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Abstract

Hybrids between species exhibit plastic genomic architectures that foster phenotypic diversity. Their
genomic instability also incurs costs, potentially limiting adaptation. When challenged to evolve in
an environment containing a UV mimetic drug, yeast hybrids have reduced adaptation rates
compared to parents. We hypothesized that this reduction could result from a faster accumulation
of genomic changes, but we found no such association. Alternatively, we proposed that hybrids
might lack access to adaptive mutations occurring in the parents, yet, we identified mutations in the
same genes (PDR1 and YRRT), suggesting similar molecular adaptation mechanisms. However,
mutations in these genes tended to be homozygous in the parents but heterozygous in the hybrids.
We hypothesized that a lower rate of loss of heterozygosity (LOH) in hybrids could limit fitness gain.
Using genome editing, we demonstrated that mutations display incomplete dominance, requiring
homozygosity to show full impact and to circumvent Haldane’s sieve, which favors the fixation of
dominant mutations. We used frozen ‘fossils’ to track genotype frequency dynamics and confirmed
that LOH occurs at a slower pace in hybrids than in parents. Together, these findings show that
Haldane’s sieve slows down adaptation in hybrids, revealing an intrinsic constraint of hybrid genomic
architecture that can limit the role of hybridization in adaptive evolution.

Keywords: Hybridization; Adaptation; DNA damage; Experimental evolution; Genomic instability,
Haldane’s sieve; Loss of heterozygosity (LOH); Pleiotropic Drug Resistance 1 (PDR1)
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Introduction

Hybridization rapidly generates novel genotypes that can also lead to new and sometimes extreme
phenotypes'™. As a result, hybrids may thrive and often outcompete their parents®®. Empirical and
theoretical work has shown that hybridization can promote rapid evolution>**=** including during
evolutionary rescue, species diversification, and adaptive radiations*'2'®"'°. The generation of
adaptive diversity through hybridization has long been successfully employed in biotechnology for
fermentation?®-2 and in agriculture for crop improvement®-2°.

The combination of divergent genomes in the same organism can also lead to genomic instability?>?’,
From microorganisms®2° to multicellular eukaryotes such as plants®® and vertebrates®!, genomic
instability has been frequently observed in hybrids. While the causes of instability are not always
clear, evidence points to the alteration of the molecular pathways and components responsible for
genome stability themselves. For instance, cell cycle checkpoints and DNA repair pathways
observed to be altered in hybrids®*** can lead to inaccurate chromosome segregation® %, resulting
in changes in ploidy®**~*°, aneuploidies*®*?, and elevated mutation rates*>-°.

In spite of these potential negative consequences, genomic instability can also paradoxically
enhance F1 hybrid traits. One example is the restoration of meiotic recombination through genome
homogenization, which contributes to rescuing hybrid fertility*”. Similarly, whole-genome duplication
can restore fertility in interspecific hybrids*®. However, the enhancement of these hybrid traits is
typically observed under stable laboratory conditions. Some environmental conditions and stresses
could further enhance genome instability, so what appears as a feature that enhances adaptability
in benign conditions could become a liability in extreme ones. Motivated by this question, in a
previous study*®, we produced F1 hybrids between the budding yeast Saccharomyces cerevisiae
and S. paradoxus to measure their adaptive potential in an environment containing a drug that
increases genomic instability by mimicking UV radiation®*®'. These two species diverged 5-10 million
years ago®?, live in similar ecological niches in nature®’, and carry signs for introgression in their
mitochondrial and nuclear genomes with adaptive potential in some cases*’ %', Replicated
experimental evolution across 100 generations revealed that hybrids showed smaller fitness gains
than their parents in conditions mimicking UV radiation®.

Here, we investigated the genomic and genetic basis of differential adaptive rates in hybrids by
testing two non-mutually exclusive hypotheses: 1) Hybrid adaptation to UV radiation is hampered by
genomic instability, and 2) Hybrids do not have access to the same adaptive mutations as the
parental species. We used whole genome sequencing of 270 ancestral and evolved hybrid and
parental genotypic backgrounds to: 1) Investigate major genomic changes in copy number such as
ploidy changes, aneuploidies, or loss of heterozygosity (LOH), to determine if they are more
prevalent in hybrid genomes, and 2) Identify potentially differential de novo mutations in hybrids
compared to parents. We functionally validated seven putative adaptive mutations with site-directed
mutagenesis in both S. cerevisiae and S. paradoxus haploid backgrounds and by CRISPR-Cas9
genome editing. We ultimately determined differences in the genetic architecture of adaptive
mutations between hybrids and parents by tracking the allelic frequency over time through historical
resurrection of frozen fossils. We found that none of our two starting hypotheses were supported.
Rather, we found that adaptation to UV mimetic conditions often proceeds through two types of
mutations, the second occurring more slowly in the hybrids, and thus slowing down their rate of
adaptation.
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Results

Hybrid and Parent Fitness in UV mimetic conditions

We previously evolved 90 populations (30 F1 hybrid replicates and 30 replicates of each of the
parental S. cerevisiae and S. paradoxus genotypic backgrounds) for 100 generations in the presence
of a DNA damaging agent, the UV mimetic drug 4-nitroquinoline 1-oxide (4-NQO), and in a control
condition (rich medium) (Fig. 1a)*. We found that hybrids achieved a lower rate of adaptation
compared to the parental genotypic backgrounds, with a lower average gain of fitness over the
course of evolution*.
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Fig. 1. Hybrids show reduced adaptive potential in UV mimetic conditions. a, Experimental evolution in UV mimetic
and control conditions was performed in hybrid and parents for about 100 generations*® (n = 30 replicated lines for each
genotypic background: S. cerevisiae, S. paradoxus or hybrid). Lines from isolated clones derived from each population
were analyzed by Whole Genome Sequencing (WGS) and flow cytometry (n = 300). b, Growth rate of lines from isolated
clones derived from each population evolved in UV mimetic conditions (4 uM of 4-NQO) (n = 30 for each genotypic
background: S. cerevisiae, S. paradoxus or hybrid). p-value for ANOVA (above) and Tukey post hoc pairwise p-values are
shown. ¢, Growth rates of lines from isolated clones derived from each population correlate with growth rates of their
populations of origin. Spearman's rank correlation coefficients (rs) and associated p-values are shown (n = 30 for each
genotypic background: S. cerevisiae, S. paradoxus or hybrid). lllustrations in a were created with BioRender.com.

To compare the number and type of genetic changes between evolved hybrid and parental
populations, we measured DNA content by flow cytometry and sequenced the genomes of 300
isolated clones derived from the evolved populations and their ancestors (Fig. 1a and Supplementary
Table S1) (average genome-wide coverage of 100X, Supplementary Fig. 1). In parallel, we
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measured the fitness of these isolated clones in control and UV mimetic conditions (Extended Data
Fig. 1). We confirmed our previous finding that evolved hybrids showed significantly lower growth
rate improvements than both parental replicated populations when evolved under UV mimetic
conditions (Fig. 1b, all p < 0.001). The growth rates of isolated clones and that of their populations
of origin were strongly correlated (Fig. 1c: rs =0.76, p < 0.0001), confirming that the fitness of isolated
clones is representative of the general fitness dynamics observed in the previous evolution
experiment*®. From now on, we will refer to lines when discussing observations on these isolated
clones derived from their populations of origin.

Major Genomic Changes in Copy Number Reveal Increased Genomic Instability in UV
Mimetic Conditions

The maijority of lines remained diploid during evolution. Ploidy changes were generally not more
frequent under UV mimetic conditions (Extended Data Fig. 2, Supplementary Fig. 2). Likewise, we
did not see a larger number of genomic changes in copy number in hybrids in UV mimetic compared
to control conditions, suggesting that ploidy changes do not account for the observed reduction in
hybrid adaptive potential. Conversely, evolution under UV mimetic conditions did result in a larger
number of lines with aneuploidies in hybrid and both parental genotypic backgrounds when
compared to control conditions (Fig. 2a and 2b), confirming that the UV mimetic treatment affected
genome stability. However, the number of aneuploidies did not correlate with fitness changes
observed in any group (Supplementary Fig. 3, rs =-0.18, p > 0.5; rs =-0.22, p > 0.5 and, rs = -0.27,
p > 0.5; for S. cerevisiae, S. paradoxus and hybrid respectively). Hybrids also did not show a higher
number of aneuploidies compared to the parents, making it unlikely to explain their reduced
adaptability (Fig. 2b).

The analysis of the sequence depth of coverage revealed a particular type of alteration, for instance,
in chromosomes Xll and XV (Fig. 2a). Intriguingly, gains and losses occurred simultaneously in the
homologous chromosomes of S. cerevisiae and S. paradoxus, i.e., when a hybrid lost a portion of
the S. cerevisiae chromosome, it simultaneously gained a portion of the homologous S. paradoxus
one. This prompted us to map the chromosome coverage to determine patterns in the distribution of
species-specific chromosome gains and losses. The observed changes affected large regions of
chromosomes (Fig. 2c). These patterns can be caused by the non-reciprocal exchange of
homologous chromosomes in diploids during mitosis, resulting in loss of heterozygosity (LOH) (Fig.
2d)%2%3 We identified LOH as regions where there were simultaneous increases and decreases in
read depth in homologous chromosomes along a size threshold of 20 kb (Extended Data Fig. 3). We
detected two types of LOH, interstitial LOHs (i-LOH), which often originate from gene conversion
involving short exchanges, and terminal LOHs (t-LOH), typically resulting from mitotic crossovers
that encompass larger regions®%. We identified some large i-LOHs (for example in line 17 on
chromosome XIV, Extended Data Fig. 3) but here we focused on t-LOHs, which were more frequent.

The frequency of t-LOH events in hybrid genomes was significantly positively correlated with
chromosome size (Extended Data Fig. 4a, rs = 0.81, p < 0.05). The pattern of t-LOHs showed
similarities across hybrid lines, with specific regions concentrated on chromosomes VII, XlI, and XV
(Fig. 2e). These regions have been previously identified to be susceptible for t-LOHs®®. Certain t-
LOHs were found to cluster around particular positions enriched with repetitive loci, such as the
rDNA locus on chromosome XII%%% or the STE4 gene, another common t-LOH-target on
chromosome XV®’. We found a much larger number of hybrid lines with t-LOHs when evolved under
UV mimetic conditions (96% of the lines) compared to control conditions (8% of the lines) (Fig. 2f, p
< 0.0001). Only one line evolved under UV mimetic conditions did not show any t-LOH (4%).

Overall, our data indicates that t-LOHSs are a specific outcome of evolution in UV mimetic conditions.
This suggests that either DNA damage triggers t-LOH, thus enhancing its occurrence rate, or that t-
LOH is particularly advantageous under these conditions and selected for. Advantageous LOHs
have been associated with fitness increases in both lab and natural settings®>®®. However, LOHs in
themselves may not cause variation in the rates of adaptation among hybrid lines. We indeed did
not find a significant correlation between the increase in fitness and the number of t-LOH events
(Extended Data Fig. 4b, rs = 0.33, p > 0.05).
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In summary, although we cannot examine t-LOHs in parental genomes due to their starting
homozygosity, we found that aneuploidy frequencies are similar across parental species and hybrids,
suggesting that overall genome instability is not specifically increased in hybrids. There is therefore
no support for our initial hypothesis that increased instability hampers adaptation in hybrids.
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Figure 2. Genomic changes observed during experimental evolution. a, Relative read depth per chromosome and
evolved line. Colored squares show the relative read depth between evolved and ancestor lines (log2 fold change). Values
with an increase in 30% fold change represent gains in DNA content (gradient towards orange) and values with a decrease
in 30% fold change represent losses in DNA content (gradient towards purple). Rows are individual genomes and columns
are the chromosomes. Hybrid lines have two sets of chromosomes, since a concatenated hybrid genome was used for
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mapping. Homologous chromosomes are positioned side-by-side: S. cerevisiae (Scer) chromosomes on the left and S.
paradoxus (Spar) on the right (See methods for details). Top panels show control lines and the bottom ones show lines
evolved in UV mimetic conditions. Lines are ranked according to their fithess gain under UV mimetic conditions (with top
lines indicating greater fithess). This same ranking order is preserved under control conditions, enabling a direct
comparison between conditions (n = ~30 lines per genotypic background and condition). b, Number of aneuploidies per
line after evolution under control and UV mimetic conditions for the three genotypic backgrounds (n = ~30 lines for each
genotypic background and condition). Fisher's Exact Test (within conditions for the same genotypic background) was
performed. Only significant p-values are shown. ¢, Example of read depth variation across chromosomes for a single hybrid
line (13) evolved in UV mimetic conditions, highlighting the detection of t-LOH through simultaneous increase and decrease
in read depth (deviations of 30% from the genome-wide median read depth). d, lllustrative scheme of t-LOH produced in
hybrid genomes. e, Percentage of hybrid lines carrying t-LOHs on each chromosome region (n = 24 hybrid lines). f, Number
of t-LOHs per hybrid line after evolution under control and UV mimetic conditions. Wilcoxon test p-value is shown (n = 27
hybrid lines evolved in control and n = 24 hybrid lines evolved in UV mimetic). lllustrations in d were created with
BioRender.com.

Parents and Hybrids have Parallel Access to Adaptive De Novo Mutations in the same
Genes

Lower rates of adaptation to UV mimetic conditions may also be explained by hybrids not having
access to the same adaptive mutations as the parental lines, as per our alternative hypothesis. For
instance, some mutations could have strong genetic background-dependent effects. We investigated
whether hybrids show parallel or distinct patterns in potentially adaptive single nucleotide
polymorphisms (SNPs), focusing on missense variants, as their potential impacts are easier to
interpret, and data is more robust in this category. We found a median of 20 missense variants per
line in S. cerevisiae, 12 in S. paradoxus, and 42 in the hybrids (Extended Data Fig. 5) with a
comparable trend in control conditions. A gene ontology (GO) analysis revealed differences in terms
of the biological functions affected by mutations but also some similarities (Supplementary Fig. 4).
Although non-significant, the most enriched GO terms for S. cerevisiae included double-strand break
repair via sister chromatid exchange (GO:1990414), potentially aiding in coping with 4-NQO-induced
DNA breaks, and the regulation of cell differentiation (GO:0045595). For S. paradoxus, the most
enriched terms included ER-associated misfolded protein catabolic processes (G0O:0071712) and
endocytic vesicles (GO:0030139), potentially disrupting the invagination of extracellular substances,
such as the 4-NQO drug (UV mimetic conditions). In the hybrid, the most enriched terms comprised
trehalose metabolic process (GO:0005991) and ABC-type transporter activity (GO:0140359),
comprising efflux pumps involved in expelling xenobiotic compounds, such as 4-NQO.

We found that mutations occurred in parallel in two specific genes across all three genotypic
backgrounds (Fig. 3a), suggesting that the same molecular changes provide strong selective
advantages in all three genotypic backgrounds. The most frequent parallel changes involved the
pleiotropic drug response genes PDR1 and YRR1 (Fig. 3a). PDR1 and YRR1 encode zinc finger
transcription factors regulating multidrug and stress responses®~"". Among targets, they modulate
the expression of PDR5, a well-characterized yeast efflux pump that actively transports toxic
compounds out of the cell’*”. Three S. cerevisiae lines, eight S. paradoxus lines, and eight hybrid
lines had non-synonymous mutations in PDR1, while each genotypic background had five lines with
YRR1 mutations (Fig. 3a). This is a surprising level of parallelism, given that drug resistance
mutations have been shown to be genotype-specific’* and that S. cerevisiae and S. paradoxus
diverged 10 million years ago.

From here on, we will focus on the analysis of PDR1 since it was the most often mutated gene. Non-
synonymous mutations in PDR1 were not randomly scattered along the gene but instead occurred
in particular clusters that overlapped among all three genotypic backgrounds (Extended Data Fig.
6). To identify the specific locations of the mutations, we analyzed the protein structure of Pdr1 (Fig.
3b). We found identical or similar substitutions as revealed in previous studies on S. cerevisiae
exposed to different drugs, ethanol and antifungal molecules’"°(Fig. 3b). Localization on the protein
structure revealed the presence of a cluster also found in other fungal species, for instance, in the
pathogenic fungus Nakaseomyces glabratus (Extended Data Fig. 7a and 7b), for which antifungal
resistance often arises from mutations in PDR1%%-%¢, Parallelism even occurred at the level of amino
acid changes across genotypic backgrounds (Fig. 3c). For instance, a mutation at amino acid
308/307 (corresponding to the respective S. cerevisiae and S. paradoxus coordinates)
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independently occurred up to four times. This specific amino acid change has also been observed
in other studies’®, conferring resistance to the same UV mimetic drug we employed (4-NQO)".

The identification of shared mutational hotspots and shared amino acid changes suggests a common
adaptive landscape across genotypic backgrounds, indicating that specific regions within PDR1 and
YRR1 harbor similar potential for adaptive mutations to occur in both hybrid and parents.

. : Amino acid changes Amino acid changes
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Figure 3. PDR1 shows parallel adaptive changes among genotypic backgrounds. a, Absolute frequency of the most
recurrent mutated genes in parents and hybrids. b, Pdr1p structure modeled with AlphaFold featuring amino acid changes
identified in this study, alongside amino acid changes previously reported. All changes occur in the same regions. Cluster
of amino acid changes is shown in the insets. ¢, Mutations and chromosomal changes occur together and impact fitness
in the three genotypic backgrounds. A schematic of the chromosomal changes for each individual line is shown (n = 3 for
S. cerevisiae, n = 8 for S. paradoxus and, n = 8 for hybrid). The number of PDR1 mutated copies is shown in yellow.
Identical amino acid changes are indicated by matching colors across the different genotypic backgrounds. d, Fitness gain
(% change in growth rate between initial and final time points) as a function of the number of PDR1 mutated copies (n =3
for S. cerevisiae homozygous mutation, n = 1 for S. paradoxus homozygous mutation + chromosome gain, n = 4 for S.
paradoxus homozygous mutation, n = 3 for S. paradoxus heterozygous mutation, n = 1 for hybrid homozygous mutation +
chromosome gain, n = 2 for hybrid homozygous mutation, n = 1 hybrid heterozygous mutation + chromosome gain, and n
= 4 for hybrid heterozygous mutation). p-value for Kruskal-Wallis test (above) and adjusted p-values after false discovery
rate (FDR) multiple test correction (above each boxplot) are shown. The number of PDR1 mutated copies is also shown in
yellow. e, Fitness gain (% change in growth rate between initial and final time points) as a function of the number of PDR1
mutated copies in the three genotypic backgrounds (top) or only in hybrid (bottom). Spearman's rank coefficient (rs) and
p-value are shown (n = 3 for S. cerevisiae, n = 8 for S. paradoxus, and n = 8 for hybrid).

Fitness increases with Copy Number of PDR1 Adaptive Alleles

The occurrence of mutations in the PDR1 gene across all three (hybrid and two parental) genotypic
backgrounds raises an intriguing question: Why do these mutations not confer similar adaptive
benefits to hybrids as they do to the parental species? We observed that some lines carrying PDR1
mutations showed particularly high fitness gains under UV mimetic conditions. Specifically, lines 2,
25, and 27 for S. cerevisiae, lines 22, 24, 27, and 28 for S. paradoxus, and lines 13, 27, 28, and 30
for the hybrids show notable improvements (Fig. 3c). A closer genomic analysis revealed that all
these lines share a common characteristic, namely the presence of multiple mutated copies of PDR1
(Fig. 3c). Although mutations are expected to initially be heterozygous, we observed a diversity of
genotypes at the PDR1 locus. While some lines have undergone LOH that made the mutations
homozygous, others show changes in ploidy resulting in an increased number of chromosomes
harboring PDR1 mutations (Fig. 3c). It is worth noting that an exception is observed in line 9 of S.
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paradoxus (Fig. 3c). While being heterozygous for the PDR1 mutation, this line’s high fitness is likely
due to an additional mutation in the YRR transcription factor, resulting in enhanced copies of these
two transcription factors simultaneously.

Fitness increased as a function of the number of PDR1 mutated copies in all three genotypic
backgrounds (Fig. 3d and Fig. 3e top panel rs = 0.55, p < 0.05). This effect was particularly strong
in hybrids (Fig. 3e bottom panel, rs = 0.79, p < 0.05). The two lines with the largest observed fithess
gain within their respective genotypic contexts (134% in S. paradoxus line 24 and 123% in hybrid
line 28) each carried three copies of the PDR1 mutant alleles (Figure 3c and 3d). Hybrid line 28
showed a complex pattern in which a whole-chromosome t-LOH was combined with an increase in
ploidy (Fig. 3c*, Supplementary Fig. 5 and Extended Data Fig. 3).

The likelihood and rate of a mutation becoming fixed in a population is shaped by the strength of
selection and the architecture of the trait under selection, including allelic dominance. Therefore, not
only does an adaptive mutation need to occur, but it also needs to be in a proper genotype for the
individuals to fully benefit from it. Mutations with greater dominance are more likely to become fixed,
a principle referred to as Haldane's sieve®~®°. This poses a problem to non-obligate sexual species
and in systems that only rarely reproduce sexually, like many unicellular microbes such as fungi. In
asexual populations, recessive or incompletely dominant beneficial mutations can bypass Haldane's
sieve by achieving homozygosity through LOH %, although completely recessive alleles would be
invisible to selection and could thus be lost before an LOH occurs. The rate of LOH is not uniform
among genotypes and it has been shown to be lower in heterozygous genotypes®'. In hybrids, which
are highly heterozygous, successful LOH rates are even more limited (Fig. 4a)***°. Once a beneficial
mutation occurs in the parental genomes, high rates of mitotic recombination can rapidly lead to LOH
at the site where the mutation occurred and make a mutation homozygous. This would occur at a
lower rate in hybrids, slowing down the rate of adaptation.

Taken together, our findings demonstrate an association between genomic changes leading to the
amplification of mutated PDR1 copies and fitness gains in UV mimetic conditions. Hybrids with PDR1
mutations do show fitness gains but to a smaller extent than both parental lines. This advantage
could derive from the fact that parental genomes achieve higher levels of homozygosity for these
mutations (Fig. 3c): The LOH rate in hybrids containing PDR1 mutations was 37.5% (3/8 hybrid lines
had a homozygous PDR1 mutation), whereas it was 100% across the parental S. cerevisiae lines
(3/3) and 62.5% across S. paradoxus lines (5/8), making PDR1 mutations more visible to selection
in parental lines. Thus, the limiting factor may not be the rate and type of mutation but their limited
allelic amplification in hybrids (Fig. 4a).

The Challenge of Attaining Homozygosity Accounts for the Reduced Adaptive
Potential of Hybrids

In order to test if Haldane's sieve slows down adaptation in hybrids, we rely on the following key
assumptions: 1) The initial PDR1 mutation is recessive or incomplete dominant, requiring
homozygosity to unlock its full fitness benefits. We thus predict that homozygous PDR1 mutants will
display higher fitness than heterozygous PDR1 mutants; 2) LOH occurs at a slower pace in hybrid
genomes*24%91,

We first validated the adaptiveness of specific PDR1 mutations. Site-directed mutagenesis was used
to introduce seven candidate mutations (G280R, G280S, M308I, and G1042W for S. cerevisiae;
G279R, G279S, and G281V for S. paradoxus) on a plasmid carrying either S. cerevisiae or S.
paradoxus PDR1 gene. After introducing these plasmids into a S. cerevisiae strain (BY4741) deleted
for PDR1 (pdr1A); we found that the mutations conferred significantly higher growth rates in the
presence of the UV mimetic drug compared to the wild-type (WT) (Extended Data Fig. 8a). These
mutations also conferred fitness benefits in the parental backgrounds with slight variations in the
extent of effects (Supplementary Fig. 6). To further confirm the effects derived from the transcription
factor activity of PDR1, we measured expression of the downstream drug efflux pump Pdr57273, We
fused Pdr5 to a Green Fluorescent Protein (mMEGFP) and measured its expression in the same strain
(BY4741) containing PDR1 mutations on a plasmid. The Pdr5-mEGFP strain exhibited higher
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fluorescence levels when carrying a plasmid containing specific PDR1 mutations, compared to wild-
type (WT) (Extended Data Fig. 8b). Consistent with this observation, we found that the same PDR1
mutations also lead to resistance to several drugs other than 4-NQO (Extended Data Fig. 7c).
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Figure 4. PDR1 mutations show additive phenotypes such that allele copy number correlates with fitness gain. a,
Schematic of the hypotheses tested. Rapid homozygosity through LOH allows fitness to increase rapidly in parents. Hybrids
achieve homozygosity more slowly and it occurs through major genomic changes in copy number (t-LOH). A single-parent
species is depicted for simplicity of visualization. b, Growth rate in UV mimetic conditions (4 uM of 4-NQO) of the four types
of zygosity (homozygous WT, heterozygous M308I, hemizygous M308I, and homozygous M308l) of PDR1 constructed by
CRISPR-cas9 genome editing (n = 22-28 per zygosity). p-value for ANOVA test (above) and Tukey post hoc pairwise
groups (above each boxplot) are shown. ¢, Temporal dynamics of the evolutionary history of hybrid line 13 and S.
paradoxus line 29 evolved in UV mimetic conditions. Relative frequencies through time (measured in generations) of the
three detected zygosities are shown (heterozygous PDR1 mutation in purple, homozygous PDR1 mutation in turquoise, or
no mutation on PDR1 in grey). The relative frequency is displayed from one time point before the first detection of the
PDR1 mutation to up to two time points after. Panel shows a representative example for simplicity but see Extended Data
Fig. 9 for a comprehensive analysis of all lines (n= 5-10 isolated clones per time point). d, Temporal dynamics of the
evolutionary history across the three types of zygosity (n = 2 lines for S. cerevisiae, n = 4 lines for S. paradoxus, and n =
3 lines for hybrid, each line has n = 5-10 isolated clones per time point). The dark-colored interval represents the number
of generations in which the first homozygous mutation appears. e, Relative frequency of homozygous and heterozygous
lines across genotypic backgrounds (S. cerevisiae, S. paradoxus, and hybrid). The relative frequency was determined by
calculating the median value of relative frequencies across time points, starting from the first detection of PDR1 mutations
until reaching a homozygous level exceeding 80% or the frequency detected in the last resequenced time point (95
generations). The median values for each genotypic background are highlighted in squares (n = 2 lines for S. cerevisiae,
n = 4 lines for S. paradoxus, and n = 3 lines for hybrid, each line has n = 5-10 isolated clones per time point). p-value for
ANOVA test (above) is shown. f, Growth rate in UV mimetic conditions (4 uM of 4-NQO) of hybrid zygosities (heterozygous
PDR1 mutation, homozygous PDR1 mutation or no mutation on PDR1) through time (from isolated clones of the
experimental evolution frozen fossils) (n = 40-80 isolated clones / line from three hybrid lines evolved in UV mimetic
conditions containing PDR1 mutations: 13, 28 and 30). p-value for ANOVA test (above) is shown. lllustrations in b, d, e,
and f were created with BioRender.com.
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To assess the dominance of PDR1 mutations in a neutral genomic background, independent from
potential interference by other mutations as might occur in our lines, we generated homozygous and
heterozygous diploid mutants by mating BY4741 and BY4742 haploids and using CRISPR-Cas9
genome editing. We focused on the M308I mutation because it showed the most significant fitness
gain and activation of the Pdr5 efflux pump (Extended Data Fig. 8). We found that in the homozygous
state, this mutation conferred a higher fitness advantage than in the heterozygous state (Fig. 4b),
confirming its incomplete dominance. The hemizygote also showed a higher growth rate than the
heterozygote, suggesting that the mutated allele confers higher benefits in the absence of the WT
allele. Taken together, our findings confirm the first key assumption: 1) The initial PDR1 mutation
exhibits incomplete dominance and requires homozygosity to fully contribute to adaptation.

We archived populations regularly over the course of experimental evolution*®, so we could revive
the frozen fossils and isolate some clones to determine the timing of appearance of the various
PDR1 mutations. We revived ~350 clones from nine hybrid and parental populations that harbor
homozygous PDR1 mutations based on WGS data and sequenced the PDR1 locus using amplicon
Sanger sequencing. We identified three types of zygosity at the PDR1 locus at intermediate time
points of experimental evolution (Fig. 4c): heterozygous, homozygous WT, and homozygous mutant.
As expected for de novo mutations in diploids, mutations were consistently first detected as
heterozygous (Fig. 4d) but in some cases, the LOH was so rapid that we also detected homozygous
mutants (Fig. 4c left).

This trend aligns with the increase in fitness recorded during the experimental evolution in their
populations of origin but also when analyzing specific isolated clones*® (Extended Data Fig. 9 and
Extended Data Fig. 10, respectively). Mutations only became homozygous later (Fig. 4d) but with
the important difference that the parents become homozygous at a higher frequency than the
hybrids. This pattern persisted across all experimental populations: Homozygous genotypes
appeared quickly after the initial PDR1 mutations occurred, and spread rapidly in the parental
populations, whereas in the hybrids, even by generation 95, a high proportion of heterozygotes were
still observed (Fig. 4d, see Extended Data Fig. 9 for detailed analysis). Supporting this trend, we saw
in some of the parents (population 2 and 25 of S. cerevisiae, population 27 and 29 of S. paradoxus)
that the emergence of homozygous and heterozygous coincide, indicating that the mechanism of
adaptation through LOH can operate quickly (Fig. 4c and 4d). The relative frequency of each
mutation in each population through time further shows that the proportion of homozygous mutants
was much lower in hybrids compared to parental species (Fig. 4e). Remarkably, these proportions
(Fig. 4e) closely mirror those calculated above from the genome sequences, averaged for each
genotypic background (100% vs. 90% in S. cerevisiae; 62.5% vs. 70% in S. paradoxus and 37.5%
vs. 33% in hybrids). To verify that the low homozygote frequency in hybrids was not due to reduced
homozygote fitness in the specific hybrid genotypic background, we compared hybrid fitness across
generations and populations and confirmed that homozygotes were fitter than heterozygotes and
homozygotes WT (Fig. 4f and Extended Data Fig. 10 for fitness across generations). These findings
validate our final assumption that 2) LOH occurs at a slower pace in hybrids.
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Discussion

Hybridization is a recurring phenomenon in nature that has captured the interest of scientists for
decades'®'*92% in fundamental fields but also in applied research such as in agriculture and
medical microbiology?*?52%9 The adaptive and non-adaptive roles of hybridization have been
studied extensively®*®'%. However, the negative consequences have mostly focused on
reproductive isolation'®'% and less on the potential reduction in adaptive rates of hybrids. We
previously evolved hybrids of S. cerevisiae and S. paradoxus species during 100 generations in a
stress that mimics UV radiation and observed a reduced adaptive potential of hybrids. We used this
system to investigate what could reduce the hybrid rate of adaptation.

Our results reveal that hybrids and parental species have access to the same adaptive changes in
key genes. In principle, adaptation can therefore occur through the same mechanisms and at the
same rate. We examined the cases of mutations that impacted a transcriptional factor involved in
drug resistance because they displayed strong parallelism. The mutations displayed incomplete
dominance and could only avoid Haldane's sieve - the bias against the establishment of recessive
beneficial mutations®”° - by achieving homozygosity through LOH. Because LOH depends on
recombination and recombination depends on high sequence identity*?4>9", this second event (LOH)
occurs at a slower rate in hybrids, ultimately contributing to slowing down hybrid adaptation. This is
opposite to de novo mutations, which accumulate in yeast hybrid genotypes at rates that are not
greater than those observed in these parental species''®. Experiments involving the evolution of
heterozygous yeast populations have also shown that LOH frequently unmasks beneficial recessive
alleles which can confer significant fitness advantages®'"'~'"3. Although not explored here, LOH in
hybrids could also limit adaptation in other ways. Since mitotic recombination often extends along
the entire length of a chromosome arm®®*, especially in heterozygous genomes®®, an LOH that
renders a beneficial mutation homozygous could also bring along other molecular changes or
combination of changes that would negatively impact fithess. These could include for instance
recei;%ive genetic interactions between the two species that would be revealed following a long
LOH®".

Our findings contribute to the understanding of the genomic factors shaping asexual microbes. Such
hybrids often evolve during domestication, for instance, many beer yeasts are among-species
hybrid"'*'"® and these hybrids are known to be largely sterile, i.e. to not have access to sexual
reproduction’'®. Even fungal pathogens evolve through recurrent hybridization events?971"7=12! gnd
acquire antifungal resistance and adapt to new hosts with de novo mutations and LOH'?>7'?6_ |t has
indeed been shown that to confer full resistance to antifungals, a mutation in a transcriptional
regulator needed to be followed by LOH'#’. Antimicrobial resistance has also been shown to depend
on an LOH event in S. cerevisiae, in order to render a loss-of-function mutation homozygous'#.
Understanding which conditions could slow down the rate of LOH, such as heterozygosity along the
chromosome as we exemplify here, or the linkage to other potentially deleterious mutations'®®, is
there key to understanding evolution in an applied context such as antimicrobial resistance. Other
asexual cells that evolve in a similar manner are somatic cells. Cancer cells reproduce somatically
and usually evolve by LOH, since most of the mutations associated with tumor progression need to
remove the dominant alleles of tumor suppressors to become active’*'®'. The phenomenon we
uncovered here, whereby some genotypes experience lower rates of LOH, thus has also
consequences that extend beyond the study of hybrids.
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Methods

Experimental Crosses and Previous Experimental Evolution

The S. cerevisiae and S. paradoxus strains used were described in*® and were derived from the
natural strains LL13_054 and MSH-604 isolated in North American forests'**® (Supplementary
Table S2). To prevent mating type switching in haploids, the HO locus was replaced with resistance
cassettes (HPHNT1 for Hygromycin B resistance and NATMX4 for Nourseothricin resistance)'®2
through homologous recombination as described in Table S1. A total of 90 experimental strains
were constructed by crossing haploid strains (30 S. cerevisiae, 30 S. paradoxus and 30 hybrid), so
that each starting parental and hybrid diploid population is the result of an independent mating event
as described in *°. The 90 populations were evolved for 100 generations (Fig. 1a) as described in
9. Briefly, we used a non-DNA damaging growth condition called control (YPD 1% yeast extract,
Fisher BioReagents™, USA; 2% tryptone, BioShop®, Canada; and 2% D-glucose, BioShop®,
Canada) and a DNA damaging growth condition supplemented with a UV mimetic molecule® 4-
Nitroquinoline 1-oxide (4-NQO) (Sigma—Aldrich, cat. no. N8141, batch #WXBC3635V, Canada)®.

Fitness Assays on Individual Clones

Growth assays were conducted on individual clones, which were used for genome sequencing and
isolated from the glycerol stocks from experimental evolution*® (Supplementary Table S1). Ancestor
strains (n = 90) as well as the populations evolved in YPD (n = 90) and in YPD + 4-NQO (n = 90)
were pre-cultured in 1 mL of YPD in 96 deep-well plates and incubated for 24 h at 25 °C.
Subsequently, 20 uL of these pre-cultures were grown in 96-well flat-bottomed culture plates in 180
uL of medium (YPD or YPD + 4 uM of 4-NQO), resulting in an initial ODsgs of approximately 0.1. A
transfer cycle was performed at 24 h after approximately ~ 5 generations in rich conditions. Each
culture was diluted approximately 30-fold by transferring 6 L of grown culture into 194 uL of fresh
medium to initiate a new round of growth at an ODsgs starting at about 0.03. Incubation at 25 °C was
performed directly in three temperature-controlled spectrophotometers (Infinite® 200 PRO, Tecan,
Reading, UK) that read the ODsgs at intervals of 15 min throughout the two cycles performed. All
samples were randomized across plates, temperature-controlled spectrophotometers and days.

DNA Extraction, Library Construction and Whole Genome Sequencing

We obtained whole-genome sequences of 270 individual clones derived from the 270 experimental
lines*® (Supplementary Table S1). We extracted genomic DNA from overnight YPD cultures derived
from each clone according to the manufacturer's instructions (MasterPure™ Yeast DNA Purification
Kit, Biosearch Technologies - Lucigen, Wisconsin, USA) and purified on Axygen™ AxyPrep
Magnetic PCR Clean-up SPRI beads (Axygen Inc, New York ,USA). Five DNA libraries were
prepared using RIPTIDE™ High Throughput rapid DNA library prep in 96-well plate format
(iGenomX, South San Francisco, USA)'. The quality of the libraries was verified using an Agilent
BioAnalyzer 2100 electrophoresis system (Genomic Analysis Platform of the Institute of Integrative
Biology and Systems of Université Laval, Quebec, Canada). Pooled libraries were sequenced using
paired-end 150 bp reads on different lanes of an Illlumina NovaSeq 6000 (lllumina, San Diego, USA)
at the Genome Quebec Innovation Center (Montreal, Canada).

Flow Cytometry Analysis of Ploidy

DNA content was measured by flow cytometry using the SYTOX™ green staining assay (Thermo
Fisher, Waltham, USA) as in *>®. Haploid and diploid strains of the S. cerevisiae isolate LL13_054
were used as haploid and diploid controls, respectively. As triploid control, we used a cross between
S. paradoxus subspecies B (MSH-604) and S. paradoxus subspecies C (LL11_004) strains. As
tetraploid control, we used a cross between S. paradoxus subspecies B (91_202) and
Saccharomyces cerevisiae (LL13_054) strains*®. Because we do not have controls from each
genetic background, there may be slight differences in DNA content measurements and thus we
inferred ploidy between our lines and the controls. The 270 individual clones derived from the 270
experimental lines (Supplementary Table S1) from *° and used for whole-genome sequencing were
thawed from glycerol stocks and grown on solid YPD omnitray plates (25°C, 72 h). They were
inoculated in 1 mL of YPD in 96 deepwell plates and incubated for 24 h at 25 °C. Cells were
subsequently prepared for flow cytometry as in '**. They were fixed in 70% ethanol and kept frozen
at - 20 °C for further analysis. RNA was eliminated using 0.25 mg mL-1 RNase A during an overnight
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incubation at 37 °C. Cells were washed twice with sodium citrate (50 mM, pH 7) and stained with a
SYTOX™ green concentration of 0.6 uM for 1 h at 25 °C in the dark. Cell concentration was adjusted
in sodium citrate (50 mM, pH 7) to be less than 500 cells/uL. Five thousand cells from each of the
300 samples were analyzed in 96-well plates in a CytoFLEX Platform flow cytometer (Beckman
Coulter, California, USA) at the Feldan Therapeutics facility (Quebec, Canada). Cells were excited
with the blue laser at 488 nm and fluorescence was measured in a green fluorescence detection
channel (625/40 nm). The distributions of the green fluorescence values were processed to find the
two main density peaks, which correspond to the two cell populations in G1 and G2 phases,
respectively. DNA content value was calculated as a median of the fluorescence of the two main
density peaks.

Quality Assessment and Read Mapping of Next-Generation Sequencing Data

Raw reads from barcoded samples of the five libraries were demultiplexed using DemuxFastgs from
fgbio tools'® v1.5.0 (Supplementary Table S3). Reads were trimmed using Trimmomatic'*® v0.36
with parameters ILLUMINACLIP:Trimm_seqs.fa:6:20:10 and using Trimm_segs.fa (Source Data 1)
as a list of adapter sequences used. To assess the quality of both pre- and post-trimming sequencing
reads, we used FastQC v0.11.9 " and MultiQC v1.11"3%,

Reads from S. cerevisiae samples were mapped on the indexed reference genome of S. cerevisiae
strain YPS128"*°, which in our study is named LL13_054, and S. paradoxus samples were mapped
on the S. paradoxus SpB (named MSH-604) genome'°'%°. Reads from hybrid lines were mapped
on a concatenated genome comprising the two respective parental genomes end to end. The BWA-
MEM algorithm™' v0.7.17 was used for mapping. Mapped reads were processed by genome-sorting
algorithms using samtools v1.8'2 and quality was assessed by mapping coverage with goleft
v0.2.2'3, The average mean read depth across samples was about 100X (Supplementary Fig. 1).
We excluded line 16 from the S. cerevisiae population evolved under UV mimetic conditions due to
its low quality. We used Picard tools v2.26.11'* for adding Read Groups groups with
AddOrReplaceReadGroups, and we removed duplicate reads with MarkDuplicates with parameter
REMOVE_DUPLICATES = true.

Analysis of Read Depth (Aneuploidies and Loss of Heterozygosity)

Mean read depth over 1kbp windows were obtained with BamStats04 from Jvarkit tools
v2021.08.10'*° and makewindows from bedtools tools v2.30.0'¢. We first eliminated some
sequences of the hybrid lines evolved in UV mimetic because the sequencing was weak (lines 1
and 21) or because the content of one of the parental genomes was the majority (lines 10 and 25)
(Supplementary Fig. 7, 8 and 9). We also verified the results of Flow Cytometry Analysis of Ploidy
section and compared DNA content by measuring average read depth across genomes
(Supplementary Fig. 10). We computed the median chromosome read depth and the median whole
genome read depth for each line. In order to detect the number of gained or lost chromosomes, we
divided each chromosome’s median read depth by the genome-wide median read depth. We
standardized this value by the value of the corresponding ancestors to obtain the relative read depth
(log2 fold change). Values with a chromosome median read depth higher than the genome-wide
median represent gains in DNA content (gradient towards red in Fig. 2a, Fig. 2c and Extended Data
Fig. 3) and values with a median read depth lower than the genome-wide median represent losses
in DNA content (gradient towards purple in Fig. 2a, Fig. 2c and Extended Data Fig. 3) for each
individual chromosome. We also computed the number of chromosomes with aneuploidies per line
by considering an aneuploidy as a deviation (increase or decrease) of 30% with respect to the
genome-wide median read depth as in %. The positional coverage mapping of hybrid genomes
unveiled terminal regions with pronounced increases in read depth in one parental chromosome
copy and concurrent decreases in the other copy (Extended Data Fig. 3), revealing the presence of
reciprocal crossovers between chromosomes. These tracts that extend to the telomeres and usually
measure between 50-100 kb correspond to Terminal-Loss of Heterozygosity (t-LOH) regions®%63,
To quantitatively assess the number of t-LOH events in hybrid lines, we identified regions with
simultaneous increases and decreases in read depth (deviation of 30% with respect to the genome-
wide median read depth) in both chromosomal copies exceeding a size threshold of 20 kb.
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Functional Analysis of de novo Mutations

SNP calling was performed with Haplotype Caller (gatk-v4.1.4.1)""'%®  Before generating the
GVCFs, we added a RG (read group) tag to individual BAM files. After SNP calling, genotyping of
GCVFs was performed with GenotypeGVCFs. For variant filtration, we applied standard hard filters
with options: QUAL by depth (QD) < 2.0, mapping quality (MQ) < 40.0, Fisher’s exact tests of strand
bias (FS) > 60.0, symmetric odds ratio test of strand bias (SOR) > 3.0, mapping quality rank sum
test (MQRankSum) < -12.5, rank sum test for site position within reads (ReadPosRankSum) < -8.0,
Genotype Quality (GQ) < 20, and Coverage (DP) < 3. We selected variants which passed the above
filters and we excluded INDELS focusing exclusively on substitutions (SNP) for subsequent
analysis. We excluded the pre-existing genetic variation with respect to the reference genome, by
removing any variant that was already present in the ancestral strain for each evolved line (Extended
Data Fig. 5). For annotation purposes, we used the S. cerevisiae genome assembly R64-1-1
(Saccharomyces cerevisiae S288c assembly from Saccharomyces Genome Database, INSDC
Assembly GCA_000146045.2, Sep 2011) for S. cerevisiae genomes. Subsequently, we generated
maps annotations with Liftoff (v1.6.3)'*° of S. paradoxus genome from the S. cerevisiae genome
assembly R64-1-1 (Saccharomyces cerevisiae S288c assembly from Saccharomyces Genome
Database, INSDC Assembly GCA_000146045.2, Sep 2011). We finally generated a combined
annotated genome for hybrid analysis. The variants were ultimately annotated using Ensembl
Variant Effect Predictor (VEP) v110'°. We examined missense variants to perform Gene Ontology
(GO) using bioMart™" and clusterProfiler'®?.

Validation of the Adaptiveness of Mutations

We used ChimeraX v1.5' to visualize Pdrip amino acid changes we found throughout the
experimental evolution and other mutations found in the literature’>"® (Source Data 2) on the
AlphaFold'*'% generated structure for Pdr1p (AF-P12383-F1, Source Data 3). Subsequently, we
analyzed Pdr1 Nakaseomyces glabratus protein by superimposing structures and amino acid
changes®®®84 across species (Source Data 4; AF-BOVI40-F1, Source Data 5). We next used a set
of plasmids derived from MoBy-OREF library, in which genes are controlled by its native promoter and
terminator'®, to express the PDR1 sequences from either S. cerevisiae (BY4741) or S. paradoxus
(MSH-604). Candidate mutations (G280R, G280S, M308I, and G1042W, being G1041W in LL1304
strain for S. cerevisiae sequence, G279R, G279S, and G281V for S. paradoxus sequence) were
inserted by site-directed mutagenesis. As controls, we used the plasmid without the PDR1 gene
cloned (Empty) or the plasmid containing the Wild-Type (WT) PDR1 sequence. We introduced these
plasmids following a modified lithium acetate transformation protocol '*” in a S. cerevisiae lab strain
BY4741, and natural strains S. cerevisiae LL13_054 and S. paradoxus MSH-604 in both WT and
pdr1A (previously constructed by replacing PDR1 locus with a NATMX4 module) backgrounds.
Fitness assays were performed following the same steps as described above in the Fitness Assays
on Individual Clones section. We added extra conditions to the ones previously used (4 uM of 4-
NQO): 8 uM and 10 uM of 4-NQO (Supplementary Fig. 6). We also conducted an assay on the S.
cerevisiae lab strain BY4741 pdr1A containing the same mutations on the same plasmids and
exposed them to antifungal azoles. After adjusting cell density to an ODsges of 1, we made three serial
dilutions ¥5 in 200 pL of water (40 pL of cells in 160 uL of water). We spotted 5 uL of each dilution
on YPD + 0.2% DMSO, as a control, YPD + 16 pg/mL Fluconazole (FLC), YPD + 2 pg/mL
Itraconazole (ITR) or YPD + 0.5 pg/mL Voriconazole (VRC) and incubated at 30 °C for 48h. We
assessed the expression of the downstream Pdr5p drug efflux pump by fusing Pdr5 to a Green
Fluorescent Protein (MEGFP) (Pdr5-mEGFP) in a BY4741 pdr1A lab strain expressing PDR1
mutants from the above described pMoBY plasmids. For a comprehensive list of strains refer to
Supplementary Table S2 and for a comprehensive list of oligonucleotide sequences refer to
Supplementary Table S4.

Incomplete-Dominance Assay

To evaluate the dominance of the PDR1 mutations, we created S. cerevisiae diploids harboring
either homozygous or heterozygous M308I substitutions using CRISPR-Cas9 genome editing and
mating strategy involving BY4741 and BY4742 haploids (Supplementary Table S2). We replaced
the PDR1 locus with NATMX4 (in BY4741) or HPHNT1 (in BY4742) modules specifically targeted
by two different gRNA using a modified protocol from '8, Yeast cells were transformed following a
modified lithium acetate transformation protocol " with a pCAS-NAT or pCAS-HPH plasmid
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(Addgene plasmid 6084747 modified by '*° and '*° using the same approach as in ') expressing
both the gRNA of interest (NATMX4 or HPHNT1), the Streptococcus pyogenes Cas9 %2 and a donor
DNA sequence featuring 40 bp homology arms flanking the PDR1 DNA sequence. The donor DNA
sequences were WT (PDR1), the mutation desired (M308l) or a stop codon in the first methionine
(M1Stop) (Oligonucleotide sequences can be found in Supplementary Table S4). Finally, we mated
BY4741 and BY4742 haploids with the desired mutations to create diploids WT homozygous
(pdr1A::PDR1/pdr1A::PDR1), M308| homozygous (pdr1A::PDR1(M308l)/pdr1A::PDR1(M308l)),
heterozygous (pdr1A::PDR1/pdr1A::PDR1(M308l) or pdr1A::PDR1(M308l)/pdr1A::PDR1) or
hemizygous (pdr1A::PDR1(M308I)/pdr1A::M1Stop) (refer to Supplementary Table S2 for a
comprehensive list of strains).

Allele frequency dynamics on PDR1 mutants

Whole population samples were archived regularly during the evolution experiment™. From these,
we isolated clones to estimate the timing of the appearance of the various PDR1 mutations and to
track the dynamics between homozygous and heterozygous zygosities in the population. We revived
approximately 350 clones from nine lines (Supplementary Table S1) and sequenced the PDR1 locus
using amplicon Sanger sequencing (Oligonucleotide sequences can be found in Supplementary
Table S5). We designed specific primers for each mutation (Oligonucleotide sequences can be found
in Supplementary Table S4) and used PCR to amplify those regions. We performed an exhaustive
zygosity analysis across time points (each time point represents five generations) to quantify the
ratio of homozygous to heterozygous variants. We sequenced clones from the first detection of
PDR1 mutations until reaching a homozygous frequency exceeding 80%, or if this does not occur,
we sequenced up to time point 19 (95 generations). Fitness assays in hybrid lines were performed
following the same steps as described above in Fitness Assays on Individual Clones.

t49

Data availability

Supplementary material including Supplementary tables and Source data can be found at Zenodo
(https://zenodo.org/records/10389558). Sequencing data is accessible at the NCBI Sequence Read
Archive (SRA) under BioProject PRINA1045261. The demultiplexing process details are available
at Zenodo'®® and Supplementary Table S3. Tables and scripts for figure generation can be found at
Zenodo'®® and GitHub (https://github.com/cbautistaro/Bautista2023 LOH_project). PDB-formatted
files of the AF2-generated models can be found at Zenodo'®. Strains are available upon request.
Data was analyzed using bash and R version 4.2.0.
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Extended Data Fig. 1. Growth rate of evolved lines in UV mimetic conditions. Growth rate of lines from isolated clones
derived from each ancestor population and from each evolved population in control or UV mimetic conditions in the
presence of a UV mimetic (4 uM of 4-NQO) (n = 30 lines for each genotypic background and condition). p-values for
ANOVA (above) and t-test for paired lines (below) are shown.
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Extended Data Fig. 2. Low frequency of ploidy changes during experimental evolution. a, Fold change of DNA
content is shown for each genotypic background and condition (n = 30 lines for each genotypic background and condition).
Fold change of DNA content is represented by the natural log of the ratio between the median DNA content of the lines
evolved in UV mimetic conditions and that of the ancestor lines. p-values for ANOVA (above) and t-test for paired lines
and conditions are shown (n = 30 lines for each genotypic background and condition). b, Fitness gain (% change in growth
rate between initial and final time points) under UV mimetic conditions is not correlated with ploidy level. Ploidy is measured
as the median of the distance surrounding the fluorescence peaks (G1 and G2 cell cycle phases) of DNA content (A.U.
Fluorescence). The correlation for the three genotypic backgrounds and the individual correlations for each genotypic
background are shown. Spearman's rank coefficients (rs) and associated p-values are shown (n =30 lines for each
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evolved in UV mimetic conditions (n = 8 chromosomes, the ones affected by t-LOHs). b, Fitness gain (% change in growth
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Extended Data Fig. 7. Functional analysis of PDR1 mutations in S. cerevisiae and Nakaseomyces glabratus. a,
Phylogenetic tree showing the relationships between S. cerevisiae and N. glabratus’®*. b, Pdr1p structure aligned between
S. cerevisiae (white colored) and N. glabratus (cream colored) modeled with AlphaFold featuring amino acid changes
identified in this study, alongside amino acid changes reported in the literature for N. glabratus®®-%. Cluster of amino acid
changes is shown in the insets. ¢, Spot assay of the S. cerevisiae BY4741 pdr1A lab strain expressing PDR1 variants from
a pMoBY plasmid in which the PDR1 gene is controlled by its native promoter and terminator'é. This plasmid contains
PDR1 gene from S. cerevisiae (Empty: plasmid without the PDR1 gene; ScPDR1: Wild-Type; G280R; G280S; M308I or
G1042W) or from S. paradoxus (Empty: plasmid without the PDR1 gene; SpPDR1: Wild-Type; G279R; G279S or G281V).
Growth conditions were DMSO (as a control) and antifungal azoles: Fluconazole (FLC), ltraconazole (ITR), and
Voriconazole (VRC).
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Extended Data Fig. 8. Functional analysis of PDR1 mutations. a, Optical density as a function of time in UV mimetic
conditions (4 uM of 4-NQO) of the S. cerevisiae BY4741 pdr1A lab strain expressing PDR1 variants from a pMoBY plasmid
in which the PDR1 gene is controlled by its native promoter and terminator'®. b, Distribution of cell fluorescence (A.U.
Fluorescence) in the population of cells (BY4741 pdr1A) expressing Pdr5-mEGFP and PDR1 various mutants from a
pMoBY plasmid (n = 6). As controls, we used the plasmid without the PDR1 gene cloned (Empty) or Wild-Type (WT), which
is the plasmid containing the PDR1 gene without mutation. A.U. refers to arbitrary units.
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Extended Data Fig. 9. Temporal dynamics of the evolutionary history of PDR1 mutations across lines. Sanger re-
sequencing of individual isolated clones across experimental evolution times points to assessing the PDR1 genotype. For
each line we show: a) Fitness gain through experimental evolution*® of our pool of individuals, in which growth rate
(OD/hour) is presented across time (time points). b) Relative frequency across time (time points) of ancestor or evolved
codon. c) Relative frequency across time (time points) of each different background identified for the PDR17 locus:
heterozygous (PDR1 mutation present on only one chromosome), homozygous (resulting from an LOH event where both
chromosomes have the same PDR1 mutation), and ancestral WT codon (no PDR1 mutation detected). d) Expansion
across time (time points) of each different background identified for the PDR1 locus. Each time point represents five
generations*® (n = 2 lines for S. cerevisiae, n = 4 lines for S. paradoxus, and n = 3 lines for hybrid, each line has n = 5-10
isolated clones per time point).
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Extended Data Fig. 10. Fitness dynamics of PDR1 mutants across hybrid lines in which an LOH was detected (Fig.
3b). a, Optical density as a function of time in UV mimetic conditions (4 uM of 4-NQO) of single colonies isolated through
time (5,15, 25,35,50,75,85, and 95 generations) in different lines (13, 28, and 30) (n = 270). b, Optical density as a function
of time (measured in hours) in UV mimetic conditions (4 ypM of 4-NQO) across all generations and lines. A pattern emerges,
where homozygous lines exhibit superior growth compared to heterozygous or lines with ancestral WT sequence. c,
Growth rate as a function of time (measured in generations) in UV mimetic conditions (4 uM of 4-NQO) for each line (13,
28, and 30) (n = 270). Colors across the figure represent different genotypes detected for the PDR1 locus: heterozygous
(PDR1 mutation present on only one chromosome), homozygous (resulting from an LOH event where both chromosomes
have the same PDR1 mutation), and ancestral WT sequence (no PDR1 mutation detected).
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Supplementary Fig. 1. Whole Genome Sequencing (WGS) metrics. a, Mean read depth for all sequenced lines (n =
300 lines). Mean value is shown in red. b, Mean read depth is shown for S. cerevisiae, S. paradoxus and Hybrid; for
Ancestor, evolved in control or UV mimetic conditions (n = 30 lines / genotypic background / condition). p-value for ANOVA
is shown.
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758 Supplementary Fig. 2. Ploidy dynamics through experimental evolution. DNA content measurements of the 30 lines
759  per genotypic background in ancestral state, control and UV mimetic conditions. DNA content (A.U. Fluorescence) and
760 cell count (density) as gradient color are shown for each line. The dashed line represents 2n states (n = 30 lines for each
761 genotypic background and condition). A.U. refers to arbitrary units.
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763 Supplementary Fig. 3. Aneuploidy dynamics. Fitness gain (% change in growth rate between initial and final time points)
764 as a function of the number of aneuploidies/line. Spearman's rank correlation coefficients (rs) and p-values for each
765 genotypic background (n = 30 lines for each genotypic background) are shown.
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Supplementary Fig. 4. Gene Ontology (GO) enrichment of non-synonymous mutations found in each genotypic
background in UV mimetic conditions. Most representative groups are colored for each genotypic background (S.
cerevisiae, S. paradoxus, and hybrid). They are named by clusterprofiler function'? creating a word cloud of the higher
frequency words present in the descriptions of the gene sets included. Each data point symbolizes a distinct GO term,
with the associated p-adjust values showcased alongside. False Discovery Rate (FDR) was performed within each
genotypic background and adjusted p-values are shown (n = 765 total non-synonymous mutations for S. cerevisiae, n =
270 total non-synonymous mutations for S. paradoxus, and n = 1326 total non-synonymous mutations for the hybrid).
Enrichment ratio was calculated as the foreground fraction to background fraction to detect the most enriched terms: S.
cerevisiae included double-strand break repair via sister chromatid exchange (GO:1990414) and the regulation of cell
differentiation (GO:0045595). S. paradoxus included ER-associated misfolded protein catabolic processes (GO:0071712)
and endocytic vesicles (GO:0030139). Hybrid comprised trehalose metabolic process (GO:0005991) and ABC-type
transporter activity (GO:0140359). lllustrations were created with BioRender.com.
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780 Supplementary Fig. 5. Whole t-LOH in chromosome VIl harboring a PDR1 mutation in hybrid line 28. a, Display of
781 relative read depth across chromosomes. b, Mean read depth (log2) as a function of chromosome position. ¢, Density of
782 cell count (density) as a function of DNA content (A.U. Fluorescence). A.U. refers to arbitrary units.

32


https://doi.org/10.1101/2023.12.15.571924
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.15.571924; this version posted December 16, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

a ~ G1042W —— G280R G280S M308I WT —— G279R G2798 —— G281V WT
BY4741 S.cerevisiae S.paradoxus BY4741 S.cerevisiae S.paradoxus
0.9 é 0.9 g
+ +
E ’ 3
I
06 2 0.6 2
o o
> 5
» %)
=03 81| =03 S
E = E =
< f= =
wn wn
[=2] [<2]
wn wn
= =
Q zla ” 1
Qo9 a| Qo9 Q
= =
3 3
+ +
he] he]
0.6 3 0.6 3
o o
o o
> >
0.3 3 0.3 3
@ o
= =
0 10 20 30 400 10 20 30 40 0 10 20 30 40 0 10 20 30 400 10 20 30 400 10 20 30 40
Time (hours) Time (hours)
b NQO_4uM | [NQO_8uM | [NQO_10um| [ Control NQO_4uM | [ NQO_8uM | [NQO_10uM| | Control NQO_4uM | | NQO_8uM | [NQO_10pM| [ Control
auce:
k] M3081 ;g o auce;(g o M308I auce;é)
(%) — =
adg’, G280S ly 5 » Sg 02808 .
o
2s G280R s o o & G280R
£ G1042W £ B E£8 18
< s £ € © G1042w
b < 0 < 9
T 8 5 8 3 8 8 8 wr 1 wr 1
@ & @ & 8 8 & 3 - L L. . L. L. L L T L L L o T L
O O O g8 58 B8 BB gg 88 88 38
el Q2 el Qo Q el el el 17 » 7] (2] 172} 12} 7] » 1z ?, 12} 172} 2 », 12} »,
e g2 g gE O BT EE
& &8 & & & & 4a & €8 88 88 © 28 88 88 88 8 28
+ o+ + o+ + o+ + o+ £ E £ £ £ £ £ £ E £ E E E £ £ £
h : * * £EE 5§58 E§E&§8 §§ s &8 5§ 5§ 5§
E 5 E 5 E 5 g 5 + o+ + o+ + o+ + o+ + o+ + o+ + o+ + o+
<5 £ 5 25 £ 5 E 't £ E L E T ET £33 &3 &3
S e S =8 28 28 28 =8 8 8 2%
sy ¥IF I8 ¥R g3 83 g3 89 23 839 &893 8¢
[aa] N [a:] N i3] ; o ; 2] 8 2] 8 (2] 8 (2] 8 2] g n g w g_ 2 g
2] [as] [aa] 15} (2] 2] 2] 2] 2] [2) (2] 2]
NQO_4uM | [ NQO_8uM | [NQO_10uM| | Control NQO_4uM | [ NQO_8uM | [NQO_10uM|| Control NQO_4uM NQO_10uM| | Control
aucexp
36 aucex| aucexp
2. G281V g G281V fre g G281V A
< D 27 [%} o
ot 2798 ® §G279S{ I P §62798 I 27
c 18 o o
£ 2 G27r s s
EC £ £ Go7R 8 £ Goror 1
< WT 9 go o go N
[ [ [ A 1 < WT Wt
© © © © @ © © @ 1 1
aQ Q aQ Q Q a aQ (<%
N T 5 T T T 5 <] 5 & 5 & 5 & 5 &
> > > > > > > > Q Q Q Q Q Q Q Q aQ Q Q Q Q (<% aQ Q
€ 8 88 8 8 8 8 N I ] o0 0o e 0o
£ > > > > > > > > > > > > > > > >
5 58 5§88 85§ £5 £38 5§35 %3 2% §38 53§ %3
+ o+ + o+ + o+ + o+ £ £ E £ £ £ £ £ £ £ E £ £ £ £ £
: : : : s § 88 58§ § § s § s 8§ 5§ §8 5§ §
E 5 E 5 ’é 5 § 5 + o+ + o+ + o+ + o+ + o+ + o+ + o+ + o+
- 8§ £ & £ &§ £ § Er E B k= E3 £3% &35 &3
SO 8 238 2§ %38 -2 2% 18 738
& ¥ E ¥ ¥R g4 83 83 8 d g3 g3 g3 8¢
o = o = o N o N (2] @ (2] @ (2] [ (2] Q 2] © 2 © [2) © 2] @
> > > O O O O =% =% =% Q
783 [a:] [1:] 11} [1:] [%2] (2] (2] (2] (2] 2] 2] 2

784 Supplementary Fig. 6. Fitness assay of PDR1 mutations across genotypic backgrounds. a, Optical density as a
785 function of time in UV mimetic conditions (4 uM of 4-NQO) of the S. cerevisiae lab strain BY4741 and the natural parental
786  strains (LL13_054 for S. cerevisiae and MSH-604 for S. paradoxus), all of them, WT (top) or pdr1A (bottom), expressing
787 PDR1 variants from a pMoBY plasmid in which the PDR1 gene is controlled by its native promoter and terminator'®. The
788 PDR1 gene was cloned from S. cerevisiae background (pmoby_scer) or S. paradoxus background (pmoby_spar) (n = 4
789  per growth curve represented with standard error, in total n = 216). b, Exponential area under curve (AUCexp) across
790  backgrounds (BY4741, S. cerevisiae, and S. paradoxus) and conditions (4 uM of 4-NQO, 8 uM of 4-NQO, and 10 uM of
791 4-NQO and control) in both WT or pdr1A backgrounds expressing PDR1 mutants from the same plasmids (n = 4 per

792  squared, in total n = 864).
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794 Supplementary Fig. 7. Visualization of average read depth of ancestor lines. Display of mean read depth (log2) across
795 chromosomes (n = 30 lines per genotypic background). Chromosomes Xl and XV are divided into 1/2 and 2/2 in S.
796 paradoxus lines, following the structure of the reference genome (to eliminate repetitive regions). In the hybrid lines, all S.
797 cerevisiae chromosomes are positioned on the right, while those of S. paradoxus are on the left, facilitating the visualization
798 of ploidy changes (i.e., an increase in one of these complete copies).
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800 Supplementary Fig. 8. Visualization of average read depth of lines evolved in control conditions. Display of mean
801 read depth (log2) across chromosomes (n = 30 lines per genotypic background). Chromosomes Xll and XV are divided
802 into 1/2 and 2/2 in S. paradoxus lines, following the structure of the reference genome (to eliminate repetitive regions). In

803 the hybrid lines, all S. cerevisiae chromosomes are positioned on the right, while those of S. paradoxus are on the left,
804 facilitating the visualization of ploidy changes (i.e., an increase in one of these complete copies).
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Supplementary Fig. 9. Visualization of average read depth of lines evolved in UV mimetic conditions. Display of
mean read depth (log2) across chromosomes (n = 30 lines per genotypic background). Chromosomes Xll and XV are
divided into 1/2 and 2/2 in S. paradoxus lines, following the structure of the reference genome (to eliminate repetitive
regions). In the hybrid lines, all S. cerevisiae chromosomes are positioned on the right, while those of S. paradoxus are on
the left, facilitating the visualization of ploidy changes (i.e., an increase in one of these complete copies).
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Fig. Supplementary 10. Examples of lines with higher DNA content across conditions and genotypic
backgrounds. Mean sequencing read depth (log2) as a function of chromosome position on the left and density of cell
count as a function of DNA content (A.U. Fluorescence) on the right (n = 3 S. cerevisiae ancestor, n = 4 S. cerevisiae
evolved in UV mimetic, n = 2 S. cerevisiae evolved in control ; n = 3 S. paradoxus ancestor, n = 2 S. paradoxus evolved
in UV mimetic, and n = 3 Hybrid ancestor, n = 3 Hybrid evolved in UV mimetic, n = 5 Hybrid evolved in control). Individual
data points indicate window read depth of ~1 kbp. 2n and 3n ploidy controls are shown in grey. Chromosomes XlI and XV
are divided into 1/2 and 2/2 in S. paradoxus lines, following the structure of the reference genome (to eliminate repetitive
regions). In the hybrid lines, all S. cerevisiae chromosomes are positioned on the right, while those of S. paradoxus are
on the left, facilitating the visualization of ploidy changes (i.e., an increase in one of these complete copies). A.U. refers to
arbitrary units.
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