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Abstract34

35

Skeletal muscle, the largest human organ by weight, is relevant in several polygenic metabolic traits36

and diseases including type 2 diabetes (T2D). Identifying genetic mechanisms underlying these traits37

requires pinpointing cell types, regulatory elements, target genes, and causal variants. Here, we use ge-38

netic multiplexing to generate population-scale single nucleus (sn) chromatin accessibility (snATAC-seq)39

and transcriptome (snRNA-seq) maps across 287 frozen human skeletal muscle biopsies representing40

nearly half a million nuclei. We identify 13 cell types and integrate genetic variation to discover >7,00041

expression quantitative trait loci (eQTL) and >100,000 chromatin accessibility QTLs (caQTL) across42
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cell types. Learning patterns of e/caQTL sharing across cell types increased precision of effect esti-43

mates. We identify high-resolution cell-states and context-specific e/caQTL with significant genotype44

by context interaction. We identify nearly 2,000 eGenes colocalized with caQTL and construct causal45

directional maps for chromatin accessibility and gene expression. Almost 3,500 genome-wide associa-46

tion study (GWAS) signals across 38 relevant traits colocalize with sn-e/caQTL, most in a cell-specific47

manner. These signals typically colocalize with caQTL and not eQTL, highlighting the importance48

of population-scale chromatin profiling for GWAS functional studies. Finally, our GWAS-caQTL colo-49

calization data reveal distinct cell-specific regulatory paradigms. Our results illuminate the genetic50

regulatory architecture of human skeletal muscle at high resolution epigenomic, transcriptomic, and51

cell-state scales and serve as a template for population-scale multi-omic mapping in complex tissues52

and traits.53

1 Introduction54

Skeletal muscle, the largest organ in the adult human body by mass (>40%)1, facilitates mobility,55

sustaining life functions, and influences quality of life. Beyond its mechanical functions, skeletal muscle56

plays a central role in metabolic processes, particularly in glucose uptake and insulin resistance1–5.57

Metabolic diseases and traits, such as type 2 diabetes (T2D), fasting insulin, waist-to-hip ratio (WHR),58

and others are complex and polygenic, involving a multitude of genetic factors. Genome-wide associ-59

ation studies (GWAS) have identified thousands of genetic signals associated with these diseases and60

traits6–11. However, ∼90% of these variants lie within non-coding regions12, are enriched to overlap61

tissue-specific enhancers, and are therefore expected to regulate gene expression8,13–15. Additionally,62

GWAS loci are often tagged by numerous variants in high linkage disequilibrium (LD), and can harbor63

multiple causal variants16. For these reasons, identifying the biological mechanisms and pinpointing64

causal variants in GWAS loci remains challenging.65

Information encoded in DNA, which is largely invariant across cells in the body, likely percolates66

through several molecular layers to influence disease. The mostly non-coding genetic variation identified67

through GWAS likely has the most proximal effect on the molecules bound to DNA (epigenome), which68

in turn can influence the expression of target genes (transcriptome), and then levels of proteins, all of69

which can vary by the cell type17. This molecular cascade is not completely unidirectional and it is70

dynamic in nature. For example, changes in expression of a transcription factor (TF) can feed back to71

changes in the epigenome. The epigenome and the transcriptome layers are therefore valuable to gain72

insights about gene regulation. One approach to link these layers with GWAS is through identification73

of quantitative trait loci (QTL) for epigenomic modalities such as chromatin accessibility QTL (caQTL)74

and gene expression quantitative trait loci (eQTL) followed by testing whether common causal variants75

underlie the molecular QTL and GWAS signals (i.e. if the signals are formally colocalized)16,18–28.76

Previous studies profiling the epigenome and transcriptome in bulk skeletal muscle across hundreds77

of samples identified expression and DNA methylation QTLs and provided valuable insights29–31. How-78

ever, bulk skeletal muscle profiles are dominated by the most prominent muscle fiber types, and other79

less abundant but relevant cell types are largely missed. Several resident cell types are essential for80

muscle function3. For example, muscle fibro-adipogenic progenitors (FAPs) are resident interstitial81

stem cells involved in muscle homeostasis and along with muscle satellite cells, regulate muscle regener-82

ation32–35. Diabetes and obesity not only lead to structural and metabolic changes of the muscle fibers83

but also exert detrimental effects on these progenitor cells36–38. Endothelial cells and smooth muscle84

cells comprise the muscle vasculature which is another important component in diabetes-associated85

complications, involving insulin uptake39. Immune cells are also critical, especially following injury40.86

Recent studies have generated reference epigenome and transcriptome maps in human skeletal muscle at87
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a single-nucleus/single-cell resolution41–44. However, population-scale studies are imperative to identify88

e/caQTL within each cell type to enable exhaustive interrogation of mechanistic signatures underlying89

GWAS signals. To date, there is no single-nucleus/cell resolution population-scale study that maps90

e/caQTL in hundreds of samples.91

We hypothesize that single-nucleus epigenome (snATAC-seq) and transcriptome (snRNA-seq) pro-92

filing across hundreds of genotyped samples will help identify the appropriate cell type, regulatory93

elements, target genes, and causal variants(s) in elucidating context-specific regulatory mechanisms94

within skeletal muscle. In this work, we perform snRNA-seq and snATAC-seq across skeletal muscle95

samples from 287 Finnish individuals29. We integrate these molecular profiles with genetic variation96

to identify cell-specific eQTL and caQTL. We further integrate the e/caQTL signals with GWAS by97

testing for colocalization and infer the chain of causality between these modalities using mediation98

analyses, and highlight our findings with orthogonal methods at multiple example loci.99

2 Results100

2.1 snRNA and snATAC profiling and integration identifies 13 distinct cell type101

clusters102

We generated a rich dataset of snRNA and snATAC across 287 frozen human skeletal muscle (vastus103

lateralis) biopsies from the FUSION study29 (Figure 1A), as part of a larger study with 408 total104

samples including three separate smaller cohorts. We processed the samples in ten batches of 40 or 41105

samples multiplexed together using a randomized block study design to balance across experimental106

contrasts of interest (cohort, age, sex, BMI, oral glucose tolerance test (OGTT), Figures S1A–S1E).107

We also included multiome data (snRNA and snATAC on the same nucleus) for one muscle sample to108

help assess our cross-modality clustering. We performed rigorous quality control (QC) of all nuclei and109

only included those deemed as high-quality (Methods). This led to a total of 188,337 pass-QC RNA110

nuclei and 268,543 pass-QC ATAC nuclei (Figures S1F–S1J, Figures S2A–S2D, Figures S3A–111

S3E). As expected, there is a strong correlation across samples for the number of pass-QC RNA and112

ATAC nuclei (Figure S3F), and nuclei counts correlate with the initial weights of the tissue samples113

(Figure S3G), indicating that our genetic demultiplexing and QC recovered high-quality nuclei in114

expected proportions. Collectively, we generated total N = 625,722 high-quality RNA or ATAC nuclei115

from all 408 samples, and in this work we analyze N = 456,880 nuclei from the 287 FUSION and one116

multiome sample.117

We jointly clustered the snRNA and snATAC data, while avoiding batch and modality-specific118

effects using Liger45,46 (Figure S4A). We identified 13 distinct clusters representing diverse cell types119

(Figure 1B) that ranged in abundance (Figure 1C) from 34% (type 1 fiber) to <1% (macrophages).120

The aggregate cell-specific profiles provide clear evidence of muscle tissue heterogeneity (Figure 1D).121

When treating the multiome RNA and ATAC modalities separate and integrating across them, we122

found that 82.8% of the non-muscle fiber multiome nuclei had the same RNA and ATAC cluster123

assignments (Figure S4B). This is consistent with previous multiome studies47,48 (Supplementary124

note); for example, integrating 92 brain snATAC+snRNA samples (19 of which were multiome) obtained125

79.5%-85% concordant cluster assignments depending on the clustering approach48.126

The annotated clusters showed expected patterns of expression for known marker genes (Figure 1E,127

Figure S4C). We merged the five closely-related muscle fiber types 1, 2a, 2x, mixed and neuro-128

muscular junction (NMJ) together and annotated them as “muscle fiber” and identified 1,569 cell-129

specific genes using pair-wise differential gene expression analyses (Figure 1F). Relevant gene ontology130

(GO) terms were enriched in these cell-specific genes (Figure 1G), for example, muscle system process131
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Figure 1: snRNA and snATAC -seq data generation and integration identifies 13 high
quality cell-type clusters
(A) Study design including sample processing, snRNA and snATAC -seq profiling, and analyses. (B) UMAP plot showing
the 13 identified clusters after jointly clustering the snRNA and snATAC modalities. (C) Cluster abundance shown as
percentage of total nuclei. (D) Cluster proportions across samples and modalities. Bottom row denotes the processing
batch number (1-10) for samples, indicating that the proportions are not driven by batch effects. (E) Gene expression (post
ambient-RNA adjustment) in clusters for known marker genes for various cell-types. (F) Identification of cell-type-specific
genes across clusters. Five related muscle fiber clusters (type 1, 2a, 2x, neuromuscular junction and muscle fiber mixed
were taken together as a“muscle fiber” cell type). (G) GO term enrichment for cell-type-specific genes identified in (F),
showing two GO terms for each cluster. (H) snATAC-seq profiles over known marker genes in clusters. (I) Comparison of
snATAC-seq peaks identified for clusters in this study with reference data across various cell-types from the Zhang et al.
[42] scATAC-seq atlas. Gray cells denote no overlaps between cell-type specific peaks in our dataset and those in the
Zhang et al dataset. 4
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and muscle contraction terms for muscle fiber and regulation of lipolysis in adipocytes and familial132

partial lipodystrophy terms for the adipocyte cluster.133

The ATAC modality also showed clear patterns of chromatin accessibility over known marker genes134

for various cell types (Figure 1H). We optimized ATAC peak calls to be of similar statistical power,135

reproducible, and non-redundant across clusters to create a harmonized list of 983,155 consensus peak136

summits across the 13 cell types (Methods, Figures S5A–S5D). We compared our snATAC profiles137

with reference snATAC data from 222 cell types from a previous study42. Our snATAC peaks were138

enriched to overlap peaks identified in related cell types (Figure 1I), which reinforces the quality of139

our cluster labels using the independent ATAC modality. We identified 95,442 snATAC peaks that140

were specific for a cell type cluster (Figure S5E). We computed chromatin co-accessibility between all141

peak pairs within 1Mb in each cluster using Cicero49, which enabled peak to gene TSS links.142

DNA-binding motifs for cell type-relevant TFs were enriched in these cluster-specific peaks (Fig-143

ure S5F). For instance, motifs for the myocyte enhancer factor 2 (MEF2) family of TFs that are144

known regulators of skeletal muscle development and function50,51 were enriched for muscle fiber peaks;145

motifs for the SRY (Sex Determining Region Y)-related HMG box of DNA binding (SOX) TFs, im-146

plicated in endothelial differentiation and endothelial-mesenchymal cell transitions52–54 were enriched147

in endothelial-specific peaks. Specifically expressed TF genes appeared to drive corresponding TF mo-148

tif enrichment in cluster-specific peaks (Figure S6). For example, PAX7 gene, critical for satellite149

cell function55 is expressed with high specificity in muscle satellite cells and PAX7 TF motifs are en-150

riched in satellite cell specific peaks. Other examples included known TF regulators such as SPI1 in151

macrophages56, EB1 in adipocytes57, and GATA2 for endothelial58 cells. This analysis revealed LHX6152

- known for its role in cortical interneuron development59,60 - as another key endothelial cell regulator.153

Collectively, these data demonstrate the high-quality of our snRNA and snATAC profiles and data154

integration.155

2.2 Integrating genetic variation with snRNA and snATAC profiles identifies thou-156

sands of e/caQTL157

We next identified genetic associations with gene expression and chromatin accessibility QTL (e/ca158

QTL) in clusters. Optimizing QTL discovery (Figures S7A–S7B, Figures S8A–S8B), we identi-159

fied 7,062 eQTL and 106,059 caQTL across clusters (Figures 2A–2B, Figure S7C, Figure S8C).160

2,452 eQTL (34.7%) and 37,095 caQTL (34.5%) were only detected in one cluster (Figure S7C, Fig-161

ure S8C), which is attributable to cell-type specific effects but also differences in power to detect QTL162

in clusters. Despite differences in power, the e/caQTL effect sizes were highly concordant across clus-163

ters (Figure S7D,Figure S8D). Out of 4,206 unique eGenes identified in our sn-eQTL, 1,014 (24%)164

were not identified in bulk skeletal muscle eQTL29. Notably, out of 2,452 cell-type specific eGenes,165

720 (29.4%) were not identified in bulk skeletal muscle eQTL, highlighting the novel findings in our166

sn-eQTL scans. Down-sampling analyses in type 1 fibers showed an almost linear increase in detectable167

QTL with the number of samples and number of nuclei, which could be a useful benchmark while168

designing future studies Figures S9A–S9E.169

Figure 2C shows an example type 1 caQTL signal (P = 1.1x10-66) where the caQTL SNP (caSNP)170

rs12636284 lies within the caQTL peak (caPeak), and the C allele is associated with higher chromatin171

accessibility. This caQTL is also identified in FAPs (P = 2.4x10-34), and the peak is shared across172

multiple clusters (Figure 2D). We identified cluster-specific caQTL even for peaks shared across cell173

types, indicating context-specific genetic effects on chromatin accessibility. For example, Figure 2E174

shows a caQTL identified in FAPs (∼5% ATAC nuclei) and not type 1 fibers (∼30% ATAC nuclei), even175

when the overall peak was comparable in size between the two clusters (Figure 2E, aggregate cluster176
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snATAC tracks). Additionally, we identified cluster-specific peaks as caQTL (Figure 2F). caPeaks in177

clusters were enriched to overlap TF motifs relevant to the corresponding cell type (Figure S8E).178

We next asked if the genetic regulatory signatures from our caQTL scans recapitulate patterns of179

TF binding. Most TFs bind accessible chromatin regions by recognizing specific DNA motifs. For180

genetic variants within bound activator motifs, the allele preferred by the TF should be preferentially181

associated with higher chromatin accessibility24. In Figure 2G, we show the known position weight182

matrix (PWM) for the TF motif BACH 1 (row 1). We considered all BACH 1 motif occurrences across183

snATAC peaks in type 1 fibers that also overlapped caSNPs, and used the caQTL allelic fold change184

(aFC) to quantify alleles associated with higher chromatin accessibility (“favored alleles”). We then used185

these favored alleles to genetically reconstruct the PWM (Figure 2G, row 2) (Figure 2G, row 3) and186

found it closely matches the canonical motif PWM (Figure 2G, row 1), providing a caQTL-informed in187

vivo verification of the cognate PWM. To further verify that the caQTL-based genetically reconstructed188

PWM does not simply reflect the allelic composition of SNPs in motifs, we constructed the PWM using189

the allele count for all heterozygous SNPs observed in the BACH 1 motif occurrences in snATAC190

peaks (Figure 2G, row 4,5). The resulting PWM had low information content and little similarity to191

the cognate motif (Figure 2G, row 4,1). Several other examples of caQTL-informed reconstructions,192

including for motifs relevant for muscle (MYF6, MYOD1), chromatin architecture (CTCF), and other193

motifs enriched to occur in type 1 caPeaks (Figure S8E) are shown in Figure S10A. PWM motifs194

were highly concordant with caQTL allele preferences. Motifs enriched in caPeaks across cell types had195

a higher fraction of caQTL alleles consistent with PWM base preferences than the non-enriched motifs196

(Figure S10B). Overall, these results demonstrate how high-quality snATAC and caQTL information197

can provide base-resolution insights into TF binding and regulation.198

Given our deep caQTL results, we next compared caPeaks to snATAC peaks in the same cell types199

from reference atlas datasets. We reasoned that for caPeaks where the more commonly occurring200

caSNP allele is associated with lower chromatin accessibility, the caPeak is more likely to be missed in201

reference datasets that usually only include one or a few representative tissue samples and therefore202

do not capture population-scale genetic effects. We additionally reasoned that caPeak reproducibil-203

ity in reference atlases will be lower for large effect-size caSNPs when the allele associated with high204

chromatin-accessibility occurs rarely in the population. Figure 2H delineates this observation com-205

paring type 1 fiber caPeaks with the Zhang et al. [42] snATAC atlas type 1 fiber peaks. Even with206

moderate effect sizes and allele frequencies, the snATAC caPeak was missed in the snATAC atlas about207

equally as often as it was observed (Figure 2H). Overall, this observation underscores the impor-208

tance of population-scale snATAC studies to exhaustively identify regulatory elements in the human209

population.210

To examine the local chromatin context, we compared chromatin state patterns at e/caQTL in211

muscle fibers. Type 1 caPeaks were enriched to overlap TSS and enhancer chromHMM states in skeletal212

muscle (Figure S8F). We contrasted two classes of functional regulatory elements, the active TSS213

chromHMM state that constitutes shared and cell type-specific promoter elements and stretch enhancers214

that constitute cell identity enhancer elements13,61,62. Type 1 fiber eSNPs occurring in the skeletal215

muscle active TSS chromHMM state had higher eQTL absolute aFC than eSNPs occurring in stretch216

enhancers (Figure 2I, P = 3.56x10-2), whereas, type 1 fiber caSNPs occurring in stretch enhancers217

had higher caQTL absolute aFC than caSNPs in active TSS states (Figure 2I, P = 2.69x10-53). These218

results suggest that eQTL scans identify signals largely in proximal gene promoter regions, whereas219

caQTL scans are able to identify signals in distal and cell-specific regulatory elements, elucidating an220

important distinction in the two modalities. Collectively, these results reinforce the importance of221

joint snRNA and snATAC profiling along with e/caQTL analyses to gain mechanistic insights into the222

genetic regulation of gene expression and distal regulatory element accessibility.223
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Figure 2: Thousands of e/caQTLs identified in clusters
(A) UpSet plot showing eGenes, and (B) caPeaks in clusters (FDR<5%) (C) An example caQTL. Heatmap shows normal-
ized snATAC-seq reads across samples in the type 1 cluster, separated by caSNP rs12336284 genotype classes. Aggregate
profiles by genotype are shown on top. Examples of shared and cluster-specific caQTL are shown in (D) , (E) , and (F) .
Top two rows show snATAC-seq profiles by the caSNP genotype in type 1 and FAP cell types, followed by aggregate
snATAC profiles across clusters. (G) Reconstruction of the BACH 1 TF motif using caQTL data. From top, row 1: orig-
inal motif PWM. Row 2: genetically reconstructed motif PWM. For all BACH 1 motifs occurring in type 1 snATAC-seq
peaks (peak-motifs) that also overlapped type 1 caSNPs, alleles associated with higher chromatin accessibility (“favored
alleles”) were quantified using the caQTL aFC, followed by PWM generation. Row 3: favored allele counts for caSNPs in
BACH 1 peak-motifs. Row 4: PWM reconstructed using the nucleotide counts for all heterozygous SNPs overlapping the
BACH 1 peak-motifs. Row 5: nucleotide counts for all heterozygous SNPs in the BACH 1 peak-motifs. (H) Comparison
of caSNP effect size and MAF with the replication of snATAC-seq peaks in a reference scATAC dataset42. (I) Allelic fold
change for type 1 e/caSNPs that overlap skeletal muscle active TSS or stretch enhancer chromatin states. P values from
a two-sided Wilcoxon rank sum test. 7
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2.3 Identifying patterns of shared and cell-type specific e/caQTL signals across224

clusters225

Following our e/caQTL discovery within each cell-type cluster, we sough to learn patterns of shared226

QTL signals across clusters to increase power and obtain more precise QTL effect estimates. We used227

multivariate adaptive shrinkage (mash,63), an empirical Bayes hierarchical modeling approach that228

learns correlations among (usually sparse) QTL effects across cell-types. Mash provides posterior effect229

estimates and the local false sign rate (lfsr) as a condition-specific measure of significance which is a230

more stringent analog of FDR since it requires effects to be both non-zero and correctly signed63. This231

multivariate approach identified more e/caQTL (lfsr<5%, Figures 3A–3B) than the initial univariate232

approach (Figures 2A–2B). NMJ cluster - which represents a small but distinct subset of muscle233

fiber nuclei at the synaptic junction with motor nerve ends saw the most increase in the significant234

e/caQTL, since most signals would be shared with the larger type 1, 2a and 2x muscle fiber clusters.235

NMJ e/caQTL also showed high pairwise QTL sign sharing with other muscle fibers (Figures 3C–236

3D). Figures 3E–3F show example eQTL and caQTL where the mash approach identifies significant237

effects (orange, confidence intervals don’t overlap 0) in the NMJ and other lower-abundance cell-types,238

learning shared patterns, while also identifying truly cluster-specific e/caQTL. These results show that239

learning from data across clusters can increase power for e/caQTL discovery.240

2.4 Identifying context-specific e/caQTL241

We next sought to identify context-specific e/caQTL effects while considering individual nucleus pro-242

files. We sub-clustered the endothelial ATAC and RNA nuclei while defining five latent factors using243

liger, and identified four distinct endothelial cell contexts: capillary, arterial, venous and lymphatic244

(Figure S11A, Figure 4A). We then utilized the endothelial subclusters as discrete context and the245

latent factors as a continuous context for nuclei to test for genotype by context (GxC) interactions246

in a linear mixed model using CellRegMap64. All 198 eQTLs identified previously in the endothelial247

cell-type pseudobulk analyses (Figure 2B) showed significant (P<0.05) and highly correlated addi-248

tive genetic (G) effect in the nucleus-level scan (P) (Figure S11B). Notably, using the five factors as249

continuous context provided higher resolution and identified more GxC interactions (92 eGenes) than250

discrete subcluster contexts (87 eGenes) (Figure S11C, Figure 4B). Nucleus-level caQTL modeling251

was impractical due to the high sparsity of the snATAC data. Therefore, we computed pseudobulk252

sample peak counts in each endothelial snATAC subcluster, and tested for a GxC interaction with253

subclusters as context for the 4,518 caPeaks identified in the initial pseudobulk scan (Figure 4C).254

These analyses identified 94% (n=4,279) of the caPeaks with significant and correlated additive G ef-255

fects with the pseudobulk endothelial caQTL scan (Figure S11D). 43% (n=1,960) caPeaks showed256

significant GxC interaction effects (Figure 4D). These analyses demonstrate the exciting potential of257

snRNA/snATAC data in identifying high-resolution context-specific e/caQTL effects.258

2.5 e/caQTL finemapping, colocalization and causal inference informs cell-specific259

multi-omic genetic regulation260

We performed genetic finemapping to identify independent e/caQTL signals and generate 95% credible261

sets using the sum of single effects (SuSiE) approach65. 284 out of 7,062 eQTL and 4,671 out of262

106,059 caQTL signals could be finemapped to a single variant in the 95% credible set (Figures 5A–263

5B). eSNPs occurring in snATAC peaks and caSNPs occurring in the corresponding caPeaks have264

higher finemapping posterior inclusion probability (PIP) in the e/caQTL signal credible sets, which265

reinforces the quality of our e/caQTL scans and the utility of finemapping to nominate causal e/caSNPs266

(Figures 5C–5D). We next tested if the eQTL and caQTL signals shared causal variant(s), i.e. if the267
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Figure 3: Learning patterns of e/caQTLs signal sharing across clusters inform effect
estimates
(A) Fitting a mash model and estimating effects across clusters, UpSet plots show the number of shared and specific
eGenes, and (B) caPeaks at a local false sign rate (lfsr)< 5%. (C) Fraction of eQTL or (D) caQTL effect estimates
with the same sign for each pair of clusters. (E) Example eQTL and (F) caQTL showing original effects (slope) from
the QTL scan and the effects estimated from mash. Bars show 95% confidence intervals. For the original eQTL results,
standard errors are calculated from qvalues correcting for the total numbers of features tested after a Benjamini-Hochberg
correction (hence equivalent of Mashr lfsr). For the Mashr results, estimate is the posterior mean, and error bars depict
± 1.96 * posterior standard deviations. Orange color highlights estimates where CIs don’t overlap zero.

9

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2024. ; https://doi.org/10.1101/2023.12.15.571696doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.15.571696
http://creativecommons.org/licenses/by-nd/4.0/


Figure 4: Identifying state-specific e/caQTL in endothelial cluster by testing genotype by
context interaction
(A) Subclustering of the endothelial nuclei. Left: snRNA UMAP plot showing discrete subcluster contexts; right: snRNA
UMAP plots show five latent factors as continuous contexts. (B) eGene examples with significant GxC interaction with
subclusters (left) or factors (right) as context. (C) snATAC UMAP plot showing endothelial subclusters. Due to sparsity of
snATAC data, counts were pseudobulked by sample within each subcluster prior to testing for GxC interaction. (D) caPeak
examples with significant G x subcluster interaction.
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e/caQTL signals were colocalized using coloc v519 (Figure 5E). We identified colocalized caQTL signals268

(coloc posterior probability for shared variant(s) (PPH4) > 0.5) across clusters for 1,990 eGenes; the269

majority (60%) of these e-caQTL colocalizations were cluster-specific (Figure 5E). Notably, while we270

detected fewer e/caQTLs in lower abundance cell-types like endothelial cells and FAP relative to muscle271

fibers, a larger percentage of these e/caQTLs colocalize with eGenes in only one cell-type (Figure S12),272

suggesting that QTL colocalization identifies cell-specific regulatory signals. Several relevant TF motifs273

were enriched in caPeaks that colocalized with an eQTL relative to caPeaks that did not colocalize274

(Figure 5F); for example, the motif for NKX2-5, a regulator of skeletal muscle differentiation66 is275

enriched in colocalized caPeaks in muscle fibers. These results suggest that e-caQTL colocalizations276

nominate biologically relevant gene regulatory mechanisms and emphasizes the value of our sn-e/caQTL277

catalog.278

For colocalized e/caQTL signals, we inferred the causal relationship between chromatin accessi-279

bility and gene expression using causal inference tests (CIT) and Mendelian randomization (MR) ap-280

proaches67–69 (Figure 5G). We tested if chromatin accessibility mediates the effect of genetic variation281

on gene expression (Figure 5G, row 1, “ca-to-e”), or if gene expression mediates the effect of genetic282

variation on chromatin accessibility (row 2, “e-to-ca”), compared to a model consistent with pleiotropic283

effects (row 3). In these analyses, “causal” implies that variance in the mediator determines some284

proportion of the variance in the outcome67. Since measurement errors in the molecular phenotypes285

can affect causal inference, we conservatively required consistent causal direction reported by both the286

CIT and the MR Steiger directionality test, and also performed sensitivity analyses that measured how287

consistent the inferred direction was over the estimated bounds of measurement error69 (Figure S13A).288

We discovered 1,061 colocalized e/caQTL signal pairs as ca-to-e or e-to-ca (consistent CIT and MR289

Steiger directionality test, 5% FDR Figure 5G). The e-to-ca model may represent gene expression290

effects on chromatin accessibility for caPeaks within the body of the transcribed gene. To test this291

hypothesis, we modeled the inferred causal direction in a logistic regression coding e-to-ca as 1 and292

ca-to-e as 0, adjusting for caPeak height (reads per million mapped reads, RPM), eGene expression293

level (transcripts per million mapped reads, TPM), caPeak GC content and a binary variable specifying294

if the caPeak was located within the eGene body. This model fit was better than a model without the295

caPeak-within-eGene body term (likelihood ratio test P = 1.5e-4). We found that e-to-ca caPeaks296

occurred within the eGene body significantly more than ca-to-e caPeaks (regression coefficient = 0.79,297

P = 2.47x10-5; Figure 5H), indicating that colocalized e/caQTL caPeaks in the gene body are more298

likely to be influenced by the act of transcription across the underlying DNA region. ca-to-e caPeaks299

were higher (CPM) than e-to-ca caPeaks (coefficient = -0.72, P = 9.15x10-12), whereas e-to-ca eGenes300

were more highly expressed than ca-to-e eGenes (coefficient = 0.31, P = 9.36x10-4).301

High PIP caSNPs were more likely to occur within ca-to-e caPeaks than e-to-ca caPeaks (Figure 5I),302

consistent with expectation for caPeaks that are causal on eGenes. For TSS-distal ca-to-e caPeaks where303

additional caPeaks were identified in TSS+1kb upstream region of the eGene (Figure 5J), the distal304

caPeak was often causal on the TSS-caPeak as well (Figure S13B), Fisher’s exact test P = 4.0x10-17).305

For example, a distal caPeak ∼7.6 kb from the GSDME gene TSS is causal on both GSDME gene306

expression (CIT P = 5.4x10-5) and a TSS-caPeak accessibility (CIT P = 4.2x10-5) (Figures 5K–5M).307

These analyses support an enhancer model for the ca-to-e caPeaks where the caSNP affects chromatin308

accessibility at the TSS-distal caPeak that then regulates gene expression.309

We highlight a locus on chromosome 8 where two independent caQTL signals for a caPeak tagged by310

caSNPs rs700037 and rs1400506 (Figure S13C), both of which lie within the caPeak (Figure S13D)311

are colocalized with two independent eQTL signals for the lincRNA gene AC023095.1 (PPH4 0.99 and312

0.76). This caPeak is specific for the type 1 fiber cluster (Figure S13D). Considering the independent313

signals as instruments, we identified the caPeak to be causal on the AC023095.1 gene expression (CIT314
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Figure 5: e/caQTL finemapping, colocalization and causal inference informs regulatory
grammar in clusters
(A) Fraction of finemapped eQTL and (B) caQTL signals by the 95% credible set size. Probability of (C) eSNPs overlapping
snATAC peaks relative to the eSNP PIPs; and (D) caSNPs overlapping the caPeak relative to the caSNP PIPs. Gray lines
and confidence intervals are obtained after from shuffling e/caSNP PIPs. (E) eQTL-caQTL pairs with lead SNPs within
100kb in each cluster were tested for colocalization. Heatmap shows the posterior probability of shared causal variant (PP
H4) from coloc v5. (F) TF motif enrichment in caPeaks that colocalize with eGenes relative to all caPeaks in a cluster.
Clusters with at least 100 colocalized caPeaks are shown. * denotes significant logistic regression coefficient (5% FDR).
(G) For each colocalized eGene-caPeak pair, causal inference tests (CIT) can inform the causal direction - Chromatin
accessibility over gene expression (ca-to-e) or vice versa (e-to-ca) using e/ca SNPs as instrument variables. Barplot shows
the percentage of colocalized eGene-caPeak pairs where the putative causal direction could be determined consistently
from CIT and MR Steiger directionality test (5% FDR). (H) (I) (J) (K) (L) (M) continued on the next page.
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Figure 5: continued
(H) Logistic regression modeling the causal direction between caPeak-eGene pairs with whether the caPeak lies within the
eGene body, along with eGene expression (TPM,) caPeak height (RPM), and GC content. (I) Probability that a caSNP
lies in the caPeak relative to caSNP PIP bins. Colors depict if the caPeak was inferred as ca-to-e or e-to-ca from CIT.
(J) Where multiple caPeaks colocalize with an eGene, CIT can help delineate causal direction. (K) At the GSDME locus,
caQTLs for a distal-peak and a TSS-peak both colocalized with the eQTL. Type 1 snATAC-seq signal track by rs10276677
genotype at this locus shows the distal-caPeak, TSS-caPeak and the GDSME gene TSS. Aggregate snATAC-seq in clusters
are shown below. (L) Locus-zoom plots show the distal-caQTL, TSS-caQTL and the GDSME eQTL. (M) Causal inference
between the distal-caPeak, TSS-caPeak and the GDSME gene using rs10276677 as the instrument variable. Boxplots show
inverse normalized chromatin accessibility or gene expression relative to the alternate allele dosages at rs10276677 before
and after regressing out the corresponding modality.

P value 2.11x10-07) (Figure S13E). Collectively, these results demonstrate how signal identification,315

finemapping, colocalization and causal inference analyses illuminate cell-specific causal event chains for316

the regulatory element, target gene and causal variant(s).317

2.6 Cell-specific e/caQTL and GWAS signal integration to inform disease/trait318

regulatory mechanisms319
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Figure 6: Enrichment of GWAS traits in cluster snATAC peaks
(A) GWAS enrichment in cluster snATAC peak features. Heatmap shows the LDSC regression coefficient Z scores.
(B) T2D GWAS Enrichment fin type 1 fiber snATAC peaks that contain a caSNP or eSNP or peaks that do not overlap
e/caSNPs. Error bars represent the 95% confidence intervals. * = FDR < 5% on the regression coefficient, and . = FDR
< 5% on the heritability enrichment.

To identify mechanisms underlying disease/trait associations, we integrated our e/caQTL signals320

with GWAS signals. We considered 302 publicly available disease/trait GWAS datasets from the UK321

Biobank (UKBB), along with 17 other GWAS datasets that included other skeletal muscle-relevant322

diseases/traits such as T2D, fasting insulin, WHR, body mass index (BMI), creatinine, and others.323

To further assess the relevance of skeletal muscle regulatory elements in T2D and related metabolic324

trait heritability, we profiled the histone marks H3K27ac (associated with enhancer and promoter325

activity) and H3K27me3 (associated with repressed chromatin) using CUT&Tag in skeletal muscle326
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tissue. Enrichment of H3K27ac signal at TSSs of highly expressed genes confirmed the high-quality327

of this dataset (Figures S14A–S14H). We used stratified-LD score regression (S-LDSC) to compute328

GWAS enrichment in muscle snATAC cluster and bulk chromatin peaks70–72 (Figure 6A). Muscle fiber329

snATAC peaks were enriched for atrial fibrillation, creatinine, height, and pulse rate (consistent with330

the previous Zhang et al. [42] study). Notably, muscle fibers were enriched for T2D, along with fasting331

insulin and modified Stumvoll insulin sensitivity index (ISI) - two key measures of insulin resistance332

(Figure 6A). FAPs were enriched for various traits such as waist-to-hip ratio, bone mineral density,333

height, and ocular trait signals among others. Skeletal muscle H3K27ac peaks were enriched for ISI,334

although to a lesser extent than the muscle fiber snATAC peaks, confirming the importance of skeletal335

muscle in the insulin resistance phenotype and the added value in snATAC data over bulk chromatin336

profiles. Type 1 fiber peaks containing caSNPs were enriched to overlap T2D signals whereas peaks337

containing eSNPs or peaks without e/caSNPs were not enriched (after subsampling all three peak sets to338

the same number of peaks) (Figure 6B). These results indicate that trait-associated genetic variants339

are especially enriched in open chromatin peaks that are sensitive to genetic variation, and further340

highlight the importance of sn-caQTL data in identifying key disease associated regulatory elements.341

Focusing on a shortlist of 38 relevant diseases/traits, we identified 3,487 GWAS signals colocalized342

with e/caQTL from our study (Figures 7A–7B, Figure S15A), the vast majority (2,791 signals, 80%)343

of which were GWAS-caQTL (not GWAS-eQTL) colocalizations (Figure 7C). Since coloc results can344

be sensitive to the prior probability for the SNP being associated with both traits (p12), we performed345

sensitivity analyses relative to the p12 prior (Figures S15B–S15D) and include the minimum p12346

prior for PPH4>0.5 as a potential QC metric for colocalization analyses. We highlight GWAS signals347

for T2D, BMI, and fasting insulin that colocalize with e/caQTL across the tested clusters, both in a348

shared and cell-specific manner (Figure 7D, Figures S15E–S15F). We also identified caQTL specific349

to individual muscle fiber types colocalized with several GWAS trait signals (select examples shown in350

Figure S16). In addition to eQTL, we systematically integrated snATAC co-accessibility data from351

Cicero49 as an orthogonal approach to nominate target genes. For each colocalized T2D GWAS signal,352

we considered if the caPeak was in the TSS region or was co-accessible with a TSS-peak of a gene; and353

further if the caQTL colocalized GWAS signal had a nominal eQTL association with the nominated354

target gene in that cluster (Figure 7D, bottom heatmap).355

The GLI2 locus T2D GWAS signal (P = 4.2x10-9) is colocalized (PPH4 = 1.0) with a caQTL356

identified specifically in the endothelial cells (P = 1.37x10-11, Figures S17A–S17B), and the caSNP357

rs11688682 (PIP=1.0) occurs within the caPeak. While we didn’t identify any colocalized eQTL with358

this GWAS signal, alternative approaches helped nominate a target gene. We employed a deep learning359

framework capable of predicting the epigenome, chromatin organization and transcription (EPCOT)73360

to impute high-resolution 3D chromatin contacts (Micro-C) using the endothelial ATAC profile. This361

approach predicted high contacts of the caSNP-caPeak region with the INHBB gene TSS, nominating362

the gene as a target (Figure S17C). Notably, we detected allelic differences in the predicted contacts,363

where the homozygous high accessibility genotype (GG) showed higher contacts with the INHBB gene364

than the homozygous low accessibility genotype (CC) (Figure S17D). The caPeak was co-accessible365

with the TSS peaks of genes RALB and INHBB in a genotype specific manner (Figure S17E); and366

the caSNP was nominally associated with INHBB expression (P=0.02).367

The ARL15 locus T2D GWAS signal (P = 7.7x10-14) is colocalized (PPH4 = 0.975) with an FAP-368

specific caQTL (P = 2.5x10-9) (Figures 7E–7F). EPCOT predicted high chromatin contact frequency369

of the caSNP rs702634 region with the FST gene TSS (Figure 7G), and the predicted contacts370

were higher with the homozygous high accessibility genotype (GG) compared to the homozygous low371

accessibility genotype (AA) at the caSNP (Figure 7H). This FAP-specific caPeak is present in the372

analogous cell type at the orthologous region in the rat genome, and its allelic enhancer activity was373
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Figure 7: Integrating e/caQTL signals with GWAS informs disease/trait relevant regula-
tory mechanisms
(A) Percentage and (B) Number of GWAS signals across traits that colocalize with e/caQTL signals across the five
clusters. (C) Proportion of colocalized GWAS signals (from B) that colocalize with only caQTL or only eQTL or both
e-and-caQTL. (D) (E) (F) (G) (H) (I) (J) (K) (L) (M) (N) continued on the next page.
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Figure 7: continued
(D) Heatmaps showing T2D GWAS signal colocalization with caQTL (top) and eQTL (middle). Target gene predictions
using snATAC co-accessibility (Cicero) between colocalized caPeak and gene TSS peak are shown in the bottom heatmap.
* indicates that the GWAS hit also had a nominally significant eQTL P value for the Cicero-nominated gene in that
cluster. (E) T2D GWAS signal at the ARL15 locus is colocalized with an FAP caQTL. The genomic locus is shown at
the top, followed by zooming into a ±1kb neighborhood of the caSNP rs702634. snATAC-seq profiles in five clusters by
the caSNP genotype are shown, followed by aggregate profiles across clusters. (F) Locuszoom plots showing the ARL15
GWAS signal (top) followed by the caQTL signal in five clusters. (G) Hi-C chromatin contacts at 5kb resolution imputed
by EPCOT using the FAP snATAC-seq data (shown below the heatmap) in a 1Mb region over rs702634. (H) Difference
in the predicted normalized chromatin contacts using FAP ATAC-seq from samples with the high accessibility genotype
(GG) and low accessibility genotype (AA) at rs702634. Interactions with rs702634 highlighted in black are shown as a
signal track below the heatmap. (I) Genes in the 1Mb neighborhood of the ARL15 gene. Chromatin co-accessibility scores
between the caPeak and TSS peaks for the neighboring genes, classified by genotype classes at rs702634. Distance of the
TSS peak to the caPeak in kb is shown in parentheses. (J) GWAS signals for T2D and insulin fold change (IFC) at the
C2CD4A/B colocalize with a caQTL in type 1 and type 2a fibers. The genomic locus, snATAC-seq profiles by the caSNP
genotype and aggregated profiles are shown. (K) Locuszoom plots showing the C2CD4A/B GWAS and caQTL signals.
(L) Micro-C chromatin contacts imputed at 1kb resolution by EPCOT using the type 1 snATAC-seq showing rs7163757
and the neighboring 500kb region. (M) Difference in the predicted normalized chromatin contacts by rs7163757 genotype.
Interactions with rs7163757 highlighted in black are shown as a signal track below. (N) A massively parallel reporter
assay in the muscle cell line LHCN-M2 tested a 198bp element centered on the caSNP rs7163757. Enhancer activity is
measured as log2(RNA/DNA) normalized to controls.

validated in a luciferase assay in human mesenchymal stem cells41. The caPeak was highly co-accessible374

with the FST gene TSS peak in a genotype-specific manner (Figure 7I). The nominated target gene for375

this GWAS signal, FST, encodes follistatin, which is involved in increasing muscle growth and reducing376

fat mass and insulin resistance74–77.377

The C2CD4A/B locus T2D GWAS signal (P = 2.6x10-13) colocalizes (PPH4 = 0.969, 0.966) with378

caQTL signals in the type 1 and type 2a fibers (P = 1.25x10-31, 4.52x10-13) (Figures 7J–7K). This379

GWAS signal is also identified for fasting glucose and insulin fold change (IFC) post 2 hour oral glucose380

tolerance test (OGTT) - a measure of insulin sensitivity78. The caSNP rs7163757 lies within the caPeak;381

the T (T2D non-risk) allele is associated with higher chromatin accessibility (Figure 7J). Notably, this382

caPeak was not found as a type I skeletal myocyte cis regulatory element in the Zhang et al. [42] snATAC383

atlas. EPCOT predicted high chromatin contacts with the VPS13C gene TSS (Figure 7L), higher for384

the high accessibility genotype (TT) compared to the low accessibility genotype (CC) (Figure 7M).385

We didn’t detect an eQTL for VPS13C in muscle fibers, however, the caSNP is associated with VPS13C386

expression in whole blood (GTEx) P=2.8x10-7). While this caQTL is observed in muscle fibers, the387

snATAC peak is strongest in the lower-abundance NMJ cluster, where co-accessibility analyses also388

predict the VPS13C as the target gene (Figure 7J, Figures S17F–S17G). An siRNA-mediated389

knock-down of VPS13C in an adipocyte cell line affected the cell-surface-abundance of the glucose390

transporter GLUT4 upon insulin stimulation78, implicating the nominated target gene, VPS13C, in391

insulin resistance mechanisms79. We validated the enhancer activity of the caPeak 198 bp distal regu-392

latory element centered on caSNP rs7163757 in a massively parallel reporter assay (MPRA) framework393

in the LHCN-M2 human skeletal myoblast cell line. The T2D risk allele C showed significantly higher394

activity relative to the empty vector control (P = 4.1x10-4) which was significantly higher than the395

activity of the non-risk T allele (P value = 2.9x10-2, Figure 7N). Previously, Kycia et al. [80] re-396

ported that rs7163757 occurred in accessible chromatin in pancreatic islets, the risk allele C showed397

higher enhancer activity in rodent islet model systems, and this allele was also associated with higher398

C2CD4A/B gene expression, thereby implicating this T2D GWAS signal in islet dysfunction, which399

was supported by an independent publication81. Our results highlight skeletal muscle fibers as another400

key cell type where this signal could modulate the genetic risk for T2D and insulin resistance through401

the VPS13C gene.402

Collectively, these results demonstrate the importance of the snATAC modality and caQTL infor-403
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mation in nominating mechanisms underlying GWAS associations and identifying causal variants in404

disease-relevant cell types.405

3 Discussion406

In this study, we present population-scale single-nucleus profiling of chromatin accessibility and gene407

expression on 287 frozen human skeletal muscle biopsies. We multiplexed 40 or 41 samples in each batch408

using a randomized block design to control for sample variables. Demultiplexing the data downstream409

using known genetic variation enabled reduced costs, helped protect against batch effects, allowed ge-410

netic detection of doublets, and overall increased rigor of the work. The integration and joint-clustering411

of multi-omic modalities provided a comprehensive view of the cell-specific molecular landscape within412

human skeletal muscle.413

We identified 7,062 eQTL and 106,059 caQTL across the clusters. Concordant e/caQTL effects414

across clusters supported the high-quality of our e/caQTL scans. Chromatin accessibility directional415

allelic effects discovered from the caQTL scans mirrored the DNA-binding preferences of TF motifs416

which is a powerful demonstration of the depth of information snATAC and caQTL data capture.417

Notably, we identified 14-fold more caQTL compared to eQTL, which can be attributed to two factors:418

first, more peaks were tested for caQTL than genes for eQTL, and second, chromatin accessibility419

modality is likely an overall more proximal molecular trait to genetic variation than gene expression in420

the sequence of causal events, which likely contributes to the larger enhancer effects we observed and421

therefore results in higher power to detect caQTL with the same sample size.422

The majority (80%) of GWAS signals colocalized with only caQTL rather than eQTL, in part423

because we detected many more caQTL than eQTL. As a corollary, we identified fewer triple GWAS-424

caQTL-eQTL colocalizations, which limited our efforts in using eQTL to identify target genes inferring425

the causal direction between omic modalities. It is becoming evident that eQTL alone fall short in fully426

elucidating the regulatory architecture of GWAS loci82,83. Our analyses revealed an intrinsic distinction427

between e- and caQTLs that may help reconcile these observations. Active TSS regions contained higher428

effect eSNPs compared to caSNPs whereas stretch enhancer regions, which are enriched for cell-type-429

relevant GWAS signals8,13,84, contained higher effect caSNPs compared to eSNPs. Therefore, eQTL430

scans identify signals largely in gene TSS regions, whereas caQTL scans are able to identify strong431

effects in cell-specific distal enhancer elements enriched for GWAS signals.432

Because complex traits are influenced by both genetic and environmental effects, examining gene433

expression in the conditions most relevant for disease could be more informative. The larger genetic434

effects on stretch enhancer chromatin accessibility could propagate to gene expression effects under435

specific environmental conditions. Alasoo et al. [85] provided support for this hypothesis using bulk436

RNA and ATAC data in a macrophage model system where ∼60% of eQTL identified only under437

stimulatory conditions (response eQTL) were caQTL in the basal state. Aracena et al. [86] also showed438

that basal epigenomic profiles are strongly predictive of the transcriptional response to an antigen439

in immune cells. Another study reported that response-eQTL overlapped basal-caQTL in a human440

neural progenitor system87. These studies, along with our data, suggest that chromatin in cell-identity441

stretch enhancers is primed to potentiate changes in gene expression under relevant conditions. Future442

larger studies may indeed identify more eQTLs. However, if the relevant gene is not expressed at the443

basal state, an eQTL won’t be identified for caQTL variants even with increased sample size unless444

the appropriate stimulatory condition is available. Notably, recent sn-multiome studies observing lower445

cell-state resolution from chromatin accessibility compared to transcription also posited that cells could446

retain a primed or permissive chromatin landscape that can allow dynamic state transitions in response447

to relevant conditions48,88.448
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About half of GWAS-caQTL colocalizations were cluster-specific across traits, with many specific449

for the lower powered (due to nuclei abundance) Endothelial and FAP clusters, which adds to the im-450

portance of single nucleus chromatin accessibility profiling in identifying cell-specific genetic regulatory451

elements. Our snATAC caQTL data help delineate heterogeneity in the mechanistic pathways shaping452

T2D pathophysiology. We show the GLI2 signal is most relevant for endothelial cells and the ARL15453

signal targets the FST gene in FAPs, implicating an interplay of fat and muscle mass regulation by these454

progenitor cells in T2D. We find evidence for the C2CD4A/B T2D GWAS signal, previously implicated455

in islet dysfunction through inflammatory cytokine-responsive C2CD4A/B genes, to also be involved456

in glucose uptake mechanisms in muscle fibers through the VPS13C gene. Cell types such as FAPs and457

endothelial occur in other T2D-relevant tissues such as adipose; comparing the snRNA/snATAC and458

e/caQTL profiles for these cell types from a wider array of tissues will help glean the similarities and459

differences in disease mechanisms in related cell type populations. Layering sn-e/caQTL colocalization460

information over GWAS signals across multiple relevant tissues will help generate a conceptual “signal461

scoreboard” that can help prioritize cell types, regulatory elements, target genes and causal variants(s)462

for each GWAS signal towards experimental validation.463

To date, there have been some single cell/nucleus eQTL studies89–94, few sn-caQTL studies28,95;464

however, these all had modest sample sizes, and were mainly in blood cell types or cell lines. There are465

no population-scale single cell/nucleus studies in skeletal muscle and none with both RNA and ATAC466

modality for hundreds of samples in any tissue. Our work bridges a large gap in knowledge in that it467

is the first study identifying both sn-eQTL and sn-caQTL across hundreds of samples in any tissue.468

Our findings emphasize the need to consider chromatin accessibility in addition to gene expression469

when investigating the functional mechanisms underlying complex traits, and serves as a template for470

multi-omics maps in other tissue and disease contexts.471

3.1 Limitations of the study472

In our single-nucleus study, most nuclei were identified as muscle fibers; this distribution of cell type473

proportions was especially skewed since muscle fibers are multi-nucleated. Lower abundance clusters474

had relatively less power to identify e/caQTL. Generating single-nucleus data involves several tissue-475

dependent considerations and challenges. Other examples include diseased liver that can have fibrosis476

and brain that has high lipid content, both of which can make processing of frozen tissue, like in this477

study, challenging. Pancreas has high levels of RNase activity which degrades the snRNA modality478

quality. Comparing e/caQTL effect sizes across clusters enabled more precise effect estimates and479

identified more significant associations across clusters, especially for the NMJ cluster. Instead of QTL480

scans within discrete clusters, identifying contiguous cell states through latent embedding and related481

approaches64,96 helps mitigate power issues and can identify state-specific QTLs. Approaches such482

as deeper sequencing, pre-selecting relevant cell types via fluorescence activated cell sorting (FACS)483

could further enrich for targeted rare cell types and allow for greater power to identify QTLs97–99.484

Cleaner nuclei preps with low ambient transcripts and better approaches to adjust for these would485

enable retrieving more quality nuclei from rare cell types. The feasibility of these approaches again486

heavily depends on the tissue. Using our down-sampling results, for 200 samples, we find that ∼75487

nuclei per sample yields ∼1,000 eQTL and >10,000 caQTL. The number of nuclei to target in future488

experiments can thus be calculated based on the expected proportion of rare cells of interest in a given489

tissue. Signal upscaling via deep learning methods such as AtacWorks and PillowNet100,101 is another490

possible avenue to enhance caQTL scans in lower abundance cell types. The multiome protocol for491

profiling RNA and ATAC on the same nucleus was not available when our FUSION study samples492

were processed. However, it has several advantages including 1) ease in genetic demultiplexing, sample493
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assignment, and clustering as these analyses can be done on one modality (eg snRNA) and can then494

be mapped easily to the other modality or by weighting both modalities; 2) established cross-modality495

approaches to link regulatory elements to genes. We recommend all future studies to perform multiome496

profiling.497

We recognize that while our findings offer cell-specific mechanistic insights at hundreds of loci,498

comprehensive orthogonal testing of the identified e/caQTL associations and e/caQTL-GWAS colocal-499

izations to confirm their impact on disease remains a critical step for future studies. Several studies500

have demonstrated large-scale validation of existing genome-wide associations using functional allelic501

MPRA assays, CRISPRi screens among others102–104. We demonstrate successful MPRA in the LHCN-502

M2 skeletal muscle cell line, for the first time, thus providing feasibility for these future studies.503

In further work, co-activity QTLs (e.g. QTLs on co-expression, co-accessibility) could provide504

additional resolution to regulatory mechanisms. Cell-specific caQTL and eQTL maps could be used for505

biobank-scale polygenic scoring of individuals. Collapsing caQTL peaks and eQTL genes into pathways506

and aggregating pathway-level effects based on individual genotype dosages would allow for cell- and507

pathway-specific polygenic scores, paving the way for partitioning tissue-agnostic polygenic risk scores508

into cell-specific personalized pathophysiological risk profiles.509

4 Methods510

4.1 Sample collection511

4.1.1 FUSION cohort512

The Finland-United States Investigation of NIDDM Genetics (FUSION) study is a long-term project513

aimed at identifying genetic variants that contribute to the development of type 2 diabetes (T2D) or514

affect the variability of T2D-related quantitative traits. To conduct the FUSION Tissue Biopsy Study,515

we obtained vastus lateralis muscle biopsy samples from 331 individuals across the glucose tolerance516

spectrum, including 124 with normal glucose tolerance (NGT), 77 with impaired glucose tolerance517

(IGT), 44 with impaired fasting glucose (IFG), and 86 with newly-diagnosed T2D29.518

To ensure the validity of the study results, certain individuals were excluded from the study, in-519

cluding those receiving drug treatment for diabetes, those with conditions that could interfere with the520

analysis (such as cancer, inflammatory diseases, or skeletal muscle diseases), those with conditions that521

increase hemorrhage risk during biopsy (such as hemophilia, von Willebrand’s disease, or severe liver522

disease), those taking medications that increase hemorrhage risk during the biopsy (such as warfarin),523

those taking medications that could confound the analysis (for example oral corticosteroids, or other524

anti-inflimmatory drugs such as infliximab or methotrexate), and those under 18 years of age.525

Clinical and muscle biopsy visits were conducted at three different study sites (Helsinki, Savitaipale,526

and Kuopio). The clinical visit included a 2-hour four-point oral glucose tolerance test (OGTT),527

BMI, waist-to-hip ratio (WHR), lipids, blood pressure, and other phenotypes measured after a 12-hour528

overnight fast, as well as health history, medication, and lifestyle questionnaires. The clinical visit was529

conducted an average of 14 days before the biopsy visit.530

The muscle biopsies were performed using a standardized protocol. Participants were instructed to531

avoid strenuous exercise for at least 24 hours prior to the biopsy. After an overnight fast, approximately532

250 mg of skeletal muscle from the vastus lateralis was obtained using a conchotome, under local533

anesthesia with 20 mg/mL lidocaine hydrochloride without epinephrine. A total of 331 muscle biopsies534

were collected by nine experienced and well-trained physicians at the three different study sites between535

2009 and 2013, with three physicians performing the majority of the biopsies. All physicians were536

trained to perform the biopsy in an identical manner. The muscle samples were cleaned of blood, fat,537
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and other non-muscle tissue by scalpel and forceps, rinsed with NaCl 0.9% solution, and frozen in liquid538

nitrogen within 30 seconds after sampling. Muscle samples were then stored at -80 degrees Celsius.539

4.2 Sample preparation, snRNA-seq and ATAC profiling540

The frozen tissue biopsy samples were processed in ten batches, each consisting of 40-41 samples. These541

batches were organized using a randomized block design to protect against experimental contrasts of542

interest including cohort, age, sex, BMI and stimulatory condition (relevant for a smaller cohort not543

focused on in this study) (Figures S1A–S1E). Samples in each batch were pulverized in four groups544

of 10 or 11 samples (each sample weighing between 6-9 mg) using a CP02 cryoPREP automated545

dry pulverizer (Covaris 500001) and resuspended in 1 mL of ice-cold PBS. Following, the material546

from all 40/41 samples was pooled together and nuclei were isolated. We developed a customized547

protocol (protocol S1, supplementary text) derived from the previously published ENCODE protocol548

https://www.encodeproject.org/experiments/ENCSR515CDW/ and used it to isolate nuclei, which is549

compatible with both snATAC-seq and snRNA-seq. The desired concentration of nuclei was achieved by550

re-suspending the appropriate number of nuclei in 1X diluted nuclei buffer (supplied by 10X genomics551

for snATAC, and RNA nuclei buffer (1% BSA in PBS containing 0.2U/uL of RNAse inhibitor) for552

snRNA). The nuclei at appropriate concentration for snATAC-seq and snRNA-seq were submitted to553

the University of Michigan Advanced Genomics core for all the snATAC-seq and snRNA-seq processing554

on the 10X Genomics Chromium platform (v. 3.1 chemistry for snRNA-seq). Nuclei to profile each555

modality from each batch were loaded onto 8 channels/wells of a 10X chip at 50k nuclei/channel556

concentration. For snRNA-seq, the libraries were single-ended, 50 bp, stranded. For snATAC-seq, the557

libraries were paired-ended, 50 bp. The sequencing for each modality and batch was performed on one558

NovaSeq S4 flowcell.559

4.3 Muscle multiome sample560

We obtained “multiome” data, i.e. snATAC-seq and snRNA-seq performed on the same nucleus for561

one muscle sample as part of newer ongoing projects in the lab. We used 70mg of pulverized human562

skeletal muscle tissue sample. The sample was pulverized using an automated dry cryo pulverizer (Co-563

varis 500001). We developed a customized protocol (hybrid protocol with sucrose) from the previously564

published ENCODE protocol, and used it to isolate nuclei for single nuclei multiome ATAC and 3’GEX565

assay. The desired concentration of nuclei was achieved by re-suspending the appropriate number of566

nuclei in 1X diluted nuclei buffer (supplied by 10X genomics). The nuclei at the appropriate concentra-567

tion for single nuclei multiome ATAC and 3’GEX assay was processed on the 10X genomics chromium568

platform. 20K nuclei were loaded on one well of the 8 well strip.569

4.4 Genotyping and imputation570

The FUSION cohort samples were genotyped using DNA extracted from blood on the HumanOmni2.5571

4v1 H BeadChip array (Illumina, San Diego, CA, USA) during a previous study30. The Texas and572

Sapphire cohort samples were genotyped using DNA extracted from blood on the Infinium Multi-573

Ethnic Global-8 v1.0 kit. Probes were mapped to Build 37. We removed variants with multi mapping574

probes and updated the variant rsIDs using Illumina support files Multi-EthnicGlobal D1 Mapping-575

Comment.txt and annotated.txt downloaded from https://support.illumina.com/downloads/i576

nfinium-multi-ethnic-global-8-v1-support-files.html. We performed pre-imputation QC577

using the HRC-1000G-check-bim.pl script (v. 4.2.9) obtained from the Marc McCarthy lab website578

https://www.well.ox.ac.uk/~wrayner/tools/ to check for strand, alleles, position, Ref/Alt assign-579

ments and update the same based on the 1000G reference (https://www.well.ox.ac.uk/~wrayner/t580
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ools/1000GP_Phase3_combined.legend.gz). We did not conduct allele frequency checks at this step581

(i.e. used the –noexclude flag) since we had samples from mixed ancestries.582

For all samples, we performed pre-phasing and imputation using the Michigan Imputation Server105.583

The standard pipeline (https://imputationserver.readthedocs.io/en/latest/pipeline/)584

included pre-phasing using Eagle2106 and genotype dosage imputation using Minimac4 (https://gi585

thub.com/statgen/Minimac4) and the 1000g phase 3 v5 (build GRCh37/hg19) reference panel (The586

1000 Genomes Project Consortium 2015). Post-imputation, we selected biallelic variants with estimated587

imputation accuracy (r2) > 0.3, variants not significantly deviating from Hardy Weinberg Equilibrium588

P>1e-6, MAF in 1000G European individuals > 0.05.589

4.5 snRNA-seq data processing and quality control590

snRNA: We mapped the reads to the human genome (hg38) using STARsolo https://github.com/a591

lexdobin/STAR/blob/master/docs/STARsolo.md (v. 2.7.3a). We performed rigorous quality control592

(QC) to identify high-quality droplets containing single nuclei (Figures S1F–S1G). We required the593

following criteria: 1) nUMI > 1000; 2) fraction of mitochondrial reads < 0.01; 3) identified as a “singlet”594

and assigned to a sample using Demuxlet107 4) identified as “non-empty”, i.e. where the RNA profile595

was statistically different from the background ambient RNA signal, using the testEmtpyDrops function596

from the Dropletutils package108; and 5) passing the cluster-specific thresholds for the estimated ambient597

contamination from the DecontX package109. This led to a total of 255,930 pass-QC RNA nuclei, 180,583598

from the FUSION cohort. These individual qc steps are further described below.599

4.6 snATAC-seq data processing and quality control600

We made barcode corrections using the 10X Genomics whitelist using an approach implemented by601

the 10X Genomics Cell Ranger ATAC v. 1.0 software via a custom python script and counted the602

number of read pairs from each droplet barcode. We trimmed the adapter sequences using cta https:603

//github.com/ParkerLab/cta and generated updated fastqs by replacing the cellular barcodes with604

the corrected cellular barcodes, while selecting reads corresponding to cellular barcodes that had at least605

1000 pairs. Droplets with less than 1000 read pairs would not contain useful/high quality data from606

single nuclei and so were removed from processing. We mapped the reads to the human genome (hg38)607

using bwa mem (v. 0.7.15-r1140)110 with flags “-I 200,200,5000 -M”. We performed rigorous quality608

control (QC) and retained high-quality droplets based on the following definitions (Figures S1H–S1I):609

1) 4,000 < high quality autosomal alignments (HQAA) < 300,000, 2) transcription start site (TSS)610

enrichment ≥ 2, 3) mitochondrial fraction < 0.2. For each snATAC-seq library bam file, we used the611

subset-bam tool (v. 1.0.0) https://github.com/10XGenomics/subset-bam to subset for the selected612

cellular barcodes, and used SAMtools to filter for high-quality, properly-paired autosomal read pairs (-f613

3 -F 4 -F 8 -F 256 -F 1024 -F 2048 -q 30). To identify droplets containing a single nucleus “singlet” and614

determine the sample identity, we used the Demuxlet107 tool. For each library (8 10X channels/wells in615

each of the 10 batches, N=80), we ran Demuxlet using default parameters providing the snATAC-seq616

library bam files the genotype vcf files containing all samples included in that batch and selected all617

the droplets assigned as singlets. This led to a total of 3,69,792 pass-QC ATAC nuclei, 2,68,543 from618

the FUSION cohort.619

4.6.1 Two-stage Demuxlet pipeline620

Multiplexing 40/41 samples in each batch in a randomized block study design helped protect against621

batch effects and it was cost-effective approach. To identify droplets containing a single nucleus “singlet”622

and determine the sample identity, we used the Demuxlet107 tool. For each library (8 10X channels/wells623
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in each of the 10 batches, N=80), we ran Demuxlet using default parameters providing the library bam624

files the genotype vcf files containing all samples included in that batch and selected all the droplets625

assigned as singlets. Background/ambient RNA contamination can influence singlet assignments, so626

we accounted for that next. We performed clustering of these pass-qc RNA droplets and annotated627

clusters using known marker genes. A large proportion of our data was muscle fiber nuclei, this is628

expected since muscle fibers are multi-nucleated. Therefore, a large proportion of ambient RNA would629

come from muscle fiber cells. Observing the barcode-nUMI rank plots (Figure S1F), we considered630

droplets with less than 100 reads as unlikely to contain an intact nucleus and therefore representative631

of the ambient RNA profile. Top 100 genes contained top ∼30% of ambient RNA reads (Figure S2A).632

Most abundant genes in the ambient RNA were expectantly mitochondrial and muscle fiber genes such633

as MYH1, MYH7 etc (Figure S2B). We reasoned that “masking” top n% of these top genes should634

reduce ambiguity arising due the ambient RNA, enabling more droplets to be assigned as a singlet.635

We tested masking to n% of genes from Demuxlet and observed that masking the top 30% of genes636

in the ambient RNA maximized singlet assignment (Figure S2C). We therefore completed a second637

Demuxlet run masking top 30% genes, and any new droplets that were identified as singlets to the638

set of selected droplets. The singlet nuclei recovered from the masked stage 2 came mostly from lower639

abundance non-fiber clusters (Figure S2D) (using cluster labels identified downstream).640

4.6.2 Adjusting RNA counts for overlapping gene annotations641

RNA mapping and gene quantification using STARsolo outputs a “GeneFull” matrix that quantifies642

intronic+exonic reads and a “Gene” matrix that quantifies only exonic reads. For our nuclear RNA ex-643

priment, we used the GeneFull matrices for all downstream applications. As of the STAR version 2.7.3a644

which was used in our analysis, in case of overlapping gene annotations, the program renders some read645

assignments ambiguous and therefore some genes receive less counts in the GeneFull matrix compared646

to the Gene matrix. We observed the distribution of count differences between the exon+intron (Gene-647

Full) and exon (Gene) matrices for each gene across all 80 libraries and created a list of genes where this648

difference was consistently negative in at least 10 libraries. We then created custom counts matrices649

keeping the “Gene” counts for these 6,888 selected genes and kept the “GeneFull” counts for all other650

genes.651

4.6.3 Ambient RNA adjustment652

We used DecontX (celda v. 1.8.1, in R v. 4.1.1)109 to adjust the nucleus x gene expression count matrices653

for ambient RNA. Taking all the qc’ed RNA nuclei up to this stage (N = 260,806), we identified cell654

type clusters using Liger (rliger R package v. 1.0.0)45. Liger employs integrative non-negative matrix655

factorization (iNMF) to learn a low-dimensional space in which each nucleus is defined by both dataset-656

specific and shared factors called as metagenes. It then builds a graph in the resulting factor space,657

based on comparing neighborhoods of maximum factor loadings. We selected the top 2000 variable genes658

using the selectGene function and clustered with number of factors k=20 and regularization parameter659

lambda=5 along with other default parameters as it identified expected clusters (Figure S3A). We then660

ran DecontX on a per-library basis using the decontX() function, passing our custom created RNA raw661

matrices (adjusted for overlapping gene annotations) for the QC’ed nuclei, barcodes with total UMIs662

< 100 for the background argument, cluster labels from liger, and set the delta parameter (prior for663

ambient RNA counts) as 30. This prior value was more stringent than the DecontX default of 10 and it664

was selected after exploring the parameter space and observing that delta=30 better reduced fiber type665

marker gene such as MYH7, MYH2 counts in rarer clusters such as Endothelial, Satellite Cell, while666

retaining respective marker gene VWF and PAX7 counts (Figure S3B). Since the decontamination is667
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sensitive to the provided cluster labels, we performed a second clustering using adjusted counts from the668

first DecontX run to obtain better optimized cluster labels. We also included the snATAC modality for669

this clustering. Liger’s online integrative non-negative matrix factorization (iNMF) algorithm was used670

at this step45,46 which enabled efficient processing of this large snATAC+snRNA dataset by iteratively671

sampling a subset of nuclei at a time. We selected the clustering with liger k=19, lambda=5, epoch=5,672

batchsize=10,000 along with other default parameters (Figure S3C). We then performed a second673

DecontX run using raw snRNA matrices (adjusted for overlapping gene annotations), droplets with674

UMIs < 100 as background, delta set to 30 while including the updated snRNA cluster labels.675

DecontX also estimates fraction of ambient RNA per nucleus. We used this metric to further filter676

out RNA nuclei. We observed that this metric varied across clusters, and the immune cell, muscle fiber677

mixed and the smooth muscle clusters has a visible population of nuclei with high estimated ambient678

RNA fraction (Figure S3D). We therefore fitted two Gaussians for these three clusters per batch679

and removed nuclei that obtained the probability of being from the high contamination population >680

probability of being from the low contamination population (Figure S3E). For the rest of the clusters,681

we removed nuclei with estimated ambient RNA > 0.8. We retained all pass QC nuclei and used682

rounded decontaminated counts for the final joint clustering and all downstream analyses.683

4.7 Joint clustering and cell type annotation684

We jointly clustered snRNA and snATAC from the FUSION cohort and the one multiome muscle sample685

using Liger’s online iterative non-negative matrix factorization (iNMF) algorithm version (https:686

//github.com/MacoskoLab/liger/tree/online)45,46. Liger’s online iNMF was capable of processing687

our large dataset because it factorizes the data using mini-batches read on demand (we used a mini-batch688

size = 10,000 nuclei). We factorized the RNA nuclei first using adjusted gene by nucleus count matrices689

for autosomal protein-coding genes as input. We used the following parameters: top 2000 variable genes,690

k=21, lambda=5, epoch=5, max iterations=4, batchsize=10,000, along with other default parameters.691

We then performed quantile normalization to align across batches. Next, we projected the snATAC692

datasets using gene (gene body + 3kb promoter region) by nucleus fragment counts as input to the693

existing RNA factorization. This process uses the existing gene loading in the factors for computing694

the factor loading in ATAC nuclei. We then quantile normalized the snATAC data and finally used695

the Louvain graph based community detection algorithm with resolution 0.04 to identify clusters. This696

process resulted in a joint clustering without batch or modality specific effects (Figure S4A). We697

annotated the clusters using known marker gene expression patterns (Figure S4B).698

4.8 ATAC-seq peak calling and consensus peak feature definition699

We created per-cluster snATAC-seq bam files by merging reads from all pass-QC ATAC nuclei for each700

cluster. We randomly subsampled bam files to 1 Billion reads and called narrow peaks using MACS2701

(v. 2.1.1.20160309)111. We used BEDTools bamToBed112 to convert the bam files to the BED format,702

and then used that file as input to MACS2 callpeak (command “macs2 callpeak -t atac-$cluster.bed703

–outdir $cluster -f BED -n $cluster -g hs –nomodel –shift -100 –seed 762873 –extsize 200 -B –keep-dup704

all”) to call narrow peaks. We removed peaks overlapping the ENCODE blacklisted regions113, and705

selected peaks passing 0.1% FDR from macs2. We then defined a set of consensus snATAC-seq peak706

summits across all 13 clusters. We considered the filtered narrow peak summits across all clusters and707

sorted by MACS2 q value. We sequentially collapsed summits across clusters within 150bp and retained708

the most significant one, identifying N=983,155 consensus summits (Figures S5A–S5C). Aggregating709

ATAC-seq signal over broad peaks in a cluster while centering on the left-most summit showed the710

second summit usually occurred ∼300bp away (Figure S5D), in line with the nucleosome length being711
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∼147 bp114. We therefore considered each consensus summit extended by 150 bp on each side as the712

consensus peak-feature for all downstream analyses. To visualize the signal, we converted the bedGraph713

files output by MACS2 to bigWig files using bedGraphToBigWig115.714

4.9 Identification of cell type-specific genes and GO enrichments715

Differential gene expression analyses between all pairs of cell types were performed to identify cell716

type-specific genes. Muscle fiber nuclei clusters (Type 1, Type 2a, Type 2x, Neuromuscular junction,717

Muscle Fiber Mixed) were merged for this analysis due to their expected similarity. For each pair of718

cell types we used DESeq2116 to call differential genes between the cell types. Samples with less than719

3,000 genes detected in either of the cell types were dropped, as were genes with less than 3 counts720

across all of the samples (when combining the cell types). The DESeq2 analysis was done in a paired721

sample fashion. A gene was considered to be a cell type-specific gene for cell type X if that gene was722

more highly expressed in cell type X than in all other cell types (5% FDR).723

4.10 Comparison to snATAC atlas724

Per-cell type comparisons to the snATAC atlas from42 were performed using a modified version of725

the logistic regression-based technique described previously41. First, narrowPeaks from each cell type726

cluster were merged to produce a set of master peaks. Next, master peaks within 5kb upstream of a727

GENCODE TSS (GENCODE v40;117) were dropped. Master peaks were annotated to muscle cell types728

according to whether or not they overlapped a narrowPeak in that cell type, and master peaks annotated729

to more than one cell type were dropped, resulting in a set of cell type-specific peaks. Next, for each of730

our cell types and each of the 222 cell types from42, we ran the logistic regression model: (master peak731

is specific to muscle cell type ∼ β0 + β1 *master peak overlaps peak from snATAC atlas cell type),732

where β0 represents a model intercept. Within each of our cell types, we then produced a matching733

score for each of the snATAC atlas cell types by re-normalizing the resulting model coefficient β1 to734

range between 0 and 1 (by dividing the coefficients by the maximum coefficient, first setting coefficients735

to 0 if the model p-value was not significant after Bonferroni correction or the coefficient was negative).736

The snATAC atlas cell type with score = 1 was determined to be the best match.737

GO enrichments were performed using g:Profiler (python API, v. 1.0.0;118), using all genes with at738

least one count in one cell type as the background set.739

4.11 Identification of cell type-specific open chromatin summits and motif enrich-740

ments741

Using the per-cluster peak summit counts, we identified cell type-specific summits using the τ metric742

from119. As muscle fiber types show high gene expression similarity, we merged any nuclei assigned743

to muscle fibers (Type 1, Type 2a, Type 2x, NMJ, and Muscle fiber mixed clusters). Summits with744

τ > 0.8 were considered to be cell type-specific, and were assigned to the cell type showing greatest745

accessibility of that summit.746

Motif enrichments were performed using the 540 non-redundant motifs from a previous study120,747

with the logistic regression model (one model per motif per cell type):748

summit is specific to cell type ∼ intersect + summit is TSS proximal + summit GC content + number749

of motif hits in summit where TSS proximal was defined as within 2kb upstream of a TSS, and the750

number of motif hits was determined using FIMO (v. 5.0.4, with default parameters and a 0-order751

Markov background model generated using fasta-get-markov121). We excluded two cell types (Neuronal752

and T cell) with less than 500 cell type specific summits and excluded cases where the model didn’t753

converge. A motif was considered significantly enriched if the coefficient for the “number of motif754
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hits in summit” term was significantly positive after Bonferroni correction within each cell type. The755

corresponding heatmap figure displays motifs that were amongst the top 5 significantly enriched motifs756

by either p-value or coefficient in at least one cell type.757

4.12 snATAC-seq coaccessiblity758

We ran CICERO49 (v. 1.4.0; R v. 4.0.1) on the narrow peak fragment counts in each cluster to score759

peak-peak co-accessibility. We used UMAP dimensions 1 and 2 (Figure 1B) as the reduced coordinates760

and set window size to 500 kb. A peak was considered to be a TSS peak for a gene if it overlapped the761

1kb window upstream of that gene’s TSS. If multiple TSS peaks were present for a gene, the maximum762

co-accessibility score was considered.763

4.13 QTL scan in clusters764

We performed expression and chromatin accessibility QTL analysis in clusters using QTLtools (v.765

1.3.1-25-g6e49f85f20)122. The mixed muscle fiber cluster showed higher fraction of reads mapping to766

exon relative to the full gene body in certain batches (indicating lower quality, Supplementary note),767

therefore, this cluster was not considered for QTL scans and downstream analyses. We removed three768

samples from out QTL analyses: one because it appeared to be of non-Finnish ancestry from PCA769

analysis, and two others which were found to be first degree related to other samples. We created a vcf770

file with imputed genotypes of all the selected FUSION samples, and filtered for autosomal, bi-allelic771

variants with MAF ≥ 5%, non-significant deviation from Hardy-Weinberg equilibrium P>1x10-6. We772

performed PCA using QTLtools pca with options –scale, –center and –distance 50,000.773

4.14 eQTL scan774

We selected the following gene biotypes (Gencode V30): protein coding, lincRNA, 3prime overlapping ncRNA,775

antisense, bidirectional promoter lncRNA, macro lncRNA, non coding, sense intronic, and sense overlapping.776

For each cluster, we considered samples with at least 10 nuclei for the eQTL analysis. We generated777

RNA count matrices by summing up gene counts (post-ambient RNA decontamination) from nuclei778

for each sample in each cluster. We converted the gene counts into transcript per million (TPMs)779

and inverse-normalized across samples. TPM = RPK/factor, where RPK = counts/(length in kb) and780

factor = sum(RPK)/1M for each cluster. We used the top 10,000 genes based on median TPM to781

perform PCA using QTLtools. eQTL scans were performed considering variants within 250kb of gene782

TSSs. For each cluster, we ran test eQTL scans while considering the top 3 genotype PCs and a varying783

number of phenotype PCs to account for unknown biological and technical factors. We selected the784

number of phenotype PCs that maximized eQTL discovery as covariates Figure S7A. We optimized785

within-cluster thresholds for minimum gene counts across at least 10 samples that defined our final786

set of testable genes that minimized the multiple testing burden Figure S7B. We performed the cis787

eQTL scans with 1,000 permutations, then applied an across-feature multiple testing correction using788

the qvalue Storey function on the beta distribution adjusted P values and reported eGenes at FDR ≤789

5%.790

4.15 caQTL scan791

For each cluster, we considered samples with at least 10 nuclei for the caQTL analysis. We didn’t792

restrict our caQTL scans to only peaks identified in a cluster, instead considered all testable consensus793

peaks to allow for comparisons across clusters. We quantified each consensus feature and obtained794

the sum of fragment counts across all nuclei from each samples in each cluster. For an initial lenient795
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caQTL scan, we selected all consensus features in a cluster that had at least 2 counts in at least 10796

samples to test for caQTL in each cluster. We used inverse-normalized counts per million (CPMs)797

as quantification for caQTL. CPM = RPK/factor, where RPK = counts/(feature length in kb) and798

factor = sum(RPK)/1M for each cluster. We performed PCA on the inverse-normalized CPMs and799

included the top n phenotype PCs that maximized QTL discovery in each cluster, along with the800

top 3 genotype PCs as covariates. We optimized within-cluster thresholds for minimum peak counts801

across 10 samples that defined our final set of testable peak that minimized the multiple testing burden802

(Figure S8A). We then calculated PCs for these selected features and again optimized the number of803

PCs within each cluster that maximized caQTL discovery (Figure S8B). caQTL scans were performed804

using the selected samples, optimized features, 3 genotyped PCs and final set of optimized phenotype805

PCs considering variants within 10kb of the feature midpoint (peak summit). We performed the cis806

caQTL scans with 1,000 permutations, then applied an across-feature multiple testing correction using807

the qvalue Storey function on the beta distribution adjusted P values and reported caPeaks at FDR ≤808

5%.809

4.16 Motif reconstruction using caQTL results810

We used a library of 540 non-redundant PWMs for the motif reconstruction analyses(D’Oliveira Albanus811

et al. 2021). Motif hits were determined by scanning the genomic sequence in a variant-aware manner812

using FIMO (v. 5.0.4, with default parameters and a 0-order Markov background model generated using813

fasta-get-markov121), i.e. scanning the genomic sequence containing the reference and the alternative814

allele. For a given cell type and motif, we identified all lead caQTL variants or their LD r2>0.8815

proxies that sat within the corresponding caPeak and that overlapped a motif hit (n=31 - 10,646 (27 -816

42%) depending on the cell type). For each such overlapping caQTL, we calculated the caQTL allelic817

fold change123 using tensorQTL124. To reconstruct the motif, for each of the four nucleotides and each818

position in the motif, we summed the absolute value of the allelic fold change for all caQTLs overlapping819

that position in the motif hit and having that nucleotide as the favored (open chromatin) allele. This820

was converted to a probability matrix (such that the four values at each motif position summed to one)821

for the final reconstructed motif. To demonstrate that the observed similarity between the original822

and reconstructed motif was not simply a result of the fact that a motif hit was called by FIMO, we823

additionally reconstructed motifs based on all variants that met filtering requirements for the caQTL824

scan, overlapped motif hits, and were in peaks tested in the caQTL scan. To do this, for each of the825

four nucleotides and each position in the motif, we counted the number of variants overlapping that826

position in the motif hit and having that nucleotide as either the ref or the alt allele, and then converted827

this to a probability matrix as before.828

4.17 mash analyses829

We utilized mash63 to learn correlation patterns of QTL effect sizes across clusters to in turn obtain830

more precise effect size estimates. We considered the top 9 clusters in which both eQTL and caQTL831

were identified from our original e/caQTL scans (FDR<5%) for setting up the mash model. For both832

e and caQTL, we created the Bhat (effect size) and Shat (standard error) matrices for sets of “strong”833

and “random” tests as per the recommendations of the original authors https://stephenslab.gith834

ub.io/mashr/articles/eQTL_outline.html. For eQTL, we first compiled a set of all genes that were835

testable across the 9 clusters (n=12,891). The “strong” tests included the top SNPs for these genes,836

top SNP being the one with the minimum nominal p value across the nine clusters. The “random”837

tests included n=50,000 randomly selected snp-gene pairs for the gene set from the original eQTL scan.838

For caQTL, there were 62,187 caPeaks total identified across 9 clusters (FDR<5%), whereas, only839
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20,000 peaks were testable in all 9 clusters. Therefore, for an appropriate representation of the “strong”840

signals, we included the union of both these sets of peaks (total n=87,003) to set up the mash model.841

When a peak was not testable in a cluster, we set the effect to 0 and standard error to infinity. The842

“strong” tests included the top SNPs for these mash peaks. The “random” tests included n=100,000843

randomly selected SNP-peak pairs for the mash peak set from the original caQTL scan.844

We learned the correlation structure among random tests (Vhat, function estimate null correlation simple)845

followed by setting up the strong and random mash data sets (function mash set data). We learned846

data-driven covariance matrices using strong tests, first computing PCA (function cov pca), then run-847

ning the extreme deconvolution algorithm (function cov ed). We computed the canonical covariance848

matrices using the function cov canonical on the random set. We fit the mash model using both these849

covariance matrices. Lastly, we computed posterior summaries on the strong tests using the mash850

model fit - lfsr, posterior mean and posterior standard deviation, which are equivalent of the FDR,851

effect size and standard error of a QTL scan respectively. We utilized the function get pairwise sharing852

to plot the pairwise sign sharing between each pair of clusters (Figures 3C–3D). While plotting the853

original eQTL effects (Figures 3E–3F), we obtained qvalues using Benjamini-Hochberg on the strong854

tests nominal p values to compute the standard errors, so as to make the results comparable to mash855

posterior summaries.856

4.18 context-specific QTL857

We used CellRegMap64 to identify context-specific e/caQTL. We first separated the RNA and ATAC858

nuclei identified as endothelial cell-type and jointly clustered using the liger online iNMF approach as859

described previously for the main clustering. We computed five latent factors for the RNA nuclei first860

using the following parameters: top 2000 variable genes, k=5, lambda=5, epoch=5, max iterations=4,861

batchsize=5,000, along with other default parameters. We performed quantile normalization to align862

across batches followed by projecting the snATAC datasets. Louvain clustering at a resolution of 0.025863

identified four endothelial subclusters, which we annotated using known marker genes.864

The CellRegMap linear mixed model is of the form: y = gβ+ g ∗ βGxC + c+ u+ ϵ, where single-cell865

gene expression values of a given gene (y) are modeled as a function of a persistent genetic effect (g),866

GxC interactions (g∗), additive effects of cellular context (c), relatedness (u) and residual noise (ϵ). For867

snRNA, we tested the top SNP-eGene pairs for the 198 eQTLs identified for the endothelial cluster from868

our initial pseudobulk eQTL scan. We set up the CellRegMap model using either the subcluster labels869

as discrete context or the five latent factors as continuous context. We computed the kinship matrix870

to represent the relatedness within the data including the fact each sample contributes multiple nuclei.871

We considered genotyped variants, pruned these to LD r2<0.2 using the plink flag –indep-pairwise 250872

50 0.2, followed by using flag –make-king square. We transformed this matrix to a positive semi-definite873

matrix by adding the minimum eigenvalue to the diagonal elements. We normalized the endothelial874

nuclei by gene expression matrix to log2(counts per million (CPM) + 1) using scanpy preprocess-875

ing functions pp.normalize total(adata, target sum=1e6, exclude highly expressed=True), followed by876

pp.log1p(adata, base=2). We included age, sex, batch, BMI and the fraction of mitochondrial reads877

in nuclei as additional covariates in the model. We first tested linear association with genotype using878

the function run association, then tested interaction using the function run interaction, followed by879

estimating betas using the function estimate betas.880

For snATAC, we tested the top SNP-caPeaks pairs for the 4,518 caPeaks for the endothelial cluster881

from our initial pseudobulk eQTL scan. Since snATAC data is much more sparse than snRNA, nucleus-882

level linear mixed models were impractical. We instead computed pseudobulk sample counts in each883

subcluster, and included subcluster as the discrete context. The count normalization, covariates and884
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kinship matrix were performed as described for snRNA.885

4.19 QTL finemapping886

We used the sum of single effects (SuSiE)125 approach to identify independent e and caQTL sig-887

nals and obtain 95% finemapped credible sets. We used QTLtools to adjust for the covariates op-888

timized for e or caQTL scans and inverse-normalized the residuals. We used these adjusted pheno-889

types along with the sample genotype dosages for variants in a 250kb window in the susie function890

along with the following parameters: number of signals L=10, estimate residual variance=TRUE, es-891

timate prior variance=TRUE, min abs cor=0.1.892

4.20 Relationship between caQTL effect size, caSNP MAF, and caQTL peak pres-893

ence in scATAC atlas894

Type 1 muscle fiber caPeaks were grouped based on the open chromatin allele frequency (calculated895

using the FUSION samples) and the caQTL effect size (absolute value of the slope, binned by 0-0.4,896

0.4-0.8, 0.8-1.2, 1.2-1.6, and 1.6-2.0). We then calculated the fraction of the caPeaks within that bin897

that overlapped with a Type I Skeletal Myocyte peak from42.898

4.21 caPeak chromatin state enrichments899

CaPeak enrichment in chromatin states was computed using the Skeletal Muscle Female (E108) chro-900

matin states (15-state model) from Roadmap Epigenomics126. First, muscle ATAC peaks were lifted901

from hg38 to hg19 using liftOver (kentUtils v. 343127). For each of the Type 1, Type 2a, and Type 2x902

cell types, we then ran the logistic regression:903

904

peak is caPeak ∼ intercept + peak size + overlaps state 1 + ... + overlaps state 15905

where peak size was set as the average peak reads per million across samples. Only peaks tested906

for caQTL were included in the model. caPeaks were enriched for a state if the coefficient for the907

corresponding state term in the model was significantly positive after Bonferroni correction (Bonferroni908

correction performed within each cell type, across the 16 non-intercept terms).909

4.22 Motif enrichment in caPeaks910

Motif enrichments were performed using the 540 non-redundant motifs from120, with the logistic re-911

gression model (one model per motif per cell type):912

peak is caPeak ∼ intercept + peak is TSS proximal + peak GC content + peak size + number of913

motif hits in peak where TSS proximal was defined as within 2kb upstream of a TSS, peak size was914

set as the average peak reads per million across samples, and the number of motif hits was determined915

using FIMO (v. 5.0.4, with default parameters and a 0-order Markov background model generated916

using fasta-get-markov121). Only peaks tested the caQTL scans were included in each model. A motif917

was considered significantly enriched if the coefficient for the “number of motif hits in summit” term918

was significantly positive after Bonferroni correction within each cell type. The corresponding heatmap919

figure displays motifs that were amongst the top 3 significantly enriched motifs by either p-value or920

coefficient in at least one cell type.921

4.23 eQTL and caQTL colocalization922

We used coloc v519 to test for colocalization between e and ca QTL. We used the e and ca QTL finemap-923

ping output from SuSiE over the 250kb window as inputs to coloc v5. We considered colocalization924
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between two signals if the PP H4 > 0.5.925

4.24 Causal inferrence between chromatin accessibility and gene expression926

For all pairs of colocalized eGenes and caPeaks, we inferred the causal chain between chromatin ac-927

cessibility and gene expression using two orthogonal approaches - a mediation-based approach causal928

inference test (CIT, v2.3.1)67,68 and a Mendelian randomization approach MR Steiger directionality929

test69. We required consistent direction from both CIT and MR Steiger at 5% FDR to consider an930

inferred causal direction between an eGene and caPeak pair.931

4.24.1 CIT932

To test if an exposure mediates an effect on an outcome, CIT uses genetic instruments (eg SNPs)933

requiring a set of mathematical conditions to be met in a series of regressions under a formal hypothesis934

testing framework. If a SNP (L) is associated with an outcome (T) only through an exposure (G),935

outcome when conditioned on the exposure should be independent of the SNP. The conditions therefore936

are: (i) L is associated with T, (ii) L is associated with G conditional on T, (iii) T is associated with G937

conditional on L and (iv) T is independent of L conditional on G. For each pair of caPeak and eGene938

for which one or more independent caQTL and eQTL signal(s) colocalized, we ran four CIT models939

each returning an omnibus P value- a) eSNP(s) -> eGene -> caPeak (P e-to-ca-causal), b) eSNP(s) ->940

caPeak -> eGene (P e-to-ca-revCausal), c) caSNP(s) -> caPeak -> eGene (P ca-to-e-causal) and d)941

caSNP(s) -> eGene -> caPeak (P ca-to-e-revCausal). We included sample batch, age, sex, BMI and942

top 3 genotype PCs as covariates in the CIT model. For each model, we computed the omnibus FDR943

values using the fdr.cit function to account for multiple testing. To infer a caPeak causal on an eGene,944

we required q-ca-e-causal < 0.05, q-ca-e-revCausal > 0.05, q-e-ca-causal > 0.05 and q-e-ca-revCausal <945

0.05, and vice versa to infer an eGene causal on a caPeak. We note that eGene-caPeak pairs without a946

putative causal CIT prediction could be truly independent or could have a causal relationship obscured947

by measurement error.948

4.24.2 MR Steiger directionality test949

In an MR-based approach, the genetic instrument (SNP) is used as a surrogate for the exposure950

to estimate its causal effect on an outcome, by scaling the association of SNP and outcome by the951

association between SNP and exposure. This approach is considered less susceptible to bias from952

measurement errors or confounding69. For each pair of caPeak and eGene for which one or more953

independent caQTL and eQTL signal(s) colocalized, we used the mr steiger function (TwoSampleMR954

R package version 0.5.6) to test both caPeak and eGene as exposure over the other modality as outcome.955

To infer a caPeak causal on an eGene, we required ca-to-e “correct causal direction” as “True” at 5%956

FDR, and e-to-ca “correct causal direction” as “False” at 5% FDR, while estimating steiger test q957

values using the R qvalue package (http://github.com/jdstorey/qvalue). For each model, we958

provided the respective QTL scan sample sizes and set r xxo = 1, r yyo = 1, r exp = NA and r out =959

NA to estimate the sensitivity ratio - which computes over the bounds of measurement errors in the960

exposure and outcome, how much more often is one causal direction observed versus the other. The961

higher the sensitivity ratio, more robust is the inferred causal direction to measurement errors.962

4.25 GWAS enrichment in ATAC-seq peak features963

We computed enrichment of GWAS variants in ATAC-seq peak features using stratified-LD score re-964

gression (s-LDSC)70,128. We downloaded GWAS summary statistics for 17 traits relevant for skeletal965
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muscle such as T2D, glycemic traits, aftrial fibrillation. Where required, we lifted over the sum-966

mary stats onto hg38 using the UCSC liftOver tool. We formatted the summary stats according967

to LDSC requirements using the ldsc munge sumstats.py script, which included keeping only the968

HapMap3 SNPs with minimum MAF of 0.01 (as recommended by the LDSC authors). We also969

downloaded several LDSC-formatted UKBB GWAS summary statistics from the Benjamin Neale lab970

website129 https://nealelab.github.io/UKBB_ldsc/downloads.html. We selected primary971

GWASs on both sexes for high confidence traits with h2 significance > z7, following guidelines de-972

scribed on the Ben Neal lab blog https://nealelab.github.io/UKBB_ldsc/details.html. We973

created a baseline model with cell type agnostic annotations such as MAF, coding, conserved regions,974

along with other epigenomic annotations such as DNase hypersensitiviy sites (DHS), transcription fac-975

tor binding sites (TFBS) that are obtained from across multiple cell types. These annotations are976

among the list of baseline annotations included in the original LDSC paper128. The various anno-977

tation files (regression weights, frequencies, etc.) required for running LDSC were downloaded from978

https://data.broadinstitute.org/alkesgroup/LDSCORE/GRCh38/. We set up LDSC to test979

snATAC-seq peak features (consensus peak summit features that overlapped a peak summit called in980

that cluster) and the bulk muscle CUT&Tagin peaks along with the baseline annotations. LD scores981

were calculated using the Phase 3 1000 Genomes data. LDSC reports two types of output: first, the982

total heritability explained by SNPs in the annotation, which includes heritability attributable to other983

overlapping annotations in the baseline; and second, joint-fit regression coefficient for each annotation,984

that quantifies the contribution of that annotation to per-SNP heritability. The former estimates if the985

annotation contributes to the overall heritability and the latter estimates if the annotation contributes986

to the heritability in addition to all the other baseline annotations in the model. We reported signifi-987

cance using both these metrics in Figure 6A. We calculated coefficient P-values from the coefficient988

z-scores using a one-sided test assuming a standard normal distribution. We calculated FDR separately989

for enrichment p-values and coefficient p-values using the BH procedure and report traits with FDR¡5%990

for either measure.991

While comparing GWAS enrichment in type 1 peaks that overlapped caSNPs, eSNPs or not992

e/caSNPs, since there is a large difference in the number of eSNPs and caSNPs features, we sub-993

sampled each annotations to have the same number of features: n=6,880 peaks. LDSC authors suggest994

that S-LDSC only produces well-calibrated p-values when annotations span at least 1.7% of 0.01cM995

blocks of the genome (roughly 51Mb assuming 1cM ∼ 1Mb, ten-fold larger than our current eSNP-996

peaks annotation)130. Therefore, we used an alternative enrichment approach, fGWAS131 and tested997

enrichment for the downsampled annotations.998

4.26 eQTL and caQTL co-localization with GWAS999

We considered the lead GWAS signals that if the individual study reported so; otherwise, we identified1000

genome-wide significant (P < 5e-8) signals in 1Mb windows. We finemapped each GWAS signal using1001

the available GWAS summary statistics along with 40,000 unrelated British individuals from the UKBB1002

as the reference panel, over a 250kb window centered on the signal lead variant. We obatined pairwise r1003

between variants using the cor() function in R on the genotype dosages for variants in the SuSiE window.1004

We ran SuSiE using the following parameters: max number of signals L = 10; coverage = 0.95; r2.prune1005

= 0.8; minimum absolute correlation = 0.1; maximum iterations = 10,000. We considered e/ca QTL1006

signals where the lead variant was within 250kb of the GWAS lead variant to test for GWAS-QTL1007

colocalization using the function coloc.susie from the coloc v5 package. We used the coloc sensitivity()1008

function to assess sensitivity of findings to coloc’s priors. We considered two signals to be colocalized1009

if the PP H4 > 0.5.1010
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4.27 Imputing high-resolution 3D chromatin contact maps1011

We used EPCOT73 to impute the high-resolution 3D chromatin contact maps. EPCOT is a computa-1012

tional framework that predicts multiple genomic modalities using chromatin accessibility profiles and1013

the reference genome sequence as input. We predicted chromatin contacts in genomic neighborhoods1014

of selected caPeaks of interest using snATAC-seq from the respective cluster - either Micro-C at 1kb1015

resolution for a 500kb genomic region or Hi-C at 5kb resolution for a 1Mb genomic region. EPCOT was1016

trained with existing Micro-C contact maps from H1 and HFF, or Hi-C contact maps from GM12878,1017

H1, and HFF. Both the Micro-C and Hi-C contact maps are O/E normalized (i.e., the contact values1018

present the ratio of the observed contact counts over the expected contact counts).1019

We then generated Micro-C maps by the genotype at the caSNP of interest. We created genotype-1020

specific snATAC-seq profiles by aggregating samples with either homozygous reference or homozygous1021

alternate genotypes at the caSNP of interest. We downsampled the data using Picard when required1022

to make the two profiles have similar depth. We respectively incorporated the reference of alternate1023

allele in the DNA sequence input to EPCOT. Subsequently, we subtracted the predicted contact values1024

associated with the low chromatin accessibility genotype from the high accessibility genotype.1025

EPCOT’s input ATAC-seq (bigWig) processing:1026

bamCoverage –normalizeUsing RPGC –effectiveGenomeSize 29130223981027

–Offset 1 –binSize 1 –blackListFileName ENCODE black list.bed1028

4.28 Massively parallel reporter assay for validation1029

4.28.1 Cloning1030

We ordered oligos as 230 bp sequences where 197 bp comprise the variant of interest flanked on both by1031

98 bp of genomic context, and the additional 33 bp are cloning adapters. Within this panel, we included1032

a set of ∼50 negative control sequences defined by a previous publication132 We added 20 bp barcodes1033

via a 2-step PCR amplification process then incorporated the barcoded oligos into a modified pMPRA11034

vector (a gift from Tarjei Mikkelsen133, Addgene #49349) upstream of the GFP reporter gene using1035

Golden Gate assembly. After transforming and expanding in NEB 10-beta electrocompetent bacteria,1036

we sequenced this version of the MPRA library to establish a barcode-oligo pairing dictionary. We1037

performed a second Golden Gate assembly step to insert an ENCODE-annotated promoter for the1038

human MYBPC2 gene in between the oligo and barcode. Finally, we used restriction cloning to port1039

the assembled MPRA block (oligo, barcode, promoter, GFP) to a lentiviral transfer vector, which was1040

used by the University of Michigan viral vector core to produce infectious lentiviral particles. Primer1041

sequences used for cloning and sequencing library preparation along with the MYBPC2 promoter1042

sequence are included in a separate table.1043

4.28.2 MPRA Experiment1044

For each replicate, we infected 4x106 LHCN-M2 human skeletal myoblasts with our MPRA library at1045

an MOI of ∼10. After infection, we passaged the cells for one week to remove any unincorporated1046

virus or contaminating transfer plasmid, then differentiated the cells for one week. We isolated RNA1047

and gDNA from each replicate using the Qiagen AllPrep DNA/RNA mini kit. We reverse transcribed1048

RNA into cDNA with a GFP-specific primer, then constructed indexed sequencing libraries for both1049

the cDNA and gDNA libraries using Illumina-compatible primers.1050
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4.28.3 Data Analysis1051

After quality checks and filtering, we calculated the sum of barcode counts for each oligo within a1052

replicate. We used DESeq2 v1.34.0116 to perform normalization and differential expression analysis. We1053

used a nested model to identify oligos with significant activity (relative to plasmid input) and significant1054

allelic bias (between reference and alternate alleles). All results were subject to a Benjamini-Hochberg1055

FDR of 5%.1056

4.29 Code availability1057

The code used to run analyses in this work are available on GitHub1058
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Figure S1: Batch design and quality control
(A) Cohort representation across batches (B) Age (C) BMI (D) Sex (E) OGTT status for individuals with samples across
batches (F) snRNA-seq barcode rank plot showing number of UMIs (G) snRNA UMIs vs mitochondrial read fraction across
batches (columns). (H) snATAC-seq barcode rank plot showing high quality autosomal alignments (HQAA) (I) snATAC
HQAA vs mitochondrial read fraction across batches (J) snATAC HQAA vs TSS enrichment across batches. Panels G, I
and J show nuclei from one 10X channel per batch.

2

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2024. ; https://doi.org/10.1101/2023.12.15.571696doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.15.571696
http://creativecommons.org/licenses/by-nd/4.0/


Figure S2: Identifying singlets and sample assignment
(A) Gene rank plot showing the number of reads per gene in the ambient RNA profile(droplets with < 100 UMIs)
(B) Heatmap showing the pairwise Pearson correlation of the top expressed genes in the ambient RNA. (C) Titration to
optimize masking genes to maximize singlet identification. Shown are the total number of singlets identified by Demuxlet
for batch 1 after masking the top n% of genes expressed in the ambient RNA profile. (D) Proportion of singlet nuclei
recovered at demuxlet stage 1 (default) and stage 2 (’masked’) for each cluster.
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Figure S3: Adjusting for ambient RNA
(A) Initial RNA clustering using RNA counts unadjusted for ambient RNA (B) Marker gene counts across clusters without
ambient RNA adjustment (raw) and after adjustment using DecontX run with a various delta parameter (prior for the
ambient RNA counts) values) (C) Post-decontX snRNA-seq modality clustered jointly with snATAC-seq to obtain better
optimized cluster labels. (D) Estimated ambient RNA fraction from DecontX across cluster labels (E) Batch and cluster-
specific threshold for immune cell, muscle fiber mixed and smooth muscle clusters to further QC out nuclei due to high
estimated ambient RNA fraction. For all other clusters, this threshold was set to 0.8 (F) After all stages of QC, the
number of pass-QC RNA nuclei are correlated with the number of pass-QC ATAC nuclei per sample. (G) After all stages
of QC, total pass-QC nuclei are correlated with the sample weights during nuclei isolation.
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Figure S4: Joint clustering of the snRNA-seq and snATAC-seq modalities identified 13
cell-type clusters
(A) UMAP plots by batch and modality (B) Concordance between cluster annotations for the RNA and ATAC modalities
of the multiome nuclei. Plotted are the fraction of nuclei in the RNA cluster that are assigned each annotation in the
ATAC cluster. (C) UMAP plots showing cluster assignments and snRNA-seq expression of known marker genes

5

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2024. ; https://doi.org/10.1101/2023.12.15.571696doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.15.571696
http://creativecommons.org/licenses/by-nd/4.0/


Figure S5: Identifying snATAC-seq peak features in clusters
(A) (B) (C) show example genomic locations showing identified consensus summit(s) (red) among all nearby summit
calls (black), shown together in the top track and on thre respective cluster ATAC-seq signal tracks. (D) Aggregated
ATAC-seq signal across all broad peaks in a cluster while centering on the left-most summit in the peak. (E) Heatmap
showing peak summits identified as cluster-specific (F) Motif enrichment in cluster-specific peak summits calculated using
a logistic regression approach. ’*’ indicates significant enrichment (5% FDR).
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Figure S6: Cluster-specific expression of TF-genes drives cluster-specific motif enrichment
TF motif enrichment in cluster-specific peaks (regression coefficients) against the expression specificity scores in the for
the corresponding TF gene in cell-types. Blue color indicates that the regression coefficient obtained a P-value lower than
the Bonferroni correction threshold.
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Figure S7: Identifying eQTL in clusters
(A) PC scan to maximize eQTL discovery. (B) Identifying testable genes with minimum n counts across at least 10 samples
that maximize eQTL discovery. Number of testable genes and the number of eGenes (FDR 5%) at the selected minimum
count threshold are labeled. (C) UpSet plot showing the total number of eGenes in each cluster and the number of genes
identified in only one cluster. (D) eSNP allelic fold change (aFC) in clusters to compare eQTL effect sizes between pairs
of clusters. Each facet shows aFC in both clusters for eSNPs identified in the cluster labeled on the y axis (5% FDR).
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Figure S8: Identifying caQTL in clusters
(A) Identifying testable peak features with minimum n counts across at least 10 samples that maximize caQTL discovery.
Number of testable peaks and the number of caPeaks (FDR 5%) at the selected minimum count threshold are labeled.
(B) PC scan to maximize caQTL discovery. (C) UpSet plot showing the total number of caPeaks in each cluster and the
number of caPeaks identified in only one cluster. (D) caSNP allelic fold change (aFC) in clusters to compare caQTL effect
sizes between pairs of clusters. Each facet shows aFC in both clusters for caSNPs identified in the cluster labeled on the
y axis (5% FDR). (E) Motif enrichment in caPeaks in five clusters. (F) Enrichment of ChromHMM states identified in
bulk skeletal muscle to overlap with caPeaks in three muscle fiber clusters.
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Figure S9: Down-sampling samples and nuclei in type 1 fibers
(A) Down-sampling strategy: either the number of samples (in 5% increments, left) or nuclei from each sample (right)
were down-sampled followed by e/caQTL scan. Curves showing significant eGenes on down-sampling (B) samples and
(C) nuclei in samples. Significant caPeaks on down-sampling (D) samples and (E) nuclei in samples.
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Figure S10: Motif reconstruction using caQTL data
(A) Reconstruction for selected key motifs, including those enriched to occur in type 1 fiber caPeaks. Top row shows the
canonical motif PWM, and the bottom row shows the reconstructed PWM. (B) Agreement between PWM motif scores
(base preference in the motif) and QTL allele preferences.
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Figure S11: Endothelial state-specific e/caQTL using cellRegMap
(A) Joint (snRNA+snATAC) subclustering of endothelial nuclei identifies four subtypes/cell-states. snRNA nuclei UMAP
plots show expression of key marker genes used to annotate the subclusters. (B) Top endothelial eSNP-eGene pairs
identified from the initial pseudobulk analyses (5% FDR, Fig 2A) were tested for GxC interaction effect in CellRegmap.
Scatter plot compares the signed -log10(P) of the additive genotype effect between the two eQTL models. (C) -log(P) for
eQTL GxC interaction when using subcluster vs latent factors as the context. (D) Top endothelial caSNP-caPeak pairs
identified from the initial pseudobulk analyses (5% FDR, Fig 2B) were tested for GxC interaction effect in CellRegmap.
Scatter plot compares the signed -log10(P) of the additive genotype effect between the two caQTL models.
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Figure S12: e-ca QTL colocalization
(A) Total number of eQTL (left) and percentage of eQTL (right) that colocalize with caPeaks in each cluster, along with
the number and percentage of eQTLs that are detected in only one cell type. (B) Total number of caQTL (left) and
percentage of caQTL (right) that colocalize with eGenes in each cluster, along with the number and percentage of caQTLs
that are detected in only one cell type.
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Figure S13: Causal inference test enables inferring causal direction between chromatin
accessibility and gene expression
(A) Empirical cumulative distributions for MR Steiger directionality test sensitivity ratios for ca-to-e (top row) and e-to-ca
(bottom row). Sensitivity ratio represents the estimated proportion of times the inferred direction flips over the bounds of
measurement error in the exposure and outcome. Plots to the right show a zoomed-in view of the x axis. (B) CIT results
between caPeak and TSS caPeak for ca-to-e or e-to-ca caPeak-eGene pairs. For caPeak and eGene pairs with significantly
inferred causal direction ca-to-e or e-to-ca (x axis), where a caPeak was also identified in the TSS+1kb upstream region
of the eGene, proportion of CIT outcomes between the distal caPeak and the TSS caPeak are denoted by the colors.
Fisher’s exact test was performed after tallying all significant outcomes (5% FDR). (C) Example locus on chr8 where two
independent eQTL signals identified for the lincRNA gene AC023095.1 colocalize with two independent caQTL signals
identified for a nearby caPeak in the type 1 cluster (Coloc PP H4 0.99, 0.76). The lead SNPs for the two signals rs7006037
and rs1400506 are labeled and the colors depict LD r2 relative to these variants. (D) snATAC-seq profiles in the type 1
cluster over the caPeak shown in d aggregated by the signal lead variant genotype classes. (E) Determined causal direction
between the eGene-caPeak pair from d using the independent lead variants as instrument variables. Boxplots show inverse
normalized chromatin accessibility, chromatin accessibility after regressing out gene expression, gene expression and gene
expression after regressing out chromatin accessibility relative to the alternate allele dosages for the two lead variants
rs7006037 (top) and rs1400506 (bottom).
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Figure S14: Bulk-skeletal muscle CUT&Tag profiles identify regulatory elements
(A) Genes in skeletal muscle sorted and binned by their expression levels. Darker red indicates higher expression. Panels
B-D show reads at the TSS sites of the corresponding genes for (B) ATAC-seq (C) H3K27ac CUT&Tag, and (D) H3K27me3
CUT&Tag. (E) ATAC-seq (F) H3K27ac CUT&Tag, and (G) H3K27me3 CUT&Tag read-pileups over the gene bodies
for the sets of genes with low, medium and high expression levels as described in (A). All genes are scaled to align the
transcript start and end sites (TSS, TES). (H) UCSC browser session highlighting a repressed gene SPTBN2 and highly
expressed genes RCE1 and LRFN4 showing ATAC-seq, H3K27ac, and H3K27me3 tracks in skeletal muscle.
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Figure S15: GWAS-caQTL colocalization and sensitivity
(A) Full GWAS-QTL colocalization summary showing the % and number of GWAS signals for each considered trait
that colocalize with e/caQTL. (B) Sensitivity analysis for colocalization between T2D GWAS and a Type 1 caQTL at
the C2CD4A/B locus comparing prior (left) and posterior (right) probabilities of each hypothesis over a range of prior
probability values that any random SNP in the tested region is associated with both traits (p12). The Default p12 in
coloc is 5e-6. Green boxes marks the set of p12 values at which PP H4 > 0.5. The lower the minimum p12 at which PP
H4 > 0.5, the more robust the colocalization. (C) Empirical cumulative distribution of coloc sensitivity represented as
the minimum p12 where PP H4 > 0.5 for GWAS-caQTL colocalization across the 40 GWAS traits considered, colored by
cluster (D) Empirical cumulative distribution of coloc sensitivity represented as the minimum p12 where PP H4 > 0.5 for
GWAS-eQTL colocalizations across the 40 GWAS traits considered, colored by cluster. For both B and C, all GWAS-QTL
pairs observed colocalized (PP H4>0.5) at the default p12 of 5e-6 were considered. Heatmaps showing the coloc PP H4
for (E) BMI and (F) Fasting Insulin GWAS loci that colocalize with e/ca QTL across the five clusters.
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Figure S16: Identifying caQTL specific to individual muscle fiber types Selected examples of
caQTLs specifically identified in type 2 fibers (snATAC signal aggregated by caSNP genotype class in A, C) that colocalize
with GWAS signals (locus zoom plots showing the GWAS signal and caQTL signals in five clusters in B, D)
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Figure S17: Integrating e/ca QTL signals with GWAS inform disease/trait relevant reg-
ulatory mechanisms
(A) GLI2 genomic locus where a T2D GWAS signal is colocalized is an endothelial caQTL. snATAC profiles in five clusters
by caSNP rs11688682 genotype in its ±1kb neighborhood followed by aggregate profiles in 13 clusters. (B) Locuszoom
plots for the GLI2 GWAS signal (top) followed by the caQTL signal in the five clusters. The peak was not testable
for caQTL in the type 1, 2a, 2x and FAP clusters due to low counts. (C) EPCOT-imputed micro-C chromatin contacts
using endothelial ATAC data at 1kb resolution at the 500kb neighborhood centered at rs11688682. (D) Difference in the
predicted normalized chromatin contacts using endothelial snATAC-seq from samples with the high (GG) and low (CC)
accessibility genotype rs11688682. Interactions with rs11688682 highlighted in black are shown as a signal track below.
(E) Endothelial chromatin co-accessibility scores between the GLI2 caPeak and TSS peaks of neighboring genes, classified
by the caSNP genotype. Distance between the peaks is noted in parentheses. (F) C2CD4A/B genomic locus, followed
by snATAC-seq profiles by caSNP rs7163757 genotypes in clusters, followed by aggregate snATAC profiles. (G) NMJ
chromatin co-accessibility scores between the caPeak and TSS-peaks classified by caSNP genotype. Distance between the
peaks is noted in parentheses.
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Supplementary Note1399

4.32.1 Singlet identification and sample demultiplexing1400

In our study design, we multiplexed 40/41 samples in each batch and demultiplexed using known sample1401

genotypes. Demultiplexing 41 samples per batch is well within the capability of assigning droplets to1402

individuals, as reported by the original Demuxlet paper107. To demonstrate the high-quality donor1403

assignments in our experiments, we ran Demuxlet on Batch 1 that included 40 samples with a mixture1404

of “correct” (from batch 1) and “wrong” (from other batches) samples in the input VCF. As expected,1405

the number of singlets identified by Demuxlet decreased linearly with the number of “wrong” samples1406

in the VCF (Figure SI1A), with 0 singlets identified when all “wrong” 40 samples were provided in the1407

VCF. None of the droplets are assigned as singlets to the “wrong” samples (Figure SI1B). Therefore,1408

all samples are correctly assigned, even when incorrect samples are provided in the VCF, indicating1409

that our QC process has resulted in high-quality nuclei with correct sample assignments.1410

A B

Figure SI1: Demuxlet QC
(A) The number of correct singlets identified in the 40 sample batch decreases linearly as a function of the number of
wrong samples supplied in the VCF. (B) Zero wrong samples are assigned, even when 40 wrong VCF entries are provided
for genetic demultiplexing. Note the blue points at y=0 for the different ranges we tested.

4.32.2 Ambient RNA and eQTL scans1411

While ambient transcripts are inevitable in nuclei preps, especially from processing of complex frozen1412

tissue such as our muscle samples, genetic demultiplexing offers an improved strategy to identify clean1413

droplets. The protocols and approaches to adjust for ambient transcripts are an active area of research.1414

We thoroughly optimized our ambient RNA detection and correction (Figure S3). After this correc-1415

tion, a low level of muscle fiber marker gene expression still remained in clusters (Figure 1E). We1416

reasoned that our eQTL scans are protected from ambient biases because Given our assay design of1417

40-41 multiplexed samples in each batch, the droplets with high ambient RNA are much more likely1418

to be identified as doublets rather than being mislabeled. Because samples are pooled together, any1419

remaining background ambient signal will not be associated with genetic variation and instead will1420

represent a random mix of the samples in the pool.1421

To confirm our multiplexed study design protects us from spurious eQTL associations associated1422

with ambient RNA levels, we ran eQTL scans with gene quantifications done before and after ambient1423

RNA correction. Figure SI2 shows that the eQTL p-values and slope direction for top snp-gene pairs1424

are nearly identical both before and after ambient RNA correction. Thus, our eQTL scan results are1425

not meaningfully influenced by ambient RNA.1426

4.32.3 Clustering and QC1427

We integrated 287 FUSION snRNA+snATAC samples plus one multiome sample which included 456k1428

nuclei spread across 10 batches plus one multiome batch. We performed the integration and clustering1429
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Figure SI2: eQTL scan before and after ambient RNA adjustment. For top SNP-gene pairs (5%
FDR) in endothelial, FAP, and type 1 clusters from the eQTL scans done post ambient-RNA correction, corresponding
[–log10(P value) x sign of the slope] are plotted from an eQTL scan done pre-ambient-RNA correction. The striking
similarity pre and post ambient-RNA correction shows that the background signal is not associated with genetic variation.

using Liger’s online iNMF algorithm which is capable to handle such large datasets. We factorized the1430

RNA modality first since we found the RNA-only clusters to be more distinct and easily interpretable1431

using known marker genes, then projected ATAC nuclei onto the factorization. We used the known1432

multiome RNA-ATAC mapping to compare how concordant the cluster assignments were between the1433

RNA and ATAC modality. We found that 82.8% of the non-muscle fiber multiome nuclei had the same1434

RNA and ATAC cluster assignments. While most clusters were concordantly annotated between RNA1435

and ATAC, the most frequent discrepancies were between the mixed fiber nuclei in RNA annotated type1436

1 or 2a in ATAC; or neuronal nuclei in RNA annotated type 1 or endothelial in ATAC (Figure S4B).1437

In comparison, current next largest study48 integrated 73 brain snATAC+snRNA (on different nuclei)1438

samples along with 19 multiome samples and achieved 79.5% - 85% concordance. The widely used1439

Seurat program [134], obtained a 90% concordance on 12,000 blood cell nuclei (vignette here) from a1440

much smaller dataset that was easier to analyze because it was not from a solid complex tissue, and all1441

nuclei were from one batch of 10X multiome assay rather than 456k nuclei spread across 10 batches plus1442

one small multiome batch. These observations help put the performance of our clustering approach1443

into perspective.1444

The fraction of nuclei assigned to each cluster within the RNA and ATAC modalities varied more1445

for some clusters than others. For example, T cell cluster constituted 0.14% of RNA nuclei, but1446

5.15% of ATAC nuclei Figure SI3. These differences could be due to both technical and biological1447

factors. For example, the ambient ”soup” profiles for RNA vs ATAC are expectantly different. We1448

considered droplets containing very low number of UMIs/HQAA as a representation of ambient profile1449

and observed that the most highly expressed genes in the snRNA soup were muscle fiber genes, which1450

is the most abundant cell type. Whereas, most snATAC soup reads mapped to the mitochondrial1451

genome, which are all removed during analysis. Second, chromatin and transcription programs in a cell1452

could manifest intrinsic cell-state differences. It has been demonstrated that chromatin accessibility1453

information from snATAC-seq provides a coarser-grained representation of cell-states compared to1454

transcription information from snRNA-seq profiling, which suggests that cells could retain a primed1455

or permissive chromatin landscape that can allow dynamic state transitions in response to relevant1456

conditions48,88.1457

While we performed extensive QC, ambient RNA adjustment and joint clustering and obtained1458

meaningful clusters, the ”muscle fiber mixed” cluster showed higher ratio of exonic reads vs reads over1459

the entire gene body in some batches (Figure SI4A) and showed elevated fraction of mitochondrial1460

reads (Figure SI4B). This suggests that the muscle fiber mixed cluster contained nuclei with relative1461

higher ambient RNA, and likely represented technical variation in nuclei extraction efficiency across1462
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Figure SI3: Cluster abundance by modality. Percentage of nuclei in each modality assigned to each cluster.

some batches. We account for technical variation due to batch in subsequent analyses.1463

4.32.4 Motif reconstruction1464

We observed several examples of TF motifs that reconstructed well using caQTL allele preferences and1465

effect sizes (Figure 2G, Figure S10). Due to the sparsity in motif-caSNP overlaps, it was impractical1466

to comprehensively quantify the total number of correctly reconstructed motifs out of all tested and1467

compare across cell-types. In type 1 fibers, ∼66% of the 540 PWMs had at least one overlap at each1468

position of the PWM, however in endothelial cells and FAPs, where a lower number of caQTLs were1469

identified, the corresponding percentages are 15% and 19%, respectively. Nevertheless, concordance1470

between TF and cell type is evident. For example, the MEF2 known9 motif, which is enriched in1471

muscle fibers (Figure S8E), reconstructed well in Type 1 fibers (Figure SI5A); however in endothelial1472

cells, even most high information content MEF2 known9 positions don’t overlap a caSNP (or proxy)1473

(Figure SI5B). In contrast, the SOX motifs (e.g., SOX7 1) were enriched in endothelial caPeaks but1474

not muscle fiber caPeaks (Figure S8E). SOX7 1 motif reconstruction is sparse in endothelial cells;1475

however, we still see the high information content positions in the core motif well reconstructed in1476

endothelial cells, whereas the reconstruction in type 1 fiber does not capture this core motif as well1477

(Figures SI5C–SI5D).1478

It is important to note that many PWMs are not actually expected to be well-reconstructed. The1479

PWM reconstruction is expected to work well only when the original PWM corresponds to a TF1480

expressed in that cell type and, more importantly, when the TF has a large impact on chromatin1481

accessibility in that cell type (since the variants used for reconstruction are caQTLs). If a variant1482

impacts binding of a TF but that TF does not have much impact on chromatin architecture, the1483

variant is unlikely to be a caQTL in the first place. A PWM of a TF that does not impact chromatin1484

architecture is likely to overlap a subset of caQTLs just by chance, so a reconstruction can sometimes1485

be produced, but the reconstruction in that case is not expected to be reliable.1486
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Figure SI4: Joint clustering of the snRNA-seq and snATAC-seq modalities identified 13
cell-type clusters
(A) Fraction of exonic reads over gene reads in nuclei across clusters and batches (B) Fraction of mitochondrial reads in
nuclei across clusters and batches
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Figure SI5: Reconstruction of selected motifs enriched in caPeaks in type 1 fibers vs
endothelial.
(A) MEF2 known9 motif reconstruction in type 1 fibers, and (B) endothelial. SOX7 1 motif reconstruction in (C) type 1
fibers, and (D) endothelial cell-type cluster.

Supplementary Protocol S11487

This protocol is designed for 4 samples. Please scale up or down based on the number of samples. All1488

the steps have to be performed on ice or at 4°C. All the 2 mL and 1.5 mL tubes used in this protocol1489

are Protein LOBIND tubes from EPPENDORF.1490

1491

Materials:1492

• CP02 cryoPREP automated dry pluverizer (Covaris 500001)1493

• Eppendorf thermomixer C (EP 5382000015)1494

• 2mL glass tissue grinder and pestle (Kimble chase, 885301-0002, 8853000002)1495

• 70 µm strainer (Fisher 501457900)1496

• Celltrics, 20 µm, 30 µm cell strainer (Fisher NC9682496, Fisher NC9699018)1497

• Fisherbrand Sterile Plastic Culture (FACS) Tubes 149563C1498

• RNase Inhibitor (Thermofisher N8080119)1499

• Eppendorf Protein Lobind 1.5 mL tubes (Eppendorf 022431081)1500

• Eppendorf Protein Lobind 2.0 mL tubes (Eppendorf 022431102)1501

LB1 buffer1502

LB1 buffer For 5mL Final concentration Catalog number

1 M HEPES, pH 7.5 0.25 mL 50 mM Invitrogen 15630080

5 M NaCl 140 µL 140 mM Sigma S5150-1L

0.5M EDTA, pH 8.0 10 µL 1 mM Promega V4231

50% glycerol 1 mL 10% Sigma G5516-500 mL

NP-40 10% 0.25 mL 0.5% Sigma 11332473001

Triton X-100 10% 125 µL 0.25% Sigma T8787-100 mL

Ultra Pure Distilled water 3.225 mL Invitrogen 10977015

EDTA-free complete mini protease inhibitors

(add immediately before use) 1 tablet Roche 11836170001

1503
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1% BSA in PBS For 10 mL Final Catalog number

BSA 100 mg 1% Fisher NC0390268

PBS Q.S. to 10 ml Invitrogen 10010023

1504

1505

Nuclei extraction1506

1. Frozen tissue (40-90 mg) was pulverized into a fine powder while cold (dry ice and LN2) using an1507

automated dry pulverizer CP02 cryoPREP.1508

2. Pulverized Frozen tissue (40-90 mg) was suspended in 1 mL of ice-cold 1x PBS in a 1.5 mL tube1509

(Eppendorf 022431081) and centrifuged at 2000g for 3 min at 4°C. The supernatant was removed1510

and the pellet was resuspended in 1 mL LB1.1511

3. The tissue was lysed by rocking the tubes in Eppendorf thermomixer C (EP 5382000015) at 4°C1512

at 300 rpm for 5 min.1513

4. Each sample was transferred into a prechilled 2 mL glass Dounce homogenizer and homogenized1514

with 10 strokes of loose pestle A, and 20 strokes of tight pestle B and then transferred to 1.5 mL1515

tube and centrifuged at 2000g for 5 min at 4°C.1516

5. The supernatant was aspirated and the pellet was resuspended in 1 mL of ice-cold 1% BSA and1517

centrifuged at 100g for 1 min at 4°C.1518

6. The supernatant was collected, discarding the loose debris pellet.1519

7. All the filters were prewet; 70 µm, 30 µm and 20 µm filters, with 200 µL of 1% BSA each and1520

previously collected supernatant was sequentially filtered through 70 µm, 30 µm and 20 µm filters1521

respectively.1522

8. The supernatant was filtered through a 70 µm strainer and the filtrate was collected into a 501523

mL conical tube.1524

9. The collected filtrate was passed through a 30 µm celltrix strainer and collected into a 2mL tube.1525

10. The collected filtrate was passed through a 20 µm celltrix strainer and collected into a 2mL tube.1526

11. The filtrate was transferred to a 1.5mL tube and centrifuged at 350 x g for 10 min at 4°C (be1527

careful of the tube direction). The supernatant was aspirated (the supernatant was saved as a1528

precaution) with flexi tip gel loading tip (were very careful not to disturb the pellet) and the1529

nuclei were resuspended in 500 µL of 1% BSA in PBS.1530

12. The nuclei suspension was centrifuged again at 350 x g for 10 min at 4°C (be careful of the1531

tube direction). The supernatant was aspirated very carefully (the supernatant was saved as a1532

precaution) with flexi tip gel loading tip and the nuclei were resuspended in 100 µL of 1%BSA in1533

PBS.1534

13. The nuclei were counted with cell counter (Trypan blue stains nuclei; typically 4-9 µm) and1535

diluted appropriately for RNA and ATAC submissions.1536

14. (RNA Submission ) To achieve the desired nuclei concentration, an appropriate amount of nuclei1537

was diluted with 1% BSA in PBS. To this suspension, RNase inhibitor was added to get a final1538

concentration of 0.2 U/µL. The nuclei was counted and submitted for snRNA seq.1539
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15. (ATAC Submission)- The rest of the nuclei was spun down at 350 x g for 10 min at 4°C (were1540

careful of the tube direction). The supernatant was aspirated very carefully with flexi tip gel1541

loading tip and the nuclei were resuspended in an appropriate volume of 1X diluted nuclei buffer1542

(20x buffer supplied by 10X genomics). The nuclei was counted and submitted for snATAC seq.1543

MPRA experiment and data analysis1544

Cloning1545

We designed oligos with a variant centered within 197 bp of flanking sequence (98 bp on each side).1546

We also included negative control sequences selected from a previous publication (1).1547

Oligos were synthesized by IDT as 230 bp sequences containing the 197 bp sequences of interest1548

flanked by two adapter sequences for cloning. We added 20 bp barcodes with additional adapters via a1549

5-cycle PCR reaction containing 13 ng oligo pool, 12.5 uL of NEB Q5 HotStart Hifi Mastermix, 1.25 uL1550

of 10X SYBR Green I and 0.25 uM each of primers AT0003 and AT0039. This reaction was performed1551

in quadruplicate with the following thermocycler conditions: 98◦C x 30 sec, [98◦C x 10 sec, 65◦C x 151552

sec, 72◦C x 30 sec, plate read, 72◦C x 8 sec] x 5, 72◦C x 2 min. Barcoded oligos were diluted 1:251553

in H2O, then amplified in a second PCR reaction using the same conditions with primer AT0050 in1554

place of AT0039 and cycling for 14 cycles. We pooled replicate reactions, cleaned the final amplified,1555

barcoded oligos with 1.8X SPRI beads, and eluted in 15 uL of LoTE.1556

We modified pMPRA1 (a gift from Tarjei Mikkelsen, Addgene #49349; 2) by adding in PaqCI1557

cloning sites and an EGFP open reading frame. We cloned the barcoded oligos into this backbone (2:11558

molar ratio of oligos:backbone) using PaqCI-mediated Golden Gate assembly per NEB recommenda-1559

tions. We incubated the assembly reaction at 37◦C for 1 hour then 65◦C for 5 min. We performed a1560

secondary digest with 20 U SfiI to remove empty backbones, then cleaned with 0.8X SPRI beads and1561

eluted in 10 uL of LoTE. We transformed 1 ul of the assembly into NEB 10-beta electrocompetent1562

bacteria and expanded overnight in 150 mL of ampicillin-containing LB. In parallel, we plated serial1563

dilutions and estimated a library complexity of ∼ 5 x 106 CFU.1564

We prepared sequencing libraries from the promoter-less MPRA plasmids to create an oligo-barcode1565

pairing dictionary. In brief, we amplified the oligo-barcode region in a reaction containing 100 ng1566

plasmid library, 20 uL 5X Kapa Fidelity Buffer, 3 uL Kapa dNTPs, 5 uL 10X SYBR Green I, 2 units1567

Kapa HiFi HotStart DNA polymerase, and 0.5 uM each of primers jklab0343 and jklab0344. We1568

indexed with standard Illumina primers and sequenced the library on a NovaSeq 6000.1569

To create the final plasmid-based MPRA library, we cloned a 350-bp MYBPC2 promoter fragment1570

(annotated by ENCODE, hg38, chr19:50432668-50433017) into the barcoded oligo-containing assembly1571

(3:1 molar ratio of promoter insert:backbone) using BsaI-mediated Golden Gate assembly. We incu-1572

bated the assembly reaction with the following program: [37◦C x 5 min, 16◦C x 5 min] x 30, 60◦C1573

x 5 min. We performed a secondary digest with 1 U AsiSI to remove promoter-less assemblies, then1574

cleaned with 0.8X SPRI beads and eluted in 10 uL of LoTE. We transformed as above, but expanded1575

only 10% of the transformant pool in 150 mL of ampicillin-containing LB to bottleneck to ∼106 unique1576

barcodes.1577

We performed a final restriction cloning step to move the assembled MPRA block (barcoded oligo,1578

promoter, GFP) to the lentiviral transfer plasmid. We separately incubated the plasmid-based MPRA1579

library and the lentiviral transfer backbone with EcoRI and SbfI for 1 hour, then gel purified our1580

fragments of interest. We incubated the insert and backbone (3:1 molar ratio) with T4 DNA ligase for1581

10 minutes at room temperature and SPRI cleaned assemblies with 0.8X beads. Transduction-ready1582

lentivirus was created by the University of Michigan Viral Vector Core.1583
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MPRA experiment1584

We maintained LHCN-M2 human skeletal muscle myoblasts on 0.1% porcine gelatin coated dishes in1585

manufacturer’s suggested medium (4:1 high glucose DMEM:Medium 199, 15% FBS, 20 mM HEPES,1586

3 ug/mL zinc sulfate, 1.4 ug/mL vitamin B12, 55 ng/mL dexamethasone, 2.5 ng/mL HGF, and 101587

ng/mL bFGF).1588

Per replicate, we infected 4 x 106 cells with lentivirus at an MOI of ∼10 with 4 ug/mL polybrene.1589

We passaged cells twice, then began differentiation 7 days after initial infection. We differentiated1590

cells by performing daily media changes with differentiation media (DMEM 1 g/L glucose + 2% heat-1591

inactivated horse serum). After 7 days of differentiation (i.e., 14 total days since infection), we lysed1592

cells with 1.5 mL beta mercaptoethanol-containing Qiagen Buffer RLT Plus. We triturated the cell1593

lysates with a syringe and 18-gauge needle 10 times to homogenize, then stored homogenized lysates1594

at -80◦C until nucleic acid extraction.1595

MPRA sequencing1596

We used the Qiagen AllPrep RNA/DNA mini kit with four columns per replicate to isolate RNA1597

and gDNA. We synthesized cDNA with 150 ug of DNAse-treated RNA using SuperScript IV reverse1598

transcriptase and 100 nM custom GFP-targeted RT primer (jklab0363) containing a 15 bp UMI. We1599

PCR amplified the cDNA with 500 nM primers jklab0268 and jklab0356 with NEB 2X Q5 HF HotStart1600

PCR mastermix with the following program: 98◦C x 1 min, [98◦C x 10 sec, 60◦C x 30 sec, 72◦C x 11601

min, plate read, 72◦C x 8 sec] x 20, 72◦C x 5:00. We added adapters and PCR amplified the gDNA1602

samples using an analogous protocol. We performed sample indexing using standard Illumina P5 and1603

P7 barcoding primers, then performed molar pooling and sequence samples on a NovaSeq 6000 (2 x1604

150 bp reads).1605

MPRA data analysis1606

To create the oligo-barcode pairing dictionary, we used a custom pipeline based on bwa v0.7.17 (3) to1607

merge paired-end 150 bp reads. We extracted the barcodes. We then used minimap2 v2.24 (4) to align1608

merged oligo reads against our reference FASTA file containing the expected oligo sequences. After1609

filtering, we created a final table with oligo-barcode pairs and removed any duplicate barcodes.1610

For cDNA and gDNA barcode counting, we used cutadapt v4.3 (5) to trim sequencing adapters and1611

constant sequences, UMI-tools v1.1.2 to cluster UMIs (6), and starcode v1.4 (7) to cluster and count1612

deduplicated oligo barcodes. We merged these barcode counts with the pairing dictionary, requiring an1613

exact match between the cDNA/gDNA barcode counts and the paired barcode. Finally, we calculated1614

the sum of all barcode counts associated with a given oligo within a sample.1615

Prior to statistical modeling, we required a raw count mean ¿= 25 across all cDNA samples to1616

remove any lowly expressed oligos. We estimated oligo activity and allelic bias using DESeq2 (8) with1617

normalized read counts. We fit a nested fixed effects model as described previously (9).1618

To extract effects due to enhancer activity (RNA vs. DNA), we used linear contrasts between the1619

cDNA and gDNA levels for a given replicate. To estimate allelic bias (reference vs. alternate allele),1620

we used a linear contrast between the cDNA and gDNA counts for the reference and alternate alleles.1621

We report the Benjamini-Hochberg FDR here to adjust for multiple testing.1622

26

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2024. ; https://doi.org/10.1101/2023.12.15.571696doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.15.571696
http://creativecommons.org/licenses/by-nd/4.0/

	Introduction
	Results
	snRNA and snATAC profiling and integration identifies 13 distinct cell type clusters
	Integrating genetic variation with snRNA and snATAC profiles identifies thousands of e/caQTL
	Identifying patterns of shared and cell-type specific e/caQTL signals across clusters
	Identifying context-specific e/caQTL
	e/caQTL finemapping, colocalization and causal inference informs cell-specific multi-omic genetic regulation
	Cell-specific e/caQTL and GWAS signal integration to inform disease/trait regulatory mechanisms

	Discussion
	Limitations of the study

	Methods
	Sample collection
	FUSION cohort

	Sample preparation, snRNA-seq and ATAC profiling
	Muscle multiome sample
	Genotyping and imputation
	snRNA-seq data processing and quality control
	snATAC-seq data processing and quality control
	Two-stage Demuxlet pipeline
	Adjusting RNA counts for overlapping gene annotations
	Ambient RNA adjustment

	Joint clustering and cell type annotation
	ATAC-seq peak calling and consensus peak feature definition
	Identification of cell type-specific genes and GO enrichments
	Comparison to snATAC atlas
	Identification of cell type-specific open chromatin summits and motif enrichments
	snATAC-seq coaccessiblity
	QTL scan in clusters
	eQTL scan
	caQTL scan
	Motif reconstruction using caQTL results
	mash analyses
	context-specific QTL
	QTL finemapping
	Relationship between caQTL effect size, caSNP MAF, and caQTL peak presence in scATAC atlas
	caPeak chromatin state enrichments
	Motif enrichment in caPeaks
	eQTL and caQTL colocalization
	Causal inferrence between chromatin accessibility and gene expression
	CIT
	MR Steiger directionality test

	GWAS enrichment in ATAC-seq peak features
	eQTL and caQTL co-localization with GWAS
	Imputing high-resolution 3D chromatin contact maps
	Massively parallel reporter assay for validation
	Cloning
	MPRA Experiment
	Data Analysis

	Code availability
	Acknowledgements
	Author Contributions
	Competing interests
	Singlet identification and sample demultiplexing
	Ambient RNA and eQTL scans
	Clustering and QC
	Motif reconstruction



