

1 Population-scale skeletal muscle single-nucleus multi-omic profiling 2 reveals extensive context specific genetic regulation

3 Arushi Varshney¹, Nandini Manickam¹, Peter Orchard¹, Adelaide Tovar¹, Christa Ventresca^{1,2},
4 Zhenhao Zhang¹, Fan Feng¹, Joseph Mears¹, Michael R Erdos³, Narisu Narisu³, Kirsten
5 Nishino¹, Vivek Rai¹, Heather M Stringham⁴, Anne U Jackson⁴, Tricia Tamsen⁵, Chao Gao¹,
6 Mao Yang⁶, Olivia I Koues⁵, Joshua D Welch¹, Charles F Burant⁷, L Keoki Williams⁶, Chris
7 Jenkinson⁸, Ralph A DeFronzo⁹, Luke Norton⁹, Jouko Saramies¹⁰, Timo A Lakka¹¹, Markku
8 Laakso¹², Jaakko Tuomilehto^{13,14,15}, Karen L Mohlke¹⁶, Jacob O Kitzman^{2,1}, Heikki A
9 Koistinen^{13,17,18}, Jie Liu¹, Michael Boehnke⁴, Francis S Collins³, Laura J Scott⁴, and Stephen C
10 J Parker^{1,2,4}

11 ¹Dept. of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA

12 ²Dept. of Human Genetics, University of Michigan, Ann Arbor, MI, USA

13 ³Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health,
14 Bethesda, MD, USA

15 ⁴Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA

16 ⁵Biomedical Research Core Facilities Advanced Genomics Core, University of Michigan, Ann Arbor, MI, USA

17 ⁶Department of Internal Medicine, Center for Individualized and Genomic Medicine Research, Henry Ford Hospital,
18 Detroit, MI, USA

19 ⁷Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA

20 ⁸South Texas Diabetes and Obesity Research Institute, School of Medicine, University of Texas, Rio Grande Valley, TX,
21 USA

22 ⁹Department of Medicine/Diabetes Division, University of Texas Health, San Antonio, TX, USA

23 ¹⁰Savitaipale Health Center, South Karelia Central Hospital, Lappeenranta, Finland

24 ¹¹Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland

25 ¹²Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland

26 ¹³Dept. of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland

27 ¹⁴Dept. of Public Health, University of Helsinki, Helsinki, Finland

28 ¹⁵Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia

29 ¹⁶Dept. of Genetics, University of North Carolina, Chapel Hill, NC, USA

30 ¹⁷Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland

31 ¹⁸Minerva Foundation Institute for Medical Research, Helsinki, Finland

32 33 *Correspondence to scjp@umich.edu

34 Abstract

35

36 Skeletal muscle, the largest human organ by weight, is relevant in several polygenic metabolic traits
37 and diseases including type 2 diabetes (T2D). Identifying genetic mechanisms underlying these traits
38 requires pinpointing cell types, regulatory elements, target genes, and causal variants. Here, we use ge-
39 netic multiplexing to generate population-scale single nucleus (sn) chromatin accessibility (snATAC-seq)
40 and transcriptome (snRNA-seq) maps across 287 frozen human skeletal muscle biopsies representing
41 nearly half a million nuclei. We identify 13 cell types and integrate genetic variation to discover >7,000
42 expression quantitative trait loci (eQTL) and >100,000 chromatin accessibility QTLs (caQTL) across

43 cell types. Learning patterns of e/caQTL sharing across cell types increased precision of effect esti-
44 mates. We identify high-resolution cell-states and context-specific e/caQTL with significant genotype
45 by context interaction. We identify nearly 2,000 eGenes colocalized with caQTL and construct causal
46 directional maps for chromatin accessibility and gene expression. Almost 3,500 genome-wide associa-
47 tion study (GWAS) signals across 38 relevant traits colocalize with sn-e/caQTL, most in a cell-specific
48 manner. These signals typically colocalize with caQTL and not eQTL, highlighting the importance
49 of population-scale chromatin profiling for GWAS functional studies. Finally, our GWAS-caQTL colo-
50 calization data reveal distinct cell-specific regulatory paradigms. Our results illuminate the genetic
51 regulatory architecture of human skeletal muscle at high resolution epigenomic, transcriptomic, and
52 cell-state scales and serve as a template for population-scale multi-omic mapping in complex tissues
53 and traits.

54 1 Introduction

55 Skeletal muscle, the largest organ in the adult human body by mass (>40%)¹, facilitates mobility,
56 sustaining life functions, and influences quality of life. Beyond its mechanical functions, skeletal muscle
57 plays a central role in metabolic processes, particularly in glucose uptake and insulin resistance^{1–5}.
58 Metabolic diseases and traits, such as type 2 diabetes (T2D), fasting insulin, waist-to-hip ratio (WHR),
59 and others are complex and polygenic, involving a multitude of genetic factors. Genome-wide associa-
60 tion studies (GWAS) have identified thousands of genetic signals associated with these diseases and
61 traits^{6–11}. However, ~90% of these variants lie within non-coding regions¹², are enriched to overlap
62 tissue-specific enhancers, and are therefore expected to regulate gene expression^{8,13–15}. Additionally,
63 GWAS loci are often tagged by numerous variants in high linkage disequilibrium (LD), and can harbor
64 multiple causal variants¹⁶. For these reasons, identifying the biological mechanisms and pinpointing
65 causal variants in GWAS loci remains challenging.

66 Information encoded in DNA, which is largely invariant across cells in the body, likely percolates
67 through several molecular layers to influence disease. The mostly non-coding genetic variation identified
68 through GWAS likely has the most proximal effect on the molecules bound to DNA (epigenome), which
69 in turn can influence the expression of target genes (transcriptome), and then levels of proteins, all of
70 which can vary by the cell type¹⁷. This molecular cascade is not completely unidirectional and it is
71 dynamic in nature. For example, changes in expression of a transcription factor (TF) can feed back to
72 changes in the epigenome. The epigenome and the transcriptome layers are therefore valuable to gain
73 insights about gene regulation. One approach to link these layers with GWAS is through identification
74 of quantitative trait loci (QTL) for epigenomic modalities such as chromatin accessibility QTL (caQTL)
75 and gene expression quantitative trait loci (eQTL) followed by testing whether common causal variants
76 underlie the molecular QTL and GWAS signals (i.e. if the signals are formally colocalized)^{16,18–28}.

77 Previous studies profiling the epigenome and transcriptome in bulk skeletal muscle across hundreds
78 of samples identified expression and DNA methylation QTLs and provided valuable insights^{29–31}. How-
79 ever, bulk skeletal muscle profiles are dominated by the most prominent muscle fiber types, and other
80 less abundant but relevant cell types are largely missed. Several resident cell types are essential for
81 muscle function³. For example, muscle fibro-adipogenic progenitors (FAPs) are resident interstitial
82 stem cells involved in muscle homeostasis and along with muscle satellite cells, regulate muscle regener-
83 ation^{32–35}. Diabetes and obesity not only lead to structural and metabolic changes of the muscle fibers
84 but also exert detrimental effects on these progenitor cells^{36–38}. Endothelial cells and smooth muscle
85 cells comprise the muscle vasculature which is another important component in diabetes-associated
86 complications, involving insulin uptake³⁹. Immune cells are also critical, especially following injury⁴⁰.
87 Recent studies have generated reference epigenome and transcriptome maps in human skeletal muscle at

88 a single-nucleus/single-cell resolution^{41–44}. However, population-scale studies are imperative to identify
89 e/caQTL within each cell type to enable exhaustive interrogation of mechanistic signatures underlying
90 GWAS signals. To date, there is no single-nucleus/cell resolution population-scale study that maps
91 e/caQTL in hundreds of samples.

92 We hypothesize that single-nucleus epigenome (snATAC-seq) and transcriptome (snRNA-seq) pro-
93 filing across hundreds of genotyped samples will help identify the appropriate cell type, regulatory
94 elements, target genes, and causal variants(s) in elucidating context-specific regulatory mechanisms
95 within skeletal muscle. In this work, we perform snRNA-seq and snATAC-seq across skeletal muscle
96 samples from 287 Finnish individuals²⁹. We integrate these molecular profiles with genetic variation
97 to identify cell-specific eQTL and caQTL. We further integrate the e/caQTL signals with GWAS by
98 testing for colocalization and infer the chain of causality between these modalities using mediation
99 analyses, and highlight our findings with orthogonal methods at multiple example loci.

100 2 Results

101 2.1 snRNA and snATAC profiling and integration identifies 13 distinct cell type 102 clusters

103 We generated a rich dataset of snRNA and snATAC across 287 frozen human skeletal muscle (*vastus*
104 *lateralis*) biopsies from the FUSION study²⁹ (**Figure 1A**), as part of a larger study with 408 total
105 samples including three separate smaller cohorts. We processed the samples in ten batches of 40 or 41
106 samples multiplexed together using a randomized block study design to balance across experimental
107 contrasts of interest (cohort, age, sex, BMI, oral glucose tolerance test (OGTT), **Figures S1A–S1E**).
108 We also included multiome data (snRNA and snATAC on the same nucleus) for one muscle sample to
109 help assess our cross-modality clustering. We performed rigorous quality control (QC) of all nuclei and
110 only included those deemed as high-quality (Methods). This led to a total of 188,337 pass-QC RNA
111 nuclei and 268,543 pass-QC ATAC nuclei (**Figures S1F–S1J**, **Figures S2A–S2D**, **Figures S3A–**
112 **S3E**). As expected, there is a strong correlation across samples for the number of pass-QC RNA and
113 ATAC nuclei (**Figure S3F**), and nuclei counts correlate with the initial weights of the tissue samples
114 (**Figure S3G**), indicating that our genetic demultiplexing and QC recovered high-quality nuclei in
115 expected proportions. Collectively, we generated total N = 625,722 high-quality RNA or ATAC nuclei
116 from all 408 samples, and in this work we analyze N = 456,880 nuclei from the 287 FUSION and one
117 multiome sample.

118 We jointly clustered the snRNA and snATAC data, while avoiding batch and modality-specific
119 effects using Liger^{45,46} (**Figure S4A**). We identified 13 distinct clusters representing diverse cell types
120 (**Figure 1B**) that ranged in abundance (**Figure 1C**) from 34% (type 1 fiber) to <1% (macrophages).
121 The aggregate cell-specific profiles provide clear evidence of muscle tissue heterogeneity (**Figure 1D**).
122 When treating the multiome RNA and ATAC modalities separate and integrating across them, we
123 found that 82.8% of the non-muscle fiber multiome nuclei had the same RNA and ATAC cluster
124 assignments (**Figure S4B**). This is consistent with previous multiome studies^{47,48} (Supplementary
125 note); for example, integrating 92 brain snATAC+snRNA samples (19 of which were multiome) obtained
126 79.5%–85% concordant cluster assignments depending on the clustering approach⁴⁸.

127 The annotated clusters showed expected patterns of expression for known marker genes (**Figure 1E**,
128 **Figure S4C**). We merged the five closely-related muscle fiber types 1, 2a, 2x, mixed and neuro-
129 muscular junction (NMJ) together and annotated them as “muscle fiber” and identified 1,569 cell-
130 specific genes using pair-wise differential gene expression analyses (**Figure 1F**). Relevant gene ontology
131 (GO) terms were enriched in these cell-specific genes (**Figure 1G**), for example, muscle system process

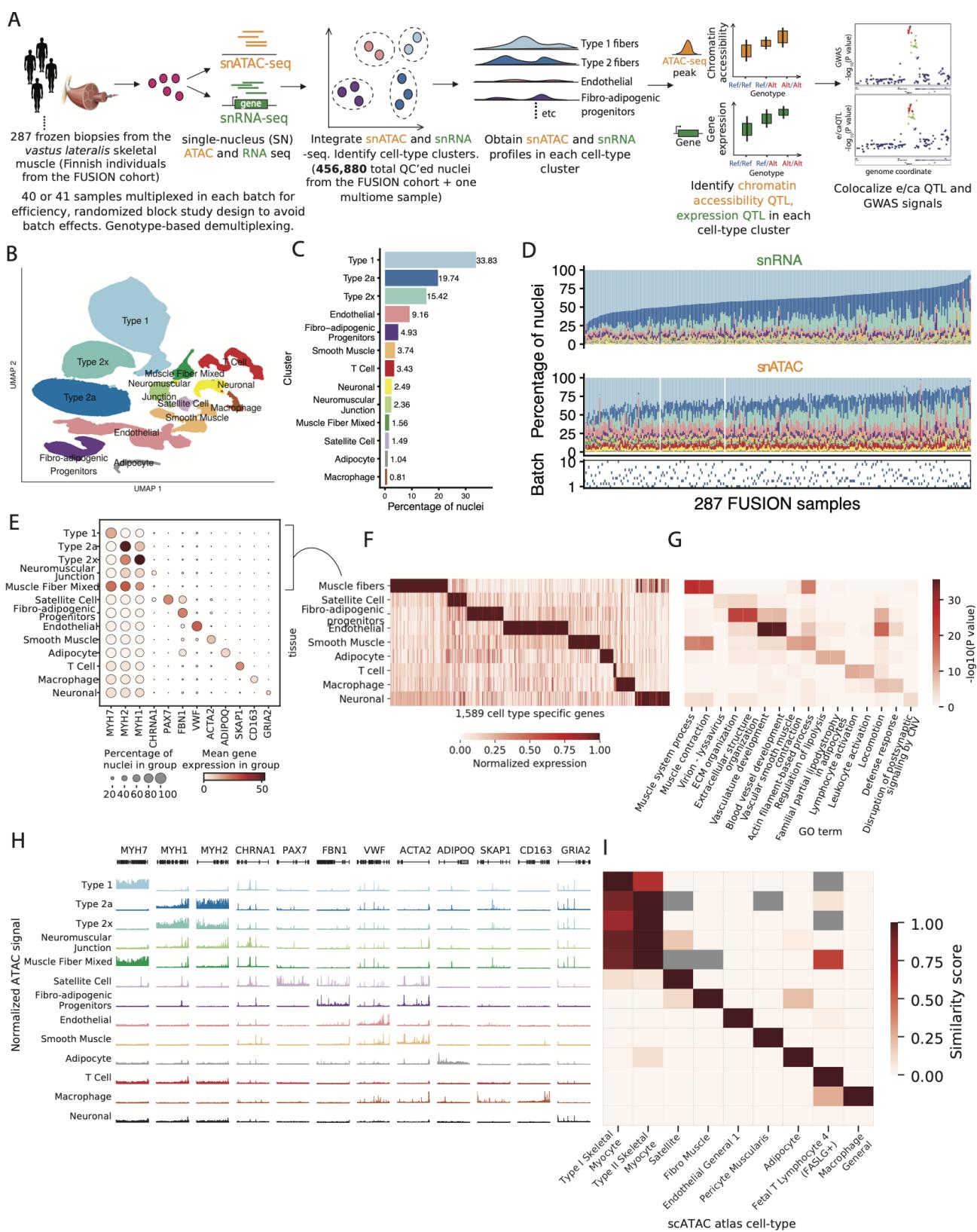


Figure 1: snRNA and snATAC -seq data generation and integration identifies 13 high quality cell-type clusters

(A) Study design including sample processing, snRNA and snATAC -seq profiling, and analyses. (B) UMAP plot showing the 13 identified clusters after jointly clustering the snRNA and snATAC modalities. (C) Cluster abundance shown as percentage of total nuclei. (D) Cluster proportions across samples and modalities. Bottom row denotes the processing batch number (1-10) for samples, indicating that the proportions are not driven by batch effects. (E) Gene expression (post ambient-RNA adjustment) in clusters for known marker genes for various cell-types. (F) Identification of cell-type-specific genes across clusters. Five related muscle fiber clusters (type 1, 2a, 2x, neuromuscular junction and muscle fiber mixed) were taken together as a “muscle fiber” cell type). (G) GO term enrichment for cell-type-specific genes identified in (F), showing two GO terms for each cluster. (H) snATAC-seq profiles over known marker genes in clusters. (I) Comparison of snATAC-seq peaks identified for clusters in this study with reference data across various cell-types from the Zhang *et al.* [42] scATAC-seq atlas. Gray cells denote no overlaps between cell-type specific peaks in our dataset and those in the Zhang *et al* dataset.

132 and muscle contraction terms for muscle fiber and regulation of lipolysis in adipocytes and familial
133 partial lipodystrophy terms for the adipocyte cluster.

134 The ATAC modality also showed clear patterns of chromatin accessibility over known marker genes
135 for various cell types (**Figure 1H**). We optimized ATAC peak calls to be of similar statistical power,
136 reproducible, and non-redundant across clusters to create a harmonized list of 983,155 consensus peak
137 summits across the 13 cell types (Methods, **Figures S5A–S5D**). We compared our snATAC profiles
138 with reference snATAC data from 222 cell types from a previous study⁴². Our snATAC peaks were
139 enriched to overlap peaks identified in related cell types (**Figure 1I**), which reinforces the quality of
140 our cluster labels using the independent ATAC modality. We identified 95,442 snATAC peaks that
141 were specific for a cell type cluster (**Figure S5E**). We computed chromatin co-accessibility between all
142 peak pairs within 1Mb in each cluster using Cicero⁴⁹, which enabled peak to gene TSS links.

143 DNA-binding motifs for cell type-relevant TFs were enriched in these cluster-specific peaks (**Fig-**
144 **ure S5F**). For instance, motifs for the myocyte enhancer factor 2 (MEF2) family of TFs that are
145 known regulators of skeletal muscle development and function^{50,51} were enriched for muscle fiber peaks;
146 motifs for the SRY (Sex Determining Region Y)-related HMG box of DNA binding (SOX) TFs, im-
147 plicated in endothelial differentiation and endothelial-mesenchymal cell transitions^{52–54} were enriched
148 in endothelial-specific peaks. Specifically expressed TF genes appeared to drive corresponding TF mo-
149 tif enrichment in cluster-specific peaks (**Figure S6**). For example, *PAX7* gene, critical for satellite
150 cell function⁵⁵ is expressed with high specificity in muscle satellite cells and *PAX7* TF motifs are en-
151 riched in satellite cell specific peaks. Other examples included known TF regulators such as *SPI1* in
152 macrophages⁵⁶, *EB1* in adipocytes⁵⁷, and *GATA2* for endothelial⁵⁸ cells. This analysis revealed *LHX6*
153 - known for its role in cortical interneuron development^{59,60} - as another key endothelial cell regulator.
154 Collectively, these data demonstrate the high-quality of our snRNA and snATAC profiles and data
155 integration.

156 2.2 Integrating genetic variation with snRNA and snATAC profiles identifies thou- 157 sands of e/caQTL

158 We next identified genetic associations with gene expression and chromatin accessibility QTL (e/ca
159 QTL) in clusters. Optimizing QTL discovery (**Figures S7A–S7B**, **Figures S8A–S8B**), we identi-
160 fied 7,062 eQTL and 106,059 caQTL across clusters (**Figures 2A–2B**, **Figure S7C**, **Figure S8C**).
161 2,452 eQTL (34.7%) and 37,095 caQTL (34.5%) were only detected in one cluster (**Figure S7C**, **Fig-**
162 **ure S8C**), which is attributable to cell-type specific effects but also differences in power to detect QTL
163 in clusters. Despite differences in power, the e/caQTL effect sizes were highly concordant across clus-
164 ters (**Figure S7D**,**Figure S8D**). Out of 4,206 unique eGenes identified in our sn-eQTL, 1,014 (24%)
165 were not identified in bulk skeletal muscle eQTL²⁹. Notably, out of 2,452 cell-type specific eGenes,
166 720 (29.4%) were not identified in bulk skeletal muscle eQTL, highlighting the novel findings in our
167 sn-eQTL scans. Down-sampling analyses in type 1 fibers showed an almost linear increase in detectable
168 QTL with the number of samples and number of nuclei, which could be a useful benchmark while
169 designing future studies **Figures S9A–S9E**.

170 **Figure 2C** shows an example type 1 caQTL signal ($P = 1.1 \times 10^{-66}$) where the caQTL SNP (caSNP)
171 rs12636284 lies within the caQTL peak (caPeak), and the C allele is associated with higher chromatin
172 accessibility. This caQTL is also identified in FAPs ($P = 2.4 \times 10^{-34}$), and the peak is shared across
173 multiple clusters (**Figure 2D**). We identified cluster-specific caQTL even for peaks shared across cell
174 types, indicating context-specific genetic effects on chromatin accessibility. For example, **Figure 2E**
175 shows a caQTL identified in FAPs (~5% ATAC nuclei) and not type 1 fibers (~30% ATAC nuclei), even
176 when the overall peak was comparable in size between the two clusters (**Figure 2E**, aggregate cluster

177 snATAC tracks). Additionally, we identified cluster-specific peaks as caQTL (**Figure 2F**). caPeaks in
178 clusters were enriched to overlap TF motifs relevant to the corresponding cell type (**Figure S8E**).

179 We next asked if the genetic regulatory signatures from our caQTL scans recapitulate patterns of
180 TF binding. Most TFs bind accessible chromatin regions by recognizing specific DNA motifs. For
181 genetic variants within bound activator motifs, the allele preferred by the TF should be preferentially
182 associated with higher chromatin accessibility²⁴. In **Figure 2G**, we show the known position weight
183 matrix (PWM) for the TF motif BACH_1 (row 1). We considered all BACH_1 motif occurrences across
184 snATAC peaks in type 1 fibers that also overlapped caSNPs, and used the caQTL allelic fold change
185 (aFC) to quantify alleles associated with higher chromatin accessibility (“favored alleles”). We then used
186 these favored alleles to genetically reconstruct the PWM (**Figure 2G**, row 2) (**Figure 2G**, row 3) and
187 found it closely matches the canonical motif PWM (**Figure 2G**, row 1), providing a caQTL-informed *in*
188 *vivo* verification of the cognate PWM. To further verify that the caQTL-based genetically reconstructed
189 PWM does not simply reflect the allelic composition of SNPs in motifs, we constructed the PWM using
190 the allele count for all heterozygous SNPs observed in the BACH_1 motif occurrences in snATAC
191 peaks (**Figure 2G**, row 4,5). The resulting PWM had low information content and little similarity to
192 the cognate motif (**Figure 2G**, row 4,1). Several other examples of caQTL-informed reconstructions,
193 including for motifs relevant for muscle (MYF6, MYOD1), chromatin architecture (CTCF), and other
194 motifs enriched to occur in type 1 caPeaks (**Figure S8E**) are shown in **Figure S10A**. PWM motifs
195 were highly concordant with caQTL allele preferences. Motifs enriched in caPeaks across cell types had
196 a higher fraction of caQTL alleles consistent with PWM base preferences than the non-enriched motifs
197 (**Figure S10B**). Overall, these results demonstrate how high-quality snATAC and caQTL information
198 can provide base-resolution insights into TF binding and regulation.

199 Given our deep caQTL results, we next compared caPeaks to snATAC peaks in the same cell types
200 from reference atlas datasets. We reasoned that for caPeaks where the more commonly occurring
201 caSNP allele is associated with lower chromatin accessibility, the caPeak is more likely to be missed in
202 reference datasets that usually only include one or a few representative tissue samples and therefore
203 do not capture population-scale genetic effects. We additionally reasoned that caPeak reproducibil-
204 ity in reference atlases will be lower for large effect-size caSNPs when the allele associated with high
205 chromatin-accessibility occurs rarely in the population. **Figure 2H** delineates this observation com-
206 paring type 1 fiber caPeaks with the Zhang *et al.* [42] snATAC atlas type 1 fiber peaks. Even with
207 moderate effect sizes and allele frequencies, the snATAC caPeak was missed in the snATAC atlas about
208 equally as often as it was observed (**Figure 2H**). Overall, this observation underscores the impor-
209 tance of population-scale snATAC studies to exhaustively identify regulatory elements in the human
210 population.

211 To examine the local chromatin context, we compared chromatin state patterns at e/caQTL in
212 muscle fibers. Type 1 caPeaks were enriched to overlap TSS and enhancer chromHMM states in skeletal
213 muscle (**Figure S8F**). We contrasted two classes of functional regulatory elements, the active TSS
214 chromHMM state that constitutes shared and cell type-specific promoter elements and stretch enhancers
215 that constitute cell identity enhancer elements^{13,61,62}. Type 1 fiber eSNPs occurring in the skeletal
216 muscle active TSS chromHMM state had higher eQTL absolute aFC than eSNPs occurring in stretch
217 enhancers (**Figure 2I**, $P = 3.56 \times 10^{-2}$), whereas, type 1 fiber caSNPs occurring in stretch enhancers
218 had higher caQTL absolute aFC than caSNPs in active TSS states (**Figure 2I**, $P = 2.69 \times 10^{-53}$). These
219 results suggest that eQTL scans identify signals largely in proximal gene promoter regions, whereas
220 caQTL scans are able to identify signals in distal and cell-specific regulatory elements, elucidating an
221 important distinction in the two modalities. Collectively, these results reinforce the importance of
222 joint snRNA and snATAC profiling along with e/caQTL analyses to gain mechanistic insights into the
223 genetic regulation of gene expression and distal regulatory element accessibility.

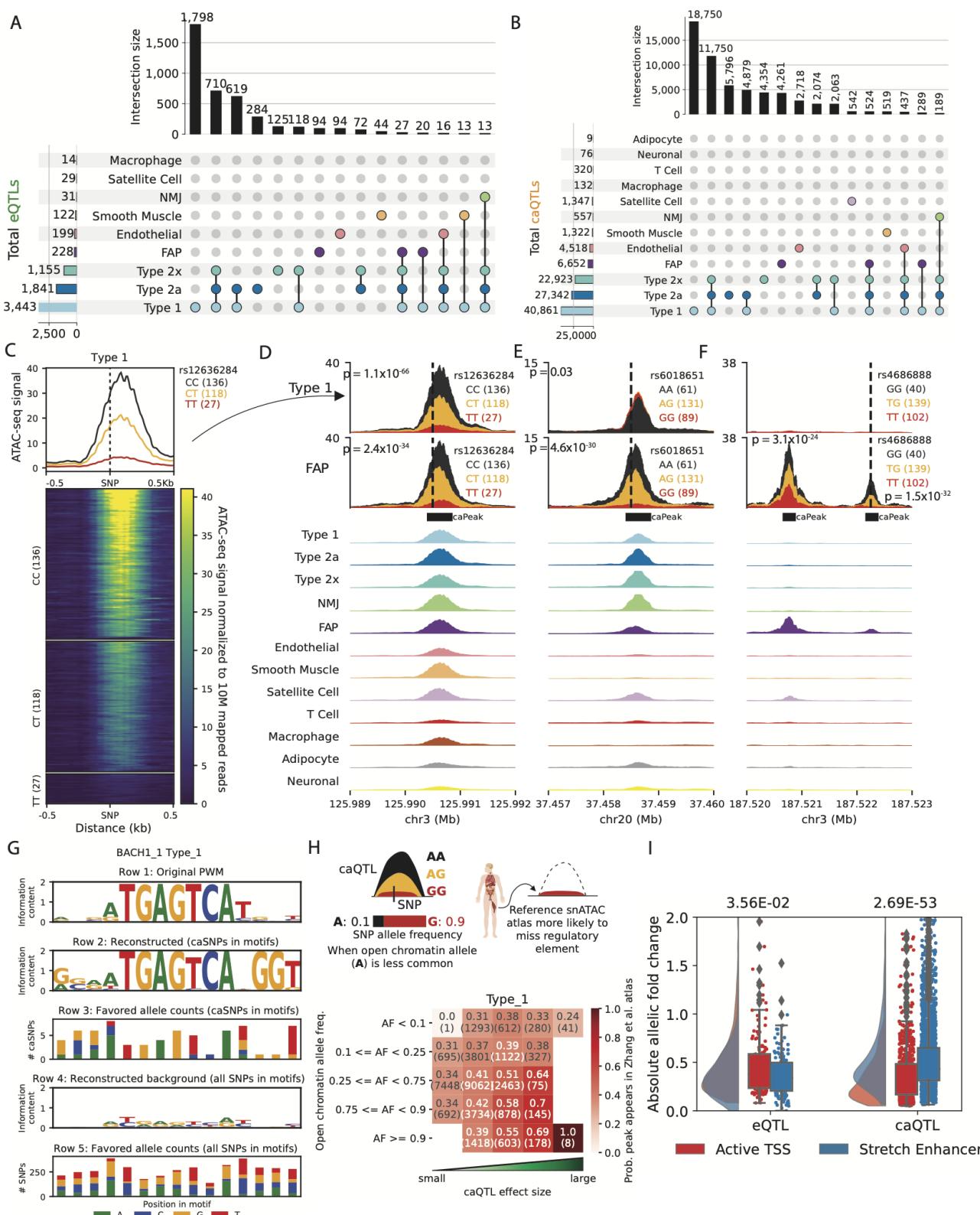


Figure 2: Thousands of e/caQTLs identified in clusters

(A) UpSet plot showing eGenes, and (B) caPeaks in clusters (FDR<5%) (C) An example caQTL. Heatmap shows normalized snATAC-seq reads across samples in the type 1 cluster, separated by caSNP rs12336284 genotype classes. Aggregate profiles by genotype are shown on top. Examples of shared and cluster-specific caQTL are shown in (D), (E), and (F). Top two rows show snATAC-seq profiles by the caSNP genotype in type 1 and FAP cell types, followed by aggregate snATAC profiles across clusters. (G) Reconstruction of the BACH1_1 TF motif using caQTL data. From top, row 1: original motif PWM. Row 2: genetically reconstructed motif PWM. For all BACH1_1 motifs occurring in type 1 snATAC-seq peaks (peak-motifs) that also overlapped type 1 caSNPs, alleles associated with higher chromatin accessibility ("favored alleles") were quantified using the caQTL aFC, followed by PWM generation. Row 3: favored allele counts for caSNPs in BACH1_1 peak-motifs. Row 4: PWM reconstructed using the nucleotide counts for all heterozygous SNPs overlapping the BACH1_1 peak-motifs. Row 5: nucleotide counts for all heterozygous SNPs in the BACH1_1 peak-motifs. (H) Comparison of caSNP effect size and MAF with the replication of snATAC-seq peaks in a reference scATAC dataset⁴². (I) Allelic fold change for type 1 e/caSNPs that overlap skeletal muscle active TSS or stretch enhancer chromatin states. P values from a two-sided Wilcoxon rank sum test.

224 2.3 Identifying patterns of shared and cell-type specific e/caQTL signals across 225 clusters

226 Following our e/caQTL discovery within each cell-type cluster, we sought to learn patterns of shared
227 QTL signals across clusters to increase power and obtain more precise QTL effect estimates. We used
228 multivariate adaptive shrinkage (mash,⁶³), an empirical Bayes hierarchical modeling approach that
229 learns correlations among (usually sparse) QTL effects across cell-types. Mash provides posterior effect
230 estimates and the local false sign rate (lfsr) as a condition-specific measure of significance which is a
231 more stringent analog of FDR since it requires effects to be both non-zero and correctly signed⁶³. This
232 multivariate approach identified more e/caQTL (lfsr<5%, **Figures 3A–3B**) than the initial univariate
233 approach (**Figures 2A–2B**). NMJ cluster - which represents a small but distinct subset of muscle
234 fiber nuclei at the synaptic junction with motor nerve ends saw the most increase in the significant
235 e/caQTL, since most signals would be shared with the larger type 1, 2a and 2x muscle fiber clusters.
236 NMJ e/caQTL also showed high pairwise QTL sign sharing with other muscle fibers (**Figures 3C–**
237 **3D**). **Figures 3E–3F** show example eQTL and caQTL where the mash approach identifies significant
238 effects (orange, confidence intervals don't overlap 0) in the NMJ and other lower-abundance cell-types,
239 learning shared patterns, while also identifying truly cluster-specific e/caQTL. These results show that
240 learning from data across clusters can increase power for e/caQTL discovery.

241 2.4 Identifying context-specific e/caQTL

242 We next sought to identify context-specific e/caQTL effects while considering individual nucleus pro-
243 files. We sub-clustered the endothelial ATAC and RNA nuclei while defining five latent factors using
244 liger, and identified four distinct endothelial cell contexts: capillary, arterial, venous and lymphatic
245 (**Figure S11A**, **Figure 4A**). We then utilized the endothelial subclusters as discrete context and the
246 latent factors as a continuous context for nuclei to test for genotype by context (GxC) interactions
247 in a linear mixed model using CellRegMap⁶⁴. All 198 eQTLs identified previously in the endothelial
248 cell-type pseudobulk analyses (**Figure 2B**) showed significant (P<0.05) and highly correlated additive
249 genetic (G) effect in the nucleus-level scan (P) (**Figure S11B**). Notably, using the five factors as
250 continuous context provided higher resolution and identified more GxC interactions (92 eGenes) than
251 discrete subcluster contexts (87 eGenes) (**Figure S11C**, **Figure 4B**). Nucleus-level caQTL modeling
252 was impractical due to the high sparsity of the snATAC data. Therefore, we computed pseudobulk
253 sample peak counts in each endothelial snATAC subcluster, and tested for a GxC interaction with
254 subclusters as context for the 4,518 caPeaks identified in the initial pseudobulk scan (**Figure 4C**).
255 These analyses identified 94% (n=4,279) of the caPeaks with significant and correlated additive G ef-
256 ffects with the pseudobulk endothelial caQTL scan (**Figure S11D**). 43% (n=1,960) caPeaks showed
257 significant GxC interaction effects (**Figure 4D**). These analyses demonstrate the exciting potential of
258 snRNA/snATAC data in identifying high-resolution context-specific e/caQTL effects.

259 2.5 e/caQTL finemapping, colocalization and causal inference informs cell-specific 260 multi-omic genetic regulation

261 We performed genetic finemapping to identify independent e/caQTL signals and generate 95% credible
262 sets using the sum of single effects (SuSiE) approach⁶⁵. 284 out of 7,062 eQTL and 4,671 out of
263 106,059 caQTL signals could be finemapped to a single variant in the 95% credible set (**Figures 5A–**
264 **5B**). eSNPs occurring in snATAC peaks and caSNPs occurring in the corresponding caPeaks have
265 higher finemapping posterior inclusion probability (PIP) in the e/caQTL signal credible sets, which
266 reinforces the quality of our e/caQTL scans and the utility of finemapping to nominate causal e/caSNPs
267 (**Figures 5C–5D**). We next tested if the eQTL and caQTL signals shared causal variant(s), i.e. if the

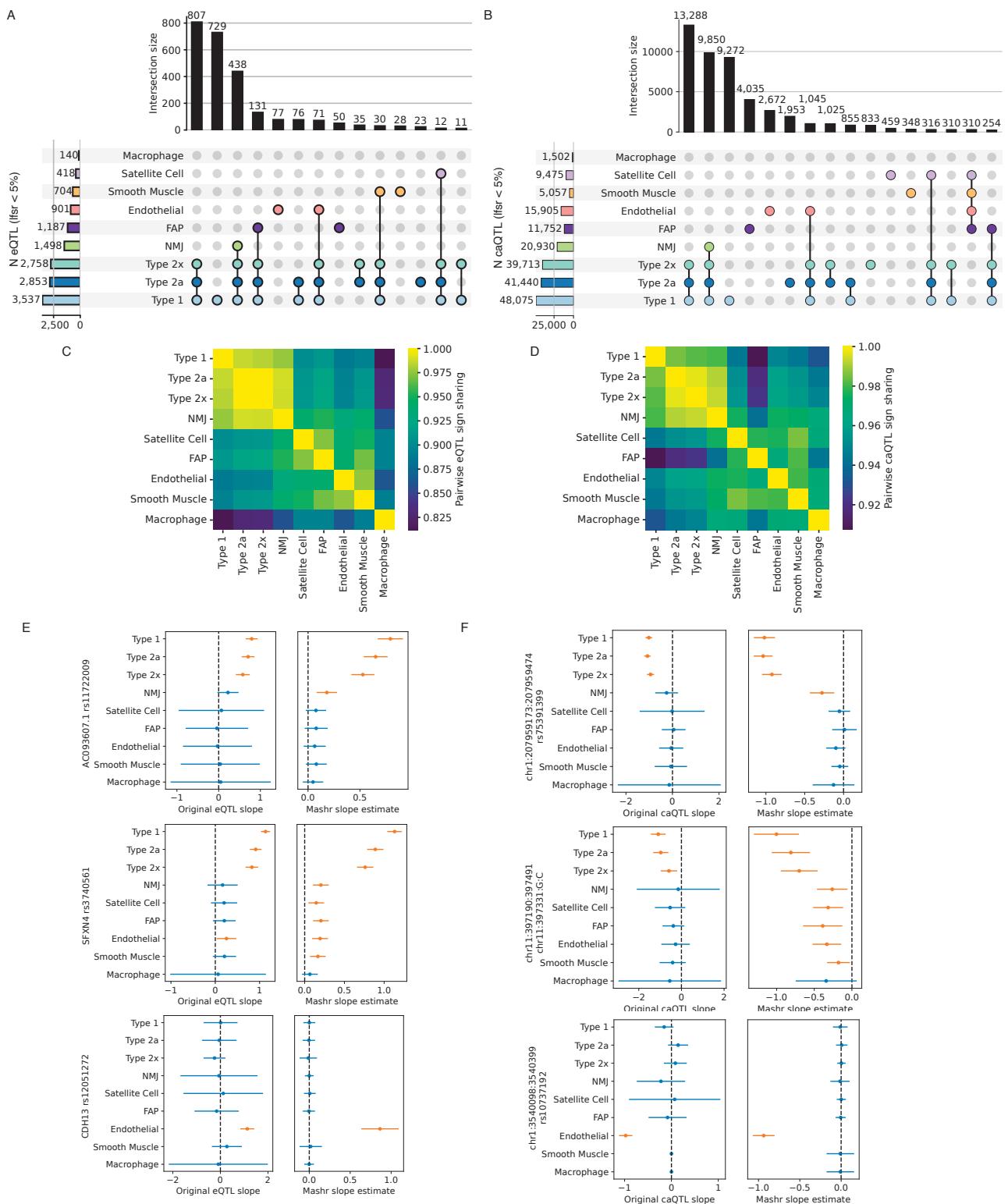


Figure 3: Learning patterns of e/caQTLs signal sharing across clusters inform effect estimates

(A) Fitting a mash model and estimating effects across clusters, UpSet plots show the number of shared and specific eGenes, and (B) caPeaks at a local false sign rate (lfsr) < 5%. (C) Fraction of eQTL or (D) caQTL effect estimates with the same sign for each pair of clusters. (E) Example eQTL and (F) caQTL showing original effects (slope) from the QTL scan and the effects estimated from mash. Bars show 95% confidence intervals. For the original eQTL results, standard errors are calculated from qvalues correcting for the total numbers of features tested after a Benjamini-Hochberg correction (hence equivalent of Mashr lfsr). For the Mashr results, estimate is the posterior mean, and error bars depict $\pm 1.96 * \text{posterior standard deviations}$. Orange color highlights estimates where CIs don't overlap zero.

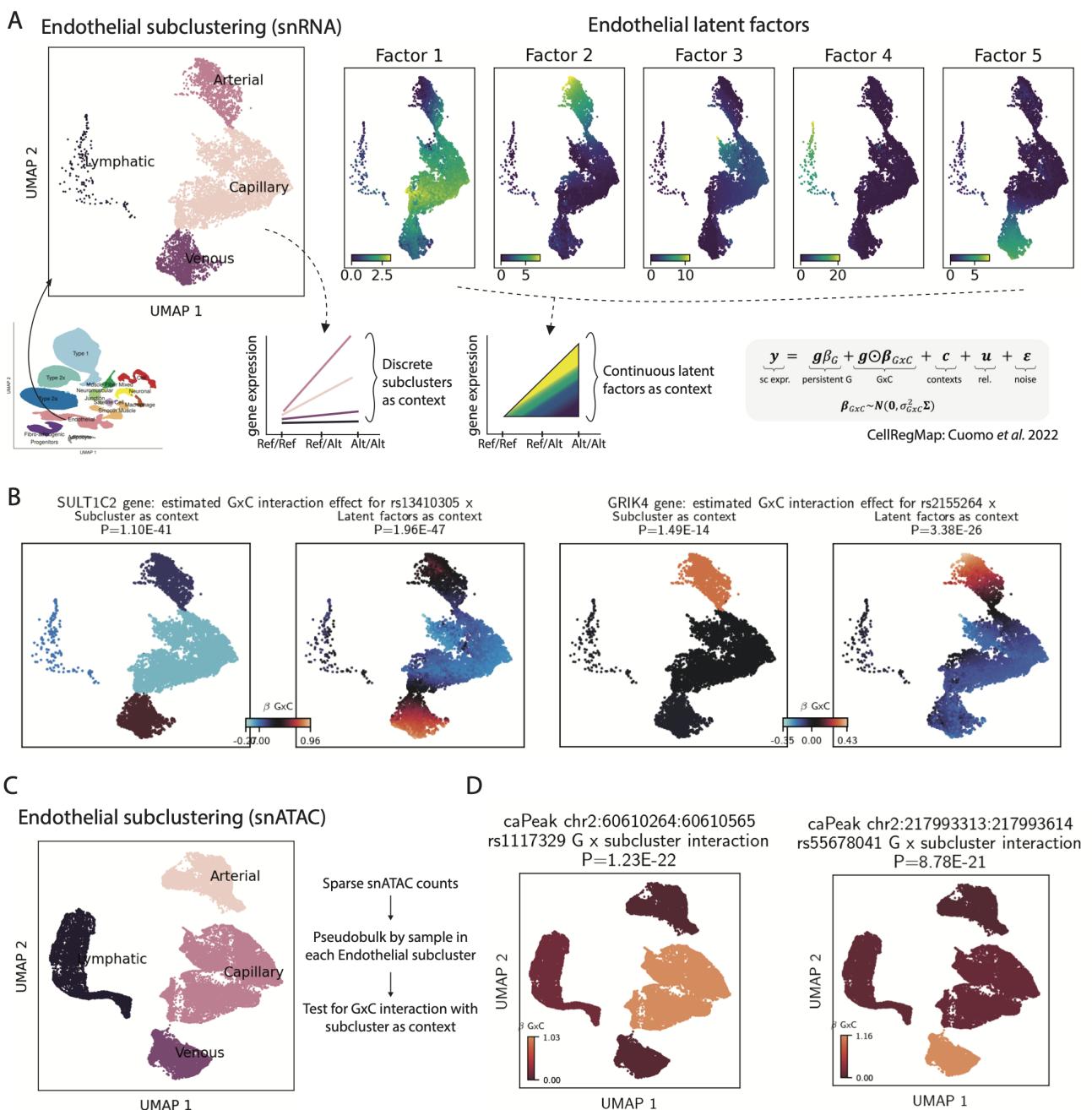


Figure 4: Identifying state-specific e/caQTL in endothelial cluster by testing genotype by context interaction

(A) Subclustering of the endothelial nuclei. Left: snRNA UMAP plot showing discrete subcluster contexts; right: snRNA UMAP plots show five latent factors as continuous contexts. (B) eGene examples with significant GxC interaction with subclusters (left) or factors (right) as context. (C) snATAC UMAP plot showing endothelial subclusters. Due to sparsity of snATAC data, counts were pseudobulked by sample within each subcluster prior to testing for GxC interaction. (D) caPeak examples with significant G x subcluster interaction.

268 e/caQTL signals were colocalized using coloc v5¹⁹ (**Figure 5E**). We identified colocalized caQTL signals
269 (coloc posterior probability for shared variant(s) (PPH4) > 0.5) across clusters for 1,990 eGenes; the
270 majority (60%) of these e-caQTL colocalizations were cluster-specific (**Figure 5E**). Notably, while we
271 detected fewer e/caQTLs in lower abundance cell-types like endothelial cells and FAP relative to muscle
272 fibers, a larger percentage of these e/caQTLs colocalize with eGenes in only one cell-type (**Figure S12**),
273 suggesting that QTL colocalization identifies cell-specific regulatory signals. Several relevant TF motifs
274 were enriched in caPeaks that colocalized with an eQTL relative to caPeaks that did not colocalize
275 (**Figure 5F**); for example, the motif for NKX2-5, a regulator of skeletal muscle differentiation⁶⁶ is
276 enriched in colocalized caPeaks in muscle fibers. These results suggest that e-caQTL colocalizations
277 nominate biologically relevant gene regulatory mechanisms and emphasizes the value of our sn-e/caQTL
278 catalog.

279 For colocalized e/caQTL signals, we inferred the causal relationship between chromatin accessibility
280 and gene expression using causal inference tests (CIT) and Mendelian randomization (MR) approaches⁶⁷⁻⁶⁹ (**Figure 5G**). We tested if chromatin accessibility mediates the effect of genetic variation
281 on gene expression (**Figure 5G**, row 1, “ca-to-e”), or if gene expression mediates the effect of genetic
282 variation on chromatin accessibility (row 2, “e-to-ca”), compared to a model consistent with pleiotropic
283 effects (row 3). In these analyses, “causal” implies that variance in the mediator determines some
284 proportion of the variance in the outcome⁶⁷. Since measurement errors in the molecular phenotypes
285 can affect causal inference, we conservatively required consistent causal direction reported by both the
286 CIT and the MR Steiger directionality test, and also performed sensitivity analyses that measured how
287 consistent the inferred direction was over the estimated bounds of measurement error⁶⁹ (**Figure S13A**).

288 We discovered 1,061 colocalized e/caQTL signal pairs as ca-to-e or e-to-ca (consistent CIT and MR
289 Steiger directionality test, 5% FDR **Figure 5G**). The e-to-ca model may represent gene expression
290 effects on chromatin accessibility for caPeaks within the body of the transcribed gene. To test this
291 hypothesis, we modeled the inferred causal direction in a logistic regression coding e-to-ca as 1 and
292 ca-to-e as 0, adjusting for caPeak height (reads per million mapped reads, RPM), eGene expression
293 level (transcripts per million mapped reads, TPM), caPeak GC content and a binary variable specifying
294 if the caPeak was located within the eGene body. This model fit was better than a model without the
295 caPeak-within-eGene body term (likelihood ratio test $P = 1.5e-4$). We found that e-to-ca caPeaks
296 occurred within the eGene body significantly more than ca-to-e caPeaks (regression coefficient = 0.79,
297 $P = 2.47 \times 10^{-5}$; **Figure 5H**), indicating that colocalized e/caQTL caPeaks in the gene body are more
298 likely to be influenced by the act of transcription across the underlying DNA region. ca-to-e caPeaks
299 were higher (CPM) than e-to-ca caPeaks (coefficient = -0.72, $P = 9.15 \times 10^{-12}$), whereas e-to-ca eGenes
300 were more highly expressed than ca-to-e eGenes (coefficient = 0.31, $P = 9.36 \times 10^{-4}$).

301 High PIP caSNPs were more likely to occur within ca-to-e caPeaks than e-to-ca caPeaks (**Figure 5I**),
302 consistent with expectation for caPeaks that are causal on eGenes. For TSS-distal ca-to-e caPeaks where
303 additional caPeaks were identified in TSS+1kb upstream region of the eGene (**Figure 5J**), the distal
304 caPeak was often causal on the TSS-caPeak as well (**Figure S13B**), Fisher's exact test $P = 4.0 \times 10^{-17}$.
305 For example, a distal caPeak ~7.6 kb from the *GSDME* gene TSS is causal on both *GSDME* gene
306 expression (CIT $P = 5.4 \times 10^{-5}$) and a TSS-caPeak accessibility (CIT $P = 4.2 \times 10^{-5}$) (**Figures 5K-5M**).
307 These analyses support an enhancer model for the ca-to-e caPeaks where the caSNP affects chromatin
308 accessibility at the TSS-distal caPeak that then regulates gene expression.

309 We highlight a locus on chromosome 8 where two independent caQTL signals for a caPeak tagged by
310 caSNPs rs700037 and rs1400506 (**Figure S13C**), both of which lie within the caPeak (**Figure S13D**)
311 are colocalized with two independent eQTL signals for the lincRNA gene *AC023095.1* (PPH4 0.99 and
312 0.76). This caPeak is specific for the type 1 fiber cluster (**Figure S13D**). Considering the independent
313 signals as instruments, we identified the caPeak to be causal on the *AC023095.1* gene expression (CIT
314

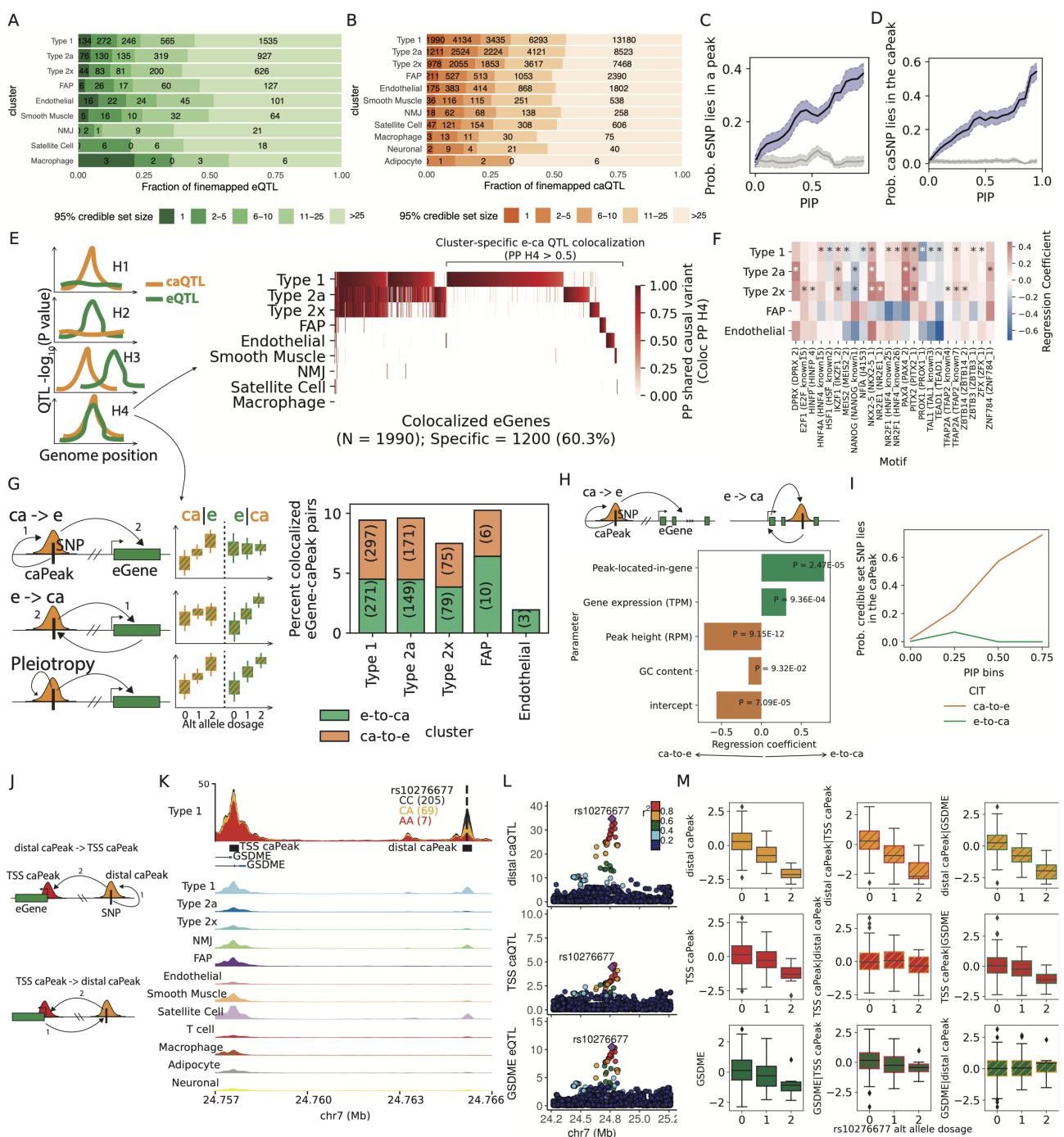


Figure 5: e/caQTL finemapping, colocalization and causal inference informs regulatory grammar in clusters

(A) Fraction of finemapped eQTL and (B) caQTL signals by the 95% credible set size. Probability of (C) eSNPs overlapping snATAC peaks relative to the eSNP PIPs; and (D) caSNPs overlapping the caPeak relative to the caSNP PIPs. Gray lines and confidence intervals are obtained after shuffling e/caSNP PIPs. (E) eQTL-caQTL pairs with lead SNPs within 100kb in each cluster were tested for colocalization. Heatmap shows the posterior probability of shared causal variant (PP H4) from coloc v5. (F) TF motif enrichment in caPeaks that colocalize with eGenes relative to all caPeaks in a cluster. Clusters with at least 100 colocalized caPeaks are shown. * denotes significant logistic regression coefficient (5% FDR). (G) For each colocalized eGene-caPeak pair, causal inference tests (CIT) can inform the causal direction - Chromatin accessibility over gene expression (ca-to-e) or vice versa (e-to-ca) using e/ca SNPs as instrument variables. Barplot shows the percentage of colocalized eGene-caPeak pairs where the putative causal direction could be determined consistently from CIT and MR Steiger directionality test (5% FDR). (H) (I) (J) (K) (L) (M) continued on the next page.

Figure 5: continued

(H) Logistic regression modeling the causal direction between caPeak-eGene pairs with whether the caPeak lies within the eGene body, along with eGene expression (TPM), caPeak height (RPM), and GC content. (I) Probability that a caSNP lies in the caPeak relative to caSNP PIP bins. Colors depict if the caPeak was inferred as ca-to-e or e-to-ca from CIT. (J) Where multiple caPeaks colocalize with an eGene, CIT can help delineate causal direction. (K) At the *GDSME* locus, caQTLs for a distal-peak and a TSS-peak both colocalized with the eQTL. Type 1 snATAC-seq signal track by rs10276677 genotype at this locus shows the distal-caPeak, TSS-caPeak and the *GDSME* gene TSS. Aggregate snATAC-seq in clusters are shown below. (L) Locus-zoom plots show the distal-caQTL, TSS-caQTL and the *GDSME* eQTL. (M) Causal inference between the distal-caPeak, TSS-caPeak and the *GDSME* gene using rs10276677 as the instrument variable. Boxplots show inverse normalized chromatin accessibility or gene expression relative to the alternate allele dosages at rs10276677 before and after regressing out the corresponding modality.

315 P value 2.11×10^{-7}) (Figure S13E). Collectively, these results demonstrate how signal identification,
 316 finemapping, colocalization and causal inference analyses illuminate cell-specific causal event chains for
 317 the regulatory element, target gene and causal variant(s).

318 2.6 Cell-specific e/caQTL and GWAS signal integration to inform disease/trait 319 regulatory mechanisms

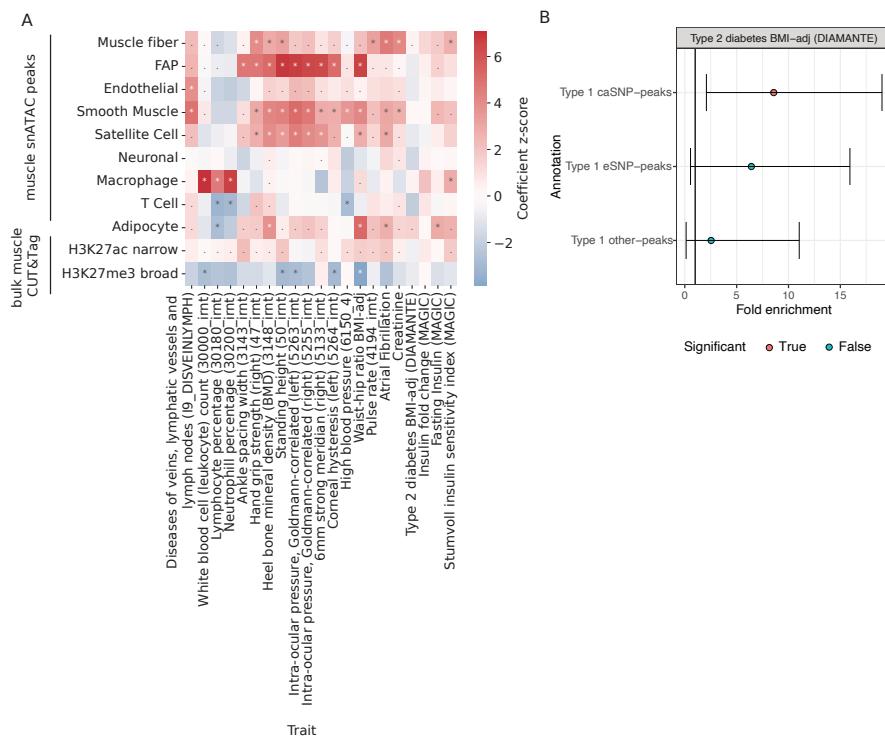


Figure 6: Enrichment of GWAS traits in cluster snATAC peaks

(A) GWAS enrichment in cluster snATAC peak features. Heatmap shows the LDSC regression coefficient Z scores. (B) T2D GWAS Enrichment in type 1 fiber snATAC peaks that contain a caSNP or eSNP or peaks that do not overlap e/caSNPs. Error bars represent the 95% confidence intervals. * = FDR < 5% on the regression coefficient, and . = FDR < 5% on the heritability enrichment.

320 To identify mechanisms underlying disease/trait associations, we integrated our e/caQTL signals
 321 with GWAS signals. We considered 302 publicly available disease/trait GWAS datasets from the UK
 322 Biobank (UKBB), along with 17 other GWAS datasets that included other skeletal muscle-relevant
 323 diseases/traits such as T2D, fasting insulin, WHR, body mass index (BMI), creatinine, and others.
 324 To further assess the relevance of skeletal muscle regulatory elements in T2D and related metabolic
 325 trait heritability, we profiled the histone marks H3K27ac (associated with enhancer and promoter
 326 activity) and H3K27me3 (associated with repressed chromatin) using CUT&Tag in skeletal muscle

327 tissue. Enrichment of H3K27ac signal at TSSs of highly expressed genes confirmed the high-quality
328 of this dataset (**Figures S14A–S14H**). We used stratified-LD score regression (S-LDSC) to compute
329 GWAS enrichment in muscle snATAC cluster and bulk chromatin peaks^{70–72} (**Figure 6A**). Muscle fiber
330 snATAC peaks were enriched for atrial fibrillation, creatinine, height, and pulse rate (consistent with
331 the previous Zhang *et al.* [42] study). Notably, muscle fibers were enriched for T2D, along with fasting
332 insulin and modified Stumvoll insulin sensitivity index (ISI) - two key measures of insulin resistance
333 (**Figure 6A**). FAPs were enriched for various traits such as waist-to-hip ratio, bone mineral density,
334 height, and ocular trait signals among others. Skeletal muscle H3K27ac peaks were enriched for ISI,
335 although to a lesser extent than the muscle fiber snATAC peaks, confirming the importance of skeletal
336 muscle in the insulin resistance phenotype and the added value in snATAC data over bulk chromatin
337 profiles. Type 1 fiber peaks containing caSNPs were enriched to overlap T2D signals whereas peaks
338 containing eSNPs or peaks without e/caSNPs were not enriched (after subsampling all three peak sets to
339 the same number of peaks) (**Figure 6B**). These results indicate that trait-associated genetic variants
340 are especially enriched in open chromatin peaks that are sensitive to genetic variation, and further
341 highlight the importance of sn-caQTL data in identifying key disease associated regulatory elements.

342 Focusing on a shortlist of 38 relevant diseases/traits, we identified 3,487 GWAS signals colocalized
343 with e/caQTL from our study (**Figures 7A–7B, Figure S15A**), the vast majority (2,791 signals, 80%)
344 of which were GWAS-caQTL (not GWAS-eQTL) colocalizations (**Figure 7C**). Since coloc results can
345 be sensitive to the prior probability for the SNP being associated with both traits (p12), we performed
346 sensitivity analyses relative to the p12 prior (**Figures S15B–S15D**) and include the minimum p12
347 prior for PPH4>0.5 as a potential QC metric for colocalization analyses. We highlight GWAS signals
348 for T2D, BMI, and fasting insulin that colocalize with e/caQTL across the tested clusters, both in a
349 shared and cell-specific manner (**Figure 7D, Figures S15E–S15F**). We also identified caQTL specific
350 to individual muscle fiber types colocalized with several GWAS trait signals (select examples shown in
351 **Figure S16**). In addition to eQTL, we systematically integrated snATAC co-accessibility data from
352 Cicero⁴⁹ as an orthogonal approach to nominate target genes. For each colocalized T2D GWAS signal,
353 we considered if the caPeak was in the TSS region or was co-accessible with a TSS-peak of a gene; and
354 further if the caQTL colocalized GWAS signal had a nominal eQTL association with the nominated
355 target gene in that cluster (**Figure 7D**, bottom heatmap).

356 The *GLI2* locus T2D GWAS signal ($P = 4.2 \times 10^{-9}$) is colocalized ($PPH4 = 1.0$) with a caQTL
357 identified specifically in the endothelial cells ($P = 1.37 \times 10^{-11}$, **Figures S17A–S17B**), and the caSNP
358 rs11688682 (PIP=1.0) occurs within the caPeak. While we didn't identify any colocalized eQTL with
359 this GWAS signal, alternative approaches helped nominate a target gene. We employed a deep learning
360 framework capable of predicting the epigenome, chromatin organization and transcription (EPCOT)⁷³
361 to impute high-resolution 3D chromatin contacts (Micro-C) using the endothelial ATAC profile. This
362 approach predicted high contacts of the caSNP-caPeak region with the *INHBB* gene TSS, nominating
363 the gene as a target (**Figure S17C**). Notably, we detected allelic differences in the predicted contacts,
364 where the homozygous high accessibility genotype (GG) showed higher contacts with the *INHBB* gene
365 than the homozygous low accessibility genotype (CC) (**Figure S17D**). The caPeak was co-accessible
366 with the TSS peaks of genes *RALB* and *INHBB* in a genotype specific manner (**Figure S17E**); and
367 the caSNP was nominally associated with *INHBB* expression ($P=0.02$).

368 The *ARL15* locus T2D GWAS signal ($P = 7.7 \times 10^{-14}$) is colocalized ($PPH4 = 0.975$) with an FAP-
369 specific caQTL ($P = 2.5 \times 10^{-9}$) (**Figures 7E–7F**). EPCOT predicted high chromatin contact frequency
370 of the caSNP rs702634 region with the *FST* gene TSS (**Figure 7G**), and the predicted contacts
371 were higher with the homozygous high accessibility genotype (GG) compared to the homozygous low
372 accessibility genotype (AA) at the caSNP (**Figure 7H**). This FAP-specific caPeak is present in the
373 analogous cell type at the orthologous region in the rat genome, and its allelic enhancer activity was

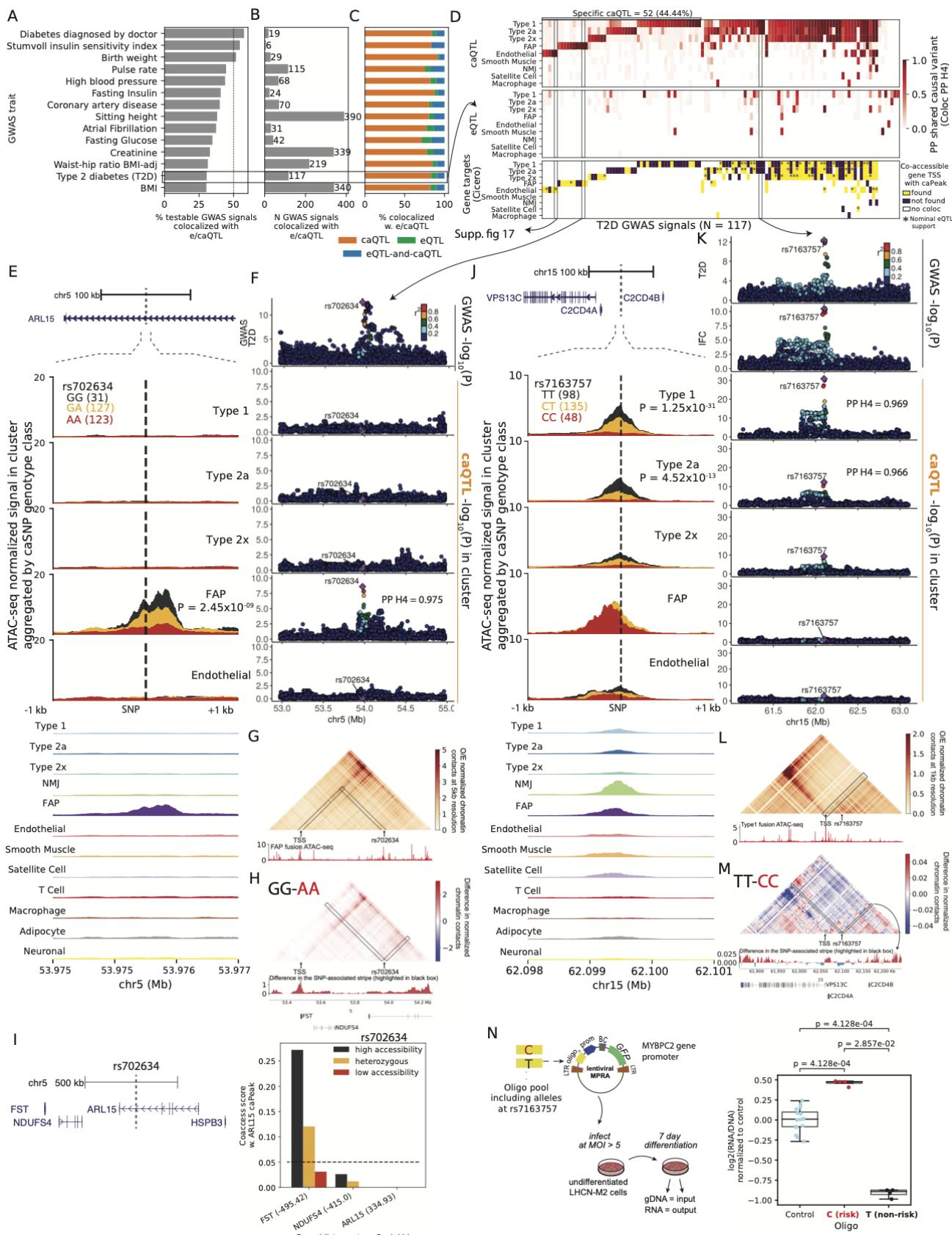


Figure 7: Integrating e/caQTL signals with GWAS informs disease/trait relevant regulatory mechanisms

(A) Percentage and (B) Number of GWAS signals across traits that colocalize with e/caQTL signals across the five clusters. (C) Proportion of colocalized GWAS signals (from B) that colocalize with only caQTL or only eQTL or both e-and-caQTL. (D) (E) (F) (G) (H) (I) (J) (K) (L) (M) (N) continued on the next page.

Figure 7: continued

(D) Heatmaps showing T2D GWAS signal colocalization with caQTL (top) and eQTL (middle). Target gene predictions using snATAC co-accessibility (Cicero) between colocalized caPeak and gene TSS peak are shown in the bottom heatmap. * indicates that the GWAS hit also had a nominally significant eQTL P value for the Cicero-nominated gene in that cluster. (E) T2D GWAS signal at the *ARL15* locus is colocalized with an FAP caQTL. The genomic locus is shown at the top, followed by zooming into a $\pm 1\text{kb}$ neighborhood of the caSNP rs702634. snATAC-seq profiles in five clusters by the caSNP genotype are shown, followed by aggregate profiles across clusters. (F) Locuszoom plots showing the *ARL15* GWAS signal (top) followed by the caQTL signal in five clusters. (G) Hi-C chromatin contacts at 5kb resolution imputed by EPCOT using the FAP snATAC-seq data (shown below the heatmap) in a 1Mb region over rs702634. (H) Difference in the predicted normalized chromatin contacts using FAP ATAC-seq from samples with the high accessibility genotype (GG) and low accessibility genotype (AA) at rs702634. Interactions with rs702634 highlighted in black are shown as a signal track below the heatmap. (I) Genes in the 1Mb neighborhood of the *ARL15* gene. Chromatin co-accessibility scores between the caPeak and TSS peaks for the neighboring genes, classified by genotype classes at rs702634. Distance of the TSS peak to the caPeak in kb is shown in parentheses. (J) GWAS signals for T2D and insulin fold change (IFC) at the *C2CD4A/B* colocalize with a caQTL in type 1 and type 2a fibers. The genomic locus, snATAC-seq profiles by the caSNP genotype and aggregated profiles are shown. (K) Locuszoom plots showing the *C2CD4A/B* GWAS and caQTL signals. (L) Micro-C chromatin contacts imputed at 1kb resolution by EPCOT using the type 1 snATAC-seq showing rs7163757 and the neighboring 500kb region. (M) Difference in the predicted normalized chromatin contacts by rs7163757 genotype. Interactions with rs7163757 highlighted in black are shown as a signal track below. (N) A massively parallel reporter assay in the muscle cell line LHCN-M2 tested a 198bp element centered on the caSNP rs7163757. Enhancer activity is measured as $\log_2(\text{RNA/DNA})$ normalized to controls.

374 validated in a luciferase assay in human mesenchymal stem cells⁴¹. The caPeak was highly co-accessible
375 with the *FST* gene TSS peak in a genotype-specific manner (**Figure 7I**). The nominated target gene for
376 this GWAS signal, *FST*, encodes follistatin, which is involved in increasing muscle growth and reducing
377 fat mass and insulin resistance⁷⁴⁻⁷⁷.

378 The *C2CD4A/B* locus T2D GWAS signal ($P = 2.6 \times 10^{-13}$) colocalizes ($\text{PPH4} = 0.969, 0.966$) with
379 caQTL signals in the type 1 and type 2a fibers ($P = 1.25 \times 10^{-31}, 4.52 \times 10^{-13}$) (**Figures 7J-7K**). This
380 GWAS signal is also identified for fasting glucose and insulin fold change (IFC) post 2 hour oral glucose
381 tolerance test (OGTT) - a measure of insulin sensitivity⁷⁸. The caSNP rs7163757 lies within the caPeak;
382 the T (T2D non-risk) allele is associated with higher chromatin accessibility (**Figure 7J**). Notably, this
383 caPeak was not found as a type I skeletal myocyte cis regulatory element in the Zhang *et al.* [42] snATAC
384 atlas. EPCOT predicted high chromatin contacts with the *VPS13C* gene TSS (**Figure 7L**), higher for
385 the high accessibility genotype (TT) compared to the low accessibility genotype (CC) (**Figure 7M**).
386 We didn't detect an eQTL for *VPS13C* in muscle fibers, however, the caSNP is associated with *VPS13C*
387 expression in whole blood (GTEx) $P=2.8 \times 10^{-7}$). While this caQTL is observed in muscle fibers, the
388 snATAC peak is strongest in the lower-abundance NMJ cluster, where co-accessibility analyses also
389 predict the *VPS13C* as the target gene (**Figure 7J, Figures S17F-S17G**). An siRNA-mediated
390 knock-down of *VPS13C* in an adipocyte cell line affected the cell-surface-abundance of the glucose
391 transporter GLUT4 upon insulin stimulation⁷⁸, implicating the nominated target gene, *VPS13C*, in
392 insulin resistance mechanisms⁷⁹. We validated the enhancer activity of the caPeak 198 bp distal regu-
393 latory element centered on caSNP rs7163757 in a massively parallel reporter assay (MPRA) framework
394 in the LHCN-M2 human skeletal myoblast cell line. The T2D risk allele C showed significantly higher
395 activity relative to the empty vector control ($P = 4.1 \times 10^{-4}$) which was significantly higher than the
396 activity of the non-risk T allele (P value = 2.9×10^{-2} , **Figure 7N**). Previously, Kycia *et al.* [80] re-
397 ported that rs7163757 occurred in accessible chromatin in pancreatic islets, the risk allele C showed
398 higher enhancer activity in rodent islet model systems, and this allele was also associated with higher
399 *C2CD4A/B* gene expression, thereby implicating this T2D GWAS signal in islet dysfunction, which
400 was supported by an independent publication⁸¹. Our results highlight skeletal muscle fibers as another
401 key cell type where this signal could modulate the genetic risk for T2D and insulin resistance through
402 the *VPS13C* gene.

403 Collectively, these results demonstrate the importance of the snATAC modality and caQTL infor-

404 mation in nominating mechanisms underlying GWAS associations and identifying causal variants in
405 disease-relevant cell types.

406 3 Discussion

407 In this study, we present population-scale single-nucleus profiling of chromatin accessibility and gene
408 expression on 287 frozen human skeletal muscle biopsies. We multiplexed 40 or 41 samples in each batch
409 using a randomized block design to control for sample variables. Demultiplexing the data downstream
410 using known genetic variation enabled reduced costs, helped protect against batch effects, allowed ge-
411 netic detection of doublets, and overall increased rigor of the work. The integration and joint-clustering
412 of multi-omic modalities provided a comprehensive view of the cell-specific molecular landscape within
413 human skeletal muscle.

414 We identified 7,062 eQTL and 106,059 caQTL across the clusters. Concordant e/caQTL effects
415 across clusters supported the high-quality of our e/caQTL scans. Chromatin accessibility directional
416 allelic effects discovered from the caQTL scans mirrored the DNA-binding preferences of TF motifs
417 which is a powerful demonstration of the depth of information snATAC and caQTL data capture.
418 Notably, we identified 14-fold more caQTL compared to eQTL, which can be attributed to two factors:
419 first, more peaks were tested for caQTL than genes for eQTL, and second, chromatin accessibility
420 modality is likely an overall more proximal molecular trait to genetic variation than gene expression in
421 the sequence of causal events, which likely contributes to the larger enhancer effects we observed and
422 therefore results in higher power to detect caQTL with the same sample size.

423 The majority (80%) of GWAS signals colocalized with only caQTL rather than eQTL, in part
424 because we detected many more caQTL than eQTL. As a corollary, we identified fewer triple GWAS-
425 caQTL-eQTL colocalizations, which limited our efforts in using eQTL to identify target genes inferring
426 the causal direction between omic modalities. It is becoming evident that eQTL alone fall short in fully
427 elucidating the regulatory architecture of GWAS loci^{82,83}. Our analyses revealed an intrinsic distinction
428 between e- and caQTLs that may help reconcile these observations. Active TSS regions contained higher
429 effect eSNPs compared to caSNPs whereas stretch enhancer regions, which are enriched for cell-type-
430 relevant GWAS signals^{8,13,84}, contained higher effect caSNPs compared to eSNPs. Therefore, eQTL
431 scans identify signals largely in gene TSS regions, whereas caQTL scans are able to identify strong
432 effects in cell-specific distal enhancer elements enriched for GWAS signals.

433 Because complex traits are influenced by both genetic and environmental effects, examining gene
434 expression in the conditions most relevant for disease could be more informative. The larger genetic
435 effects on stretch enhancer chromatin accessibility could propagate to gene expression effects under
436 specific environmental conditions. Alasoo *et al.* [85] provided support for this hypothesis using bulk
437 RNA and ATAC data in a macrophage model system where ~60% of eQTL identified only under
438 stimulatory conditions (response eQTL) were caQTL in the basal state. Aracena *et al.* [86] also showed
439 that basal epigenomic profiles are strongly predictive of the transcriptional response to an antigen
440 in immune cells. Another study reported that response-eQTL overlapped basal-caQTL in a human
441 neural progenitor system⁸⁷. These studies, along with our data, suggest that chromatin in cell-identity
442 stretch enhancers is primed to potentiate changes in gene expression under relevant conditions. Future
443 larger studies may indeed identify more eQTLs. However, if the relevant gene is not expressed at the
444 basal state, an eQTL won't be identified for caQTL variants even with increased sample size unless
445 the appropriate stimulatory condition is available. Notably, recent sn-multiome studies observing lower
446 cell-state resolution from chromatin accessibility compared to transcription also posited that cells could
447 retain a primed or permissive chromatin landscape that can allow dynamic state transitions in response
448 to relevant conditions^{48,88}.

449 About half of GWAS-caQTL colocalizations were cluster-specific across traits, with many specific
450 for the lower powered (due to nuclei abundance) Endothelial and FAP clusters, which adds to the im-
451 portance of single nucleus chromatin accessibility profiling in identifying cell-specific genetic regulatory
452 elements. Our snATAC caQTL data help delineate heterogeneity in the mechanistic pathways shaping
453 T2D pathophysiology. We show the *GLI2* signal is most relevant for endothelial cells and the *ARL15*
454 signal targets the *FST* gene in FAPs, implicating an interplay of fat and muscle mass regulation by these
455 progenitor cells in T2D. We find evidence for the *C2CD4A/B* T2D GWAS signal, previously implicated
456 in islet dysfunction through inflammatory cytokine-responsive *C2CD4A/B* genes, to also be involved
457 in glucose uptake mechanisms in muscle fibers through the *VPS13C* gene. Cell types such as FAPs and
458 endothelial occur in other T2D-relevant tissues such as adipose; comparing the snRNA/snATAC and
459 e/caQTL profiles for these cell types from a wider array of tissues will help glean the similarities and
460 differences in disease mechanisms in related cell type populations. Layering sn-e/caQTL colocalization
461 information over GWAS signals across multiple relevant tissues will help generate a conceptual “signal
462 scoreboard” that can help prioritize cell types, regulatory elements, target genes and causal variants(s)
463 for each GWAS signal towards experimental validation.

464 To date, there have been some single cell/nucleus eQTL studies^{89–94}, few sn-caQTL studies^{28,95};
465 however, these all had modest sample sizes, and were mainly in blood cell types or cell lines. There are
466 no population-scale single cell/nucleus studies in skeletal muscle and none with both RNA and ATAC
467 modality for hundreds of samples in any tissue. Our work bridges a large gap in knowledge in that it
468 is the first study identifying both sn-eQTL and sn-caQTL across hundreds of samples in any tissue.
469 Our findings emphasize the need to consider chromatin accessibility in addition to gene expression
470 when investigating the functional mechanisms underlying complex traits, and serves as a template for
471 multi-omics maps in other tissue and disease contexts.

472 3.1 Limitations of the study

473 In our single-nucleus study, most nuclei were identified as muscle fibers; this distribution of cell type
474 proportions was especially skewed since muscle fibers are multi-nucleated. Lower abundance clusters
475 had relatively less power to identify e/caQTL. Generating single-nucleus data involves several tissue-
476 dependent considerations and challenges. Other examples include diseased liver that can have fibrosis
477 and brain that has high lipid content, both of which can make processing of frozen tissue, like in this
478 study, challenging. Pancreas has high levels of RNase activity which degrades the snRNA modality
479 quality. Comparing e/caQTL effect sizes across clusters enabled more precise effect estimates and
480 identified more significant associations across clusters, especially for the NMJ cluster. Instead of QTL
481 scans within discrete clusters, identifying contiguous cell states through latent embedding and related
482 approaches^{64,96} helps mitigate power issues and can identify state-specific QTLs. Approaches such
483 as deeper sequencing, pre-selecting relevant cell types via fluorescence activated cell sorting (FACS)
484 could further enrich for targeted rare cell types and allow for greater power to identify QTLs^{97–99}.
485 Cleaner nuclei preps with low ambient transcripts and better approaches to adjust for these would
486 enable retrieving more quality nuclei from rare cell types. The feasibility of these approaches again
487 heavily depends on the tissue. Using our down-sampling results, for 200 samples, we find that ~75
488 nuclei per sample yields ~1,000 eQTL and >10,000 caQTL. The number of nuclei to target in future
489 experiments can thus be calculated based on the expected proportion of rare cells of interest in a given
490 tissue. Signal upscaling via deep learning methods such as AtacWorks and PillowNet^{100,101} is another
491 possible avenue to enhance caQTL scans in lower abundance cell types. The multiome protocol for
492 profiling RNA and ATAC on the same nucleus was not available when our FUSION study samples
493 were processed. However, it has several advantages including 1) ease in genetic demultiplexing, sample

494 assignment, and clustering as these analyses can be done on one modality (eg snRNA) and can then
495 be mapped easily to the other modality or by weighting both modalities; 2) established cross-modality
496 approaches to link regulatory elements to genes. We recommend all future studies to perform multiome
497 profiling.

498 We recognize that while our findings offer cell-specific mechanistic insights at hundreds of loci,
499 comprehensive orthogonal testing of the identified e/caQTL associations and e/caQTL-GWAS colocal-
500izations to confirm their impact on disease remains a critical step for future studies. Several studies
501 have demonstrated large-scale validation of existing genome-wide associations using functional allelic
502 MPRA assays, CRISPRi screens among others¹⁰²⁻¹⁰⁴. We demonstrate successful MPRA in the LHCN-
503 M2 skeletal muscle cell line, for the first time, thus providing feasibility for these future studies.

504 In further work, co-activity QTLs (e.g. QTLs on co-expression, co-accessibility) could provide
505 additional resolution to regulatory mechanisms. Cell-specific caQTL and eQTL maps could be used for
506 biobank-scale polygenic scoring of individuals. Collapsing caQTL peaks and eQTL genes into pathways
507 and aggregating pathway-level effects based on individual genotype dosages would allow for cell- and
508 pathway-specific polygenic scores, paving the way for partitioning tissue-agnostic polygenic risk scores
509 into cell-specific personalized pathophysiological risk profiles.

510 4 Methods

511 4.1 Sample collection

512 4.1.1 FUSION cohort

513 The Finland-United States Investigation of NIDDM Genetics (FUSION) study is a long-term project
514 aimed at identifying genetic variants that contribute to the development of type 2 diabetes (T2D) or
515 affect the variability of T2D-related quantitative traits. To conduct the FUSION Tissue Biopsy Study,
516 we obtained *vastus lateralis* muscle biopsy samples from 331 individuals across the glucose tolerance
517 spectrum, including 124 with normal glucose tolerance (NGT), 77 with impaired glucose tolerance
518 (IGT), 44 with impaired fasting glucose (IFG), and 86 with newly-diagnosed T2D²⁹.

519 To ensure the validity of the study results, certain individuals were excluded from the study, in-
520 cluding those receiving drug treatment for diabetes, those with conditions that could interfere with the
521 analysis (such as cancer, inflammatory diseases, or skeletal muscle diseases), those with conditions that
522 increase hemorrhage risk during biopsy (such as hemophilia, von Willebrand's disease, or severe liver
523 disease), those taking medications that increase hemorrhage risk during the biopsy (such as warfarin),
524 those taking medications that could confound the analysis (for example oral corticosteroids, or other
525 anti-inflammatory drugs such as infliximab or methotrexate), and those under 18 years of age.

526 Clinical and muscle biopsy visits were conducted at three different study sites (Helsinki, Savitaipale,
527 and Kuopio). The clinical visit included a 2-hour four-point oral glucose tolerance test (OGTT),
528 BMI, waist-to-hip ratio (WHR), lipids, blood pressure, and other phenotypes measured after a 12-hour
529 overnight fast, as well as health history, medication, and lifestyle questionnaires. The clinical visit was
530 conducted an average of 14 days before the biopsy visit.

531 The muscle biopsies were performed using a standardized protocol. Participants were instructed to
532 avoid strenuous exercise for at least 24 hours prior to the biopsy. After an overnight fast, approximately
533 250 mg of skeletal muscle from the *vastus lateralis* was obtained using a conchotome, under local
534 anesthesia with 20 mg/mL lidocaine hydrochloride without epinephrine. A total of 331 muscle biopsies
535 were collected by nine experienced and well-trained physicians at the three different study sites between
536 2009 and 2013, with three physicians performing the majority of the biopsies. All physicians were
537 trained to perform the biopsy in an identical manner. The muscle samples were cleaned of blood, fat,

538 and other non-muscle tissue by scalpel and forceps, rinsed with NaCl 0.9% solution, and frozen in liquid
539 nitrogen within 30 seconds after sampling. Muscle samples were then stored at -80 degrees Celsius.

540 4.2 Sample preparation, snRNA-seq and ATAC profiling

541 The frozen tissue biopsy samples were processed in ten batches, each consisting of 40-41 samples. These
542 batches were organized using a randomized block design to protect against experimental contrasts of
543 interest including cohort, age, sex, BMI and stimulatory condition (relevant for a smaller cohort not
544 focused on in this study) (**Figures S1A–S1E**). Samples in each batch were pulverized in four groups
545 of 10 or 11 samples (each sample weighing between 6-9 mg) using a CP02 cryoPREP automated
546 dry pulverizer (Covaris 500001) and resuspended in 1 mL of ice-cold PBS. Following, the material
547 from all 40/41 samples was pooled together and nuclei were isolated. We developed a customized
548 protocol (protocol S1, supplementary text) derived from the previously published ENCODE protocol
549 <https://www.encodeproject.org/experiments/ENCSR515CDW/> and used it to isolate nuclei, which is
550 compatible with both snATAC-seq and snRNA-seq. The desired concentration of nuclei was achieved by
551 re-suspending the appropriate number of nuclei in 1X diluted nuclei buffer (supplied by 10X genomics
552 for snATAC, and RNA nuclei buffer (1% BSA in PBS containing 0.2U/uL of RNase inhibitor) for
553 snRNA). The nuclei at appropriate concentration for snATAC-seq and snRNA-seq were submitted to
554 the University of Michigan Advanced Genomics core for all the snATAC-seq and snRNA-seq processing
555 on the 10X Genomics Chromium platform (v. 3.1 chemistry for snRNA-seq). Nuclei to profile each
556 modality from each batch were loaded onto 8 channels/wells of a 10X chip at 50k nuclei/channel
557 concentration. For snRNA-seq, the libraries were single-ended, 50 bp, stranded. For snATAC-seq, the
558 libraries were paired-ended, 50 bp. The sequencing for each modality and batch was performed on one
559 NovaSeq S4 flowcell.

560 4.3 Muscle multiome sample

561 We obtained “multiome” data, i.e. snATAC-seq and snRNA-seq performed on the same nucleus for
562 one muscle sample as part of newer ongoing projects in the lab. We used 70mg of pulverized human
563 skeletal muscle tissue sample. The sample was pulverized using an automated dry cryo pulverizer (Co-
564 varis 500001). We developed a customized protocol (hybrid protocol with sucrose) from the previously
565 published ENCODE protocol, and used it to isolate nuclei for single nuclei multiome ATAC and 3'GEX
566 assay. The desired concentration of nuclei was achieved by re-suspending the appropriate number of
567 nuclei in 1X diluted nuclei buffer (supplied by 10X genomics). The nuclei at the appropriate concentra-
568 tion for single nuclei multiome ATAC and 3'GEX assay was processed on the 10X genomics chromium
569 platform. 20K nuclei were loaded on one well of the 8 well strip.

570 4.4 Genotyping and imputation

571 The FUSION cohort samples were genotyped using DNA extracted from blood on the HumanOmni2.5
572 4v1_H BeadChip array (Illumina, San Diego, CA, USA) during a previous study³⁰. The Texas and
573 Sapphire cohort samples were genotyped using DNA extracted from blood on the Infinium Multi-
574 Ethnic Global-8 v1.0 kit. Probes were mapped to Build 37. We removed variants with multi mapping
575 probes and updated the variant rsIDs using Illumina support files Multi-EthnicGlobal_D1 Mapping-
576 Comment.txt and annotated.txt downloaded from <https://support.illumina.com/downloads/infinium-multi-ethnic-global-8-v1-support-files.html>. We performed pre-imputation QC
577 using the HRC-1000G-check-bim.pl script (v. 4.2.9) obtained from the Marc McCarthy lab website
578 <https://www.well.ox.ac.uk/~wrayner/tools/> to check for strand, alleles, position, Ref/Alt assign-
579 ments and update the same based on the 1000G reference (<https://www.well.ox.ac.uk/~wrayner/t>

581 [ools/1000GP_Phase3_combined.legend.gz](#)). We did not conduct allele frequency checks at this step
582 (i.e. used the –noexclude flag) since we had samples from mixed ancestries.

583 For all samples, we performed pre-phasing and imputation using the Michigan Imputation Server¹⁰⁵.
584 The standard pipeline (<https://imputationserver.readthedocs.io/en/latest/pipeline/>)
585 included pre-phasing using Eagle2¹⁰⁶ and genotype dosage imputation using Minimac4 (<https://github.com/statgen/Minimac4>) and the 1000g phase 3 v5 (build GRCh37/hg19) reference panel (The
586 1000 Genomes Project Consortium 2015). Post-imputation, we selected biallelic variants with estimated
587 imputation accuracy (r^2) > 0.3 , variants not significantly deviating from Hardy Weinberg Equilibrium
588 $P > 1e-6$, MAF in 1000G European individuals > 0.05 .

590 4.5 snRNA-seq data processing and quality control

591 snRNA: We mapped the reads to the human genome (hg38) using STARsolo <https://github.com/alexdobin/STAR/blob/master/docs/STARsolo.md> (v. 2.7.3a). We performed rigorous quality control
592 (QC) to identify high-quality droplets containing single nuclei (**Figures S1F–S1G**). We required the
593 following criteria: 1) nUMI > 1000 ; 2) fraction of mitochondrial reads < 0.01 ; 3) identified as a “singlet”
594 and assigned to a sample using Demuxlet¹⁰⁷ 4) identified as “non-empty”, i.e. where the RNA profile
595 was statistically different from the background ambient RNA signal, using the testEmptyDrops function
596 from the Dropletutils package¹⁰⁸; and 5) passing the cluster-specific thresholds for the estimated ambient
597 contamination from the DecontX package¹⁰⁹. This led to a total of 255,930 pass-QC RNA nuclei, 180,583
598 from the FUSION cohort. These individual qc steps are further described below.

600 4.6 snATAC-seq data processing and quality control

601 We made barcode corrections using the 10X Genomics whitelist using an approach implemented by
602 the 10X Genomics Cell Ranger ATAC v. 1.0 software via a custom python script and counted the
603 number of read pairs from each droplet barcode. We trimmed the adapter sequences using cta <https://github.com/ParkerLab/cta> and generated updated fastqs by replacing the cellular barcodes with
604 the corrected cellular barcodes, while selecting reads corresponding to cellular barcodes that had at least
605 1000 pairs. Droplets with less than 1000 read pairs would not contain useful/high quality data from
606 single nuclei and so were removed from processing. We mapped the reads to the human genome (hg38)
607 using bwa mem (v. 0.7.15-r1140)¹¹⁰ with flags “-I 200,200,5000 -M”. We performed rigorous quality
608 control (QC) and retained high-quality droplets based on the following definitions (**Figures S1H–S1I**):
609 1) 4,000 $<$ high quality autosomal alignments (HQAA) $< 300,000$, 2) transcription start site (TSS)
610 enrichment ≥ 2 , 3) mitochondrial fraction < 0.2 . For each snATAC-seq library bam file, we used the
611 subset-bam tool (v. 1.0.0) <https://github.com/10XGenomics/subset-bam> to subset for the selected
612 cellular barcodes, and used SAMtools to filter for high-quality, properly-paired autosomal read pairs (-f
613 3 -F 4 -F 8 -F 256 -F 1024 -F 2048 -q 30). To identify droplets containing a single nucleus “singlet” and
614 determine the sample identity, we used the Demuxlet¹⁰⁷ tool. For each library (8 10X channels/wells in
615 each of the 10 batches, N=80), we ran Demuxlet using default parameters providing the snATAC-seq
616 library bam files the genotype vcf files containing all samples included in that batch and selected all
617 the droplets assigned as singlets. This led to a total of 3,69,792 pass-QC ATAC nuclei, 2,68,543 from
618 the FUSION cohort.

620 4.6.1 Two-stage Demuxlet pipeline

621 Multiplexing 40/41 samples in each batch in a randomized block study design helped protect against
622 batch effects and it was cost-effective approach. To identify droplets containing a single nucleus “singlet”
623 and determine the sample identity, we used the Demuxlet¹⁰⁷ tool. For each library (8 10X channels/wells

in each of the 10 batches, N=80), we ran Demuxlet using default parameters providing the library bam files the genotype vcf files containing all samples included in that batch and selected all the droplets assigned as singlets. Background/ambient RNA contamination can influence singlet assignments, so we accounted for that next. We performed clustering of these pass-qc RNA droplets and annotated clusters using known marker genes. A large proportion of our data was muscle fiber nuclei, this is expected since muscle fibers are multi-nucleated. Therefore, a large proportion of ambient RNA would come from muscle fiber cells. Observing the barcode-nUMI rank plots (**Figure S1F**), we considered droplets with less than 100 reads as unlikely to contain an intact nucleus and therefore representative of the ambient RNA profile. Top 100 genes contained top ~30% of ambient RNA reads (**Figure S2A**). Most abundant genes in the ambient RNA were expectantly mitochondrial and muscle fiber genes such as MYH1, MYH7 etc (**Figure S2B**). We reasoned that “masking” top n% of these top genes should reduce ambiguity arising due the ambient RNA, enabling more droplets to be assigned as a singlet. We tested masking to n% of genes from Demuxlet and observed that masking the top 30% of genes in the ambient RNA maximized singlet assignment (**Figure S2C**). We therefore completed a second Demuxlet run masking top 30% genes, and any new droplets that were identified as singlets to the set of selected droplets. The singlet nuclei recovered from the masked stage 2 came mostly from lower abundance non-fiber clusters (**Figure S2D**) (using cluster labels identified downstream).

4.6.2 Adjusting RNA counts for overlapping gene annotations

RNA mapping and gene quantification using STARsolo outputs a “GeneFull” matrix that quantifies intronic+exonic reads and a “Gene” matrix that quantifies only exonic reads. For our nuclear RNA experiment, we used the GeneFull matrices for all downstream applications. As of the STAR version 2.7.3a which was used in our analysis, in case of overlapping gene annotations, the program renders some read assignments ambiguous and therefore some genes receive less counts in the GeneFull matrix compared to the Gene matrix. We observed the distribution of count differences between the exon+intron (GeneFull) and exon (Gene) matrices for each gene across all 80 libraries and created a list of genes where this difference was consistently negative in at least 10 libraries. We then created custom counts matrices keeping the “Gene” counts for these 6,888 selected genes and kept the “GeneFull” counts for all other genes.

4.6.3 Ambient RNA adjustment

We used DecontX (celda v. 1.8.1, in R v. 4.1.1)¹⁰⁹ to adjust the nucleus x gene expression count matrices for ambient RNA. Taking all the qc’ed RNA nuclei up to this stage (N = 260,806), we identified cell type clusters using Liger (rliger R package v. 1.0.0)⁴⁵. Liger employs integrative non-negative matrix factorization (iNMF) to learn a low-dimensional space in which each nucleus is defined by both dataset-specific and shared factors called as metagenes. It then builds a graph in the resulting factor space, based on comparing neighborhoods of maximum factor loadings. We selected the top 2000 variable genes using the selectGene function and clustered with number of factors k=20 and regularization parameter lambda=5 along with other default parameters as it identified expected clusters (**Figure S3A**). We then ran DecontX on a per-library basis using the decontX() function, passing our custom created RNA raw matrices (adjusted for overlapping gene annotations) for the QC’ed nuclei, barcodes with total UMIs < 100 for the background argument, cluster labels from liger, and set the delta parameter (prior for ambient RNA counts) as 30. This prior value was more stringent than the DecontX default of 10 and it was selected after exploring the parameter space and observing that delta=30 better reduced fiber type marker gene such as *MYH7*, *MYH2* counts in rarer clusters such as Endothelial, Satellite Cell, while retaining respective marker gene *VWF* and *PAX7* counts (**Figure S3B**). Since the decontamination is

668 sensitive to the provided cluster labels, we performed a second clustering using adjusted counts from the
669 first DecontX run to obtain better optimized cluster labels. We also included the snATAC modality for
670 this clustering. Liger's online integrative non-negative matrix factorization (iNMF) algorithm was used
671 at this step^{45,46} which enabled efficient processing of this large snATAC+snRNA dataset by iteratively
672 sampling a subset of nuclei at a time. We selected the clustering with liger k=19, lambda=5, epoch=5,
673 batchsize=10,000 along with other default parameters (**Figure S3C**). We then performed a second
674 DecontX run using raw snRNA matrices (adjusted for overlapping gene annotations), droplets with
675 UMIs < 100 as background, delta set to 30 while including the updated snRNA cluster labels.

676 DecontX also estimates fraction of ambient RNA per nucleus. We used this metric to further filter
677 out RNA nuclei. We observed that this metric varied across clusters, and the immune cell, muscle fiber
678 mixed and the smooth muscle clusters has a visible population of nuclei with high estimated ambient
679 RNA fraction (**Figure S3D**). We therefore fitted two Gaussians for these three clusters per batch
680 and removed nuclei that obtained the probability of being from the high contamination population >
681 probability of being from the low contamination population (**Figure S3E**). For the rest of the clusters,
682 we removed nuclei with estimated ambient RNA > 0.8. We retained all pass QC nuclei and used
683 rounded decontaminated counts for the final joint clustering and all downstream analyses.

684 4.7 Joint clustering and cell type annotation

685 We jointly clustered snRNA and snATAC from the FUSION cohort and the one multiome muscle sample
686 using Liger's online iterative non-negative matrix factorization (iNMF) algorithm version (<https://github.com/MacoskoLab/liger/tree/online>)^{45,46}. Liger's online iNMF was capable of processing
687 our large dataset because it factorizes the data using mini-batches read on demand (we used a mini-batch
688 size = 10,000 nuclei). We factorized the RNA nuclei first using adjusted gene by nucleus count matrices
689 for autosomal protein-coding genes as input. We used the following parameters: top 2000 variable genes,
690 k=21, lambda=5, epoch=5, max iterations=4, batchsize=10,000, along with other default parameters.
691 We then performed quantile normalization to align across batches. Next, we projected the snATAC
692 datasets using gene (gene body + 3kb promoter region) by nucleus fragment counts as input to the
693 existing RNA factorization. This process uses the existing gene loading in the factors for computing
694 the factor loading in ATAC nuclei. We then quantile normalized the snATAC data and finally used
695 the Louvain graph based community detection algorithm with resolution 0.04 to identify clusters. This
696 process resulted in a joint clustering without batch or modality specific effects (**Figure S4A**). We
697 annotated the clusters using known marker gene expression patterns (**Figure S4B**).

698 4.8 ATAC-seq peak calling and consensus peak feature definition

700 We created per-cluster snATAC-seq bam files by merging reads from all pass-QC ATAC nuclei for each
701 cluster. We randomly subsampled bam files to 1 Billion reads and called narrow peaks using MACS2
702 (v. 2.1.1.20160309)¹¹¹. We used BEDTools bamToBed¹¹² to convert the bam files to the BED format,
703 and then used that file as input to MACS2 callpeak (command "macs2 callpeak -t atac-\$cluster.bed
704 -outdir \$cluster -f BED -n \$cluster -g hs -nomodel -shift -100 -seed 762873 -extsize 200 -B -keep-dup
705 all") to call narrow peaks. We removed peaks overlapping the ENCODE blacklisted regions¹¹³, and
706 selected peaks passing 0.1% FDR from macs2. We then defined a set of consensus snATAC-seq peak
707 summits across all 13 clusters. We considered the filtered narrow peak summits across all clusters and
708 sorted by MACS2 q value. We sequentially collapsed summits across clusters within 150bp and retained
709 the most significant one, identifying N=983,155 consensus summits (**Figures S5A–S5C**). Aggregating
710 ATAC-seq signal over broad peaks in a cluster while centering on the left-most summit showed the
711 second summit usually occurred ~300bp away (**Figure S5D**), in line with the nucleosome length being

712 ~ 147 bp¹¹⁴. We therefore considered each consensus summit extended by 150 bp on each side as the
713 consensus peak-feature for all downstream analyses. To visualize the signal, we converted the bedGraph
714 files output by MACS2 to bigWig files using bedGraphToBigWig¹¹⁵.

715 4.9 Identification of cell type-specific genes and GO enrichments

716 Differential gene expression analyses between all pairs of cell types were performed to identify cell
717 type-specific genes. Muscle fiber nuclei clusters (Type_1, Type_2a, Type_2x, Neuromuscular_junction,
718 Muscle_Fiber_Mixed) were merged for this analysis due to their expected similarity. For each pair of
719 cell types we used DESeq2¹¹⁶ to call differential genes between the cell types. Samples with less than
720 3,000 genes detected in either of the cell types were dropped, as were genes with less than 3 counts
721 across all of the samples (when combining the cell types). The DESeq2 analysis was done in a paired
722 sample fashion. A gene was considered to be a cell type-specific gene for cell type X if that gene was
723 more highly expressed in cell type X than in all other cell types (5% FDR).

724 4.10 Comparison to snATAC atlas

725 Per-cell type comparisons to the snATAC atlas from⁴² were performed using a modified version of
726 the logistic regression-based technique described previously⁴¹. First, narrowPeaks from each cell type
727 cluster were merged to produce a set of master peaks. Next, master peaks within 5kb upstream of a
728 GENCODE TSS (GENCODE v40;¹¹⁷) were dropped. Master peaks were annotated to muscle cell types
729 according to whether or not they overlapped a narrowPeak in that cell type, and master peaks annotated
730 to more than one cell type were dropped, resulting in a set of cell type-specific peaks. Next, for each of
731 our cell types and each of the 222 cell types from⁴², we ran the logistic regression model: (master peak
732 is specific to muscle cell type $\sim \beta_0 + \beta_1 * \text{master peak overlaps peak from snATAC atlas cell type}$),
733 where β_0 represents a model intercept. Within each of our cell types, we then produced a matching
734 score for each of the snATAC atlas cell types by re-normalizing the resulting model coefficient β_1 to
735 range between 0 and 1 (by dividing the coefficients by the maximum coefficient, first setting coefficients
736 to 0 if the model p-value was not significant after Bonferroni correction or the coefficient was negative).
737 The snATAC atlas cell type with score = 1 was determined to be the best match.

738 GO enrichments were performed using g:Profiler (python API, v. 1.0.0;¹¹⁸), using all genes with at
739 least one count in one cell type as the background set.

740 4.11 Identification of cell type-specific open chromatin summits and motif enrich- 741 ments

742 Using the per-cluster peak summit counts, we identified cell type-specific summits using the τ metric
743 from¹¹⁹. As muscle fiber types show high gene expression similarity, we merged any nuclei assigned
744 to muscle fibers (Type 1, Type 2a, Type 2x, NMJ, and Muscle fiber mixed clusters). Summits with
745 $\tau > 0.8$ were considered to be cell type-specific, and were assigned to the cell type showing greatest
746 accessibility of that summit.

747 Motif enrichments were performed using the 540 non-redundant motifs from a previous study¹²⁰,
748 with the logistic regression model (one model per motif per cell type):
749 summit is specific to cell type $\sim \text{intersect} + \text{summit is TSS proximal} + \text{summit GC content} + \text{number}$
750 of motif hits in summit where TSS proximal was defined as within 2kb upstream of a TSS, and the
751 number of motif hits was determined using FIMO (v. 5.0.4, with default parameters and a 0-order
752 Markov background model generated using fasta-get-markov¹²¹). We excluded two cell types (Neuronal
753 and T_cell) with less than 500 cell type specific summits and excluded cases where the model didn't
754 converge. A motif was considered significantly enriched if the coefficient for the "number of motif

755 hits in summit” term was significantly positive after Bonferroni correction within each cell type. The
756 corresponding heatmap figure displays motifs that were amongst the top 5 significantly enriched motifs
757 by either p-value or coefficient in at least one cell type.

758 4.12 snATAC-seq coaccessibility

759 We ran CICERO⁴⁹ (v. 1.4.0; R v. 4.0.1) on the narrow peak fragment counts in each cluster to score
760 peak-peak co-accessibility. We used UMAP dimensions 1 and 2 (**Figure 1B**) as the reduced coordinates
761 and set window size to 500 kb. A peak was considered to be a TSS peak for a gene if it overlapped the
762 1kb window upstream of that gene’s TSS. If multiple TSS peaks were present for a gene, the maximum
763 co-accessibility score was considered.

764 4.13 QTL scan in clusters

765 We performed expression and chromatin accessibility QTL analysis in clusters using QTLtools (v.
766 1.3.1-25-g6e49f85f20)¹²². The mixed muscle fiber cluster showed higher fraction of reads mapping to
767 exon relative to the full gene body in certain batches (indicating lower quality, Supplementary note),
768 therefore, this cluster was not considered for QTL scans and downstream analyses. We removed three
769 samples from out QTL analyses: one because it appeared to be of non-Finnish ancestry from PCA
770 analysis, and two others which were found to be first degree related to other samples. We created a vcf
771 file with imputed genotypes of all the selected FUSION samples, and filtered for autosomal, bi-allelic
772 variants with MAF $\geq 5\%$, non-significant deviation from Hardy-Weinberg equilibrium $P > 1 \times 10^{-6}$. We
773 performed PCA using QTLtools pca with options –scale, –center and –distance 50,000.

774 4.14 eQTL scan

775 We selected the following gene biotypes (Gencode V30): protein_coding, lincRNA, 3prime_overlapping_ncRNA,
776 antisense, bidirectional_promoter_lncRNA, macro_lncRNA, non_coding, sense_intronic, and sense_overlapping.
777 For each cluster, we considered samples with at least 10 nuclei for the eQTL analysis. We generated
778 RNA count matrices by summing up gene counts (post-ambient RNA decontamination) from nuclei
779 for each sample in each cluster. We converted the gene counts into transcript per million (TPMs)
780 and inverse-normalized across samples. TPM = RPK/factor, where RPK = counts/(length in kb) and
781 factor = sum(RPK)/1M for each cluster. We used the top 10,000 genes based on median TPM to
782 perform PCA using QTLtools. eQTL scans were performed considering variants within 250kb of gene
783 TSSs. For each cluster, we ran test eQTL scans while considering the top 3 genotype PCs and a varying
784 number of phenotype PCs to account for unknown biological and technical factors. We selected the
785 number of phenotype PCs that maximized eQTL discovery as covariates **Figure S7A**. We optimized
786 within-cluster thresholds for minimum gene counts across at least 10 samples that defined our final
787 set of testable genes that minimized the multiple testing burden **Figure S7B**. We performed the cis
788 eQTL scans with 1,000 permutations, then applied an across-feature multiple testing correction using
789 the qvalue Storey function on the beta distribution adjusted P values and reported eGenes at FDR \leq
790 5%.

791 4.15 caQTL scan

792 For each cluster, we considered samples with at least 10 nuclei for the caQTL analysis. We didn’t
793 restrict our caQTL scans to only peaks identified in a cluster, instead considered all testable consensus
794 peaks to allow for comparisons across clusters. We quantified each consensus feature and obtained
795 the sum of fragment counts across all nuclei from each samples in each cluster. For an initial lenient

796 caQTL scan, we selected all consensus features in a cluster that had at least 2 counts in at least 10
797 samples to test for caQTL in each cluster. We used inverse-normalized counts per million (CPMs)
798 as quantification for caQTL. CPM = RPK/factor, where RPK = counts/(feature length in kb) and
799 factor = sum(RPK)/1M for each cluster. We performed PCA on the inverse-normalized CPMs and
800 included the top n phenotype PCs that maximized QTL discovery in each cluster, along with the
801 top 3 genotype PCs as covariates. We optimized within-cluster thresholds for minimum peak counts
802 across 10 samples that defined our final set of testable peak that minimized the multiple testing burden
803 (**Figure S8A**). We then calculated PCs for these selected features and again optimized the number of
804 PCs within each cluster that maximized caQTL discovery (**Figure S8B**). caQTL scans were performed
805 using the selected samples, optimized features, 3 genotyped PCs and final set of optimized phenotype
806 PCs considering variants within 10kb of the feature midpoint (peak summit). We performed the cis
807 caQTL scans with 1,000 permutations, then applied an across-feature multiple testing correction using
808 the qvalue Storey function on the beta distribution adjusted P values and reported caPeaks at FDR \leq
809 5%.

810 4.16 Motif reconstruction using caQTL results

811 We used a library of 540 non-redundant PWMs for the motif reconstruction analyses(D’Oliveira Albanus
812 et al. 2021). Motif hits were determined by scanning the genomic sequence in a variant-aware manner
813 using FIMO (v. 5.0.4, with default parameters and a 0-order Markov background model generated using
814 fasta-get-markov¹²¹), i.e. scanning the genomic sequence containing the reference and the alternative
815 allele. For a given cell type and motif, we identified all lead caQTL variants or their LD $r^2 > 0.8$
816 proxies that sat within the corresponding caPeak and that overlapped a motif hit ($n=31 - 10,646$ (27 -
817 42%) depending on the cell type). For each such overlapping caQTL, we calculated the caQTL allelic
818 fold change¹²³ using tensorQTL¹²⁴. To reconstruct the motif, for each of the four nucleotides and each
819 position in the motif, we summed the absolute value of the allelic fold change for all caQTLs overlapping
820 that position in the motif hit and having that nucleotide as the favored (open chromatin) allele. This
821 was converted to a probability matrix (such that the four values at each motif position summed to one)
822 for the final reconstructed motif. To demonstrate that the observed similarity between the original
823 and reconstructed motif was not simply a result of the fact that a motif hit was called by FIMO, we
824 additionally reconstructed motifs based on all variants that met filtering requirements for the caQTL
825 scan, overlapped motif hits, and were in peaks tested in the caQTL scan. To do this, for each of the
826 four nucleotides and each position in the motif, we counted the number of variants overlapping that
827 position in the motif hit and having that nucleotide as either the ref or the alt allele, and then converted
828 this to a probability matrix as before.

829 4.17 mash analyses

830 We utilized mash⁶³ to learn correlation patterns of QTL effect sizes across clusters to in turn obtain
831 more precise effect size estimates. We considered the top 9 clusters in which both eQTL and caQTL
832 were identified from our original e/caQTL scans (FDR<5%) for setting up the mash model. For both
833 e and caQTL, we created the Bhat (effect size) and Shat (standard error) matrices for sets of “strong”
834 and “random” tests as per the recommendations of the original authors https://stephenslab.github.io/mashr/articles/eQTL_outline.html. For eQTL, we first compiled a set of all genes that were
835 testable across the 9 clusters ($n=12,891$). The “strong” tests included the top SNPs for these genes,
836 top SNP being the one with the minimum nominal p value across the nine clusters. The “random”
837 tests included $n=50,000$ randomly selected snp-gene pairs for the gene set from the original eQTL scan.
838 For caQTL, there were 62,187 caPeaks total identified across 9 clusters (FDR<5%), whereas, only

840 20,000 peaks were testable in all 9 clusters. Therefore, for an appropriate representation of the “strong”
841 signals, we included the union of both these sets of peaks (total n=87,003) to set up the mash model.
842 When a peak was not testable in a cluster, we set the effect to 0 and standard error to infinity. The
843 “strong” tests included the top SNPs for these mash peaks. The “random” tests included n=100,000
844 randomly selected SNP-peak pairs for the mash peak set from the original caQTL scan.

845 We learned the correlation structure among random tests (Vhat, function estimate_null_correlation_simple)
846 followed by setting up the strong and random mash data sets (function mash_set_data). We learned
847 data-driven covariance matrices using strong tests, first computing PCA (function cov_pca), then run-
848 ning the extreme deconvolution algorithm (function cov_ed). We computed the canonical covariance
849 matrices using the function cov_canonical on the random set. We fit the mash model using both these
850 covariance matrices. Lastly, we computed posterior summaries on the strong tests using the mash
851 model fit - lfsr, posterior mean and posterior standard deviation, which are equivalent of the FDR,
852 effect size and standard error of a QTL scan respectively. We utilized the function get_pairwise_sharing
853 to plot the pairwise sign sharing between each pair of clusters (**Figures 3C–3D**). While plotting the
854 original eQTL effects (**Figures 3E–3F**), we obtained qvalues using Benjamini-Hochberg on the strong
855 tests nominal p values to compute the standard errors, so as to make the results comparable to mash
856 posterior summaries.

857 4.18 context-specific QTL

858 We used CellRegMap⁶⁴ to identify context-specific e/caQTL. We first separated the RNA and ATAC
859 nuclei identified as endothelial cell-type and jointly clustered using the liger online iNMF approach as
860 described previously for the main clustering. We computed five latent factors for the RNA nuclei first
861 using the following parameters: top 2000 variable genes, k=5, lambda=5, epoch=5, max iterations=4,
862 batchsize=5,000, along with other default parameters. We performed quantile normalization to align
863 across batches followed by projecting the snATAC datasets. Louvain clustering at a resolution of 0.025
864 identified four endothelial subclusters, which we annotated using known marker genes.

865 The CellRegMap linear mixed model is of the form: $y = g\beta + g * \beta_{G \times C} + c + u + \epsilon$, where single-cell
866 gene expression values of a given gene (y) are modeled as a function of a persistent genetic effect (g),
867 GxC interactions ($g*$), additive effects of cellular context (c), relatedness (u) and residual noise (ϵ). For
868 snRNA, we tested the top SNP-eGene pairs for the 198 eQTLs identified for the endothelial cluster from
869 our initial pseudobulk eQTL scan. We set up the CellRegMap model using either the subcluster labels
870 as discrete context or the five latent factors as continuous context. We computed the kinship matrix
871 to represent the relatedness within the data including the fact each sample contributes multiple nuclei.
872 We considered genotyped variants, pruned these to LD $r^2 < 0.2$ using the plink flag –indep-pairwise 250
873 50 0.2, followed by using flag –make-king square. We transformed this matrix to a positive semi-definite
874 matrix by adding the minimum eigenvalue to the diagonal elements. We normalized the endothelial
875 nuclei by gene expression matrix to log2(counts per million (CPM) + 1) using scanpy preprocess-
876 ing functions pp.normalize_total(adata, target_sum=1e6, exclude_highly_expressed=True), followed by
877 pp.log1p(adata, base=2). We included age, sex, batch, BMI and the fraction of mitochondrial reads
878 in nuclei as additional covariates in the model. We first tested linear association with genotype using
879 the function run_association, then tested interaction using the function run_interaction, followed by
880 estimating betas using the function estimate_betas.

881 For snATAC, we tested the top SNP-caPeaks pairs for the 4,518 caPeaks for the endothelial cluster
882 from our initial pseudobulk eQTL scan. Since snATAC data is much more sparse than snRNA, nucleus-
883 level linear mixed models were impractical. We instead computed pseudobulk sample counts in each
884 subcluster, and included subcluster as the discrete context. The count normalization, covariates and

885 kinship matrix were performed as described for snRNA.

886 4.19 QTL finemapping

887 We used the sum of single effects (SuSiE)¹²⁵ approach to identify independent e and caQTL sig-
888 nals and obtain 95% finemapped credible sets. We used QTLtools to adjust for the covariates op-
889 timized for e or caQTL scans and inverse-normalized the residuals. We used these adjusted pheno-
890 types along with the sample genotype dosages for variants in a 250kb window in the susie function
891 along with the following parameters: number of signals L=10, estimate_residual_variance=TRUE, es-
892 timate_prior_variance=TRUE, min_abs_cor=0.1.

893 4.20 Relationship between caQTL effect size, caSNP MAF, and caQTL peak pres- 894 ence in scATAC atlas

895 Type 1 muscle fiber caPeaks were grouped based on the open chromatin allele frequency (calculated
896 using the FUSION samples) and the caQTL effect size (absolute value of the slope, binned by 0-0.4,
897 0.4-0.8, 0.8-1.2, 1.2-1.6, and 1.6-2.0). We then calculated the fraction of the caPeaks within that bin
898 that overlapped with a Type I Skeletal Myocyte peak from⁴².

899 4.21 caPeak chromatin state enrichments

900 CaPeak enrichment in chromatin states was computed using the Skeletal Muscle Female (E108) chro-
901 matin states (15-state model) from Roadmap Epigenomics¹²⁶. First, muscle ATAC peaks were lifted
902 from hg38 to hg19 using liftOver (kentUtils v. 343¹²⁷). For each of the Type 1, Type 2a, and Type 2x
903 cell types, we then ran the logistic regression:

904
905 peak is caPeak ~ intercept + peak size + overlaps state 1 + ... + overlaps state 15

906 where peak size was set as the average peak reads per million across samples. Only peaks tested
907 for caQTL were included in the model. caPeaks were enriched for a state if the coefficient for the
908 corresponding state term in the model was significantly positive after Bonferroni correction (Bonferroni
909 correction performed within each cell type, across the 16 non-intercept terms).

910 4.22 Motif enrichment in caPeaks

911 Motif enrichments were performed using the 540 non-redundant motifs from¹²⁰, with the logistic re-
912 gression model (one model per motif per cell type):

913 peak is caPeak ~ intercept + peak is TSS proximal + peak GC content + peak size + number of
914 motif hits in peak where TSS proximal was defined as within 2kb upstream of a TSS, peak size was
915 set as the average peak reads per million across samples, and the number of motif hits was determined
916 using FIMO (v. 5.0.4, with default parameters and a 0-order Markov background model generated
917 using fasta-get-markov¹²¹). Only peaks tested the caQTL scans were included in each model. A motif
918 was considered significantly enriched if the coefficient for the “number of motif hits in summit” term
919 was significantly positive after Bonferroni correction within each cell type. The corresponding heatmap
920 figure displays motifs that were amongst the top 3 significantly enriched motifs by either p-value or
921 coefficient in at least one cell type.

922 4.23 eQTL and caQTL colocalization

923 We used coloc v5¹⁹ to test for colocalization between e and ca QTL. We used the e and ca QTL finemap-
924 ping output from SuSiE over the 250kb window as inputs to coloc v5. We considered colocalization

925 between two signals if the PP H4 > 0.5.

926 4.24 Causal inference between chromatin accessibility and gene expression

927 For all pairs of colocalized eGenes and caPeaks, we inferred the causal chain between chromatin ac-
928 cessibility and gene expression using two orthogonal approaches - a mediation-based approach causal
929 inference test (CIT, v2.3.1)^{67,68} and a Mendelian randomization approach MR Steiger directionality
930 test⁶⁹. We required consistent direction from both CIT and MR Steiger at 5% FDR to consider an
931 inferred causal direction between an eGene and caPeak pair.

932 4.24.1 CIT

933 To test if an exposure mediates an effect on an outcome, CIT uses genetic instruments (eg SNPs)
934 requiring a set of mathematical conditions to be met in a series of regressions under a formal hypothesis
935 testing framework. If a SNP (L) is associated with an outcome (T) only through an exposure (G),
936 outcome when conditioned on the exposure should be independent of the SNP. The conditions therefore
937 are: (i) L is associated with T, (ii) L is associated with G conditional on T, (iii) T is associated with G
938 conditional on L and (iv) T is independent of L conditional on G. For each pair of caPeak and eGene
939 for which one or more independent caQTL and eQTL signal(s) colocalized, we ran four CIT models
940 each returning an omnibus P value- a) eSNP(s) -> eGene -> caPeak (P e-to-ca-causal), b) eSNP(s) ->
941 caPeak -> eGene (P e-to-ca-revCausal), c) caSNP(s) -> caPeak -> eGene (P ca-to-e-causal) and d)
942 caSNP(s) -> eGene -> caPeak (P ca-to-e-revCausal). We included sample batch, age, sex, BMI and
943 top 3 genotype PCs as covariates in the CIT model. For each model, we computed the omnibus FDR
944 values using the fdr.cit function to account for multiple testing. To infer a caPeak causal on an eGene,
945 we required q-ca-e-causal < 0.05, q-ca-e-revCausal > 0.05, q-e-ca-causal > 0.05 and q-e-ca-revCausal <
946 0.05, and vice versa to infer an eGene causal on a caPeak. We note that eGene-caPeak pairs without a
947 putative causal CIT prediction could be truly independent or could have a causal relationship obscured
948 by measurement error.

949 4.24.2 MR Steiger directionality test

950 In an MR-based approach, the genetic instrument (SNP) is used as a surrogate for the exposure
951 to estimate its causal effect on an outcome, by scaling the association of SNP and outcome by the
952 association between SNP and exposure. This approach is considered less susceptible to bias from
953 measurement errors or confounding⁶⁹. For each pair of caPeak and eGene for which one or more
954 independent caQTL and eQTL signal(s) colocalized, we used the mr_steiger function (TwoSampleMR
955 R package version 0.5.6) to test both caPeak and eGene as exposure over the other modality as outcome.
956 To infer a caPeak causal on an eGene, we required ca-to-e “correct causal direction” as “True” at 5%
957 FDR, and e-to-ca “correct causal direction” as “False” at 5% FDR, while estimating steiger test q
958 values using the R qvalue package (<http://github.com/jdstorey/qvalue>). For each model, we
959 provided the respective QTL scan sample sizes and set r_xx0 = 1, r_yy0 = 1, r_exp = NA and r_out =
960 NA to estimate the sensitivity ratio - which computes over the bounds of measurement errors in the
961 exposure and outcome, how much more often is one causal direction observed versus the other. The
962 higher the sensitivity ratio, more robust is the inferred causal direction to measurement errors.

963 4.25 GWAS enrichment in ATAC-seq peak features

964 We computed enrichment of GWAS variants in ATAC-seq peak features using stratified-LD score re-
965 gression (s-LDSC)^{70,128}. We downloaded GWAS summary statistics for 17 traits relevant for skeletal

966 muscle such as T2D, glycemic traits, atrial fibrillation. Where required, we lifted over the sum-
967 mary stats onto hg38 using the UCSC liftOver tool. We formatted the summary stats according
968 to LDSC requirements using the ldsc munge_sumstats.py script, which included keeping only the
969 HapMap3 SNPs with minimum MAF of 0.01 (as recommended by the LDSC authors). We also
970 downloaded several LDSC-formatted UKBB GWAS summary statistics from the Benjamin Neale lab
971 website¹²⁹ https://nealelab.github.io/UKBB_ldsc/downloads.html. We selected primary
972 GWASs on both sexes for high confidence traits with $h^2_{\text{significance}} > z^2$, following guidelines de-
973 scribed on the Ben Neale lab blog https://nealelab.github.io/UKBB_ldsc/details.html. We
974 created a baseline model with cell type agnostic annotations such as MAF, coding, conserved regions,
975 along with other epigenomic annotations such as DNase hypersensitivity sites (DHS), transcription fac-
976 tor binding sites (TFBS) that are obtained from across multiple cell types. These annotations are
977 among the list of baseline annotations included in the original LDSC paper¹²⁸. The various anno-
978 tation files (regression weights, frequencies, etc.) required for running LDSC were downloaded from
979 <https://data.broadinstitute.org/alkesgroup/LDSCORE/GRCh38/>. We set up LDSC to test
980 snATAC-seq peak features (consensus peak summit features that overlapped a peak summit called in
981 that cluster) and the bulk muscle CUT&Tagin peaks along with the baseline annotations. LD scores
982 were calculated using the Phase 3 1000 Genomes data. LDSC reports two types of output: first, the
983 total heritability explained by SNPs in the annotation, which includes heritability attributable to other
984 overlapping annotations in the baseline; and second, joint-fit regression coefficient for each annotation,
985 that quantifies the contribution of that annotation to per-SNP heritability. The former estimates if the
986 annotation contributes to the overall heritability and the latter estimates if the annotation contributes
987 to the heritability in addition to all the other baseline annotations in the model. We reported signifi-
988 cance using both these metrics in **Figure 6A**. We calculated coefficient P-values from the coefficient
989 z-scores using a one-sided test assuming a standard normal distribution. We calculated FDR separately
990 for enrichment p-values and coefficient p-values using the BH procedure and report traits with FDR $\leq 5\%$
991 for either measure.

992 While comparing GWAS enrichment in type 1 peaks that overlapped caSNPs, eSNPs or not
993 e/caSNPs, since there is a large difference in the number of eSNPs and caSNPs features, we sub-
994 sampled each annotations to have the same number of features: $n=6,880$ peaks. LDSC authors suggest
995 that S-LDSC only produces well-calibrated p-values when annotations span at least 1.7% of 0.01cM
996 blocks of the genome (roughly 51Mb assuming 1cM \sim 1Mb, ten-fold larger than our current eSNP-
997 peaks annotation)¹³⁰. Therefore, we used an alternative enrichment approach, fGWAS¹³¹ and tested
998 enrichment for the downsampled annotations.

999 4.26 eQTL and caQTL co-localization with GWAS

1000 We considered the lead GWAS signals that if the individual study reported so; otherwise, we identified
1001 genome-wide significant ($P < 5e-8$) signals in 1Mb windows. We finemapped each GWAS signal using
1002 the available GWAS summary statistics along with 40,000 unrelated British individuals from the UKBB
1003 as the reference panel, over a 250kb window centered on the signal lead variant. We obtained pairwise r
1004 between variants using the cor() function in R on the genotype dosages for variants in the SuSiE window.
1005 We ran SuSiE using the following parameters: max number of signals $L = 10$; coverage = 0.95; r2.prune
1006 = 0.8; minimum absolute correlation = 0.1; maximum iterations = 10,000. We considered e/ca QTL
1007 signals where the lead variant was within 250kb of the GWAS lead variant to test for GWAS-QTL
1008 colocalization using the function coloc.susie from the coloc v5 package. We used the coloc sensitivity()
1009 function to assess sensitivity of findings to coloc's priors. We considered two signals to be colocalized
1010 if the PP H4 > 0.5 .

1011 **4.27 Imputing high-resolution 3D chromatin contact maps**

1012 We used EPCOT⁷³ to impute the high-resolution 3D chromatin contact maps. EPCOT is a computational
1013 framework that predicts multiple genomic modalities using chromatin accessibility profiles and
1014 the reference genome sequence as input. We predicted chromatin contacts in genomic neighborhoods
1015 of selected caPeaks of interest using snATAC-seq from the respective cluster - either Micro-C at 1kb
1016 resolution for a 500kb genomic region or Hi-C at 5kb resolution for a 1Mb genomic region. EPCOT was
1017 trained with existing Micro-C contact maps from H1 and HFF, or Hi-C contact maps from GM12878,
1018 H1, and HFF. Both the Micro-C and Hi-C contact maps are O/E normalized (i.e., the contact values
1019 present the ratio of the observed contact counts over the expected contact counts).

1020 We then generated Micro-C maps by the genotype at the caSNP of interest. We created genotype-
1021 specific snATAC-seq profiles by aggregating samples with either homozygous reference or homozygous
1022 alternate genotypes at the caSNP of interest. We downsampled the data using Picard when required
1023 to make the two profiles have similar depth. We respectively incorporated the reference of alternate
1024 allele in the DNA sequence input to EPCOT. Subsequently, we subtracted the predicted contact values
1025 associated with the low chromatin accessibility genotype from the high accessibility genotype.

1026 EPCOT's input ATAC-seq (bigWig) processing:

1027 bamCoverage -normalizeUsing RPGC -effectiveGenomeSize 2913022398

1028 -Offset 1 -binSize 1 -blackListFileName ENCODE_black.list.bed

1029 **4.28 Massively parallel reporter assay for validation**

1030 **4.28.1 Cloning**

1031 We ordered oligos as 230 bp sequences where 197 bp comprise the variant of interest flanked on both by
1032 98 bp of genomic context, and the additional 33 bp are cloning adapters. Within this panel, we included
1033 a set of ~50 negative control sequences defined by a previous publication¹³² We added 20 bp barcodes
1034 via a 2-step PCR amplification process then incorporated the barcoded oligos into a modified pMPRA1
1035 vector (a gift from Tarjei Mikkelsen¹³³, Addgene #49349) upstream of the GFP reporter gene using
1036 Golden Gate assembly. After transforming and expanding in NEB 10-beta electrocompetent bacteria,
1037 we sequenced this version of the MPRA library to establish a barcode-oligo pairing dictionary. We
1038 performed a second Golden Gate assembly step to insert an ENCODE-annotated promoter for the
1039 human MYBPC2 gene in between the oligo and barcode. Finally, we used restriction cloning to port
1040 the assembled MPRA block (oligo, barcode, promoter, GFP) to a lentiviral transfer vector, which was
1041 used by the University of Michigan viral vector core to produce infectious lentiviral particles. Primer
1042 sequences used for cloning and sequencing library preparation along with the MYBPC2 promoter
1043 sequence are included in a separate table.

1044 **4.28.2 MPRA Experiment**

1045 For each replicate, we infected 4x10⁶ LHCN-M2 human skeletal myoblasts with our MPRA library at
1046 an MOI of ~10. After infection, we passaged the cells for one week to remove any unincorporated
1047 virus or contaminating transfer plasmid, then differentiated the cells for one week. We isolated RNA
1048 and gDNA from each replicate using the Qiagen AllPrep DNA/RNA mini kit. We reverse transcribed
1049 RNA into cDNA with a GFP-specific primer, then constructed indexed sequencing libraries for both
1050 the cDNA and gDNA libraries using Illumina-compatible primers.

1051 4.28.3 Data Analysis

1052 After quality checks and filtering, we calculated the sum of barcode counts for each oligo within a
1053 replicate. We used DESeq2 v1.34.0¹¹⁶ to perform normalization and differential expression analysis. We
1054 used a nested model to identify oligos with significant activity (relative to plasmid input) and significant
1055 allelic bias (between reference and alternate alleles). All results were subject to a Benjamini-Hochberg
1056 FDR of 5%.

1057 4.29 Code availability

1058 The code used to run analyses in this work are available on [GitHub](#)

1059 4.30 Acknowledgements

1060 We thank Sarah Graham, Cristen Willer, Sarah Hanks, Marcel den Hoed, and Parker lab mem-
1061 bers for their help and feedback for this work. This work was supported by grants R01DK072193,
1062 R01DK117960, R01DK062370, UM1DK126185, and P30AR069620.

1063 4.31 Author Contributions

1064 AV performed batch design, data processing and computational analyses, interpreted and visualized
1065 the results, prepared figures and wrote the manuscript. NM processed samples, isolated nuclei and
1066 performed the snATAC-seq and snRNA-seq experiments. PO, ZZ, FF and JM performed computational
1067 analyses and generated figures. AT and KN performed MPRA experiments and AT analyzed the data.
1068 VR contributed to visualization. ME processed FUSION biopsy samples and HS, AUJ organized sample
1069 information and metadata. NN processed FUSION genotyping data. CV performed experiments. TT
1070 and OIK performed sequencing. CG, JDW assisted in joint clustering. MY, LKW, CJ, RAD, LN, JS,
1071 TAL, ML, JT, HK contributed biopsy samples. JDW, CB, KM, JOK, JL, MB, FSC, LJS and SCJP
1072 provided supervision and mentoring. LJS and SCJP designed the study and obtained funding. SCJP
1073 organized the project and supervised all aspects of data generation, analyses and interpretation, and
1074 edited the manuscript.

1075 4.32 Competing interests

1076 SCJP has a research grant from Pfizer.

1077 References

- 1078 1. Frontera, W. R. & Ochala, J. Skeletal Muscle: A Brief Review of Structure and Function. *en. Calcified Tissue International* **96**, 183–195 (Mar. 2015).
- 1079 2. Kim, G. & Kim, J. H. Impact of Skeletal Muscle Mass on Metabolic Health. *Endocrinology and Metabolism* **35**, 1–6 (Mar. 2020).
- 1080 3. Morgan, J. & Partridge, T. Skeletal muscle in health and disease. *Disease Models & Mechanisms* **13**, dmm042192 (Feb. 2020).
- 1081 4. Sriwijitkamol, A. *et al.* Effect of Acute Exercise on AMPK Signaling in Skeletal Muscle of Subjects With Type 2 Diabetes: A Time-Course and Dose-Response Study. *Diabetes* **56**, 836–848 (Mar. 2007).
- 1082 5. Musi, N. *et al.* Metformin Increases AMP-Activated Protein Kinase Activity in Skeletal Muscle of Subjects With Type 2 Diabetes. *Diabetes* **51**, 2074–2081 (July 2002).

1089 6. Mahajan, A. *et al.* Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse
1090 populations for discovery and translation. en. *Nature Genetics*. Publisher: Nature Publishing
1091 Group, 1–13 (May 2022).

1092 7. Mahajan, A. *et al.* Fine-mapping type 2 diabetes loci to single-variant resolution using high-
1093 density imputation and islet-specific epigenome maps. En. *Nature Genetics* **50**, 1505 (Nov. 2018).

1094 8. Chen, J. *et al.* The trans-ancestral genomic architecture of glycemic traits. en. *Nature Genetics*
1095 **53**. Number: 6 Publisher: Nature Publishing Group, 840–860 (June 2021).

1096 9. Spracklen, C. N. *et al.* Identification of type 2 diabetes loci in 433,540 East Asian individuals.
1097 eng. *Nature* **582**, 240–245 (June 2020).

1098 10. Yengo, L. *et al.* Meta-analysis of genome-wide association studies for height and body mass
1099 index in 700000 individuals of European ancestry. *Human Molecular Genetics* **27**, 3641–3649
1100 (Oct. 2018).

1101 11. Pulit, S. L. *et al.* Meta-analysis of genome-wide association studies for body fat distribution in
1102 694 649 individuals of European ancestry. *Human Molecular Genetics* **28**, 166–174 (Jan. 2019).

1103 12. Maurano, M. T. *et al.* Systematic Localization of Common Disease-Associated Variation in Reg-
1104 ulatory DNA. *Science (New York, N.Y.)* **337**, 1190–1195 (Sept. 2012).

1105 13. Parker, S. C. J. *et al.* Chromatin stretch enhancer states drive cell-specific gene regulation and
1106 harbor human disease risk variants. en. *Proceedings of the National Academy of Sciences* **110**,
1107 17921–17926 (Oct. 2013).

1108 14. Quang, D. X., Erdos, M. R., Parker, S. C. J. & Collins, F. S. Motif signatures in stretch enhancers
1109 are enriched for disease-associated genetic variants. *Epigenetics & Chromatin* **8**, 23 (July 2015).

1110 15. Thurner, M. *et al.* Integration of human pancreatic islet genomic data refines regulatory mecha-
1111 nisms at Type 2 Diabetes susceptibility loci. en. *eLife* **7**, e31977 (Feb. 2018).

1112 16. Hormozdiari, F. *et al.* Colocalization of GWAS and eQTL Signals Detects Target Genes. *The*
1113 *American Journal of Human Genetics* **99**, 1245–1260 (Dec. 2016).

1114 17. Civelek, M. & Lusis, A. J. Systems genetics approaches to understand complex traits. eng. *Nature*
1115 *Reviews. Genetics* **15**, 34–48 (Jan. 2014).

1116 18. Viñuela, A. *et al.* Genetic variant effects on gene expression in human pancreatic islets and their
1117 implications for T2D. en. *Nature Communications* **11**. Number: 1 Publisher: Nature Publishing
1118 Group, 4912 (Sept. 2020).

1119 19. Wallace, C. A more accurate method for colocalisation analysis allowing for multiple causal
1120 variants. en. *PLOS Genetics* **17**. Publisher: Public Library of Science, e1009440 (Sept. 2021).

1121 20. Khetan, S. *et al.* Type 2 Diabetes-Associated Genetic Variants Regulate Chromatin Accessibility
1122 in Human Islets. en. *Diabetes* **67**, 2466–2477 (Nov. 2018).

1123 21. Currin, K. W. *et al.* Genetic effects on liver chromatin accessibility identify disease regulatory
1124 variants. en. *The American Journal of Human Genetics* (May 2021).

1125 22. Robertson, C. C. *et al.* Fine-mapping, trans-ancestral and genomic analyses identify causal vari-
1126 ants, cells, genes and drug targets for type 1 diabetes. en. *Nature Genetics* **53**, 962–971 (July
1127 2021).

1128 23. Barbeira, A. N. *et al.* Exploiting the GTEx resources to decipher the mechanisms at GWAS loci.
1129 *Genome Biology* **22**, 49 (Jan. 2021).

1130 24. Liang, D. *et al.* Cell-type-specific effects of genetic variation on chromatin accessibility during
1131 human neuronal differentiation. en. *Nature Neuroscience*. Publisher: Nature Publishing Group,
1132 1–13 (May 2021).

1133 25. Aygün, N. *et al.* Brain-trait-associated variants impact cell-type-specific gene regulation during
1134 neurogenesis. eng. *American Journal of Human Genetics* **108**, 1647–1668 (Sept. 2021).

1135 26. Aygün, N. *et al.* Inferring cell-type-specific causal gene regulatory networks during human neu-
1136 rogenesis. eng. *Genome Biology* **24**, 130 (May 2023).

1137 27. Soskic, B. *et al.* Immune disease risk variants regulate gene expression dynamics during CD4+ T
1138 cell activation en. Tech. rep. Section: New Results Type: article (bioRxiv, Dec. 2021), 2021.12.06.470953.

1139 28. Turner, A. W. *et al.* Single-nucleus chromatin accessibility profiling highlights regulatory mechanisms
1140 of coronary artery disease risk. en. *Nature Genetics*. Publisher: Nature Publishing Group,
1141 1–13 (May 2022).

1142 29. Scott, L. J. *et al.* The genetic regulatory signature of type 2 diabetes in human skeletal muscle.
1143 en. *Nature Communications* **7**, ncomms11764 (June 2016).

1144 30. Taylor, D. L. *et al.* Integrative analysis of gene expression, DNA methylation, physiological
1145 traits, and genetic variation in human skeletal muscle. en. *Proceedings of the National Academy
1146 of Sciences* **116**. Publisher: National Academy of Sciences Section: Biological Sciences, 10883–
1147 10888 (May 2019).

1148 31. Consortium, T. G. The GTEx Consortium atlas of genetic regulatory effects across human tis-
1149 sues. en. *Science* **369**. Publisher: American Association for the Advancement of Science Section:
1150 Research Article, 1318–1330 (Sept. 2020).

1151 32. Biferali, B., Proietti, D., Mozzetta, C. & Madaro, L. Fibro-Adipogenic Progenitors Cross-Talk
1152 in Skeletal Muscle: The Social Network. *Frontiers in Physiology* **10** (2019).

1153 33. Contreras, O., Rossi, F. M. V. & Theret, M. Origins, potency, and heterogeneity of skeletal muscle
1154 fibro-adipogenic progenitors—time for new definitions. *Skeletal Muscle* **11**, 16 (July 2021).

1155 34. Molina, T., Fabre, P. & Dumont, N. A. Fibro-adipogenic progenitors in skeletal muscle home-
1156 ostatics, regeneration and diseases. eng. *Open Biology* **11**, 210110 (Dec. 2021).

1157 35. Dumont, N. A., Bentzinger, C. F., Sincennes, M.-C. & Rudnicki, M. A. Satellite Cells and Skeletal
1158 Muscle Regeneration. eng. *Comprehensive Physiology* **5**, 1027–1059 (July 2015).

1159 36. Travers, M. E. *et al.* Insights into the molecular mechanism for type 2 diabetes susceptibility at
1160 the KCNQ1 locus from temporal changes in imprinting status in human islets. eng. *Diabetes* **62**,
1161 987–992 (Mar. 2013).

1162 37. Hilton, T. N., Tuttle, L. J., Bohnert, K. L., Mueller, M. J. & Sinacore, D. R. Excessive Adipose
1163 Tissue Infiltration in Skeletal Muscle in Individuals With Obesity, Diabetes Mellitus, and Periph-
1164 eral Neuropathy: Association With Performance and Function. *Physical Therapy* **88**, 1336–1344
1165 (Nov. 2008).

1166 38. Teng, S. & Huang, P. The effect of type 2 diabetes mellitus and obesity on muscle progenitor cell
1167 function. *Stem Cell Research & Therapy* **10**, 103 (Mar. 2019).

1168 39. Kolka, C. M. & Bergman, R. N. The Endothelium in Diabetes: its role in insulin access and
1169 diabetic complications. *Reviews in endocrine & metabolic disorders* **14**, 13–19 (Mar. 2013).

1170 40. Pillon, N. J., Bilan, P. J., Fink, L. N. & Klip, A. Cross-talk between skeletal muscle and immune
1171 cells: muscle-derived mediators and metabolic implications. eng. *American Journal of Physiology.
1172 Endocrinology and Metabolism* **304**, E453–465 (Mar. 2013).

1173 41. Orchard, P. *et al.* Human and rat skeletal muscle single-nuclei multi-omic integrative analy-
1174 ses nominate causal cell types, regulatory elements, and SNPs for complex traits. en. *Genome
1175 Research* **31**, 2258–2275 (Dec. 2021).

1176 42. Zhang, K. *et al.* A single-cell atlas of chromatin accessibility in the human genome. English. *Cell*
1177 **184**. Publisher: Elsevier, 5985–6001.e19 (Nov. 2021).

1178 43. De Micheli, A. J., Spector, J. A., Elemento, O. & Cosgrove, B. D. A reference single-cell tran-
1179 scriptomic atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell populations.
1180 *Skeletal Muscle* **10**, 19 (July 2020).

1181 44. Rubenstein, A. B. *et al.* Single-cell transcriptional profiles in human skeletal muscle. en. *Scientific
1182 Reports* **10**. Number: 1 Publisher: Nature Publishing Group, 229 (Jan. 2020).

1183 45. Welch, J. D. *et al.* Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain
1184 Cell Identity. *Cell* **177**, 1873–1887.e17 (June 2019).

1185 46. Gao, C. *et al.* Iterative single-cell multi-omic integration using online learning. *Nature biotechnology* **39**, 1000–1007 (Aug. 2021).

1186 47. Duren, Z. *et al.* Regulatory analysis of single cell multiome gene expression and chromatin accessibility data with scREG. *Genome Biology* **23**, 114 (May 2022).

1187 48. Xiong, X. *et al.* Epigenomic dissection of Alzheimer's disease pinpoints causal variants and reveals epigenome erosion. English. *Cell* **186**. Publisher: Elsevier, 4422–4437.e21 (Sept. 2023).

1188 49. Pliner, H. A. *et al.* Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data. English. *Molecular Cell* **71**, 858–871.e8 (Sept. 2018).

1189 50. Liu, N. *et al.* Requirement of MEF2A, C, and D for skeletal muscle regeneration. *Proceedings of the National Academy of Sciences* **111**. Publisher: Proceedings of the National Academy of Sciences, 4109–4114 (Mar. 2014).

1190 51. Anderson, C. M. *et al.* Myocyte enhancer factor 2C function in skeletal muscle is required for normal growth and glucose metabolism in mice. *Skeletal Muscle* **5**, 7 (Feb. 2015).

1191 52. Goveia, J. *et al.* Endothelial Cell Differentiation by SOX17. *Circulation Research* **115**. Publisher: American Heart Association, 205–207 (July 2014).

1192 53. Liu, M. *et al.* Sox17 is required for endothelial regeneration following inflammation-induced vascular injury. en. *Nature Communications* **10**. Number: 1 Publisher: Nature Publishing Group, 2126 (May 2019).

1193 54. Yao, Y., Yao, J. & Boström, K. I. SOX Transcription Factors in Endothelial Differentiation and Endothelial-Mesenchymal Transitions. *Frontiers in Cardiovascular Medicine* **6**, 30 (Mar. 2019).

1194 55. Von Maltzahn, J., Jones, A. E., Parks, R. J. & Rudnicki, M. A. Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. *Proceedings of the National Academy of Sciences* **110**. Publisher: Proceedings of the National Academy of Sciences, 16474–16479 (Oct. 2013).

1195 56. Wang, Y. *et al.* Myeloid cell-specific mutation of Spi1 selectively reduces M2-biased macrophage numbers in skeletal muscle, reduces age-related muscle fibrosis and prevents sarcopenia. *Aging Cell* **21**, e13690 (Oct. 2022).

1196 57. Jimenez, M. A., Akerblad, P., Sigvardsson, M. & Rosen, E. D. Critical role for Ebf1 and Ebf2 in the adipogenic transcriptional cascade. eng. *Molecular and Cellular Biology* **27**, 743–757 (Jan. 2007).

1197 58. Kanki, Y. *et al.* Epigenetically coordinated GATA2 binding is necessary for endothelium-specific endomucin expression. eng. *The EMBO journal* **30**, 2582–2595 (June 2011).

1198 59. Kim, D. W. *et al.* Gene regulatory networks controlling differentiation, survival, and diversification of hypothalamic Lhx6-expressing GABAergic neurons. en. *Communications Biology* **4**. Publisher: Nature Publishing Group, 1–16 (Jan. 2021).

1199 60. Li, S. *et al.* Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior. *Cell Research* **28**, 221–248 (Feb. 2018).

1200 61. Varshney, A. *et al.* A Transcription Start Site Map in Human Pancreatic Islets Reveals Functional Regulatory Signatures. en. *Diabetes* **70**, 1581–1591 (July 2021).

1201 62. Varshney, A. *et al.* Cell Specificity of Human Regulatory Annotations and Their Genetic Effects on Gene Expression. en. *Genetics* **211**, 549–562 (Feb. 2019).

1202 63. Urbut, S. M., Wang, G., Carbonetto, P. & Stephens, M. Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions. En. *Nature Genetics* **51**, 187 (Jan. 2019).

1203 64. Cuomo, A. S. E. *et al.* CellRegMap: a statistical framework for mapping context-specific regulatory variants using scRNA-seq. *Molecular Systems Biology* **18**. Publisher: John Wiley & Sons, Ltd, e10663 (Aug. 2022).

1204 65. Wang, J. *et al.* CAUSALdb: a database for disease/trait causal variants identified using summary statistics of genome-wide association studies. en. *Nucleic Acids Research* **48**. Publisher: Oxford Academic, D807–D816 (Jan. 2020).

1234 66. Riazi, A. M., Lee, H., Hsu, C. & Van Arsdell, G. CSX/Nkx2.5 modulates differentiation of skeletal
1235 myoblasts and promotes differentiation into neuronal cells in vitro. eng. *The Journal of Biological
1236 Chemistry* **280**, 10716–10720 (Mar. 2005).

1237 67. Millstein, J., Zhang, B., Zhu, J. & Schadt, E. E. Disentangling molecular relationships with a
1238 causal inference test. *BMC Genetics* **10**, 23 (May 2009).

1239 68. Millstein, J., Chen, G. K. & Breton, C. V. cit: hypothesis testing software for mediation analysis
1240 in genomic applications. *Bioinformatics* **32**, 2364–2365 (Aug. 2016).

1241 69. Hemani, G., Tilling, K. & Smith, G. D. Orienting the causal relationship between imprecisely
1242 measured traits using GWAS summary data. *PLOS Genetics* **13**, e1007081 (Nov. 2017).

1243 70. Bulik-Sullivan, B. K. *et al.* LD Score regression distinguishes confounding from polygenicity in
1244 genome-wide association studies. en. *Nature Genetics* **47**, 291–295 (Mar. 2015).

1245 71. Finucane, H. K. *et al.* Partitioning heritability by functional annotation using genome-wide as-
1246 sociation summary statistics. en. *Nature Genetics* **47**, 1228–1235 (Nov. 2015).

1247 72. Cano-Gamez, E. & Trynka, G. From GWAS to Function: Using Functional Genomics to Identify
1248 the Mechanisms Underlying Complex Diseases. eng. *Frontiers in Genetics* **11**, 424 (2020).

1249 73. Zhang, Z., Feng, F., Qiu, Y. & Liu, J. A generalizable framework to comprehensively predict
1250 epigenome, chromatin organization, and transcriptome. eng. *Nucleic Acids Research* **51**, 5931–
1251 5947 (July 2023).

1252 74. Singh, R. *et al.* Follistatin Targets Distinct Pathways To Promote Brown Adipocyte Charac-
1253 teristics in Brown and White Adipose Tissues. *Endocrinology* **158**, 1217–1230 (Jan. 2017).

1254 75. Singh, R. *et al.* Metabolic profiling of follistatin overexpression: a novel therapeutic strategy for
1255 metabolic diseases. *Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy* **11**, 65–84
1256 (Mar. 2018).

1257 76. Zheng, H. *et al.* Follistatin N terminus differentially regulates muscle size and fat in vivo. en.
1258 *Experimental & Molecular Medicine* **49**. Number: 9 Publisher: Nature Publishing Group, e377–
1259 e377 (Sept. 2017).

1260 77. Braga, M. *et al.* Follistatin promotes adipocyte differentiation, browning, and energy metabolism.
1261 eng. *Journal of Lipid Research* **55**, 375–384 (Mar. 2014).

1262 78. Williamson, A. *et al.* Genome-wide association study and functional characterization identifies
1263 candidate genes for insulin-stimulated glucose uptake. en. *Nature Genetics* **55**. Number: 6 Pub-
1264 lisher: Nature Publishing Group, 973–983 (June 2023).

1265 79. Mueckler, M. Insulin resistance and the disruption of Glut4 trafficking in skeletal muscle. *Journal
1266 of Clinical Investigation* **107**, 1211–1213 (May 2001).

1267 80. Kycia, I. *et al.* A Common Type 2 Diabetes Risk Variant Potentiates Activity of an Evolution-
1268 arily Conserved Islet Stretch Enhancer and Increases C2CD4A and C2CD4B Expression. *The
1269 American Journal of Human Genetics* **102**, 620–635 (Apr. 2018).

1270 81. Mehta, Z. B. *et al.* Changes in the expression of the type 2 diabetes-associated gene VPS13C
1271 in the -cell are associated with glucose intolerance in humans and mice. *American Journal of
1272 Physiology - Endocrinology and Metabolism* **311**, E488–E507 (Aug. 2016).

1273 82. Umans, B. D., Battle, A. & Gilad, Y. Where are the disease-associated eQTLs? *Trends in genetics
1274 : TIG* **37**, 109–124 (Feb. 2021).

1275 83. Mostafavi, H., Spence, J. P., Naqvi, S. & Pritchard, J. K. *Limited overlap of eQTLs and GWAS
1276 hits due to systematic differences in discovery* en. Pages: 2022.05.07.491045 Section: New Results.
1277 May 2022.

1278 84. Varshney, A. *et al.* Genetic regulatory signatures underlying islet gene expression and type 2
1279 diabetes. en. *Proceedings of the National Academy of Sciences* **114**, 2301–2306 (Feb. 2017).

1280 85. Alasoo, K. *et al.* Shared genetic effects on chromatin and gene expression indicate a role for
1281 enhancer priming in immune response. En. *Nature Genetics*, 1 (Jan. 2018).

1282 86. Aracena, K. A. *et al.* Epigenetic variation impacts individual differences in the transcriptional
1283 response to influenza infection. en. *Nature Genetics* **56**. Publisher: Nature Publishing Group,
1284 408–419 (Mar. 2024).

1285 87. Matoba, N. *et al.* *Wnt activity reveals context-specific genetic effects on gene regulation in neural*
1286 *progenitors* en. Pages: 2023.02.07.527357 Section: New Results. Apr. 2023.

1287 88. Sun, N. *et al.* Human microglial state dynamics in Alzheimer's disease progression. English. *Cell*
1288 **186**. Publisher: Elsevier, 4386–4403.e29 (Sept. 2023).

1289 89. Wijst, M. G. P. v. d. *et al.* Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and
1290 co-expression QTLs. en. *Nature Genetics* **50**, 493–497 (Apr. 2018).

1291 90. Yazar, S. *et al.* Single-cell eQTL mapping identifies cell type–specific genetic control of autoim-
1292 mune disease. *Science* **376**. Publisher: American Association for the Advancement of Science,
1293 eabf3041.

1294 91. Neavin, D. *et al.* Single cell eQTL analysis identifies cell type-specific genetic control of gene
1295 expression in fibroblasts and reprogrammed induced pluripotent stem cells. *Genome Biology* **22**,
1296 76 (Mar. 2021).

1297 92. Cuomo, A. S. E. *et al.* Single-cell RNA-sequencing of differentiating iPS cells reveals dynamic
1298 genetic effects on gene expression. en. *Nature Communications* **11**. Number: 1 Publisher: Nature
1299 Publishing Group, 810 (Feb. 2020).

1300 93. Bryois, J. *et al.* Genetic identification of cell types underlying brain complex traits yields insights
1301 into the etiology of Parkinson's disease. en. *Nature Genetics*. Publisher: Nature Publishing Group,
1302 1–12 (Apr. 2020).

1303 94. Jerber, J. *et al.* Population-scale single-cell RNA-seq profiling across dopaminergic neuron differ-
1304 entiation. en. *bioRxiv*. Publisher: Cold Spring Harbor Laboratory Section: New Results, 2020.05.21.103820
1305 (May 2020).

1306 95. Benaglio, P. *et al.* Mapping genetic effects on cell type-specific chromatin accessibility and anno-
1307 tating complex immune trait variants using single nucleus ATAC-seq in peripheral blood. *PLOS*
1308 *Genetics* **19**, e1010759 (June 2023).

1309 96. Ahlmann-Eltze, C. & Huber, W. *Analysis of multi-condition single-cell data with latent embedding*
1310 *multivariate regression* en. Pages: 2023.03.06.531268 Section: New Results. Mar. 2023.

1311 97. Attaf, N. *et al.* FB5P-seq: FACS-Based 5-Prime End Single-Cell RNA-seq for Integrative Anal-
1312 ysis of Transcriptome and Antigen Receptor Repertoire in B and T Cells. English. *Frontiers in*
1313 *Immunology* **11**. Publisher: Frontiers (Mar. 2020).

1314 98. Katzenellenbogen, Y. *et al.* Coupled scRNA-Seq and Intracellular Protein Activity Reveal an
1315 Immunosuppressive Role of TREM2 in Cancer. *Cell* **182**, 872–885.e19 (Aug. 2020).

1316 99. Duvall, E. *et al.* Single-cell transcriptome and accessible chromatin dynamics during endocrine
1317 pancreas development. *Proceedings of the National Academy of Sciences of the United States of*
1318 *America* **119**, e2201267119 (June 2022).

1319 100. Lal, A. *et al.* Deep learning-based enhancement of epigenomics data with AtacWorks. en. *Nature*
1320 *Communications* **12**. Number: 1 Publisher: Nature Publishing Group, 1507 (Mar. 2021).

1321 101. Rai, V. *et al.* Single cell ATAC-seq in human pancreatic islets and deep learning upscaling of rare
1322 cells reveals cell-specific type 2 diabetes regulatory signatures. en. *Molecular Metabolism* (Dec.
1323 2019).

1324 102. Tewhey, R. *et al.* Direct Identification of Hundreds of Expression-Modulating Variants using a
1325 Multiplexed Reporter Assay. eng. *Cell* **165**, 1519–1529 (June 2016).

1326 103. Abell, N. S. *et al.* Multiple Causal Variants Underlie Genetic Associations in Humans. *Science*
1327 (*New York, N.Y.*) **375**, 1247–1254 (Mar. 2022).

1328 104. Siraj, L. *et al.* *Functional dissection of complex and molecular trait variants at single nucleotide*
1329 *resolution* en. Pages: 2024.05.05.592437 Section: New Results. May 2024.

1330 105. Das, S. *et al.* Next-generation genotype imputation service and methods. eng. *Nature Genetics*
1331 **48**, 1284–1287 (2016).

1332 106. Loh, P.-R. *et al.* Reference-based phasing using the Haplotype Reference Consortium panel. en.
1333 *Nature Genetics* **48**. Number: 11 Publisher: Nature Publishing Group, 1443–1448 (Nov. 2016).

1334 107. Kang, H. M. *et al.* Multiplexed droplet single-cell RNA-sequencing using natural genetic variation.
1335 en. *Nature Biotechnology* **36**, 89–94 (Jan. 2018).

1336 108. Lun, A. T. L. *et al.* EmptyDrops: distinguishing cells from empty droplets in droplet-based single-
1337 cell RNA sequencing data. en. *Genome Biology* **20**. Number: 1 Publisher: BioMed Central, 1–9
1338 (Dec. 2019).

1339 109. Yang, S. *et al.* Decontamination of ambient RNA in single-cell RNA-seq with DecontX. en.
1340 *Genome Biology* **21**. Number: 1 Publisher: BioMed Central, 1–15 (Dec. 2020).

1341 110. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform.
1342 eng. *Bioinformatics (Oxford, England)* **25**, 1754–1760 (July 2009).

1343 111. Zhang, Y. *et al.* Model-based Analysis of ChIP-Seq (MACS). *Genome Biology* **9**, R137 (Sept.
1344 2008).

1345 112. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features.
1346 en. *Bioinformatics* **26**, 841–842 (Mar. 2010).

1347 113. Amemiya, H. M., Kundaje, A. & Boyle, A. P. The ENCODE Blacklist: Identification of Problematic
1348 Regions of the Genome. en. *Scientific Reports* **9**. Number: 1 Publisher: Nature Publishing
1349 Group, 9354 (June 2019).

1350 114. Beshnova, D. A., Cherstvy, A. G., Vainshtein, Y. & Teif, V. B. Regulation of the Nucleosome
1351 Repeat Length In Vivo by the DNA Sequence, Protein Concentrations and Long-Range Interactions.
1352 *PLoS Computational Biology* **10**, e1003698 (July 2014).

1353 115. Kent, W. J., Zweig, A. S., Barber, G., Hinrichs, A. S. & Karolchik, D. BigWig and BigBed:
1354 enabling browsing of large distributed datasets. *Bioinformatics* **26**, 2204–2207 (Sept. 2010).

1355 116. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for
1356 RNA-seq data with DESeq2. *Genome Biology* **15**, 550 (Dec. 2014).

1357 117. Frankish, A. *et al.* GENCODE 2021. *Nucleic Acids Research* **49**, D916–D923 (Jan. 2021).

1358 118. Raudvere, U. *et al.* g:Profiler: a web server for functional enrichment analysis and conversions of
1359 gene lists (2019 update). *Nucleic Acids Research* **47**, W191–W198 (July 2019).

1360 119. Yanai, I. *et al.* Genome-wide midrange transcription profiles reveal expression level relationships
1361 in human tissue specification. eng. *Bioinformatics (Oxford, England)* **21**, 650–659 (Mar. 2005).

1362 120. D’Oliveira Albanus, R. *et al.* Chromatin information content landscapes inform transcription
1363 factor and DNA interactions. en. *Nature Communications* **12**. Number: 1 Publisher: Nature
1364 Publishing Group, 1307 (Feb. 2021).

1365 121. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. en.
1366 *Bioinformatics* **27**, 1017–1018 (Apr. 2011).

1367 122. Delaneau, O. *et al.* A complete tool set for molecular QTL discovery and analysis. En. *Nature
1368 Communications* **8**, 15452 (May 2017).

1369 123. Mohammadi, P., Castel, S. E., Brown, A. A. & Lappalainen, T. Quantifying the regulatory effect
1370 size of cis-acting genetic variation using allelic fold change. en. *Genome Research* (Oct. 2017).

1371 124. Taylor-Weiner, A. *et al.* Scaling computational genomics to millions of individuals with GPUs.
1372 en. *Genome Biology* **20**. Number: 1 Publisher: BioMed Central, 1–5 (Dec. 2019).

1373 125. Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A simple new approach to variable selection
1374 in regression, with application to genetic fine mapping. en. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* **82**, 1273–1300 (Dec. 2020).

1375 126. The Roadmap Epigenomics Consortium *et al.* Integrative analysis of 111 reference human epigenomes.
1376 en. *Nature* **518**, 317–330 (Feb. 2015).

1378 127. Hinrichs, A. S. *et al.* The UCSC Genome Browser Database: update 2006. eng. *Nucleic Acids*
1379 *Research* **34**, D590–598 (Jan. 2006).

1380 128. Finucane, H. K. *et al.* Heritability enrichment of specifically expressed genes identifies disease-
1381 relevant tissues and cell types. en. *Nature Genetics* **50**, 621–629 (Apr. 2018).

1382 129. Sudlow, C. *et al.* UK Biobank: An Open Access Resource for Identifying the Causes of a Wide
1383 Range of Complex Diseases of Middle and Old Age. en. *PLOS Medicine* **12**. Publisher: Public
1384 Library of Science, e1001779 (Mar. 2015).

1385 130. Tashman, K. C., Cui, R., O'Connor, L. J., Neale, B. M. & Finucane, H. K. *Significance testing for*
1386 *small annotations in stratified LD-Score regression* en. ISSN: 2124-9938 Pages: 2021.03.13.21249938.
1387 Mar. 2021.

1388 131. Pickrell, J. Joint Analysis of Functional Genomic Data and Genome-wide Association Studies of
1389 18 Human Traits. *American Journal of Human Genetics* **94**, 559–573 (Apr. 2014).

1390 132. Vanhille, L. *et al.* High-throughput and quantitative assessment of enhancer activity in mammals
1391 by CapStarr-seq. *Nature Communications* **6**, 6905 (Apr. 2015).

1392 133. Melnikov, A., Zhang, X., Rogov, P., Wang, L. & Mikkelsen, T. S. Massively Parallel Reporter
1393 Assays in Cultured Mammalian Cells. *Journal of Visualized Experiments : JoVE*, 51719 (Aug.
1394 2014).

1395 134. Hao, Y. *et al.* *Dictionary learning for integrative, multimodal, and scalable single-cell analysis*
1396 en. Pages: 2022.02.24.481684 Section: New Results. Feb. 2022.

1397 **Supplemental Information**

1398 **Supplemental Figures**

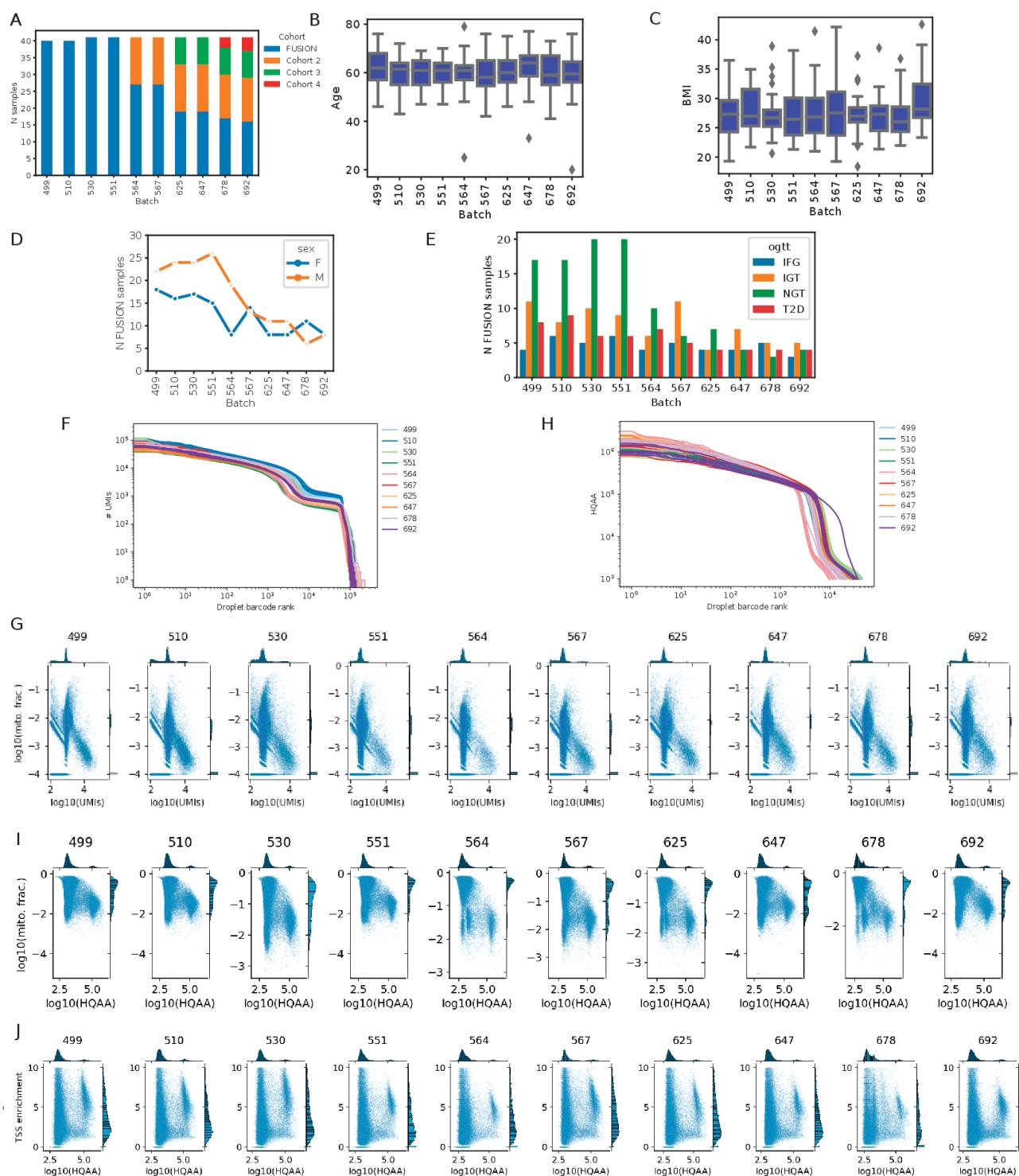


Figure S1: Batch design and quality control

(A) Cohort representation across batches (B) Age (C) BMI (D) Sex (E) OGTT status for individuals with samples across batches (F) snRNA-seq barcode rank plot showing number of UMIs (G) snRNA UMIs vs mitochondrial read fraction across batches (columns). (H) snATAC-seq barcode rank plot showing high quality autosomal alignments (HQAA) (I) snATAC HQAA vs mitochondrial read fraction across batches (J) snATAC HQAA vs TSS enrichment across batches. Panels G, I and J show nuclei from one 10X channel per batch.

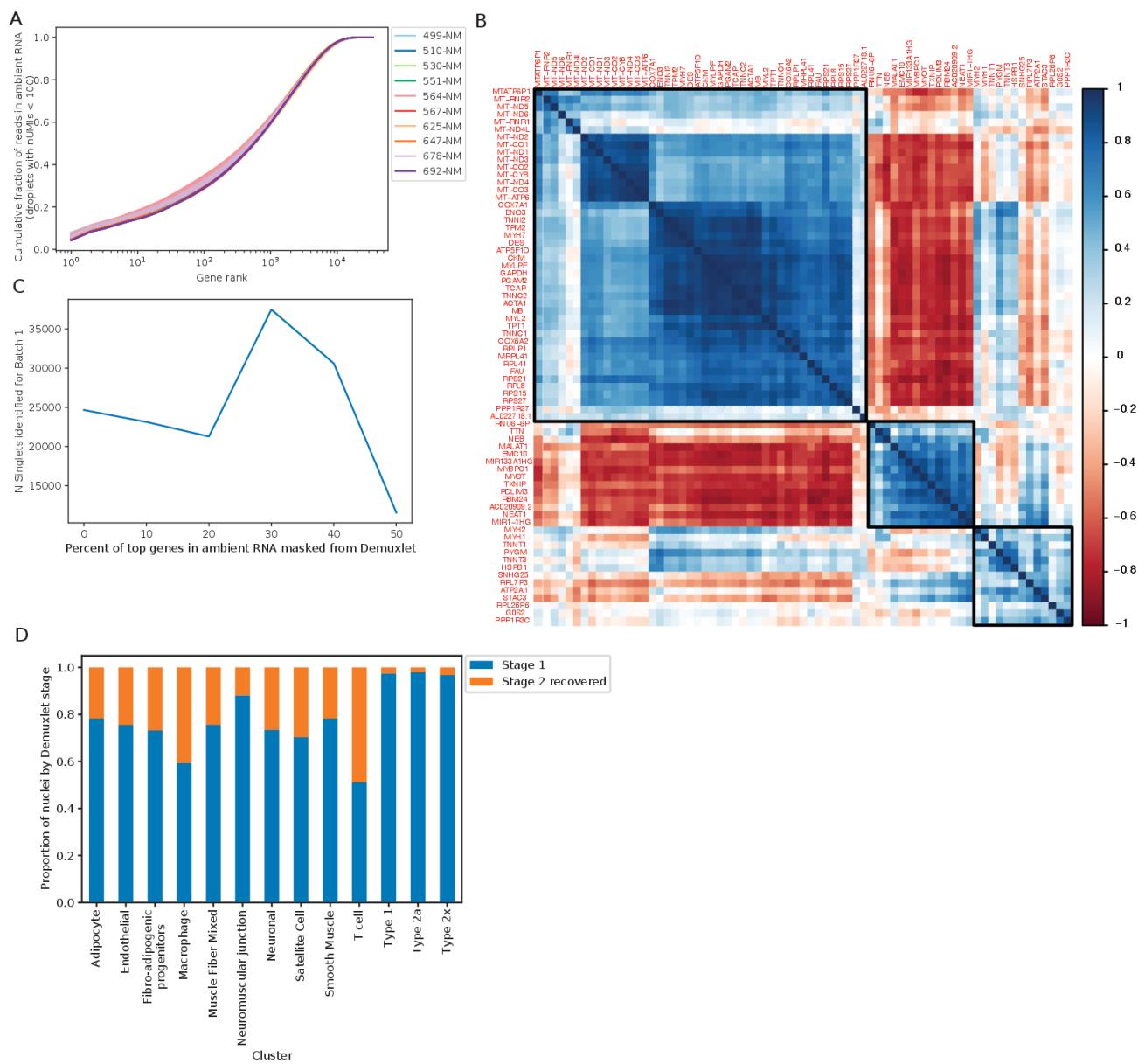


Figure S2: Identifying singlets and sample assignment

(A) Gene rank plot showing the number of reads per gene in the ambient RNA profile (droplets with < 100 UMIs) (B) Heatmap showing the pairwise Pearson correlation of the top expressed genes in the ambient RNA. (C) Titration to optimize masking genes to maximize singlet identification. Shown are the total number of singlets identified by Demuxlet for batch 1 after masking the top $n\%$ of genes expressed in the ambient RNA profile. (D) Proportion of singlet nuclei recovered at demuxlet stage 1 (default) and stage 2 ('masked') for each cluster.

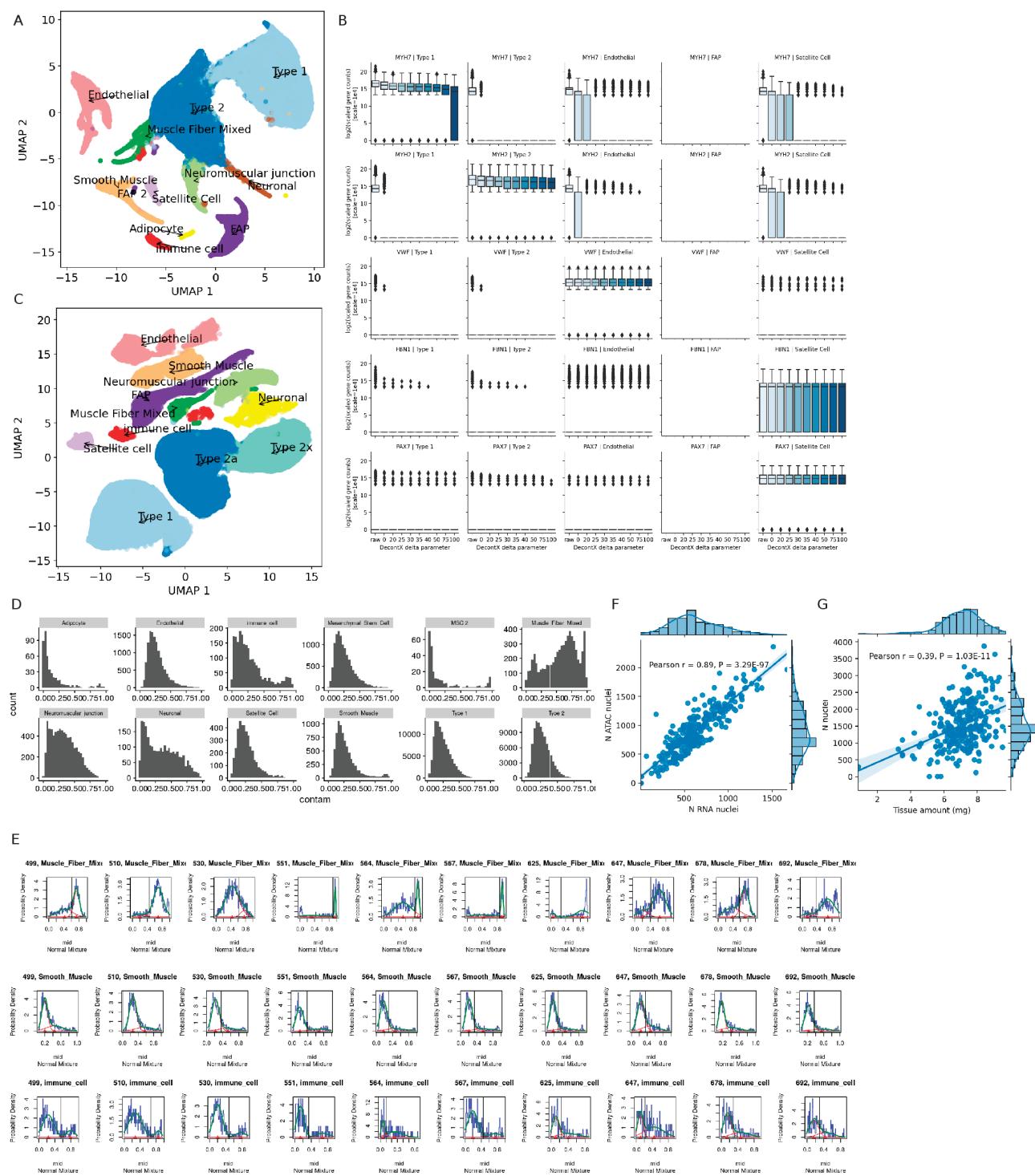
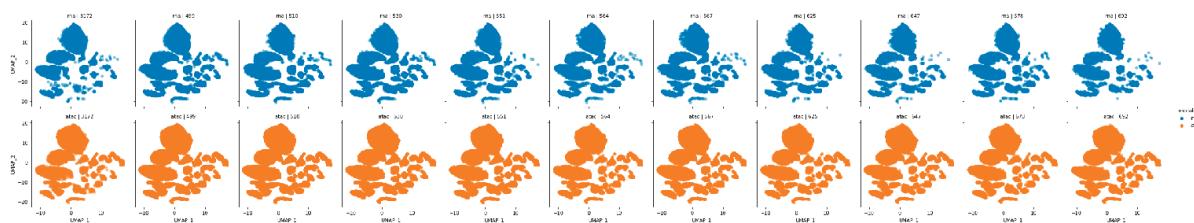


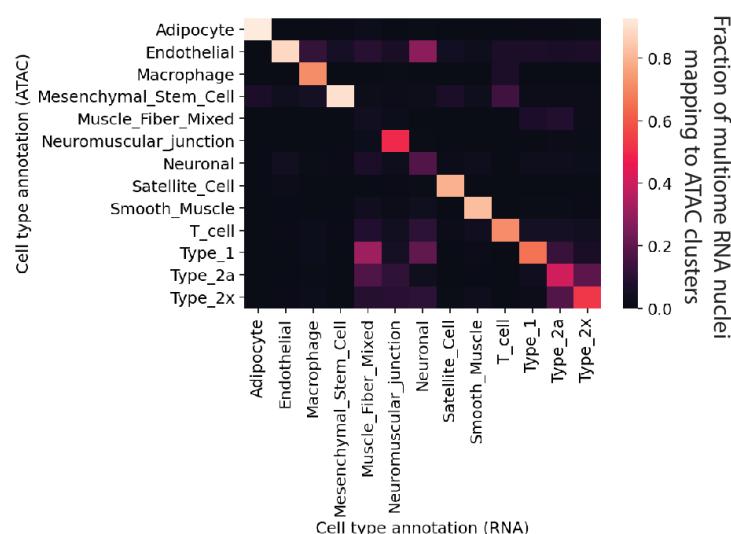
Figure S3: Adjusting for ambient RNA

(A) Initial RNA clustering using RNA counts unadjusted for ambient RNA (B) Marker gene counts across clusters without ambient RNA adjustment (raw) and after adjustment using DecontX run with a various delta parameter (prior for the ambient RNA counts) values (C) Post-decontX snRNA-seq modality clustered jointly with snATAC-seq to obtain better optimized cluster labels. (D) Estimated ambient RNA fraction from DecontX across cluster labels (E) Batch and cluster-specific threshold for immune cell, muscle fiber mixed and smooth muscle clusters to further QC out nuclei due to high estimated ambient RNA fraction. For all other clusters, this threshold was set to 0.8 (F) After all stages of QC, the number of pass-QC RNA nuclei are correlated with the number of pass-QC ATAC nuclei per sample. (G) After all stages of QC, total pass-QC nuclei are correlated with the sample weights during nuclei isolation.

A



B



C

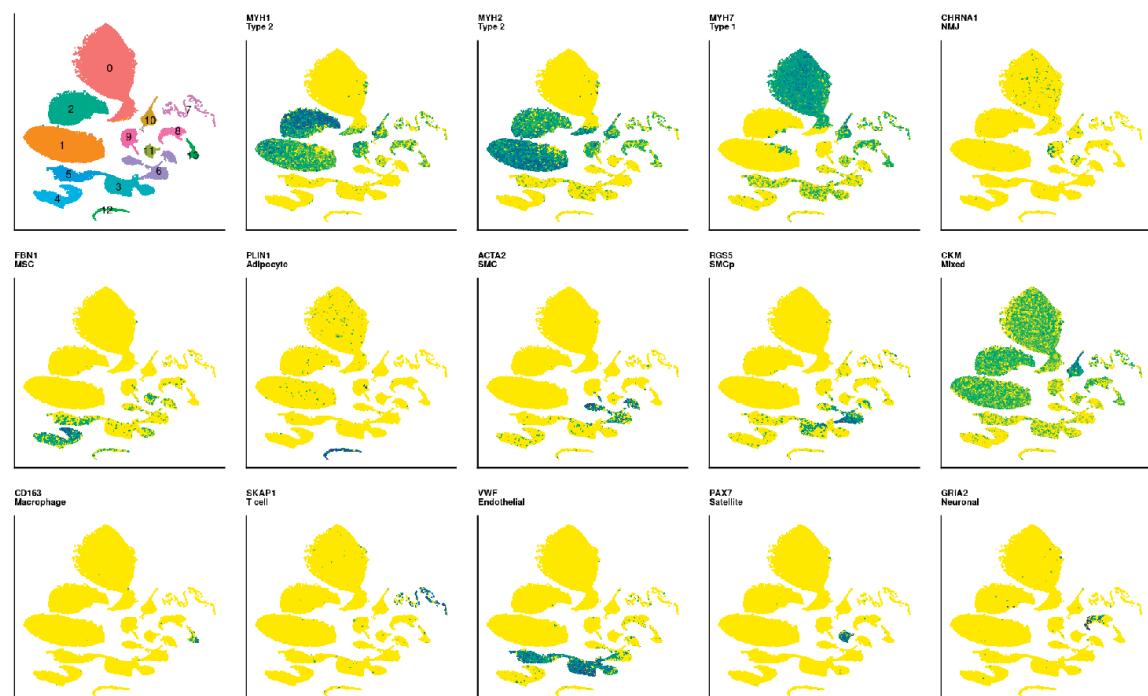


Figure S4: Joint clustering of the snRNA-seq and snATAC-seq modalities identified 13 cell-type clusters

(A) UMAP plots by batch and modality (B) Concordance between cluster annotations for the RNA and ATAC modalities of the multiome nuclei. Plotted are the fraction of nuclei in the RNA cluster that are assigned each annotation in the ATAC cluster. (C) UMAP plots showing cluster assignments and snRNA-seq expression of known marker genes

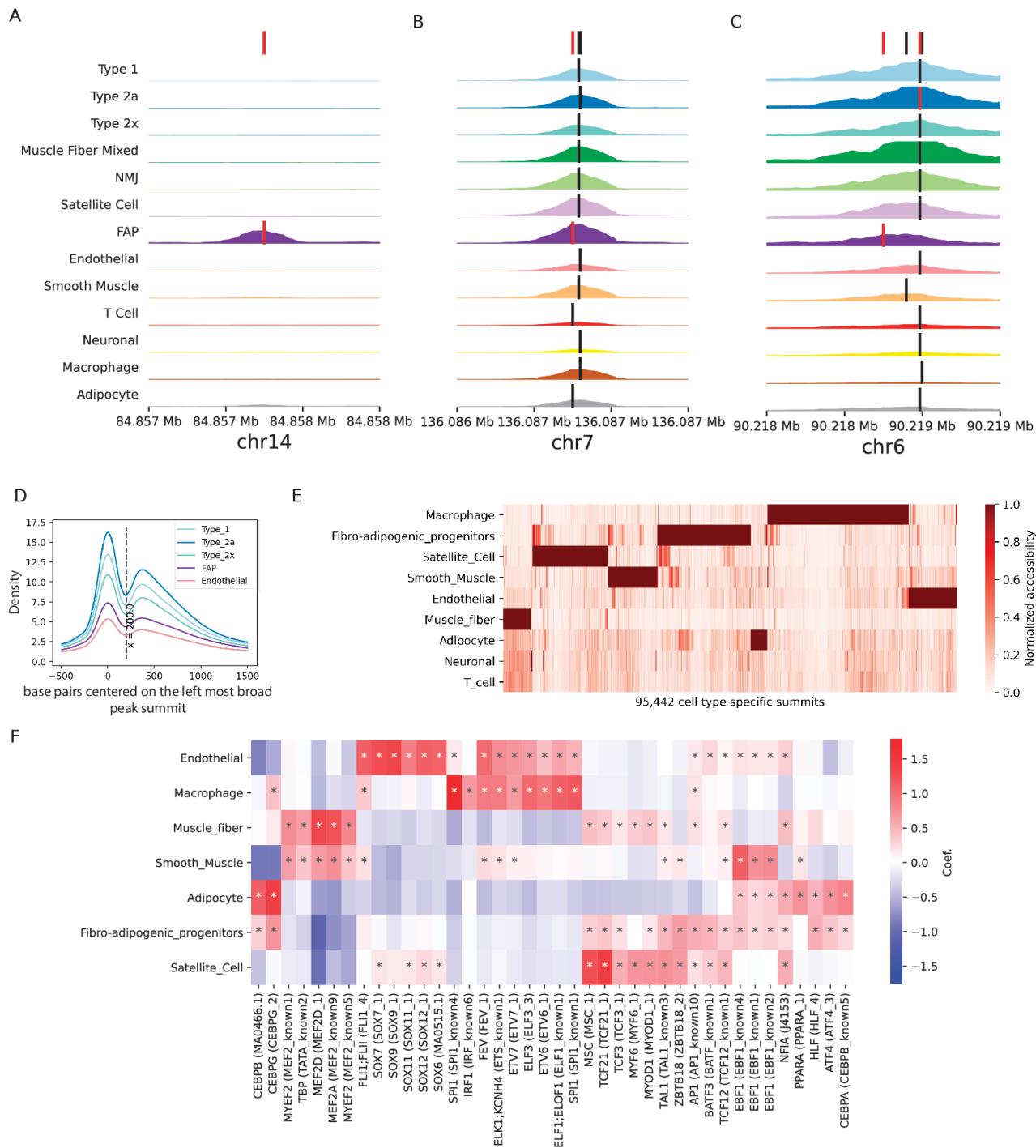


Figure S5: Identifying snATAC-seq peak features in clusters

(A) (B) (C) show example genomic locations showing identified consensus summit(s) (red) among all nearby summit calls (black), shown together in the top track and on three respective cluster ATAC-seq signal tracks. (D) Aggregated ATAC-seq signal across all broad peaks in a cluster while centering on the left-most summit in the peak. (E) Heatmap showing peak summits identified as cluster-specific (F) Motif enrichment in cluster-specific peak summits calculated using a logistic regression approach. ** indicates significant enrichment (5% FDR).

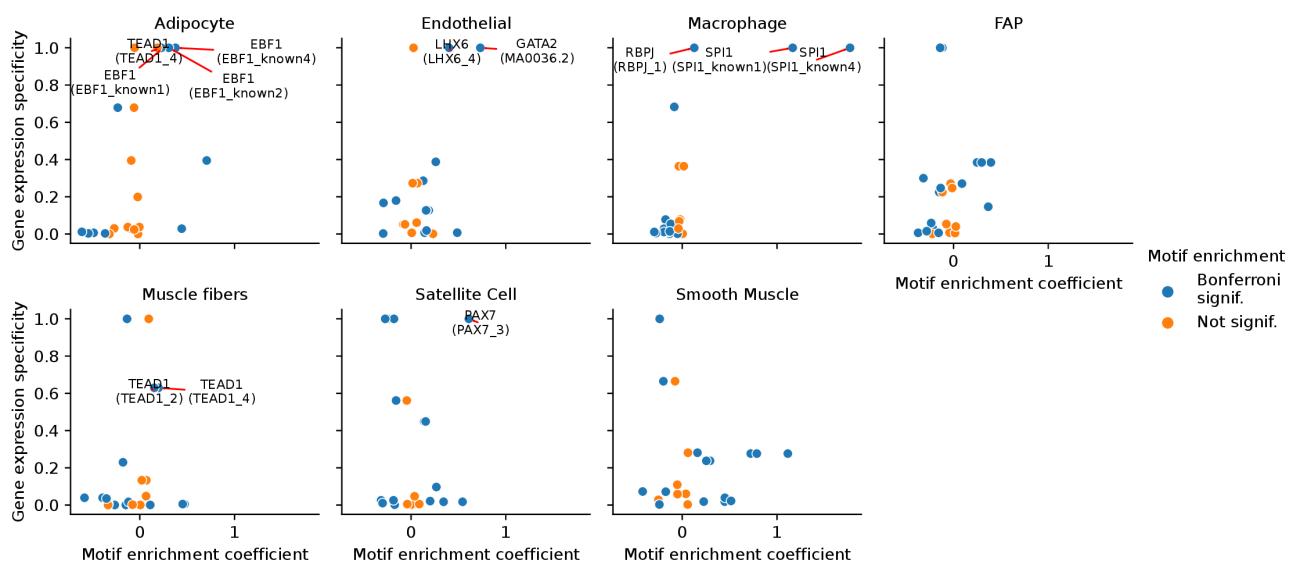


Figure S6: Cluster-specific expression of TF-genes drives cluster-specific motif enrichment
 TF motif enrichment in cluster-specific peaks (regression coefficients) against the expression specificity scores in the for the corresponding TF gene in cell-types. Blue color indicates that the regression coefficient obtained a P-value lower than the Bonferroni correction threshold.

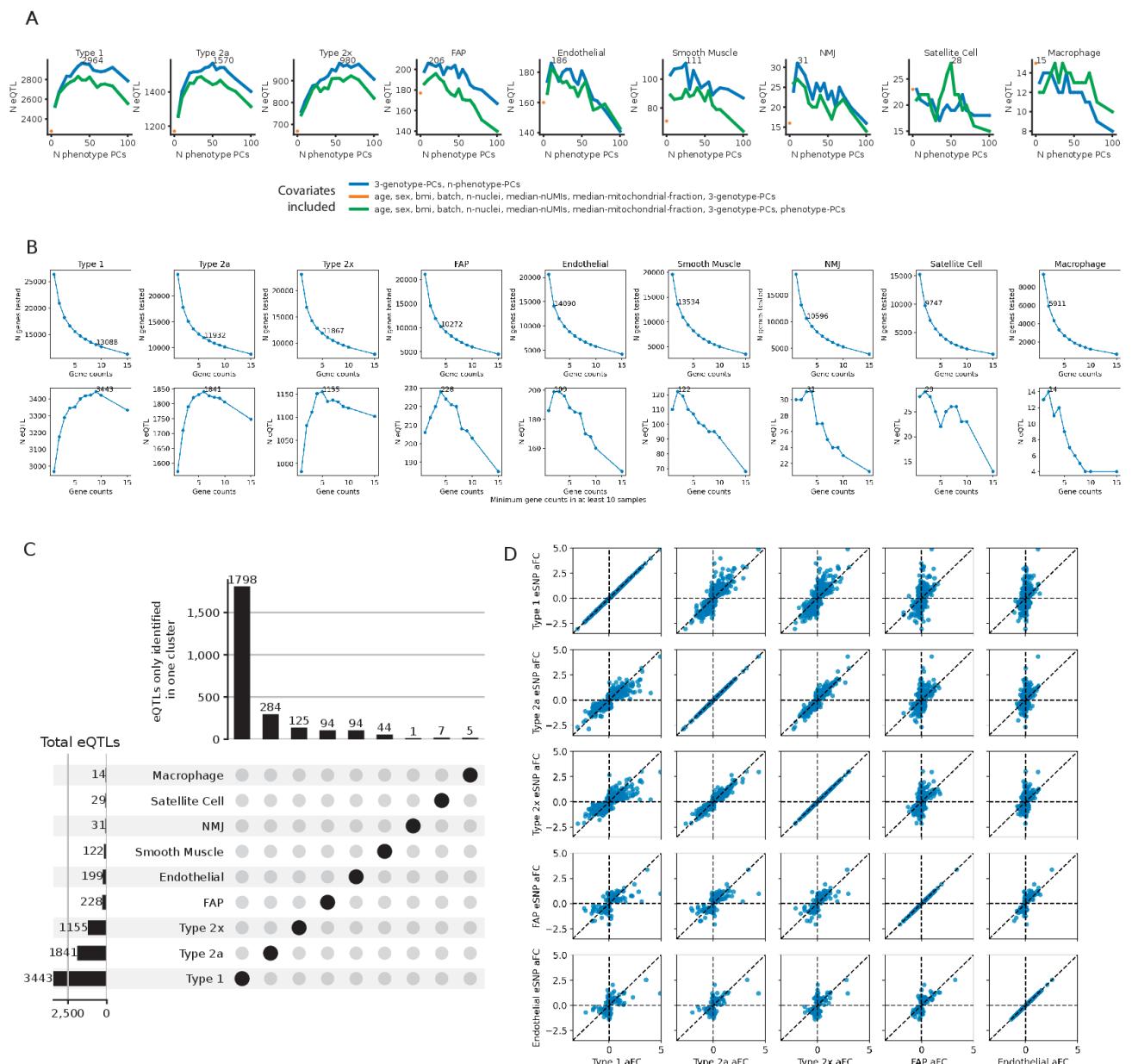


Figure S7: Identifying eQTL in clusters

(A) PC scan to maximize eQTL discovery. (B) Identifying testable genes with minimum n counts across at least 10 samples that maximize eQTL discovery. Number of testable genes and the number of eGenes (FDR 5%) at the selected minimum count threshold are labeled. (C) UpSet plot showing the total number of eGenes in each cluster and the number of genes identified in only one cluster. (D) eSNP allelic fold change (aFC) in clusters to compare eQTL effect sizes between pairs of clusters. Each facet shows aFC in both clusters for eSNPs identified in the cluster labeled on the y axis (5% FDR).

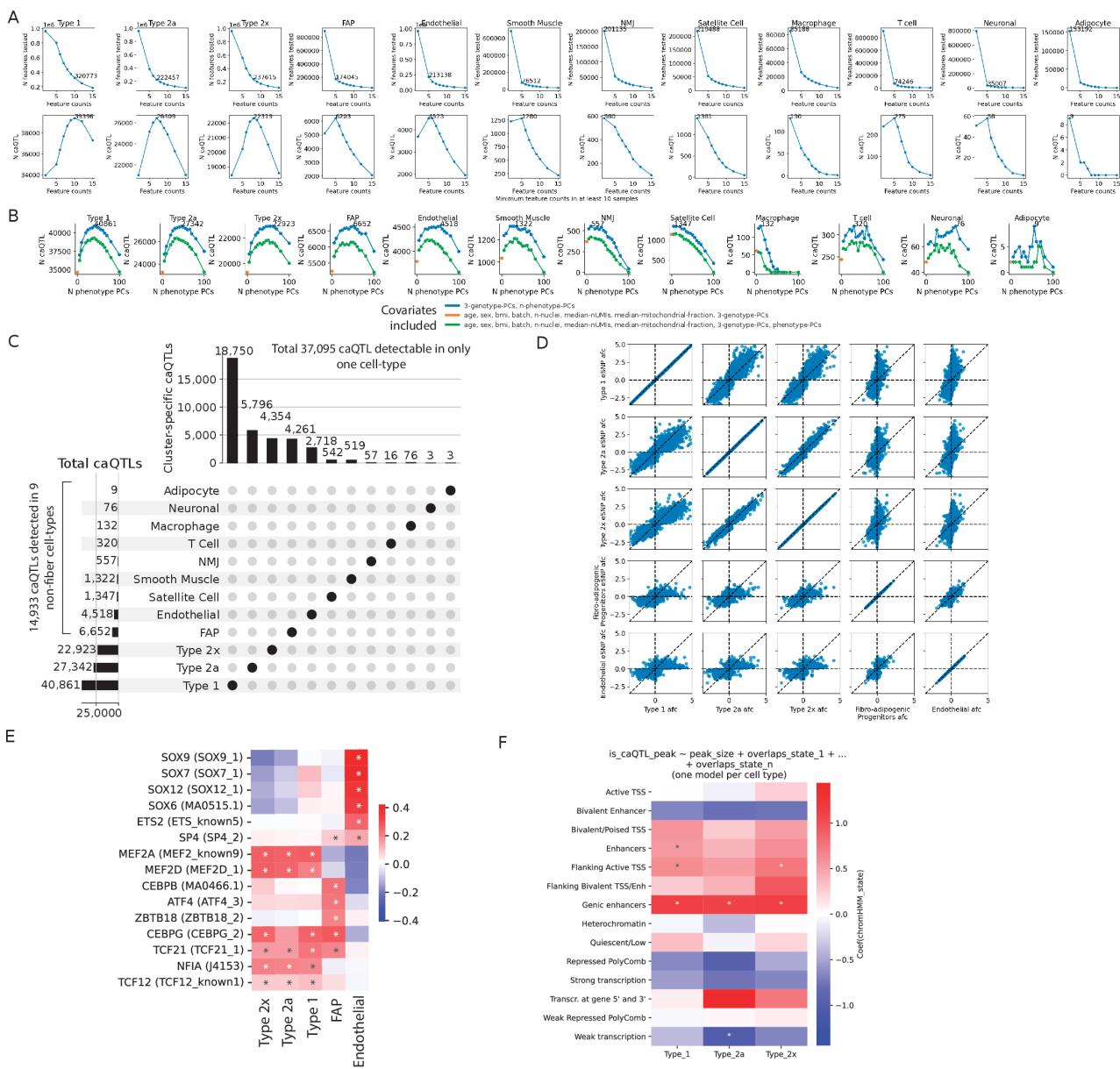
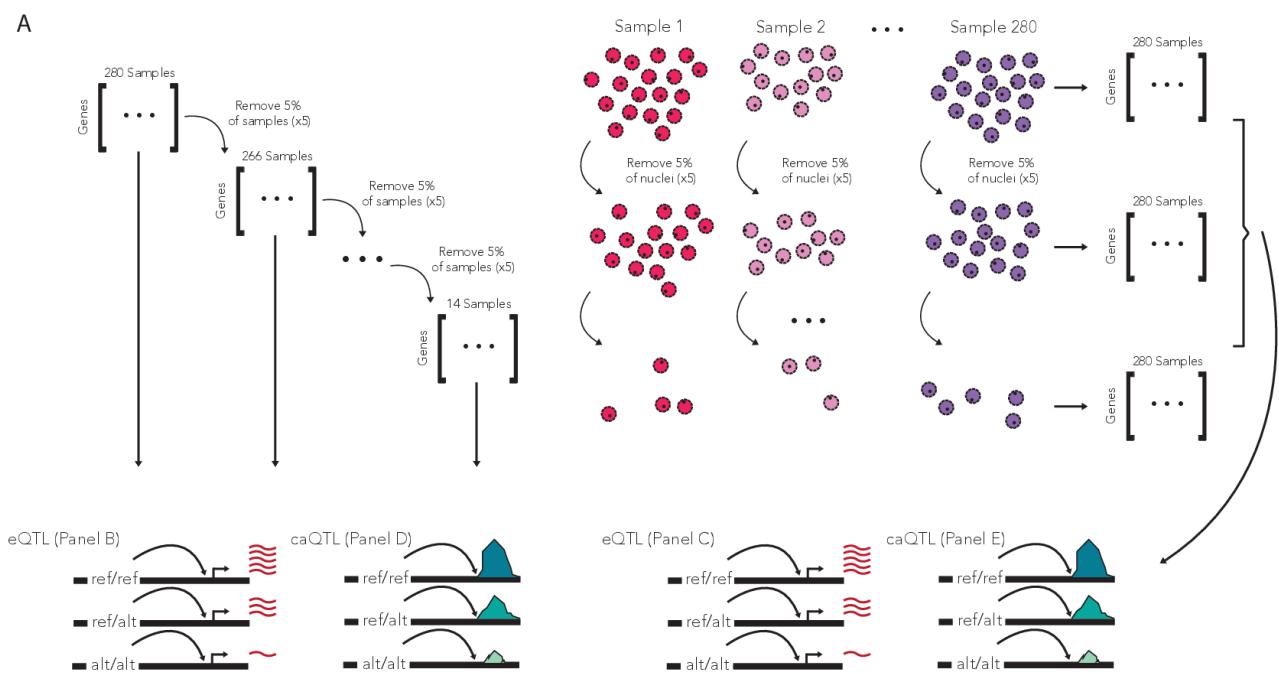


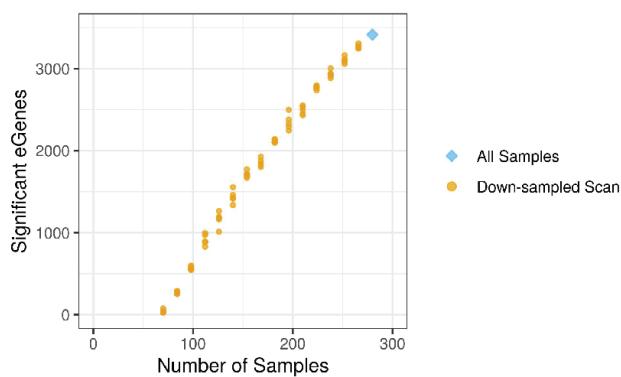
Figure S8: Identifying caQTL in clusters

(A) Identifying testable peak features with minimum n counts across at least 10 samples that maximize caQTL discovery. Number of testable peaks and the number of caPeaks (FDR 5%) at the selected minimum count threshold are labeled. (B) PC scan to maximize caQTL discovery. (C) UpSet plot showing the total number of caPeaks in each cluster and the number of caPeaks identified in only one cluster. (D) caSNP allelic fold change (aFC) in clusters to compare caQTL effect sizes between pairs of clusters. Each facet shows aFC in both clusters for caSNPs identified in the cluster labeled on the y axis (5% FDR). (E) Motif enrichment in caPeaks in five clusters. (F) Enrichment of ChromHMM states identified in bulk skeletal muscle to overlap with caPeaks in three muscle fiber clusters.

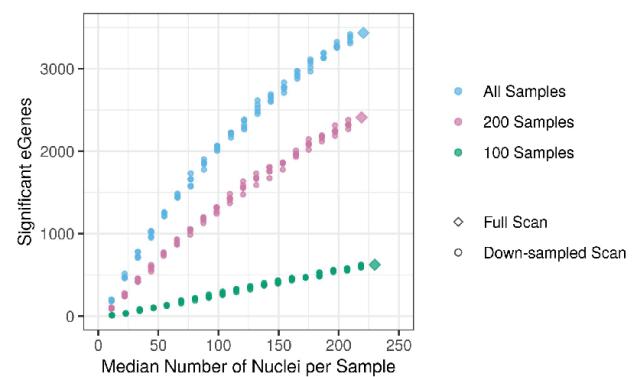
A



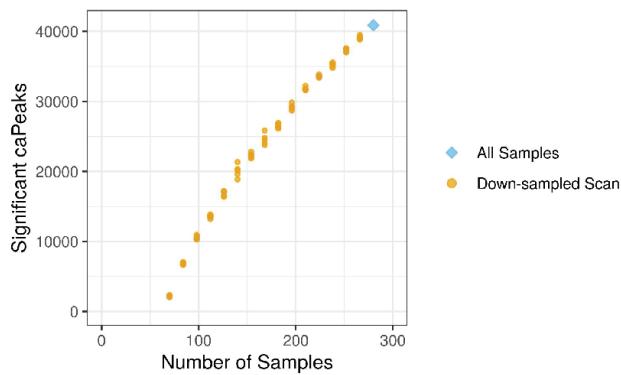
B eQTL Down-sampling Samples



C eQTL Down-sampling Nuclei



D caQTL Down-sampling Samples



E caQTL Down-sampling Nuclei

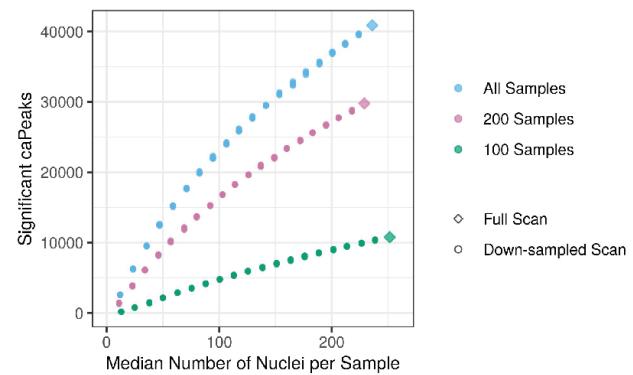


Figure S9: Down-sampling samples and nuclei in type 1 fibers

(A) Down-sampling strategy: either the number of samples (in 5% increments, left) or nuclei from each sample (right) were down-sampled followed by e/caQTL scan. Curves showing significant eGenes on down-sampling (B) samples and (C) nuclei in samples. Significant caPeaks on down-sampling (D) samples and (E) nuclei in samples.

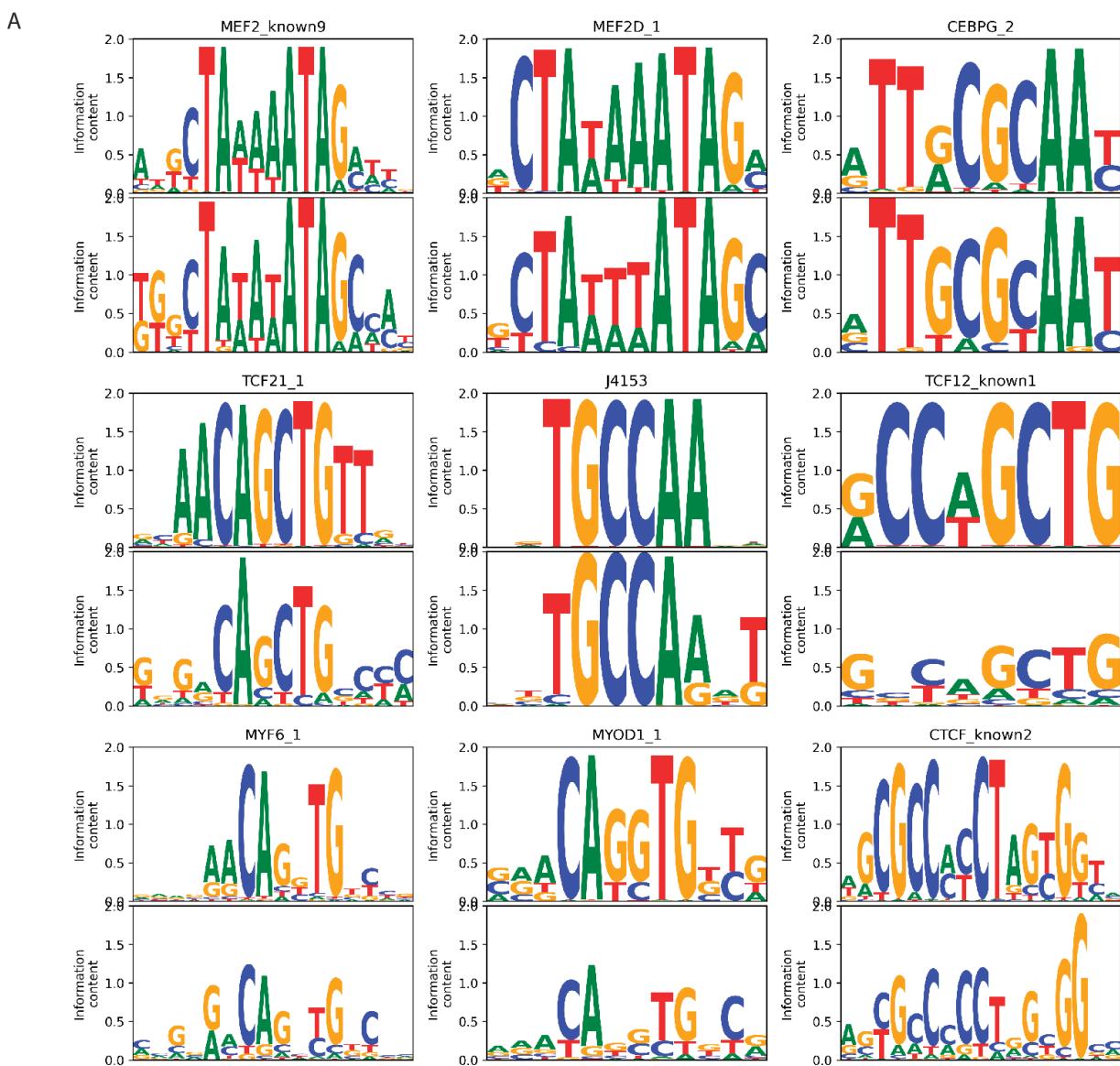
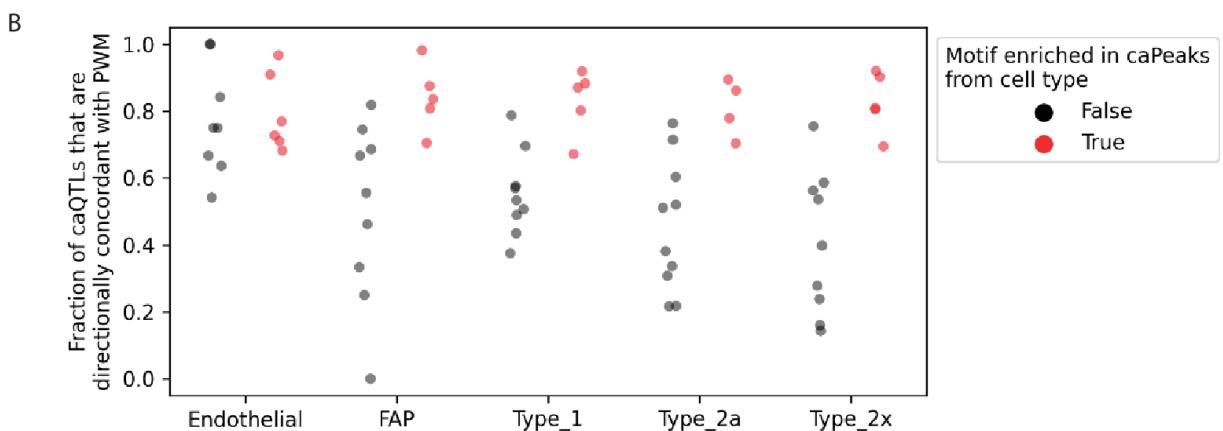
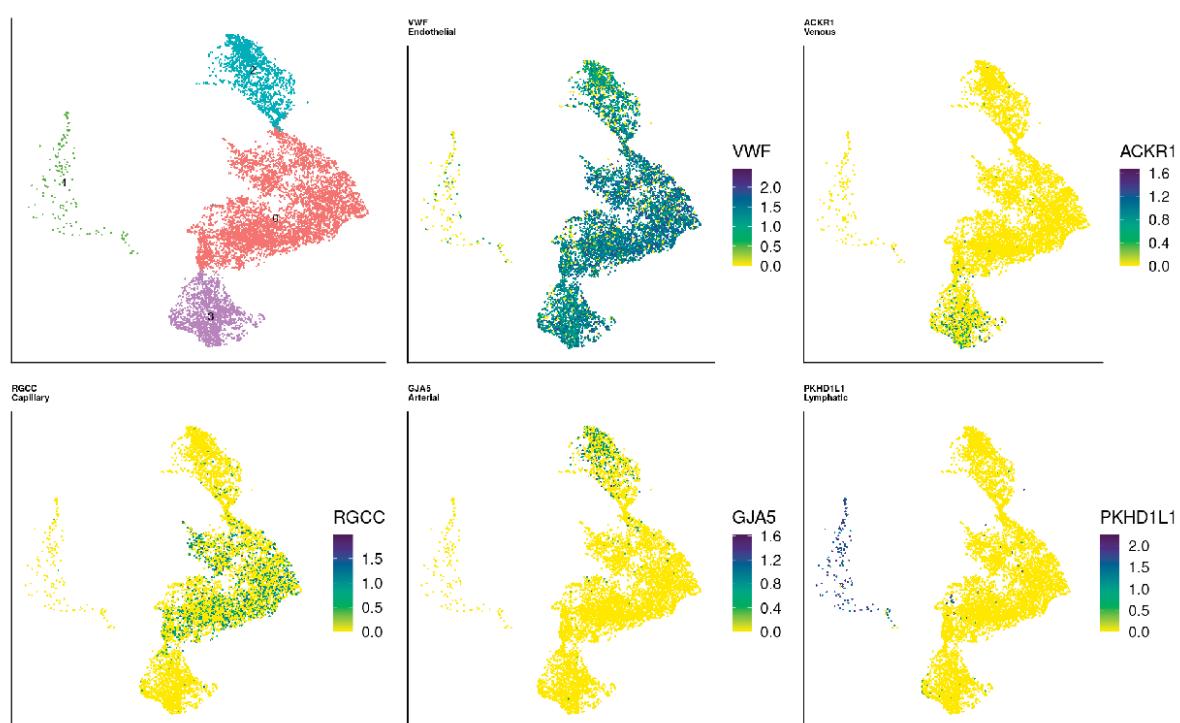


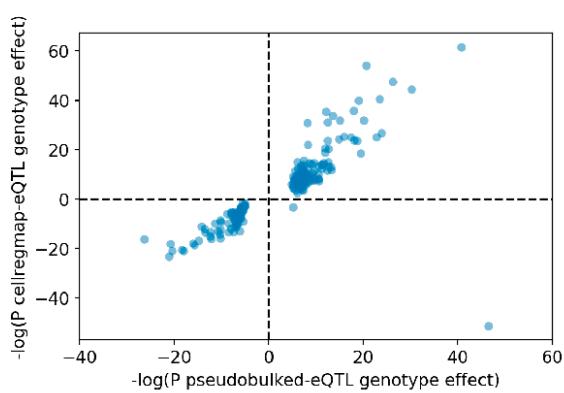
Figure S10: Motif reconstruction using caQTL data

(A) Reconstruction for selected key motifs, including those enriched to occur in type 1 fiber caPeaks. Top row shows the canonical motif PWM, and the bottom row shows the reconstructed PWM. (B) Agreement between PWM motif scores (base preference in the motif) and QTL allele preferences.

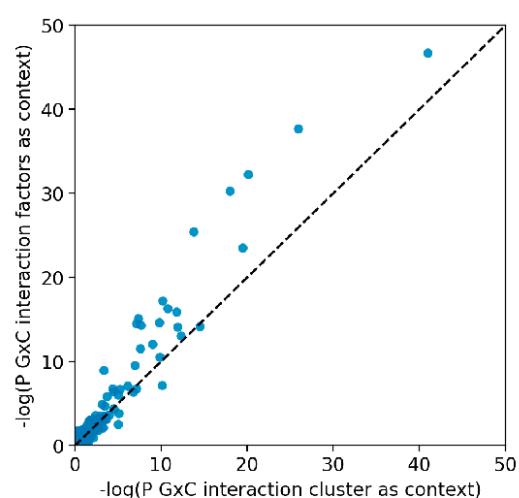
A



B



C



D

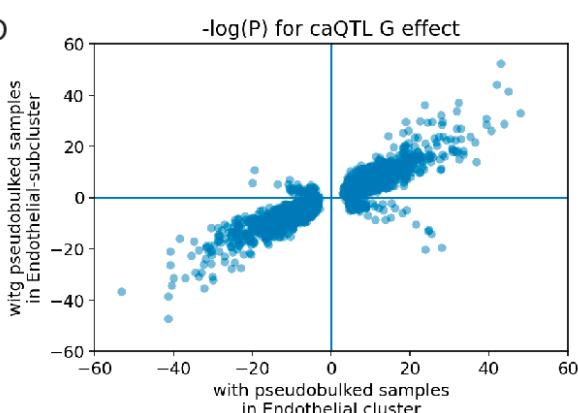


Figure S11: Endothelial state-specific e/caQTL using cellRegMap

(A) Joint (snRNA+snATAC) subclustering of endothelial nuclei identifies four subtypes/cell-states. snRNA nuclei UMAP plots show expression of key marker genes used to annotate the subclusters. (B) Top endothelial eSNP-eGene pairs identified from the initial pseudobulk analyses (5% FDR, Fig 2A) were tested for GxC interaction effect in CellRegmap. Scatter plot compares the signed $-\log_{10}(P)$ of the additive genotype effect between the two eQTL models. (C) $-\log_{10}(P)$ for eQTL GxC interaction when using subcluster vs latent factors as the context. (D) Top endothelial caSNP-caPeak pairs identified from the initial pseudobulk analyses (5% FDR, Fig 2B) were tested for GxC interaction effect in CellRegmap. Scatter plot compares the signed $-\log_{10}(P)$ of the additive genotype effect between the two caQTL models.

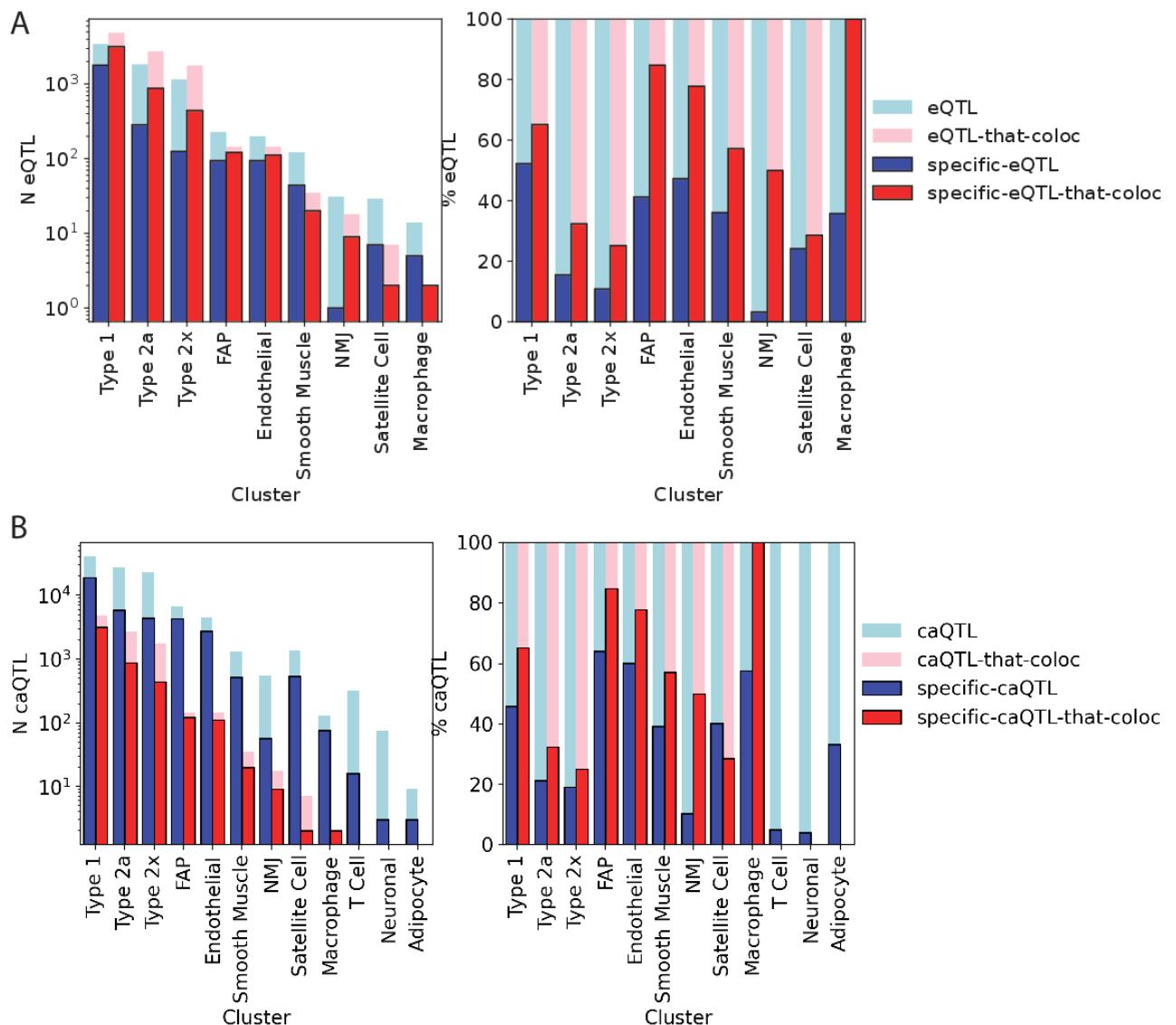


Figure S12: e-ca QTL colocalization

(A) Total number of eQTL (left) and percentage of eQTL (right) that colocalize with caPeaks in each cluster, along with the number and percentage of eQTLs that are detected in only one cell type. (B) Total number of caQTL (left) and percentage of caQTL (right) that colocalize with eGenes in each cluster, along with the number and percentage of caQTLs that are detected in only one cell type.

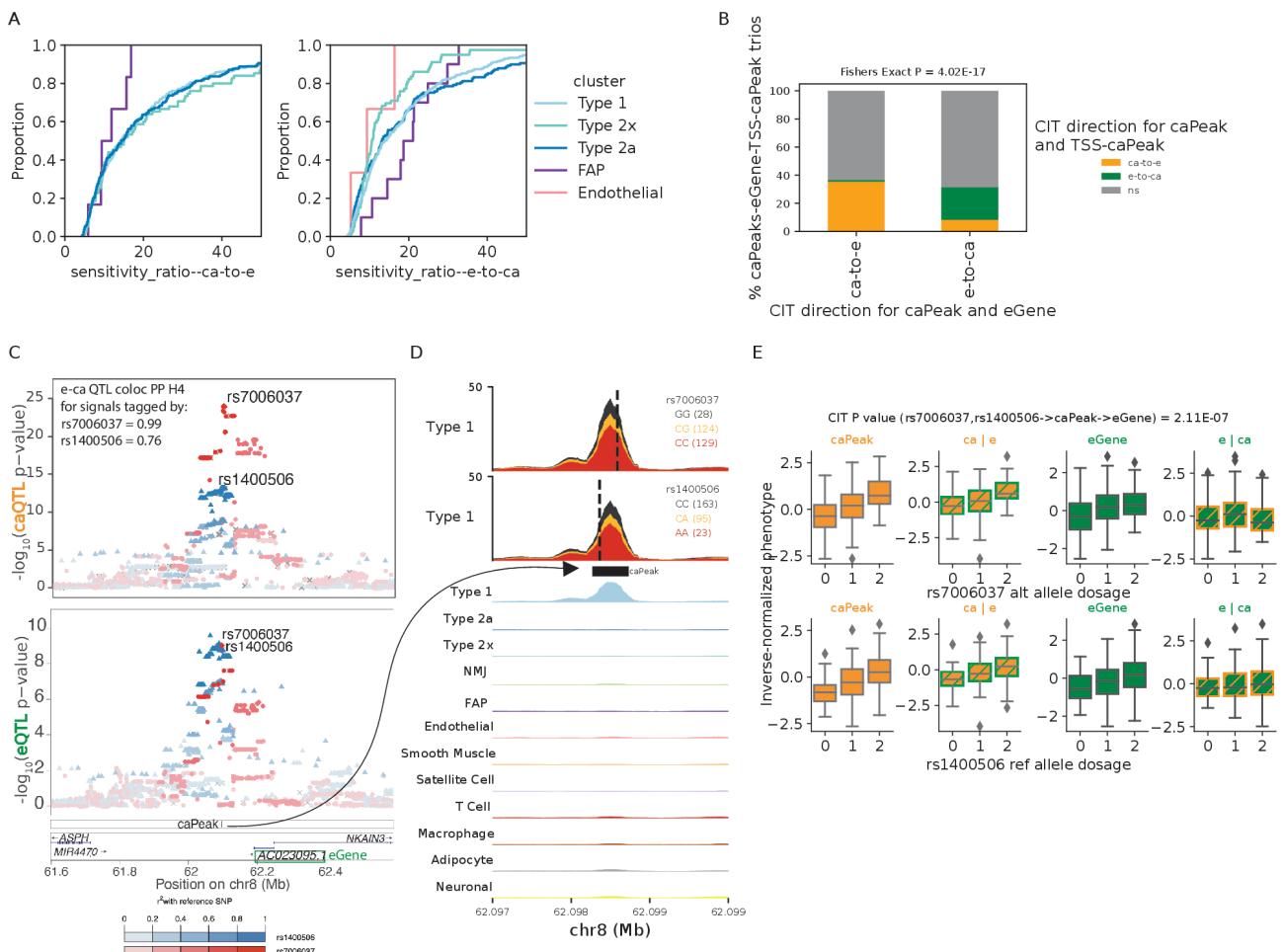


Figure S13: Causal inference test enables inferring causal direction between chromatin accessibility and gene expression

(A) Empirical cumulative distributions for MR Steiger directionality test sensitivity ratios for ca-to-e (top row) and e-to-ca (bottom row). Sensitivity ratio represents the estimated proportion of times the inferred direction flips over the bounds of measurement error in the exposure and outcome. Plots to the right show a zoomed-in view of the x axis. (B) CIT results between caPeak and TSS caPeak for ca-to-e or e-to-ca caPeak-eGene pairs. For caPeak and eGene pairs with significantly inferred causal direction ca-to-e or e-to-ca (x axis), where a caPeak was also identified in the TSS+1kb upstream region of the eGene, proportion of CIT outcomes between the distal caPeak and the TSS caPeak are denoted by the colors. Fisher's exact test was performed after tallying all significant outcomes (5% FDR). (C) Example locus on chr8 where two independent eQTL signals identified for the lncRNA gene *AC023095.1* colocalize with two independent caQTL signals identified for a nearby caPeak in the type 1 cluster (Coloc PP H4 0.99, 0.76). The lead SNPs for the two signals rs7006037 and rs1400506 are labeled and the colors depict LD r^2 relative to these variants. (D) snATAC-seq profiles in the type 1 cluster over the caPeak shown in d aggregated by the signal lead variant genotype classes. (E) Determined causal direction between the eGene-caPeak pair from d using the independent lead variants as instrument variables. Boxplots show inverse normalized chromatin accessibility, chromatin accessibility after regressing out gene expression, gene expression and gene expression after regressing out chromatin accessibility relative to the alternate allele dosages for the two lead variants rs7006037 (top) and rs1400506 (bottom).

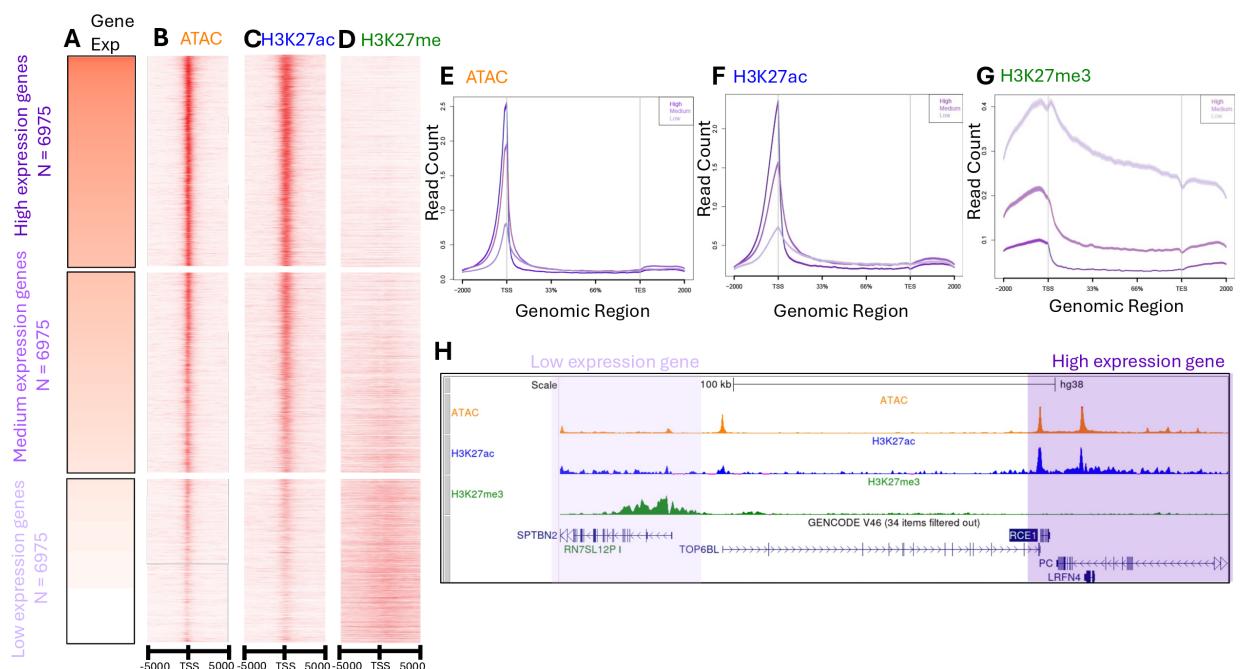


Figure S14: Bulk-skeletal muscle CUT&Tag profiles identify regulatory elements

(A) Genes in skeletal muscle sorted and binned by their expression levels. Darker red indicates higher expression. Panels B-D show reads at the TSS sites of the corresponding genes for (B) ATAC-seq (C) H3K27ac CUT&Tag, and (D) H3K27me3 CUT&Tag. (E) ATAC-seq (F) H3K27ac CUT&Tag, and (G) H3K27me3 CUT&Tag read-pileups over the gene bodies for the sets of genes with low, medium and high expression levels as described in (A). All genes are scaled to align the transcript start and end sites (TSS, TES). (H) UCSC browser session highlighting a repressed gene *SPTBN2* and highly expressed genes *RCE1* and *LRFN4* showing ATAC-seq, H3K27ac, and H3K27me3 tracks in skeletal muscle.

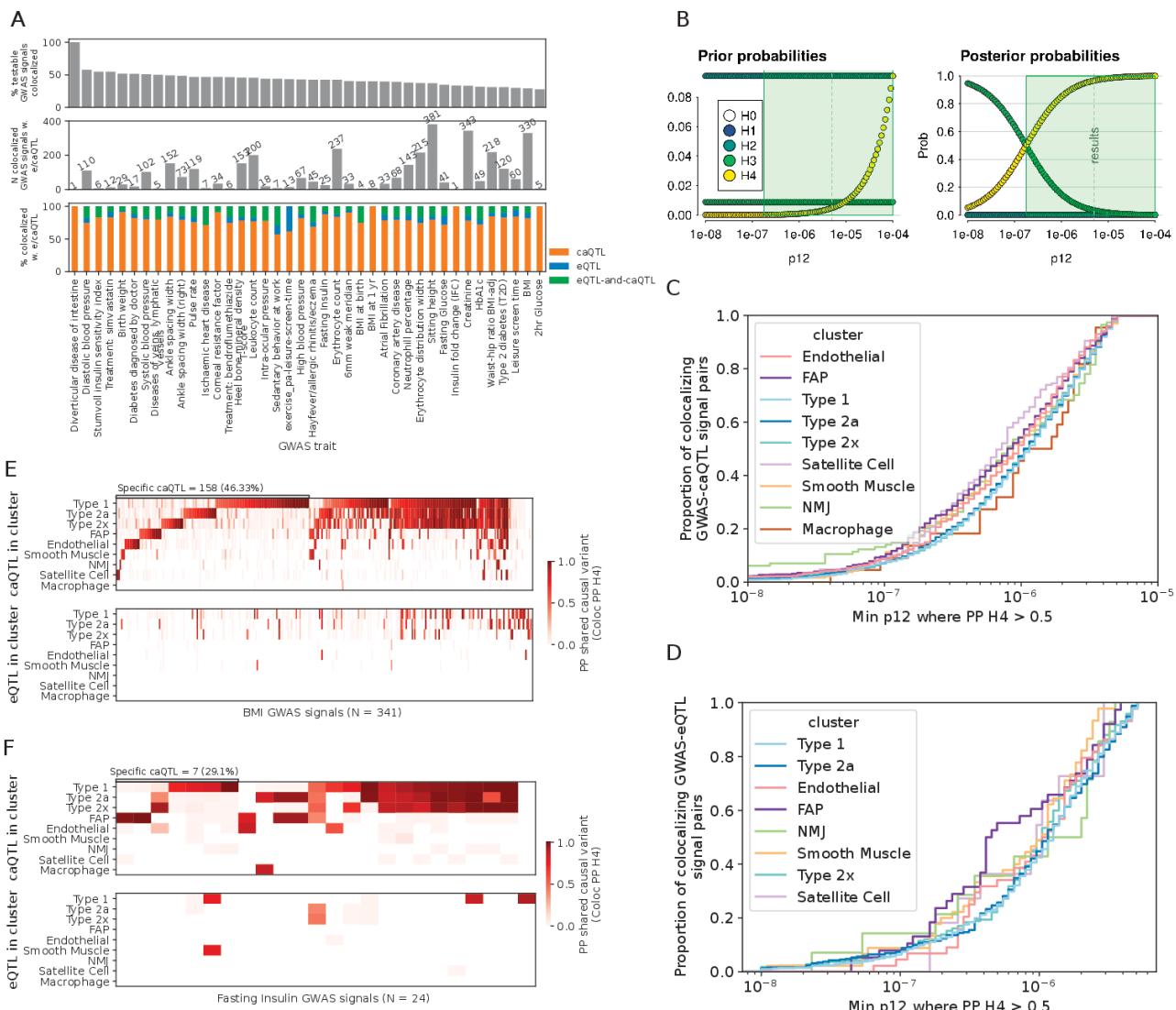


Figure S15: GWAS-caQTL colocalization and sensitivity

(A) Full GWAS-QTL colocalization summary showing the % and number of GWAS signals for each considered trait that colocalize with e/caQTL. (B) Sensitivity analysis for colocalization between T2D GWAS and a Type 1 caQTL at the C2CD4A/B locus comparing prior (left) and posterior (right) probabilities of each hypothesis over a range of prior probability values that any random SNP in the tested region is associated with both traits (p12). The Default p12 in coloc is 5e-6. Green boxes marks the set of p12 values at which PP H4 > 0.5. The lower the minimum p12 at which PP H4 > 0.5, the more robust the colocalization. (C) Empirical cumulative distribution of coloc sensitivity represented as the minimum p12 where PP H4 > 0.5 for GWAS-caQTL colocalization across the 40 GWAS traits considered, colored by cluster (D) Empirical cumulative distribution of coloc sensitivity represented as the minimum p12 where PP H4 > 0.5 for GWAS-eQTL colocalizations across the 40 GWAS traits considered, colored by cluster. For both B and C, all GWAS-QTL pairs observed colocalized (PP H4>0.5) at the default p12 of 5e-6 were considered. Heatmaps showing the coloc PP H4 for (E) BMI and (F) Fasting Insulin GWAS loci that colocalize with e/ca QTL across the five clusters.

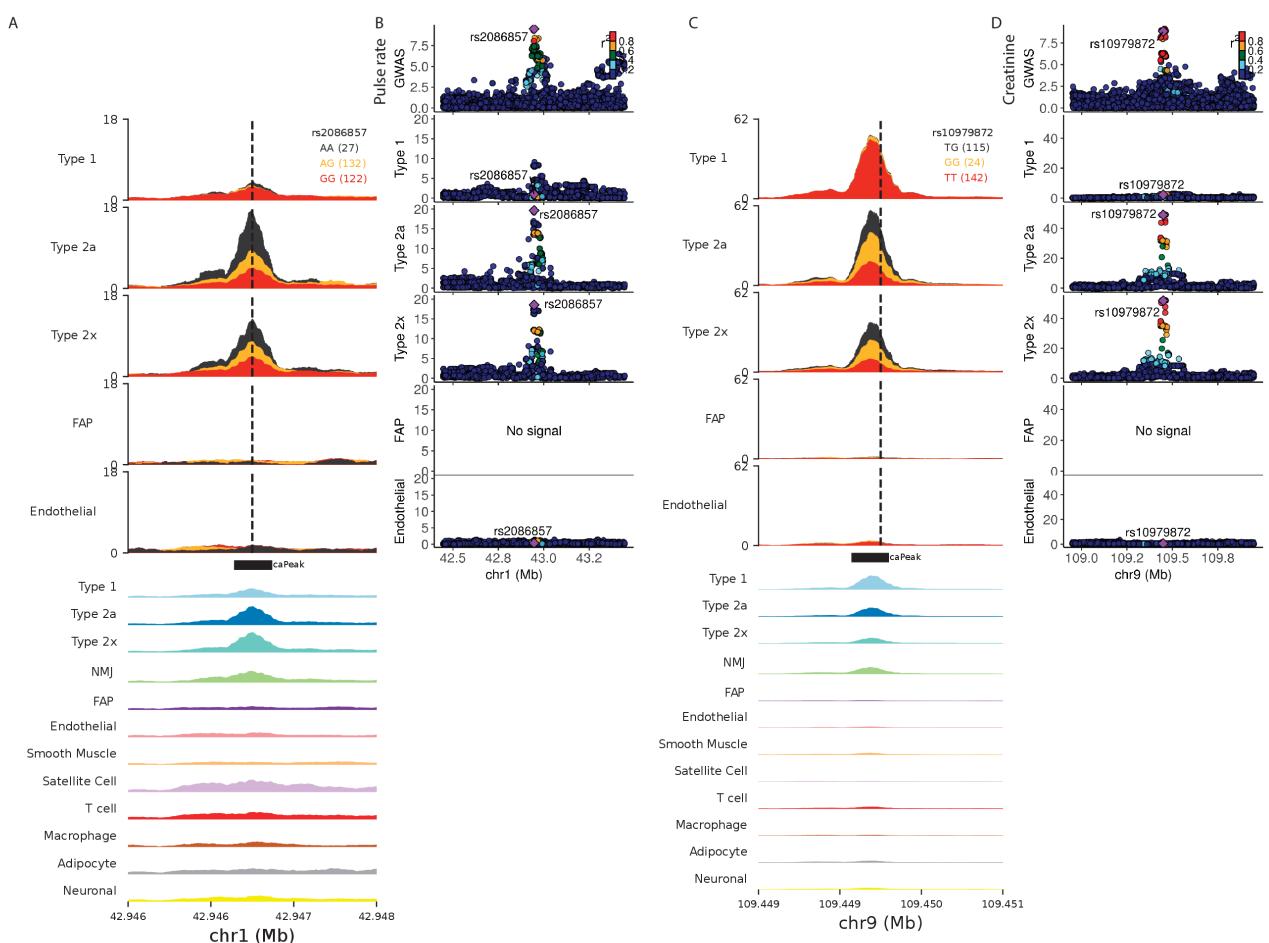


Figure S16: Identifying caQTL specific to individual muscle fiber types Selected examples of caQTLs specifically identified in type 2 fibers (snATAC signal aggregated by caSNP genotype class in A, C) that colocalize with GWAS signals (locus zoom plots showing the GWAS signal and caQTL signals in five clusters in B, D)

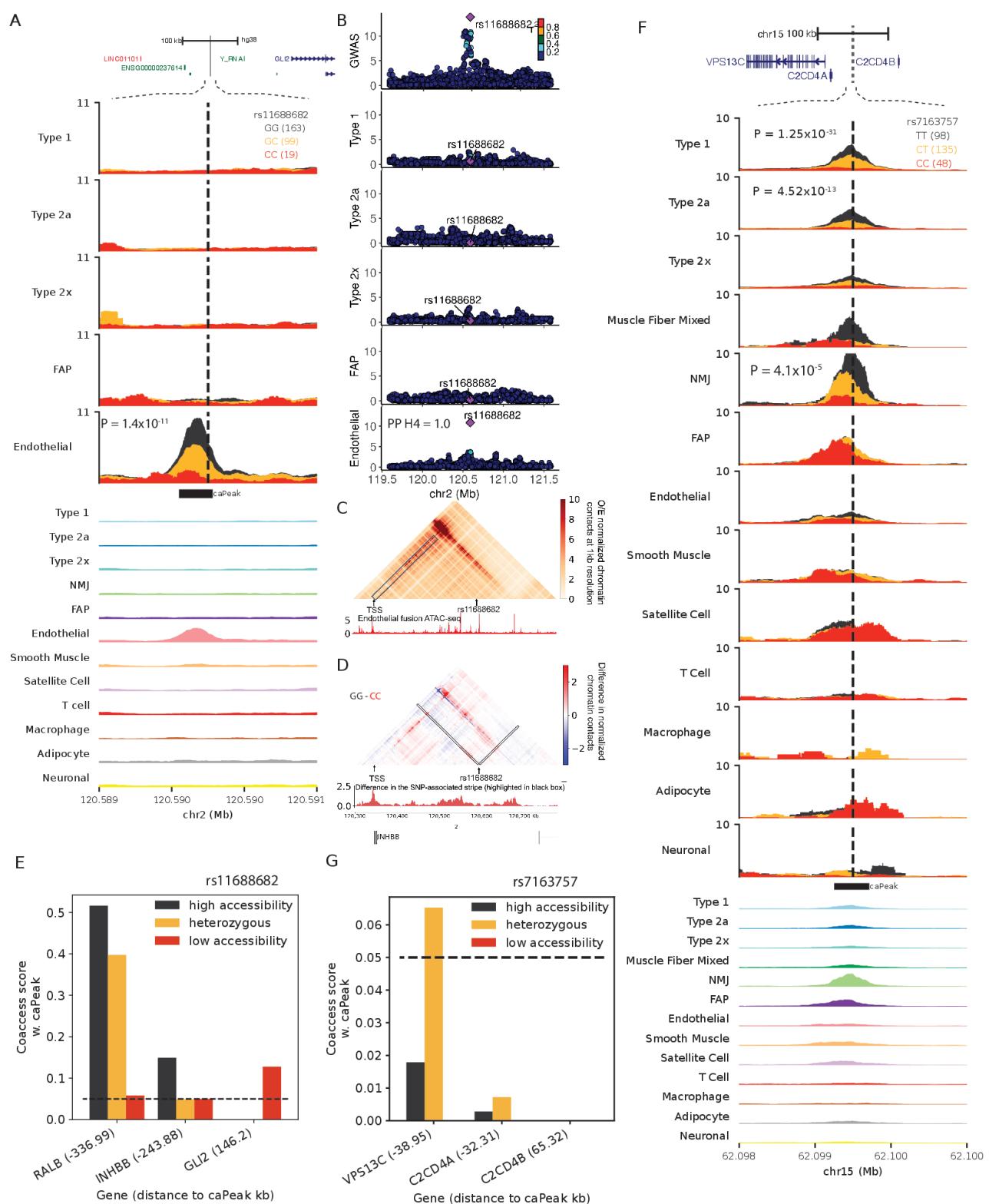


Figure S17: Integrating e/ca QTL signals with GWAS inform disease/trait relevant regulatory mechanisms

(A) *GLI2* genomic locus where a T2D GWAS signal is colocalized is an endothelial caQTL. snATAC profiles in five clusters by caSNP rs11688682 genotype in its $\pm 1\text{kb}$ neighborhood followed by aggregate profiles in 13 clusters. (B) Locuszoom plots for the *GLI2* GWAS signal (top) followed by the caQTL signal in the five clusters. The peak was not testable for caQTL in the type 1, 2a, 2x and FAP clusters due to low counts. (C) EPCOT-imputed micro-C chromatin contacts using endothelial ATAC data at 1kb resolution at the 500kb neighborhood centered at rs11688682. (D) Difference in the predicted normalized chromatin contacts using endothelial snATAC-seq from samples with the high (GG) and low (CC) accessibility genotype rs11688682. Interactions with rs11688682 highlighted in black are shown as a signal track below. (E) Endothelial chromatin co-accessibility scores between the *GLI2* caPeak and TSS peaks of neighboring genes, classified by the caSNP genotype. Distance between the peaks is noted in parentheses. (F) C2CD4A/B genomic locus, followed by snATAC-seq profiles by caSNP rs7163757 genotypes in clusters, followed by aggregate snATAC profiles. (G) NMJ chromatin co-accessibility scores between the caPeak and TSS-peaks classified by caSNP genotype. Distance between the peaks is noted in parentheses.

1399 **Supplementary Note**

1400 **4.32.1 Singlet identification and sample demultiplexing**

1401 In our study design, we multiplexed 40/41 samples in each batch and demultiplexed using known sample
1402 genotypes. Demultiplexing 41 samples per batch is well within the capability of assigning droplets to
1403 individuals, as reported by the original Demuxlet paper¹⁰⁷. To demonstrate the high-quality donor
1404 assignments in our experiments, we ran Demuxlet on Batch 1 that included 40 samples with a mixture
1405 of “correct” (from batch 1) and “wrong” (from other batches) samples in the input VCF. As expected,
1406 the number of singlets identified by Demuxlet decreased linearly with the number of “wrong” samples
1407 in the VCF (**Figure SI1A**), with 0 singlets identified when all “wrong” 40 samples were provided in the
1408 VCF. None of the droplets are assigned as singlets to the “wrong” samples (**Figure SI1B**). Therefore,
1409 all samples are correctly assigned, even when incorrect samples are provided in the VCF, indicating
1410 that our QC process has resulted in high-quality nuclei with correct sample assignments.

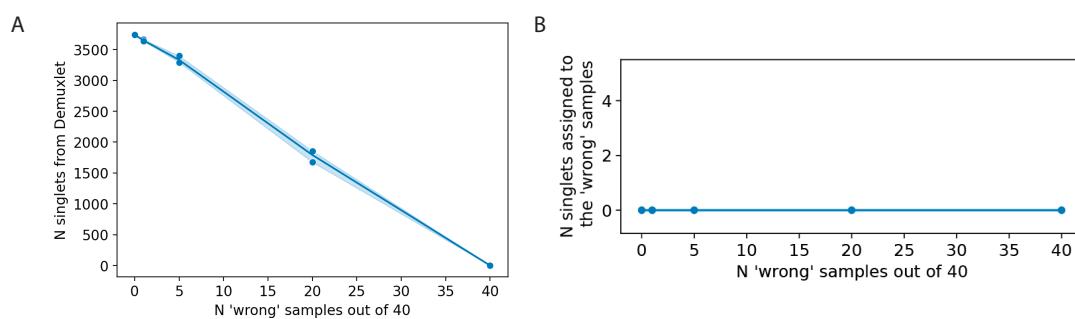


Figure SI1: Demuxlet QC

(A) The number of correct singlets identified in the 40 sample batch decreases linearly as a function of the number of wrong samples supplied in the VCF. (B) Zero wrong samples are assigned, even when 40 wrong VCF entries are provided for genetic demultiplexing. Note the blue points at y=0 for the different ranges we tested.

1411 **4.32.2 Ambient RNA and eQTL scans**

1412 While ambient transcripts are inevitable in nuclei preps, especially from processing of complex frozen
1413 tissue such as our muscle samples, genetic demultiplexing offers an improved strategy to identify clean
1414 droplets. The protocols and approaches to adjust for ambient transcripts are an active area of research.
1415 We thoroughly optimized our ambient RNA detection and correction (**Figure S3**). After this correc-
1416 tion, a low level of muscle fiber marker gene expression still remained in clusters (**Figure 1E**). We
1417 reasoned that our eQTL scans are protected from ambient biases because Given our assay design of
1418 40-41 multiplexed samples in each batch, the droplets with high ambient RNA are much more likely
1419 to be identified as doublets rather than being mislabeled. Because samples are pooled together, any
1420 remaining background ambient signal will not be associated with genetic variation and instead will
1421 represent a random mix of the samples in the pool.

1422 To confirm our multiplexed study design protects us from spurious eQTL associations associated
1423 with ambient RNA levels, we ran eQTL scans with gene quantifications done before and after ambient
1424 RNA correction. **Figure SI2** shows that the eQTL p-values and slope direction for top snp-gene pairs
1425 are nearly identical both before and after ambient RNA correction. Thus, our eQTL scan results are
1426 not meaningfully influenced by ambient RNA.

1427 **4.32.3 Clustering and QC**

1428 We integrated 287 FUSION snRNA+snATAC samples plus one multiome sample which included 456k
1429 nuclei spread across 10 batches plus one multiome batch. We performed the integration and clustering

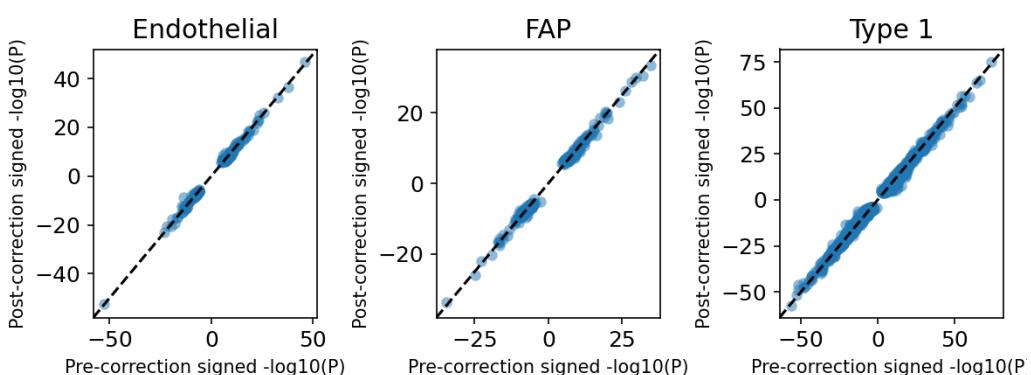


Figure SI2: eQTL scan before and after ambient RNA adjustment. For top SNP-gene pairs (5% FDR) in endothelial, FAP, and type 1 clusters from the eQTL scans done post ambient-RNA correction, corresponding $[-\log_{10}(P \text{ value}) \times \text{sign of the slope}]$ are plotted from an eQTL scan done pre-ambient-RNA correction. The striking similarity pre and post ambient-RNA correction shows that the background signal is not associated with genetic variation.

1430 using Liger's online iNMF algorithm which is capable to handle such large datasets. We factorized the
 1431 RNA modality first since we found the RNA-only clusters to be more distinct and easily interpretable
 1432 using known marker genes, then projected ATAC nuclei onto the factorization. We used the known
 1433 multiome RNA-ATAC mapping to compare how concordant the cluster assignments were between the
 1434 RNA and ATAC modality. We found that 82.8% of the non-muscle fiber multiome nuclei had the same
 1435 RNA and ATAC cluster assignments. While most clusters were concordantly annotated between RNA
 1436 and ATAC, the most frequent discrepancies were between the mixed fiber nuclei in RNA annotated type
 1437 1 or 2a in ATAC; or neuronal nuclei in RNA annotated type 1 or endothelial in ATAC (**Figure S4B**).
 1438 In comparison, current next largest study⁴⁸ integrated 73 brain snATAC+snRNA (on different nuclei)
 1439 samples along with 19 multiome samples and achieved 79.5% - 85% concordance. The widely used
 1440 Seurat program [134], obtained a 90% concordance on 12,000 blood cell nuclei ([vignette here](#)) from a
 1441 much smaller dataset that was easier to analyze because it was not from a solid complex tissue, and all
 1442 nuclei were from one batch of 10X multiome assay rather than 456k nuclei spread across 10 batches plus
 1443 one small multiome batch. These observations help put the performance of our clustering approach
 1444 into perspective.

1445 The fraction of nuclei assigned to each cluster within the RNA and ATAC modalities varied more
 1446 for some clusters than others. For example, T cell cluster constituted 0.14% of RNA nuclei, but
 1447 5.15% of ATAC nuclei **Figure SI3**. These differences could be due to both technical and biological
 1448 factors. For example, the ambient "soup" profiles for RNA vs ATAC are expectantly different. We
 1449 considered droplets containing very low number of UMIs/HQAA as a representation of ambient profile
 1450 and observed that the most highly expressed genes in the snRNA soup were muscle fiber genes, which
 1451 is the most abundant cell type. Whereas, most snATAC soup reads mapped to the mitochondrial
 1452 genome, which are all removed during analysis. Second, chromatin and transcription programs in a cell
 1453 could manifest intrinsic cell-state differences. It has been demonstrated that chromatin accessibility
 1454 information from snATAC-seq provides a coarser-grained representation of cell-states compared to
 1455 transcription information from snRNA-seq profiling, which suggests that cells could retain a primed
 1456 or permissive chromatin landscape that can allow dynamic state transitions in response to relevant
 1457 conditions^{48,88}.

1458 While we performed extensive QC, ambient RNA adjustment and joint clustering and obtained
 1459 meaningful clusters, the "muscle fiber mixed" cluster showed higher ratio of exonic reads vs reads over
 1460 the entire gene body in some batches (**Figure SI4A**) and showed elevated fraction of mitochondrial
 1461 reads (**Figure SI4B**). This suggests that the muscle fiber mixed cluster contained nuclei with relative
 1462 higher ambient RNA, and likely represented technical variation in nuclei extraction efficiency across

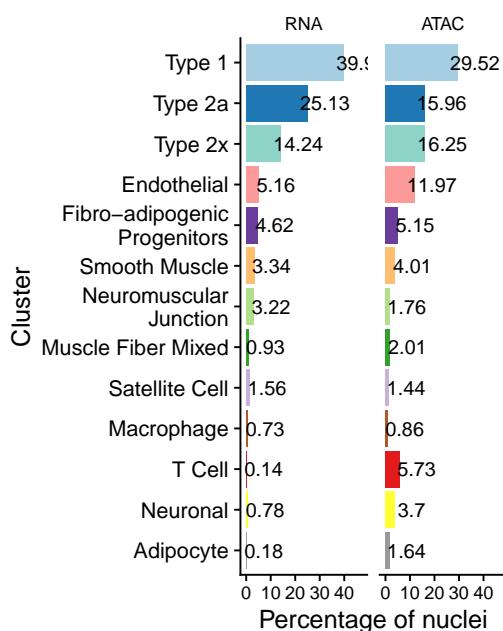


Figure SI3: Cluster abundance by modality. Percentage of nuclei in each modality assigned to each cluster.

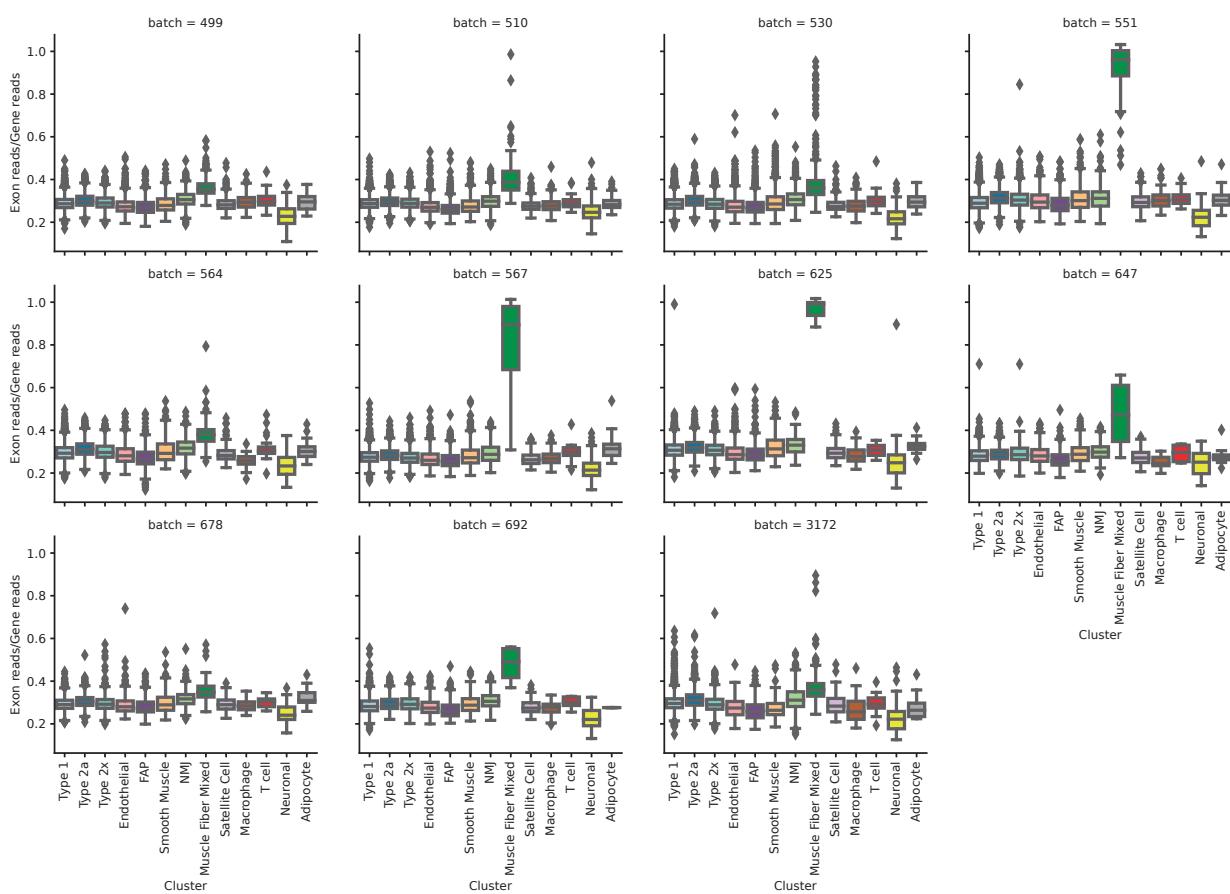
1463 some batches. We account for technical variation due to batch in subsequent analyses.

1464 4.32.4 Motif reconstruction

1465 We observed several examples of TF motifs that reconstructed well using caQTL allele preferences and
 1466 effect sizes (**Figure 2G**, **Figure S10**). Due to the sparsity in motif-caSNP overlaps, it was impractical
 1467 to comprehensively quantify the total number of correctly reconstructed motifs out of all tested and
 1468 compare across cell-types. In type 1 fibers, ~66% of the 540 PWMs had at least one overlap at each
 1469 position of the PWM, however in endothelial cells and FAPs, where a lower number of caQTLs were
 1470 identified, the corresponding percentages are 15% and 19%, respectively. Nevertheless, concordance
 1471 between TF and cell type is evident. For example, the MEF2_known9 motif, which is enriched in
 1472 muscle fibers (**Figure S8E**), reconstructed well in Type 1 fibers (**Figure SI5A**); however in endothelial
 1473 cells, even most high information content MEF2_known9 positions don't overlap a caSNP (or proxy)
 1474 (**Figure SI5B**). In contrast, the SOX motifs (e.g., SOX7_1) were enriched in endothelial caPeaks but
 1475 not muscle fiber caPeaks (**Figure S8E**). SOX7_1 motif reconstruction is sparse in endothelial cells;
 1476 however, we still see the high information content positions in the core motif well reconstructed in
 1477 endothelial cells, whereas the reconstruction in type 1 fiber does not capture this core motif as well
 1478 (**Figures SI5C–SI5D**).

1479 It is important to note that many PWMs are not actually expected to be well-reconstructed. The
 1480 PWM reconstruction is expected to work well only when the original PWM corresponds to a TF
 1481 expressed in that cell type and, more importantly, when the TF has a large impact on chromatin
 1482 accessibility in that cell type (since the variants used for reconstruction are caQTLs). If a variant
 1483 impacts binding of a TF but that TF does not have much impact on chromatin architecture, the
 1484 variant is unlikely to be a caQTL in the first place. A PWM of a TF that does not impact chromatin
 1485 architecture is likely to overlap a subset of caQTLs just by chance, so a reconstruction can sometimes
 1486 be produced, but the reconstruction in that case is not expected to be reliable.

A



B

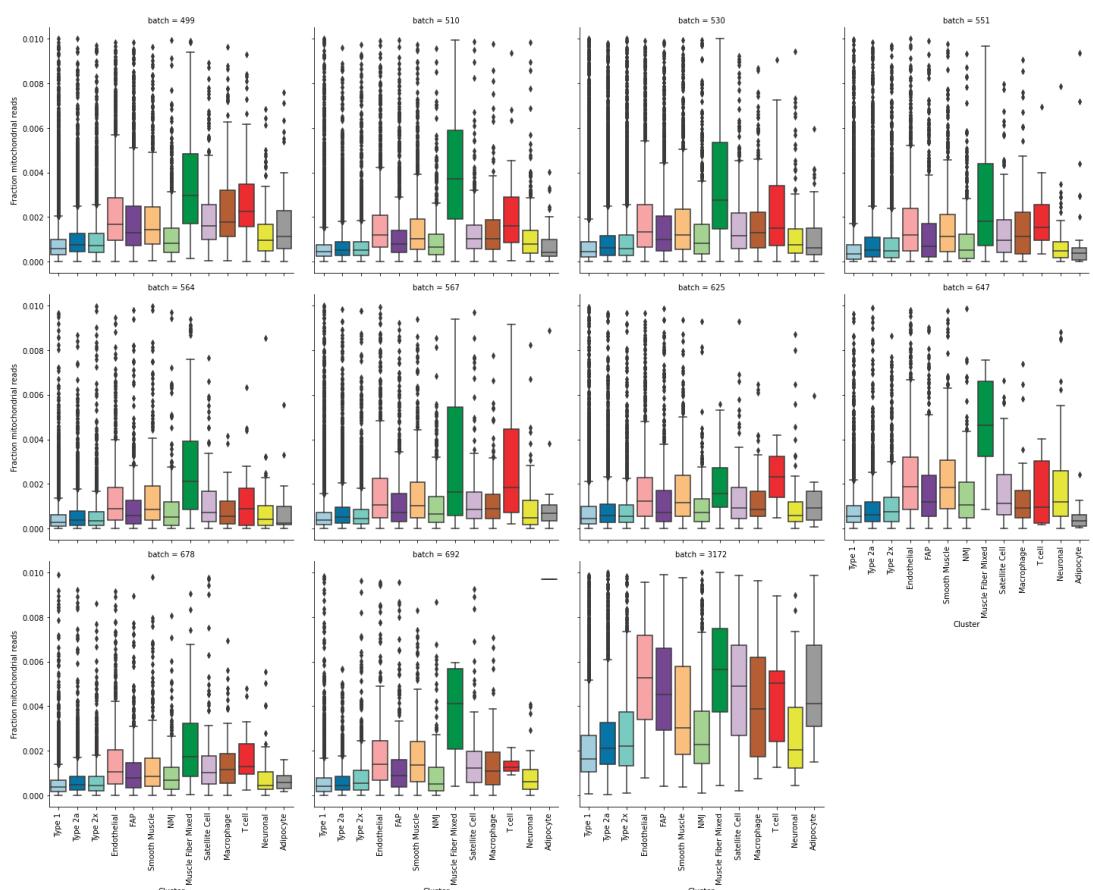


Figure SI4: Joint clustering of the snRNA-seq and snATAC-seq modalities identified 13 cell-type clusters

(A) Fraction of exonic reads over gene reads in nuclei across clusters and batches (B) Fraction of mitochondrial reads in nuclei across clusters and batches

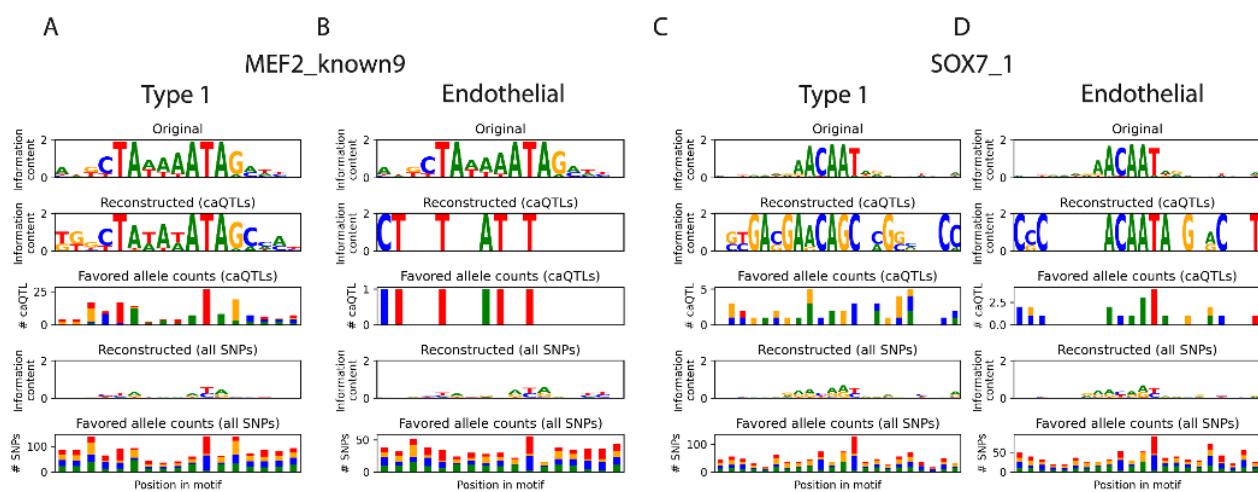


Figure SI5: Reconstruction of selected motifs enriched in caPeaks in type 1 fibers vs endothelial.

(A) MEF2_known9 motif reconstruction in type 1 fibers, and (B) endothelial. SOX7_1 motif reconstruction in (C) type 1 fibers, and (D) endothelial cell-type cluster.

1487 **Supplementary Protocol S1**

1488 This protocol is designed for 4 samples. Please scale up or down based on the number of samples. All
 1489 the steps have to be performed on ice or at 4°C. All the 2 mL and 1.5 mL tubes used in this protocol
 1490 are Protein LOBIND tubes from EPPENDORF.

1491

1492 **Materials:**

- 1493 • CP02 cryoPREP automated dry pluverizer (Covaris 500001)
- 1494 • Eppendorf thermomixer C (EP 5382000015)
- 1495 • 2mL glass tissue grinder and pestle (Kimble chase, 885301-0002, 8853000002)
- 1496 • 70 μ m strainer (Fisher 501457900)
- 1497 • Celltrics, 20 μ m, 30 μ m cell strainer (Fisher NC9682496, Fisher NC9699018)
- 1498 • Fisherbrand Sterile Plastic Culture (FACS) Tubes 149563C
- 1499 • RNase Inhibitor (Thermofisher N8080119)
- 1500 • Eppendorf Protein Lobind 1.5 mL tubes (Eppendorf 022431081)
- 1501 • Eppendorf Protein Lobind 2.0 mL tubes (Eppendorf 022431102)

1502 **LB1 buffer**

LB1 buffer	For 5mL	Final concentration	Catalog number
1 M HEPES, pH 7.5	0.25 mL	50 mM	Invitrogen 15630080
5 M NaCl	140 μ L	140 mM	Sigma S5150-1L
0.5M EDTA, pH 8.0	10 μ L	1 mM	Promega V4231
50% glycerol	1 mL	10%	Sigma G5516-500 mL
NP-40 10%	0.25 mL	0.5%	Sigma 11332473001
Triton X-100 10%	125 μ L	0.25%	Sigma T8787-100 mL
Ultra Pure Distilled water	3.225 mL		Invitrogen 10977015
EDTA-free complete mini protease inhibitors (add immediately before use)	1 tablet		Roche 11836170001

	1% BSA in PBS	For 10 mL	Final	Catalog number
1504	BSA	100 mg	1%	Fisher NC0390268
1505	PBS	Q.S. to 10 ml		Invitrogen 10010023

1506 **Nuclei extraction**

- 1507 1. Frozen tissue (40-90 mg) was pulverized into a fine powder while cold (dry ice and LN2) using an
1508 automated dry pulverizer CP02 cryoPREP.
- 1509 2. Pulverized Frozen tissue (40-90 mg) was suspended in 1 mL of ice-cold 1x PBS in a 1.5 mL tube
1510 (Eppendorf 022431081) and centrifuged at 2000g for 3 min at 4°C. The supernatant was removed
1511 and the pellet was resuspended in 1 mL LB1.
- 1512 3. The tissue was lysed by rocking the tubes in Eppendorf thermomixer C (EP 5382000015) at 4°C
1513 at 300 rpm for 5 min.
- 1514 4. Each sample was transferred into a prechilled 2 mL glass Dounce homogenizer and homogenized
1515 with 10 strokes of loose pestle A, and 20 strokes of tight pestle B and then transferred to 1.5 mL
1516 tube and centrifuged at 2000g for 5 min at 4°C.
- 1517 5. The supernatant was aspirated and the pellet was resuspended in 1 mL of ice-cold 1% BSA and
1518 centrifuged at 100g for 1 min at 4°C.
- 1519 6. The supernatant was collected, discarding the loose debris pellet.
- 1520 7. All the filters were prewet; 70 μ m, 30 μ m and 20 μ m filters, with 200 μ L of 1% BSA each and
1521 previously collected supernatant was sequentially filtered through 70 μ m, 30 μ m and 20 μ m filters
1522 respectively.
- 1523 8. The supernatant was filtered through a 70 μ m strainer and the filtrate was collected into a 50
1524 mL conical tube.
- 1525 9. The collected filtrate was passed through a 30 μ m celltrix strainer and collected into a 2mL tube.
- 1526 10. The collected filtrate was passed through a 20 μ m celltrix strainer and collected into a 2mL tube.
- 1527 11. The filtrate was transferred to a 1.5mL tube and centrifuged at 350 x g for 10 min at 4°C (be
1528 careful of the tube direction). The supernatant was aspirated (the supernatant was saved as a
1529 precaution) with flexi tip gel loading tip (were very careful not to disturb the pellet) and the
1530 nuclei were resuspended in 500 μ L of 1% BSA in PBS.
- 1531 12. The nuclei suspension was centrifuged again at 350 x g for 10 min at 4°C (be careful of the
1532 tube direction). The supernatant was aspirated very carefully (the supernatant was saved as a
1533 precaution) with flexi tip gel loading tip and the nuclei were resuspended in 100 μ L of 1%BSA in
1534 PBS.
- 1535 13. The nuclei were counted with cell counter (Trypan blue stains nuclei; typically 4-9 μ m) and
1536 diluted appropriately for RNA and ATAC submissions.
- 1537 14. (RNA Submission) To achieve the desired nuclei concentration, an appropriate amount of nuclei
1538 was diluted with 1% BSA in PBS. To this suspension, RNase inhibitor was added to get a final
1539 concentration of 0.2 U/ μ L. The nuclei was counted and submitted for snRNA seq.

1540 15. (ATAC Submission)- The rest of the nuclei was spun down at 350 x g for 10 min at 4°C (were
1541 careful of the tube direction). The supernatant was aspirated very carefully with flexi tip gel
1542 loading tip and the nuclei were resuspended in an appropriate volume of 1X diluted nuclei buffer
1543 (20x buffer supplied by 10X genomics). The nuclei was counted and submitted for snATAC seq.

1544 MPRA experiment and data analysis

1545 Cloning

1546 We designed oligos with a variant centered within 197 bp of flanking sequence (98 bp on each side).
1547 We also included negative control sequences selected from a previous publication (1).

1548 Oligos were synthesized by IDT as 230 bp sequences containing the 197 bp sequences of interest
1549 flanked by two adapter sequences for cloning. We added 20 bp barcodes with additional adapters via a
1550 5-cycle PCR reaction containing 13 ng oligo pool, 12.5 uL of NEB Q5 HotStart Hifi Mastermix, 1.25 uL
1551 of 10X SYBR Green I and 0.25 uM each of primers AT0003 and AT0039. This reaction was performed
1552 in quadruplicate with the following thermocycler conditions: 98°C x 30 sec, [98°C x 10 sec, 65°C x 15
1553 sec, 72°C x 30 sec, plate read, 72°C x 8 sec] x 5, 72°C x 2 min. Barcoded oligos were diluted 1:25
1554 in H2O, then amplified in a second PCR reaction using the same conditions with primer AT0050 in
1555 place of AT0039 and cycling for 14 cycles. We pooled replicate reactions, cleaned the final amplified,
1556 barcoded oligos with 1.8X SPRI beads, and eluted in 15 uL of LoTE.

1557 We modified pMPRA1 (a gift from Tarjei Mikkelsen, Addgene #49349; 2) by adding in PaqCI
1558 cloning sites and an EGFP open reading frame. We cloned the barcoded oligos into this backbone (2:1
1559 molar ratio of oligos:backbone) using PaqCI-mediated Golden Gate assembly per NEB recommendations.
1560 We incubated the assembly reaction at 37°C for 1 hour then 65°C for 5 min. We performed a
1561 secondary digest with 20 U SfiI to remove empty backbones, then cleaned with 0.8X SPRI beads and
1562 eluted in 10 uL of LoTE. We transformed 1 ul of the assembly into NEB 10-beta electrocompetent
1563 bacteria and expanded overnight in 150 mL of ampicillin-containing LB. In parallel, we plated serial
1564 dilutions and estimated a library complexity of ~ 5 x 10⁶ CFU.

1565 We prepared sequencing libraries from the promoter-less MPRA plasmids to create an oligo-barcode
1566 pairing dictionary. In brief, we amplified the oligo-barcode region in a reaction containing 100 ng
1567 plasmid library, 20 uL 5X Kapa Fidelity Buffer, 3 uL Kapa dNTPs, 5 uL 10X SYBR Green I, 2 units
1568 Kapa HiFi HotStart DNA polymerase, and 0.5 uM each of primers jklab0343 and jklab0344. We
1569 indexed with standard Illumina primers and sequenced the library on a NovaSeq 6000.

1570 To create the final plasmid-based MPRA library, we cloned a 350-bp MYBPC2 promoter fragment
1571 (annotated by ENCODE, hg38, chr19:50432668-50433017) into the barcoded oligo-containing assembly
1572 (3:1 molar ratio of promoter insert:backbone) using BsaI-mediated Golden Gate assembly. We incu-
1573 bated the assembly reaction with the following program: [37°C x 5 min, 16°C x 5 min] x 30, 60°C
1574 x 5 min. We performed a secondary digest with 1 U AsiSI to remove promoter-less assemblies, then
1575 cleaned with 0.8X SPRI beads and eluted in 10 uL of LoTE. We transformed as above, but expanded
1576 only 10% of the transformant pool in 150 mL of ampicillin-containing LB to bottleneck to ~10⁶ unique
1577 barcodes.

1578 We performed a final restriction cloning step to move the assembled MPRA block (barcoded oligo,
1579 promoter, GFP) to the lentiviral transfer plasmid. We separately incubated the plasmid-based MPRA
1580 library and the lentiviral transfer backbone with EcoRI and SbfI for 1 hour, then gel purified our
1581 fragments of interest. We incubated the insert and backbone (3:1 molar ratio) with T4 DNA ligase for
1582 10 minutes at room temperature and SPRI cleaned assemblies with 0.8X beads. Transduction-ready
1583 lentivirus was created by the University of Michigan Viral Vector Core.

1584 **MPRA experiment**

1585 We maintained LHCN-M2 human skeletal muscle myoblasts on 0.1% porcine gelatin coated dishes in
1586 manufacturer's suggested medium (4:1 high glucose DMEM:Medium 199, 15% FBS, 20 mM HEPES,
1587 3 ug/mL zinc sulfate, 1.4 ug/mL vitamin B12, 55 ng/mL dexamethasone, 2.5 ng/mL HGF, and 10
1588 ng/mL bFGF).

1589 Per replicate, we infected 4 x 106 cells with lentivirus at an MOI of ~10 with 4 ug/mL polybrene.
1590 We passaged cells twice, then began differentiation 7 days after initial infection. We differentiated
1591 cells by performing daily media changes with differentiation media (DMEM 1 g/L glucose + 2% heat-
1592 inactivated horse serum). After 7 days of differentiation (i.e., 14 total days since infection), we lysed
1593 cells with 1.5 mL beta mercaptoethanol-containing Qiagen Buffer RLT Plus. We triturated the cell
1594 lysates with a syringe and 18-gauge needle 10 times to homogenize, then stored homogenized lysates
1595 at -80°C until nucleic acid extraction.

1596 **MPRA sequencing**

1597 We used the Qiagen AllPrep RNA/DNA mini kit with four columns per replicate to isolate RNA
1598 and gDNA. We synthesized cDNA with 150 ug of DNase-treated RNA using SuperScript IV reverse
1599 transcriptase and 100 nM custom GFP-targeted RT primer (jklab0363) containing a 15 bp UMI. We
1600 PCR amplified the cDNA with 500 nM primers jklab0268 and jklab0356 with NEB 2X Q5 HF HotStart
1601 PCR mastermix with the following program: 98°C x 1 min, [98°C x 10 sec, 60°C x 30 sec, 72°C x 1
1602 min, plate read, 72°C x 8 sec] x 20, 72°C x 5:00. We added adapters and PCR amplified the gDNA
1603 samples using an analogous protocol. We performed sample indexing using standard Illumina P5 and
1604 P7 barcoding primers, then performed molar pooling and sequence samples on a NovaSeq 6000 (2 x
1605 150 bp reads).

1606 **MPRA data analysis**

1607 To create the oligo-barcode pairing dictionary, we used a custom pipeline based on bwa v0.7.17 (3) to
1608 merge paired-end 150 bp reads. We extracted the barcodes. We then used minimap2 v2.24 (4) to align
1609 merged oligo reads against our reference FASTA file containing the expected oligo sequences. After
1610 filtering, we created a final table with oligo-barcode pairs and removed any duplicate barcodes.

1611 For cDNA and gDNA barcode counting, we used cutadapt v4.3 (5) to trim sequencing adapters and
1612 constant sequences, UMI-tools v1.1.2 to cluster UMIs (6), and starcode v1.4 (7) to cluster and count
1613 deduplicated oligo barcodes. We merged these barcode counts with the pairing dictionary, requiring an
1614 exact match between the cDNA/gDNA barcode counts and the paired barcode. Finally, we calculated
1615 the sum of all barcode counts associated with a given oligo within a sample.

1616 Prior to statistical modeling, we required a raw count mean $\bar{x} = 25$ across all cDNA samples to
1617 remove any lowly expressed oligos. We estimated oligo activity and allelic bias using DESeq2 (8) with
1618 normalized read counts. We fit a nested fixed effects model as described previously (9).

1619 To extract effects due to enhancer activity (RNA vs. DNA), we used linear contrasts between the
1620 cDNA and gDNA levels for a given replicate. To estimate allelic bias (reference vs. alternate allele),
1621 we used a linear contrast between the cDNA and gDNA counts for the reference and alternate alleles.
1622 We report the Benjamini-Hochberg FDR here to adjust for multiple testing.