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Stratification of cancer into biologically and molecularly similar
subgroups is a cornerstone of precision medicine and transcrip-
tomic profiling has revealed that urothelial carcinoma (UC) is a
heterogeneous disease with several distinct molecular subtypes.
The Lund Taxonomy classification system for urothelial carci-
noma aims to be applicable across the whole disease spectrum
including both non-muscle invasive and invasive bladder cancer.
For a classification system to be useful it is of critical importance
that it can be applied robustly and reproducibly to new sam-
ples. Many transcriptomic methods used for subtype classifica-
tion are affected by the choice of expression platform, data pre-
processing, cohort composition, and tumor purity. The appli-
cation of a subtype classification system across studies therefore
comes with a degree of uncertainty regarding whether the pre-
dictions in a new cohort accurately recapitulate the originally
intended stratification. Currently, only limited data has been
published evaluating the transferability and applicability of ex-
isting stratification systems and their respective classification-
algorithms to external datasets. In the present investigation we
develop a single sample classifier based on in-house microar-
ray and RNA-sequencing data intended to be broadly appli-
cable across datasets, studies, and tumor stages. We evaluate
the performance of the proposed method and the Lund Tax-
onomical classification across 10 published bladder cancer co-
horts (n=2560 cases) by examining the expression of character-
istic subtype associated gene signatures, and whether comple-
mentary data such as mutations, clinical outcomes, response, or
variant histologies are captured by our classification. Effects
of varying sample purity on the classification results were also
evaluated by generating low-purity versions of samples in silico.
We show that the classifier is robustly applicable across different
gene expression profiling platforms and preprocessing methods,
and less sensitive to variations in sample purity.

The classifier is available as the ‘LundTaxonomy2023Classifier’
R package on GitHub.

Correspondence: pontus.eriksson@med.lu.se

Introduction

Molecular subtyping aims to classify and categorize similar
tumor samples within a broader group based on their distinct
molecular characteristics. Subtype stratifications help us gain
a better biological understanding of the disease and may en-
able more precise clinical decision making. While stratifi-
cation schemes developed in isolated works of research can
provide new insights and research-hypotheses, being able to

extend a classification strategy to new datasets is essential to
validate, expand, and strengthen the results. However, there
are many technical and biological factors that make this a
challenge. Transcriptomic research cohorts have been pro-
duced using a number of microarrays or RNA-sequencing
methods, each using different labeling kits, library prepa-
ration techniques, sequencing technology, and data prepro-
cessing methods. Studies also differ in biopsy sample ori-
gin e.g., cystectomy or transurethral resection of bladder tu-
mors (TURB) specimens, and tissue preservation e.g., fresh
frozen tissue or paraffin embedded tissue. Furthermore, co-
hort design is usually driven by particular clinical research
questions, resulting in cohorts enriched for a selected subset
of tumors. Consequently, it may be challenging to generalize
results to a broader disease spectrum, especially when results
are derived from relative gene expression values where the
data has been row-centered or scaled across the cohort and
therefore strongly dependent on the composition of the co-
hort. If a classifier is trained on such relative data, its appli-
cation is only appropriate to new data that has been prepro-
cessed and row-centered to reproduce the relative differences
of the training-cohort. This can be difficult to achieve if a
new cohort has a significantly different composition, or if the
new data is different from that of the original cohort (e.g.,
microarray vs RNA-sequencing). To overcome this issue,
recent studies have designed single-sample predictors (SSP)
intended to be applied to individual samples by using some
form of raw non-cohort normalized data (1-6). While this
approach circumvents issues related to cohort composition,
to our knowledge there has been no systematic validation
of such prediction methods across external data. Moreover,
molecular subtyping is dependent on the principles used to
define cancer subtypes, and there is currently no strict def-
inition of what constitutes a subtype. In general terms, a
subtype denotes a group of objects that share common fea-
tures, exhibit similarities, and differ from other groups of ob-
jects. Subtype assignments can be based on specific molec-
ular characteristics, such as the gene fusion BCR/ABL in
chronic myeloid leukemia. Alternatively, they could be based
on complex traits, such as altered transcriptional programs as
measured by microarrays or RNA-sequencing. Given the nu-
merous features that can be used to categorize a tumor, it is
essential to carefully consider the similarities and differences
captured by particular classification systems (7). It is also
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important to consider whether the goal is to group cancers
based on the properties of the entire biopsy or the properties
specific to the cancer cells proper. A common approach has
been to perform hierarchical clustering of gene expression
data obtained from bulk biopsies to define subgroups. We
have, however, repeatedly observed that the derived cluster
structures can be largely shaped by biopsy purity. The con-
tent of immune and stromal cells, as well as the level of pro-
liferation within the biopsy results in strong coherent expres-
sion signatures that often overshadow and mask differences
within the cancer cells proper (8). Through extensive gene
expression cluster analyses paired with immunohistochemi-
cal (IHC) analyses using antibodies for 25 proteins, we could
evaluate and refine the Lund Taxonomy and reveal discrepan-
cies between the actual cancer cell phenotypes as identified
by IHC, and groupings based on global mRNA clustering (8).
We then adopted a supervised approach and trained the RNA-
based algorithm to identify IHC determined cancer cell phe-
notypes. This allowed us to resolve gene expression group-
ings caused by varying levels of infiltration and proliferation
and showed that cancer cell phenotypes may be detected us-
ing RNA-based analyses only (9). In the present work we
have refined and made publicly available a Random Forest
based single-sample gene expression predictor (10) that clas-
sifies bladder cancer samples into the five main Lund Taxon-
omy cancer cell subtypes Urothelial-like (Uro), Genomically
unstable (GU), Basal squamous-like (Ba/Sq), Mesenchymal-
like (Mes-like), and Small cell Neuroendocrine-like (Sc/NE),
and subclassifies Uro further into UroA, UroB, and UroC
(Figure 1A) (8, 9, 11, 12). We have applied this classifica-
tion algorithm to several independent and published datasets
of both muscle invasive and non-muscle invasive urothelial
carcinomas. The algorithm was robustly applicable across
different gene expression profiling platforms and preprocess-
ing methods, and less sensitive to variations in sample purity.

Methods

Microarray data preprocessing. Affymetrix microarray
datasets were normalized with two preprocessing pipelines:
RMA (Robust Multichip Average) and SCAN (Single-
channel array normalization) using the R packages oligo
v3.17 (13) and SCAN.UPC v3.18 (14), respectively. RMA
is a widely used cohort-based Affymetrix array preprocess-
ing method, while SCAN is a single sample normalization
approach designed to counter the impact of cohort compo-
sition on the normalization process and is used by a com-
mercial provider of Affymetrix-based bladder cancer tran-
scriptomic profiling. We used BrainArray V25 probe anno-
tations based on Gencode 36 across all Affymetrix microar-
rays (Exon, Gene) (15), providing a static set of annotation
files that also avoids multi-mapping probes, giving a readily
reproducible gene expression summarization directly at the
gene level. Additionally, "gene_ biotype", "hgnc_ symbol",
and "hgnc_ id" was added to each array annotation using the
biomaRt R package (16) using Ensembl 108/Gencode42. A
small number of features (less than five on either array) were
discarded due to a non-unique HGNC gene symbol identifier.
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The final array datasets were filtered to retain protein coding
genes with HGNC gene names.

RNA-sequencing data preprocessing. RNA-sequencing
datasets with raw FASTQ files available were processed us-
ing the pseudoaligners Kallisto (v0.48.0) (17) and Salmon
(v1.9.0) (18) with GRCh38 Gencode39 reference indexes.
To improve the stability of the TPM data for visualization,
we adopted a transcript filtering step for both the Kallisto
and Salmon output files, removing technically variable tran-
scripts (including microRNA, miscellaneous-RNA, TCR and
BCR coding genes, V, D, and J regions, histone-coding and
mitochondrial genes) (19). Retained transcripts were then
rescaled and summarized to gene level in TPM format, as
well as GeTMM format (20) using the R package txImport
v1.26.1 (21) and a fixed tx2gene file. All RNA-seq datasets
with available raw data were additionally quantified with
Kallisto using a Gencode23 reference from the Toil pipeline
(22). For external datasets with only preprocessed data avail-
able, we applied the classification algorithm directly on the
available published TPM or FPKM values. If any genes were
missing from these datasets, this was addressed by updating
outdated gene symbol annotation and through the k-Nearest
Neighbors imputation feature of multiclassPairs (23). As the
prediction method is applied to individual samples, TPM and
FPKM can be used interchangeably as these have a perfect
Spearman correlation of 1, given that they are calculated from
the same counts and gene lengths for a sample.

In-house datasets.In total, four cohorts were used to
train the new model. Three datasets were generated on the
Affymetrix Human Gene 1.0 ST microarray platform and
largely correspond to previously published cohort datasets.
The Lund2017 (8) dataset included 301/307 samples from
GSEB83586, excluding 6 samples labeled as “infiltrated”,
the Lund2020 (24) dataset contained 173 samples from
GSE128959, and the Lund2022 (25, 26) series contained
310 samples in total, 117 included in GSE169455, 37 in
GSE222073 and 156 unpublished samples. All microar-
ray data was reprocessed from the original CEL files. The
$265 cohort contained 265 RNA-sequenced tumors of mixed
stages. Libraries were prepared using TruSeq Stranded li-
brary preparation kit and were sequenced on the Illumina
NextSeq 500 system (75bp paired-end). The data was quan-
tified using Kallisto and Salmon. The full set of CEL files,
Kallisto and Salmon output files, and processed data (as used
in the study) has been deposited (10.5281/zenodo.10362517).
Preprocessing code and transcript to gene mappings have also
been deposited. Sample IDs, reference labels, intermediate
training labels, IHC labels, and final subtype labels for all
utilized training samples are listed in Supplementary Table
1. Based on previous characterizations, the transcriptomic
subtype label could also receive the suffix “-inf” (e.g., “GU-
Inf”) to denote samples with higher infiltration. This distinc-
tion was not utilized in the current study, except for the sub
stratification of Uro samples where Uro-Inf classified sam-
ples were excluded from training as they did not have an as-
signed UroA/B/C label.
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Fig. 1. A: Schematic representation of the five major LundTax molecular subtypes and the subdivision of the urothelial-like into UroA, UroB, and UroC. The respective color
codes are used all throughout the manuscript. B-D: Flowchart showing the major steps in the development of the LundTax2023 algorithm, including a first a Lund2017-based
5-class classifier (B), the full 5-class classifier (C) and the Uro A/B/C predictor (D).
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Immunohistochemistry. The three array datasets had com-
plementary tissue microarray IHC, performed as described in
the respective previous publications (8, 24, 25). Briefly, two
1.0 mm cores from tumor-rich areas of the TUR-BT tissue
blocks were embedded into tissue microarrays. TMA blocks
were then sectioned (4 um) and stained with various subtype
informative IHC-markers. The minimal shared set of mark-
ers available for all three cohorts used here were; CDHI,
EPCAM, GATA3, RB1, FGFR3, CCND1, KRT5, KRT14,
TUBB2B, VIM, and ZEB2. Primary antibodies, incuba-
tion, and staining conditions were as described in the original
studies. Tissue sections were stained using an Autostainer
Plus (Dako, Glostrup, Denmark), scanned (AxioScan Z1,
Zeiss, Oberkochen, Germany), and evaluated as digital im-
ages (Xplore v5.1, Philips, Amsterdam, Netherlands). Stain-
ing was evaluated either as intensity (0-3), as percentage (10
bins), or both (Intensity x Percentage), depending on the
staining pattern and the mean marker score for the two cores
was used, as described in the original studies.

External datasets. External datasets were collected from
public portals including the Gene Expression Omnibus
(GEO), the European Genome Archive (EGA), Genomic
Data Commons (GDC), and the Database of Genotype
and Phenotype (dbGaP). The raw TCGA-BLCA RNA-
sequencing dataset was obtained in FASTQ format and
preprocessed using Kallisto and Salmon. Three indepen-
dently preprocessed versions of the TCGA-BLCA dataset
were downloaded to assess classifier robustness to differ-
ent annotations and preprocessing pipelines. This included
a version downloaded through the R package TCGABi-
olinks (27), a version from the Toil project (22), and one
from the Recount3 project (28). Clinical data for the
TCGA-BLCA cohort was downloaded from the Broad In-
stitute (version 20160128, http://firebrowse.org/
?cohort=BLCA). The IMVigor210 cohort was obtained
through the IMvigor210CoreBiologies package (29) in TPM
format. The classification was also evaluated on data pre-
processed from the raw FASTQ files obtained from EGA
(EGADO00001006960), but as the EGA identifiers were not
linkable to the published metadata we only used the pub-
lished RNA-sequencing data from IMvigor210CoreBiologies
for this cohort. The UC-Genome (30) and UNC-108 (31)
datasets were both obtained in processed TPM form from
the authors. Raw CEL files were downloaded for mi-
croarray datasets Seiler2017 (GSE87304) (1) and Seiler2019
(GSE124305) (32). The Robertson T1 (3) was downloaded
in FKPM and raw count format (GSE154261), and the Bow-
den T1 (33) was downloaded in FPKM format (GSE136401).
The RotterdamBCG study cohorts A and B were obtained
from the authors in FPKM format as used in the original
study (34), as well as in Kallisto/Gencode39 preprocessed
format. The UROMOL normalized counts were downloaded
from the original publication (6). Collected datasets are de-
scribed in Supplementary Table 2.
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Gene signatures used for validation. Predefined gene-
signatures were applied to the data to validate the classifi-
cation: early and late cell cycle genes, keratinization signa-
ture, FGFR3 co-expressed genes, TP63, urothelial differenti-
ation transcription factors (PPARG, FOXAI, GATA3, ELF3),
urothelial differentiation genes (UPKIA, UPKIB, UPK2,
UPK3A, KRT20), cell adhesion genes (EPCAM, CDHI,
CDH3), MYC genes (MYCL, MYCN, MYC) and small-
cell/neuroendocrine markers (CHGA, SYP, ENO2). Log-
transformed and standardized values (Z-scores) were used
to calculate several scores and ratios: the circuit score (35)
to distinguish Uro from GU cases calculated as RBI +
FGFR3 + CCNDI - E2F3 - CDKN2A mRNA expression
using log-transformed and standardized values (Z-scores),
the Basal/Squamous ratio (36) calculated as KRTS5 + KRT14
- FOXAI - GATA3, the ERRB score as EGFR - ERBB?2 -
ERBB3, using standardized log2 mRNA expression values,
and the late/early cell cycle ratio calculated as the median
expression value of the late cell cycle signature genes mi-
nus the median expression value of the early cell cycle sig-
nature genes. Established cancer immune and stroma sig-
natures used by the ESTIMATE tool (Immunel41_ UP and
Stromall41_ UP) were used (37). The ComplexHeatmap
(v2.14.0) R package was used for heatmap visualization (38).

Additional R packages. The R package ROCit (v2.1.1) was
used for receiver operating characteristic (ROC) curves and
area under the ROC curve (AUC) calculations. The R pack-
ages DistributionOptimization (v1.2.6) (39) and AdaptGauss
(v1.5.6) (40) were used to fit Gaussian mixture models to the
data and to determine cutoffs between distributions, respec-
tively.

Statistical tests. Fisher’s exact test was used to test the as-
sociation of categorical variables (presence of mutations and
response) with the molecular subtypes, and ANOVA was
used for continuous variables. Bonferroni correction was
used to correct for multiple testing. Kaplan-Meier analysis
and log-rank test were used to visualize survival and com-
pare survival outcomes.

Addition of synthetic tumor microenvironment to
the TCGA-BLCA cohort. We used 402 samples from the
TCGA-BLCA cohort, quantified with Kallisto using the Toil
Gencode23 index (22) and summarized into the filtered TPM
format utilized by the Kassandra tumor microenvironment
(TME) deconvolution study (19). We created 500 synthetic
tumor microenvironment cell type compositions by gener-
ating random TME composition fractions between 0 and 1,
multiplied with coefficients representing an average tumor
microenvironment composition, comprising 18 cell types
(19). The cell type fractions were rescaled to sum up to 1 for
each of the 500 TME versions. For each synthetic TME, nine
RNA-sequencing samples of each cell type were randomly
selected from a cohort of 5677 RNA-sequenced samples in
the same filtered Gencode23 TPM format. The average TPM
expression profile of the 9 samples representing a cell type
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was rescaled to sum up to 106 and then multiplied by the pre-
calculated cell type fraction and summed with the other cell
types to form a pure synthetic TME TPM expression profile.
Tumor and synthetic TME expression were summed together
to generate 500 versions of the TCGA-BLCA dataset with
sampled tumor fractions ranging from 0 to 1 (tumor TPM *
tumor fraction + synthetic TME TPM * (1-tumor fraction))
(Supplementary Figure 1).

Results

Development of the LundTax2023 classifier. The Lund
Taxonomy 2023 (LundTax2023) classifier was built utiliz-
ing a gene-pair rule-based RandomForest (RF) SSP using
our R package multiclassPairs (23). Previous evaluations
showed that this type of classifier enabled coherent bladder
cancer subtype classification from array to RNA-sequencing
data and vice versa, that high classification accuracy could be
achieved in multiclass prediction of homogeneous data, and
that training on data from multiple platforms was a feasible
approach to reduce platform incompatibilities (10).

To create the new classifier, we first extended the classifi-
cation of the Lund2017 study to our other datasets to form
the training cohort. A five-class (Uro, GU, Ba/Sq, Mes-like,
and Sc/NE) Lund Taxonomy RF-classifier was built using
the well characterized Lund2017 microarray gene-expression
dataset (n=301). We first identified subtype informative
genes through RF within the Lund2017 dataset using the
RMA preprocessed and Combat-batch corrected version of
the dataset, without cohort scaling or gene centering, with
data transformed into ranks (Figure 1B-1) . To select sub-
type informative features (genes), six models were trained,
one predicting all classes, and one for each subtype in a 1-vs-
rest configuration, using protein-coding genes with HGNC
symbols present in both microarrays and RNA-sequencing
datasets. From each model we selected the top 250 genes
based on relative variable importance calculated by the RF
model, resulting in a total of 1151 unique genes. A matrix
of all possible binary gene-pair rule combinations (Gene X
> Gene Y) was generated from raw RMA and SCAN data
using the unique selected genes (Figure 1B-2) . Six new
RF-models were trained using this binary matrix as training
data. The gene-pair rules were sorted by their variable im-
portance according to each RF model, after which the top
500 rules were selected from each model, with a filter limit-
ing the number of times a given gene was allowed to be used
in a rule to 10. After removal of less contributing rules us-
ing the Boruta feature selection algorithm, the final 5-class
model was trained using the 1127 retained rules (Figure 1B-
3). We visualized the training cohort by a UMAP dimen-
sionality reduction plot based on a Hamming distance matrix
calculated from the binary gene-pair rules used by the clas-
sifier across all samples. The rules of the Lund2017 model
separated subtypes into distinct clusters without notable plat-
form separation of RMA and SCAN preprocessed data, but
silhouette scores indicated some outlier samples where the
UMAP cluster location was at odds with both the reference
and out-of-bag (OOB) predicted subtype label (Supplemen-
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tary Figure 2). A new model was produced excluding the
13 outlier samples, after which the outlier samples were re-
classified (Figure 1B-4). The re-predictions were all in agree-
ment with the outlier’s original cluster location. The out-
liers were reintroduced into the training set and used to build
the starting model based on Lund2017. This model was ap-
plied to two additional uniformly preprocessed microarray
datasets (Lund2020 and Lund2022) and 265 RNA-sequenced
samples (s265) summarized to TPM using both Kallisto and
Salmon (Figure 1C-1). All three datasets had in parallel also
been classified by a set of 11 immunohistochemical mark-
ers on tissue microarrays (TMAs). Prediction results were
in good agreement with both previous subtype classifications
of these cohorts (83% concordance, average of 3 datasets),
and with immunohistochemistry-based subtype assignments
(72%). Classification concordance between RMA and SCAN
versions of microarray data was 99% in Lund2020, 92% in
Lund2022, and 99% between Kallisto and Salmon for the
$265 RNA-sequencing dataset. The final predictor was built
utilizing all four in-house datasets as training data, using
the predicted labels on RMA and Kallisto data as final la-
bels. Gene selection was performed for all four datasets us-
ing ranked Combat-adjusted RMA data for the microarrays
and ranked Kallisto TPM data for the RNA-sequencing co-
hort (Figure 1C-2). Subtype-informative genes from all four
datasets (n=717 genes) were combined into a gene-pair rule
matrix using raw RMA, SCAN, Kallisto TPM, and Salmon
TPM data for each sample (Figure 1C-3,4). A set of low-
variance housekeeping genes (n=130), selected based on their
stable expression across the four datasets, were also included
to potentially act as stable pivot rule-partners to more high-
variance subtype specific genes. Subsequently, a separate
model was trained to classify Uro samples into UroA, UroB,
and UroC. This was done by repeating the model training
process on the subset of samples in the Lund2017 dataset
that were classified as Uro both by the original labels and by
the OOB predictions of the new classifier. This model was
applied to the Uro classified samples of the other 3 datasets,
after which a final model was trained on the UroA, UroB, and
UroC samples of the entire cohort including all four datasets
(Figure 1D).

Biological evaluation of classification results by IHC and
RNA signatures in the training cohorts. Expression signa-
tures for the four in-house datasets were visualized together
using Z-scores calculated for each dataset separately (Figure
2A) using RMA and Kallisto preprocessed data. OOB pre-
dictions on the four training sets were highly concordant be-
tween the RMA and Kallisto data and the alternative SCAN
and Salmon preprocessing (Figure 2A) . The OOB predic-
tion scores were also similar between preprocessing versions
(Supplementary Figure 3).

IHC markers CDH1, EPCAM, GATA3, RBI1, FGFR3,
CCND1, KRT5, KRT14, TUBB2B, VIM, and ZEB2, scored
on tumor cells, were well aligned with the RNA-based classi-
fication. CDH1 and EPCAM were detected across most sam-
ples but lower in the Mes-like and Sc/NE subtypes that devi-
ated most from an epithelial cell state. RB1 and CCND1 were

bioRxiv | 5


https://doi.org/10.1101/2023.12.15.571519
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.15.5715109; this version posted December 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A

0OB Prediction RMA/kallisto
OOB Prediction SCAN/Salmon

Reference RNA
M UroA

M UroB

M UroC

I Uro-Inf

W Gu

Late/Earl e
e —
ate/Earl y Reference IHC

Sc/NE
Keratinization u

signature Dataset

M Lund2017

M Lund2020

[ Lund2022
Lund265

Stage

WTs

HTa

T
| BV

ERBB score TV YT T W e N T TR T N Y T T R T T
CHGA
ENO?
‘ronunsl141-HE M i i 110110 B3 1

B NMIBC D

Ba/Sq ratio

Circuit score

10

UroA UroB UroC GU Ba/Sq Mes Sc/NE

CDH1 = -
EPCAM
GATA3 .
RB1 R o
FGFR3
CCND1 .
KRT5 ] ?
KRT14
TUBB2B o \
ViM B VT :
ZEB2

MIBC CDKN2A (p16) TP63
UroA UroB UroC GU Ba/Sq Mes Sc/NE H

b | .
CDH1 ~ i
EAAs . )
RB1 | |
e : :
KRT5 ] :
08828 v \
Vi —_— ' : )
ZEB2 ¢ .

Fig. 2. Final classification of the training data. A: The final classification and heatmap of the 894 samples included in the development of the LundTax2023 algorithm. From the
top; out-of-bag (OOB) predictions for the RMA/Kallisto pre-processing version of the data; OOB predictions for the SCAN/Salmon pre-processing version; RNA reference; IHC
reference; classification scores five-class system; classification scores for the Uro subclasses; dataset; pathological stage; intensity data for 11 IHC markers as indicated early
cell cycle (Early CC) signature; late cell cycle (Late CC) signature; the ratio between late an early cell cycle ratio; gene expression levels for the four Ba/Sq defining markers;
the calculated Ba/Sq ratio; keratinization gene expression signature; gene expression ratios for the genes distinguishing urothelial-like from genomically unstable tumors;
the circuit score the expression levels of TP63; expression levels of urothelial differentiation transcription factors; expression levels of differentiation markers; expression of
the FGFR3 gene expression profile; expression of cell-cell interaction genes; expression of the MYC family of transcription factors; expression of the EGF related receptor
molecules EGFR, ERBB2 and ERBB3; the ERBB score; expression of neuronal marker gene specific for the Sc/NE subtype; immune infiltration score; stromal infiltration
score. B-C: Average intensity levels of the specified IHC markers in the non-muscle invasive (B) and muscle invasive versions (C) of the molecular subtypes. D-G:Rank
ordered plots showing samples ordered by Ba/Sq ratio (D), circuit scores (E), CDKN2A(p16) expression (F) or TP63 expression (G). Color code according to the five-class
system. Color codes for gene scores and ratios: blue, low; red, high. IHC expression: white, low; brown, high.

6 | bioRxiv Aramendia Cotillas etal. | A versatile and upgraded version of the LundTax classification algorithm applied to independent cohorts


https://doi.org/10.1101/2023.12.15.571519
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.15.5715109; this version posted December 15, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

predominantly lower in GU and Sc/NE tumors. FGFR3 was
predominantly seen in Uro-classified tumors, while GATA3
expression encompassed the “luminal” tumors, also includ-
ing GU. KRTS5 expression was strongly positive across most
Ba/Sq classified tumors and to a lower extent in UroB tumors,
while KRT14 expression was confined largely to Ba/Sq tu-
mors. TUBB2B expression was seen mainly in Sc/NE classi-
fied samples, while tumor cell expression of VIM was mainly
seen in Mes-like samples and some Ba/Sq and Sc/NE tu-
mors. Similarly, ZEB2 expression was predominantly con-
fined to Mes-like classified samples. In Figures 2B and 2C
we have separated non-muscle invasive samples of UroA,
UroB, UroC, and GU from their respective muscle invasive
versions and show that there are no essential differences of
cancer cell expression levels among the reported markers.

Cross-cohort expression signature patterns reflected previous
observations (Figure 2A) . Briefly, Uro tumors showed ex-
pression patterns indicating lower proliferation, with high
expression of early cell cycle genes and low expression of
late cell cycle genes compared to other subtypes. The per
sample ratio of these cell cycle signatures was used to or-
der tumors within each subtype and was overall lower in
the Uro subtype. The consensus definition of Ba/Sq tumors,
with high expression of basal markers KRT5 and KRT14 and
low expression of luminal marker FOXA I and GATA3 clearly
overlapped with Ba/Sq classification results. UroB tumors
showed KRTS expression, but not uniform KR714 expres-
sion, and both Mes-like and Sc/NE tumors displayed low ex-
pression of all four genes. A rank-order version of the Ba/Sq
ratio data is presented in Figure 2D) . Broad expression of
keratinization related genes was confined to Ba/Sq tumors
and in a less consistent manner in UroB tumors. The ge-
nomic circuit score (see ) used to delineate GU tumors from
Uro samples (35) was low in GU tumors, indicating that fea-
tures associated with this group were recapitulated, includ-
ing reduced FGFR3 and CCND1 expression, elevated E2F3
expression, loss of RBI expression, and retained CDKN2A
expression. A rank-order version of the circuit score ratio
data is presented in Figure 2E and a separate rank ordered ex-
pression values for CDKN2A in Figure 2F. Reduced expres-
sion of TP63 further demarcated GU from Uro tumors (Fig-
ure 2G). Despite using combined Z-scores from each sep-
arate dataset without further batch adjustments, expression
rank plots of the Ba/Sq ratio, circuit score, CDKN2A, and
TP63 separated the subtypes well. Both transcription fac-
tors associated with differentiation and markers of terminal
differentiation were more highly expressed across Uro and
GU tumors compared to the non-luminal subtypes, however
within the luminal category the UroB samples showed the
lowest expression of terminal differentiation markers such as
UPKs and KRT20. Expression of a FGFR3 signature was
strongest in UroA and UroB, while UroC and Ba/Sq showed
a lower and more sporadic expression pattern of the genes
of this signature. Uro cases also show higher expression of
the adhesion genes EPCAM and CDH 1, and lower expression
of CDH3. This pattern shifts in the Ba/Sq samples, instead
showing high expression of CDH3. The MYC family of tran-
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scription factors shows previously identified expression pat-
terns, with high expression of MYCL and MYCN but low ex-
pression of MYC in Uro, especially in UroC, and in GU sam-
ples, as opposed to Ba/Sq cases, whereas UroB samples dis-
play a mixed expression of these factors. Expression levels of
epidermal growth factors ERBB2 and EGFR also conformed
with earlier Lund Taxonomy results, with elevated ERBB2
and ERBB3 expression and lower expression of EGFR in GU
samples with the reverse expression pattern in Ba/Sq tumors.
Expression of the neuroendocrine lineage markers CHGA,
SYP, and ENO2 was seen primarily in Sc/NE classified tu-
mors. Taken together, the expanded cohort obtained by trans-
ferring the Lund2017 classification to additional array and
RNA-sequencing datasets and subsequently utilized to train
the new optimized and more comprehensive LundTax2023
model, displays highly coherent expression signatures and
features of the different molecular subtypes at both the RNA
and THC levels.

Applications to independent MIBC datasets. The Lund-
Tax2023 classifier was applied to several datasets to deter-
mine whether characteristic subtype-associated gene signa-
tures and other properties were coherently recapitulated in
independent cohorts and datasets.

TCGA-BLCA. We applied the LundTax2023 to the TCGA-
BLCA cohort (2), using 407 MIBC tumors in Kallisto TPM
data format. The prediction resulted in 209 Uro cases (51% ),
73 GU (18%), 105 Ba/Sq (26%), 10 Mes-like (2.5%), and 10
Sc/NE (2.5%) cases (Figure 3A). The Urothelial-like subclas-
sification produced 126 UroA (60% of all 209 Uro-classified
samples), 62 UroB (30%) and 21 UroC (10%) cases, re-
spectively. The prediction scores were distinct (ANOVA,
p < 107!%), with few ambiguities. (Figure 3B). The sam-
ples predicted as Ba/Sq showed high Ba/Sq scores (KRT5,
KRTI14/FOXAI, GATA3) and high expression of keratiniza-
tion gene signature. The Ba/Sq cases also showed a co-
herent pattern of elevated MYC expression and low MYCL
and MYCN. The circuit score distinguished the GU cases tu-
mors from the Uro, indicating that GU was correctly classi-
fied, strengthened by the characteristic loss of TP63 expres-
sion in the GU subtype. The expression of luminal mark-
ers mirrored the training set, with transcription factors and
UPKSs and KRT20 expression elevated across Uro and GU.
Within the luminal subtypes the FGFR3 gene signature was
more pronounced in UroA and UroB compared to UroC and
GU. The Sc/NE was negative for KRTS5, KRT14, FOXAI, and
GATA3 expression, negative for the urothelial differentiation
markers (PPARG, FOXAI, GATA3, and ELF3), as well as
for the FGFR3 gene expression signature, but expressed neu-
roendocrine marker genes CHGA, SYP, and ENO2, and had
high early/late cell cycle ratios. The Mes-like subtype was
more or less negative for most of the applied gene signatures
but showed the highest scores among all subtypes for Im-
munel41_UP and Stromall41_UP, indicating a high level of
infiltration of non-tumor cells. From this, we conclude that
the LundTax2023 algorithm classifies the TCGA dataset ac-
cording to the LundTax system into distinct and biologically
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coherent groups. We compared the LundTax 7-group clas-
sification with the TCGA classification (Figure 3C). UroA
corresponded to TCGA Luminal subtypes, and UroB both
to Luminal subtypes and to TCGA basal-squamous. UroC
mainly corresponded to Luminal infiltrated, and GU to Lu-
minal. However, a fairly large proportion of GU was also
classified as TCGA Basal-squamous and Neuronal. Almost
all LundTax Ba/Sq corresponded to TCGA Basal-squamous,
as well as almost all Sc/NE to TCGA Neuronal. All Mes-
like were classified as TCGA Basal-squamous. Hence, even
though the LundTax Urothelial-like nearly exclusively over-
lapped with TCGA Luminal subtypes they differ radically
with respect to the internal divisions. No equivalent to GU
is present in the TCGA system. The TCGA Basal-squamous
is more inclusive than the LundTax Ba/Sq, including UroB
and Ba/Sq, as well as Mes-like cases. The TCGA Neuronal
is also more inclusive compared to LundTax Sc/NE subtype.
We then applied the LundTax2023 algorithm to the Salmon
TPM preprocessed and three alternative external preprocess-
ing versions of the TCGA-BLCA dataset, (Recount3, TC-
GABiolinks and Toil). In the 7-class solution, 2 cases from
the Salmon version, 17 cases from Recount3, 20 cases from
TCGABiIolinks, and 17 cases from Toil received discordant
predictions compared to the raw data, equivalent to an overall
1-5% discordance (Figure 3D). For the three independently
preprocessed versions, almost half of the discrepancies oc-
curred between the Uro subclasses (9/17 for Recount3, 10/20
for Biolinks, and 6/17 for Toil), resulting in an overall 2-3%
discordance when comparing the 5-class solutions. We used
the reported gene mutation data and used Fisher’s exact tests
with Bonferroni correction to identify mutations associated
with the LundTax subtypes. FGFR3 mutations were enriched
in the UroA and UroB groups, but absent in UroC, whereas
RB1 mutations were significantly enriched in GU (p < 107).
The LundTax UroC showed absence of both FGFR3 and RB1
mutations (3E). From this we conclude that the algorithm
is quite insensitive to different preprocessing methodologies
and separates subtype-associated genomic alterations.

IMVigor210. We applied the LundTax2023 to the IMVigor210
cohort with 347 samples from patients with locally ad-
vanced or metastatic tumors treated with checkpoint in-
hibition (CPI) using TPM values obtained from the
IMvigor210CoreBiologies R package (29). A total of 176
samples were classified as Uro (50%), 64 as GU (18%), 90 as
Ba/Sq (26%), 9 as Mes-like (3%) and 9 as Sc/NE (3%), with
the Uro group subdivided into 71 UroA (40% of Uro), 70
UroB (40%) and 35 UroC (20%) cases (Figure 4A). Predic-
tion scores were again very distinct (Supplementary Figure
4). The Ba/Sq ratio, keratinization signature, EGFR relative
ERBB2 expression, and MYC-gene expression clearly delin-
eated the Ba/Sq group. The luminal tumors Uro and GU both
showed expression of the differentiation-related transcrip-
tion factors, as well as several of the differentiation mark-
ers, with the circuit score and TP63 expression distinguish-
ing Uro from GU. Again, the Mes-like tumors showed low
expression of almost all the applied gene signatures, whereas
Sc/NE samples showed strong expression of EPCAM and
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the neuroendocrine specific markers. From this we conclude
that the algorithm classifies the IMVigor210 data into distinct
and biologically coherent LundTax subtypes. Mutation data
for 392 genes was available in 274 samples, with FGFR3,
RBI, and TP53 gene mutations significantly associated with
the subtypes (Figure 4B). Thus, FGFR3 mutations were fre-
quent in UroA (52%) and UroB (27%), while almost absent
from UroC (7%) and GU (4%). RBI mutations were sig-
nificantly enriched in GU (p < 107), but also frequent in
Sc/NE. TP53 mutations were more common in GU, UroC,
Sc/NE, and Ba/Sq whereas UroA and UroB showed lower
frequencies. We then made use of the immune phenotype
mapping provided in the IMVigor210 dataset, in which the
immune infiltration pattern was characterized as either desert,
excluded, or inflamed (41) (Figure 4C). The least infiltrated
group was UroA, with a decreasing fraction of desert-cases
in UroB, UroC, GU and Ba/Sq tumors, respectively. The
fraction of infiltrated tumors remained the same going from
UroA to Ba/Sq whereas the fraction of inflamed increased in
this direction. The Mes-like subtype was the most inflamed,
whereas Sc/NE tumors displayed a predominance of the ex-
cluded infiltration pattern. This shows that in addition to be-
ing well defined at the cancer cell phenotype level, the Lund-
Tax subtypes also show distinct infiltration patterns. We used
the reported atezolizumab response data and noted that the
subtype with the best response, defined as partial or complete
response, was Sc/NE, followed by GU, whereas the response
rate was very low in Ba/Sq, and absent in nine patients with
Mes-like tumors (Figure 4D). No complete responder was
observed among 71 patients with UroA-tumors.

UC-Genome. The UC-Genome cohort consists of 218 sam-
ples from patients with metastatic urothelial carcinoma (30)
RNA-sequencing data for 176 samples was available. Lund-
Tax classification resulted in 78 Uro, (44%), 26 GU, (15%),
51 Ba/Sq, (29%), 11 Mes-like (6%), and 10 Sc/NE cases
(6%). Subclassification of Uro produced 29 UroA (37%), 28
UroB (36%) and 21 UroC (27%) cases (Figure 4E), again
with distinct prediction scores (Supplementary Figure 4).
Classifications were validated by the applied gene expression
scores and signatures (Figure 4E). FGFR3 mutations were
almost exclusively detected in UroA and UroB, and again
absent in UroC and GU cases (Figure 4F). Using the pro-
vided response data to systemic chemotherapy and CPI, we
observed that GU responded the best and Ba/Sq the worst to
chemotherapy, in line with recent results (42), whereas the
Urothelial-like subtypes (UroA, B and C) were intermediate
(Figure 4G). We again noticed that UroA was largely refrac-
tory to CPI treatment (Figure 4H).

UNC-108. UNC-108. The UNC-108 cohort (31) consisting of
89 samples from patients with metastatic UC treated with im-
mune checkpoint blockade was classified into 43 Uro (48%),
16 GU (18%), 23 Ba/Sq (26%), 2 Mes (2%) and 5 Sc/NE
(6%) tumors. Within the Urothelial-like subtype, 23 sam-
ples were classified as UroA (53%), 14 as UroB (33%) and
6 as UroC (14%). Prediction scores were again distinct.
The applied gene expression scores and signatures validated
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the classification. FGFR3 gene mutations were significantly
associated with UroA and UroB (p < 10) and absent in
UroC and GU. This study also provided response data to CPI.
Again, UroA tumors showed almost no response to CPI treat-
ment (Supplementary Figure 5).

Seiler2017. The Seiler2017 neoadjuvant chemotherapy
(NAC) cohort consists of 305 MIBC samples analyzed on
the Affymetrix Human Exon 1.0 ST Array and subtyped
according to the Genomic Subtyping Classifier (GSC) (1).
We generated two preprocessing versions of this dataset,
RMA and SCAN. For the first version (RMA normalization),
the LundTax2023 algorithm predicted 142 Uro (47%),
62 GU (20%), 88 Ba/Sq (29%), 5 Mes-like (2%), and 8
Sc/NE (3%) samples (Figure 5A). Within the Uro group,
we obtained 58 UroA (19%), 27 UroB (9%) and 54 UroC
(19%) cases. When comparing prediction results between
the RMA and SCAN preprocessing pipelines we obtain a
concordance of 93.4% (285/305) and 90.8% (277/305) for
the 5-class and 7-class solution, respectively. The most
frequent discrepancies were in samples classified as GU in

the SCAN version, 71 cases, of which 7 were classified as
Uro in the RMA version, both subtypes belonging to the
luminal class of tumors. Prediction scores were distinct
(Figure 5B), and classifications were validated by the applied
gene expression scores and signatures (Figure 5A).

A comparison between the LundTax and GSC classification
schemes (Figure 5C) showed that Uro mainly corresponded
to the GSC Luminal class, but also included GSC Infiltrated
Luminal and Basal classes. A similar pattern was seen for
the LundTax GU. The LundTax Mes-like group was found
mainly in the Claudin Low group, and Sc/NE in the Basal
group. Of the 23 Urothelial-like classified as Basal accord-
ing to GSC, 16 were of the UroB subtype, known to show
features resembling Ba/Sq (11). Of the GSC Infiltrated lumi-
nal group, 27 samples were classified as LundTax Uro, but
dominated by UroC (19/27), and 9 as GU. We then compared
the subtype prediction of 107 samples with matched post-
NAC samples provided in (32). The authors reported that
half of the samples (52.6%) change subtype, with 40% of the
luminal samples acquiring a Basal subtype after treatment.
When we apply the 5-class solution to matched samples we
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observe that 34.5% of the samples changed subtype, decreas-
ing to 27.1% if changes involving the Mes-like subtype were
disregarded, as they may represent biopsies with a very low
tumor cell content.

Classification and low purity. To evaluate how tumor purity
affects classification we made use of the Kassandra tumor
microenvironment (TME) composition prediction work (19).
We preprocessed 402 samples from the TCGA-BLCA cohort
following the same pipeline used in the Kassandra study and
we created 500 synthetic TME compositions that were added
to the original TCGA-BLCA with TME fractions ranging be-
tween 0 and 1, creating 500 versions of the TCGA-BLCA
dataset of varying purity. The LundTax2023 classifier and the
reference consensus MIBC classifier (5) were then applied
to each of the 500 composite datasets to examine the effect
on classification results. As tumor biopsies may vary in pu-
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rity, we limited the analyses to cases that originally showed
a purity exceeding 70% tumor cell fraction as assessed by
the Kassandra TME tool, resulting in 252 cases (Figure 6A).
With increasing infiltration, Uro samples gradually altered
classification towards GU and Ba/Sq. Past approximately
60% added synthetic TME content, Uro, GU, and Ba/Sq pre-
dictions shifted towards Mes-like. Mes-like samples all re-
tained their Mes-like classification, while Sc/NE samples un-
derwent a more rapid shift towards Mes-like classification.
The consensus MIBC predictor deviated more from the orig-
inal predictions and did so at a lower fraction of added TME
(Figure 6B). While the LundTax2023 predictions drifted to-
wards Mes-like, the overall pattern for the consensus MIBC
predictions was more erratic, with an initial shift towards
Stroma-rich, and then a consistent shift towards Ba/Sq. The
behavior of both classifiers was consistent also when looking
at the full cohort of 402 samples (Supplementary Figure 1).
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Fig. 6. Effect of tumor purity on classification stability. Cohort of 500 synthetic TME compositions created in silico increasing the level of infiltration in a stepwise manner. The

data was classified using the LundTax2023 (A) or the consensus classification (B).

When Uro predicted cases were divided into UroA, UroB,
and UroC classification shifts towards Ba/Sq were almost en-
tirely confined to UroB cases, while UroC saw shifts more
often towards GU compared to tumors subclassified as UroA.

Summary from MIBC cohorts. From the presented results we
conclude that the updated and optimized version of the Lund-
Tax classifier accurately identifies established molecular sub-
types regardless of cohorts, preprocessing algorithms, and
platforms. When the proportions of the predicted subtypes
across the different datasets are compared (Figure 7A), the
subtypes maintain similar proportions across cohorts. The
proportions among the Uro subdivisions varied slightly more,
with UroA comprising 34-60% of the total Uro cases, UroB
29-40%, and UroC 10-40% among all samples in all datasets.
The distribution of FGFR3 and RB1 mutations is also con-
sistent and significantly correlated with subtypes across co-
horts (Figure 7B). FGFR3 mutations are frequent in UroA
and UroB, present in 33 and 24% of the cases, respectively,
but almost absent in UroC (2.7%) and GU (5%), while the
GU subtype is enriched for RB1 mutations, present in 39%
of the cases. We also conclude that the LundTax2023 ver-
sion is less influenced by low sample purity compared to the
reference consensus MIBC classifier.

Application to external and
datasets.

independent NMIBC

UROMOL and Leeds. We have previously analyzed the URO-
MOL and Leeds cohorts using an earlier version of the clas-
sification algorithm (43). The UROMOL cohort includes 535
NMIBC samples, with a majority of Ta cases (397/535). We
applied the LundTax2023 classifier and obtained 510 Uro
cases (95%), 22 GU (4%), 1 Ba/Sq (0.2%) and 2 Mes-like
(0.4%). Subclassification of Uro samples resulted in 456
UroA (89%), 43 UroB (8%) and 11 UroC cases (2%). The
Leeds dataset is composed of 217 samples, including Ta
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(113) and T1 (104) cases. The classification resulted in 203
Uro cases (93%), 12 GU (6%) and 2 Ba/Sq (1%), with Uro
samples subclassified into 191 UroA (94%), 11 UroB (5%)
and 1 UroC (0.5%). The concordance between the previous
and the present LundTax2023 classifications were 99% for
both cohorts using the 5-class solution, and 99% and 90% for
UROMOL and the Leeds cohorts using the 7-class solution,
respectively (Supplementary Figure 6).

RotterdamBCG. The cohort consists of two datasets of 132
(cohort A) and 150 (cohort B) cases, respectively, with high
grade (WHO 2022) non-muscle-invasive tumors treated with
adjuvant BCG-instillations (34), stratified into one out of
three defined BCG response subtypes (BRS 1-3). The cohort
shows an extremely high progression rate of 34% (95/282)
compared to the current 6-8% progression rate at five years
in a Swedish population-based registry (44). We applied the
LundTax2023 classifier and obtained 208 Uro (74%), 55 GU
(20%), 10 Ba/Sq (4%), 2 Mes-like (0.7%), and 4 Sc/NE (1%)
predicted cases, and within the Uro group, 166 UroA (79%),
20 UroB (10%) and 22 UroC (11%) (Figure 8A). The pre-
diction scores were distinct (Figure 8B), and classifications
were validated by the gene expression ratios and signatures
(Figure 8A). We noticed that BRS3 cases showed high lev-
els of infiltration assessed by immune and stromal infiltra-
tion scores (Figure 8A). We therefore produced a general-
ized infiltration score for each case using the Immune141_UP
and Stromal41_UP average Z-values. This score predicted
the BRS3 subtype with an AUC of 0.86 (Figure 8C), reit-
erating that lower cancer cell purity is a characteristic fea-
ture of the BRS3 tumors (34). According to the authors,
59% (20/34) of the BCG treated tumors change BRS sub-
type after treatment, with the majority (14/20) converting to
the BRS3 subtype. However, using the LundTax2023 clas-
sification only 12% (4/34) changed subtype after treatment
(Figure 8D). Hence, our interpretation is that tumors that re-
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cur/progress after BCG treatment do not change cancer cell
phenotypes but rather show a lower level of cancer cell purity,
i.e., a higher level of infiltration.

We then used the 5- and 7-class LundTax2023 classifications
to test the association between subtype and progression af-
ter BCG treatment. Only Uro, GU and Ba/Sq cases were in-
cluded in the 5-class Kaplan-Meier analysis as there were too
few Mes-like and Sc/NE cases (Figure 8E). The Uro tumors
showed the best PFS and Ba/Sq the worst, as previously re-
ported in population-based data with primary T1 tumors (45).
In the 7-class solution, the Ba/Sq group still showed the worst
PFS, and UroA and UroB fared the best (Figure 8F). We then
used the previously calculated infiltration score to divide the
GU samples into high and low infiltration groups using a
ROC analysis optimized threshold. This analysis revealed
that highly infiltrated GUs had as bad prognosis as the Ba/Sq
(Figure 8E and G). Hence, by combining LundTax cancer cell
phenotype with an independent index for infiltration, an ad-
justed estimate of PFS can be obtained. We then classified all
the BRS3 cases (n=76) from the combined datasets according
to the LundTax system. The Kaplan-Meier curves showing
PFS suggested that the BRS3 group is heterogeneous both
with respect to LundTax molecular subtypes as well as for
progression risk (Figure 8H).

RobertsonT1. The Robertson T1 cohort is comprised of 73
primary T1 tumors with RNA extracted from FFPE material
and sequenced using 50bp single-end reads (3). The Lund-
Tax2023 classification of this cohort yielded 63 Uro (86%)
and 10 GU (14%) predictions (Figure 9A). The further sub-
classification of the Uro group produced 55 UroA (87%), 7
UroB (11%), and 1 UroC (2%). The prediction scores were
unambiguous. To clarify the relationship between the Robert-
son classification and the LundTax classification, we first
plotted the expression level of the TP63 gene in the respec-
tive Robertson classes (Figure 9B). This clearly identified
the Robertson T1-LumGU as GU. We then applied the kera-
tinization signature, expected to be high in UroB, which iden-

Aramendia Cotillas etal. | A versatile and upgraded version of the LundTax classification algorithm applied to independent cohorts

tified the Robertson T1-Inflam group as the LundTax UroB
equivalent (Figure 9C). UroB showed a higher level of infil-
tration compared to the rest of the luminal subtypes, as de-
termined by the Immune141_UP and Stromal141_UP scores
(Figure 9A). The remaining three Robertson classes showed
higher expression of the FGFR3 signature than T1-LumGU
(GU), and at similar levels as in the T1-Inflam/UroB, indica-
tive of a UroA profile (Figure 9D). Robertson states that the
T1-TLum subtype shows repressed proliferation hallmarks.
To investigate the existence of a natural threshold between
low and high proliferative UroA tumors, we analyzed the dis-
tribution of the proliferation index using a Gaussian Mixture
Model (GMM) that indeed indicated a low and high prolifera-
tion group of UroA tumors (Figure 9E). We then investigated
the expression of the luminal differentiation gene RXRA, as-
sociated with the T1-TLum group, and observed that both
the T1-TLum and the low-proliferation UroA tumors showed
a higher RXRA expression. According to Robertson et al., the
T1-Early and T1-Myc subtypes were associated with elevated
Myc activity. MYC expression across subtypes of both clas-
sification systems (Figure 9F) showed that although the T1-
Early and T1-Myc subtypes had elevated MYC expression,
T1-TLum and T1-TInflam also had relatively high expres-
sion with T1-LumGU/GU tumors being the only group with
low MYC. Taken together, we show that the Robertson’s T1
molecular subtypes demonstrate a good concordance with the
LundTax subtypes when adding the proliferation variable, not
considered a classification feature by the LundTax system.

BowdenT1. The Bowden cohort comprise data for 87 HG
T1 cases with FFPE-extracted RNA, sequenced using 75bp
paired-end reads (33). The cohort includes 23 cases with
pathologically confirmed micropapillary (MP) variant his-
tology. The authors performed unsupervised clustering and
identified two major clusters of tumors, A and B, subdivid-
ing B into B1 and B2. The LundTax2023 classification of the
data produced 64 Uro (74%), 21 GU cases (24%), and one
Ba/Sq (1%). Subclassification of the Uro samples resulted
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Fig. 8. Classification of the Rotterdam cohort of high grade T1 tumors (cohort A+B, n = 279). A: Gene expression heatmap of the Rotterdam cohort. Classification scores and
order of gene expression signatures as in Figure 2.B: Boxplots of classification scores for each molecular subtype. C: Prediction of the BRS3 subtype versus BRS1/2 using
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in 51 UroA (80%), 5 UroB (8%) and 8 UroC (12.5%) (Fig-
ure 10A, Supplementary Figure 7). We noticed that UroA
and UroB were assigned to the Bowden A cluster, whereas
UroC and GU to the B cluster (Figure 10B). UroC is a sub-
group of Uro (together with UroA and UroB), but clusters
with GU when whole genome bulk RNA is used for group-
ing (8, 11). Even though the MP variant was enriched in the
Bowden B cluster, we find it to be particularly enriched in the
GU subtype that contained 15 out of the total 23 micropapil-
lary cases. Furthermore, MP was observed in 71% of the GU
cases (p < 107). We thus conclude that the MP variant is a
distinct feature of high grade and T1 GU cases but not of the
Urothelial-like subtypes UroA, UroB, and UroC.
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Summary NMIBC. The LundTax2023 almost completely re-
capitulated the previous classifications of the UROMOL and
Leeds cohorts, showing that the updated LundTax2023 reit-
erates previous results (43). The analysis again indicated that
the majority of cases are of the Uro subtype in these more
stage-balanced NMI cohorts (Figure 11A). The analyzed T1
NMIBC cohorts were highly heterogeneous, each one se-
lected for specific purposes, making them less comparable to
each other than the MIBC cohorts analyzed previously. Still,
we applied the classification algorithm and obtained results
consistent with gene expression ratios and signatures used
for validation. The subtype proportions in the three datasets,
mainly Uro and GU cases, were similar but with a higher
fraction of GU cases compared to the UROMOL and Leeds
cohorts, both of which include large proportions of Ta cases

A versatile and upgraded version of the LundTax classification algorithm applied to independent cohorts
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(Figure 11B). It is known that GU increase in frequency in
T1 tumors and predominantly are of high grade (11). Hence,
selection for high grade T1 cases would select for GU cases.

Discussion

In the present work we developed and tested an updated
cross-platform compatible rule-based prediction model for
the Lund Taxonomy classification system, LundTax2023. As
the source for the updating process, we used a total of four
in-house datasets generated with Affymetrix microarrays or
RNA-sequencing. As data preprocessing can impact the per-
formance of a classifier, we used minimalistic preprocess-
ing pipelines for all our training data, which can also be
applied to external datasets with raw data to achieve anno-
tation and preprocessing parity. We used RMA and fixed
BrainArray annotations for the Affymetrix microarrays and
Kallisto pseudoalignment with a fixed transcriptome index
for the RNA-sequencing data. To further increase the ro-
bustness of the classifier we included two parallel prepro-
cessing versions of the data when training the model. All
four training datasets also had extensive IHC data in addi-
tion to RNA gene expression data. This made it possible to
define the molecular subtypes in the training data according
to previously determined cancer cell phenotypes, i.e., limit-
ing subtype definitions to protein expression profiles of the
cancer cells proper (8). The Lund Taxonomy differs from
other systems in this respect (9). As demonstrated, the Lund-
Tax2023 RNA subtype classifier was strongly aligned with
the independent IHC-based subtype classification. In addi-
tion, the classification was less affected by low tumor purity.
Furthermore, the Lund Taxonomy is independent of tumor
stages and is applicable as a single system for both NMIBC
and MIBC including metastatic disease. The LundTax2023
classifier was validated in a large number of independent
bladder cancer transcriptomic datasets, produced by different
platforms, preprocessing approaches, and of different tumor
stages. The subtype prediction scores were distinct across
all evaluated external cohorts, with few ambiguous classifi-
cation results, and recapitulated the expression patterns of
the training cohort. Slightly lower and less distinct predic-
tion scores were observed in the Seiler2019 cohort of post-
chemotherapy treated RC samples, suggesting that the clas-
sifier performance may be negatively affected by either the
treatment, sampling procedure, or methods of tissue preser-
vation in this study. Despite the lower prediction confidence,
the subtype assignments still captured the expected expres-
sion patterns, supporting the classification results. By this
we conclude that the presented LundTax2023 algorithm may
be applied to any bladder cancer transcriptomic dataset.

The proportions of the five major LundTax subtypes were al-
most identical in the different muscle invasive cohorts indi-
cating the stability of the algorithm. Variability was to some
extent seen among the less different Urothelial-like subtypes
UroA, UroB and UroC. However, the mutation data clearly
showed that FGFR3 mutations were highly prevalent in UroA
and UroB but almost absent in UroC. UroC was furthermore
distinguished from GU by showing almost complete absence
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of RB1 mutations, highly prevalent in GU. We have previ-
ously described the luminal subtypes UroA, UroB, UroC and
GU subtypes at the cancer cell level by extensive IHC analy-
sis (11). The present mutation data further supports the exis-
tence of the Urothelial-like variant UroC.

A complicating factor when applying and comparing differ-
ent systems is the investigators definition of subtypes and the
subtype names. From a clinical point of view this may re-
sult in unreproducible, or even contradicting, results when
applying different systems (46). For instance, the TCGA
Basal-squamous subtype is analogous to the LundTax Ba/Sq.
However, whereas the LundTax Ba/Sq is more or less strictly
defined by the ratio between KRTS5, KRT14 and GATA3 and
FOXA1I (36), the TCGA variant is more inclusive. In addi-
tion, the TCGA system does not include the well-established
GU subtype (8, 11, 43, 45, 47). A comparison with the GCS
system may also lead to confusing results. Even though most
Uro and GU were classified as Luminal or Luminal infiltrated
a large proportion were also classified as “basal”. Uro and
GU are both “luminal” and there are no “infiltrated” ver-
sions in the LundTax system as infiltration is treated as a
separate variable. Furthermore, the LundTax well separated
Sc/NE, analogous to the TCGA Neuronal, were classified as
“basal” in the majority of cases by the GSC system. How-
ever, on some occasions the translation from one system to
another may be simpler as in the case of the Robertson et
al. suggested system for T1 tumors, all of the suggested sub-
types could be translated into LundTax equivalents. Bowden
et al. performed an unsupervised clustering of high grade
T1 tumors and defined A and B subtypes with no system-
atic comparisons with other classifications systems. The au-
thors showed a very strong association of micropapillary his-
tology with their subtype B. However, a reclassification of
their data using LundTax2023 revealed that the A subtype
corresponded to UroA and UroB and the B subtype to UroC
and GU cases. The micropapillary histological variants were
almost exclusively seen in the GU subtype with proportion-
ally very few in the urothelial-like subtypes UroA, UroB and
UroC, and hence making the biological background to this
histological variant more precise. It has been shown before
that this histological variant is associated with samples show-
ing a GU profile (48, 49).

Two of the investigated reports describe subtype shifts as a
consequence of treatment. In the Seiler2017 dataset 53% of
the matched pre- and post-treatment cases changed subtype
according to the GSC system, while 59% of matched cases
changed subtypes after BCG treatment in the RotterdamBCG
cohort according to the BRS classification system. However,
when the LundTax2023 was applied the frequency of subtype
changes was considerably lower, 27% and 12%, respectively.
We have previously shown that recurring and progressing tu-
mors from the same patient in most cases are of the same
molecular subtype (24, 50). The reason for the discrepancy
between the LundTax classification and that of Seiler et al.
(1) and de Jong et al. (34) is that the LundTax system is fo-
cused on the phenotypes of the cancer cells proper and does
not consider infiltration i.e., purity, as a class defining prop-
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Fig. 11. Proportion of the five-class subtypes in the individual non-muscle-invasive cohorts.

erty. Most observed subtype classification changes could be
attributed to altered purity of the post-treatment sample. The
exercise where we introduced increasing amount of “infiltra-
tion” to the samples in silico clearly demonstrated how sen-
sitive classifiers may be to tumor purity for stable classifi-
cation. Thus, the disagreement in subtype shift frequencies
is related to how molecular subtypes are originally defined
and could be boiled down to the question if an infiltrated ver-
sion of a subtype is a new subtype, or not (7). According to
LundTax it is not. It is only by separating these variables that
we can fully understand what subtype changes correspond to,
and how often they occur.

With the present paper we make publicly available an up-
dated rule-based single sample classification algorithm for
the Lund Taxonomy of urothelial carcinomas. The algo-
rithm is applicable to commonly used types of RNA expres-
sion data. As existing classification systems often differ with
respect to how subtypes are defined, even if the names are
similar, we believe that the most efficient approach to clini-
cal issues is to apply and compare results obtained through
different classification schemes. The LundTax2023 classifier
presented here was designed exactly for these purposes.
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