics* vol. 45 934–943 Preprint at <https://doi.org/10.1134/s1022795409080079> (2009).

889 31. Metcalfe, C. J. et al. Genomic instability within centromeres of interspecific marsupial hybrids.
890 *Genetics* **177**, 2507–2517 (2007).

891 32. Aguilera, A. & Gómez-González, B. Genome instability: a mechanistic view of its causes and
892 consequences. *Nat. Rev. Genet.* **9**, 204–217 (2008).

893 33. Herbst, R. H. et al. Heterosis as a consequence of regulatory incompatibility. *BMC Biol.* **15**, 38
894 (2017).

895 34. Dion-Côté, A.-M. & Barbash, D. A. Beyond speciation genes: an overview of genome stability in
896 evolution and speciation. *Curr. Opin. Genet. Dev.* **47**, 17–23 (2017).

897 35. Maheshwari, S. & Barbash, D. A. The genetics of hybrid incompatibilities. *Annu. Rev. Genet.*
898 **45**, 331–355 (2011).

899 36. Alves, M. J., Coelho, M. M. & Collares-Pereira, M. J. Evolution in action through hybridisation
900 and polyploidy in an Iberian freshwater fish: a genetic review. *Genetica* **111**, 375–385 (2001).

901 37. Soltis, P. S. & Soltis, D. E. The role of hybridization in plant speciation. *Annu. Rev. Plant Biol.*
902 **60**, 561–588 (2009).

903 38. Marcet-Houben, M. & Gabaldón, T. Beyond the Whole-Genome Duplication: Phylogenetic
904 Evidence for an Ancient Interspecies Hybridization in the Baker's Yeast Lineage. *PLoS Biol.* **13**,
905 e1002220 (2015).

906 39. Alix, K., Gérard, P. R., Schwarzacher, T. & Heslop-Harrison, J. S. P. Polyploidy and interspecific
907 hybridization: partners for adaptation, speciation and evolution in plants. *Ann. Bot.* **120**, 183–
908 194 (2017).

909 40. Chheda, H. R., De Wet, J. M. J. & Harlan, J. R. Aneuploidy in *Bothriochloa* Hybrids. *Caryologia*
910 vol. 14 205–217 Preprint at <https://doi.org/10.1080/00087114.1961.10796026> (1961).

911 41. Gilchrist, C. & Stelkens, R. Aneuploidy in yeast: Segregation error or adaptation mechanism?
912 *Yeast* **36**, 525–539 (2019).

913 42. Marsit, S., Hénault, M., Charron, G., Fijarczyk, A. & Landry, C. R. The neutral rate of whole-
914 genome duplication varies among yeast species and their hybrids. *Nat. Commun.* **12**, 3126
915 (2021).

916 43. Yang, S. et al. Parent–progeny sequencing indicates higher mutation rates in heterozygotes.
917 *Nature* **523**, 463–467 (2015).

918 44. Xie, Z. et al. Mutation rate analysis via parent–progeny sequencing of the perennial peach. I. A
919 low rate in woody perennials and a higher mutagenicity in hybrids. *Proceedings of the Royal*
920 *Society B: Biological Sciences* **283**, 20161016 (2016).

921 45. Tattini, L. et al. Accurate Tracking of the Mutational Landscape of Diploid Hybrid Genomes. *Mol.*
922 *Biol. Evol.* **36**, 2861–2877 (2019).

923 46. Krasovec, M. The spontaneous mutation rate of *Drosophila pseudoobscura*. *G3* **11**, (2021).

924 47. D'Angiolo, M. et al. A yeast living ancestor reveals the origin of genomic introgressions. *Nature*
925 **587**, 420–425 (2020).

926 48. Charron, G., Marsit, S., Hénault, M., Martin, H. & Landry, C. R. Spontaneous whole-genome

927 duplication restores fertility in interspecific hybrids. *Nat. Commun.* **10**, 4126 (2019).

928 49. Bautista, C., Marsit, S. & Landry, C. R. Interspecific hybrids show a reduced adaptive potential
929 under DNA damaging conditions. *Evol. Appl.* **14**, 758–769 (2021).

930 50. Felkner, I. C. & Kadlubar, F. Parallel between ultraviolet light and 4-nitroquinoline-1-oxide
931 sensitivity in *Bacillus subtilis*. *J. Bacteriol.* **96**, 1448–1449 (1968).

932 51. Wang, L.-E. *et al.* 4-nitroquinoline-1-oxide-induced mutagen sensitivity and risk of cutaneous
933 melanoma: a case-control analysis. *Melanoma Res.* **26**, 181–187 (2016).

934 52. Liti, G., Barton, D. B. H. & Louis, E. J. Sequence diversity, reproductive isolation and species
935 concepts in *Saccharomyces*. *Genetics* **174**, 839–850 (2006).

936 53. Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E. S. Sequencing and comparison of
937 yeast species to identify genes and regulatory elements. *Nature* **423**, 241–254 (2003).

938 54. Tirosh, I., Reikhav, S., Levy, A. A. & Barkai, N. A yeast hybrid provides insight into the evolution
939 of gene expression regulation. *Science* **324**, 659–662 (2009).

940 55. Borneman, A. R. & Pretorius, I. S. Genomic insights into the *Saccharomyces* sensu stricto
941 complex. *Genetics* **199**, 281–291 (2015).

942 56. Shen, X.-X. *et al.* Tempo and Mode of Genome Evolution in the Budding Yeast Subphylum. *Cell*
943 **175**, 1533–1545.e20 (2018).

944 57. Sniegowski, P. D., Dombrowski, P. G. & Fingerman, E. *Saccharomyces cerevisiae* and
945 *Saccharomyces paradoxus* coexist in a natural woodland site in North America and display
946 different levels of reproductive isolation from European conspecifics. *FEMS Yeast Res.* **1**, 299–
947 306 (2002).

948 58. Peris, D. *et al.* Mitochondrial introgression suggests extensive ancestral hybridization events
949 among *Saccharomyces* species. *Mol. Phylogenet. Evol.* **108**, 49–60 (2017).

950 59. Barbosa, R. *et al.* Evidence of Natural Hybridization in Brazilian Wild Lineages of
951 *Saccharomyces cerevisiae*. *Genome Biol. Evol.* **8**, 317–329 (2016).

952 60. Peter, J. *et al.* Genome evolution across 1,011 *Saccharomyces cerevisiae* isolates. *Nature* **556**,
953 339–344 (2018).

954 61. Gallegos-Casillas, P. *et al.* Yeast diversity in open agave fermentations across Mexico. *bioRxiv*
955 2023.07.02.547337 (2023) doi:10.1101/2023.07.02.547337.

956 62. Sui, Y. *et al.* Genome-wide mapping of spontaneous genetic alterations in diploid yeast cells.
957 *Proc. Natl. Acad. Sci. U. S. A.* **117**, 28191–28200 (2020).

958 63. Dutta, A., Dutreux, F. & Schacherer, J. Loss of heterozygosity results in rapid but variable
959 genome homogenization across yeast genetic backgrounds. *Elife* **10**, (2021).

960 64. Yim, E., O'Connell, K. E., St Charles, J. & Petes, T. D. High-resolution mapping of two types of
961 spontaneous mitotic gene conversion events in *Saccharomyces cerevisiae*. *Genetics* **198**, 181–
962 192 (2014).

963 65. Large, C. R. L. *et al.* Genomic stability and adaptation of beer brewing yeasts during serial
964 repitching in the brewery. *bioRxiv* 2020.06.26.166157 (2020) doi:10.1101/2020.06.26.166157.

965 66. Smukowski Heil, C. Loss of Heterozygosity and Its Importance in Evolution. *J. Mol. Evol.* **1-9**,
966 (2023).

967 67. Fisher, K. J., Vignogna, R. C. & Lang, G. I. Overdominant Mutations Restrict Adaptive Loss of
968 Heterozygosity at Linked Loci. *Genome Biol. Evol.* **13**, (2021).

969 68. James, T. Y. *et al.* Adaptation by Loss of Heterozygosity in *Saccharomyces cerevisiae* Clones
970 Under Divergent Selection. *Genetics* **213**, 665–683 (2019).

971 69. Balzi, E., Chen, W., Ułaszewski, S., Capieaux, E. & Goffeau, A. The multidrug resistance gene
972 PDR1 from *Saccharomyces cerevisiae*. *J. Biol. Chem.* **262**, 16871–16879 (1987).

973 70. Le Crom, S. *et al.* New insights into the pleiotropic drug resistance network from genome-wide
974 characterization of the YRR1 transcription factor regulation system. *Mol. Cell. Biol.* **22**, 2642–
975 2649 (2002).

976 71. Otilie, S. *et al.* Adaptive laboratory evolution in *S. cerevisiae* highlights role of transcription
977 factors in fungal xenobiotic resistance. *Commun Biol* **5**, 128 (2022).

978 72. Leppert, G. *et al.* Cloning by gene amplification of two loci conferring multiple drug resistance in
979 *Saccharomyces*. *Genetics* **125**, 13–20 (1990).

980 73. Harris, A. *et al.* Structure and efflux mechanism of the yeast pleiotropic drug resistance
981 transporter Pdr5. *Nat. Commun.* **12**, 5254 (2021).

982 74. Gerstein, A. C. & Berman, J. *Candida albicans* Genetic Background Influences Mean and
983 Heterogeneity of Drug Responses and Genome Stability during Evolution in Fluconazole.
984 *mSphere* vol. 5 Preprint at <https://doi.org/10.1128/msphere.00480-20> (2020).

985 75. Carvajal, E., van den Hazel, H. B., Cybularz-Kolaczkowska, A., Balzi, E. & Goffeau, A. Molecular
986 and phenotypic characterization of yeast PDR1 mutants that show hyperactive transcription of
987 various ABC multidrug transporter genes. *Mol. Gen. Genet.* **256**, 406–415 (1997).

988 76. Anderson, J. B., Sirjusingh, C. & Ricker, N. Haploidy, diploidy and evolution of antifungal drug
989 resistance in *Saccharomyces cerevisiae*. *Genetics* **168**, 1915–1923 (2004).

990 77. Mutlu, N., Garippler, G., Akdoğan, E. & Dunn, C. D. Activation of the pleiotropic drug resistance
991 pathway can promote mitochondrial DNA retention by fusion-defective mitochondria in
992 *Saccharomyces cerevisiae*. *G3* **4**, 1247–1258 (2014).

993 78. Xia, H. *et al.* Evolutionary and reverse engineering in *Saccharomyces cerevisiae* reveals a
994 Pdr1p mutation-dependent mechanism for 2-phenylethanol tolerance. *Microb. Cell Fact.* **21**, 269
995 (2022).

996 79. Taylor, M. B. *et al.* yEvo: experimental evolution in high school classrooms selects for novel
997 mutations that impact clotrimazole resistance in *Saccharomyces cerevisiae*. *G3* **12**, (2022).

998 80. Tsai, H.-F., Krol, A. A., Sarti, K. E. & Bennett, J. E. *Candida glabrata* PDR1, a transcriptional
999 regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates
000 and petite mutants. *Antimicrob. Agents Chemother.* **50**, 1384–1392 (2006).

001 81. Ferrari, S. *et al.* Gain of function mutations in CgPDR1 of *Candida glabrata* not only mediate
002 antifungal resistance but also enhance virulence. *PLoS Pathog.* **5**, e1000268 (2009).

003 82. Vale-Silva, L., Ischer, F., Leibundgut-Landmann, S. & Sanglard, D. Gain-of-function mutations
004 in PDR1, a regulator of antifungal drug resistance in *Candida glabrata*, control adherence to
005 host cells. *Infect. Immun.* **81**, 1709–1720 (2013).

006 83. Whaley, S. G. *et al.* Jjj1 Is a Negative Regulator of Pdr1-Mediated Fluconazole Resistance in
007 *Candida glabrata*. *mSphere* **3**, (2018).

008 84. Khakhina, S., Simonicova, L. & Moye-Rowley, W. S. Positive autoregulation and repression of
009 transactivation are key regulatory features of the *Candida glabrata* Pdr1 transcription factor.
010 *Mol. Microbiol.* **107**, 747–764 (2018).

011 85. Tian, Y. *et al.* A gain-of-function mutation in PDR1 of *Candida glabrata* decreases EPA1
012 expression and attenuates adherence to epithelial cells through enhancing recruitment of the
013 Mediator subunit Gal11A. *Microbiol. Res.* **239**, 126519 (2020).

014 86. Ksiezopolska, E. *et al.* Narrow mutational signatures drive acquisition of multidrug resistance in
015 the fungal pathogen *Candida glabrata*. *Curr. Biol.* **31**, 5314–5326.e10 (2021).

016 87. Haldane, J. B. S. A Mathematical Theory of Natural and Artificial Selection, Part V: Selection
017 and Mutation. *Math. Proc. Cambridge Philos. Soc.* **23**, 838–844 (1927).

018 88. Orr, H. A. & Betancourt, A. J. Haldane's Sieve and Adaptation From the Standing Genetic
019 Variation. *Genetics* **157**, 875–884 (2001).

020 89. Ronfort, J. & Glemin, S. Mating system, Haldane's sieve, and the domestication process.
021 *Evolution* **67**, 1518–1526 (2013).

022 90. Gerstein, A. C., Kuzmin, A. & Otto, S. P. Loss-of-heterozygosity facilitates passage through
023 Haldane's sieve for *Saccharomyces cerevisiae* undergoing adaptation. *Nat. Commun.* **5**, 3819
024 (2014).

025 91. Tutaj, H., Pirog, A., Tomala, K. & Korona, R. Genome-scale patterns in the loss of heterozygosity
026 incidence in *Saccharomyces cerevisiae*. *Genetics* **221**, (2022).

027 92. MacDougal, D. T. *Hybridization of Wild Plants*. (1906).

028 93. Heiser, C. B. Hybridization Between the Sunflower Species *Helianthus annuus* and *H. petiolaris*.
029 *Evolution* **1**, 249–262 (1947).

030 94. Morales, L. & Dujon, B. Evolutionary role of interspecies hybridization and genetic exchanges
031 in yeasts. *Microbiol. Mol. Biol. Rev.* **76**, 721–739 (2012).

032 95. Wei, X. et al. The lingering effects of Neanderthal introgression on human complex traits. *Elife*
033 **12**, (2023).

034 96. Pryszcz, L. P., Németh, T., Gácsér, A. & Gabaldón, T. Genome comparison of *Candida*
035 orthopsis clinical strains reveals the existence of hybrids between two distinct subspecies.
036 *Genome Biol. Evol.* **6**, 1069–1078 (2014).

037 97. Mixão, V. & Gabaldón, T. Hybridization and emergence of virulence in opportunistic human
038 yeast pathogens. *Yeast* **35**, 5–20 (2018).

039 98. Rieseberg, L. H., Archer, M. A. & Wayne, R. K. Transgressive segregation, adaptation and
040 speciation. *Heredity* **83** (Pt 4), 363–372 (1999).

041 99. Burton, T. L. & Husband, B. C. Fitness differences among diploids, tetraploids, and their triploid
042 progeny in *Chamerion angustifolium*: mechanisms of inviability and implications for polyploid
043 evolution. *Evolution* **54**, 1182–1191 (2000).

044 100. Nolte, A. W. & David Sheets, H. Shape based assignment tests suggest transgressive
045 phenotypes in natural sculpin hybrids (Teleostei, Scorpaeniformes, Cottidae). *Frontiers in*
046 *Zoology* vol. 2 Preprint at <https://doi.org/10.1186/1742-9994-2-11> (2005).

047 101. Shahid, M., Han, S., Yoell, H. & Xu, J. Fitness distribution and transgressive segregation across
048 40 environments in a hybrid progeny population of the human-pathogenic yeast *Cryptococcus*
049 *neoformans*. *Genome* **51**, 272–281 (2008).

050 102. Zanders, S. E. et al. Genome rearrangements and pervasive meiotic drive cause hybrid infertility
051 in fission yeast. *Elife* **3**, e02630 (2014).

052 103. Shapira, R., Levy, T., Shaked, S., Fridman, E. & David, L. Extensive heterosis in growth of yeast
053 hybrids is explained by a combination of genetic models. *Heredity* **113**, 316–326 (2014).

054 104. Stelkens, R. B., Brockhurst, M. A., Hurst, G. D. D., Miller, E. L. & Greig, D. The effect of hybrid
055 transgression on environmental tolerance in experimental yeast crosses. *J. Evol. Biol.* **27**, 2507–
056 2519 (2014).

057 105. Bernardes, J. P., Stelkens, R. B. & Greig, D. Heterosis in hybrids within and between yeast
058 species. *J. Evol. Biol.* **30**, 538–548 (2017).

059 106. D'Angiolo, M. et al. A yeast living ancestor reveals the origin of genomic introgressions. *Nature*
060 **587**, 420–425 (2020).

061 107. Moran, B. M. et al. The genomic consequences of hybridization. *Elife* **10**, (2021).

062 108. Fierst, J. L. & Hansen, T. F. Genetic architecture and postzygotic reproductive isolation:
063 evolution of Bateson–Dobzhansky–Muller incompatibilities in a polygenic model. *Evolution* **64**,
064 675–693 (2010).

065 109. Schumer, M., Cui, R., Rosenthal, G. G. & Andolfatto, P. Reproductive isolation of hybrid
066 populations driven by genetic incompatibilities. *PLoS Genet.* **11**, e1005041 (2015).

067 110. Fijarczyk, A., Hénault, M., Marsit, S., Charron, G. & Landry, C. R. Heterogeneous Mutation
068 Rates and Spectra in Yeast Hybrids. *Genome Biol. Evol.* **13**, (2021).

069 111. Heil, C. S. S. et al. Loss of Heterozygosity Drives Adaptation in Hybrid Yeast. *Mol. Biol. Evol.*
070 **34**, 1596–1612 (2017).

071 112. Marad, D. A., Buskirk, S. W. & Lang, G. I. Altered access to beneficial mutations slows
072 adaptation and biases fixed mutations in diploids. *Nat Ecol Evol* **2**, 882–889 (2018).

073 113. Johnson, M. S. et al. Phenotypic and molecular evolution across 10,000 generations in
074 laboratory budding yeast populations. *Elife* **10**, (2021).

075 114. Krogerus, K., Magalhães, F., Vidgren, V. & Gibson, B. Novel brewing yeast hybrids: creation
076 and application. *Appl. Microbiol. Biotechnol.* **101**, 65–78 (2017).

077 115. Masneuf, I., Hansen, J., Groth, C., Piskur, J. & Dubourdieu, D. New hybrids between
078 *Saccharomyces* sensu stricto yeast species found among wine and cider production strains.
079 *Appl. Environ. Microbiol.* **64**, 3887–3892 (1998).

080 116. Fukuda, N. Crossbreeding of Yeasts Domesticated for Fermentation: Infertility Challenges. *Int.*
081 *J. Mol. Sci.* **21**, (2020).

082 117. Samarasinghe, H. & Xu, J. Hybrids and hybridization in the *Cryptococcus neoformans* and
083 *Cryptococcus gattii* species complexes. *Infect. Genet. Evol.* **66**, 245–255 (2018).

084 118. Mixão, V. & Gabaldón, T. Genomic evidence for a hybrid origin of the yeast opportunistic
085 pathogen *Candida albicans*. *BMC Biol.* **18**, 48 (2020).

086 119. Hessenauer, P. *et al.* Hybridization and introgression drive genome evolution of Dutch elm
087 disease pathogens. *Nat Ecol Evol* **4**, 626–638 (2020).

088 120. Gabaldón, T. Hybridization and the origin of new yeast lineages. *FEMS Yeast Res.* **20**, (2020).

089 121. Del Olmo, V. *et al.* Origin of fungal hybrids with pathogenic potential from warm seawater
090 environments. *Nat. Commun.* **14**, 6919 (2023).

091 122. Diogo, D., Bouchier, C., d'Enfert, C. & Bougnoux, M.-E. Loss of heterozygosity in commensal
092 isolates of the asexual diploid yeast *Candida albicans*. *Fungal Genet. Biol.* **46**, 159–168 (2009).

093 123. Forche, A. *et al.* Stress alters rates and types of loss of heterozygosity in *Candida albicans*.
094 *MBio* **2**, (2011).

095 124. Bennett, R. J., Forche, A. & Berman, J. Rapid mechanisms for generating genome diversity:
096 whole ploidy shifts, aneuploidy, and loss of heterozygosity. *Cold Spring Harb. Perspect. Med.*
097 **4**, (2014).

098 125. Ford, C. B. *et al.* The evolution of drug resistance in clinical isolates of *Candida albicans*. *Elife*
099 **4**, e00662 (2015).

100 126. Rokas, A. Evolution of the human pathogenic lifestyle in fungi. *Nat Microbiol* **7**, 607–619 (2022).

101 127. Coste, A. *et al.* A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is
102 coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in
103 *Candida albicans*. *Genetics* **172**, 2139–2156 (2006).

104 128. Li, J. *et al.* Shared Molecular Targets Confer Resistance over Short and Long Evolutionary
105 Timescales. *Mol. Biol. Evol.* **36**, 691–708 (2019).

106 129. Feri, A. *et al.* Analysis of Repair Mechanisms following an Induced Double-Strand Break
107 Uncovers Recessive deleterious Alleles in the *Candida albicans* Diploid Genome. *MBio* **7**,
108 (2016).

109 130. Ryland, G. L. *et al.* Loss of heterozygosity: what is it good for? *BMC Med. Genomics* **8**, 1–12
110 (2015).

111 131. Zhang, X. & Sjöblom, T. Targeting Loss of Heterozygosity: A Novel Paradigm for Cancer
112 Therapy. *Pharmaceuticals* **14**, (2021).

113 132. Güldener, U., Heck, S., Fielder, T., Beinhauer, J. & Hegemann, J. H. A new efficient gene
114 disruption cassette for repeated use in budding yeast. *Nucleic Acids Res.* **24**, 2519–2524
115 (1996).

116 133. Siddique, A. *et al.* Riptide™ High Throughput NGS Library Prep for Genotyping in Populations.
117 *J. Biomol. Tech.* **30**, S35–S36 (2019).

118 134. Gerstein, A. C., Chun, H.-J. E., Grant, A. & Otto, S. P. Genomic convergence toward diploidy in
119 *Saccharomyces cerevisiae*. *PLoS Genet.* **2**, e145 (2006).

120 135. Fgbio. *fgbio* <http://fulcrumgenomics.github.io/fgbio/>.

121 136. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence
122 data. *Bioinformatics* **30**, 2114–2120 (2014).

123 137. Andrews, S. & Others. FastQC: a quality control tool for high throughput sequence data. Preprint
124 at (2010).

125 138. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for
126 multiple tools and samples in a single report. *Bioinformatics* **32**, 3047–3048 (2016).

127 139. Yue, J.-X. *et al.* Contrasting evolutionary genome dynamics between domesticated and wild
128 yeasts. *Nat. Genet.* **49**, 913–924 (2017).

129 140. Eberlein, C. *et al.* Hybridization is a recurrent evolutionary stimulus in wild yeast speciation. *Nat.*
130 *Commun.* **10**, 923 (2019).

131 141. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform.
132 *bioinformatics*. 2009; 25 (14): 1754–60. *View Article* *Google Scholar*.

133 142. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**, 2078–2079
134 (2009).

135 143. Pedersen, B. *goleft: goleft is a collection of bioinformatics tools distributed under MIT license in*
136 *a single static binary.* (Github).

137 144. Picard. <https://broadinstitute.github.io/picard/>.

138 145. Lindenbaum, P. JVarkit: java-based utilities for Bioinformatics. *figshare* **10**, m9 (2015).

139 146. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features.
140 *Bioinformatics* **26**, 841–842 (2010).

141 147. Poplin, R. *et al.* Scaling accurate genetic variant discovery to tens of thousands of samples.
142 *bioRxiv* 201178 (2018) doi:10.1101/201178.

143 148. Van der Auwera, G. A. & O'Connor, B. D. *Genomics in the Cloud: Using Docker, GATK, and*
144 *WDL in Terra.* ('O'Reilly Media, Inc.', 2020).

145 149. Shumate, A. & Salzberg, S. L. Liftoff: accurate mapping of gene annotations. *Bioinformatics* **37**,
146 1639–1643 (2021).

147 150. McLaren, W. *et al.* The Ensembl Variant Effect Predictor. *Genome Biol.* **17**, 122 (2016).

148 151. Smedley, D. *et al.* BioMart--biological queries made easy. *BMC Genomics* **10**, 22 (2009).

149 152. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological
150 themes among gene clusters. *OMICS* **16**, 284–287 (2012).

151 153. Pettersen, E. F. *et al.* UCSF ChimeraX: Structure visualization for researchers, educators, and
152 developers. *Protein Sci.* **30**, 70–82 (2021).

153 154. Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature* **596**, 583–
154 589 (2021).

155 155. Varadi, M. *et al.* AlphaFold Protein Structure Database: massively expanding the structural
156 coverage of protein-sequence space with high-accuracy models. *Nucleic Acids Res.* **50**, D439–
157 D444 (2022).

158 156. Ho, C. H. *et al.* A molecular barcoded yeast ORF library enables mode-of-action analysis of
159 bioactive compounds. *Nat. Biotechnol.* **27**, 369–377 (2009).

160 157. Kaiser, C. Lithium acetate yeast transformation. *Methods in yeast genetics: a Cold Spring*
161 *Harbor Laboratory course manual* 133–134 (1994).

162 158. Ryan, O. W., Poddar, S. & Cate, J. H. D. CRISPR-Cas9 Genome Engineering in
163 *Saccharomyces cerevisiae* Cells. *Cold Spring Harb. Protoc.* **2016**, (2016).

164 159. Després, P. C. *et al.* Asymmetrical dose responses shape the evolutionary trade-off between
165 antifungal resistance and nutrient use. *Nat Ecol Evol* **6**, 1501–1515 (2022).

166 160. Lemieux, P., Bradley, D., Dubé, A. K., Dionne, U. & Landry, C. R. Dissection of the role of a
167 SH3 domain in the evolution of binding preference of paralogous proteins. *Genetics* (2023)
168 doi:10.1093/genetics/iyad175.

169 161. Dionne, U. *et al.* Protein context shapes the specificity of SH3 domain-mediated interactions in
170 vivo. *Nat. Commun.* **12**, 1597 (2021).

171 162. Ryan, O. W. *et al.* Selection of chromosomal DNA libraries using a multiplex CRISPR system.
172 *Elife* **3**, (2014).

173 163. Creators Bautista, C. S. A. 1. U. L. *Hybrid adaptation is hampered by Haldane's sieve.*
174 doi:10.5281/zenodo.10389558.

175 164. Roetzer, A., Gabaldón, T. & Schüller, C. From *Saccharomyces cerevisiae* to *Candida glabrata*
176 in a few easy steps: important adaptations for an opportunistic pathogen. *FEMS Microbiol. Lett.*
177 **314**, 1–9 (2011).