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25 Abstract:

26 It is widely accepted that m°A exhibits significant intercellular specificity, which
27  poses challenges for its detection using existing m°A quantitative methods. In this
28  study, we introduce Scm®A, a machine learning-based approach for single-cell m°A
29  quantification. Scm®A leverages input features derived from the expression levels of
30 m°A trans regulators and cis sequence features, and found that Scm®A offers
31 remarkable prediction efficiency and reliability. To further validate the robustness
32  and precision of Scm°A, we applied a winscore-based m°A calculation method to
33 conduct m°A-seq analysis on CD4" and CD8" T-cells isolated through
34  magnetic-activated cell sorting (MACS). Subsequently, we employed Scm®A for
35 analysis on the same samples. Notably, the m°A levels calculated by Scm®A
36 exhibited a significant positive correlation with m°A quantified through m°A-seq in
37 different cells isolated by MACS, providing compelling evidence for ScmA's
38  reliability. We also used the scm®A-seq method to validate the reliability of our
39  approach. Additionally, we performed single-cell level m°A analysis on lung cancer
40  tissues as well as blood samples from COVID-19 patients, and demonstrated the
41  landscape and regulatory mechanisms of m°A in different T-cell subtypes from these
42  diseases. In summary, our work has yielded a novel, dependable, and accurate
43 method for single-cell m°A detection. We are confident that Scm®A will have broad
44  applicationsin the realm of m°A-related research.

45
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48 Introduction

49  As the most widespread epigenetic modification in mMRNA, m°A plays pivotal roles
50 in gene expression regulation and is intricately linked to physiological processes in
51 various diseases[1-7]. Among its multifaceted regulatory functions, m°A governs
52 T-cell differentiation and influences immune-related gene expression, garnering
53  substantia attention[8]. To gain deeper insights into the role of m°A in biological
54  progresses, it becomes imperative to discern transcriptome-wide m°A levels and sites
55  within individua cells. For instance, the presence of a multitude of immune cell and
56 T-cell subtypes[8-11] poses a formidable challenge, as current m°A detection
57 methods designed for bulk cell populations fall short in characterizing m°A levels
58 and sites at the single-cell level.

59 It is well-established that cell type-specific m°A levels and de novo m°A
60 deposition are jointly regulated by trans-acting regulators and cis-regulatory
61 elements[12]. In theory, leveraging information on these trans-acting regulators and
62  cis-regulatory elements as input enables the prediction of m°A at the single-cell level
63  using computational methods. Machine learning and other computational approaches
64  have found extensive application in the analysis of diverse omics data, significantly
65 advancing our understanding of biology [13-17]. In theory, machine learning holds
66 the promise of predicting RNA methylation levels at the single-cell level. In our prior
67 research, we developed a computational framework to systematically identify
68 comprehensive trans regulators of m°A and performed experiments to verify the
69 reliability of these trans regulators[18]. Additionally, a reliable regulatory network
70 from trans regulators to m°A sites was constructed. Furthermore, we identified
71  cell-specific m°A cis-regulatory motifs[18]. Machine learning, as a potent predictive
72 tool, has been extensively employed in forecasting gene expression, DNA
73 methylation, and alternative splicing, leveraging multiple biological features with
74  impressive accuracy[19-22]. In fact, Xue et al. highlighted the challenges tied to the
75 experimental detection of RNA mPA. To address this, they investigated the
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76  possibility of using computational methods to predict RNA methylation status based
77  on gene expression data. Employing methods such as Support Vector Machine (SVM)
78 and Random Forests (RF), Xue et al. determined that gene expression data can
79  indeed act asareliable predictor for m°A methylation status[23]. Their findings have
80 convinced us of the viahility of predicting single-cell m°A using machine learning
81 methods grounded in gene expression level. Herein, we attempted to develop a
82  single-cell level m°A calculation method through a machine learning method.
83 In this study, we leveraged comprehensive information on trans-regulatory
84  elements of m°A and cis-elements, including motif and sequence data, to create a
85  machine learning-based quantitative method for single-cell m°A analysis, which we
86 named ScmPA (Single-cell m°A Analysis; available at
87  https.//github.com/Ansanqi/Scm6A). We applied multiple machine learning
88  techniques to establish the association between trans-regulators and mPA, integrating
89 cis sequence features and single-cell m°A levels. Subsequently, Scm°A was
90  established with substantial predictive power to predict the level of m°A in individual
91 cells. After that, we applied ScmPA to single-cell RNA-seq data from peripheral
92  blood mononuclear cells (PBMCs) and calculated the m°A levels in CD4* and CD8*
93  T-cell types. To validate the accuracy and reliability of Scm°A, we also performed
94 mPA-seq on CD4" and CD8" T-cells, isolated via magnetic-activated cell sorting
95 (MACS), from the same donor. Our findings underscored the precision and
96  dependability of Scm°A in discerning single-cell m°A levels, in comparison to
97 mPA-seq results derived from MACS-isolated cell populations. Subsequently, we
98 extended our analysis to investigate single-cel m°A profiles in lung cancer
99 scRNA-seq data using Scm®A and demonstrated that the m°A profiles are highly
100 heterogeneous at the single-cell level in different subtypes of T-cells in lung cancer.
101  We aso applied our model to single-cell dataset of COVID-19[24], and demonstrated
102  good performance in classifying T-cells and B-cells. Furthermore, we compared our

103 Scm®A with the experimental method scm®A-seq developed by the Yang et al.[25],
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104  Scm®A not only performed well in mouse cells but also exhibited a significant
105 correlation with experimental sequencing results.

106

107 Results

108  Random Forest Outperforms Other ML Modelsin Single-Cell m°A Calculation
109 Figure 1A illustrates the workflow of our study. Initially, we collected the gene
110  expression data of 593 reliable m°A regulators and conserved sequence features
111  associated with m°A, which we validated before[18]. To establish a precise
112  single-cell m°A calculation model, we evaluated five machine learning regression
113  models, including Random Forest (RF), K-NearestNeighbor (KNN), Support Vector
114  Regression (SVR) with the poly kernel, Linear Regression (LR) and Linear Support
115 Vector Regression (LinearSVR), all optimal parameters of the above models were
116  obtained by grid search based on these trans and cis data.

117 The coefficient of determination (R, commonly employed to gauge the
118 performance of regression-based machine learning models, was utilized as an
119 evauative parameter for assessing the proximity of data points to the fitted line.
120  Notably, our analysis revealed that the RF model consistently outperformed the other
121 machine learning models, displaying higher R* values (Figure 1B), indicating that
122 the RF model is the most suitable for single-cell m°A prediction. Additionally, the
123  correlation analysis between the predicted m°A levels and true m°A levels
124  demonstrated superior reliability of the RF model-based m°A calculation method
125 compared to other models (Figure S1A). By defining the difference between the
126  predicted value and the actual value as binary variables (See the Methods section for
127  details), we performed receiver operating characteristic (ROC) analysis on models
128  constructed using the five machine learning methods, based on their testing accuracy.
129  Our findings revealed that the performance of Scm°A based on the RF model
130  achieved a median balanced accuracy of 0.91 across multiple tests on all m°A sites

131 (Figure 1C), which was substantially higher than that of other classical machine


https://doi.org/10.1101/2023.12.14.571511
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.14.571511; this version posted December 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

132  learning methods. Moreover, we conducted a comparative analysis between random
133 forest models constructed solely using trans-acting regulators and those built solely
134  using cis-regulatory elements. The median balanced accuracy of both models was
135 found to be lower than that of the model created by integrating both types of
136  effectors. The other four models achieved median balanced accuracies ranging from
137  0.8100.9, suggesting the regulatory network we constructed isreliable. Moreover, an
138 exampleis shown in Figure 1D. The ROC curves of the five models demonstrated
139  distinct prediction performances, with the RF model exhibiting the highest prediction
140 efficiency. To further validate our findings, we conducted a randomized relabeling of
141  samples and performed ROC analysis using the methodology described above, the
142  AUROC and R? values of the RF model significantly exceeded those generated by
143  random permutations (Figure S1B, C), suggesting a significant level of accuracy that
144  cannot be explained by random chance. Overall, we identified the best fitting
145  single-cell m°A calculation method and named it ScmPA.

146

147  Accuracy and rdiability of Scm°A were further validated by m°®A-seq from
148 magnetic-activated cell sorting in human PBM Cs

149 We performed single-cell RNA-seq analysis of PBMCs from four healthy
150 participants and extracted gene expression data for 593 reliable m°A regulators[18]
151 as trans-acting input, and 42 m°A conserved sequence information[18, 26] as
152  cis-acting input to for Scm®A. Using Scm®A, we calculated the single-cell level m°A
153  profiles in CD4" and CD8" T-cells (Figure 2A). Simultaneously, we used a
154  winscore-based m°A calculation method[18] to perform m°A-seq analysis of CD4"
155 and CD8" T-cells isolated by MACS. To control technical biases in the regulatory
156  network of trans m°A regulators to m°A sites in the m°A-seq libraries, including
157 variations in sequencing lengths and RNA fragmentation lengths, we merged
158  continuous Scm°A calculation peaks within the same gene, as described before[18].

159 Due to the different window sizes with two different calculation methods cannot be
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160  used for comparison of precise m°A locations, we obtained 49 precisely matched
161  m°A windows to compare the correlations of m°A levels within the same gene region
162  (Figure 2B), and these m°A sites with same localization on the transcriptome were
163  the best choice for validating the accuracy and reliability of Scm®A. As we expected,
164  there was a significant correlation between the m°A levels predicted by Scm°A and
165 quantified by m°A-seq from MACS (Figure 2C). Moreover, there was no significant
166  correlation between Scm°A and mPA-seq analysis results generated by random
167  permutation of these m°A sites (Figure 2D), indicating a significant accuracy not be
168  explained by random chances.

169 To further validate the accuracy and reliability of Scm°A, we conducted a
170  comparative analysis between Scm°A and the single-cell m°A sequencing method
171  recently published by Yang et a.[25], known as scm°A-seq. Given that scmP®A-seq
172  employs mouse cleavage-stage embryos cells as its experimental subject, we initially
173  converted mouse gene IDs to their corresponding human gene IDs and subjected the
174  gene expression data to standardized preprocessing. This step was carried out to
175 enable an effective comparison with ScmP®A. Despite variations in quantification
176  methodologies, we harmonized the data through logarithmic transformations,
177  ensuring that both Scm®A's predictions and the m°A sequencing data provided in
178 Yang et a.'s study could be juxtaposed for analysis.

179 Further correlation analysis results indicate a significant positive relationship
180 (R=0.3, p=1x10"%) between the predictions generated by Scm°A and the
181  experimentally measured mPA expression levels in scm®A-seq. This finding not only
182  validates the efficacy of the Scm®A model in capturing underlying patterns within the
183 data to a certain extent but also strongly reinforces the reliability of ScmP®A's
184  predictive outcomes. We subsequently shuffled the order of the mP°A sites and then
185 performed a correlation analysis between the computational results of Scm®A and
186  scmPA-seq. The correlation in the shuffled matrix was nearly absent (R=0, p=0.58)
187  (Figure S2A). In summary, Scm°A proves to be a precise and dependable
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188  computational tool for single-cell m°A analysis. It's cost-effectiveness, efficiency,
189  and reliability make it a powerful tool with significant potential, offering researchers

190 arapid and effective means to explore the epigenetic features of cells.
191

192  Identification of the potential role and landscape of m°A in CD4" and CD8"
193  T-cedlsthrough m°A-seq

194 It is widely accepted that the differentiation of T-cell subtypes is associated with the
195 expression of CD4 and CD8[27]. Transcriptiona regulation plays a critical role in
196  regulating the fate choice of CD4"/CD8" T-cell§27]. Recently, some studies have
197  reported that m°A has a broader impact on the dynamics of the RNA life cycle in
198 T-cell differentiation by regulating crucial genes involved in T-cell
199 differentiation[28].

200 Typically, a combination analysis of m°A-seq and RNA-seq is used to identify
201  the potential role and mechanism of m°A-regulated genes in biological processes. To
202  further validate the reliability of Scm®A, we performed m°A feature anaysis using
203  m°A-seq datafrom MACS and RNA-seq analysis to identify the potential differences
204  intherole and landscape of m°A in CD4* and CD8" T-cells. As shown in Figure 3A,
205 the m°A peaks of CD4" T-cells tended to be enriched near stop codons, while the
206 m°A pesks of CD8" T-cells were enriched in coding regions and start codons,
207 suggesting that the different T-cell types may have different m°A regulators
208  controlling the m°A-mediated gene expression. We aso checked the motif
209  enrichment of CD4" and CD8" T-cells and found that m°A peaks in CD4" T-cells
210  more tended to be enriched in the GGACU motif. To be more specific, the P-value
211  for motif enrichment analysis in CD4" T-cells ranged from 1x10™" to 1x 10"
212 whilethe P-valuein CD8" T-cells ranged from 1x10?" to 1x10**(Figure 3B). Then,
213 we performed different m°A analyses and differential expression analyses using
214  mPA-seq and input data as RNA-seq data, as we reported before[18]. We found 2055

215 differentially expressed genes and 113 genes that contained different methylated m°A
8
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216  sites (278 m°A sites) (Figure 3C). The intersection of these two sets contains 62
217  genes (Figure 3D). We found that the gene expression levels of these genes were
218  positively related to the m°A level of differentially methylated sites (Figure 3E, F).
219  Asexpected, these potential m°A-regulated genes were enriched in pathways related
220 to T-cell differentiation and cell differentiation, among others. (Figure 3G),
221  suggesting m°A controls T-cell differentiation related gene expression.

222

223  Identification of the potential role and landscape of m°A in CD4* and CD8"
224 T-cdlsthrough Scm°A

225  Furthermore, we tried to investigate whether the combination analysis of Scm®A and
226  single-cell RNA-seq performed as well as the combination analysis of m°A-seq and
227  RNA-seq from MACS. As shown in Figure 4A, motif enrichment analysis revealed
228  that m°A peaks calculated by Scm°A exhibited a tendency to be enriched in the
229 GGACU motif in CD4" T-cells, consistent with the enriched motif of m°A peaks
230 identified through m°A-seq analysis (Figure 3B). To comprehensively analyze the
231 mPA landscape at a single-cell resolution, we performed unsupervised clustering
232 andlysis of single-cell level m°A in CD4" T-cells and CD8" T-cells identified by
233 scRNA-seq. We observed two clusters of single-cell m°A profiles (Figure 4B), which
234  were clearly separated according to the cell types. Moreover, we predicted the m°A
235 levels of CD4" and CD8" T-cells from a single sample at single-cell resolution and
236  used cluster heatmaps to visualize the within-group similarity of the same cell type
237  and the heterogeneity between groups of different cell types (Figure 4C), the genes
238  containing these m°A modifications were enriched in T-cell differentiation and cell
239 differentiation (Figure 4D). We also found that the gene expression levels of the
240 m°A-deposited genes were positively related to the m°A of differentially methylated
241  sites (Figure 4E), consistent with the results obtained from m°A-seq analysis using
242 MACS-isolated cells (Figure 3F, G). These findings further underscore the reliability

243 of Scm°A asamethod for single-cell level m°A analysis.
9
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244

245  Application of ScmPA in different lung cancer subtypes revealed the potential
246  roleand regulators of m°A in exhausted CD8" T-cells

247  The differentiation of exhausted CD8" T-cells leads to attenuated effector function of
248  cytotoxic CD8" T-cells, resulting in their inability to control tumor progression
249  during the advanced stage [29]. Furthermore, it has been reported that m°A plays a
250 crucid role in regulating T-cell homeostasis[8]. However, our current understanding
251  of the different m°A profiles in distinct subtypes of T-cells and its role in exhausted
252 CDS8' T-cellsislimited[8].

253 Herein, we employed ScmPA to further explore the m°A landscape of exhausted
254 CD8" T-cells and other cell types across different lung cancer types, including lung
255  sguamous carcinoma (LUSC) (Figure 5A) and non-small cell lung cancer (NSCLC)
256  (Figure 5B). Our findings revealed differences in the m°A profiles and molecular
257 features of exhausted CD8" T-cells compared to other T-cell subtypes in both LUSC
258 and NSCLC (Figure 5A-C, Figure S2B). Interestingly, exhausted CD8" T-cells
259 (CD8_EM) -related m°A were enriched in IL-7 pathway, which is associated T-cell
260 homeostasis (Figure 5D). By investigating the regulatory network we constructed
261  (Figure1A), it became evident that these exhausted CD8_EM-related m°A levels are
262  associated with 19 m°A regulators, including METTL3, METTL14, and HMGBL1 etc.
263  (Figure 5E). Moreover, we observed a significant positive correlation between the
264  expression levels of these 19 regulators and the m°A levels of CD8_EM -related m°A
265 (Figure 5E). Therefore, we concluded that CD8 EM-related m°A regulators
266 mediated m°A may regulate T-cell homeostasis through targeting IL-7. Consistent
267  with this result, Hua-Bing et al. also found METTL3-mediated m°A controls T-cell
268 homeostasis and differentiation by targeting IL-7, proving the reliability of our
269 analysis results[8]. Notably, HMGBL, acting as a pivotal node in CD8_EM-related
270 m°A regulation (Figure 5E), has previously been reported to influence the infiltration
271  of CD8" T-cellsin NSCLC[30], further supporting the reliability of our conclusions.

10
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272 The dysregulation of immune responses in COVID-19 patients has emerged as a
273  primary factor affecting symptoms and mortality rates[31, 32]. Consequently, the
274  investigation of relevant immune cells has become a focal point in combatting this
275 disease[33, 34]. In this context, we endeavored to apply ScmP°A to a COVID-19
276  dataset from the study by Yuan et al[24]. From this dataset, we randomly selected a
277 COVID-19 positive patient sample that had undergone FACS selection to isolate
278 CD3" T-cells and CD19" B-cells from fresh PBMC. Using Seurat, we imported and
279  standardized the single-cell data, then input the standardized data into Scm°A for
280 prediction. The resulting UMAP plot of m°A predictions clearly delineated the
281 classification of T-cells and B-cells (Figure S3A), highlighting a marked divergence
282  in m°A modification landscapes between these cell types. Subsequent Gene Ontology
283  (GO) functional enrichment analysis of the genes associated with differential m°A
284  revedled significant enrichment in entries such as "SARS-CoV Infections" and "Viral
285 Infection Pathways," aligning with expectations and affirming the accuracy of
286  Scm®A's predictions (Figure S3B). These findings contribute to the dissection of the
287  immune response in COVID-19 patients at a single-cell m°A resolution, enabling a

288  deeper exploration of the pathogenic mechanisms at play.

289 These results provide a fresh perspective on the comprehensive profiles of m°A
290 and corresponding regulators in exhausted CD8" T-cells and other T-cells subtypes.
291  Obviously, Scm°A has broaden applications in the identification of subtypes of
292 different cell types, it may redefine some novel cell types and further revea the
293  potential role of m°A in cellular differentiation. This opens up exciting possibilities

294  for futureresearch in thisfield.
295

296
297 Discussion
298 It has been reported that there is high heterogeneity in the abundance of m°A across

299  individual cells[35]. However, areliable and convenient method for detecting m°A at
1
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300 the singlecell level is currently lacking. In this study, we developed Scm°A, a
301 singlecell m°A detection method based on the trans and cis information that we
302 previously constructed. We validated the accuracy of the Scm®A method using
303 mP°A-seq data from MACS-isolated cell types. Subsequently, we applied ScmPA to
304 single-cell RNA-seq data from lung cancer. Our analysis revealed that m°A is highly
305 variable across different T-cells in lung cancer tissue. It also provides new ideas for
306 the development of new single-cell calculation methods for other RNA methylation
307 modifications, such as 5-methylcytosine (m°C), 7-methylguanosine (m’G), and
308 N'-methyladenosine (m'A) methylation. Our attempts on the COVID-19 dataset
309 have once again substantiated that Scm®A can effectively predict m°A expression
310 levelsand, inturn, distinguish between B-cells and T-cells. Moreover, we will further
311  improve the application scope of Scm°A to analyze the single-cell level m°A in other
312  species, including monkeys, and plant species , among others.

313 Recently, Matthew et al. developed a method named scDART-seq to identify
314 transcriptome-wide YTH-binding m°A  sites in singlecells by inducing
315 APOBEC1-YTH expresson[35]. However, this method can only be used to detect
316 YTH-binding m°A sites, not all m°A sites. In addition, this method requires the
317 expresson of APOBEC1-YTH in targeted cells, which is not compatible with
318 single-cell sequencing data Moreover, sScDART-seq can detect some false-positive
319 m°A sites[35]. Due to the limitations of sScDART-seq, there are no convenient and
320  swift methods for identifying transcriptome-wide m°A sites and levels in individual
321  cellswith alow false discovery rate[36]. Comparing with ScDART-seg, Scm®A offers
322  amore accurate and convenient approach for quantifying m°A at the single-cell level.
323  Therefore, Scm®A has more potential to be widely used in m°A-related research.
324 Combining analysis of scRNA-seq with Scm°A also providesthe pathway for
325  researchers to investigate the detailed m°A regulation mechanisms at the single-cell
326 level. Moreover, Scm°A displayshigh true positive rate with AUROC=0.91,

327  suggesting that ScmPA can detect few false-positive m°A sites.

12
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328 The role of m°A in T-cell differentiation and T-cell homeostasis has attracted
329 much attention. As a key step of cancer immune evasion, there is a lack of research
330 on the epigenetic mechanisms related to T-cell exhaustion[37], such as whether m°A
331 isinvolved in regulating T-cell exhaustion. By using Scm®A, we found that the m°A
332  profiles were distinct among these exhausted T-cells and other subtypes of T-cells,
333 indicating that m°A plays an essential role in the progression of T-cell exhaustion.
334 The impact of m°A on T-cel differentiation and activation deserves further
335 discussion using our Scm®A method. Considering the discovery of pharmacological
336 inhibition of METTL3[38], it is plausible that we may combat T-cell exhaustion by
337 m°A-dependent gene regulation in the future. In fact, our method not only provides a
338 single-cell m°A method for classifying T-cells but also extends to other cell type
339  subpopulations, including B-cells, dendritic cells, and macrophages. We believe that
340  Scm®A will be used to study the role of single-cell m°A in a variety of diseases and
341  cdll types.

342 ScmPA is based on a m°A-seq trained machine learning method and is antibody
343 free. Even ScmPA is not a single-base resolution for every single transcript yet, we
344  will incorporate new features of m°A identification using Nanopore Sequencing and
345 miCLIP-m°A to ScmPA in the future[39-43]. We believed it will make Scm°A amore
346  powerful tool for single-base resolution for every single transcript. Furthermore, we
347  will try to collect more m°A sequencing data for training to improve the accuracy of
348  ScmPA.

349 In summary, this study has provided a novel approach to the calculation of
350 single-cell RNA methylation. Combined with other single-cell multiomics techniques,
351  Scm®A will open up a new way for m°A research at the single-cell level which will
352  be expected to significantly contribute to our understanding of the role of single-cell
353 m°Ain various biological processes.

354

355
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356 Methods

357 Data preprocessing and machine lear ning algorithms

358  In accordance with our previous research, we collated and analyzed raw sequencing
359  data from 104 mPA-seq libraries (IP and input) obtained from 25 unique cell lines,
360 which were downloaded from the Sequence Read Archive (SRA,
361  https://www.ncbi.nlm.nih.gov/sra). We identified comprehensive trans regulators in
362 the m°A regulatory network and cis sequence features of the m°A site used these
363 m°A-seq data [18]. Herein, we developed a single-cell level caculation method
364  based on machine learning models using this network from the expression levels of
365 the m°A regulators to the m°A level. As cis-acting regulatory sequence, position
366  probability matrices of each m°A site were used as input to the model[44]. To solve
367 the frequent NA values in m°A data, we first counted the percentage of missing
368 values in each row and column and then deleted rows or columns with missing
369 values greater than 10%. Following the data filtering process, the expression matrix
370  consisting of 4162 m°A sites was obtained.

371 For the development of machine learning models, we established a one-to-one
372  correspondence between the expression of m°A regulators and the m°A matrices to
373  construct models. Meanwhile, considering the regulation of cis-acting elements to
374 m°A, weincluded the RNA sequence of each m°A site converted into a matrix to the
375 input information of the algorithm. In this study, a total of 5 machine learning
376  agorithms, including RF, LR, KNN, LinearSVR, and SVR with poly kernel, were
377 used to determine the most effective method. The scikit-learn toolkit version 1.0.2
378  was used to train these machine learning models. Out of the overall dataset, 70% was
379 randomly allocated to serve as the training set for model development, while the
380 remaining 30% was reserved for the test set to validate the model’s performance. The
381  best parameters were selected through grid search and fivefold cross-validation.

382

383  mPA-seq data processing
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384  We established mP°A-seq libraries (IP and input) of CD4" T-cells and CD8* T-cells
385 isolated from the same individuals using MACS, and obtained four different sets of
386 samples (Review Link:
387  https://dataview.ncbi.nlm.nih.gov/object/PRINA890754 eviewer=psjfcrhf Ldk78idc
388 nbo5a3msup). The reads generated by m°A-seq were mapped to the hg38 human
389 reference genome using HISTA2 with default values for parameters (version
390 2.1.0)[45]. We calculated the input libraries’ TPM of Ensembl annotated genes using
391  dtringtie and then performed quantile normalization across all samples[46].

392 To accurately identify the m°A sites in CD4" T-cells and CD8" T-cells, we
393 improved the winscore previously published by Dominissini et a.[36]. We
394  determined the sliding window with a window fraction (enrichment fraction)>2 in
395 the sample as the m°A peak. Since low expression windows may be accompanied by
396 technical problems with unreliable winscore, we decided to adjust the windows with
397 low RPKMs by adding 1 to the RPKM of each window in both IP and input libraries
398  before winscore calculation. After identifying the m°A peaks across the samples, we
399  merged consecutive m°A peaks within the same gene, and then divided the merged
400 peaks with more than 5 consecutive sliding windows (300 bp) into multiple peaks,
401  spanning no more than 5 sliding windows to eliminate the problem of possible false
402  positives. After the above analyses, we finally obtained the m°A matrix of m°A levels
403 inCD4" T-cellsand CD8" T-cells.

404

405 Calculation of single-cell RNA-seq

406 The “Seurat” package was used to analyze the single-cell sequencing data of CD4"
407  T-cells and CD8" T-cells. Genes expressed in fewer than 3 cells and cells expressing
408 fewer than 200 genes were excluded. Since cells with a high proportion of
409  mitochondria-derived genes, a low number of detected genes, and a high proportion
410 of unmapped or multi-mapped reads are often damaged or dying cells, which will
411  affect the subsequent single-cell RNA-seq analysis, we performed quality control

15
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412  (QC) on the data to filter out the unqualified data. The parameters used were as
413 follows. nFeature RNA>200 & nFeature RNA < 4000, nCount_ RNA>200 &
414  nCount_RNA < 20000, percent.mt < 25. To correct the variability of meaningful
415 reads obtained by scRNA-seq across different cells, we normalized the expression
416 using the “NormalizeData” function and calculated the top 1500 highly expressed
417  variant genes by the “FindVariableFeatures’ function.

418 To visualize and interpret the high-dimensional gene expression data, principal
419 component analysis (PCA) and t-distributed stochastic neighbor embedding (tSNE)
420  were used for visualizing ScCRNA-seq data of CD4" T-cells and CD8" T-cells. A total
421  of 24 cell clusters were obtained after visualization. Using cellranger[47], we defined
422  the cluster of cells with high CD4 expression as CD4" T-cells and the cluster of cells
423  with high CD8A and/or CD8B expression as CD8" T-cells. After counting the marker
424 gene expression levels of the four samples (S1-$4) and sorting them, we defined
425  cluster 1 in the 24 clusters as CD8" T-cells, and clusters 6, 9, 10, 11, 16, 18, 21 and
426 22 as CD4" T-cells according to the marker gene expression level. To obtain
427  differentially expressed genes, we used “DEseg2” to differentially analyze the genes
428 of CD4" and CD8" T-cells obtained by scRNA-seg, and the parameters used were as
429 follows: FDR<0.1 and FoldChange>1.2. After that, we used the “limma’ package to
430 differentially analyze the genes of m°A obtained by m°A-seq, and the parameters
431  used were as follows: FDR<0.1. We downloaded lung cancer single-cell sequencing
432 data from the GEO database as externa data validation (GSE148071)[48], which
433  contained 42 single-cell RNA sequencing data from tissues of stage I11/1V NSCLC
434  patients. We performed lung-cancer-related single-cell m°A analysis based on these
435 scRNA-seq data. Through Scm®A, we calculated single-cell m°A levels using the
436  expression levels of m°A regulators and position probability matrices of m°A sites as
437  input from these sScRNA-seq data.

438

439 Human CD4'/CD8" T-cell sorting
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440 Human CD4'/CD8" T-cells were obtained from PBMCs of adult donors in good
441  hedlth. The first step was to isolate PBMCs from whole blood by density gradient
442  centrifugation (Ficoll 1.077 g¢/mL, SigmaAldrich, USA) and maintained in
443  RPMI-1640 medium (Solarbio, China) supplemented with 15% FBS (Sigma-Aldrich,
444  USA) and 1% penicillin/streptomycin (Solarbio, China). Second, magnetic activated
445  cell sorting beads (MACS; Miltenyi Biotec) were used to isolate human CD4'/CD8"
446  T-cells from PBMCs. Briefly, PBMCs were bound to CD4 microbeads (20 pL of
447  microbeads/10"7 cells) for 15 minutes at 4°C. After washing the cells with washing
448  buffer, the cells were resuspended in 500 pL of washing buffer, passed through an LS
449  column (Miltenyi) attached to a magnetic stand (Miltenyi) and washed three times.
450 To elute targeted cells, the column was washed with buffer after being removed from
451  the magnetic field. The approach was validated by MACS. The sorted targeted cells
452  were used for single-cell PCR analysis and sequencing.

453

454 GO analysis

455  To further investigate the mechanisms associated with the differences observed in
456  different T-cells in healthy humans, we performed gene ontology (GO) functional
457  enrichment analysis in DAVID (https://david.ncifcrf.gov/) by using the previously
458  screened differentially expressed genes, and took the top 10 items of the biological
459  process ranked in ascending order of FDR as the results[49].

460

461  Motif and distribution of m°A peaks

462 By using the bed format file obtained earlier as the input file, Hypergeometric
463  Optimization of Motif Enrichment (HOMER, http://homer.ucsd.edu/homer/)
464  software was used for motif enrichment analysis. The distribution of m°A peaks was
465 plotted on a mega gene with 10 binsin the 5’UTR, CDS, and 3' UTR regions, using
466  the methods described in our previous paper[18].

467
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468  Statistical Analyses

469  Statistica analyses  were  performed using R  version 4.0.2
470  (https://www.r-project.org/). Receiver operating characteristic curve (ROC) analysis
471  and the area under the curve (AUC) were calculated using the pROC package to
472  compare the efficacy of each model. We calculated ROC and AUC by randomly
473  sampling the true and predicted values. Values were labeled as 1 if the difference
474  between the predicted m°A value and the true value was no more than 0.5 and
475 labeled as O if the difference fell outside the range. The evaluation indicators of the
476  five-machine learning regressors did not conform to the normal distribution, so the
477  quartile was used for statistics.

478

479
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657 Figurelegends

658  Figure 1. Single-cell m°A prediction models evaluation

659  A. Algorithmic framework for single-cell m°A calculation. B. Boxplot comparison
660 rank of different models by R-squared in the test set. C. Area under the receiver
661 operating characteristic (AUROC) for each method. D. ROC curves and AUC values
662  for the different modelsin prediction of m°A sitesin EM SG00000143761.

663

664 Figure 2. Verification of thereliability and accuracy of Scm®A.

665 A. Schematic flow diagram showing the framework of validation of Scm°A. B.
666  Schematic diagram of the distribution of m°A peak lengths calculated by Scm®A and
667 the winscore-based method using m°A-seq. C. Correlation analysis between the
668  Scm°A-calculated m°A levels and the winscore-based method-calculated mPA levels
669  at the same m°A site. D. Correlation analysis between ScmPA calculated random m°A
670 levels and winscore-based method calculated mPA levels at the same m°A site.

671

672 Figure 3. Bioinformatics analysis of m°A-sequencing results from
673 MACS-isolated T-cellsin human PBM C.

674  A. The normalized distributions of m°A peaks across the 5UTR, CDS and 3UTR for
675 CD4" and CD8" T-cells from four samples. B. Representative motifs for CD4" and
676 CD8" T-cells in four samples. C. Volcano plots showing different mP°A
677 (FoldChange>1.2, FDR<O0.1). Dots in red and blue indicate high and low expression
678  of m°A and genes, respectively. D. Venn diagram of DEGs and genes where different
679 mP°A modifications are located. E. Scatter plot of log,FoldChange of different m°A
680 and corresponding DEGs. F. Cluster gene expression heatmap of differentially
681 expressed genes (Right) and m°A level heatmap of different m°A modifications
682 (Left). G. Gene ontology enrichment analysis of the intersection of DEGs and
683  different m°A.

684
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685  Figure 4. Bioinformatics analysis of Scm®A analysis resultsin human PBMC.
686  A. Representative motifs for CD4" and CD8" T-cells in four samples. B. t-SNE maps
687 of scRNA-seq data and m°A predicted by machine learning models. C. Cluster
688  heatmap of differentially expressed m°A (FoldChange>1.2, FDR<0.1) predicted by
689  machine learning models. D. Gene ontology enrichment analysis of the intersection
690 of DEGs and ScmbA predicted different m°A located genes. E. Cumulative
691  distribution function plots of different m°A and nondifferent m°A.

692

693  Figure5. Using Scm°A to explore the single-cell level m®A from scRNA-seq data
694  of lung cancer patients.

695 A. and B. Principa component anadysis (PCA) of single-cell m°A predicted by
696  Scm®A. Each color represents a cell. The ellipses around the group mean represent
697  the confidence regions. C. Heatmap of different single-cell m°A of NSCLC. D. Gene
698 ontology enrichment analysis of the CD8 EM related m°A. E. Heatmaps
699  representing the mPA ratios of the m°A peaks within CD8_EM related m°A (upper
700 panel) and the gene expressions of the 19 CD8_EM related m°A regulators (lower
701  panel) that significantly correlated with the m°A indexes of CD8_EM related m°A.
702  These cells are sorted according to the m°A indexes of CD8_EM related m°A. Right
703 panel shows Gene MANIA interaction network of 19 CD8 EM related m°A
704  regulators with Physical Interactions, Predicted, co-expression, Shared protein
705 domains, co-localization, Genetic Interactions and pathway. Dim grey nodes
706  represent query regulators lists.

707

708 Figure S1. A comparative analysis of m°A calculation methods based on the
709 Random Forest model and other models

710 A. Dots plot show the correlations between predicted m°A level and true m°A level.
711  Boxplot show R-squared (B) and AUROC (C) of RF model use corresponding m°A

712 regulators or random permutation to calculate single-cell m°A.
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Figure S2. Application of Scm®A in datasets pertaining to mouse cleavage-stage

embryos and lung cancer

A. Scatterplots of correlation between Scm®A prediction results and the scm®A-seq
sequencing outcomes (Left), and random correlation scatterplots of both (Right). B.

Representative motifs for CD8_EM cells, Th and Tpex cellsin NSCLC samples.

Figure S3. Application of Scm®A in COVID-19 data sets

A. UMAP plot of m°A predicted by Scm®A. B. GO enrichment analysis of genes

with differential m®A modifications.
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