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Abstract

Skeletal muscle, the largest human organ by weight, is relevant in several polygenic metabolic traits
and diseases including type 2 diabetes (T2D). Identifying genetic mechanisms underlying these traits
requires pinpointing cell types, regulatory elements, target genes, and causal variants. Here, we use ge-
netic multiplexing to generate population-scale single nucleus (sn) chromatin accessibility (snATAC-seq)
and transcriptome (snRNA-seq) maps across 287 frozen human skeletal muscle biopsies representing
nearly half a million nuclei. We identify 13 cell types and integrate genetic variation to discover >7,000
expression quantitative trait loci (eQTL) and >100,000 chromatin accessibility QTLs (caQTL) across
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cell types. Learning patterns of e/caQTL sharing across cell types increased precision of effect esti-
mates. We identify high-resolution cell-states and context-specific e/caQTL with significant genotype
by context interaction. We identify nearly 2,000 eGenes colocalized with caQTL and construct causal
directional maps for chromatin accessibility and gene expression. Almost 3,500 genome-wide associa-
tion study (GWAS) signals across 38 relevant traits colocalize with sn-e/caQTL, most in a cell-specific
manner. These signals typically colocalize with caQTL and not eQTL, highlighting the importance
of population-scale chromatin profiling for GWAS functional studies. Finally, our GWAS-caQTL colo-
calization data reveal distinct cell-specific regulatory paradigms. Our results illuminate the genetic
regulatory architecture of human skeletal muscle at high resolution epigenomic, transcriptomic, and
cell-state scales and serve as a template for population-scale multi-omic mapping in complex tissues

and traits.

1 Introduction

Skeletal muscle, the largest organ in the adult human body by mass (>40%)!, facilitates mobility,
sustaining life functions, and influences quality of life. Beyond its mechanical functions, skeletal muscle
plays a central role in metabolic processes, particularly in glucose uptake and insulin resistance!~®.
Metabolic diseases and traits, such as type 2 diabetes (T2D), fasting insulin, waist-to-hip ratio (WHR),
and others are complex and polygenic, involving a multitude of genetic factors. Genome-wide associ-
ation studies (GWAS) have identified thousands of genetic signals associated with these diseases and

6-11 " However, ~90% of these variants lie within non-coding regions!?

traits , are enriched to overlap
tissue-specific enhancers, and are therefore expected to regulate gene expression®13715. Additionally,
GWAS loci are often tagged by numerous variants in high linkage disequilibrium (LD), and can harbor
multiple causal variants'6. For these reasons, identifying the biological mechanisms and pinpointing
causal variants in GWAS loci remains challenging.

Information encoded in DNA, which is largely invariant across cells in the body, likely percolates
through several molecular layers to influence disease. The mostly non-coding genetic variation identified
through GWAS likely has the most proximal effect on the molecules bound to DNA (epigenome), which
in turn can influence the expression of target genes (transcriptome), and then levels of proteins, all of
which can vary by the cell type'”. This molecular cascade is not completely unidirectional and it is
dynamic in nature. For example, changes in expression of a transcription factor (TF) can feed back to
changes in the epigenome. The epigenome and the transcriptome layers are therefore valuable to gain
insights about gene regulation. One approach to link these layers with GWAS is through identification
of quantitative trait loci (QTL) for epigenomic modalities such as chromatin accessibility QTL (caQTL)
and gene expression quantitative trait loci (eQTL) followed by testing whether common causal variants
underlie the molecular QTL and GWAS signals (i.e. if the signals are formally colocalized)6:1828,
Previous studies profiling the epigenome and transcriptome in bulk skeletal muscle across hundreds

2931 How-

of samples identified expression and DNA methylation QTLs and provided valuable insights
ever, bulk skeletal muscle profiles are dominated by the most prominent muscle fiber types, and other
less abundant but relevant cell types are largely missed. Several resident cell types are essential for

3

muscle function®. For example, muscle fibro-adipogenic progenitors (FAPs) are resident interstitial

stem cells involved in muscle homeostasis and along with muscle satellite cells, regulate muscle regener-

ation32 35

. Diabetes and obesity not only lead to structural and metabolic changes of the muscle fibers
but also exert detrimental effects on these progenitor cells?®38. Endothelial cells and smooth muscle
cells comprise the muscle vasculature which is another important component in diabetes-associated
complications, involving insulin uptake3. Immune cells are also critical, especially following injury?°.

Recent studies have generated reference epigenome and transcriptome maps in human skeletal muscle at
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a single-nucleus/single-cell resolution*! 44, However, population-scale studies are imperative to identify
e/caQTL within each cell type to enable exhaustive interrogation of mechanistic signatures underlying
GWAS signals. To date, there is no single-nucleus/cell resolution population-scale study that maps
e/caQTL in hundreds of samples.

We hypothesize that single-nucleus epigenome (snATAC-seq) and transcriptome (snRNA-seq) pro-
filing across hundreds of genotyped samples will help identify the appropriate cell type, regulatory
elements, target genes, and causal variants(s) in elucidating context-specific regulatory mechanisms
within skeletal muscle. In this work, we perform snRNA-seq and snATAC-seq across skeletal muscle
samples from 287 Finnish individuals®?. We integrate these molecular profiles with genetic variation
to identify cell-specific eQTL and caQTL. We further integrate the e/caQTL signals with GWAS by
testing for colocalization and infer the chain of causality between these modalities using mediation
analyses, and highlight our findings with orthogonal methods at multiple example loci.

2 Results

2.1 snRNA and snATAC profiling and integration identifies 13 distinct cell type
clusters

We generated a rich dataset of snRNA and snATAC across 287 frozen human skeletal muscle (vastus
lateralis) biopsies from the FUSION study?® (Figure 1A), as part of a larger study with 408 total
samples including three separate smaller cohorts. We processed the samples in ten batches of 40 or 41
samples multiplexed together using a randomized block study design to balance across experimental
contrasts of interest (cohort, age, sex, BMI, oral glucose tolerance test (OGTT), Figures SIA-S1E).
We also included multiome data (snRNA and snATAC on the same nucleus) for one muscle sample to
help assess our cross-modality clustering. We performed rigorous quality control (QC) of all nuclei and
only included those deemed as high-quality (Methods). This led to a total of 188,337 pass-QC RNA
nuclei and 268,543 pass-QC ATAC nuclei (Figures S1F-S1J, Figures S2A-S2D, Figures S3A-
S3E). As expected, there is a strong correlation across samples for the number of pass-QC RNA and
ATAC nuclei (Figure S3F), and nuclei counts correlate with the initial weights of the tissue samples
(Figure S3QG), indicating that our genetic demultiplexing and QC recovered high-quality nuclei in
expected proportions. Collectively, we generated total N = 625,722 high-quality RNA or ATAC nuclei
from all 408 samples, and in this work we analyze N = 456,880 nuclei from the 287 FUSION and one
multiome sample.

We jointly clustered the snRNA and snATAC data, while avoiding batch and modality-specific
effects using Liger*>*6 (Figure S4A). We identified 13 distinct clusters representing diverse cell types
(Figure 1B) that ranged in abundance (Figure 1C) from 34% (type 1 fiber) to <1% (macrophages).
The aggregate cell-specific profiles provide clear evidence of muscle tissue heterogeneity (Figure 1D).
When treating the multiome RNA and ATAC modalities separate and integrating across them, we
found that 82.8% of the non-muscle fiber multiome nuclei had the same RNA and ATAC cluster

assignments (Figure S4B). This is consistent with previous multiome studies*"+48

(Supplementary
note); for example, integrating 92 brain snATAC+snRNA samples (19 of which were multiome) obtained
79.5%-85% concordant cluster assignments depending on the clustering approach?®.

The annotated clusters showed expected patterns of expression for known marker genes (Figure 1E,
Figure S4C). We merged the five closely-related muscle fiber types 1, 2a, 2x, mixed and neuro-
muscular junction (NMJ) together and annotated them as “muscle fiber” and identified 1,569 cell-
specific genes using pair-wise differential gene expression analyses (Figure 1F). Relevant gene ontology

(GO) terms were enriched in these cell-specific genes (Figure 1G), for example, muscle system process
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Figure 1: snRNA and snATAC -seq data generation and integration identifies 13 high

quality cell-type clusters

(A) Study design including sample processing, snRNA and snATAC -seq profiling, and analyses. (B) UMAP plot showing
the 13 identified clusters after jointly clustering the snRNA and snATAC modalities. (C) Cluster abundance shown as
percentage of total nuclei. (D) Cluster proportions across samples and modalities. Bottom row denotes the processing
batch number (1-10) for samples, indicating that the proportions are not driven by batch effects. (E) Gene expression (post
ambient-RNA adjustment) in clusters for known marker genes for various cell-types. (F) Identification of cell-type-specific
genes across clusters. Five related muscle fiber clusters (type 1, 2a, 2x, neuromuscular junction and muscle fiber mixed
were taken together as a“muscle fiber” cell type). (G) GO term enrichment for cell-type-specific genes identified in (F),
showing two GO terms for each cluster. (H) snATAC-seq profiles over known marker genes in clusters. (I) Comparison of
snATAC-seq peaks identified for clusters in this study with reference data across various cell-types from the Zhang et al.
[42] scATAC-seq atlas. Gray cells denote no overlaps between cell-type specific peaks in our dataset and those in the

Zhang et al dataset.
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and muscle contraction terms for muscle fiber and regulation of lipolysis in adipocytes and familial
partial lipodystrophy terms for the adipocyte cluster.

The ATAC modality also showed clear patterns of chromatin accessibility over known marker genes
for various cell types (Figure 1H). We optimized ATAC peak calls to be of similar statistical power,
reproducible, and non-redundant across clusters to create a harmonized list of 983,155 consensus peak
summits across the 13 cell types (Methods, Figures S5A-S5D). We compared our snATAC profiles
with reference snATAC data from 222 cell types from a previous study*?. Our snATAC peaks were
enriched to overlap peaks identified in related cell types (Figure 1I), which reinforces the quality of
our cluster labels using the independent ATAC modality. We identified 95,442 snATAC peaks that
were specific for a cell type cluster (Figure S5E). We computed chromatin co-accessibility between all
peak pairs within 1Mb in each cluster using Cicero?”, which enabled peak to gene TSS links.

DNA-binding motifs for cell type-relevant TFs were enriched in these cluster-specific peaks (Fig-
ure S5F). For instance, motifs for the myocyte enhancer factor 2 (MEF2) family of TFs that are
known regulators of skeletal muscle development and function®”%! were enriched for muscle fiber peaks;
motifs for the SRY (Sex Determining Region Y)-related HMG box of DNA binding (SOX) TFs, im-

52-54 were enriched

plicated in endothelial differentiation and endothelial-mesenchymal cell transitions
in endothelial-specific peaks. Specifically expressed TF genes appeared to drive corresponding TF mo-
tif enrichment in cluster-specific peaks (Figure S6). For example, PAX7 gene, critical for satellite

% is expressed with high specificity in muscle satellite cells and PAX7 TF motifs are en-

cell function®
riched in satellite cell specific peaks. Other examples included known TF regulators such as SPI1 in
macrophages®®, EB1 in adipocytes®”, and GATA2 for endothelial®® cells. This analysis revealed LHX6
- known for its role in cortical interneuron development®?:%9 - as another key endothelial cell regulator.
Collectively, these data demonstrate the high-quality of our snRNA and snATAC profiles and data

integration.

2.2 Integrating genetic variation with snRNA and snATAC profiles identifies thou-
sands of e/caQTL

We next identified genetic associations with gene expression and chromatin accessibility QTL (e/ca
QTL) in clusters. Optimizing QTL discovery (Figures STA-S7B, Figures S8A-S8B), we identi-
fied 7,062 eQTL and 106,059 caQTL across clusters (Figures 2A-2B, Figure S7C, Figure S8C).
2,452 eQTL (34.7%) and 37,095 caQTL (34.5%) were only detected in one cluster (Figure S7C, Fig-
ure S8C), which is attributable to cell-type specific effects but also differences in power to detect QTL
in clusters. Despite differences in power, the e/caQTL effect sizes were highly concordant across clus-
ters (Figure S7D,Figure S8D). Out of 4,206 unique eGenes identified in our sn-eQTL, 1,014 (24%)
were not identified in bulk skeletal muscle eQTL??. Notably, out of 2,452 cell-type specific eGenes,
720 (29.4%) were not identified in bulk skeletal muscle eQTL, highlighting the novel findings in our
sn-eQTL scans. Down-sampling analyses in type 1 fibers showed an almost linear increase in detectable
QTL with the number of samples and number of nuclei, which could be a useful benchmark while
designing future studies Figures S9A-S9E.

Figure 2C shows an example type 1 caQTL signal (P = 1.1x10°%) where the caQTL SNP (caSNP)
rs12636284 lies within the caQTL peak (caPeak), and the C allele is associated with higher chromatin
accessibility. This caQTL is also identified in FAPs (P = 2.4x107*%), and the peak is shared across
multiple clusters (Figure 2D). We identified cluster-specific caQTL even for peaks shared across cell
types, indicating context-specific genetic effects on chromatin accessibility. For example, Figure 2E
shows a caQTL identified in FAPs (~5% ATAC nuclei) and not type 1 fibers (~30% ATAC nuclei), even
when the overall peak was comparable in size between the two clusters (Figure 2E, aggregate cluster
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snATAC tracks). Additionally, we identified cluster-specific peaks as caQTL (Figure 2F). caPeaks in
clusters were enriched to overlap TF motifs relevant to the corresponding cell type (Figure S8E).

We next asked if the genetic regulatory signatures from our caQTL scans recapitulate patterns of
TF binding. Most TFs bind accessible chromatin regions by recognizing specific DNA motifs. For
genetic variants within bound activator motifs, the allele preferred by the TF should be preferentially
associated with higher chromatin accessibility?*. In Figure 2G, we show the known position weight
matrix (PWM) for the TF motif BACH_1 (row 1). We considered all BACH_1 motif occurrences across
snATAC peaks in type 1 fibers that also overlapped caSNPs, and used the caQTL allelic fold change
(aFC) to quantify alleles associated with higher chromatin accessibility (“favored alleles”). We then used
these favored alleles to genetically reconstruct the PWM (Figure 2G, row 2) (Figure 2G, row 3) and
found it closely matches the canonical motif PWM (Figure 2G, row 1), providing a caQTL-informed in
vivo verification of the cognate PWM. To further verify that the caQTL-based genetically reconstructed
PWM does not simply reflect the allelic composition of SNPs in motifs, we constructed the PWM using
the allele count for all heterozygous SNPs observed in the BACH_1 motif occurrences in snATAC
peaks (Figure 2G, row 4,5). The resulting PWM had low information content and little similarity to
the cognate motif (Figure 2G, row 4,1). Several other examples of caQTL-informed reconstructions,
including for motifs relevant for muscle (MYF6, MYOD1), chromatin architecture (CTCF), and other
motifs enriched to occur in type 1 caPeaks (Figure S8E) are shown in Figure S1I0A. PWM motifs
were highly concordant with caQTL allele preferences. Motifs enriched in caPeaks across cell types had
a higher fraction of caQTL alleles consistent with PWM base preferences than the non-enriched motifs
(Figure S10B). Overall, these results demonstrate how high-quality snATAC and caQTL information
can provide base-resolution insights into TF binding and regulation.

Given our deep caQTL results, we next compared caPeaks to snATAC peaks in the same cell types
from reference atlas datasets. We reasoned that for caPeaks where the more commonly occurring
caSNP allele is associated with lower chromatin accessibility, the caPeak is more likely to be missed in
reference datasets that usually only include one or a few representative tissue samples and therefore
do not capture population-scale genetic effects. We additionally reasoned that caPeak reproducibil-
ity in reference atlases will be lower for large effect-size caSNPs when the allele associated with high
chromatin-accessibility occurs rarely in the population. Figure 2H delineates this observation com-
paring type 1 fiber caPeaks with the Zhang et al. [42] snATAC atlas type 1 fiber peaks. Even with
moderate effect sizes and allele frequencies, the snATAC caPeak was missed in the snATAC atlas about
equally as often as it was observed (Figure 2H). Overall, this observation underscores the impor-
tance of population-scale snATAC studies to exhaustively identify regulatory elements in the human
population.

To examine the local chromatin context, we compared chromatin state patterns at e/caQTL in
muscle fibers. Type 1 caPeaks were enriched to overlap TSS and enhancer chromHMM states in skeletal
muscle (Figure S8F). We contrasted two classes of functional regulatory elements, the active T'SS
chromHMM state that constitutes shared and cell type-specific promoter elements and stretch enhancers
that constitute cell identity enhancer elements'®61:62 Type 1 fiber eSNPs occurring in the skeletal
muscle active TSS chromHMM state had higher eQTL absolute aFC than eSNPs occurring in stretch
enhancers (Figure 2I, P = 3.56x102), whereas, type 1 fiber caSNPs occurring in stretch enhancers
had higher caQTL absolute aFC than caSNPs in active TSS states (Figure 21, P = 2.69x10753). These
results suggest that eQTL scans identify signals largely in proximal gene promoter regions, whereas
caQTL scans are able to identify signals in distal and cell-specific regulatory elements, elucidating an
important distinction in the two modalities. Collectively, these results reinforce the importance of
joint snRNA and snATAC profiling along with e/caQTL analyses to gain mechanistic insights into the
genetic regulation of gene expression and distal regulatory element accessibility.
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2.3 Identifying patterns of shared and cell-type specific e/caQTL signals across
clusters

Following our e/caQTL discovery within each cell-type cluster, we sough to learn patterns of shared
QTL signals across clusters to increase power and obtain more precise QTL effect estimates. We used
multivariate adaptive shrinkage (mash,%%), an empirical Bayes hierarchical modeling approach that
learns correlations among (usually sparse) QTL effects across cell-types. Mash provides posterior effect
estimates and the local false sign rate (lfsr) as a condition-specific measure of significance which is a
more stringent analog of FDR since it requires effects to be both non-zero and correctly signed3. This
multivariate approach identified more e/caQTL (Ifsr<5%, Figures 3A-3B) than the initial univariate
approach (Figures 2A-2B). NMJ cluster - which represents a small but distinct subset of muscle
fiber nuclei at the synaptic junction with motor nerve ends saw the most increase in the significant
e/caQTL, since most signals would be shared with the larger type 1, 2a and 2x muscle fiber clusters.
NMJ e/caQTL also showed high pairwise QTL sign sharing with other muscle fibers (Figures 3C—
3D). Figures 3E-3F show example eQTL and caQTL where the mash approach identifies significant
effects (orange, confidence intervals don’t overlap 0) in the NMJ and other lower-abundance cell-types,
learning shared patterns, while also identifying truly cluster-specific e/caQTL. These results show that
learning from data across clusters can increase power for e/caQTL discovery.

2.4 Identifying context-specific e/caQTL

We next sought to identify context-specific e/caQTL effects while considering individual nucleus pro-
files. We sub-clustered the endothelial ATAC and RNA nuclei while defining five latent factors using
liger, and identified four distinct endothelial cell contexts: capillary, arterial, venous and lymphatic
(Figure S11A, Figure 4A). We then utilized the endothelial subclusters as discrete context and the
latent factors as a continuous context for nuclei to test for genotype by context (GxC) interactions
in a linear mixed model using CellRegMap%. All 198 eQTLs identified previously in the endothelial
cell-type pseudobulk analyses (Figure 2B) showed significant (P<0.05) and highly correlated addi-
tive genetic (G) effect in the nucleus-level scan (P) (Figure S11B). Notably, using the five factors as
continuous context provided higher resolution and identified more GxC interactions (92 eGenes) than
discrete subcluster contexts (87 eGenes) (Figure S11C, Figure 4B). Nucleus-level caQTL modeling
was impractical due to the high sparsity of the snATAC data. Therefore, we computed pseudobulk
sample peak counts in each endothelial snATAC subcluster, and tested for a GxC interaction with
subclusters as context for the 4,518 caPeaks identified in the initial pseudobulk scan (Figure 4C).
These analyses identified 94% (n=4,279) of the caPeaks with significant and correlated additive G ef-
fects with the pseudobulk endothelial caQTL scan (Figure S11D). 43% (n=1,960) caPeaks showed
significant GxC interaction effects (Figure 4D). These analyses demonstrate the exciting potential of
snRNA /snATAC data in identifying high-resolution context-specific e/caQTL effects.

2.5 e/caQTL finemapping, colocalization and causal inference informs cell-specific
multi-omic genetic regulation

We performed genetic finemapping to identify independent e/caQTL signals and generate 95% credible
sets using the sum of single effects (SuSiE) approach®. 284 out of 7,062 eQTL and 4,671 out of
106,059 caQTL signals could be finemapped to a single variant in the 95% credible set (Figures 5A—
5B). eSNPs occurring in snATAC peaks and caSNPs occurring in the corresponding caPeaks have
higher finemapping posterior inclusion probability (PIP) in the e/caQTL signal credible sets, which
reinforces the quality of our e/caQTL scans and the utility of finemapping to nominate causal e/caSNPs
(Figures 5C-5D). We next tested if the eQTL and caQTL signals shared causal variant(s), i.e. if the
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Figure 3: Learning patterns of e/caQTLs signal sharing across clusters inform effect
estimates

(A) Fitting a mash model and estimating effects across clusters, UpSet plots show the number of shared and specific
eGenes, and (B) caPeaks at a local false sign rate (Ifsr)< 5%. (C) Fraction of eQTL or (D) caQTL effect estimates
with the same sign for each pair of clusters. (E) Example eQTL and (F) caQTL showing original effects (slope) from
the QTL scan and the effects estimated from mash. Bars show 95% confidence intervals. For the original eQTL results,
standard errors are calculated from qvalues correcting for the total numbers of features tested after a Benjamini-Hochberg
correction (hence equivalent of Mashr Ifsr). For the Mashr results, estimate is the posterior mean, and error bars depict
+ 1.96 * posterior standard deviations. Orange color highlights estimates where CIs don’t overlap zero.
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Figure 4: Identifying state-specific e/caQTL in endothelial cluster by testing genotype by
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(A) Subclustering of the endothelial nuclei. Left: snRNA UMAP plot showing discrete subcluster contexts; right: snRNA
UMAP plots show five latent factors as continuous contexts. (B) eGene examples with significant GxC interaction with
subclusters (left) or factors (right) as context. (C) snATAC UMAP plot showing endothelial subclusters. Due to sparsity of
snATAC data, counts were pseudobulked by sample within each subcluster prior to testing for GxC interaction. (D) caPeak
examples with significant G x subcluster interaction.
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e/caQTL signals were colocalized using coloc v5!? (Figure 5E). We identified colocalized caQTL signals
(coloc posterior probability for shared variant(s) (PPH4) > 0.5) across clusters for 1,990 eGenes; the
majority (60%) of these e-caQTL colocalizations were cluster-specific (Figure 5E). Notably, while we
detected fewer e/caQTLs in lower abundance cell-types like endothelial cells and FAP relative to muscle
fibers, a larger percentage of these e/caQTLs colocalize with eGenes in only one cell-type (Figure S12),
suggesting that QTL colocalization identifies cell-specific regulatory signals. Several relevant TF motifs
were enriched in caPeaks that colocalized with an eQTL relative to caPeaks that did not colocalize
(Figure 5F); for example, the motif for NKX2-5, a regulator of skeletal muscle differentiation%® is
enriched in colocalized caPeaks in muscle fibers. These results suggest that e-caQTL colocalizations
nominate biologically relevant gene regulatory mechanisms and emphasizes the value of our sn-e/caQTL
catalog.

For colocalized e/caQTL signals, we inferred the causal relationship between chromatin accessi-
bility and gene expression using causal inference tests (CIT) and Mendelian randomization (MR) ap-
proaches®” % (Figure 5G). We tested if chromatin accessibility mediates the effect of genetic variation
on gene expression (Figure 5G, row 1, “ca-to-e”), or if gene expression mediates the effect of genetic
variation on chromatin accessibility (row 2, “e-to-ca”), compared to a model consistent with pleiotropic
effects (row 3). In these analyses, “causal” implies that variance in the mediator determines some
proportion of the variance in the outcome®”. Since measurement errors in the molecular phenotypes
can affect causal inference, we conservatively required consistent causal direction reported by both the
CIT and the MR Steiger directionality test, and also performed sensitivity analyses that measured how
consistent the inferred direction was over the estimated bounds of measurement error® (Figure S13A).

We discovered 1,061 colocalized e/caQTL signal pairs as ca-to-e or e-to-ca (consistent CIT and MR
Steiger directionality test, 5% FDR Figure 5G). The e-to-ca model may represent gene expression
effects on chromatin accessibility for caPeaks within the body of the transcribed gene. To test this
hypothesis, we modeled the inferred causal direction in a logistic regression coding e-to-ca as 1 and
ca-to-e as 0, adjusting for caPeak height (reads per million mapped reads, RPM), eGene expression
level (transcripts per million mapped reads, TPM), caPeak GC content and a binary variable specifying
if the caPeak was located within the eGene body. This model fit was better than a model without the
caPeak-within-eGene body term (likelihood ratio test P = 1.5e-4). We found that e-to-ca caPeaks
occurred within the eGene body significantly more than ca-to-e caPeaks (regression coefficient = 0.79,
P = 2.47x107; Figure 5H), indicating that colocalized e/caQTL caPeaks in the gene body are more
likely to be influenced by the act of transcription across the underlying DNA region. ca-to-e caPeaks
were higher (CPM) than e-to-ca caPeaks (coefficient = -0.72, P = 9.15x107'2), whereas e-to-ca eGenes
were more highly expressed than ca-to-e eGenes (coefficient = 0.31, P = 9.36x107).

High PIP caSNPs were more likely to occur within ca-to-e caPeaks than e-to-ca caPeaks (Figure 51I),
consistent with expectation for caPeaks that are causal on eGenes. For TSS-distal ca-to-e caPeaks where
additional caPeaks were identified in TSS+1kb upstream region of the eGene (Figure 5J), the distal
caPeak was often causal on the TSS-caPeak as well (Figure S13B), Fisher’s exact test P = 4.0x1077).
For example, a distal caPeak ~7.6 kb from the GSDME gene TSS is causal on both GSDME gene
expression (CIT P = 5.4x107%) and a TSS-caPeak accessibility (CIT P = 4.2x10°) (Figures 5K-5M).
These analyses support an enhancer model for the ca-to-e caPeaks where the caSNP affects chromatin
accessibility at the TSS-distal caPeak that then regulates gene expression.

We highlight a locus on chromosome 8 where two independent caQTL signals for a caPeak tagged by
caSNPs rs700037 and rs1400506 (Figure S13C), both of which lie within the caPeak (Figure S13D)
are colocalized with two independent eQTL signals for the lincRNA gene AC023095.1 (PPH4 0.99 and
0.76). This caPeak is specific for the type 1 fiber cluster (Figure S13D). Considering the independent
signals as instruments, we identified the caPeak to be causal on the AC023095.1 gene expression (CIT
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Figure 5: e/caQTL finemapping, colocalization and causal inference informs regulatory

grammar in clusters

(A) Fraction of finemapped eQTL and (B) caQTL signals by the 95% credible set size. Probability of (C) eSNPs overlapping
snATAC peaks relative to the eSNP PIPs; and (D) caSNPs overlapping the caPeak relative to the caSNP PIPs. Gray lines
and confidence intervals are obtained after from shuffling e/caSNP PIPs. (E) eQTL-caQTL pairs with lead SNPs within
100kb in each cluster were tested for colocalization. Heatmap shows the posterior probability of shared causal variant (PP
H4) from coloc v5. (F) TF motif enrichment in caPeaks that colocalize with eGenes relative to all caPeaks in a cluster.
Clusters with at least 100 colocalized caPeaks are shown. * denotes significant logistic regression coefficient (5% FDR).
(G) For each colocalized eGene-caPeak pair, causal inference tests (CIT) can inform the causal direction - Chromatin
accessibility over gene expression (ca-to-e) or vice versa (e-to-ca) using e/ca SNPs as instrument variables. Barplot shows
the percentage of colocalized eGene-caPeak pairs where the putative causal direction could be determined consistently
from CIT and MR Steiger directionality test (5% FDR). (H) (I) (J) (K) (L) (M) continued on the next page.
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Figure 5: continued

(H) Logistic regression modeling the causal direction between caPeak-eGene pairs with whether the caPeak lies within the
eGene body, along with eGene expression (TPM,) caPeak height (RPM), and GC content. (I) Probability that a caSNP
lies in the caPeak relative to caSNP PIP bins. Colors depict if the caPeak was inferred as ca-to-e or e-to-ca from CIT.
(J) Where multiple caPeaks colocalize with an eGene, CIT can help delineate causal direction. (K) At the GSDME locus,
caQTLs for a distal-peak and a TSS-peak both colocalized with the eQTL. Type 1 snATAC-seq signal track by rs10276677
genotype at this locus shows the distal-caPeak, T'SS-caPeak and the GDSME gene TSS. Aggregate snATAC-seq in clusters
are shown below. (L) Locus-zoom plots show the distal-caQTL, TSS-caQTL and the GDSME eQTL. (M) Causal inference
between the distal-caPeak, TSS-caPeak and the GDSME gene using rs10276677 as the instrument variable. Boxplots show
inverse normalized chromatin accessibility or gene expression relative to the alternate allele dosages at rs10276677 before
and after regressing out the corresponding modality.

P value 2.11x10°7) (Figure S13E). Collectively, these results demonstrate how signal identification,
finemapping, colocalization and causal inference analyses illuminate cell-specific causal event chains for
the regulatory element, target gene and causal variant(s).

2.6 Cell-specific e/caQTL and GWAS signal integration to inform disease/trait
regulatory mechanisms
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Figure 6: Enrichment of GWAS traits in cluster snATAC peaks

(A) GWAS enrichment in cluster snATAC peak features. Heatmap shows the LDSC regression coefficient Z scores.
(B) T2D GWAS Enrichment fin type 1 fiber snATAC peaks that contain a caSNP or eSNP or peaks that do not overlap
e/caSNPs. Error bars represent the 95% confidence intervals. * = FDR < 5% on the regression coefficient, and . = FDR
< 5% on the heritability enrichment.

To identify mechanisms underlying disease/trait associations, we integrated our e/caQTL signals
with GWAS signals. We considered 302 publicly available disease/trait GWAS datasets from the UK
Biobank (UKBB), along with 17 other GWAS datasets that included other skeletal muscle-relevant
diseases/traits such as T2D, fasting insulin, WHR, body mass index (BMI), creatinine, and others.
To further assess the relevance of skeletal muscle regulatory elements in T2D and related metabolic
trait heritability, we profiled the histone marks H3K27ac (associated with enhancer and promoter
activity) and H3K27me3 (associated with repressed chromatin) using CUT&Tag in skeletal muscle
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tissue. Enrichment of H3K27ac signal at TSSs of highly expressed genes confirmed the high-quality
of this dataset (Figures S14A-S14H). We used stratified-LD score regression (S-LDSC) to compute
GWAS enrichment in muscle snATAC cluster and bulk chromatin peaks™ " (Figure 6A). Muscle fiber
snATAC peaks were enriched for atrial fibrillation, creatinine, height, and pulse rate (consistent with
the previous Zhang et al. [42] study). Notably, muscle fibers were enriched for T2D, along with fasting
insulin and modified Stumvoll insulin sensitivity index (ISI) - two key measures of insulin resistance
(Figure 6A). FAPs were enriched for various traits such as waist-to-hip ratio, bone mineral density,
height, and ocular trait signals among others. Skeletal muscle H3K27ac peaks were enriched for ISI,
although to a lesser extent than the muscle fiber snATAC peaks, confirming the importance of skeletal
muscle in the insulin resistance phenotype and the added value in snATAC data over bulk chromatin
profiles. Type 1 fiber peaks containing caSNPs were enriched to overlap T2D signals whereas peaks
containing eSNPs or peaks without e/caSNPs were not enriched (after subsampling all three peak sets to
the same number of peaks) (Figure 6B). These results indicate that trait-associated genetic variants
are especially enriched in open chromatin peaks that are sensitive to genetic variation, and further
highlight the importance of sn-caQTL data in identifying key disease associated regulatory elements.
Focusing on a shortlist of 38 relevant diseases/traits, we identified 3,487 GWAS signals colocalized
with e/caQTL from our study (Figures TA-7B, Figure S15A), the vast majority (2,791 signals, 80%)
of which were GWAS-caQTL (not GWAS-eQTL) colocalizations (Figure 7C). Since coloc results can
be sensitive to the prior probability for the SNP being associated with both traits (p12), we performed
sensitivity analyses relative to the p12 prior (Figures S15B-S15D) and include the minimum pl2
prior for PPH4>0.5 as a potential QC metric for colocalization analyses. We highlight GWAS signals
for T2D, BMI, and fasting insulin that colocalize with e/caQTL across the tested clusters, both in a
shared and cell-specific manner (Figure 7D, Figures SI5E-S15F). We also identified caQTL specific
to individual muscle fiber types colocalized with several GWAS trait signals (select examples shown in
Figure S16). In addition to eQTL, we systematically integrated snATAC co-accessibility data from

49 as an orthogonal approach to nominate target genes. For each colocalized T2D GWAS signal,

Cicero
we considered if the caPeak was in the TSS region or was co-accessible with a TSS-peak of a gene; and
further if the caQTL colocalized GWAS signal had a nominal eQTL association with the nominated
target gene in that cluster (Figure 7D, bottom heatmap).

The GLI2 locus T2D GWAS signal (P = 4.2x107) is colocalized (PPH4 = 1.0) with a caQTL
identified specifically in the endothelial cells (P = 1.37x107'!, Figures S17A-S17B), and the caSNP
rs11688682 (PIP=1.0) occurs within the caPeak. While we didn’t identify any colocalized eQTL with
this GWAS signal, alternative approaches helped nominate a target gene. We employed a deep learning
framework capable of predicting the epigenome, chromatin organization and transcription (EPCOT)"
to impute high-resolution 3D chromatin contacts (Micro-C) using the endothelial ATAC profile. This
approach predicted high contacts of the caSNP-caPeak region with the INHBB gene TSS, nominating
the gene as a target (Figure S17C). Notably, we detected allelic differences in the predicted contacts,
where the homozygous high accessibility genotype (GG) showed higher contacts with the INHBB gene
than the homozygous low accessibility genotype (CC) (Figure S17D). The caPeak was co-accessible
with the T'SS peaks of genes RALB and INHBB in a genotype specific manner (Figure S17E); and
the caSNP was nominally associated with INHBB expression (P=0.02).

The ARL15 locus T2D GWAS signal (P = 7.7x107) is colocalized (PPH4 = 0.975) with an FAP-
specific caQTL (P = 2.5x107) (Figures 7TE-7F). EPCOT predicted high chromatin contact frequency
of the caSNP rs702634 region with the FST gene TSS (Figure 7G), and the predicted contacts
were higher with the homozygous high accessibility genotype (GG) compared to the homozygous low
accessibility genotype (AA) at the caSNP (Figure 7H). This FAP-specific caPeak is present in the
analogous cell type at the orthologous region in the rat genome, and its allelic enhancer activity was
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Figure 7: Integrating e/caQTL signals with GWAS informs disease/trait relevant regula-
tory mechanisms

(A) Percentage and (B) Number of GWAS signals across traits that colocalize with e/caQTL signals across the five
clusters. (C) Proportion of colocalized GWAS signals (from B) that colocalize with only caQTL or only eQTL or both
e-and-caQTL. (D) (E) (F) (G) (H) (I) (J) (K) (L) (M) (N) continued on the next page.
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Figure 7: continued

(D) Heatmaps showing T2D GWAS signal colocalization with caQTL (top) and eQTL (middle). Target gene predictions
using snATAC co-accessibility (Cicero) between colocalized caPeak and gene TSS peak are shown in the bottom heatmap.
* indicates that the GWAS hit also had a nominally significant eQTL P value for the Cicero-nominated gene in that
cluster. (E) T2D GWAS signal at the ARL15 locus is colocalized with an FAP caQTL. The genomic locus is shown at
the top, followed by zooming into a +1kb neighborhood of the caSNP rs702634. snATAC-seq profiles in five clusters by
the caSNP genotype are shown, followed by aggregate profiles across clusters. (F) Locuszoom plots showing the ARL15
GWAS signal (top) followed by the caQTL signal in five clusters. (G) Hi-C chromatin contacts at 5kb resolution imputed
by EPCOT using the FAP snATAC-seq data (shown below the heatmap) in a 1Mb region over rs702634. (H) Difference
in the predicted normalized chromatin contacts using FAP ATAC-seq from samples with the high accessibility genotype
(GG) and low accessibility genotype (AA) at rs702634. Interactions with rs702634 highlighted in black are shown as a
signal track below the heatmap. (I) Genes in the 1Mb neighborhood of the ARL15 gene. Chromatin co-accessibility scores
between the caPeak and TSS peaks for the neighboring genes, classified by genotype classes at rs702634. Distance of the
TSS peak to the caPeak in kb is shown in parentheses. (J) GWAS signals for T2D and insulin fold change (IFC) at the
C2CD4A/B colocalize with a caQTL in type 1 and type 2a fibers. The genomic locus, snATAC-seq profiles by the caSNP
genotype and aggregated profiles are shown. (K) Locuszoom plots showing the C2CD4A/B GWAS and caQTL signals.
(L) Micro-C chromatin contacts imputed at 1kb resolution by EPCOT using the type 1 snATAC-seq showing rs7163757
and the neighboring 500kb region. (M) Difference in the predicted normalized chromatin contacts by rs7163757 genotype.
Interactions with rs7163757 highlighted in black are shown as a signal track below. (N) A massively parallel reporter
assay in the muscle cell line LHCN-M2 tested a 198bp element centered on the caSNP rs7163757. Enhancer activity is
measured as log2(RNA/DNA) normalized to controls.

validated in a luciferase assay in human mesenchymal stem cells*'. The caPeak was highly co-accessible
with the FST gene TSS peak in a genotype-specific manner (Figure 7I). The nominated target gene for
this GWAS signal, F'ST, encodes follistatin, which is involved in increasing muscle growth and reducing

fat mass and insulin resistance™ 77,

The C2CD4A/B locus T2D GWAS signal (P = 2.6x107'?) colocalizes (PPH4 = 0.969, 0.966) with
caQTL signals in the type 1 and type 2a fibers (P = 1.25x1073!, 4.52x10"1%) (Figures 7J-7K). This
GWAS signal is also identified for fasting glucose and insulin fold change (IFC) post 2 hour oral glucose
tolerance test (OGTT) - a measure of insulin sensitivity”®. The caSNP 157163757 lies within the caPeak;
the T (T2D non-risk) allele is associated with higher chromatin accessibility (Figure 7J). Notably, this
caPeak was not found as a type I skeletal myocyte cis regulatory element in the Zhang et al. [42] snATAC
atlas. EPCOT predicted high chromatin contacts with the VPS13C gene TSS (Figure 7L), higher for
the high accessibility genotype (TT) compared to the low accessibility genotype (CC) (Figure 7M).
We didn’t detect an eQTL for VPS18C in muscle fibers, however, the caSNP is associated with VPS13C
expression in whole blood (GTEx) P=2.8x10""). While this caQTL is observed in muscle fibers, the
snATAC peak is strongest in the lower-abundance NMJ cluster, where co-accessibility analyses also
predict the VPS13C as the target gene (Figure 7J, Figures S17F-S17G). An siRNA-mediated
knock-down of VPS18C in an adipocyte cell line affected the cell-surface-abundance of the glucose
transporter GLUT4 upon insulin stimulation”, implicating the nominated target gene, VPSI13C, in
insulin resistance mechanisms™. We validated the enhancer activity of the caPeak 198 bp distal regu-
latory element centered on caSNP rs7163757 in a massively parallel reporter assay (MPRA) framework
in the LHCN-M2 human skeletal myoblast cell line. The T2D risk allele C showed significantly higher
activity relative to the empty vector control (P = 4.1x10™*) which was significantly higher than the
activity of the non-risk T allele (P value = 2.9x10°2, Figure 7N). Previously, Kycia et al. [80] re-
ported that rs7163757 occurred in accessible chromatin in pancreatic islets, the risk allele C showed
higher enhancer activity in rodent islet model systems, and this allele was also associated with higher
C2CD4A /B gene expression, thereby implicating this T2D GWAS signal in islet dysfunction, which
was supported by an independent publication®'. Our results highlight skeletal muscle fibers as another
key cell type where this signal could modulate the genetic risk for T2D and insulin resistance through
the VPS13C gene.

Collectively, these results demonstrate the importance of the snATAC modality and caQTL infor-
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mation in nominating mechanisms underlying GWAS associations and identifying causal variants in

disease-relevant cell types.

3 Discussion

In this study, we present population-scale single-nucleus profiling of chromatin accessibility and gene
expression on 287 frozen human skeletal muscle biopsies. We multiplexed 40 or 41 samples in each batch
using a randomized block design to control for sample variables. Demultiplexing the data downstream
using known genetic variation enabled reduced costs, helped protect against batch effects, allowed ge-
netic detection of doublets, and overall increased rigor of the work. The integration and joint-clustering
of multi-omic modalities provided a comprehensive view of the cell-specific molecular landscape within
human skeletal muscle.

We identified 7,062 eQTL and 106,059 caQTL across the clusters. Concordant e/caQTL effects
across clusters supported the high-quality of our e/caQTL scans. Chromatin accessibility directional
allelic effects discovered from the caQTL scans mirrored the DNA-binding preferences of TF motifs
which is a powerful demonstration of the depth of information snATAC and caQTL data capture.
Notably, we identified 14-fold more caQTL compared to eQTL, which can be attributed to two factors:
first, more peaks were tested for caQTL than genes for eQTL, and second, chromatin accessibility
modality is likely an overall more proximal molecular trait to genetic variation than gene expression in
the sequence of causal events, which likely contributes to the larger enhancer effects we observed and
therefore results in higher power to detect caQTL with the same sample size.

The majority (80%) of GWAS signals colocalized with only caQTL rather than eQTL, in part
because we detected many more caQTL than eQTL. As a corollary, we identified fewer triple GWAS-
caQTL-eQTL colocalizations, which limited our efforts in using eQTL to identify target genes inferring
the causal direction between omic modalities. It is becoming evident that eQTL alone fall short in fully
elucidating the regulatory architecture of GWAS loci®?®3. Our analyses revealed an intrinsic distinction
between e- and caQTLs that may help reconcile these observations. Active TSS regions contained higher
effect eSNPs compared to caSNPs whereas stretch enhancer regions, which are enriched for cell-type-
relevant GWAS signals®1384 contained higher effect caSNPs compared to eSNPs. Therefore, eQTL
scans identify signals largely in gene TSS regions, whereas caQTL scans are able to identify strong
effects in cell-specific distal enhancer elements enriched for GWAS signals.

Because complex traits are influenced by both genetic and environmental effects, examining gene
expression in the conditions most relevant for disease could be more informative. The larger genetic
effects on stretch enhancer chromatin accessibility could propagate to gene expression effects under
specific environmental conditions. Alasoo et al. [85] provided support for this hypothesis using bulk
RNA and ATAC data in a macrophage model system where ~60% of eQTL identified only under
stimulatory conditions (response eQTL) were caQTL in the basal state. Aracena et al. [86] also showed
that basal epigenomic profiles are strongly predictive of the transcriptional response to an antigen
in immune cells. Another study reported that response-eQTL overlapped basal-caQTL in a human
neural progenitor system®’. These studies, along with our data, suggest that chromatin in cell-identity
stretch enhancers is primed to potentiate changes in gene expression under relevant conditions. Future
larger studies may indeed identify more eQTLs. However, if the relevant gene is not expressed at the
basal state, an eQTL won’t be identified for caQTL variants even with increased sample size unless
the appropriate stimulatory condition is available. Notably, recent sn-multiome studies observing lower
cell-state resolution from chromatin accessibility compared to transcription also posited that cells could
retain a primed or permissive chromatin landscape that can allow dynamic state transitions in response

to relevant conditions*®:88.
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About half of GWAS-caQTL colocalizations were cluster-specific across traits, with many specific
for the lower powered (due to nuclei abundance) Endothelial and FAP clusters, which adds to the im-
portance of single nucleus chromatin accessibility profiling in identifying cell-specific genetic regulatory
elements. Our snATAC caQTL data help delineate heterogeneity in the mechanistic pathways shaping
T2D pathophysiology. We show the GLI2 signal is most relevant for endothelial cells and the ARLI15
signal targets the F'ST gene in FAPs, implicating an interplay of fat and muscle mass regulation by these
progenitor cells in T2D. We find evidence for the C2CD4A /B T2D GWAS signal, previously implicated
in islet dysfunction through inflammatory cytokine-responsive C2CD/A/B genes, to also be involved
in glucose uptake mechanisms in muscle fibers through the VPS13C gene. Cell types such as FAPs and
endothelial occur in other T2D-relevant tissues such as adipose; comparing the snRNA /snATAC and
e/caQTL profiles for these cell types from a wider array of tissues will help glean the similarities and
differences in disease mechanisms in related cell type populations. Layering sn-e/caQTL colocalization
information over GWAS signals across multiple relevant tissues will help generate a conceptual “signal
scoreboard” that can help prioritize cell types, regulatory elements, target genes and causal variants(s)
for each GWAS signal towards experimental validation.

To date, there have been some single cell/nucleus eQTL studies®® ?* few sn-caQTL studies?®9;
however, these all had modest sample sizes, and were mainly in blood cell types or cell lines. There are
no population-scale single cell/nucleus studies in skeletal muscle and none with both RNA and ATAC
modality for hundreds of samples in any tissue. Our work bridges a large gap in knowledge in that it
is the first study identifying both sn-eQTL and sn-caQTL across hundreds of samples in any tissue.
Our findings emphasize the need to consider chromatin accessibility in addition to gene expression
when investigating the functional mechanisms underlying complex traits, and serves as a template for

multi-omics maps in other tissue and disease contexts.

3.1 Limitations of the study

In our single-nucleus study, most nuclei were identified as muscle fibers; this distribution of cell type
proportions was especially skewed since muscle fibers are multi-nucleated. Lower abundance clusters
had relatively less power to identify e/caQTL. Generating single-nucleus data involves several tissue-
dependent considerations and challenges. Other examples include diseased liver that can have fibrosis
and brain that has high lipid content, both of which can make processing of frozen tissue, like in this
study, challenging. Pancreas has high levels of RNase activity which degrades the snRNA modality
quality. Comparing e/caQTL effect sizes across clusters enabled more precise effect estimates and
identified more significant associations across clusters, especially for the NMJ cluster. Instead of QTL
scans within discrete clusters, identifying contiguous cell states through latent embedding and related
approaches®? helps mitigate power issues and can identify state-specific QTLs. Approaches such
as deeper sequencing, pre-selecting relevant cell types via fluorescence activated cell sorting (FACS)
could further enrich for targeted rare cell types and allow for greater power to identify QTLs%799.
Cleaner nuclei preps with low ambient transcripts and better approaches to adjust for these would
enable retrieving more quality nuclei from rare cell types. The feasibility of these approaches again
heavily depends on the tissue. Using our down-sampling results, for 200 samples, we find that ~75
nuclei per sample yields ~1,000 eQTL and >10,000 caQTL. The number of nuclei to target in future
experiments can thus be calculated based on the expected proportion of rare cells of interest in a given
tissue. Signal upscaling via deep learning methods such as AtacWorks and PillowNet!9%101 is another
possible avenue to enhance caQTL scans in lower abundance cell types. The multiome protocol for
profiling RNA and ATAC on the same nucleus was not available when our FUSION study samples
were processed. However, it has several advantages including 1) ease in genetic demultiplexing, sample
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assignment, and clustering as these analyses can be done on one modality (eg snRNA) and can then
be mapped easily to the other modality or by weighting both modalities; 2) established cross-modality
approaches to link regulatory elements to genes. We recommend all future studies to perform multiome
profiling.

We recognize that while our findings offer cell-specific mechanistic insights at hundreds of loci,
comprehensive orthogonal testing of the identified e/caQTL associations and e/caQTL-GWAS colocal-
izations to confirm their impact on disease remains a critical step for future studies. Several studies
have demonstrated large-scale validation of existing genome-wide associations using functional allelic
MPRA assays, CRISPRi screens among others!0?7194 We demonstrate successful MPRA in the LHCN-
M2 skeletal muscle cell line, for the first time, thus providing feasibility for these future studies.

In further work, co-activity QTLs (e.g. QTLs on co-expression, co-accessibility) could provide
additional resolution to regulatory mechanisms. Cell-specific caQTL and eQTL maps could be used for
biobank-scale polygenic scoring of individuals. Collapsing caQTL peaks and eQTL genes into pathways
and aggregating pathway-level effects based on individual genotype dosages would allow for cell- and
pathway-specific polygenic scores, paving the way for partitioning tissue-agnostic polygenic risk scores
into cell-specific personalized pathophysiological risk profiles.

4 Methods

4.1 Sample collection
4.1.1 FUSION cohort

The Finland-United States Investigation of NIDDM Genetics (FUSION) study is a long-term project
aimed at identifying genetic variants that contribute to the development of type 2 diabetes (T2D) or
affect the variability of T2D-related quantitative traits. To conduct the FUSION Tissue Biopsy Study,
we obtained wvastus lateralis muscle biopsy samples from 331 individuals across the glucose tolerance
spectrum, including 124 with normal glucose tolerance (NGT), 77 with impaired glucose tolerance
(IGT), 44 with impaired fasting glucose (IFG), and 86 with newly-diagnosed T2D?.

To ensure the validity of the study results, certain individuals were excluded from the study, in-
cluding those receiving drug treatment for diabetes, those with conditions that could interfere with the
analysis (such as cancer, inflammatory diseases, or skeletal muscle diseases), those with conditions that
increase hemorrhage risk during biopsy (such as hemophilia, von Willebrand’s disease, or severe liver
disease), those taking medications that increase hemorrhage risk during the biopsy (such as warfarin),
those taking medications that could confound the analysis (for example oral corticosteroids, or other
anti-inflimmatory drugs such as infliximab or methotrexate), and those under 18 years of age.

Clinical and muscle biopsy visits were conducted at three different study sites (Helsinki, Savitaipale,
and Kuopio). The clinical visit included a 2-hour four-point oral glucose tolerance test (OGTT),
BMI, waist-to-hip ratio (WHR), lipids, blood pressure, and other phenotypes measured after a 12-hour
overnight fast, as well as health history, medication, and lifestyle questionnaires. The clinical visit was
conducted an average of 14 days before the biopsy visit.

The muscle biopsies were performed using a standardized protocol. Participants were instructed to
avoid strenuous exercise for at least 24 hours prior to the biopsy. After an overnight fast, approximately
250 mg of skeletal muscle from the vastus lateralis was obtained using a conchotome, under local
anesthesia with 20 mg/mL lidocaine hydrochloride without epinephrine. A total of 331 muscle biopsies
were collected by nine experienced and well-trained physicians at the three different study sites between
2009 and 2013, with three physicians performing the majority of the biopsies. All physicians were
trained to perform the biopsy in an identical manner. The muscle samples were cleaned of blood, fat,
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and other non-muscle tissue by scalpel and forceps, rinsed with NaCl 0.9% solution, and frozen in liquid
nitrogen within 30 seconds after sampling. Muscle samples were then stored at -80 degrees Celsius.

4.2 Sample preparation, snRNA-seq and ATAC profiling

The frozen tissue biopsy samples were processed in ten batches, each consisting of 40-41 samples. These
batches were organized using a randomized block design to protect against experimental contrasts of
interest including cohort, age, sex, BMI and stimulatory condition (relevant for a smaller cohort not
focused on in this study) (Figures S1A-S1E). Samples in each batch were pulverized in four groups
of 10 or 11 samples (each sample weighing between 6-9 mg) using a CP02 cryoPREP automated
dry pulverizer (Covaris 500001) and resuspended in 1 mL of ice-cold PBS. Following, the material
from all 40/41 samples was pooled together and nuclei were isolated. We developed a customized
protocol (protocol S1, supplementary text) derived from the previously published ENCODE protocol
https://www.encodeproject.org/experiments/ENCSR515CDW/ and used it to isolate nuclei, which is
compatible with both snATAC-seq and snRNA-seq. The desired concentration of nuclei was achieved by
re-suspending the appropriate number of nuclei in 1X diluted nuclei buffer (supplied by 10X genomics
for snATAC, and RNA nuclei buffer (1% BSA in PBS containing 0.2U/uL of RNAse inhibitor) for
snRNA). The nuclei at appropriate concentration for snATAC-seq and snRNA-seq were submitted to
the University of Michigan Advanced Genomics core for all the snATAC-seq and snRNA-seq processing
on the 10X Genomics Chromium platform (v. 3.1 chemistry for snRNA-seq). Nuclei to profile each
modality from each batch were loaded onto 8 channels/wells of a 10X chip at 50k nuclei/channel
concentration. For snRNA-seq, the libraries were single-ended, 50 bp, stranded. For snATAC-seq, the
libraries were paired-ended, 50 bp. The sequencing for each modality and batch was performed on one
NovaSeq S4 flowcell.

4.3 Muscle multiome sample

We obtained “multiome” data, i.e. snATAC-seq and snRNA-seq performed on the same nucleus for
one muscle sample as part of newer ongoing projects in the lab. We used 70mg of pulverized human
skeletal muscle tissue sample. The sample was pulverized using an automated dry cryo pulverizer (Co-
varis 500001). We developed a customized protocol (hybrid protocol with sucrose) from the previously
published ENCODE protocol, and used it to isolate nuclei for single nuclei multiome ATAC and 3’GEX
assay. The desired concentration of nuclei was achieved by re-suspending the appropriate number of
nuclei in 1X diluted nuclei buffer (supplied by 10X genomics). The nuclei at the appropriate concentra-
tion for single nuclei multiome ATAC and 3’GEX assay was processed on the 10X genomics chromium
platform. 20K nuclei were loaded on one well of the 8 well strip.

4.4 Genotyping and imputation

The FUSION cohort samples were genotyped using DNA extracted from blood on the HumanOmni2.5
4v1_H BeadChip array (Illumina, San Diego, CA, USA) during a previous study®’. The Texas and
Sapphire cohort samples were genotyped using DNA extracted from blood on the Infinium Multi-
Ethnic Global-8 v1.0 kit. Probes were mapped to Build 37. We removed variants with multi mapping
probes and updated the variant rsIDs using Illumina support files Multi-EthnicGlobal_ D1 Mapping-
Comment.txt and annotated.txt downloaded from https://support.illumina.com/downloads/1i
nfinium-multi-ethnic-global-8-vi-support-files.html. We performed pre-imputation QC
using the HRC-1000G-check-bim.pl script (v. 4.2.9) obtained from the Marc McCarthy lab website
https://www.well.ox.ac.uk/~wrayner/tools/ to check for strand, alleles, position, Ref/Alt assign-
ments and update the same based on the 1000G reference (https://www.well.ox.ac.uk/~wrayner/t
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001s/1000GP_Phase3_combined.legend.gz). We did not conduct allele frequency checks at this step
(i.e. used the —noexclude flag) since we had samples from mixed ancestries.

For all samples, we performed pre-phasing and imputation using the Michigan Imputation Server!'%?.
The standard pipeline (https://imputationserver.readthedocs.io/en/latest/pipeline/)
included pre-phasing using Eagle2!%6 and genotype dosage imputation using Minimac4 (https://gi
thub.com/statgen/Minimac4) and the 1000g phase 3 v5 (build GRCh37/hgl9) reference panel (The
1000 Genomes Project Consortium 2015). Post-imputation, we selected biallelic variants with estimated
imputation accuracy (r2) > 0.3, variants not significantly deviating from Hardy Weinberg Equilibrium

P>1e-6, MAF in 1000G European individuals > 0.05.

4.5 snRNA-seq data processing and quality control

snRNA: We mapped the reads to the human genome (hg38) using STARsolo https://github.com/a
lexdobin/STAR/blob/master/docs/STARsolo.md (v. 2.7.3a). We performed rigorous quality control
(QC) to identify high-quality droplets containing single nuclei (Figures S1IF-S1G). We required the
following criteria: 1) nUMI > 1000; 2) fraction of mitochondrial reads < 0.01; 3) identified as a “singlet”
and assigned to a sample using Demuxlet'?” 4) identified as “non-empty”, i.e. where the RNA profile
was statistically different from the background ambient RNA signal, using the testEmtpyDrops function
from the Dropletutils package!%®; and 5) passing the cluster-specific thresholds for the estimated ambient
contamination from the DecontX package!??. This led to a total of 255,930 pass-QC RNA nuclei, 180,583
from the FUSION cohort. These individual qc steps are further described below.

4.6 snATAC-seq data processing and quality control

We made barcode corrections using the 10X Genomics whitelist using an approach implemented by
the 10X Genomics Cell Ranger ATAC v. 1.0 software via a custom python script and counted the
number of read pairs from each droplet barcode. We trimmed the adapter sequences using cta https:
//github.com/ParkerLab/cta and generated updated fastqs by replacing the cellular barcodes with
the corrected cellular barcodes, while selecting reads corresponding to cellular barcodes that had at least
1000 pairs. Droplets with less than 1000 read pairs would not contain useful/high quality data from
single nuclei and so were removed from processing. We mapped the reads to the human genome (hg38)
using bwa mem (v. 0.7.15-r1140)'? with flags “-I 200,200,5000 -M”. We performed rigorous quality
control (QC) and retained high-quality droplets based on the following definitions (Figures STH-S1I):
1) 4,000 < high quality autosomal alignments (HQAA) < 300,000, 2) transcription start site (TSS)
enrichment > 2, 3) mitochondrial fraction < 0.2. For each snATAC-seq library bam file, we used the
subset-bam tool (v. 1.0.0) https://github.com/10XGenomics/subset-bam to subset for the selected
cellular barcodes, and used SAMtools to filter for high-quality, properly-paired autosomal read pairs (-f
3-F4-F8-F 256 -F 1024 -F 2048 -q 30). To identify droplets containing a single nucleus “singlet” and
determine the sample identity, we used the Demuxlet!?” tool. For each library (8 10X channels/wells in
each of the 10 batches, N=80), we ran Demuxlet using default parameters providing the snATAC-seq
library bam files the genotype vcf files containing all samples included in that batch and selected all
the droplets assigned as singlets. This led to a total of 3,69,792 pass-QC ATAC nuclei, 2,68,543 from
the FUSION cohort.

4.6.1 Two-stage Demuxlet pipeline

Multiplexing 40/41 samples in each batch in a randomized block study design helped protect against
batch effects and it was cost-effective approach. To identify droplets containing a single nucleus “singlet”
and determine the sample identity, we used the Demuxlet'?” tool. For each library (8 10X channels/wells
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in each of the 10 batches, N=80), we ran Demuxlet using default parameters providing the library bam
files the genotype vcf files containing all samples included in that batch and selected all the droplets
assigned as singlets. Background/ambient RNA contamination can influence singlet assignments, so
we accounted for that next. We performed clustering of these pass-qc RNA droplets and annotated
clusters using known marker genes. A large proportion of our data was muscle fiber nuclei, this is
expected since muscle fibers are multi-nucleated. Therefore, a large proportion of ambient RNA would
come from muscle fiber cells. Observing the barcode-nUMI rank plots (Figure S1F), we considered
droplets with less than 100 reads as unlikely to contain an intact nucleus and therefore representative
of the ambient RNA profile. Top 100 genes contained top ~30% of ambient RNA reads (Figure S2A).
Most abundant genes in the ambient RNA were expectantly mitochondrial and muscle fiber genes such
as MYH1, MYHT etc (Figure S2B). We reasoned that “masking” top n% of these top genes should
reduce ambiguity arising due the ambient RNA, enabling more droplets to be assigned as a singlet.
We tested masking to n% of genes from Demuxlet and observed that masking the top 30% of genes
in the ambient RNA maximized singlet assignment (Figure S2C). We therefore completed a second
Demuxlet run masking top 30% genes, and any new droplets that were identified as singlets to the
set of selected droplets. The singlet nuclei recovered from the masked stage 2 came mostly from lower
abundance non-fiber clusters (Figure S2D) (using cluster labels identified downstream).

4.6.2 Adjusting RN A counts for overlapping gene annotations

RNA mapping and gene quantification using STARsolo outputs a “GeneFull” matrix that quantifies
intronic+exonic reads and a “Gene” matrix that quantifies only exonic reads. For our nuclear RNA ex-
priment, we used the GeneFull matrices for all downstream applications. As of the STAR, version 2.7.3a
which was used in our analysis, in case of overlapping gene annotations, the program renders some read
assignments ambiguous and therefore some genes receive less counts in the GeneFull matrix compared
to the Gene matrix. We observed the distribution of count differences between the exon+intron (Gene-
Full) and exon (Gene) matrices for each gene across all 80 libraries and created a list of genes where this
difference was consistently negative in at least 10 libraries. We then created custom counts matrices
keeping the “Gene” counts for these 6,888 selected genes and kept the “GeneFull” counts for all other
genes.

4.6.3 Ambient RNA adjustment

We used DecontX (celdav. 1.8.1, in R v. 4.1.1)!% to adjust the nucleus x gene expression count matrices
for ambient RNA. Taking all the qc’ed RNA nuclei up to this stage (N = 260,806), we identified cell
type clusters using Liger (rliger R package v. 1.0.0)*>. Liger employs integrative non-negative matrix
factorization (iINMF) to learn a low-dimensional space in which each nucleus is defined by both dataset-
specific and shared factors called as metagenes. It then builds a graph in the resulting factor space,
based on comparing neighborhoods of maximum factor loadings. We selected the top 2000 variable genes
using the selectGene function and clustered with number of factors k=20 and regularization parameter
lambda=5 along with other default parameters as it identified expected clusters (Figure S3A). We then
ran DecontX on a per-library basis using the decontX() function, passing our custom created RNA raw
matrices (adjusted for overlapping gene annotations) for the QC’ed nuclei, barcodes with total UMIs
< 100 for the background argument, cluster labels from liger, and set the delta parameter (prior for
ambient RNA counts) as 30. This prior value was more stringent than the DecontX default of 10 and it
was selected after exploring the parameter space and observing that delta=30 better reduced fiber type
marker gene such as MYH7, MYH2 counts in rarer clusters such as Endothelial, Satellite Cell, while
retaining respective marker gene VWFE and PAX7 counts (Figure S3B). Since the decontamination is
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sensitive to the provided cluster labels, we performed a second clustering using adjusted counts from the
first DecontX run to obtain better optimized cluster labels. We also included the snATAC modality for
this clustering. Liger’s online integrative non-negative matrix factorization (iNMF) algorithm was used
at this step?®6 which enabled efficient processing of this large snATAC+snRNA dataset by iteratively
sampling a subset of nuclei at a time. We selected the clustering with liger k=19, lambda=>5, epoch=>5,
batchsize=10,000 along with other default parameters (Figure S3C). We then performed a second
DecontX run using raw snRNA matrices (adjusted for overlapping gene annotations), droplets with
UMIs < 100 as background, delta set to 30 while including the updated snRNA cluster labels.

DecontX also estimates fraction of ambient RNA per nucleus. We used this metric to further filter
out RNA nuclei. We observed that this metric varied across clusters, and the immune cell, muscle fiber
mixed and the smooth muscle clusters has a visible population of nuclei with high estimated ambient
RNA fraction (Figure S3D). We therefore fitted two Gaussians for these three clusters per batch
and removed nuclei that obtained the probability of being from the high contamination population >
probability of being from the low contamination population (Figure S3E). For the rest of the clusters,
we removed nuclei with estimated ambient RNA > 0.8. We retained all pass QC nuclei and used
rounded decontaminated counts for the final joint clustering and all downstream analyses.

4.7 Joint clustering and cell type annotation

We jointly clustered snRNA and snATAC from the FUSION cohort and the one multiome muscle sample
using Liger’s online iterative non-negative matrix factorization (iNMF) algorithm version (https:
//github.com/MacoskoLab/liger/tree/online)*>*6. Liger’s online iINMF was capable of processing
our large dataset because it factorizes the data using mini-batches read on demand (we used a mini-batch
size = 10,000 nuclei). We factorized the RNA nuclei first using adjusted gene by nucleus count matrices
for autosomal protein-coding genes as input. We used the following parameters: top 2000 variable genes,
k=21, lambda=5, epoch=5, max iterations=4, batchsize=10,000, along with other default parameters.
We then performed quantile normalization to align across batches. Next, we projected the snATAC
datasets using gene (gene body + 3kb promoter region) by nucleus fragment counts as input to the
existing RNA factorization. This process uses the existing gene loading in the factors for computing
the factor loading in ATAC nuclei. We then quantile normalized the snATAC data and finally used
the Louvain graph based community detection algorithm with resolution 0.04 to identify clusters. This
process resulted in a joint clustering without batch or modality specific effects (Figure S4A). We
annotated the clusters using known marker gene expression patterns (Figure S4B).

4.8 ATAC-seq peak calling and consensus peak feature definition

We created per-cluster snATAC-seq bam files by merging reads from all pass-QC ATAC nuclei for each
cluster. We randomly subsampled bam files to 1 Billion reads and called narrow peaks using MACS2
(v. 2.1.1.20160309)!1!. We used BEDTools bamToBed!!'? to convert the bam files to the BED format,
and then used that file as input to MACS2 callpeak (command “macs2 callpeak -t atac-$cluster.bed
—outdir $cluster -f BED -n $cluster -g hs —nomodel —shift -100 —seed 762873 —extsize 200 -B —keep-dup

113, and

all”) to call narrow peaks. We removed peaks overlapping the ENCODE blacklisted regions
selected peaks passing 0.1% FDR from macs2. We then defined a set of consensus snATAC-seq peak
summits across all 13 clusters. We considered the filtered narrow peak summits across all clusters and
sorted by MACS2 q value. We sequentially collapsed summits across clusters within 150bp and retained
the most significant one, identifying N=983,155 consensus summits (Figures S5A-S5C). Aggregating
ATAC-seq signal over broad peaks in a cluster while centering on the left-most summit showed the

second summit usually occurred ~300bp away (Figure S5D), in line with the nucleosome length being
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~147 bp''4. We therefore considered each consensus summit extended by 150 bp on each side as the
consensus peak-feature for all downstream analyses. To visualize the signal, we converted the bedGraph
files output by MACS2 to bigWig files using bedGraphToBigWig!!°.

4.9 Identification of cell type-specific genes and GO enrichments

Differential gene expression analyses between all pairs of cell types were performed to identify cell
type-specific genes. Muscle fiber nuclei clusters (Type_1, Type_2a, Type_2x, Neuromuscular_junction,
Muscle_Fiber_Mixed) were merged for this analysis due to their expected similarity. For each pair of
cell types we used DESeq2!'6 to call differential genes between the cell types. Samples with less than
3,000 genes detected in either of the cell types were dropped, as were genes with less than 3 counts
across all of the samples (when combining the cell types). The DESeq2 analysis was done in a paired
sample fashion. A gene was considered to be a cell type-specific gene for cell type X if that gene was
more highly expressed in cell type X than in all other cell types (5% FDR).

4.10 Comparison to snATAC atlas

Per-cell type comparisons to the snATAC atlas from?*?

were performed using a modified version of
the logistic regression-based technique described previously*'. First, narrowPeaks from each cell type
cluster were merged to produce a set of master peaks. Next, master peaks within 5kb upstream of a
GENCODE TSS (GENCODE v40;''7) were dropped. Master peaks were annotated to muscle cell types
according to whether or not they overlapped a narrowPeak in that cell type, and master peaks annotated
to more than one cell type were dropped, resulting in a set of cell type-specific peaks. Next, for each of
our cell types and each of the 222 cell types from*?, we ran the logistic regression model: (master peak
is specific to muscle cell type ~ By + 1 *master peak overlaps peak from snATAC atlas cell type),
where [y represents a model intercept. Within each of our cell types, we then produced a matching
score for each of the snATAC atlas cell types by re-normalizing the resulting model coefficient 31 to
range between 0 and 1 (by dividing the coefficients by the maximum coefficient, first setting coefficients
to 0 if the model p-value was not significant after Bonferroni correction or the coefficient was negative).
The snATAC atlas cell type with score = 1 was determined to be the best match.

GO enrichments were performed using g:Profiler (python API, v. 1.0.0;!18), using all genes with at
least one count in one cell type as the background set.

4.11 Identification of cell type-specific open chromatin summits and motif enrich-
ments

Using the per-cluster peak summit counts, we identified cell type-specific summits using the 7 metric

from*9

. As muscle fiber types show high gene expression similarity, we merged any nuclei assigned
to muscle fibers (Type 1, Type 2a, Type 2x, NMJ, and Muscle fiber mixed clusters). Summits with
7 > 0.8 were considered to be cell type-specific, and were assigned to the cell type showing greatest
accessibility of that summit.

Motif enrichments were performed using the 540 non-redundant motifs from a previous study!'?,
with the logistic regression model (one model per motif per cell type):
summit is specific to cell type ~ intersect 4+ summit is T'SS proximal + summit GC content + number
of motif hits in summit where TSS proximal was defined as within 2kb upstream of a TSS, and the
number of motif hits was determined using FIMO (v. 5.0.4, with default parameters and a 0-order

121y 'We excluded two cell types (Neuronal

Markov background model generated using fasta-get-markov
and T _cell) with less than 500 cell type specific summits and excluded cases where the model didn’t

converge. A motif was considered significantly enriched if the coefficient for the “number of motif

24


https://doi.org/10.1101/2023.12.15.571696
http://creativecommons.org/licenses/by-nd/4.0/

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

T

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.15.571696; this version posted December 17, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

hits in summit” term was significantly positive after Bonferroni correction within each cell type. The
corresponding heatmap figure displays motifs that were amongst the top 5 significantly enriched motifs
by either p-value or coefficient in at least one cell type.

4.12 snATAC-seq coaccessiblity

We ran CICERO*? (v. 1.4.0; R v. 4.0.1) on the narrow peak fragment counts in each cluster to score
peak-peak co-accessibility. We used UMAP dimensions 1 and 2 (Figure 1B) as the reduced coordinates
and set window size to 500 kb. A peak was considered to be a TSS peak for a gene if it overlapped the
1kb window upstream of that gene’s TSS. If multiple T'SS peaks were present for a gene, the maximum

co-accessibility score was considered.

4.13 QTL scan in clusters

We performed expression and chromatin accessibility QTL analysis in clusters using QTLtools (v.
1.3.1-25-g6e49f85f20)'22. The mixed muscle fiber cluster showed higher fraction of reads mapping to
exon relative to the full gene body in certain batches (indicating lower quality, Supplementary note),
therefore, this cluster was not considered for QTL scans and downstream analyses. We removed three
samples from out QTL analyses: one because it appeared to be of non-Finnish ancestry from PCA
analysis, and two others which were found to be first degree related to other samples. We created a vcf
file with imputed genotypes of all the selected FUSION samples, and filtered for autosomal, bi-allelic
variants with MAF > 5%, non-significant deviation from Hardy-Weinberg equilibrium P>1x10%. We
performed PCA using QTLtools pca with options —scale, —center and —distance 50,000.

4.14 eQTL scan

We selected the following gene biotypes (Gencode V30): protein_coding, lincRNA, 3prime_overlapping ncRNA,
antisense, bidirectional_promoter_IncRNA, macro_IncRNA, non_coding, sense_intronic, and sense_overlapping.

For each cluster, we considered samples with at least 10 nuclei for the eQTL analysis. We generated
RNA count matrices by summing up gene counts (post-ambient RNA decontamination) from nuclei
for each sample in each cluster. We converted the gene counts into transcript per million (TPMs)
and inverse-normalized across samples. TPM = RPK/factor, where RPK = counts/(length in kb) and
factor = sum(RPK)/IM for each cluster. We used the top 10,000 genes based on median TPM to
perform PCA using QTLtools. eQTL scans were performed considering variants within 250kb of gene
TSSs. For each cluster, we ran test eQTL scans while considering the top 3 genotype PCs and a varying
number of phenotype PCs to account for unknown biological and technical factors. We selected the
number of phenotype PCs that maximized eQTL discovery as covariates Figure S7A. We optimized
within-cluster thresholds for minimum gene counts across at least 10 samples that defined our final
set of testable genes that minimized the multiple testing burden Figure S7B. We performed the cis
eQTL scans with 1,000 permutations, then applied an across-feature multiple testing correction using
the qvalue Storey function on the beta distribution adjusted P values and reported eGenes at FDR <

5%.

4.15 caQTL scan

For each cluster, we considered samples with at least 10 nuclei for the caQTL analysis. We didn’t
restrict our caQTL scans to only peaks identified in a cluster, instead considered all testable consensus
peaks to allow for comparisons across clusters. We quantified each consensus feature and obtained
the sum of fragment counts across all nuclei from each samples in each cluster. For an initial lenient
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caQTL scan, we selected all consensus features in a cluster that had at least 2 counts in at least 10
samples to test for caQTL in each cluster. We used inverse-normalized counts per million (CPMs)
as quantification for caQTL. CPM = RPK/factor, where RPK = counts/(feature length in kb) and
factor = sum(RPK)/1M for each cluster. We performed PCA on the inverse-normalized CPMs and
included the top n phenotype PCs that maximized QTL discovery in each cluster, along with the
top 3 genotype PCs as covariates. We optimized within-cluster thresholds for minimum peak counts
across 10 samples that defined our final set of testable peak that minimized the multiple testing burden
(Figure S8A). We then calculated PCs for these selected features and again optimized the number of
PCs within each cluster that maximized caQTL discovery (Figure S8B). caQTL scans were performed
using the selected samples, optimized features, 3 genotyped PCs and final set of optimized phenotype
PCs considering variants within 10kb of the feature midpoint (peak summit). We performed the cis
caQTL scans with 1,000 permutations, then applied an across-feature multiple testing correction using
the gvalue Storey function on the beta distribution adjusted P values and reported caPeaks at FDR <
5%.

4.16 Motif reconstruction using caQTL results

We used a library of 540 non-redundant PWMs for the motif reconstruction analyses(D’Oliveira Albanus
et al. 2021). Motif hits were determined by scanning the genomic sequence in a variant-aware manner
using FIMO (v. 5.0.4, with default parameters and a 0-order Markov background model generated using

121) "i.e. scanning the genomic sequence containing the reference and the alternative

fasta-get-markov
allele. For a given cell type and motif, we identified all lead caQTL variants or their LD r2>0.8
proxies that sat within the corresponding caPeak and that overlapped a motif hit (n=31 - 10,646 (27 -
42%) depending on the cell type). For each such overlapping caQTL, we calculated the caQTL allelic
fold change'?? using tensorQTL'?4. To reconstruct the motif, for each of the four nucleotides and each
position in the motif, we summed the absolute value of the allelic fold change for all caQTLs overlapping
that position in the motif hit and having that nucleotide as the favored (open chromatin) allele. This
was converted to a probability matrix (such that the four values at each motif position summed to one)
for the final reconstructed motif. To demonstrate that the observed similarity between the original
and reconstructed motif was not simply a result of the fact that a motif hit was called by FIMO, we
additionally reconstructed motifs based on all variants that met filtering requirements for the caQTL
scan, overlapped motif hits, and were in peaks tested in the caQTL scan. To do this, for each of the
four nucleotides and each position in the motif, we counted the number of variants overlapping that
position in the motif hit and having that nucleotide as either the ref or the alt allele, and then converted
this to a probability matrix as before.

4.17 mash analyses

We utilized mash%3 to learn correlation patterns of QTL effect sizes across clusters to in turn obtain
more precise effect size estimates. We considered the top 9 clusters in which both eQTL and caQTL
were identified from our original e/caQTL scans (FDR<5%) for setting up the mash model. For both
e and caQTL, we created the Bhat (effect size) and Shat (standard error) matrices for sets of “strong”
and “random” tests as per the recommendations of the original authors https://stephenslab.gith
ub.io/mashr/articles/eQTL_outline.html. For eQTL, we first compiled a set of all genes that were
testable across the 9 clusters (n=12,891). The “strong” tests included the top SNPs for these genes,
top SNP being the one with the minimum nominal p value across the nine clusters. The “random”
tests included n=50,000 randomly selected snp-gene pairs for the gene set from the original eQTL scan.

For caQTL, there were 62,187 caPeaks total identified across 9 clusters (FDR<5%), whereas, only
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20,000 peaks were testable in all 9 clusters. Therefore, for an appropriate representation of the “strong”
signals, we included the union of both these sets of peaks (total n=87,003) to set up the mash model.
When a peak was not testable in a cluster, we set the effect to 0 and standard error to infinity. The
“strong” tests included the top SNPs for these mash peaks. The “random” tests included n=100,000
randomly selected SNP-peak pairs for the mash peak set from the original caQTL scan.

We learned the correlation structure among random tests (Vhat, function estimate_null_correlation_simple)

followed by setting up the strong and random mash data sets (function mash_set_data). We learned
data-driven covariance matrices using strong tests, first computing PCA (function cov_pca), then run-
ning the extreme deconvolution algorithm (function cov_ed). We computed the canonical covariance
matrices using the function cov_canonical on the random set. We fit the mash model using both these
covariance matrices. Lastly, we computed posterior summaries on the strong tests using the mash
model fit - Ifsr, posterior mean and posterior standard deviation, which are equivalent of the FDR,
effect size and standard error of a QTL scan respectively. We utilized the function get_pairwise_sharing
to plot the pairwise sign sharing between each pair of clusters (Figures 3C-3D). While plotting the
original eQTL effects (Figures 3E-3F), we obtained qvalues using Benjamini-Hochberg on the strong
tests nominal p values to compute the standard errors, so as to make the results comparable to mash

posterior summaries.

4.18 context-specific QTL

We used CellRegMap® to identify context-specific e/caQTL. We first separated the RNA and ATAC
nuclei identified as endothelial cell-type and jointly clustered using the liger online iNMF approach as
described previously for the main clustering. We computed five latent factors for the RNA nuclei first
using the following parameters: top 2000 variable genes, k=5, lambda=5, epoch=>5, max iterations=4,
batchsize=5,000, along with other default parameters. We performed quantile normalization to align
across batches followed by projecting the snATAC datasets. Louvain clustering at a resolution of 0.025
identified four endothelial subclusters, which we annotated using known marker genes.

The CellRegMap linear mixed model is of the form: y = g8 + g * Baxc + ¢ + u + €, where single-cell
gene expression values of a given gene (y) are modeled as a function of a persistent genetic effect (g),
GxC interactions (gx), additive effects of cellular context (c), relatedness (u) and residual noise (€). For
snRNA, we tested the top SNP-eGene pairs for the 198 eQTLs identified for the endothelial cluster from
our initial pseudobulk eQTL scan. We set up the CellRegMap model using either the subcluster labels
as discrete context or the five latent factors as continuous context. We computed the kinship matrix
to represent the relatedness within the data including the fact each sample contributes multiple nuclei.
We considered genotyped variants, pruned these to LD 12<0.2 using the plink flag —indep-pairwise 250
50 0.2, followed by using flag —make-king square. We transformed this matrix to a positive semi-definite
matrix by adding the minimum eigenvalue to the diagonal elements. We normalized the endothelial
nuclei by gene expression matrix to log2(counts per million (CPM) + 1) using scanpy preprocess-
ing functions pp.normalize_total(adata, target_sum=1e6, exclude_highly_expressed=True), followed by
pp.loglp(adata, base=2). We included age, sex, batch, BMI and the fraction of mitochondrial reads
in nuclei as additional covariates in the model. We first tested linear association with genotype using
the function run_association, then tested interaction using the function run_interaction, followed by
estimating betas using the function estimate_betas.

For snATAC, we tested the top SNP-caPeaks pairs for the 4,518 caPeaks for the endothelial cluster
from our initial pseudobulk eQTL scan. Since snATAC data is much more sparse than snRNA, nucleus-
level linear mixed models were impractical. We instead computed pseudobulk sample counts in each
subcluster, and included subcluster as the discrete context. The count normalization, covariates and
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kinship matrix were performed as described for snRNA.

4.19 QTL finemapping

We used the sum of single effects (SuSiE)'?° approach to identify independent e and caQTL sig-
nals and obtain 95% finemapped credible sets. We used QTLtools to adjust for the covariates op-
timized for e or caQTL scans and inverse-normalized the residuals. We used these adjusted pheno-
types along with the sample genotype dosages for variants in a 250kb window in the susie function
along with the following parameters: number of signals L=10, estimate_residual_variance=TRUE, es-
timate_prior_variance=TRUE, min_abs_cor=0.1.

4.20 Relationship between caQTL effect size, caSNP MAF, and caQTL peak pres-
ence in scATAC atlas

Type 1 muscle fiber caPeaks were grouped based on the open chromatin allele frequency (calculated
using the FUSION samples) and the caQTL effect size (absolute value of the slope, binned by 0-0.4,
0.4-0.8, 0.8-1.2, 1.2-1.6, and 1.6-2.0). We then calculated the fraction of the caPeaks within that bin
that overlapped with a Type I Skeletal Myocyte peak from?2.

4.21 caPeak chromatin state enrichments

CaPeak enrichment in chromatin states was computed using the Skeletal Muscle Female (E108) chro-
matin states (15-state model) from Roadmap Epigenomics'?%. First, muscle ATAC peaks were lifted
from hg38 to hgl9 using liftOver (kentUtils v. 343'%7). For each of the Type 1, Type 2a, and Type 2x
cell types, we then ran the logistic regression:

peak is caPeak ~ intercept + peak size + overlaps state 1 + ... 4+ overlaps state 15

where peak size was set as the average peak reads per million across samples. Only peaks tested
for caQTL were included in the model. caPeaks were enriched for a state if the coefficient for the
corresponding state term in the model was significantly positive after Bonferroni correction (Bonferroni
correction performed within each cell type, across the 16 non-intercept terms).

4.22 Motif enrichment in caPeaks

Motif enrichments were performed using the 540 non-redundant motifs from'??, with the logistic re-
gression model (one model per motif per cell type):

peak is caPeak ~ intercept + peak is TSS proximal + peak GC content + peak size + number of
motif hits in peak where T'SS proximal was defined as within 2kb upstream of a TSS, peak size was
set as the average peak reads per million across samples, and the number of motif hits was determined
using FIMO (v. 5.0.4, with default parameters and a 0-order Markov background model generated

121) " Only peaks tested the caQTL scans were included in each model. A motif

using fasta-get-markov
was considered significantly enriched if the coefficient for the “number of motif hits in summit” term
was significantly positive after Bonferroni correction within each cell type. The corresponding heatmap
figure displays motifs that were amongst the top 3 significantly enriched motifs by either p-value or

coefficient in at least one cell type.

4.23 eQTL and caQTL colocalization

We used coloc v5'? to test for colocalization between e and ca QTL. We used the e and ca QTL finemap-

ping output from SuSiE over the 250kb window as inputs to coloc v5. We considered colocalization
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between two signals if the PP H4 > 0.5.

4.24 Causal inferrence between chromatin accessibility and gene expression

For all pairs of colocalized eGenes and caPeaks, we inferred the causal chain between chromatin ac-
cessibility and gene expression using two orthogonal approaches - a mediation-based approach causal
inference test (CIT, v2.3.1)57%% and a Mendelian randomization approach MR Steiger directionality
test®?. We required consistent direction from both CIT and MR Steiger at 5% FDR to consider an
inferred causal direction between an eGene and caPeak pair.

4.24.1 CIT

To test if an exposure mediates an effect on an outcome, CIT uses genetic instruments (eg SNPs)
requiring a set of mathematical conditions to be met in a series of regressions under a formal hypothesis
testing framework. If a SNP (L) is associated with an outcome (T) only through an exposure (G),
outcome when conditioned on the exposure should be independent of the SNP. The conditions therefore
are: (i) L is associated with T, (ii) L is associated with G conditional on T, (iii) T is associated with G
conditional on L and (iv) T is independent of L conditional on G. For each pair of caPeak and eGene
for which one or more independent caQTL and eQTL signal(s) colocalized, we ran four CIT models
each returning an omnibus P value- a) eSNP(s) -> eGene -> caPeak (P e-to-ca-causal), b) eSNP(s) ->
caPeak -> eGene (P e-to-ca-revCausal), c¢) caSNP(s) -> caPeak -> eGene (P ca-to-e-causal) and d)
caSNP(s) -> eGene -> caPeak (P ca-to-e-revCausal). We included sample batch, age, sex, BMI and
top 3 genotype PCs as covariates in the CIT model. For each model, we computed the omnibus FDR
values using the fdr.cit function to account for multiple testing. To infer a caPeak causal on an eGene,
we required g-ca-e-causal < 0.05, g-ca~e-revCausal > 0.05, g-e-ca-causal > 0.05 and g-e-ca-revCausal <
0.05, and vice versa to infer an eGene causal on a caPeak. We note that eGene-caPeak pairs without a
putative causal CIT prediction could be truly independent or could have a causal relationship obscured

by measurement error.

4.24.2 MR Steiger directionality test

In an MR-based approach, the genetic instrument (SNP) is used as a surrogate for the exposure
to estimate its causal effect on an outcome, by scaling the association of SNP and outcome by the
association between SNP and exposure. This approach is considered less susceptible to bias from
measurement errors or confounding®’. For each pair of caPeak and eGene for which one or more
independent caQTL and eQTL signal(s) colocalized, we used the mr_steiger function (TwoSampleMR
R package version 0.5.6) to test both caPeak and eGene as exposure over the other modality as outcome.
To infer a caPeak causal on an eGene, we required ca-to-e “correct causal direction” as “True” at 5%
FDR, and e-to-ca “correct causal direction” as “False” at 5% FDR, while estimating steiger test q
values using the R qvalue package (http://github.com/jdstorey/qvalue). For each model, we
provided the respective QTL scan sample sizes and set r xxo = 1, r_yyo = 1, r_exp = NA and r_out =
NA to estimate the sensitivity ratio - which computes over the bounds of measurement errors in the
exposure and outcome, how much more often is one causal direction observed versus the other. The
higher the sensitivity ratio, more robust is the inferred causal direction to measurement errors.

4.25 GWAS enrichment in ATAC-seq peak features

We computed enrichment of GWAS variants in ATAC-seq peak features using stratified-LD score re-
gression (s-LDSC)™128. We downloaded GWAS summary statistics for 17 traits relevant for skeletal
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muscle such as T2D, glycemic traits, aftrial fibrillation. Where required, we lifted over the sum-
mary stats onto hg38 using the UCSC liftOver tool. We formatted the summary stats according
to LDSC requirements using the ldsc munge_sumstats.py script, which included keeping only the
HapMap3 SNPs with minimum MAF of 0.01 (as recommended by the LDSC authors). We also
downloaded several LDSC-formatted UKBB GWAS summary statistics from the Benjamin Neale lab
website!?” https://nealelab.github.io/UKBB_ldsc/downloads.html. We selected primary
GWASs on both sexes for high confidence traits with h2_significance > z7, following guidelines de-
scribed on the Ben Neal lab blog https://nealelab.github.io/UKBB_ldsc/details.html. We
created a baseline model with cell type agnostic annotations such as MAF, coding, conserved regions,
along with other epigenomic annotations such as DNase hypersensitiviy sites (DHS), transcription fac-
tor binding sites (TFBS) that are obtained from across multiple cell types. These annotations are

among the list of baseline annotations included in the original LDSC paper!'?8.

The various anno-
tation files (regression weights, frequencies, etc.) required for running LDSC were downloaded from
https://data.broadinstitute.org/alkesgroup/LDSCORE/GRCh38/. We set up LDSC to test
snATAC-seq peak features (consensus peak summit features that overlapped a peak summit called in
that cluster) and the bulk muscle CUT&Tagin peaks along with the baseline annotations. LD scores
were calculated using the Phase 3 1000 Genomes data. LDSC reports two types of output: first, the
total heritability explained by SNPs in the annotation, which includes heritability attributable to other
overlapping annotations in the baseline; and second, joint-fit regression coefficient for each annotation,
that quantifies the contribution of that annotation to per-SNP heritability. The former estimates if the
annotation contributes to the overall heritability and the latter estimates if the annotation contributes
to the heritability in addition to all the other baseline annotations in the model. We reported signifi-
cance using both these metrics in Figure 6 A. We calculated coefficient P-values from the coefficient
z-scores using a one-sided test assuming a standard normal distribution. We calculated FDR, separately
for enrichment p-values and coefficient p-values using the BH procedure and report traits with FDR;5%
for either measure.

While comparing GWAS enrichment in type 1 peaks that overlapped caSNPs, eSNPs or not
e/caSNPs, since there is a large difference in the number of eSNPs and caSNPs features, we sub-
sampled each annotations to have the same number of features: n=6,880 peaks. LDSC authors suggest
that S-LDSC only produces well-calibrated p-values when annotations span at least 1.7% of 0.01cM
blocks of the genome (roughly 51Mb assuming 1cM ~ 1Mb, ten-fold larger than our current eSNP-
peaks annotation)!3Y. Therefore, we used an alternative enrichment approach, fGWAS!! and tested
enrichment for the downsampled annotations.

4.26 eQTL and caQTL co-localization with GWAS

We considered the lead GWAS signals that if the individual study reported so; otherwise, we identified
genome-wide significant (P < 5e-8) signals in 1Mb windows. We finemapped each GWAS signal using
the available GWAS summary statistics along with 40,000 unrelated British individuals from the UKBB
as the reference panel, over a 250kb window centered on the signal lead variant. We obatined pairwise r
between variants using the cor() function in R on the genotype dosages for variants in the SuSiE window.
We ran SuSiE using the following parameters: max number of signals L. = 10; coverage = 0.95; r2.prune
= 0.8; minimum absolute correlation = 0.1; maximum iterations = 10,000. We considered e/ca QTL
signals where the lead variant was within 250kb of the GWAS lead variant to test for GWAS-QTL
colocalization using the function coloc.susie from the coloc v5 package. We used the coloc sensitivity()
function to assess sensitivity of findings to coloc’s priors. We considered two signals to be colocalized
if the PP H4 > 0.5.
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4.27 Imputing high-resolution 3D chromatin contact maps

We used EPCOT™ to impute the high-resolution 3D chromatin contact maps. EPCOT is a computa-
tional framework that predicts multiple genomic modalities using chromatin accessibility profiles and
the reference genome sequence as input. We predicted chromatin contacts in genomic neighborhoods
of selected caPeaks of interest using snATAC-seq from the respective cluster - either Micro-C at 1kb
resolution for a 500kb genomic region or Hi-C at 5kb resolution for a 1Mb genomic region. EPCOT was
trained with existing Micro-C contact maps from H1 and HFF, or Hi-C contact maps from GM12878,
H1, and HFF. Both the Micro-C and Hi-C contact maps are O/E normalized (i.e., the contact values
present the ratio of the observed contact counts over the expected contact counts).

We then generated Micro-C maps by the genotype at the caSNP of interest. We created genotype-
specific snATAC-seq profiles by aggregating samples with either homozygous reference or homozygous
alternate genotypes at the caSNP of interest. We downsampled the data using Picard when required
to make the two profiles have similar depth. We respectively incorporated the reference of alternate
allele in the DNA sequence input to EPCOT. Subsequently, we subtracted the predicted contact values
associated with the low chromatin accessibility genotype from the high accessibility genotype.

EPCOT’s input ATAC-seq (bigWig) processing;:
bamCoverage —normalizeUsing RPGC —effectiveGenomeSize 2913022398
—Offset 1 —binSize 1 —blackListFileName ENCODE_black_list.bed

4.28 Massively parallel reporter assay for validation
4.28.1 Cloning

We ordered oligos as 230 bp sequences where 197 bp comprise the variant of interest flanked on both by
98 bp of genomic context, and the additional 33 bp are cloning adapters. Within this panel, we included
a set of ~50 negative control sequences defined by a previous publication'®?> We added 20 bp barcodes
via a 2-step PCR amplification process then incorporated the barcoded oligos into a modified pMPRA1
vector (a gift from Tarjei Mikkelsen'33, Addgene #49349) upstream of the GFP reporter gene using
Golden Gate assembly. After transforming and expanding in NEB 10-beta electrocompetent bacteria,
we sequenced this version of the MPRA library to establish a barcode-oligo pairing dictionary. We
performed a second Golden Gate assembly step to insert an ENCODE-annotated promoter for the
human MYBPC2 gene in between the oligo and barcode. Finally, we used restriction cloning to port
the assembled MPRA block (oligo, barcode, promoter, GFP) to a lentiviral transfer vector, which was
used by the University of Michigan viral vector core to produce infectious lentiviral particles. Primer
sequences used for cloning and sequencing library preparation along with the MYBPC2 promoter
sequence are included in a separate table.

4.28.2 MPRA Experiment

For each replicate, we infected 4x10° LHCN-M2 human skeletal myoblasts with our MPRA library at
an MOI of ~10. After infection, we passaged the cells for one week to remove any unincorporated
virus or contaminating transfer plasmid, then differentiated the cells for one week. We isolated RNA
and gDNA from each replicate using the Qiagen AllPrep DNA/RNA mini kit. We reverse transcribed
RNA into cDNA with a GFP-specific primer, then constructed indexed sequencing libraries for both
the cDNA and gDNA libraries using Illumina-compatible primers.

31


https://doi.org/10.1101/2023.12.15.571696
http://creativecommons.org/licenses/by-nd/4.0/

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.15.571696; this version posted December 17, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

4.28.3 Data Analysis

After quality checks and filtering, we calculated the sum of barcode counts for each oligo within a
replicate. We used DESeq2 v1.34.0'16 to perform normalization and differential expression analysis. We
used a nested model to identify oligos with significant activity (relative to plasmid input) and significant
allelic bias (between reference and alternate alleles). All results were subject to a Benjamini-Hochberg
FDR of 5%.

4.29 Code availability

The code used to run analyses in this work are available on GitHub
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Figure S1: Batch design and quality control

(A) Cohort representation across batches (B) Age (C) BMI (D) Sex (E) OGTT status for individuals with samples across
batches (F) snRNA-seq barcode rank plot showing number of UMIs (G) snRNA UMIs vs mitochondrial read fraction across
batches (columns). (H) snATAC-seq barcode rank plot showing high quality autosomal alignments (HQAA) (I) snATAC
HQAA vs mitochondrial read fraction across batches (J) snATAC HQAA vs TSS enrichment across batches. Panels G, I
and J show nuclei from one 10X channel per batch.
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Figure S2: Identifying singlets and sample assignment

(A) Gene rank plot showing the number of reads per gene in the ambient RNA profile(droplets with < 100 UMIs)
(B) Heatmap showing the pairwise Pearson correlation of the top expressed genes in the ambient RNA. (C) Titration to
optimize masking genes to maximize singlet identification. Shown are the total number of singlets identified by Demuxlet
for batch 1 after masking the top n% of genes expressed in the ambient RNA profile. (D) Proportion of singlet nuclei
recovered at demuxlet stage 1 (default) and stage 2 ('masked’) for each cluster.
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Figure S3: Adjusting for ambient RNA

(A) Initial RNA clustering using RNA counts unadjusted for ambient RNA (B) Marker gene counts across clusters without
ambient RNA adjustment (raw) and after adjustment using DecontX run with a various delta parameter (prior for the
ambient RNA counts) values) (C) Post-decontX snRNA-seq modality clustered jointly with snATAC-seq to obtain better
optimized cluster labels. (D) Estimated ambient RNA fraction from DecontX across cluster labels (E) Batch and cluster-
specific threshold for immune cell, muscle fiber mixed and smooth muscle clusters to further QC out nuclei due to high
estimated ambient RNA fraction. For all other clusters, this threshold was set to 0.8 (F) After all stages of QC, the
number of pass-QC RNA nuclei are correlated with the number of pass-QC ATAC nuclei per sample. (G) After all stages
of QC, total pass-QC nuclei are correlated with the sample weights during nuclei isolation.
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Figure S4: Joint clustering of the snRNA-seq and snATAC-seq modalities identified 13
cell-type clusters

(A) UMAP plots by batch and modality (B) Concordance between cluster annotations for the RNA and ATAC modalities
of the multiome nuclei. Plotted are the fraction of nuclei in the RNA cluster that are assigned each annotation in the
ATAC cluster. (C) UMAP plots showing cluster assignments and snRNA-seq expression of known marker genes
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Figure S5: Identifying snATAC-seq peak features in clusters

(A) (B) (C) show example genomic locations showing identified consensus summit(s) (red) among all nearby summit

calls (black), shown together in the top track and on thre respective cluster ATAC-seq signal tracks. (D) Aggregated
ATAC-seq signal across all broad peaks in a cluster while centering on the left-most summit in the peak. (E) Heatmap

showing peak summits identified as cluster-specific (F) Motif enrichment in cluster-specific peak summits calculated using
%9

a logistic regression approach.

indicates significant enrichment (5% FDR).
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Figure S6: Cluster-specific expression of TF-genes drives cluster-specific motif enrichment
TF motif enrichment in cluster-specific peaks (regression coeflicients) against the expression specificity scores in the for
the corresponding TF gene in cell-types. Blue color indicates that the regression coefficient obtained a P-value lower than
the Bonferroni correction threshold.
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Figure S7: Identifying eQTL in clusters

(A) PC scan to maximize eQTL discovery. (B) Identifying testable genes with minimum n counts across at least 10 samples
that maximize eQTL discovery. Number of testable genes and the number of eGenes (FDR 5%) at the selected minimum
count threshold are labeled. (C) UpSet plot showing the total number of eGenes in each cluster and the number of genes
identified in only one cluster. (D) eSNP allelic fold change (aFC) in clusters to compare eQTL effect sizes between pairs
of clusters. Each facet shows aFC in both clusters for eSNPs identified in the cluster labeled on the y axis (5% FDR).
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Figure S8: Identifying caQTL in clusters
(A) Identifying testable peak features with minimum n counts across at least 10 samples that maximize caQTL discovery.
Number of testable peaks and the number of caPeaks (FDR 5%) at the selected minimum count threshold are labeled.
(B) PC scan to maximize caQTL discovery. (C) UpSet plot showing the total number of caPeaks in each cluster and the
number of caPeaks identified in only one cluster. (D) caSNP allelic fold change (aFC) in clusters to compare caQTL effect
sizes between pairs of clusters. Each facet shows aFC in both clusters for caSNPs identified in the cluster labeled on the
y axis (5% FDR). (E) Motif enrichment in caPeaks in five clusters. (F) Enrichment of ChromHMM states identified in
bulk skeletal muscle to overlap with caPeaks in three muscle fiber clusters.
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Figure S9: Down-sampling samples and nuclei in type 1 fibers
(A) Down-sampling strategy: either the number of samples (in 5% increments, left) or nuclei from each sample (right)
were down-sampled followed by e/caQTL scan. Curves showing significant eGenes on down-sampling (B) samples and
(C) nuclei in samples. Significant caPeaks on down-sampling (D) samples and (E) nuclei in samples.
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Figure S10: Motif reconstruction using caQTL data

(A) Reconstruction for selected key motifs, including those enriched to occur in type 1 fiber caPeaks. Top row shows the
canonical motif PWM, and the bottom row shows the reconstructed PWM. (B) Agreement between PWM motif scores
(base preference in the motif) and QTL allele preferences.
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Figure S11: Endothelial state-specific e/caQTL using cellRegMap

(A) Joint (snRNA+snATAC) subclustering of endothelial nuclei identifies four subtypes/cell-states. snRNA nuclei UMAP
plots show expression of key marker genes used to annotate the subclusters. (B) Top endothelial eSNP-eGene pairs
identified from the initial pseudobulk analyses (5% FDR, Fig 2A) were tested for GxC interaction effect in CellRegmap.
Scatter plot compares the signed -logl0(P) of the additive genotype effect between the two eQTL models. (C) -log(P) for
eQTL GxC interaction when using subcluster vs latent factors as the context. (D) Top endothelial caSNP-caPeak pairs
identified from the initial pseudobulk analyses (5% FDR, Fig 2B) were tested for GxC interaction effect in CellRegmap.
Scatter plot compares the signed -logl0(P) of the additive genotype effect between the two caQTL models.
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Figure S12: e-ca QTL colocalization
(A) Total number of eQTL (left) and percentage of eQTL (right) that colocalize with caPeaks in each cluster, along with
the number and percentage of eQTLs that are detected in only one cell type. (B) Total number of caQTL (left) and

percentage of caQTL (right) that colocalize with eGenes in each cluster, along with the number and percentage of caQTLs
that are detected in only one cell type.
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Figure S13: Causal inference test enables inferring causal direction between chromatin
accessibility and gene expression

(A) Empirical cumulative distributions for MR, Steiger directionality test sensitivity ratios for ca-to-e (top row) and e-to-ca
(bottom row). Sensitivity ratio represents the estimated proportion of times the inferred direction flips over the bounds of
measurement error in the exposure and outcome. Plots to the right show a zoomed-in view of the x axis. (B) CIT results
between caPeak and TSS caPeak for ca-to-e or e-to-ca caPeak-eGene pairs. For caPeak and eGene pairs with significantly
inferred causal direction ca-to-e or e-to-ca (x axis), where a caPeak was also identified in the TSS+1kb upstream region
of the eGene, proportion of CIT outcomes between the distal caPeak and the TSS caPeak are denoted by the colors.
Fisher’s exact test was performed after tallying all significant outcomes (5% FDR). (C) Example locus on chr8 where two
independent eQTL signals identified for the lincRNA gene AC023095.1 colocalize with two independent caQTL signals
identified for a nearby caPeak in the type 1 cluster (Coloc PP H4 0.99, 0.76). The lead SNPs for the two signals rs7006037
and rs1400506 are labeled and the colors depict LD r? relative to these variants. (D) snATAC-seq profiles in the type 1
cluster over the caPeak shown in d aggregated by the signal lead variant genotype classes. (E) Determined causal direction
between the eGene-caPeak pair from d using the independent lead variants as instrument variables. Boxplots show inverse
normalized chromatin accessibility, chromatin accessibility after regressing out gene expression, gene expression and gene
expression after regressing out chromatin accessibility relative to the alternate allele dosages for the two lead variants
rs7006037 (top) and rs1400506 (bottom).
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Figure S14: Bulk-skeletal muscle CUT& Tag profiles identify regulatory elements

(A) Genes in skeletal muscle sorted and binned by their expression levels. Darker red indicates higher expression. Panels
B-D show reads at the TSS sites of the corresponding genes for (B) ATAC-seq (C) H3K27ac CUT&Tag, and (D) H3K27me3
CUT&Tag. (E) ATAC-seq (F) H3K27ac CUT&Tag, and (G) H3K27me3 CUT&Tag read-pileups over the gene bodies
for the sets of genes with low, medium and high expression levels as described in (A). All genes are scaled to align the
transcript start and end sites (TSS, TES). (H) UCSC browser session highlighting a repressed gene SPTBN2 and highly
expressed genes RCE1 and LRFN/ showing ATAC-seq, H3K27ac, and H3K27me3 tracks in skeletal muscle.
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Figure S15: GWAS-caQTL colocalization and sensitivity

(A) Full GWAS-QTL colocalization summary showing the % and number of GWAS signals for each considered trait
that colocalize with e/caQTL. (B) Sensitivity analysis for colocalization between T2D GWAS and a Type 1 caQTL at
the C2CD4A /B locus comparing prior (left) and posterior (right) probabilities of each hypothesis over a range of prior
probability values that any random SNP in the tested region is associated with both traits (p12). The Default p12 in
coloc is 5e-6. Green boxes marks the set of p12 values at which PP H4 > 0.5. The lower the minimum p12 at which PP
H4 > 0.5, the more robust the colocalization. (C) Empirical cumulative distribution of coloc sensitivity represented as
the minimum p12 where PP H4 > 0.5 for GWAS-caQTL colocalization across the 40 GWAS traits considered, colored by
cluster (D) Empirical cumulative distribution of coloc sensitivity represented as the minimum pl2 where PP H4 > 0.5 for
GWAS-eQTL colocalizations across the 40 GWAS traits considered, colored by cluster. For both B and C, all GWAS-QTL
pairs observed colocalized (PP H4>0.5) at the default p12 of 5e-6 were considered. Heatmaps showing the coloc PP H4
for (E) BMI and (F) Fasting Insulin GWAS loci that colocalize with e/ca QTL across the five clusters.
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Figure S16: Identifying caQTL specific to individual muscle fiber types Selected examples of
caQTLs specifically identified in type 2 fibers (snATAC signal aggregated by caSNP genotype class in A, C) that colocalize
with GWAS signals (locus zoom plots showing the GWAS signal and caQTL signals in five clusters in B, D)
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Figure S17: Integrating e/ca QTL signals with GWAS inform disease/trait relevant reg-
ulatory mechanisms
(A) GLI2 genomic locus where a T2D GWAS signal is colocalized is an endothelial caQTL. snATAC profiles in five clusters
by caSNP rs11688682 genotype in its +1kb neighborhood followed by aggregate profiles in 13 clusters. (B) Locuszoom
plots for the GLI2 GWAS signal (top) followed by the caQTL signal in the five clusters. The peak was not testable
for caQTL in the type 1, 2a, 2x and FAP clusters due to low counts. (C) EPCOT-imputed micro-C chromatin contacts
using endothelial ATAC data at 1kb resolution at the 500kb neighborhood centered at rs11688682. (D) Difference in the
predicted normalized chromatin contacts using endothelial snATAC-seq from samples with the high (GG) and low (CC)
accessibility genotype rs11688682. Interactions with rs11688682 highlighted in black are shown as a signal track below.
(E) Endothelial chromatin co-accessibility scores between the GLI2 caPeak and T'SS peaks of neighboring genes, classified
by the caSNP genotype. Distance between the peaks is noted in parentheses. (F) C2CD4A/B genomic locus, followed
by snATAC-seq profiles by caSNP rs7163757 genotypes in clusters, followed by aggregate snATAC profiles. (G) NMJ
chromatin co-accessibility scores between the caPeak and TSS-peaks classified by caSNP genotype. Distance between the
peaks is noted in parentheses.

18


https://doi.org/10.1101/2023.12.15.571696
http://creativecommons.org/licenses/by-nd/4.0/

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.15.571696; this version posted December 17, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

Supplementary Note
4.32.1 Singlet identification and sample demultiplexing

In our study design, we multiplexed 40/41 samples in each batch and demultiplexed using known sample
genotypes. Demultiplexing 41 samples per batch is well within the capability of assigning droplets to

07, To demonstrate the high-quality donor

individuals, as reported by the original Demuxlet paper!
assignments in our experiments, we ran Demuxlet on Batch 1 that included 40 samples with a mixture
of “correct” (from batch 1) and “wrong” (from other batches) samples in the input VCF. As expected,
the number of singlets identified by Demuxlet decreased linearly with the number of “wrong” samples
in the VCF (Figure SI1A), with 0 singlets identified when all “wrong” 40 samples were provided in the

4

VCEF. None of the droplets are assigned as singlets to the “wrong” samples (Figure SI1B). Therefore,
all samples are correctly assigned, even when incorrect samples are provided in the VCF, indicating
that our QC process has resulted in high-quality nuclei with correct sample assignments.
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Figure SI1: Demuxlet QC

(A) The number of correct singlets identified in the 40 sample batch decreases linearly as a function of the number of
wrong samples supplied in the VCF. (B) Zero wrong samples are assigned, even when 40 wrong VCF entries are provided
for genetic demultiplexing. Note the blue points at y=0 for the different ranges we tested.

4.32.2 Ambient RNA and eQTL scans

While ambient transcripts are inevitable in nuclei preps, especially from processing of complex frozen
tissue such as our muscle samples, genetic demultiplexing offers an improved strategy to identify clean
droplets. The protocols and approaches to adjust for ambient transcripts are an active area of research.
We thoroughly optimized our ambient RNA detection and correction (Figure S3). After this correc-
tion, a low level of muscle fiber marker gene expression still remained in clusters (Figure 1E). We
reasoned that our eQTL scans are protected from ambient biases because Given our assay design of
40-41 multiplexed samples in each batch, the droplets with high ambient RNA are much more likely
to be identified as doublets rather than being mislabeled. Because samples are pooled together, any
remaining background ambient signal will not be associated with genetic variation and instead will
represent a random mix of the samples in the pool.

To confirm our multiplexed study design protects us from spurious eQTL associations associated
with ambient RNA levels, we ran eQTL scans with gene quantifications done before and after ambient
RNA correction. Figure SI2 shows that the eQTL p-values and slope direction for top snp-gene pairs
are nearly identical both before and after ambient RNA correction. Thus, our eQTL scan results are
not meaningfully influenced by ambient RNA.

4.32.3 Clustering and QC

We integrated 287 FUSION snRNA+snATAC samples plus one multiome sample which included 456k
nuclei spread across 10 batches plus one multiome batch. We performed the integration and clustering
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Figure SI2: eQTL scan before and after ambient RNA adjustment. For top SNP-gene pairs (5%
FDR) in endothelial, FAP, and type 1 clusters from the eQTL scans done post ambient-RNA correction, corresponding
[-loglO(P value) x sign of the slope] are plotted from an eQTL scan done pre-ambient-RNA correction. The striking
similarity pre and post ambient-RNA correction shows that the background signal is not associated with genetic variation.

using Liger’s online iNMF' algorithm which is capable to handle such large datasets. We factorized the
RNA modality first since we found the RNA-only clusters to be more distinct and easily interpretable
using known marker genes, then projected ATAC nuclei onto the factorization. We used the known
multiome RNA-ATAC mapping to compare how concordant the cluster assignments were between the
RNA and ATAC modality. We found that 82.8% of the non-muscle fiber multiome nuclei had the same
RNA and ATAC cluster assignments. While most clusters were concordantly annotated between RNA
and ATAC, the most frequent discrepancies were between the mixed fiber nuclei in RNA annotated type
1 or 2a in ATAC; or neuronal nuclei in RNA annotated type 1 or endothelial in ATAC (Figure S4B).
In comparison, current next largest study“® integrated 73 brain snATAC+snRNA (on different nuclei)
samples along with 19 multiome samples and achieved 79.5% - 85% concordance. The widely used
Seurat program [134], obtained a 90% concordance on 12,000 blood cell nuclei (vignette here) from a
much smaller dataset that was easier to analyze because it was not from a solid complex tissue, and all
nuclei were from one batch of 10X multiome assay rather than 456k nuclei spread across 10 batches plus
one small multiome batch. These observations help put the performance of our clustering approach
into perspective.

The fraction of nuclei assigned to each cluster within the RNA and ATAC modalities varied more
for some clusters than others. For example, T cell cluster constituted 0.14% of RNA nuclei, but
5.15% of ATAC nuclei Figure SI3. These differences could be due to both technical and biological
factors. For example, the ambient ”soup” profiles for RNA vs ATAC are expectantly different. We
considered droplets containing very low number of UMIs/HQAA as a representation of ambient profile
and observed that the most highly expressed genes in the snRNA soup were muscle fiber genes, which
is the most abundant cell type. Whereas, most snATAC soup reads mapped to the mitochondrial
genome, which are all removed during analysis. Second, chromatin and transcription programs in a cell
could manifest intrinsic cell-state differences. It has been demonstrated that chromatin accessibility
information from snATAC-seq provides a coarser-grained representation of cell-states compared to
transcription information from snRNA-seq profiling, which suggests that cells could retain a primed
or permissive chromatin landscape that can allow dynamic state transitions in response to relevant
conditions?®88,

While we performed extensive QC, ambient RNA adjustment and joint clustering and obtained
meaningful clusters, the ”muscle fiber mixed” cluster showed higher ratio of exonic reads vs reads over
the entire gene body in some batches (Figure SI4A) and showed elevated fraction of mitochondrial
reads (Figure SI4B). This suggests that the muscle fiber mixed cluster contained nuclei with relative

higher ambient RNA, and likely represented technical variation in nuclei extraction efficiency across
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Figure SI3: Cluster abundance by modality. Percentage of nuclei in each modality assigned to each cluster.

some batches. We account for technical variation due to batch in subsequent analyses.

4.32.4 Motif reconstruction

We observed several examples of TF motifs that reconstructed well using caQTL allele preferences and
effect sizes (Figure 2G, Figure S10). Due to the sparsity in motif-caSNP overlaps, it was impractical
to comprehensively quantify the total number of correctly reconstructed motifs out of all tested and
compare across cell-types. In type 1 fibers, ~66% of the 540 PWMs had at least one overlap at each
position of the PWM, however in endothelial cells and FAPs, where a lower number of caQTLs were
identified, the corresponding percentages are 15% and 19%, respectively. Nevertheless, concordance
between TF and cell type is evident. For example, the MEF2_known9 motif, which is enriched in
muscle fibers (Figure S8E), reconstructed well in Type 1 fibers (Figure SI5A ); however in endothelial
cells, even most high information content MEF2_known9 positions don’t overlap a caSNP (or proxy)
(Figure SI5B). In contrast, the SOX motifs (e.g., SOX7_1) were enriched in endothelial caPeaks but
not muscle fiber caPeaks (Figure S8E). SOX7_1 motif reconstruction is sparse in endothelial cells;
however, we still see the high information content positions in the core motif well reconstructed in
endothelial cells, whereas the reconstruction in type 1 fiber does not capture this core motif as well
(Figures SI5C-SI5D).

It is important to note that many PWMs are not actually expected to be well-reconstructed. The
PWM reconstruction is expected to work well only when the original PWM corresponds to a TF
expressed in that cell type and, more importantly, when the TF has a large impact on chromatin
accessibility in that cell type (since the variants used for reconstruction are caQTLs). If a variant
impacts binding of a TF but that TF does not have much impact on chromatin architecture, the
variant is unlikely to be a caQTL in the first place. A PWM of a TF that does not impact chromatin
architecture is likely to overlap a subset of caQTLs just by chance, so a reconstruction can sometimes

be produced, but the reconstruction in that case is not expected to be reliable.

21


https://doi.org/10.1101/2023.12.15.571696
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.15.571696; this version posted December 17, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

batch = 499 batch = 510 batch = 530 batch = 551
10 ’
«
8 ¢
EOB ¢
¢ ¢ ]
Q
006 ¢ ¢ ‘o
g !
g ’ ¢ ¢ ¢ LYY
~ ;
: bl & & id B
0.2
batch = 564 batch = 567 batch = 625 batch = 647
" ' o
» ¢
T
§os .
% ¢ ]
Q 0.6 . .
)
8 * . (] va!
Z04 ¢
=}
: taede * T L8
0.2 ¢
- ©® X F QA 0 ST = 0U=T7Fu
batch = 678 batch = 692 batch = 3172 gV 2E 0298328 ¢8 %
S8 gg 2 S gsF 5 ]
1.0 Fepeps =2 LES &
§ 0§ £33 =<
3 ‘ w 8 Ces
© £ 2
gos o
p ¢ ' E
&0.6 ¢ ‘ Cluster
z * Ba
3 ¢ . ‘
Piosid :
o
g F .}.I.! - % i'I'
0.2 "
— © XE&EE‘U% WETBE - ®© XE%EEU% W%EE - © XE EE'O% m%ﬁg
2922888573 go9sfg=288857% M RN E R KN -
FESE 2 LBV GE FEE3 £ T287 38 FEeE 2 T8 38
2T 5 38§ =8 2 g 38§ =8 2 g 338§ =8
i S &2 w 8 [ w 8 Eg2
@ L3 Q
= = s
Cluster Cluster Cluster
botch = 439 batch = 510 batch = 530 botch = 551
. ; ! i i ‘o ¢ : : ! b v + * HE ‘ ! ‘ : ‘ 0 +
' .
! ey i R I : ! IR :
0008 ; . HEM ! N ’ ’ + ' ' ‘
B L I ! ' LR [ ' ,
g H R H 2 IR IR ] ! { | et
RN P RERE R
H ' H K i H 1
{ | ' z VT
£ 0004 H 4 + H f
8 +
: ' '
L ‘ é& i‘
0002 ; .
OUODQ % E!Q E! éi
batch = 564 batch = 567 bateh = 625 batch = 647
0010
boapd LI Pipde vyt
H + [ ‘ ‘
P [ 3 ¢ | ' Pl !
ooos | ¥ , ;! ¥ 4 ‘ ‘ . M ¢ I ‘ ! N
P R - ' ! ; ! " ! i ] ‘ ! *
i ' i } ;, . \ " [N ‘ , ! i ! i B i [ [N :
g 0006 N f H N + , P
E ! X ) ; ' ' v 1 H '
2 ] ’ 4 R | ’
E + '
¢ oon 1 P | I} .. ] ‘
g v $ ! !
- é éﬁié & éi ﬁ .
4o = &
batc = 678 batch = 692 batch = 3172 TS EF Y ELEopEOEE
=EEE £ =zg§" 5 &
00101 ¢ + ' ' o — 1o T i kkg £ ézi z§
Phode o P oot { ' Pyt
o008 ] . H P ; + . ‘ 2
. $ .t i + Custer
Popbibiy s I PR
= ' 4
IR IR NN Y RN PO
5 : ‘o M ' + ‘ ]
: | R H ] I
g oo [ ’ | E !
5 ‘. +
0002 é ;é
0000 ;
R T8 &EILETETOLTOE T B&EE S 83 %
g lRiEREREL RGGRYREIIRRRY iqiitics $EL G
(AR ER D A (AR ER N R (AR RN R
Eoe” Eoe” H
E E E
Quster Quster Quster

Figure SI4: Joint clustering of the snRINA-seq and snATAC-seq modalities identified 13
cell-type clusters

(A) Fraction of exonic reads over gene reads in nuclei across clusters and batches (B) Fraction of mitochondrial reads in
nuclei across clusters and batches
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Supplementary Protocol S1

This protocol is designed for 4 samples. Please scale up or down based on the number of samples. All
the steps have to be performed on ice or at 4°C. All the 2 mL and 1.5 mL tubes used in this protocol

are Protein LOBIND tubes from EPPENDORF.

Materials:

e CP02 cryoPREP automated dry pluverizer (Covaris 500001)

Eppendorf thermomixer C (EP 5382000015)

70 pm strainer (Fisher 501457900)

RNase Inhibitor (Thermofisher N8080119)

2mL glass tissue grinder and pestle (Kimble chase, 885301-0002, 8853000002)

Celltrics, 20 pum, 30 pm cell strainer (Fisher NC9682496, Fisher NC9699018)

Fisherbrand Sterile Plastic Culture (FACS) Tubes 149563C

Eppendorf Protein Lobind 1.5 mL tubes (Eppendorf 022431081)

e Eppendorf Protein Lobind 2.0 mL tubes (Eppendorf 022431102)

LB1 buffer
LB1 buffer For 5mL | Final concentration Catalog number
1 M HEPES, pH 7.5 0.25 mL 50 mM Invitrogen 15630080
5 M NaCl 140 pL 140 mM Sigma S5150-1L
0.5M EDTA, pH 8.0 10 pL 1 mM Promega V4231
50% glycerol 1 mL 10% Sigma G5516-500 mL
NP-40 10% 0.25 mL 0.5% Sigma 11332473001
Triton X-100 10% 125 pl. 0.25% Sigma T8787-100 mL
Ultra Pure Distilled water 3.225 mL Invitrogen 10977015
EDTA-free complete mini protease inhibitors
(add immediately before use) 1 tablet Roche 11836170001
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1% BSA in PBS | For 10 mL | Final Catalog number

BSA 100 mg 1% Fisher NC0390268
PBS Q.S. to 10 ml Invitrogen 10010023

Nuclei extraction

1.

10.

11.

12.

13.

14.

Frozen tissue (40-90 mg) was pulverized into a fine powder while cold (dry ice and LN2) using an
automated dry pulverizer CP02 cryoPREP.

. Pulverized Frozen tissue (40-90 mg) was suspended in 1 mL of ice-cold 1x PBS in a 1.5 mL tube

(Eppendorf 022431081) and centrifuged at 2000g for 3 min at 4°C. The supernatant was removed
and the pellet was resuspended in 1 mL LB1.

. The tissue was lysed by rocking the tubes in Eppendorf thermomixer C (EP 5382000015) at 4°C

at 300 rpm for 5 min.

. Each sample was transferred into a prechilled 2 mL glass Dounce homogenizer and homogenized

with 10 strokes of loose pestle A, and 20 strokes of tight pestle B and then transferred to 1.5 mL
tube and centrifuged at 2000g for 5 min at 4°C.

. The supernatant was aspirated and the pellet was resuspended in 1 mL of ice-cold 1% BSA and

centrifuged at 100g for 1 min at 4°C.

. The supernatant was collected, discarding the loose debris pellet.

All the filters were prewet; 70 um, 30 pm and 20 pm filters, with 200 pL of 1% BSA each and
previously collected supernatant was sequentially filtered through 70 pym, 30 um and 20 pm filters

respectively.

. The supernatant was filtered through a 70 pm strainer and the filtrate was collected into a 50

mL conical tube.

. The collected filtrate was passed through a 30 pum celltrix strainer and collected into a 2mL tube.

The collected filtrate was passed through a 20 um celltrix strainer and collected into a 2mlL tube.

The filtrate was transferred to a 1.5mL tube and centrifuged at 350 x g for 10 min at 4°C (be
careful of the tube direction). The supernatant was aspirated (the supernatant was saved as a
precaution) with flexi tip gel loading tip (were very careful not to disturb the pellet) and the
nuclei were resuspended in 500 pL of 1% BSA in PBS.

The nuclei suspension was centrifuged again at 350 x g for 10 min at 4°C (be careful of the
tube direction). The supernatant was aspirated very carefully (the supernatant was saved as a
precaution) with flexi tip gel loading tip and the nuclei were resuspended in 100 pL of 1%BSA in
PBS.

The nuclei were counted with cell counter (Trypan blue stains nuclei; typically 4-9 pm) and
diluted appropriately for RNA and ATAC submissions.

(RNA Submission ) To achieve the desired nuclei concentration, an appropriate amount of nuclei
was diluted with 1% BSA in PBS. To this suspension, RNase inhibitor was added to get a final
concentration of 0.2 U/uL. The nuclei was counted and submitted for snRNA seq.
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15. (ATAC Submission)- The rest of the nuclei was spun down at 350 x g for 10 min at 4°C (were
careful of the tube direction). The supernatant was aspirated very carefully with flexi tip gel
loading tip and the nuclei were resuspended in an appropriate volume of 1X diluted nuclei buffer
(20x buffer supplied by 10X genomics). The nuclei was counted and submitted for snATAC seq.

MPRA experiment and data analysis
Cloning

We designed oligos with a variant centered within 197 bp of flanking sequence (98 bp on each side).
We also included negative control sequences selected from a previous publication (1).

Oligos were synthesized by IDT as 230 bp sequences containing the 197 bp sequences of interest
flanked by two adapter sequences for cloning. We added 20 bp barcodes with additional adapters via a
5-cycle PCR reaction containing 13 ng oligo pool, 12.5 ulL of NEB Q5 HotStart Hifi Mastermix, 1.25 ul.
of 10X SYBR Green I and 0.25 uM each of primers AT0003 and AT0039. This reaction was performed
in quadruplicate with the following thermocycler conditions: 98°C x 30 sec, [98°C x 10 sec, 65°C x 15
sec, 72°C x 30 sec, plate read, 72°C x 8 sec] x 5, 72°C x 2 min. Barcoded oligos were diluted 1:25
in H20, then amplified in a second PCR reaction using the same conditions with primer AT0050 in
place of AT0039 and cycling for 14 cycles. We pooled replicate reactions, cleaned the final amplified,
barcoded oligos with 1.8X SPRI beads, and eluted in 15 uL. of LoTE.

We modified pMPRA1 (a gift from Tarjei Mikkelsen, Addgene #49349; 2) by adding in PaqCI
cloning sites and an EGFP open reading frame. We cloned the barcoded oligos into this backbone (2:1
molar ratio of oligos:backbone) using PaqCI-mediated Golden Gate assembly per NEB recommenda-
tions. We incubated the assembly reaction at 37°C for 1 hour then 65°C for 5 min. We performed a
secondary digest with 20 U Sfil to remove empty backbones, then cleaned with 0.8X SPRI beads and
eluted in 10 uL. of LoTE. We transformed 1 ul of the assembly into NEB 10-beta electrocompetent
bacteria and expanded overnight in 150 mL of ampicillin-containing LB. In parallel, we plated serial
dilutions and estimated a library complexity of ~ 5 x 106 CFU.

We prepared sequencing libraries from the promoter-less MPRA plasmids to create an oligo-barcode
pairing dictionary. In brief, we amplified the oligo-barcode region in a reaction containing 100 ng
plasmid library, 20 ulL 5X Kapa Fidelity Buffer, 3 ul. Kapa dNTPs, 5 ulL 10X SYBR Green I, 2 units
Kapa HiFi HotStart DNA polymerase, and 0.5 uM each of primers jklab0343 and jklab0344. We
indexed with standard Illumina primers and sequenced the library on a NovaSeq 6000.

To create the final plasmid-based MPRA library, we cloned a 350-bp MYBPC2 promoter fragment
(annotated by ENCODE, hg38, chr19:50432668-50433017) into the barcoded oligo-containing assembly
(3:1 molar ratio of promoter insert:backbone) using Bsal-mediated Golden Gate assembly. We incu-
bated the assembly reaction with the following program: [37°C x 5 min, 16°C x 5 min] x 30, 60°C
x 5 min. We performed a secondary digest with 1 U AsiSI to remove promoter-less assemblies, then
cleaned with 0.8X SPRI beads and eluted in 10 uL of LoTE. We transformed as above, but expanded
only 10% of the transformant pool in 150 mL of ampicillin-containing LB to bottleneck to ~106 unique
barcodes.

We performed a final restriction cloning step to move the assembled MPRA block (barcoded oligo,
promoter, GFP) to the lentiviral transfer plasmid. We separately incubated the plasmid-based MPRA
library and the lentiviral transfer backbone with EcoRI and Sbfl for 1 hour, then gel purified our
fragments of interest. We incubated the insert and backbone (3:1 molar ratio) with T4 DNA ligase for
10 minutes at room temperature and SPRI cleaned assemblies with 0.8X beads. Transduction-ready
lentivirus was created by the University of Michigan Viral Vector Core.
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MPRA experiment

We maintained LHCN-M2 human skeletal muscle myoblasts on 0.1% porcine gelatin coated dishes in
manufacturer’s suggested medium (4:1 high glucose DMEM:Medium 199, 15% FBS, 20 mM HEPES,
3 ug/mL zinc sulfate, 1.4 ug/mL vitamin B12, 55 ng/mL dexamethasone, 2.5 ng/mL HGF, and 10
ng/mL bFGF).

Per replicate, we infected 4 x 106 cells with lentivirus at an MOI of ~10 with 4 ug/mL polybrene.
We passaged cells twice, then began differentiation 7 days after initial infection. We differentiated
cells by performing daily media changes with differentiation media (DMEM 1 g/L glucose + 2% heat-
inactivated horse serum). After 7 days of differentiation (i.e., 14 total days since infection), we lysed
cells with 1.5 mL beta mercaptoethanol-containing Qiagen Buffer RLT Plus. We triturated the cell
lysates with a syringe and 18-gauge needle 10 times to homogenize, then stored homogenized lysates
at -80°C until nucleic acid extraction.

MPRA sequencing

We used the Qiagen AllPrep RNA/DNA mini kit with four columns per replicate to isolate RNA
and gDNA. We synthesized cDNA with 150 ug of DNAse-treated RNA using SuperScript IV reverse
transcriptase and 100 nM custom GFP-targeted RT primer (jklab0363) containing a 15 bp UMI. We
PCR amplified the cDNA with 500 nM primers jklab0268 and jklab0356 with NEB 2X Q5 HF HotStart
PCR mastermix with the following program: 98°C x 1 min, [98°C x 10 sec, 60°C x 30 sec, 72°C x 1
min, plate read, 72°C x 8 sec] x 20, 72°C x 5:00. We added adapters and PCR amplified the gDNA
samples using an analogous protocol. We performed sample indexing using standard Illumina P5 and
P7 barcoding primers, then performed molar pooling and sequence samples on a NovaSeq 6000 (2 x
150 bp reads).

MPRA data analysis

To create the oligo-barcode pairing dictionary, we used a custom pipeline based on bwa v0.7.17 (3) to
merge paired-end 150 bp reads. We extracted the barcodes. We then used minimap2 v2.24 (4) to align
merged oligo reads against our reference FASTA file containing the expected oligo sequences. After
filtering, we created a final table with oligo-barcode pairs and removed any duplicate barcodes.

For cDNA and gDNA barcode counting, we used cutadapt v4.3 (5) to trim sequencing adapters and
constant sequences, UMI-tools v1.1.2 to cluster UMIs (6), and starcode v1.4 (7) to cluster and count
deduplicated oligo barcodes. We merged these barcode counts with the pairing dictionary, requiring an
exact match between the cDNA /gDNA barcode counts and the paired barcode. Finally, we calculated
the sum of all barcode counts associated with a given oligo within a sample.

Prior to statistical modeling, we required a raw count mean ;= 25 across all cDNA samples to
remove any lowly expressed oligos. We estimated oligo activity and allelic bias using DESeq2 (8) with
normalized read counts. We fit a nested fixed effects model as described previously (9).

To extract effects due to enhancer activity (RNA vs. DNA), we used linear contrasts between the
cDNA and gDNA levels for a given replicate. To estimate allelic bias (reference vs. alternate allele),
we used a linear contrast between the cDNA and gDNA counts for the reference and alternate alleles.
We report the Benjamini-Hochberg FDR here to adjust for multiple testing.
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