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Abstract:  25 

It is widely accepted that m6A exhibits significant intercellular specificity, which 26 

poses challenges for its detection using existing m6A quantitative methods. In this 27 

study, we introduce Scm6A, a machine learning-based approach for single-cell m6A 28 

quantification. Scm6A leverages input features derived from the expression levels of 29 

m6A trans regulators and cis sequence features, and found that Scm6A offers 30 

remarkable prediction efficiency and reliability. To further validate the robustness 31 

and precision of Scm6A, we applied a winscore-based m6A calculation method to 32 

conduct m6A-seq analysis on CD4+ and CD8+ T-cells isolated through 33 

magnetic-activated cell sorting (MACS). Subsequently, we employed Scm6A for 34 

analysis on the same samples. Notably, the m6A levels calculated by Scm6A 35 

exhibited a significant positive correlation with m6A quantified through m6A-seq in 36 

different cells isolated by MACS, providing compelling evidence for Scm6A's 37 

reliability. We also used the scm6A-seq method to validate the reliability of our 38 

approach. Additionally, we performed single-cell level m6A analysis on lung cancer 39 

tissues as well as blood samples from COVID-19 patients, and demonstrated the 40 

landscape and regulatory mechanisms of m6A in different T-cell subtypes from these 41 

diseases. In summary, our work has yielded a novel, dependable, and accurate 42 

method for single-cell m6A detection. We are confident that Scm6A will have broad 43 

applications in the realm of m6A-related research. 44 

 45 
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Introduction 48 

As the most widespread epigenetic modification in mRNA, m6A plays pivotal roles 49 

in gene expression regulation and is intricately linked to physiological processes in 50 

various diseases[1-7]. Among its multifaceted regulatory functions, m6A governs 51 

T-cell differentiation and influences immune-related gene expression, garnering 52 

substantial attention[8]. To gain deeper insights into the role of m6A in biological 53 

progresses, it becomes imperative to discern transcriptome-wide m6A levels and sites 54 

within individual cells. For instance, the presence of a multitude of immune cell and 55 

T-cell subtypes[8-11] poses a formidable challenge, as current m6A detection 56 

methods designed for bulk cell populations fall short in characterizing m6A levels 57 

and sites at the single-cell level. 58 

It is well-established that cell type-specific m6A levels and de novo m6A 59 

deposition are jointly regulated by trans-acting regulators and cis-regulatory 60 

elements[12]. In theory, leveraging information on these trans-acting regulators and 61 

cis-regulatory elements as input enables the prediction of m6A at the single-cell level 62 

using computational methods. Machine learning and other computational approaches 63 

have found extensive application in the analysis of diverse omics data, significantly 64 

advancing our understanding of biology [13-17]. In theory, machine learning holds 65 

the promise of predicting RNA methylation levels at the single-cell level. In our prior 66 

research, we developed a computational framework to systematically identify 67 

comprehensive trans regulators of m6A and performed experiments to verify the 68 

reliability of these trans regulators[18]. Additionally, a reliable regulatory network 69 

from trans regulators to m6A sites was constructed. Furthermore, we identified 70 

cell-specific m6A cis-regulatory motifs[18]. Machine learning, as a potent predictive 71 

tool, has been extensively employed in forecasting gene expression, DNA 72 

methylation, and alternative splicing, leveraging multiple biological features with 73 

impressive accuracy[19-22]. In fact, Xue et al. highlighted the challenges tied to the 74 

experimental detection of RNA m6A. To address this, they investigated the 75 
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possibility of using computational methods to predict RNA methylation status based 76 

on gene expression data. Employing methods such as Support Vector Machine (SVM) 77 

and Random Forests (RF), Xue et al. determined that gene expression data can 78 

indeed act as a reliable predictor for m6A methylation status[23]. Their findings have 79 

convinced us of the viability of predicting single-cell m6A using machine learning 80 

methods grounded in gene expression level. Herein, we attempted to develop a 81 

single-cell level m6A calculation method through a machine learning method. 82 

In this study, we leveraged comprehensive information on trans-regulatory 83 

elements of m6A and cis-elements, including motif and sequence data, to create a 84 

machine learning-based quantitative method for single-cell m6A analysis, which we 85 

named Scm6A (Single-cell m6A Analysis; available at 86 

https://github.com/Ansanqi/Scm6A). We applied multiple machine learning 87 

techniques to establish the association between trans-regulators and m6A, integrating 88 

cis sequence features and single-cell m6A levels. Subsequently, Scm6A was 89 

established with substantial predictive power to predict the level of m6A in individual 90 

cells. After that, we applied Scm6A to single-cell RNA-seq data from peripheral 91 

blood mononuclear cells (PBMCs) and calculated the m6A levels in CD4+ and CD8+ 92 

T-cell types. To validate the accuracy and reliability of Scm6A, we also performed 93 

m6A-seq on CD4+ and CD8+ T-cells, isolated via magnetic-activated cell sorting 94 

(MACS), from the same donor. Our findings underscored the precision and 95 

dependability of Scm6A in discerning single-cell m6A levels, in comparison to 96 

m6A-seq results derived from MACS-isolated cell populations. Subsequently, we 97 

extended our analysis to investigate single-cell m6A profiles in lung cancer 98 

scRNA-seq data using Scm6A and demonstrated that the m6A profiles are highly 99 

heterogeneous at the single-cell level in different subtypes of T-cells in lung cancer. 100 

We also applied our model to single-cell dataset of COVID-19[24], and demonstrated 101 

good performance in classifying T-cells and B-cells. Furthermore, we compared our 102 

Scm6A with the experimental method scm6A-seq developed by the Yang et al.[25], 103 
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Scm6A not only performed well in mouse cells but also exhibited a significant 104 

correlation with experimental sequencing results. 105 

 106 

Results 107 

Random Forest Outperforms Other ML Models in Single-Cell m6A Calculation 108 

Figure 1A illustrates the workflow of our study. Initially, we collected the gene 109 

expression data of 593 reliable m6A regulators and conserved sequence features 110 

associated with m6A, which we validated before[18]. To establish a precise 111 

single-cell m6A calculation model, we evaluated five machine learning regression 112 

models, including Random Forest (RF), K-NearestNeighbor (KNN), Support Vector 113 

Regression (SVR) with the poly kernel, Linear Regression (LR) and Linear Support 114 

Vector Regression (LinearSVR), all optimal parameters of the above models were 115 

obtained by grid search based on these trans and cis data. 116 

The coefficient of determination (R2), commonly employed to gauge the 117 

performance of regression-based machine learning models, was utilized as an 118 

evaluative parameter for assessing the proximity of data points to the fitted line. 119 

Notably, our analysis revealed that the RF model consistently outperformed the other 120 

machine learning models, displaying higher R2 values (Figure 1B), indicating that 121 

the RF model is the most suitable for single-cell m6A prediction. Additionally, the 122 

correlation analysis between the predicted m6A levels and true m6A levels 123 

demonstrated superior reliability of the RF model-based m6A calculation method 124 

compared to other models (Figure S1A). By defining the difference between the 125 

predicted value and the actual value as binary variables (See the Methods section for 126 

details), we performed receiver operating characteristic (ROC) analysis on models 127 

constructed using the five machine learning methods, based on their testing accuracy. 128 

Our findings revealed that the performance of Scm6A based on the RF model 129 

achieved a median balanced accuracy of 0.91 across multiple tests on all m6A sites 130 

(Figure 1C), which was substantially higher than that of other classical machine 131 
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learning methods. Moreover, we conducted a comparative analysis between random 132 

forest models constructed solely using trans-acting regulators and those built solely 133 

using cis-regulatory elements. The median balanced accuracy of both models was 134 

found to be lower than that of the model created by integrating both types of 135 

effectors. The other four models achieved median balanced accuracies ranging from 136 

0.8 to 0.9, suggesting the regulatory network we constructed is reliable. Moreover, an 137 

example is shown in Figure 1D. The ROC curves of the five models demonstrated 138 

distinct prediction performances, with the RF model exhibiting the highest prediction 139 

efficiency. To further validate our findings, we conducted a randomized relabeling of 140 

samples and performed ROC analysis using the methodology described above, the 141 

AUROC and R2 values of the RF model significantly exceeded those generated by 142 

random permutations (Figure S1B, C), suggesting a significant level of accuracy that 143 

cannot be explained by random chance. Overall, we identified the best fitting 144 

single-cell m6A calculation method and named it Scm6A. 145 

 146 

Accuracy and reliability of Scm6A were further validated by m6A-seq from 147 

magnetic-activated cell sorting in human PBMCs 148 

We performed single-cell RNA-seq analysis of PBMCs from four healthy 149 

participants and extracted gene expression data for 593 reliable m6A regulators[18] 150 

as trans-acting input, and 42 m6A conserved sequence information[18, 26] as 151 

cis-acting input to for Scm6A. Using Scm6A, we calculated the single-cell level m6A 152 

profiles in CD4+ and CD8+ T-cells (Figure 2A). Simultaneously, we used a 153 

winscore-based m6A calculation method[18] to perform m6A-seq analysis of CD4+ 154 

and CD8+ T-cells isolated by MACS. To control technical biases in the regulatory 155 

network of trans m6A regulators to m6A sites in the m6A-seq libraries, including 156 

variations in sequencing lengths and RNA fragmentation lengths, we merged 157 

continuous Scm6A calculation peaks within the same gene, as described before[18]. 158 

Due to the different window sizes with two different calculation methods cannot be 159 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2023. ; https://doi.org/10.1101/2023.12.14.571511doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.14.571511
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

used for comparison of precise m6A locations, we obtained 49 precisely matched 160 

m6A windows to compare the correlations of m6A levels within the same gene region 161 

(Figure 2B), and these m6A sites with same localization on the transcriptome were 162 

the best choice for validating the accuracy and reliability of Scm6A. As we expected, 163 

there was a significant correlation between the m6A levels predicted by Scm6A and 164 

quantified by m6A-seq from MACS (Figure 2C). Moreover, there was no significant 165 

correlation between Scm6A and m6A-seq analysis results generated by random 166 

permutation of these m6A sites (Figure 2D), indicating a significant accuracy not be 167 

explained by random chances. 168 

To further validate the accuracy and reliability of Scm6A, we conducted a 169 

comparative analysis between Scm6A and the single-cell m6A sequencing method 170 

recently published by Yang et al.[25], known as scm6A-seq. Given that scm6A-seq 171 

employs mouse cleavage-stage embryos cells as its experimental subject, we initially 172 

converted mouse gene IDs to their corresponding human gene IDs and subjected the 173 

gene expression data to standardized preprocessing. This step was carried out to 174 

enable an effective comparison with Scm6A. Despite variations in quantification 175 

methodologies, we harmonized the data through logarithmic transformations, 176 

ensuring that both Scm6A's predictions and the m6A sequencing data provided in 177 

Yang et al.'s study could be juxtaposed for analysis. 178 

Further correlation analysis results indicate a significant positive relationship 179 

(R=0.3, p=1x10-74) between the predictions generated by Scm6A and the 180 

experimentally measured m6A expression levels in scm6A-seq. This finding not only 181 

validates the efficacy of the Scm6A model in capturing underlying patterns within the 182 

data to a certain extent but also strongly reinforces the reliability of Scm6A's 183 

predictive outcomes. We subsequently shuffled the order of the m6A sites and then 184 

performed a correlation analysis between the computational results of Scm6A and 185 

scm6A-seq. The correlation in the shuffled matrix was nearly absent (R=0, p=0.58) 186 

(Figure S2A). In summary, Scm6A proves to be a precise and dependable 187 
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computational tool for single-cell m6A analysis. It's cost-effectiveness, efficiency, 188 

and reliability make it a powerful tool with significant potential, offering researchers 189 

a rapid and effective means to explore the epigenetic features of cells. 190 

 191 

Identification of the potential role and landscape of m6A in CD4+ and CD8+ 192 

T-cells through m6A-seq 193 

It is widely accepted that the differentiation of T-cell subtypes is associated with the 194 

expression of CD4 and CD8[27]. Transcriptional regulation plays a critical role in 195 

regulating the fate choice of CD4+/CD8+ T-cells[27]. Recently, some studies have 196 

reported that m6A has a broader impact on the dynamics of the RNA life cycle in 197 

T-cell differentiation by regulating crucial genes involved in T-cell 198 

differentiation[28]. 199 

Typically, a combination analysis of m6A-seq and RNA-seq is used to identify 200 

the potential role and mechanism of m6A-regulated genes in biological processes. To 201 

further validate the reliability of Scm6A, we performed m6A feature analysis using 202 

m6A-seq data from MACS and RNA-seq analysis to identify the potential differences 203 

in the role and landscape of m6A in CD4+ and CD8+ T-cells. As shown in Figure 3A, 204 

the m6A peaks of CD4+ T-cells tended to be enriched near stop codons, while the 205 

m6A peaks of CD8+ T-cells were enriched in coding regions and start codons, 206 

suggesting that the different T-cell types may have different m6A regulators 207 

controlling the m6A-mediated gene expression. We also checked the motif 208 

enrichment of CD4+ and CD8+ T-cells and found that m6A peaks in CD4+ T-cells 209 

more tended to be enriched in the GGACU motif. To be more specific, the P-value 210 

for motif enrichment analysis in CD4+ T-cells ranged from 1×10-319 to 1× 10-407, 211 

while the P-value in CD8+ T-cells ranged from 1×10-207 to 1×10-282(Figure 3B). Then, 212 

we performed different m6A analyses and differential expression analyses using 213 

m6A-seq and input data as RNA-seq data, as we reported before[18]. We found 2055 214 

differentially expressed genes and 113 genes that contained different methylated m6A 215 
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sites (278 m6A sites) (Figure 3C). The intersection of these two sets contains 62 216 

genes (Figure 3D). We found that the gene expression levels of these genes were 217 

positively related to the m6A level of differentially methylated sites (Figure 3E, F). 218 

As expected, these potential m6A-regulated genes were enriched in pathways related 219 

to T-cell differentiation and cell differentiation, among others. (Figure 3G), 220 

suggesting m6A controls T-cell differentiation related gene expression. 221 

 222 

Identification of the potential role and landscape of m6A in CD4+ and CD8+ 223 

T-cells through Scm6A 224 

Furthermore, we tried to investigate whether the combination analysis of Scm6A and 225 

single-cell RNA-seq performed as well as the combination analysis of m6A-seq and 226 

RNA-seq from MACS. As shown in Figure 4A, motif enrichment analysis revealed 227 

that m6A peaks calculated by Scm6A exhibited a tendency to be enriched in the 228 

GGACU motif in CD4+ T-cells, consistent with the enriched motif of m6A peaks 229 

identified through m6A-seq analysis (Figure 3B). To comprehensively analyze the 230 

m6A landscape at a single-cell resolution, we performed unsupervised clustering 231 

analysis of single-cell level m6A in CD4+ T-cells and CD8+ T-cells identified by 232 

scRNA-seq. We observed two clusters of single-cell m6A profiles (Figure 4B), which 233 

were clearly separated according to the cell types. Moreover, we predicted the m6A 234 

levels of CD4+ and CD8+ T-cells from a single sample at single-cell resolution and 235 

used cluster heatmaps to visualize the within-group similarity of the same cell type 236 

and the heterogeneity between groups of different cell types (Figure 4C), the genes 237 

containing these m6A modifications were enriched in T-cell differentiation and cell 238 

differentiation (Figure 4D). We also found that the gene expression levels of the 239 

m6A-deposited genes were positively related to the m6A of differentially methylated 240 

sites (Figure 4E), consistent with the results obtained from m6A-seq analysis using 241 

MACS-isolated cells (Figure 3F, G). These findings further underscore the reliability 242 

of Scm6A as a method for single-cell level m6A analysis.  243 
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 244 

Application of Scm6A in different lung cancer subtypes revealed the potential 245 

role and regulators of m6A in exhausted CD8+ T-cells 246 

The differentiation of exhausted CD8+ T-cells leads to attenuated effector function of 247 

cytotoxic CD8+ T-cells, resulting in their inability to control tumor progression 248 

during the advanced stage [29]. Furthermore, it has been reported that m6A plays a 249 

crucial role in regulating T-cell homeostasis[8]. However, our current understanding 250 

of the different m6A profiles in distinct subtypes of T-cells and its role in exhausted 251 

CD8+ T-cells is limited[8].  252 

Herein, we employed Scm6A to further explore the m6A landscape of exhausted 253 

CD8+ T-cells and other cell types across different lung cancer types, including lung 254 

squamous carcinoma (LUSC) (Figure 5A) and non-small cell lung cancer (NSCLC) 255 

(Figure 5B). Our findings revealed differences in the m6A profiles and molecular 256 

features of exhausted CD8+ T-cells compared to other T-cell subtypes in both LUSC 257 

and NSCLC (Figure 5A-C, Figure S2B). Interestingly, exhausted CD8+ T-cells 258 

(CD8_EM) -related m6A were enriched in IL-7 pathway, which is associated T-cell 259 

homeostasis (Figure 5D). By investigating the regulatory network we constructed 260 

(Figure 1A), it became evident that these exhausted CD8_EM-related m6A levels are 261 

associated with 19 m6A regulators, including METTL3, METTL14, and HMGB1 etc. 262 

(Figure 5E). Moreover, we observed a significant positive correlation between the 263 

expression levels of these 19 regulators and the m6A levels of CD8_EM-related m6A 264 

(Figure 5E). Therefore, we concluded that CD8_EM-related m6A regulators 265 

mediated m6A may regulate T-cell homeostasis through targeting IL-7. Consistent 266 

with this result, Hua-Bing et al. also found METTL3-mediated m6A controls T-cell 267 

homeostasis and differentiation by targeting IL-7, proving the reliability of our 268 

analysis results[8]. Notably, HMGB1, acting as a pivotal node in CD8_EM-related 269 

m6A regulation (Figure 5E), has previously been reported to influence the infiltration 270 

of CD8+ T-cells in NSCLC[30], further supporting the reliability of our conclusions. 271 
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The dysregulation of immune responses in COVID-19 patients has emerged as a 272 

primary factor affecting symptoms and mortality rates[31, 32]. Consequently, the 273 

investigation of relevant immune cells has become a focal point in combatting this 274 

disease[33, 34]. In this context, we endeavored to apply Scm6A to a COVID-19 275 

dataset from the study by Yuan et al[24]. From this dataset, we randomly selected a 276 

COVID-19 positive patient sample that had undergone FACS selection to isolate 277 

CD3+ T-cells and CD19+ B-cells from fresh PBMC. Using Seurat, we imported and 278 

standardized the single-cell data, then input the standardized data into Scm6A for 279 

prediction. The resulting UMAP plot of m6A predictions clearly delineated the 280 

classification of T-cells and B-cells (Figure S3A), highlighting a marked divergence 281 

in m6A modification landscapes between these cell types. Subsequent Gene Ontology 282 

(GO) functional enrichment analysis of the genes associated with differential m6A 283 

revealed significant enrichment in entries such as "SARS-CoV Infections" and "Viral 284 

Infection Pathways," aligning with expectations and affirming the accuracy of 285 

Scm6A's predictions (Figure S3B). These findings contribute to the dissection of the 286 

immune response in COVID-19 patients at a single-cell m6A resolution, enabling a 287 

deeper exploration of the pathogenic mechanisms at play. 288 

These results provide a fresh perspective on the comprehensive profiles of m6A 289 

and corresponding regulators in exhausted CD8+ T-cells and other T-cells subtypes. 290 

Obviously, Scm6A has broaden applications in the identification of subtypes of 291 

different cell types, it may redefine some novel cell types and further reveal the 292 

potential role of m6A in cellular differentiation. This opens up exciting possibilities 293 

for future research in this field. 294 

 295 

 296 

Discussion 297 

It has been reported that there is high heterogeneity in the abundance of m6A across 298 

individual cells[35]. However, a reliable and convenient method for detecting m6A at 299 
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the single-cell level is currently lacking. In this study, we developed Scm6A, a 300 

single-cell m6A detection method based on the trans and cis information that we 301 

previously constructed. We validated the accuracy of the Scm6A method using 302 

m6A-seq data from MACS-isolated cell types. Subsequently, we applied Scm6A to 303 

single-cell RNA-seq data from lung cancer. Our analysis revealed that m6A is highly 304 

variable across different T-cells in lung cancer tissue. It also provides new ideas for 305 

the development of new single-cell calculation methods for other RNA methylation 306 

modifications, such as 5-methylcytosine (m5C), 7-methylguanosine (m7G), and 307 

N1-methyladenosine (m1A) methylation. Our attempts on the COVID-19 dataset 308 

have once again substantiated that Scm6A can effectively predict m6A expression 309 

levels and, in turn, distinguish between B-cells and T-cells. Moreover, we will further 310 

improve the application scope of Scm6A to analyze the single-cell level m6A in other 311 

species, including monkeys, and plant species , among others. 312 

Recently, Matthew et al. developed a method named scDART-seq to identify 313 

transcriptome-wide YTH-binding m6A sites in single-cells by inducing 314 

APOBEC1-YTH expression[35]. However, this method can only be used to detect 315 

YTH-binding m6A sites, not all m6A sites. In addition, this method requires the 316 

expression of APOBEC1-YTH in targeted cells, which is not compatible with 317 

single-cell sequencing data. Moreover, scDART-seq can detect some false-positive 318 

m6A sites[35]. Due to the limitations of scDART-seq, there are no convenient and 319 

swift methods for identifying transcriptome-wide m6A sites and levels in individual 320 

cells with a low false discovery rate[36]. Comparing with scDART-seq, Scm6A offers 321 

a more accurate and convenient approach for quantifying m6A at the single-cell level. 322 

Therefore, Scm6A has more potential to be widely used in m6A-related research. 323 

Combining analysis of scRNA-seq with Scm6A also provides the pathway for 324 

researchers to investigate the detailed m6A regulation mechanisms at the single-cell 325 

level. Moreover, Scm6A displays high true positive rate with AUROC=0.91, 326 

suggesting that Scm6A can detect few false-positive m6A sites. 327 
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The role of m6A in T-cell differentiation and T-cell homeostasis has attracted 328 

much attention. As a key step of cancer immune evasion, there is a lack of research 329 

on the epigenetic mechanisms related to T-cell exhaustion[37], such as whether m6A 330 

is involved in regulating T-cell exhaustion. By using Scm6A, we found that the m6A 331 

profiles were distinct among these exhausted T-cells and other subtypes of T-cells, 332 

indicating that m6A plays an essential role in the progression of T-cell exhaustion. 333 

The impact of m6A on T-cell differentiation and activation deserves further 334 

discussion using our Scm6A method. Considering the discovery of pharmacological 335 

inhibition of METTL3[38], it is plausible that we may combat T-cell exhaustion by 336 

m6A-dependent gene regulation in the future. In fact, our method not only provides a 337 

single-cell m6A method for classifying T-cells but also extends to other cell type 338 

subpopulations, including B-cells, dendritic cells, and macrophages. We believe that 339 

Scm6A will be used to study the role of single-cell m6A in a variety of diseases and 340 

cell types. 341 

Scm6A is based on a m6A-seq trained machine learning method and is antibody 342 

free. Even Scm6A is not a single-base resolution for every single transcript yet, we 343 

will incorporate new features of m6A identification using Nanopore Sequencing and 344 

miCLIP-m6A to Scm6A in the future[39-43]. We believed it will make Scm6A a more 345 

powerful tool for single-base resolution for every single transcript. Furthermore, we 346 

will try to collect more m6A sequencing data for training to improve the accuracy of 347 

Scm6A.  348 

In summary, this study has provided a novel approach to the calculation of 349 

single-cell RNA methylation. Combined with other single-cell multiomics techniques, 350 

Scm6A will open up a new way for m6A research at the single-cell level which will 351 

be expected to significantly contribute to our understanding of the role of single-cell 352 

m6A in various biological processes.  353 

 354 

 355 
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Methods 356 

Data preprocessing and machine learning algorithms 357 

In accordance with our previous research, we collated and analyzed raw sequencing 358 

data from 104 m6A-seq libraries (IP and input) obtained from 25 unique cell lines, 359 

which were downloaded from the Sequence Read Archive (SRA, 360 

https://www.ncbi.nlm.nih.gov/sra). We identified comprehensive trans regulators in 361 

the m6A regulatory network and cis sequence features of the m6A site used these 362 

m6A-seq data [18]. Herein, we developed a single-cell level calculation method 363 

based on machine learning models using this network from the expression levels of 364 

the m6A regulators to the m6A level. As cis-acting regulatory sequence, position 365 

probability matrices of each m6A site were used as input to the model[44]. To solve 366 

the frequent NA values in m6A data, we first counted the percentage of missing 367 

values in each row and column and then deleted rows or columns with missing 368 

values greater than 10%. Following the data filtering process, the expression matrix 369 

consisting of 4162 m6A sites was obtained. 370 

For the development of machine learning models, we established a one-to-one 371 

correspondence between the expression of m6A regulators and the m6A matrices to 372 

construct models. Meanwhile, considering the regulation of cis-acting elements to 373 

m6A, we included the RNA sequence of each m6A site converted into a matrix to the 374 

input information of the algorithm. In this study, a total of 5 machine learning 375 

algorithms, including RF, LR, KNN, LinearSVR, and SVR with poly kernel, were 376 

used to determine the most effective method. The scikit-learn toolkit version 1.0.2 377 

was used to train these machine learning models. Out of the overall dataset, 70% was 378 

randomly allocated to serve as the training set for model development, while the 379 

remaining 30% was reserved for the test set to validate the model’s performance. The 380 

best parameters were selected through grid search and fivefold cross-validation.  381 

 382 

m6A-seq data processing 383 
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We established m6A-seq libraries (IP and input) of CD4+ T-cells and CD8+ T-cells 384 

isolated from the same individuals using MACS, and obtained four different sets of 385 

samples (Review Link: 386 

https://dataview.ncbi.nlm.nih.gov/object/PRJNA890754?reviewer=psjfcrhf1dk78idc387 

nbo5a3msup). The reads generated by m6A-seq were mapped to the hg38 human 388 

reference genome using HISTA2 with default values for parameters (version 389 

2.1.0)[45]. We calculated the input libraries’ TPM of Ensembl annotated genes using 390 

stringtie and then performed quantile normalization across all samples[46]. 391 

To accurately identify the m6A sites in CD4+ T-cells and CD8+ T-cells, we 392 

improved the winscore previously published by Dominissini et al.[36]. We 393 

determined the sliding window with a window fraction (enrichment fraction)>2 in 394 

the sample as the m6A peak. Since low expression windows may be accompanied by 395 

technical problems with unreliable winscore, we decided to adjust the windows with 396 

low RPKMs by adding 1 to the RPKM of each window in both IP and input libraries 397 

before winscore calculation. After identifying the m6A peaks across the samples, we 398 

merged consecutive m6A peaks within the same gene, and then divided the merged 399 

peaks with more than 5 consecutive sliding windows (300 bp) into multiple peaks, 400 

spanning no more than 5 sliding windows to eliminate the problem of possible false 401 

positives. After the above analyses, we finally obtained the m6A matrix of m6A levels 402 

in CD4+ T-cells and CD8+ T-cells. 403 

 404 

Calculation of single-cell RNA-seq 405 

The “Seurat” package was used to analyze the single-cell sequencing data of CD4+ 406 

T-cells and CD8+ T-cells. Genes expressed in fewer than 3 cells and cells expressing 407 

fewer than 200 genes were excluded. Since cells with a high proportion of 408 

mitochondria-derived genes, a low number of detected genes, and a high proportion 409 

of unmapped or multi-mapped reads are often damaged or dying cells, which will 410 

affect the subsequent single-cell RNA-seq analysis, we performed quality control 411 
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(QC) on the data to filter out the unqualified data. The parameters used were as 412 

follows: nFeature_RNA>200 & nFeature_RNA < 4000, nCount_RNA>200 & 413 

nCount_RNA < 20000, percent.mt < 25. To correct the variability of meaningful 414 

reads obtained by scRNA-seq across different cells, we normalized the expression 415 

using the “NormalizeData” function and calculated the top 1500 highly expressed 416 

variant genes by the “FindVariableFeatures” function.  417 

To visualize and interpret the high-dimensional gene expression data, principal 418 

component analysis (PCA) and t-distributed stochastic neighbor embedding (tSNE) 419 

were used for visualizing scRNA-seq data of CD4+ T-cells and CD8+ T-cells. A total 420 

of 24 cell clusters were obtained after visualization. Using cellranger[47], we defined 421 

the cluster of cells with high CD4 expression as CD4+ T-cells and the cluster of cells 422 

with high CD8A and/or CD8B expression as CD8+ T-cells. After counting the marker 423 

gene expression levels of the four samples (S1-S4) and sorting them, we defined 424 

cluster 1 in the 24 clusters as CD8+ T-cells, and clusters 6, 9, 10, 11, 16, 18, 21 and 425 

22 as CD4+ T-cells according to the marker gene expression level. To obtain 426 

differentially expressed genes, we used “DEseq2” to differentially analyze the genes 427 

of CD4+ and CD8+ T-cells obtained by scRNA-seq, and the parameters used were as 428 

follows: FDR<0.1 and FoldChange>1.2. After that, we used the “limma” package to 429 

differentially analyze the genes of m6A obtained by m6A-seq, and the parameters 430 

used were as follows: FDR<0.1. We downloaded lung cancer single-cell sequencing 431 

data from the GEO database as external data validation (GSE148071)[48], which 432 

contained 42 single-cell RNA sequencing data from tissues of stage III/IV NSCLC 433 

patients. We performed lung-cancer-related single-cell m6A analysis based on these 434 

scRNA-seq data. Through Scm6A, we calculated single-cell m6A levels using the 435 

expression levels of m6A regulators and position probability matrices of m6A sites as 436 

input from these scRNA-seq data.  437 

 438 

Human CD4+/CD8+ T-cell sorting 439 
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Human CD4+/CD8+ T-cells were obtained from PBMCs of adult donors in good 440 

health. The first step was to isolate PBMCs from whole blood by density gradient 441 

centrifugation (Ficoll 1.077 g/mL, Sigma-Aldrich, USA) and maintained in 442 

RPMI-1640 medium (Solarbio, China) supplemented with 15% FBS (Sigma-Aldrich, 443 

USA) and 1% penicillin/streptomycin (Solarbio, China). Second, magnetic activated 444 

cell sorting beads (MACS; Miltenyi Biotec) were used to isolate human CD4+/CD8+ 445 

T-cells from PBMCs. Briefly, PBMCs were bound to CD4 microbeads (20 µL of 446 

microbeads/10^7 cells) for 15 minutes at 4°C. After washing the cells with washing 447 

buffer, the cells were resuspended in 500 µL of washing buffer, passed through an LS 448 

column (Miltenyi) attached to a magnetic stand (Miltenyi) and washed three times. 449 

To elute targeted cells, the column was washed with buffer after being removed from 450 

the magnetic field. The approach was validated by MACS. The sorted targeted cells 451 

were used for single-cell PCR analysis and sequencing. 452 

 453 

GO analysis 454 

To further investigate the mechanisms associated with the differences observed in 455 

different T-cells in healthy humans, we performed gene ontology (GO) functional 456 

enrichment analysis in DAVID (https://david.ncifcrf.gov/) by using the previously 457 

screened differentially expressed genes, and took the top 10 items of the biological 458 

process ranked in ascending order of FDR as the results[49]. 459 

 460 

Motif and distribution of m6A peaks 461 

By using the bed format file obtained earlier as the input file, Hypergeometric 462 

Optimization of Motif Enrichment (HOMER, http://homer.ucsd.edu/homer/) 463 

software was used for motif enrichment analysis. The distribution of m6A peaks was 464 

plotted on a mega gene with 10 bins in the 5’UTR, CDS, and 3’UTR regions, using 465 

the methods described in our previous paper[18]. 466 

 467 
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Statistical Analyses 468 

Statistical analyses were performed using R version 4.0.2 469 

(https://www.r-project.org/). Receiver operating characteristic curve (ROC) analysis 470 

and the area under the curve (AUC) were calculated using the pROC package to 471 

compare the efficacy of each model. We calculated ROC and AUC by randomly 472 

sampling the true and predicted values. Values were labeled as 1 if the difference 473 

between the predicted m6A value and the true value was no more than 0.5 and 474 

labeled as 0 if the difference fell outside the range. The evaluation indicators of the 475 

five-machine learning regressors did not conform to the normal distribution, so the 476 

quartile was used for statistics. 477 

 478 

 479 
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Figure legends 657 

Figure 1. Single-cell m6A prediction models evaluation  658 

A. Algorithmic framework for single-cell m6A calculation. B. Boxplot comparison 659 

rank of different models by R-squared in the test set. C. Area under the receiver 660 

operating characteristic (AUROC) for each method. D. ROC curves and AUC values 661 

for the different models in prediction of m6A sites in EMSG00000143761. 662 

 663 

Figure 2. Verification of the reliability and accuracy of Scm6A.  664 

A. Schematic flow diagram showing the framework of validation of Scm6A. B. 665 

Schematic diagram of the distribution of m6A peak lengths calculated by Scm6A and 666 

the winscore-based method using m6A-seq. C. Correlation analysis between the 667 

Scm6A-calculated m6A levels and the winscore-based method-calculated m6A levels 668 

at the same m6A site. D. Correlation analysis between Scm6A calculated random m6A 669 

levels and winscore-based method calculated m6A levels at the same m6A site. 670 

 671 

Figure 3. Bioinformatics analysis of m6A-sequencing results from 672 

MACS-isolated T-cells in human PBMC.  673 

A. The normalized distributions of m6A peaks across the 5′UTR, CDS and 3′UTR for 674 

CD4+ and CD8+ T-cells from four samples. B. Representative motifs for CD4+ and 675 

CD8+ T-cells in four samples. C. Volcano plots showing different m6A 676 

(FoldChange>1.2, FDR<0.1). Dots in red and blue indicate high and low expression 677 

of m6A and genes, respectively. D. Venn diagram of DEGs and genes where different 678 

m6A modifications are located. E. Scatter plot of log2FoldChange of different m6A 679 

and corresponding DEGs. F. Cluster gene expression heatmap of differentially 680 

expressed genes (Right) and m6A level heatmap of different m6A modifications 681 

(Left). G. Gene ontology enrichment analysis of the intersection of DEGs and 682 

different m6A. 683 

 684 
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Figure 4. Bioinformatics analysis of Scm6A analysis results in human PBMC.  685 

A. Representative motifs for CD4+ and CD8+ T-cells in four samples. B. t-SNE maps 686 

of scRNA-seq data and m6A predicted by machine learning models. C. Cluster 687 

heatmap of differentially expressed m6A (FoldChange>1.2, FDR<0.1) predicted by 688 

machine learning models. D. Gene ontology enrichment analysis of the intersection 689 

of DEGs and Scm6A predicted different m6A located genes. E. Cumulative 690 

distribution function plots of different m6A and nondifferent m6A. 691 

 692 

Figure 5. Using Scm6A to explore the single-cell level m6A from scRNA-seq data 693 

of lung cancer patients.  694 

A. and B. Principal component analysis (PCA) of single-cell m6A predicted by 695 

Scm6A. Each color represents a cell. The ellipses around the group mean represent 696 

the confidence regions. C. Heatmap of different single-cell m6A of NSCLC. D. Gene 697 

ontology enrichment analysis of the CD8_EM related m6A. E. Heatmaps 698 

representing the m6A ratios of the m6A peaks within CD8_EM related m6A (upper 699 

panel) and the gene expressions of the 19 CD8_EM related m6A regulators (lower 700 

panel) that significantly correlated with the m6A indexes of CD8_EM related m6A. 701 

These cells are sorted according to the m6A indexes of CD8_EM related m6A. Right 702 

panel shows Gene MANIA interaction network of 19 CD8_EM related m6A 703 

regulators with Physical Interactions, Predicted, co-expression, Shared protein 704 

domains, co-localization, Genetic Interactions and pathway. Dim grey nodes 705 

represent query regulators lists. 706 

 707 

Figure S1. A comparative analysis of m6A calculation methods based on the 708 

Random Forest model and other models 709 

A. Dots plot show the correlations between predicted m6A level and true m6A level. 710 

Boxplot show R-squared (B) and AUROC (C) of RF model use corresponding m6A 711 

regulators or random permutation to calculate single-cell m6A.  712 
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 713 

Figure S2. Application of Scm6A in datasets pertaining to mouse cleavage-stage 714 

embryos and lung cancer 715 

A. Scatterplots of correlation between Scm6A prediction results and the scm6A-seq 716 

sequencing outcomes (Left), and random correlation scatterplots of both (Right). B. 717 

Representative motifs for CD8_EM cells, Th and Tpex cells in NSCLC samples. 718 

 719 

Figure S3. Application of Scm6A in COVID-19 data sets 720 

A. UMAP plot of m6A predicted by Scm6A. B. GO enrichment analysis of genes 721 

with differential m6A modifications. 722 

 723 
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