

1 **Scm⁶A: A fast and low-cost method for quantifying m⁶A**
2 **modifications at the single-cell level**

3 Yueqi Li^{1,2,#}, Jingyi Li^{3,#}, Wenxing Li^{4,#}, Shuaiyi Liang^{5,#}, Wudi Wei^{6,#}, Jiemei Chu⁷,
4 Jingzhen Lai⁷, Yao Lin⁷, Hubin Chen⁷, Jinming Su⁷, Xiaopeng Hu⁷, Gang Wang⁷,
5 Jun Meng⁷, Junjun Jiang⁷, Li Ye⁷, Sanqi An^{1,2,7,*}

6

7 ¹ *Department of Biochemistry and Molecular Biology, School of Basic Medicine,*
8 *Guangxi Medical University, Nanning 530021, China*

9 ² *Key Laboratory of Biological Molecular Medicine Research, Education Department*
10 *of Guangxi Zhuang Autonomous Region, Nanning 530021, China*

11 ³ *Department of pathology, Guangdong Second Provincial General Hospital,*
12 *Guangzhou 510317, China*

13 ⁴ *Department of Systems Biology, Columbia University Medical Center, New York*
14 *10032, NY, USA*

15 ⁵ *Department of bioinformatics, Anjin Biotechnology Co., Ltd., Guangzhou 510000,*
16 *China*

17 ⁶ *Life Sciences Institute & Joint Laboratory for Emerging Infectious Diseases in*
18 *China (Guangxi)-ASEAN, Guangxi Medical University, Nanning 530021, China*

19 ⁷ *Life Sciences Institute & Guangxi Key Laboratory of AIDS Prevention and*
20 *Treatment, Guangxi Medical University, Nanning 530021, China*

21

22 #Equal contribution.

23 *Corresponding author:

24 E-mail: ansq@mail2.sysu.edu.cn (An S),

25 **Abstract:**

26 It is widely accepted that m⁶A exhibits significant intercellular specificity, which
27 poses challenges for its detection using existing m⁶A quantitative methods. In this
28 study, we introduce Scm⁶A, a machine learning-based approach for single-cell m⁶A
29 quantification. Scm⁶A leverages input features derived from the expression levels of
30 m⁶A *trans* regulators and *cis* sequence features, and found that Scm⁶A offers
31 remarkable prediction efficiency and reliability. To further validate the robustness
32 and precision of Scm⁶A, we applied a winscore-based m⁶A calculation method to
33 conduct m⁶A-seq analysis on CD4⁺ and CD8⁺ T-cells isolated through
34 magnetic-activated cell sorting (MACS). Subsequently, we employed Scm⁶A for
35 analysis on the same samples. Notably, the m⁶A levels calculated by Scm⁶A
36 exhibited a significant positive correlation with m⁶A quantified through m⁶A-seq in
37 different cells isolated by MACS, providing compelling evidence for Scm⁶A's
38 reliability. We also used the scm⁶A-seq method to validate the reliability of our
39 approach. Additionally, we performed single-cell level m⁶A analysis on lung cancer
40 tissues as well as blood samples from COVID-19 patients, and demonstrated the
41 landscape and regulatory mechanisms of m⁶A in different T-cell subtypes from these
42 diseases. In summary, our work has yielded a novel, dependable, and accurate
43 method for single-cell m⁶A detection. We are confident that Scm⁶A will have broad
44 applications in the realm of m⁶A-related research.

45

46 **Keywords:** *N*⁶-methyladenosine; heterogeneity; T-cell; machine learning

47

48 **Introduction**

49 As the most widespread epigenetic modification in mRNA, m⁶A plays pivotal roles
50 in gene expression regulation and is intricately linked to physiological processes in
51 various diseases[1-7]. Among its multifaceted regulatory functions, m⁶A governs
52 T-cell differentiation and influences immune-related gene expression, garnering
53 substantial attention[8]. To gain deeper insights into the role of m⁶A in biological
54 progresses, it becomes imperative to discern transcriptome-wide m⁶A levels and sites
55 within individual cells. For instance, the presence of a multitude of immune cell and
56 T-cell subtypes[8-11] poses a formidable challenge, as current m⁶A detection
57 methods designed for bulk cell populations fall short in characterizing m⁶A levels
58 and sites at the single-cell level.

59 It is well-established that cell type-specific m⁶A levels and *de novo* m⁶A
60 deposition are jointly regulated by *trans*-acting regulators and *cis*-regulatory
61 elements[12]. In theory, leveraging information on these *trans*-acting regulators and
62 *cis*-regulatory elements as input enables the prediction of m⁶A at the single-cell level
63 using computational methods. Machine learning and other computational approaches
64 have found extensive application in the analysis of diverse omics data, significantly
65 advancing our understanding of biology [13-17]. In theory, machine learning holds
66 the promise of predicting RNA methylation levels at the single-cell level. In our prior
67 research, we developed a computational framework to systematically identify
68 comprehensive *trans* regulators of m⁶A and performed experiments to verify the
69 reliability of these *trans* regulators[18]. Additionally, a reliable regulatory network
70 from *trans* regulators to m⁶A sites was constructed. Furthermore, we identified
71 cell-specific m⁶A *cis*-regulatory motifs[18]. Machine learning, as a potent predictive
72 tool, has been extensively employed in forecasting gene expression, DNA
73 methylation, and alternative splicing, leveraging multiple biological features with
74 impressive accuracy[19-22]. In fact, Xue et al. highlighted the challenges tied to the
75 experimental detection of RNA m⁶A. To address this, they investigated the

76 possibility of using computational methods to predict RNA methylation status based
77 on gene expression data. Employing methods such as Support Vector Machine (SVM)
78 and Random Forests (RF), Xue et al. determined that gene expression data can
79 indeed act as a reliable predictor for m⁶A methylation status[23]. Their findings have
80 convinced us of the viability of predicting single-cell m⁶A using machine learning
81 methods grounded in gene expression level. Herein, we attempted to develop a
82 single-cell level m⁶A calculation method through a machine learning method.

83 In this study, we leveraged comprehensive information on *trans*-regulatory
84 elements of m⁶A and *cis*-elements, including motif and sequence data, to create a
85 machine learning-based quantitative method for single-cell m⁶A analysis, which we
86 named Scm⁶A (Single-cell m⁶A Analysis; available at
87 <https://github.com/Ansangji/Scm6A>). We applied multiple machine learning
88 techniques to establish the association between *trans*-regulators and m⁶A, integrating
89 *cis* sequence features and single-cell m⁶A levels. Subsequently, Scm⁶A was
90 established with substantial predictive power to predict the level of m⁶A in individual
91 cells. After that, we applied Scm⁶A to single-cell RNA-seq data from peripheral
92 blood mononuclear cells (PBMCs) and calculated the m⁶A levels in CD4⁺ and CD8⁺
93 T-cell types. To validate the accuracy and reliability of Scm⁶A, we also performed
94 m⁶A-seq on CD4⁺ and CD8⁺ T-cells, isolated via magnetic-activated cell sorting
95 (MACS), from the same donor. Our findings underscored the precision and
96 dependability of Scm⁶A in discerning single-cell m⁶A levels, in comparison to
97 m⁶A-seq results derived from MACS-isolated cell populations. Subsequently, we
98 extended our analysis to investigate single-cell m⁶A profiles in lung cancer
99 scRNA-seq data using Scm⁶A and demonstrated that the m⁶A profiles are highly
100 heterogeneous at the single-cell level in different subtypes of T-cells in lung cancer.
101 We also applied our model to single-cell dataset of COVID-19[24], and demonstrated
102 good performance in classifying T-cells and B-cells. Furthermore, we compared our
103 Scm⁶A with the experimental method scm⁶A-seq developed by the Yang et al.[25],

104 Scm⁶A not only performed well in mouse cells but also exhibited a significant
105 correlation with experimental sequencing results.

106

107 **Results**

108 **Random Forest Outperforms Other ML Models in Single-Cell m⁶A Calculation**

109 **Figure 1A** illustrates the workflow of our study. Initially, we collected the gene
110 expression data of 593 reliable m⁶A regulators and conserved sequence features
111 associated with m⁶A, which we validated before[18]. To establish a precise
112 single-cell m⁶A calculation model, we evaluated five machine learning regression
113 models, including Random Forest (RF), K-NearestNeighbor (KNN), Support Vector
114 Regression (SVR) with the poly kernel, Linear Regression (LR) and Linear Support
115 Vector Regression (LinearSVR), all optimal parameters of the above models were
116 obtained by grid search based on these *trans* and *cis* data.

117 The coefficient of determination (R^2), commonly employed to gauge the
118 performance of regression-based machine learning models, was utilized as an
119 evaluative parameter for assessing the proximity of data points to the fitted line.
120 Notably, our analysis revealed that the RF model consistently outperformed the other
121 machine learning models, displaying higher R^2 values (**Figure 1B**), indicating that
122 the RF model is the most suitable for single-cell m⁶A prediction. Additionally, the
123 correlation analysis between the predicted m⁶A levels and true m⁶A levels
124 demonstrated superior reliability of the RF model-based m⁶A calculation method
125 compared to other models (**Figure S1A**). By defining the difference between the
126 predicted value and the actual value as binary variables (See the Methods section for
127 details), we performed receiver operating characteristic (ROC) analysis on models
128 constructed using the five machine learning methods, based on their testing accuracy.
129 Our findings revealed that the performance of Scm⁶A based on the RF model
130 achieved a median balanced accuracy of 0.91 across multiple tests on all m⁶A sites
131 (**Figure 1C**), which was substantially higher than that of other classical machine

132 learning methods. Moreover, we conducted a comparative analysis between random
133 forest models constructed solely using *trans*-acting regulators and those built solely
134 using *cis*-regulatory elements. The median balanced accuracy of both models was
135 found to be lower than that of the model created by integrating both types of
136 effectors. The other four models achieved median balanced accuracies ranging from
137 0.8 to 0.9, suggesting the regulatory network we constructed is reliable. Moreover, an
138 example is shown in **Figure 1D**. The ROC curves of the five models demonstrated
139 distinct prediction performances, with the RF model exhibiting the highest prediction
140 efficiency. To further validate our findings, we conducted a randomized relabeling of
141 samples and performed ROC analysis using the methodology described above, the
142 AUROC and R^2 values of the RF model significantly exceeded those generated by
143 random permutations (**Figure S1B, C**), suggesting a significant level of accuracy that
144 cannot be explained by random chance. Overall, we identified the best fitting
145 single-cell m⁶A calculation method and named it Scm⁶A.

146

147 **Accuracy and reliability of Scm⁶A were further validated by m⁶A-seq from
148 magnetic-activated cell sorting in human PBMCs**

149 We performed single-cell RNA-seq analysis of PBMCs from four healthy
150 participants and extracted gene expression data for 593 reliable m⁶A regulators[18]
151 as *trans*-acting input, and 42 m⁶A conserved sequence information[18, 26] as
152 *cis*-acting input to for Scm⁶A. Using Scm⁶A, we calculated the single-cell level m⁶A
153 profiles in CD4⁺ and CD8⁺ T-cells (**Figure 2A**). Simultaneously, we used a
154 winscore-based m⁶A calculation method[18] to perform m⁶A-seq analysis of CD4⁺
155 and CD8⁺ T-cells isolated by MACS. To control technical biases in the regulatory
156 network of *trans* m⁶A regulators to m⁶A sites in the m⁶A-seq libraries, including
157 variations in sequencing lengths and RNA fragmentation lengths, we merged
158 continuous Scm⁶A calculation peaks within the same gene, as described before[18].
159 Due to the different window sizes with two different calculation methods cannot be

160 used for comparison of precise m⁶A locations, we obtained 49 precisely matched
161 m⁶A windows to compare the correlations of m⁶A levels within the same gene region
162 (**Figure 2B**), and these m⁶A sites with same localization on the transcriptome were
163 the best choice for validating the accuracy and reliability of Scm⁶A. As we expected,
164 there was a significant correlation between the m⁶A levels predicted by Scm⁶A and
165 quantified by m⁶A-seq from MACS (**Figure 2C**). Moreover, there was no significant
166 correlation between Scm⁶A and m⁶A-seq analysis results generated by random
167 permutation of these m⁶A sites (**Figure 2D**), indicating a significant accuracy not be
168 explained by random chances.

169 To further validate the accuracy and reliability of Scm⁶A, we conducted a
170 comparative analysis between Scm⁶A and the single-cell m⁶A sequencing method
171 recently published by Yang et al.[25], known as scm⁶A-seq. Given that scm⁶A-seq
172 employs mouse cleavage-stage embryos cells as its experimental subject, we initially
173 converted mouse gene IDs to their corresponding human gene IDs and subjected the
174 gene expression data to standardized preprocessing. This step was carried out to
175 enable an effective comparison with Scm⁶A. Despite variations in quantification
176 methodologies, we harmonized the data through logarithmic transformations,
177 ensuring that both Scm⁶A's predictions and the m⁶A sequencing data provided in
178 Yang et al.'s study could be juxtaposed for analysis.

179 Further correlation analysis results indicate a significant positive relationship
180 ($R=0.3$, $p=1\times 10^{-74}$) between the predictions generated by Scm⁶A and the
181 experimentally measured m⁶A expression levels in scm⁶A-seq. This finding not only
182 validates the efficacy of the Scm⁶A model in capturing underlying patterns within the
183 data to a certain extent but also strongly reinforces the reliability of Scm⁶A's
184 predictive outcomes. We subsequently shuffled the order of the m⁶A sites and then
185 performed a correlation analysis between the computational results of Scm⁶A and
186 scm⁶A-seq. The correlation in the shuffled matrix was nearly absent ($R=0$, $p=0.58$)
187 (**Figure S2A**). In summary, Scm⁶A proves to be a precise and dependable

188 computational tool for single-cell m⁶A analysis. Its cost-effectiveness, efficiency,
189 and reliability make it a powerful tool with significant potential, offering researchers
190 a rapid and effective means to explore the epigenetic features of cells.

191

192 **Identification of the potential role and landscape of m⁶A in CD4⁺ and CD8⁺**
193 **T-cells through m⁶A-seq**

194 It is widely accepted that the differentiation of T-cell subtypes is associated with the
195 expression of CD4 and CD8[27]. Transcriptional regulation plays a critical role in
196 regulating the fate choice of CD4⁺/CD8⁺ T-cells[27]. Recently, some studies have
197 reported that m⁶A has a broader impact on the dynamics of the RNA life cycle in
198 T-cell differentiation by regulating crucial genes involved in T-cell
199 differentiation[28].

200 Typically, a combination analysis of m⁶A-seq and RNA-seq is used to identify
201 the potential role and mechanism of m⁶A-regulated genes in biological processes. To
202 further validate the reliability of Scm⁶A, we performed m⁶A feature analysis using
203 m⁶A-seq data from MACS and RNA-seq analysis to identify the potential differences
204 in the role and landscape of m⁶A in CD4⁺ and CD8⁺ T-cells. As shown in **Figure 3A**,
205 the m⁶A peaks of CD4⁺ T-cells tended to be enriched near stop codons, while the
206 m⁶A peaks of CD8⁺ T-cells were enriched in coding regions and start codons,
207 suggesting that the different T-cell types may have different m⁶A regulators
208 controlling the m⁶A-mediated gene expression. We also checked the motif
209 enrichment of CD4⁺ and CD8⁺ T-cells and found that m⁶A peaks in CD4⁺ T-cells
210 more tended to be enriched in the GGACU motif. To be more specific, the *P*-value
211 for motif enrichment analysis in CD4⁺ T-cells ranged from 1×10^{-319} to 1×10^{-407} ,
212 while the *P*-value in CD8⁺ T-cells ranged from 1×10^{-207} to 1×10^{-282} (**Figure 3B**). Then,
213 we performed different m⁶A analyses and differential expression analyses using
214 m⁶A-seq and input data as RNA-seq data, as we reported before[18]. We found 2055
215 differentially expressed genes and 113 genes that contained different methylated m⁶A

216 sites (278 m⁶A sites) (**Figure 3C**). The intersection of these two sets contains 62
217 genes (**Figure 3D**). We found that the gene expression levels of these genes were
218 positively related to the m⁶A level of differentially methylated sites (**Figure 3E, F**).
219 As expected, these potential m⁶A-regulated genes were enriched in pathways related
220 to T-cell differentiation and cell differentiation, among others. (**Figure 3G**),
221 suggesting m⁶A controls T-cell differentiation related gene expression.

222

223 **Identification of the potential role and landscape of m⁶A in CD4⁺ and CD8⁺**
224 **T-cells through Scm⁶A**

225 Furthermore, we tried to investigate whether the combination analysis of Scm⁶A and
226 single-cell RNA-seq performed as well as the combination analysis of m⁶A-seq and
227 RNA-seq from MACS. As shown in **Figure 4A**, motif enrichment analysis revealed
228 that m⁶A peaks calculated by Scm⁶A exhibited a tendency to be enriched in the
229 GGACU motif in CD4⁺ T-cells, consistent with the enriched motif of m⁶A peaks
230 identified through m⁶A-seq analysis (**Figure 3B**). To comprehensively analyze the
231 m⁶A landscape at a single-cell resolution, we performed unsupervised clustering
232 analysis of single-cell level m⁶A in CD4⁺ T-cells and CD8⁺ T-cells identified by
233 scRNA-seq. We observed two clusters of single-cell m⁶A profiles (**Figure 4B**), which
234 were clearly separated according to the cell types. Moreover, we predicted the m⁶A
235 levels of CD4⁺ and CD8⁺ T-cells from a single sample at single-cell resolution and
236 used cluster heatmaps to visualize the within-group similarity of the same cell type
237 and the heterogeneity between groups of different cell types (**Figure 4C**), the genes
238 containing these m⁶A modifications were enriched in T-cell differentiation and cell
239 differentiation (**Figure 4D**). We also found that the gene expression levels of the
240 m⁶A-deposited genes were positively related to the m⁶A of differentially methylated
241 sites (**Figure 4E**), consistent with the results obtained from m⁶A-seq analysis using
242 MACS-isolated cells (**Figure 3F, G**). These findings further underscore the reliability
243 of Scm⁶A as a method for single-cell level m⁶A analysis.

244

245 **Application of Scm⁶A in different lung cancer subtypes revealed the potential**
246 **role and regulators of m⁶A in exhausted CD8⁺ T-cells**

247 The differentiation of exhausted CD8⁺ T-cells leads to attenuated effector function of
248 cytotoxic CD8⁺ T-cells, resulting in their inability to control tumor progression
249 during the advanced stage [29]. Furthermore, it has been reported that m⁶A plays a
250 crucial role in regulating T-cell homeostasis[8]. However, our current understanding
251 of the different m⁶A profiles in distinct subtypes of T-cells and its role in exhausted
252 CD8⁺ T-cells is limited[8].

253 Herein, we employed Scm⁶A to further explore the m⁶A landscape of exhausted
254 CD8⁺ T-cells and other cell types across different lung cancer types, including lung
255 squamous carcinoma (LUSC) (**Figure 5A**) and non-small cell lung cancer (NSCLC)
256 (**Figure 5B**). Our findings revealed differences in the m⁶A profiles and molecular
257 features of exhausted CD8⁺ T-cells compared to other T-cell subtypes in both LUSC
258 and NSCLC (**Figure 5A-C**, **Figure S2B**). Interestingly, exhausted CD8⁺ T-cells
259 (CD8_EM) -related m⁶A were enriched in IL-7 pathway, which is associated T-cell
260 homeostasis (**Figure 5D**). By investigating the regulatory network we constructed
261 (**Figure 1A**), it became evident that these exhausted CD8_EM-related m⁶A levels are
262 associated with 19 m⁶A regulators, including METTL3, METTL14, and HMGB1 etc.
263 (**Figure 5E**). Moreover, we observed a significant positive correlation between the
264 expression levels of these 19 regulators and the m⁶A levels of CD8_EM-related m⁶A
265 (**Figure 5E**). Therefore, we concluded that CD8_EM-related m⁶A regulators
266 mediated m⁶A may regulate T-cell homeostasis through targeting IL-7. Consistent
267 with this result, Hua-Bing et al. also found METTL3-mediated m⁶A controls T-cell
268 homeostasis and differentiation by targeting IL-7, proving the reliability of our
269 analysis results[8]. Notably, HMGB1, acting as a pivotal node in CD8_EM-related
270 m⁶A regulation (**Figure 5E**), has previously been reported to influence the infiltration
271 of CD8⁺ T-cells in NSCLC[30], further supporting the reliability of our conclusions.

272 The dysregulation of immune responses in COVID-19 patients has emerged as a
273 primary factor affecting symptoms and mortality rates[31, 32]. Consequently, the
274 investigation of relevant immune cells has become a focal point in combatting this
275 disease[33, 34]. In this context, we endeavored to apply Scm⁶A to a COVID-19
276 dataset from the study by Yuan et al[24]. From this dataset, we randomly selected a
277 COVID-19 positive patient sample that had undergone FACS selection to isolate
278 CD3⁺ T-cells and CD19⁺ B-cells from fresh PBMC. Using Seurat, we imported and
279 standardized the single-cell data, then input the standardized data into Scm⁶A for
280 prediction. The resulting UMAP plot of m⁶A predictions clearly delineated the
281 classification of T-cells and B-cells (**Figure S3A**), highlighting a marked divergence
282 in m⁶A modification landscapes between these cell types. Subsequent Gene Ontology
283 (GO) functional enrichment analysis of the genes associated with differential m⁶A
284 revealed significant enrichment in entries such as "SARS-CoV Infections" and "Viral
285 Infection Pathways," aligning with expectations and affirming the accuracy of
286 Scm⁶A's predictions (**Figure S3B**). These findings contribute to the dissection of the
287 immune response in COVID-19 patients at a single-cell m⁶A resolution, enabling a
288 deeper exploration of the pathogenic mechanisms at play.

289 These results provide a fresh perspective on the comprehensive profiles of m⁶A
290 and corresponding regulators in exhausted CD8⁺ T-cells and other T-cells subtypes.
291 Obviously, Scm⁶A has broaden applications in the identification of subtypes of
292 different cell types, it may redefine some novel cell types and further reveal the
293 potential role of m⁶A in cellular differentiation. This opens up exciting possibilities
294 for future research in this field.

295

296

297 **Discussion**

298 It has been reported that there is high heterogeneity in the abundance of m⁶A across
299 individual cells[35]. However, a reliable and convenient method for detecting m⁶A at

300 the single-cell level is currently lacking. In this study, we developed Scm⁶A, a
301 single-cell m⁶A detection method based on the *trans* and *cis* information that we
302 previously constructed. We validated the accuracy of the Scm⁶A method using
303 m⁶A-seq data from MACS-isolated cell types. Subsequently, we applied Scm⁶A to
304 single-cell RNA-seq data from lung cancer. Our analysis revealed that m⁶A is highly
305 variable across different T-cells in lung cancer tissue. It also provides new ideas for
306 the development of new single-cell calculation methods for other RNA methylation
307 modifications, such as 5-methylcytosine (m⁵C), 7-methylguanosine (m⁷G), and
308 N¹-methyladenosine (m¹A) methylation. Our attempts on the COVID-19 dataset
309 have once again substantiated that Scm⁶A can effectively predict m⁶A expression
310 levels and, in turn, distinguish between B-cells and T-cells. Moreover, we will further
311 improve the application scope of Scm⁶A to analyze the single-cell level m⁶A in other
312 species, including monkeys, and plant species , among others.

313 Recently, Matthew et al. developed a method named scDART-seq to identify
314 transcriptome-wide YTH-binding m⁶A sites in single-cells by inducing
315 APOBEC1-YTH expression[35]. However, this method can only be used to detect
316 YTH-binding m⁶A sites, not all m⁶A sites. In addition, this method requires the
317 expression of APOBEC1-YTH in targeted cells, which is not compatible with
318 single-cell sequencing data. Moreover, scDART-seq can detect some false-positive
319 m⁶A sites[35]. Due to the limitations of scDART-seq, there are no convenient and
320 swift methods for identifying transcriptome-wide m⁶A sites and levels in individual
321 cells with a low false discovery rate[36]. Comparing with scDART-seq, Scm⁶A offers
322 a more accurate and convenient approach for quantifying m⁶A at the single-cell level.
323 Therefore, Scm⁶A has more potential to be widely used in m⁶A-related research.
324 Combining analysis of scRNA-seq with Scm⁶A also provides the pathway for
325 researchers to investigate the detailed m⁶A regulation mechanisms at the single-cell
326 level. Moreover, Scm⁶A displays high true positive rate with AUROC=0.91,
327 suggesting that Scm⁶A can detect few false-positive m⁶A sites.

328 The role of m⁶A in T-cell differentiation and T-cell homeostasis has attracted
329 much attention. As a key step of cancer immune evasion, there is a lack of research
330 on the epigenetic mechanisms related to T-cell exhaustion[37], such as whether m⁶A
331 is involved in regulating T-cell exhaustion. By using Scm⁶A, we found that the m⁶A
332 profiles were distinct among these exhausted T-cells and other subtypes of T-cells,
333 indicating that m⁶A plays an essential role in the progression of T-cell exhaustion.
334 The impact of m⁶A on T-cell differentiation and activation deserves further
335 discussion using our Scm⁶A method. Considering the discovery of pharmacological
336 inhibition of METTL3[38], it is plausible that we may combat T-cell exhaustion by
337 m⁶A-dependent gene regulation in the future. In fact, our method not only provides a
338 single-cell m⁶A method for classifying T-cells but also extends to other cell type
339 subpopulations, including B-cells, dendritic cells, and macrophages. We believe that
340 Scm⁶A will be used to study the role of single-cell m⁶A in a variety of diseases and
341 cell types.

342 Scm⁶A is based on a m⁶A-seq trained machine learning method and is antibody
343 free. Even Scm⁶A is not a single-base resolution for every single transcript yet, we
344 will incorporate new features of m⁶A identification using Nanopore Sequencing and
345 miCLIP-m⁶A to Scm⁶A in the future[39-43]. We believed it will make Scm⁶A a more
346 powerful tool for single-base resolution for every single transcript. Furthermore, we
347 will try to collect more m⁶A sequencing data for training to improve the accuracy of
348 Scm⁶A.

349 In summary, this study has provided a novel approach to the calculation of
350 single-cell RNA methylation. Combined with other single-cell multiomics techniques,
351 Scm⁶A will open up a new way for m⁶A research at the single-cell level which will
352 be expected to significantly contribute to our understanding of the role of single-cell
353 m⁶A in various biological processes.

354

355

356 **Methods**

357 **Data preprocessing and machine learning algorithms**

358 In accordance with our previous research, we collated and analyzed raw sequencing
359 data from 104 m⁶A-seq libraries (IP and input) obtained from 25 unique cell lines,
360 which were downloaded from the Sequence Read Archive (SRA,
361 <https://www.ncbi.nlm.nih.gov/sra>). We identified comprehensive *trans* regulators in
362 the m⁶A regulatory network and *cis* sequence features of the m⁶A site used these
363 m⁶A-seq data [18]. Herein, we developed a single-cell level calculation method
364 based on machine learning models using this network from the expression levels of
365 the m⁶A regulators to the m⁶A level. As *cis*-acting regulatory sequence, position
366 probability matrices of each m⁶A site were used as input to the model[44]. To solve
367 the frequent NA values in m⁶A data, we first counted the percentage of missing
368 values in each row and column and then deleted rows or columns with missing
369 values greater than 10%. Following the data filtering process, the expression matrix
370 consisting of 4162 m⁶A sites was obtained.

371 For the development of machine learning models, we established a one-to-one
372 correspondence between the expression of m⁶A regulators and the m⁶A matrices to
373 construct models. Meanwhile, considering the regulation of *cis*-acting elements to
374 m⁶A, we included the RNA sequence of each m⁶A site converted into a matrix to the
375 input information of the algorithm. In this study, a total of 5 machine learning
376 algorithms, including RF, LR, KNN, LinearSVR, and SVR with poly kernel, were
377 used to determine the most effective method. The scikit-learn toolkit version 1.0.2
378 was used to train these machine learning models. Out of the overall dataset, 70% was
379 randomly allocated to serve as the training set for model development, while the
380 remaining 30% was reserved for the test set to validate the model's performance. The
381 best parameters were selected through grid search and fivefold cross-validation.

382

383 **m⁶A-seq data processing**

384 We established m⁶A-seq libraries (IP and input) of CD4⁺ T-cells and CD8⁺ T-cells
385 isolated from the same individuals using MACS, and obtained four different sets of
386 samples (Review) Link:
387 <https://dataview.ncbi.nlm.nih.gov/object/PRJNA890754?reviewer=psjfcrhf1dk78idc>
388 nbo5a3msup). The reads generated by m⁶A-seq were mapped to the hg38 human
389 reference genome using HISTA2 with default values for parameters (version
390 2.1.0)[45]. We calculated the input libraries' TPM of Ensembl annotated genes using
391 stringtie and then performed quantile normalization across all samples[46].

392 To accurately identify the m⁶A sites in CD4⁺ T-cells and CD8⁺ T-cells, we
393 improved the winscore previously published by Dominissini et al.[36]. We
394 determined the sliding window with a window fraction (enrichment fraction)>2 in
395 the sample as the m⁶A peak. Since low expression windows may be accompanied by
396 technical problems with unreliable winscore, we decided to adjust the windows with
397 low RPKMs by adding 1 to the RPKM of each window in both IP and input libraries
398 before winscore calculation. After identifying the m⁶A peaks across the samples, we
399 merged consecutive m⁶A peaks within the same gene, and then divided the merged
400 peaks with more than 5 consecutive sliding windows (300 bp) into multiple peaks,
401 spanning no more than 5 sliding windows to eliminate the problem of possible false
402 positives. After the above analyses, we finally obtained the m⁶A matrix of m⁶A levels
403 in CD4⁺ T-cells and CD8⁺ T-cells.

404

405 **Calculation of single-cell RNA-seq**

406 The “Seurat” package was used to analyze the single-cell sequencing data of CD4⁺
407 T-cells and CD8⁺ T-cells. Genes expressed in fewer than 3 cells and cells expressing
408 fewer than 200 genes were excluded. Since cells with a high proportion of
409 mitochondria-derived genes, a low number of detected genes, and a high proportion
410 of unmapped or multi-mapped reads are often damaged or dying cells, which will
411 affect the subsequent single-cell RNA-seq analysis, we performed quality control

412 (QC) on the data to filter out the unqualified data. The parameters used were as
413 follows: nFeature_RNA>200 & nFeature_RNA < 4000, nCount_RNA>200 &
414 nCount_RNA < 20000, percent.mt < 25. To correct the variability of meaningful
415 reads obtained by scRNA-seq across different cells, we normalized the expression
416 using the “NormalizeData” function and calculated the top 1500 highly expressed
417 variant genes by the “FindVariableFeatures” function.

418 To visualize and interpret the high-dimensional gene expression data, principal
419 component analysis (PCA) and t-distributed stochastic neighbor embedding (tSNE)
420 were used for visualizing scRNA-seq data of CD4⁺ T-cells and CD8⁺ T-cells. A total
421 of 24 cell clusters were obtained after visualization. Using cellranger[47], we defined
422 the cluster of cells with high CD4 expression as CD4⁺ T-cells and the cluster of cells
423 with high CD8A and/or CD8B expression as CD8⁺ T-cells. After counting the marker
424 gene expression levels of the four samples (S1-S4) and sorting them, we defined
425 cluster 1 in the 24 clusters as CD8⁺ T-cells, and clusters 6, 9, 10, 11, 16, 18, 21 and
426 22 as CD4⁺ T-cells according to the marker gene expression level. To obtain
427 differentially expressed genes, we used “DEseq2” to differentially analyze the genes
428 of CD4⁺ and CD8⁺ T-cells obtained by scRNA-seq, and the parameters used were as
429 follows: FDR<0.1 and FoldChange>1.2. After that, we used the “limma” package to
430 differentially analyze the genes of m⁶A obtained by m⁶A-seq, and the parameters
431 used were as follows: FDR<0.1. We downloaded lung cancer single-cell sequencing
432 data from the GEO database as external data validation (GSE148071)[48], which
433 contained 42 single-cell RNA sequencing data from tissues of stage III/IV NSCLC
434 patients. We performed lung-cancer-related single-cell m⁶A analysis based on these
435 scRNA-seq data. Through Scm⁶A, we calculated single-cell m⁶A levels using the
436 expression levels of m⁶A regulators and position probability matrices of m⁶A sites as
437 input from these scRNA-seq data.

438

439 **Human CD4⁺/CD8⁺ T-cell sorting**

440 Human CD4⁺/CD8⁺ T-cells were obtained from PBMCs of adult donors in good
441 health. The first step was to isolate PBMCs from whole blood by density gradient
442 centrifugation (Ficoll 1.077 g/mL, Sigma-Aldrich, USA) and maintained in
443 RPMI-1640 medium (Solarbio, China) supplemented with 15% FBS (Sigma-Aldrich,
444 USA) and 1% penicillin/streptomycin (Solarbio, China). Second, magnetic activated
445 cell sorting beads (MACS; Miltenyi Biotec) were used to isolate human CD4⁺/CD8⁺
446 T-cells from PBMCs. Briefly, PBMCs were bound to CD4 microbeads (20 μ L of
447 microbeads/10⁷ cells) for 15 minutes at 4°C. After washing the cells with washing
448 buffer, the cells were resuspended in 500 μ L of washing buffer, passed through an LS
449 column (Miltenyi) attached to a magnetic stand (Miltenyi) and washed three times.
450 To elute targeted cells, the column was washed with buffer after being removed from
451 the magnetic field. The approach was validated by MACS. The sorted targeted cells
452 were used for single-cell PCR analysis and sequencing.

453

454 **GO analysis**

455 To further investigate the mechanisms associated with the differences observed in
456 different T-cells in healthy humans, we performed gene ontology (GO) functional
457 enrichment analysis in DAVID (<https://david.ncifcrf.gov/>) by using the previously
458 screened differentially expressed genes, and took the top 10 items of the biological
459 process ranked in ascending order of FDR as the results[49].

460

461 **Motif and distribution of m⁶A peaks**

462 By using the bed format file obtained earlier as the input file, Hypergeometric
463 Optimization of Motif Enrichment (HOMER, <http://homer.ucsd.edu/homer/>)
464 software was used for motif enrichment analysis. The distribution of m⁶A peaks was
465 plotted on a mega gene with 10 bins in the 5'UTR, CDS, and 3'UTR regions, using
466 the methods described in our previous paper[18].

467

468 **Statistical Analyses**

469 Statistical analyses were performed using R version 4.0.2
470 (<https://www.r-project.org/>). Receiver operating characteristic curve (ROC) analysis
471 and the area under the curve (AUC) were calculated using the pROC package to
472 compare the efficacy of each model. We calculated ROC and AUC by randomly
473 sampling the true and predicted values. Values were labeled as 1 if the difference
474 between the predicted m⁶A value and the true value was no more than 0.5 and
475 labeled as 0 if the difference fell outside the range. The evaluation indicators of the
476 five-machine learning regressors did not conform to the normal distribution, so the
477 quartile was used for statistics.

478

479

480

481 **Declarations**

482 **Ethics approval and consent to participate**

483 The studies involving human participants were reviewed and approved by Ethics and
484 Human Subjects Committee of Guangxi Medical University (Ethical Review
485 No.20210092). The patients/participants provided their written informed consent to
486 participate in this study.

487 **Availability of data and materials**

488 The raw data of the m⁶A-seq and single-cell RNA-seq data have been deposited in
489 the Sequence Read Archive (SRA) database
490 (<https://www.ncbi.nlm.nih.gov/bioproject/PRJNA890754>). The code associated with
491 this research is available on GitHub at the following repository:
492 <https://github.com/Ansangqi/Scm6A>

493 **Competing interests**

494 The authors declare that they have no competing interests.

495 **Acknowledgments**

496 This work was supported by the National Natural Science Foundation of China
497 (82160389, 8210389), Guangxi Medical University Training Program for
498 Distinguished Young Scholars to SQ.A., Guangxi Science and Technology Base and
499 Talent Project (2022AC19006)

500 **CRediT authorship contribution statement**

501 Yueqi Li: Formal analysis, Visualization, Writing – original draft, Writing – review &
502 editing. Jingyi Li: Formal analysis, Writing – original draft. Wenxing Li: Formal
503 analysis, Writing – original draft. Shuaiyi Liang: Formal analysis, Writing – original
504 draft. Wudi Wei: Formal analysis, Writing – original draft. Jiemei Chu: Formal
505 analysis. Jingzhen Lai: Formal analysis. Yao Lin: Visualization. Hubin Chen:
506 Visualization. Jinming Su: Visualization. Xiaopeng Hu: Resources. Gang Wang:
507 Resources. Jun Meng: Resources. Junjun Jiang: Resources, Conceptualization. Li Ye:
508 Resources, Conceptualization. Sanqi An: Writing – original draft, Writing – review &
509 editing, Conceptualization, Funding acquisition. All authors have read and approved
510 the final manuscript.

511 References

512 [1] Zhang Y, Chen W, Zheng X, Guo Y, Cao J, Zhang Y, et al. Regulatory role
513 and mechanism of m(6)A RNA modification in human metabolic diseases.
514 Mol Ther Oncolytics 2021; (22):52-63.

515 [2] Wang X, Lu X, Wang P, Chen Q, Xiong L, Tang M, et al. SRSF9 promotes
516 colorectal cancer progression via stabilizing DSN1 mRNA in an m6A-related
517 manner. Journal of Translational Medicine 2022; (20).

518 [3] Niu X, Yang Y, Ren Y, Zhou S, Mao Q, Wang Y. Crosstalk between m(6)A
519 regulators and mRNA during cancer progression. Oncogene 2022;
520 (41):4407-19.

521 [4] Meyer KD. HOW M(6)A MAKES ITS MARK. Nature Reviews Molecular
522 Cell Biology 2022; (23):519-.

523 [5] Lee Y, Choe J, Park OH, Kim YK. Molecular Mechanisms Driving mRNA
524 Degradation by m(6)A Modification. Trends in Genetics 2020; (36):177-88.

525 [6] Khan RIN, Malla WA. m(6)A modification of RNA and its role in cancer,
526 with a special focus on lung cancer. Genomics 2021; (113):2860-9.

527 [7] An S, Xie Z, Liao Y, Jiang J, Dong W, Yin F, et al. Systematic analysis of
528 clinical relevance and molecular characterization of m6A in COVID-19
529 patients. Genes & Diseases 2022; (9):1170-3.

530 [8] Li H-B, Tong J, Zhu S, Batista PJ, Duffy EE, Zhao J, et al. m(6)A mRNA
531 methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS
532 pathways. Nature 2017; (548):338-42.

533 [9] Juarez I, Su S, Herbert Z, Teijaro J, Moulton VJFii. Splicing factor SRSF1 is
534 essential for CD8 T cell function and host antigen-specific viral immunity.
535 2022; (13).

536 [10] Baharom F, Ramirez-Valdez RA, Khalilnezhad A, Khalilnezhad S, Dillon M,
537 Hermans D, et al. Systemic vaccination induces CD8+ T cells and remodels
538 the tumor microenvironment. 2022.

539 [11] Al Moussawy M, Abdelsamed HAJFii. Non-cytotoxic functions of CD8 T
540 cells:“repentance of a serial killer”. 2022; (13).

541 [12] Huang H, Weng H, Chen J. The Biogenesis and Precise Control of RNA
542 m(6)A Methylation. Trends in Genetics 2020; (36):44-52.

543 [13] Yang Z, Yi W, Tao J, Liu X, Zhang MQ, Chen G, et al. HPVMD-C: a
544 disease-based mutation database of human papillomavirus in China. Database
545 (Oxford) 2022; (2022).

546 [14] Yang S, Wang Y, Chen Y, Dai Q. MASQC: Next Generation Sequencing
547 Assists Third Generation Sequencing for Quality Control in
548 N6-Methyladenine DNA Identification. Front Genet 2020; (11):269.

549 [15] Wang Y, Xu Y, Yang Z, Liu X, Dai Q. Using Recursive Feature Selection with
550 Random Forest to Improve Protein Structural Class Prediction for
551 Low-Similarity Sequences. Comput Math Methods Med 2021;
552 (2021):5529389.

553 [16] Kong R, Xu X, Liu X, He P, Zhang MQ, Dai Q. 2SigFinder: the combined
554 use of small-scale and large-scale statistical testing for genomic island
555 detection from a single genome. *Bmc Bioinformatics* 2020; (21):159.

556 [17] Dai Q, Bao C, Hai Y, Ma S, Zhou T, Wang C, et al. MTGIpick allows robust
557 identification of genomic islands from a single genome. *Brief Bioinform*
558 2018; (19):361-73.

559 [18] An S, Huang W, Huang X, Cun Y, Cheng W, Sun X, et al. Integrative network
560 analysis identifies cell-specific trans regulators of m(6)A. *Nucleic Acids*
561 *Research* 2020; (48):1715-29.

562 [19] Li J, Guo G. Deciphering single-cell transcriptional programs across species.
563 *Nature Genetics* 2022.

564 [20] Levy JJ, Titus AJ, Petersen CL, Chen Y, Salas LA, Christensen BC.
565 MethylNet: an automated and modular deep learning approach for DNA
566 methylation analysis. *Bmc Bioinformatics* 2020; (21).

567 [21] He J, Sun M-a, Wang Z, Wang Q, Li Q, Xie H. Characterization and machine
568 learning prediction of allele-specific DNA methylation. *Genomics* 2015;
569 (106):331-9.

570 [22] Cai Q, He B, Zhang P, Zhao Z, Peng X, Zhang Y, et al. Exploration of
571 predictive and prognostic alternative splicing signatures in lung
572 adenocarcinoma using machine learning methods. *Journal of Translational*
573 *Medicine* 2020; (18).

574 [23] Xue H, Wei Z, Chen K, Tang Y, Wu X, Su J, et al. Prediction of RNA
575 Methylation Status From Gene Expression Data Using Classification and
576 Regression Methods. *Evol Bioinform Online* 2020; (16):1176934320915707.

577 [24] Ren X, Wen W, Fan X, Hou W, Su B, Cai P, et al. COVID-19 immune
578 features revealed by a large-scale single-cell transcriptome atlas. *Cell* 2021;
579 (184):1895-913.e19.

580 [25] Yao H, Gao CC, Zhang D, Xu J, Song G, Fan X, et al. scm(6)A-seq reveals
581 single-cell landscapes of the dynamic m(6)A during oocyte maturation and
582 early embryonic development. *Nat Commun* 2023; (14):315.

583 [26] Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE, Jaffrey
584 SRJNm. Single-nucleotide-resolution mapping of m6A and m6Am
585 throughout the transcriptome. 2015; (12):767-72.

586 [27] Ellmeier W, Haust L, Tschismarov R. Transcriptional control of CD4 and
587 CD8 coreceptor expression during T cell development. *Cellular and*
588 *Molecular Life Sciences* 2013; (70):4537-53.

589 [28] Furlan M, Galeota E, de Pretis S, Caselle M, Pelizzola M. m6A-Dependent
590 RNA Dynamics in T Cell Differentiation. *Genes* 2019; (10).

591 [29] Giles JR, Ngiow SF, Manne S, Baxter AE, Khan O, Wang P, et al. Shared and
592 distinct biological circuits in effector, memory and exhausted CD8(+) T cells
593 revealed by temporal single-cell transcriptomics and epigenetics. *Nat*
594 *Immunol* 2022.

595 [30] Gao Q, Wang S, Chen X, Cheng S, Zhang Z, Li F, et al. Cancer-cell-secreted
596 CXCL11 promoted CD8(+) T cells infiltration through
597 docetaxel-induced-release of HMGB1 in NSCLC. *J Immunother Cancer* 2019;
598 (7):42.

599 [31] Lin Y, Li Y, Chen H, Meng J, Li J, Chu J, et al. Weighted gene co-expression
600 network analysis revealed T cell differentiation associated with the
601 age-related phenotypes in COVID-19 patients. *BMC Med Genomics* 2023;
602 (16):59.

603 [32] Chen Y, Wang G, Li J, Xia L, Zhu L, Li W, et al. CASA: a comprehensive
604 database resource for the COVID-19 Alternative Splicing Atlas. *J Transl Med*
605 2022; (20):473.

606 [33] An S, Xie Z, Liao Y, Jiang J, Dong W, Yin F, et al. Systematic analysis of
607 clinical relevance and molecular characterization of m(6)A in COVID-19
608 patients. *Genes Dis* 2022; (9):1170-3.

609 [34] An S, Li Y, Lin Y, Chu J, Su J, Chen Q, et al. Genome-Wide Profiling
610 Reveals Alternative Polyadenylation of Innate Immune-Related mRNA in
611 Patients With COVID-19. *Front Immunol* 2021; (12):756288.

612 [35] Tegowski M, Flamand MN, Meyer KD. scDART-seq reveals distinct m(6)A
613 signatures and mRNA methylation heterogeneity in single cells. *Molecular
614 cell* 2022; (82):868-+.

615 [36] Dominissini D, Moshitch-Moshkovitz S, Salmon-Divon M, Amariglio N,
616 Rechavi G. Transcriptome-wide mapping of N-6-methyladenosine by
617 m(6)A-seq based on immunocapturing and massively parallel sequencing.
618 *Nature Protocols* 2013; (8):176-89.

619 [37] Dolina JS, Van Braeckel-Budimir N, Thomas GD, Salek-Ardakani S. CD8(+) T
620 Cell Exhaustion in Cancer. *Front Immunol* 2021; (12):715234.

621 [38] Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga
622 G, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid
623 leukaemia. *Nature* 2021; (593):597-601.

624 [39] Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding
625 miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks
626 from large-scale CLIP-Seq data. *Nucleic Acids Res* 2014; (42):D92-7.

627 [40] Shah A, Qian Y, Weyn-Vanhentenryck SM, Zhang C. CLIP Tool Kit (CTK): a
628 flexible and robust pipeline to analyze CLIP sequencing data. *Bioinformatics*
629 2017; (33):566-7.

630 [41] Liu H, Begik O, Novoa EM. EpiNano: Detection of m(6)A RNA
631 Modifications Using Oxford Nanopore Direct RNA Sequencing. *Methods
632 Mol Biol* 2021; (2298):31-52.

633 [42] Parker MT, Knop K, Sherwood AV, Schurch NJ, Mackinnon K, Gould PD, et
634 al. Nanopore direct RNA sequencing maps the complexity of *Arabidopsis*
635 mRNA processing and m(6)A modification. *Elife* 2020; (9).

636 [43] Zhang Y, Huang D, Wei Z, Chen K. Primary sequence-assisted prediction of

637 m(6)A RNA methylation sites from Oxford nanopore direct RNA sequencing
638 data. Methods 2022; (203):62-9.

639 [44] Gao Z, Liu L, Ruan JH. Logo2PWM: a tool to convert sequence logo to
640 position weight matrix. BMC Genomics 2017; (18).

641 [45] Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low
642 memory requirements. Nature Methods 2015; (12):357-U121.

643 [46] Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL.
644 StringTie enables improved reconstruction of a transcriptome from RNA-seq
645 reads. Nature Biotechnology 2015; (33):290-+.

646 [47] cellranger:<https://support.10xgenomics.com/single-cell-dna/software/overview/welcome>.

647 [48] Wu F, Fan J, He Y, Xiong A, Yu J, Li Y, et al. Single-cell profiling of tumor
648 heterogeneity and the microenvironment in advanced non-small cell lung
649 cancer. Nat Commun 2021; (12):2540.

650 [49] Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools:
651 paths toward the comprehensive functional analysis of large gene lists.
652 Nucleic Acids Research 2009; (37):1-13.

653

654

655

656

657 **Figure legends**

658 **Figure 1. Single-cell m⁶A prediction models evaluation**

659 **A.** Algorithmic framework for single-cell m⁶A calculation. **B.** Boxplot comparison
660 rank of different models by R-squared in the test set. **C.** Area under the receiver
661 operating characteristic (AUROC) for each method. **D.** ROC curves and AUC values
662 for the different models in prediction of m⁶A sites in EMSG00000143761.

663

664 **Figure 2. Verification of the reliability and accuracy of Scm⁶A.**

665 **A.** Schematic flow diagram showing the framework of validation of Scm⁶A. **B.**
666 Schematic diagram of the distribution of m⁶A peak lengths calculated by Scm⁶A and
667 the winscore-based method using m⁶A-seq. **C.** Correlation analysis between the
668 Scm⁶A-calculated m⁶A levels and the winscore-based method-calculated m⁶A levels
669 at the same m⁶A site. **D.** Correlation analysis between Scm⁶A calculated random m⁶A
670 levels and winscore-based method calculated m⁶A levels at the same m⁶A site.

671

672 **Figure 3. Bioinformatics analysis of m⁶A-sequencing results from
673 MACS-isolated T-cells in human PBMC.**

674 **A.** The normalized distributions of m⁶A peaks across the 5'UTR, CDS and 3'UTR for
675 CD4⁺ and CD8⁺ T-cells from four samples. **B.** Representative motifs for CD4⁺ and
676 CD8⁺ T-cells in four samples. **C.** Volcano plots showing different m⁶A
677 (FoldChange>1.2, FDR<0.1). Dots in red and blue indicate high and low expression
678 of m⁶A and genes, respectively. **D.** Venn diagram of DEGs and genes where different
679 m⁶A modifications are located. **E.** Scatter plot of log₂FoldChange of different m⁶A
680 and corresponding DEGs. **F.** Cluster gene expression heatmap of differentially
681 expressed genes (Right) and m⁶A level heatmap of different m⁶A modifications
682 (Left). **G.** Gene ontology enrichment analysis of the intersection of DEGs and
683 different m⁶A.

684

685 **Figure 4. Bioinformatics analysis of Scm⁶A analysis results in human PBMC.**

686 **A.** Representative motifs for CD4⁺ and CD8⁺ T-cells in four samples. **B.** t-SNE maps
687 of scRNA-seq data and m⁶A predicted by machine learning models. **C.** Cluster
688 heatmap of differentially expressed m⁶A (FoldChange>1.2, FDR<0.1) predicted by
689 machine learning models. **D.** Gene ontology enrichment analysis of the intersection
690 of DEGs and Scm6A predicted different m⁶A located genes. **E.** Cumulative
691 distribution function plots of different m⁶A and nondifferent m⁶A.

692

693 **Figure 5. Using Scm⁶A to explore the single-cell level m⁶A from scRNA-seq data
694 of lung cancer patients.**

695 **A.** and **B.** Principal component analysis (PCA) of single-cell m⁶A predicted by
696 Scm⁶A. Each color represents a cell. The ellipses around the group mean represent
697 the confidence regions. **C.** Heatmap of different single-cell m⁶A of NSCLC. **D.** Gene
698 ontology enrichment analysis of the CD8_EM related m⁶A. **E.** Heatmaps
699 representing the m⁶A ratios of the m⁶A peaks within CD8_EM related m⁶A (upper
700 panel) and the gene expressions of the 19 CD8_EM related m⁶A regulators (lower
701 panel) that significantly correlated with the m⁶A indexes of CD8_EM related m⁶A.
702 These cells are sorted according to the m⁶A indexes of CD8_EM related m⁶A. Right
703 panel shows Gene MANIA interaction network of 19 CD8_EM related m⁶A
704 regulators with Physical Interactions, Predicted, co-expression, Shared protein
705 domains, co-localization, Genetic Interactions and pathway. Dim grey nodes
706 represent query regulators lists.

707

708 **Figure S1. A comparative analysis of m⁶A calculation methods based on the
709 Random Forest model and other models**

710 **A.** Dots plot show the correlations between predicted m⁶A level and true m⁶A level.
711 Boxplot show R-squared (**B**) and AUROC (**C**) of RF model use corresponding m⁶A
712 regulators or random permutation to calculate single-cell m⁶A.

713

714 **Figure S2. Application of Scm⁶A in datasets pertaining to mouse cleavage-stage**
715 **embryos and lung cancer**

716 **A.** Scatterplots of correlation between Scm⁶A prediction results and the scm⁶A-seq
717 sequencing outcomes (Left), and random correlation scatterplots of both (Right). **B.**
718 Representative motifs for CD8_EM cells, Th and Tpex cells in NSCLC samples.

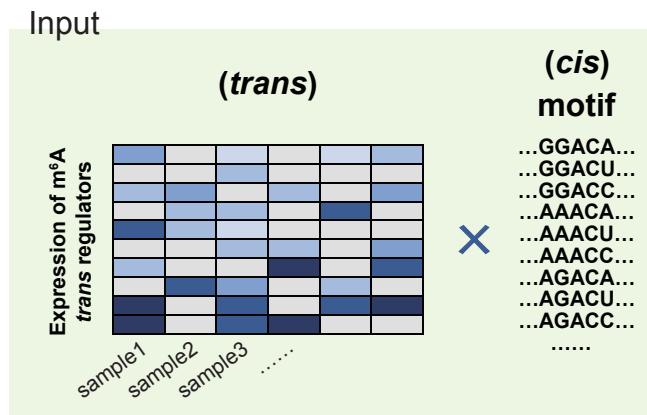
719

720 **Figure S3. Application of Scm⁶A in COVID-19 data sets**

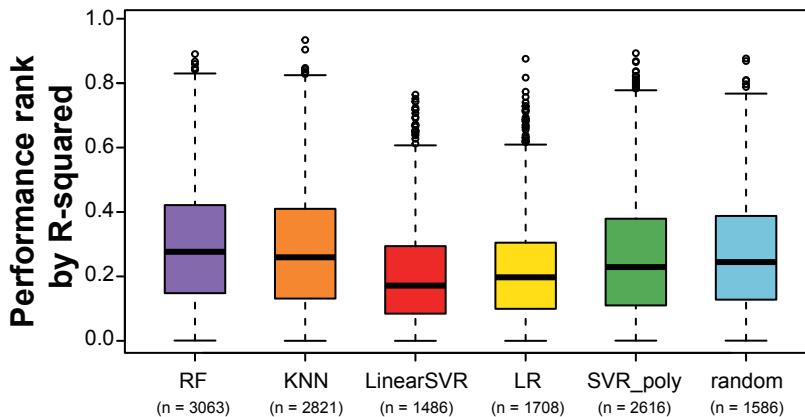
721 **A.** UMAP plot of m⁶A predicted by Scm⁶A. **B.** GO enrichment analysis of genes
722 with differential m⁶A modifications.

723

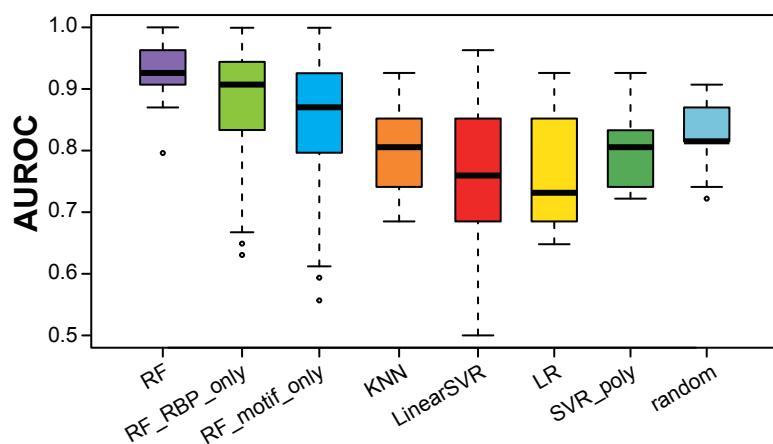
A



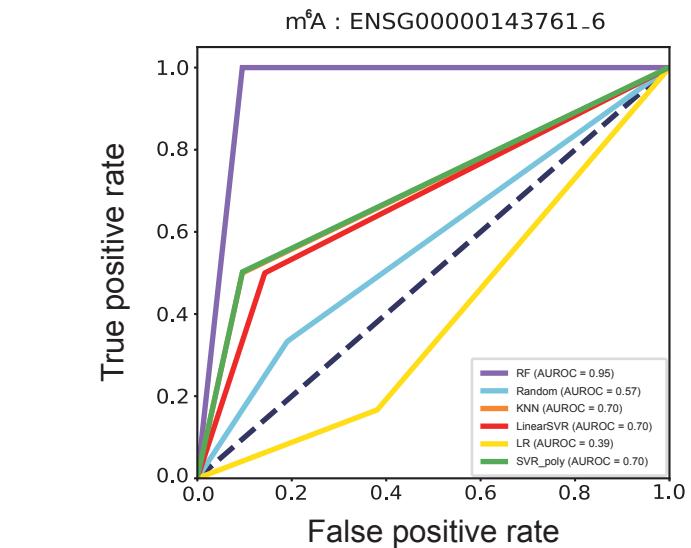
B



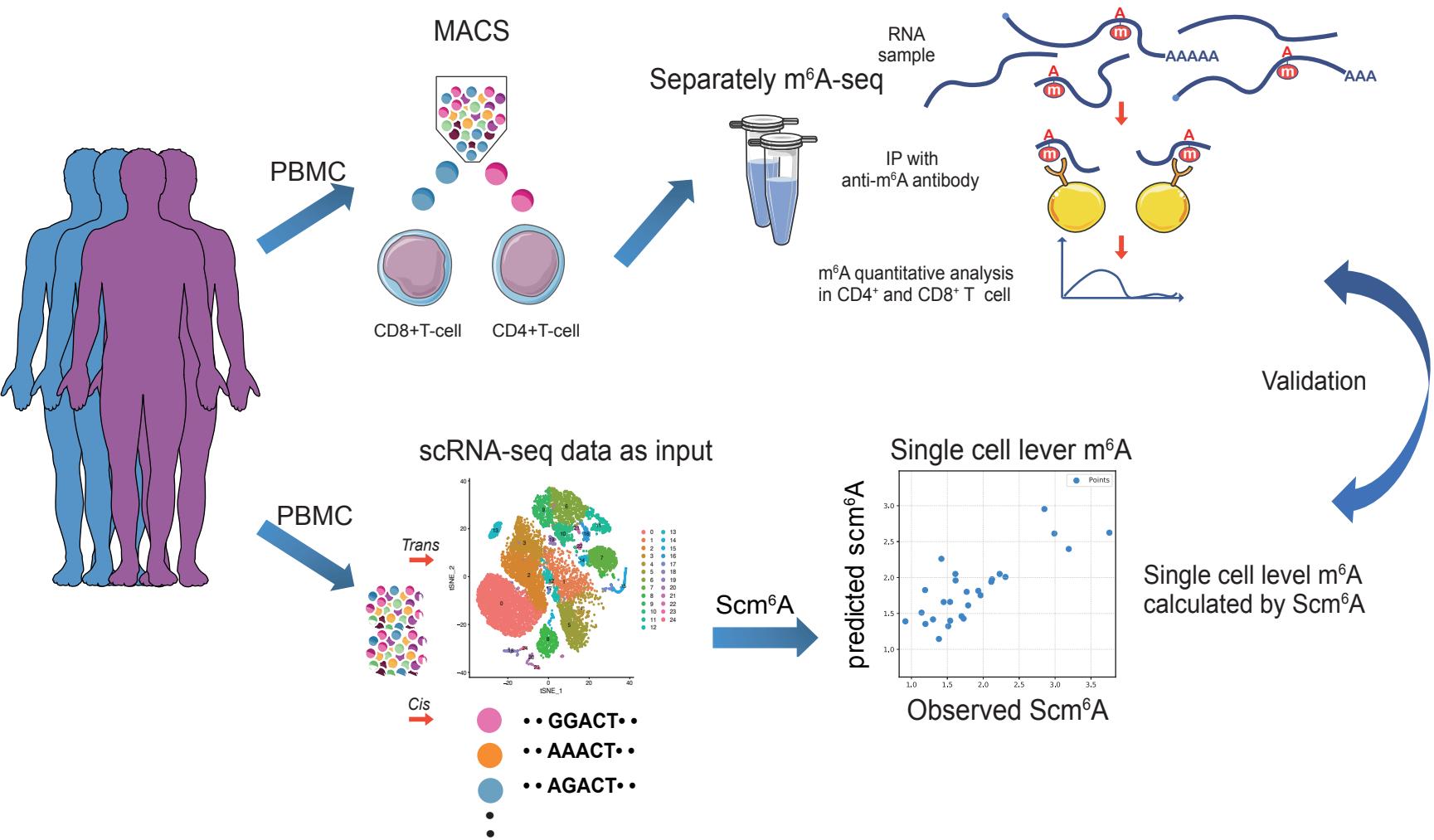
C



D



A

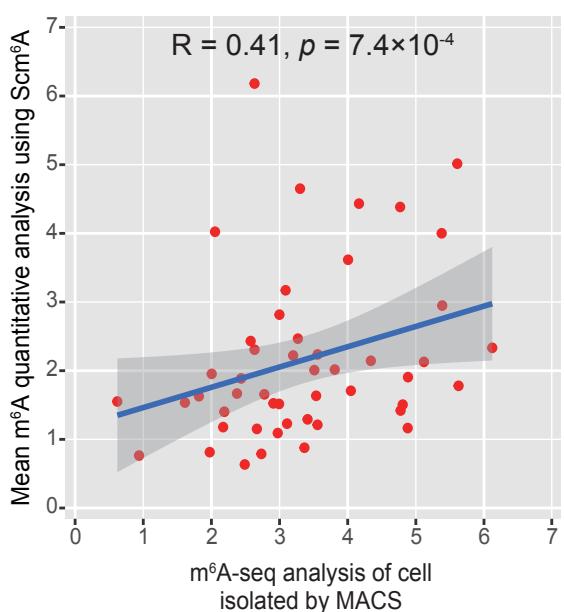
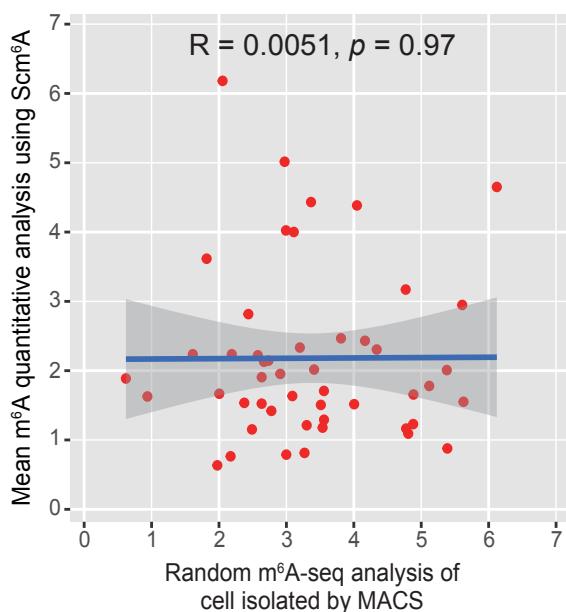


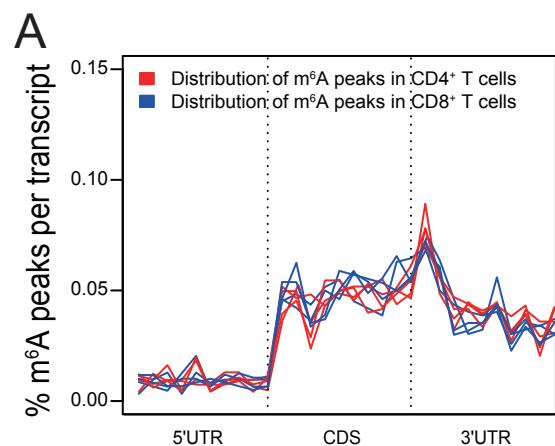
B

C

Scm⁶A quantitative analysis
(window size: 100:600 bp)

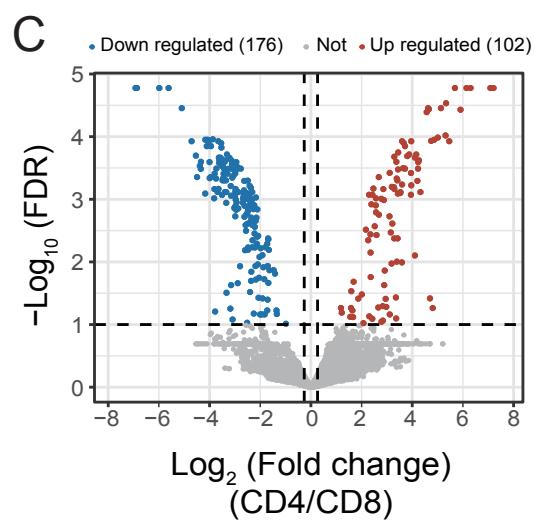
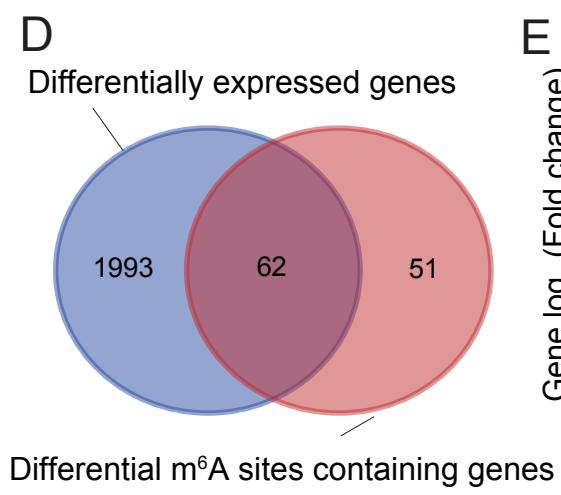
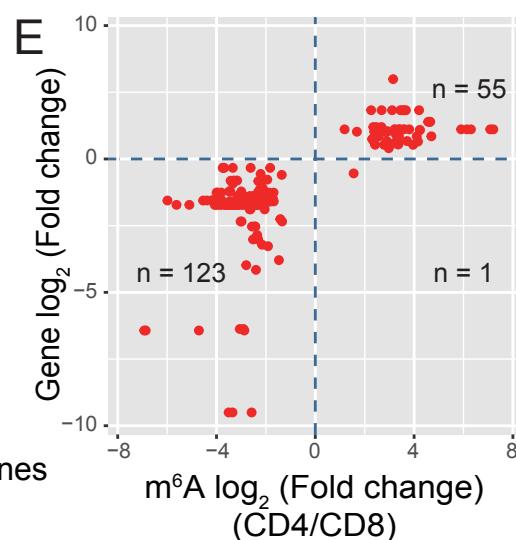
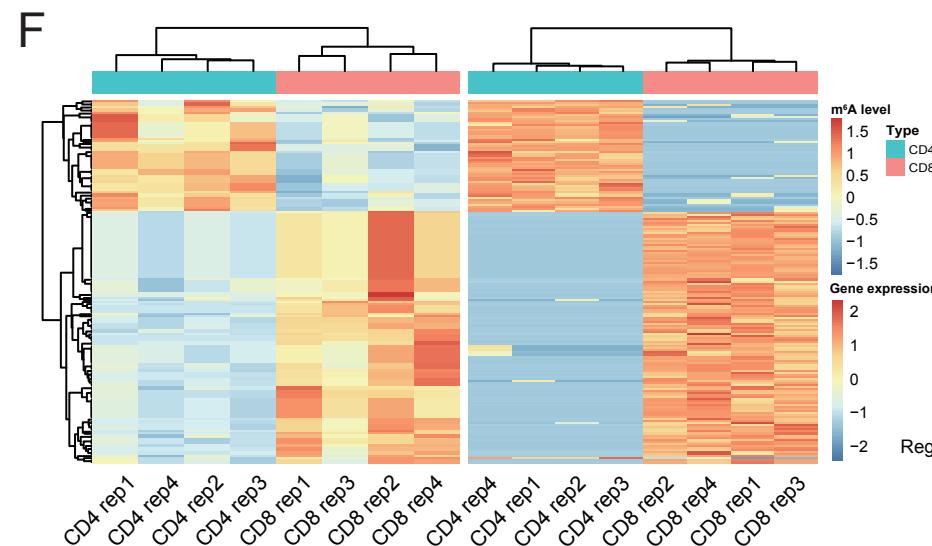
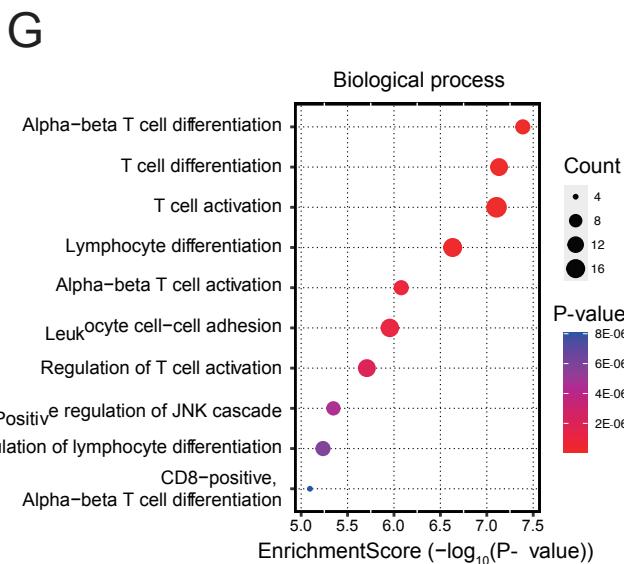
m⁶A-seq analysis using Winscore based method (100 bp)





B

Sample	Motif	P-value
CD4 rep1	GGACU	1E-361
CD4 rep2	GGACU	1E-319
CD4 rep3	GGACU	1E-336
CD4 rep4	GGACU	1E-407
CD8 rep1	GGACU	1E-207
CD8 rep2	GGACU	1E-255
CD8 rep3	GGACU	1E-239
CD8 rep4	GGACU	1E-282



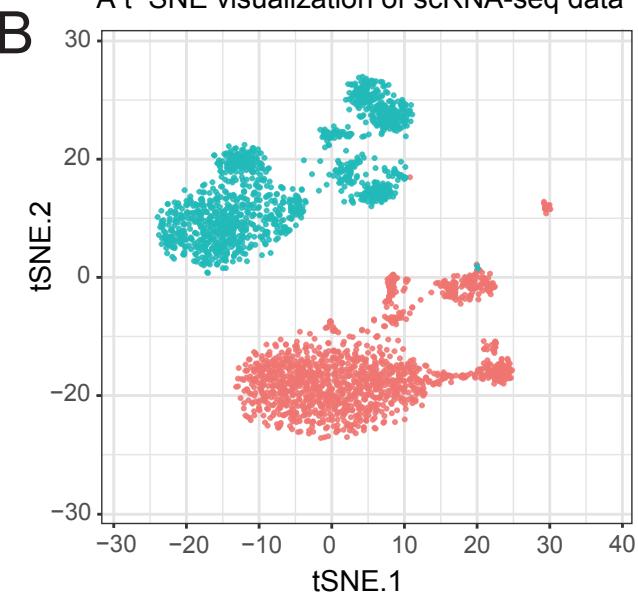
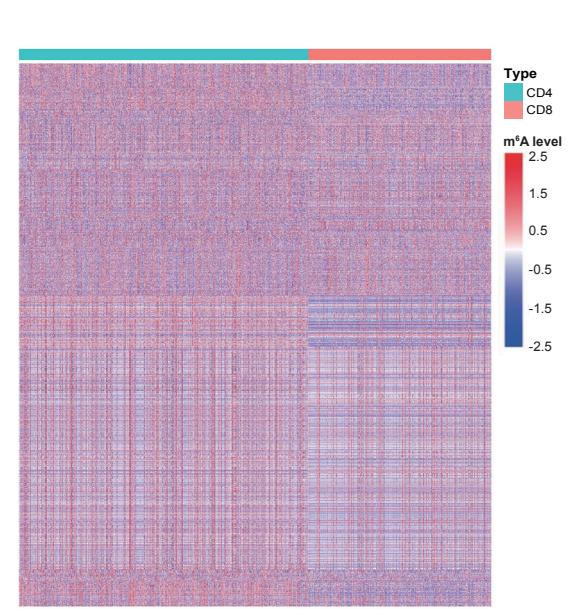
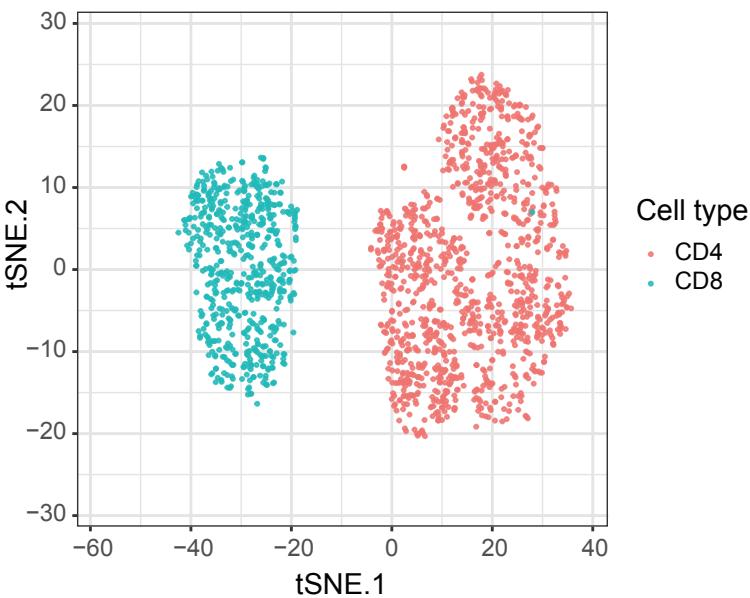
A

Sample	Motif	P-value
CD4 rep1	GGACU	1E-43
CD4 rep2	GGACU	1E-53
CD4 rep3	GGACU	1E-43
CD4 rep4	GGAC	1E-52

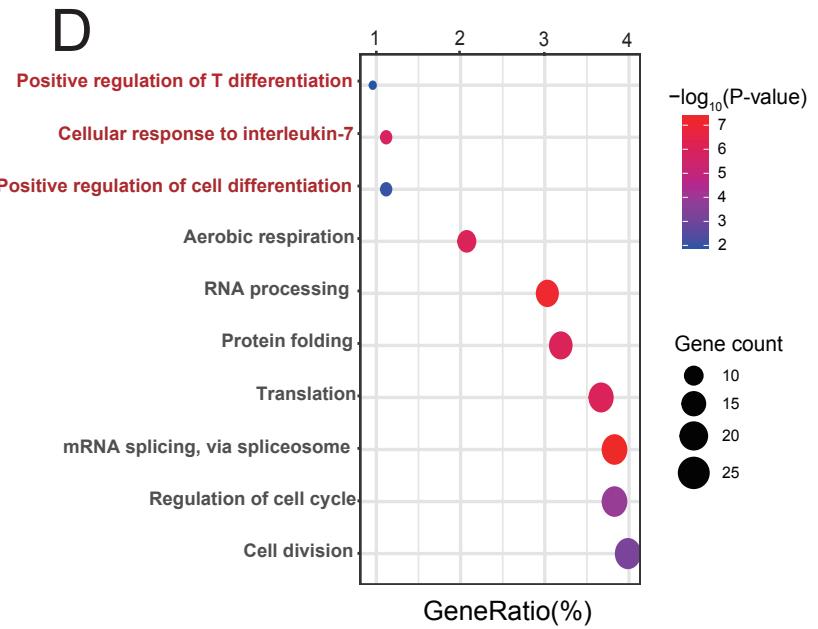
bioRxiv preprint doi: <https://doi.org/10.1101/2023.12.14.571511>; this version posted December 14, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Sample	Motif	P-value
CD8 rep1	GGACU	1E-40
CD8 rep2	GGACG	1E-18
CD8 rep3	GGACU	1E-33
CD8 rep4	GGACU	1E-29

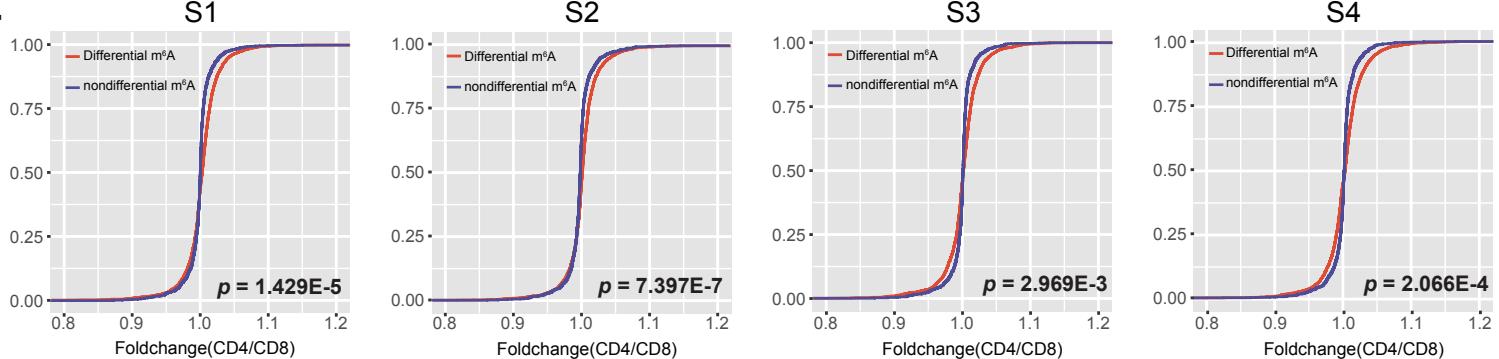
A t-SNE visualization of scRNA-seq data

A t-SNE visualization of m⁶A

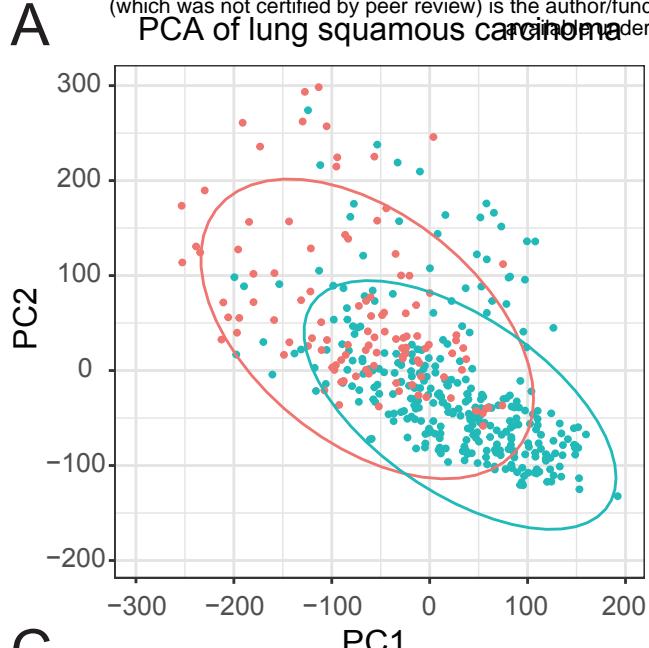
C



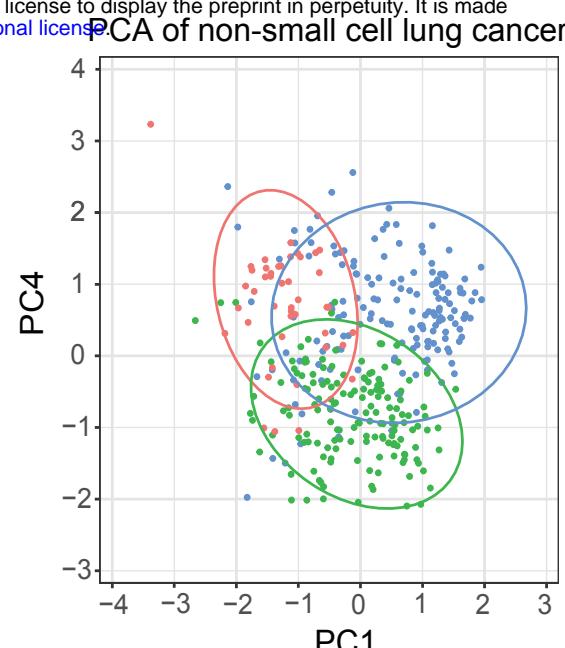
E



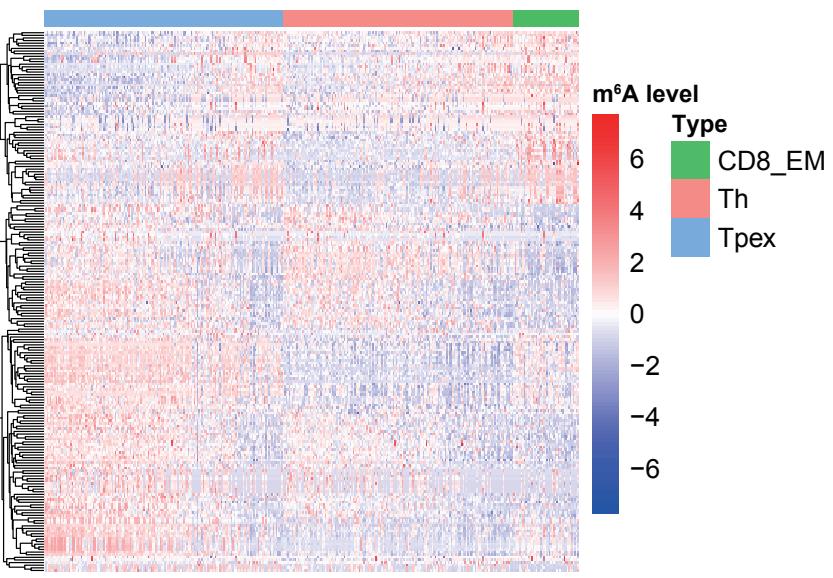
A



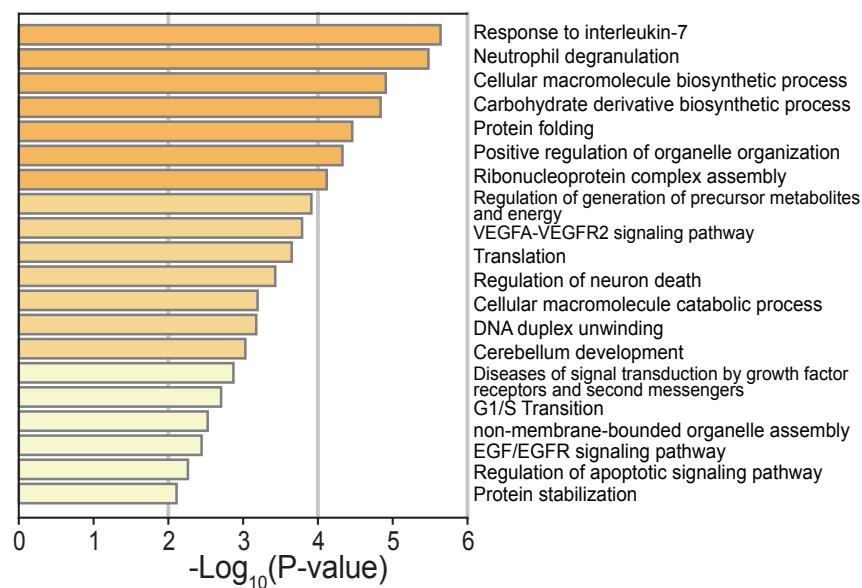
B



C

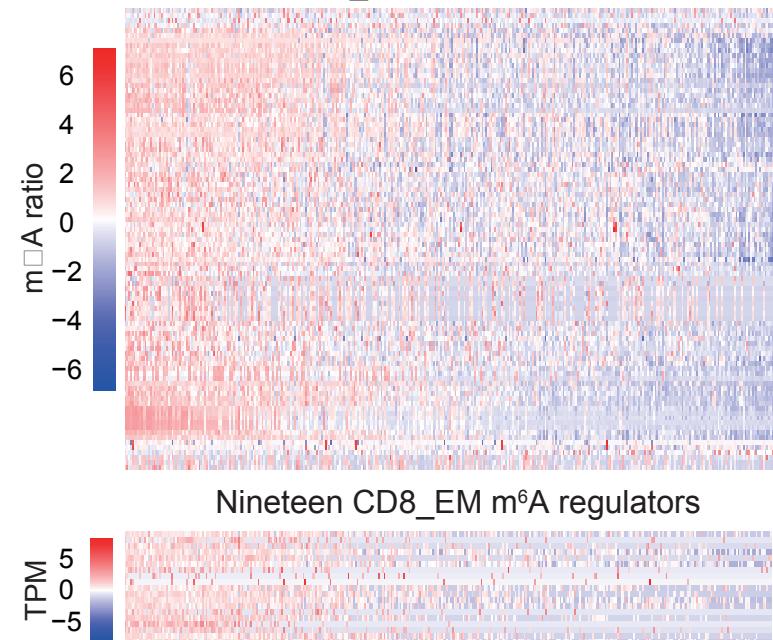


D



E

CD8_EM related m⁶A



Nineteen CD8_EM m⁶A regulators

