

Pan-cancer Analysis Reveals m⁶A Variation and Cell-specific Regulatory Network in Different Cancer Types

**Yao Lin^{1,#}, Jingyi Li^{2,#}, Shuaiyi Liang^{3,#}, Yixin Chen^{4,#}, Yueqi Li⁵, Yixian Cun⁶,
Lei Tian⁷, Yuanli Zhou⁷, Yitong Chen⁷, Jiemei Chu¹, Hubin Chen¹, Qiang Luo¹,
Ruili Zheng¹, Gang Wang¹, Hao Liang^{1,*}, Ping Cui^{1,*}, Sanqi An^{1,5,*}**

¹ *Life Sciences Institute, Biosafety Level-3 Laboratory, Guangxi Medical University, Nanning*

530021, China.

² *Department of pathology, Guangdong Second Provincial General Hospital, Guangzhou*

510317, China.

³ *Department of bioinformatics, Anjin Biotechnology Co., Ltd., Guangzhou 510000, China*

⁴ *Frontiers Science Center for Disease-related Molecular Network, Precision Medicine*

Research Center, West China Hospital, Department of Respiratory and Critical Care

Medicine, Sichuan University, Chengdu 610041, China.

⁵ *School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China.*

⁶ *Department of Medical Bioinformatics, Zhongshan School of Medicine, Sun Yat University,*

Guangzhou 510080, China

⁷ *First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.*

#Equal contribution

***Corresponding authors**

E-mail: ansq@mail2.sysu.edu.cn (An S); cuiiping@sr.gxmu.edu.cn (Cui P);
lianghao@gxmu.edu.cn (Liang H)

Word counts: 8700

Reference counts: 58

Table counts: 0

Figure counts: 7

Supplementary figure counts: 7

Supplementary table counts: 3

Article title counts of letters: 92

Running title counts of letters: 32

Keywords counts: 7

Abstract counts: 212

Running title: Lin Y et al / *Pan-cancer analysis of m^6A*

Abstract

As the most abundant mRNA modification in mRNA, N^6 -methyladenosine (m^6A) plays a crucial role in RNA fate, impacting cellular and physiological processes in various tumor types. However, our understanding of the function and role of the m^6A methylome in tumor heterogeneity remains limited. Herein, we collected and analyzed m^6A methylomes across nine human tissues from 97 m^6A -seq and RNA-seq samples. Our findings demonstrate that m^6A exhibits different heterogeneity in most tumor tissues compared to normal tissues, which contributes to the diverse clinical outcomes in different cancer types. We also found that the cancer type-specific m^6A level regulated the expression of different cancer-related genes in distinct cancer types. Utilizing a novel and reliable method called “ m^6A -express”, we predicted m^6A -regulated genes and revealed that cancer type-specific m^6A -regulated genes contributed to the prognosis, tumor origin and infiltration level of immune cells in diverse patient populations. Furthermore, we identified cell-specific m^6A regulators that regulate cancer-specific m^6A and constructed a regulatory network. Experimental validation was performed, confirming that the cell-specific m^6A regulator *CAPRINI* controls the m^6A level of *TP53*. Overall, our work reveals the clinical relevance of m^6A in various tumor tissues and explains how such heterogeneity is established. These results further suggest the potential of m^6A for cancer precision medicine for patients with different cancer types.

Keywords : N^6 -methyladenosine; Heterogeneity; m^6A -reg-exp; m^6A regulator; Cell specific

Introduction

It is widely accepted that cancer is a disease caused by genomic and epigenetic changes in oncogenes and tumor suppressor genes. Pan-cancer analysis of whole genomes, enhancer expression, long noncoding RNA (lncRNA) regulation, immune response and the like, aiming to examine the differences and similarities across different tumor types, has received extensive attention [1-4]. As the most prevalent mRNA modification, m⁶A is reversibly regulated by various classical m⁶A regulators, including methyltransferases (*METTL3*, *METTL14*, *VIRMA*, *ZC3H13*, *WTAP*, *CBLL1/HAKAI* and *RBM15/RBM15B*) and m⁶A demethylases (*ALKBH5* and *FTO*), which mediate demethylation of different m⁶A sites [5-7]. m⁶A ‘readers’, *YTH* family proteins, and *IGF2BPs* recognize this reversible m⁶A and regulate post-transcriptional processes, such as RNA decay, alternative polyadenylation and nuclear export, in different cancer types [8, 9]. Previous studies have shown that m⁶A plays an important role in the progression of individual cancer types [10, 11]. However, our understanding of the mechanisms underlying cell and cancer type-specific m⁶A regulation in pan-cancer is limited [12, 13].

To investigate the complex cell type-specific regulatory network and the role of m⁶A in different cancer types, it is necessary to perform a pan-cancer analysis at the level of m⁶A methylation. Due to the limitations of m⁶A identification methods, some researchers have only tried to perform gene expression analysis of classical m⁶A regulators to analyze the heterogeneity of m⁶A regulators instead of real m⁶A in different cancers [14, 15]. However, key m⁶A regulators, such as *METTL3*, *METTL14* and *YTHDC2*, may function independently of m⁶A [16-18]. Therefore, these m⁶A regulators expression-based pan-cancer analysis, are far from revealing the characteristics and roles of m⁶A in different cancer types. Among the various methods for identifying m⁶A sites with high resolution, *N*⁶-methyladenosine sequencing (m⁶A-seq) is the most widely used and has promoted m⁶A research [19]. In our previous study, we made multiple methodological improvements to mitigate the impact of technical biases caused by different immunoprecipitation efficiencies across the different libraries in m⁶A-seq [13] to provide a reliable method for m⁶A pan-cancer analysis.

With accurate calculations based on a large number of m⁶A-seq datasets, we attempted to investigate the m⁶A landscape in terms of cancer tissue specificity. Then, we wanted to know what key clinically relevant heterogeneity of m⁶A leads to and

how this heterogeneity of m⁶A is established. To achieve this, we performed comprehensive pan-cancer analyses involving nine cancer types utilizing 97 m⁶A-seq and RNA-seq samples. We used a reliable method called “m⁶A-express” to predict m⁶A-reg-exp genes (m⁶A regulation of gene expression) in pan-cancer analysis [12]. Through these m⁶A-reg-exp genes, we comparably and comprehensively explored clinically relevant m⁶A modifications that are involved in cancer progression, prognostic prediction and molecular classification across 31 different cancer types. Additionally, we attempted experimental validation of the *CAPRIN1/METTL3-m⁶A-TP53* axis identified by the *in silico* work. To the best of our knowledge, this is the first pan-cancer analysis based on global m⁶A levels. Our results will contribute to a better understanding of m⁶A heterogeneity and its role in cancer precision therapy

Results

Systematic analysis of extensive m⁶A-seq data reveals distinct m⁶A features in nine types of cancer and normal tissues

We collected m⁶A-seq data of 97 tumor tissues as well as corresponding normal tissues and explored the characteristics of these m⁶A sites. Various technical issues associated with m⁶A-seq data can obstruct the successful systematic analysis of quantitative m⁶A ratios calculated from m⁶A-seq data. As a result, we implemented multiple processing steps to minimize the effects of different types of technical issues (see the "Materials and Methods" section for details). Due to technical biases in preparing the m⁶A-seq libraries, such as variations in RNA length, the shifting of peak centers and divergence of peak widths will be controlled using winscore methods (see the "Materials and Methods" section for details). Afterwards, quantile normalization of the m⁶A ratios is performed to correct biases introduced by differences in antibody efficiencies across various laboratories. Based on our previous findings that m⁶A sites with a CV greater than 0.3 vary between different cells [13], we further calculated the specificity and function of these m⁶A sites. Subsequently, we utilized the expression levels of cell-specific m⁶A regulators identified in our previous research and classical m⁶A regulators to compute their correlation with the m⁶A we obtained. Through experimental validation, we identified specific regulators that modulate cancer-specific m⁶A. At the same time, we employed m⁶A-express to calculate target genes regulated by m⁶A in different cancers and analyzed the potential impact of these m⁶A-regulated genes on prognosis and cellular immune responses across various cancers

(Figure 1).

To systematically reveal the basic characteristics of m⁶A in various cancer types at the tissue level, we initially made several methodological improvements to the winscore-based method to mitigate the impacts of technical biases of m⁶A-seq data from different laboratories (see the ‘Methods’ section for more details) [13]. This is important for the reliable quantification of m⁶A levels using m⁶A-seq data from different labs. After performing quantile normalization of the m⁶A level across all tissues, we performed unsupervised clustering using the normalized m⁶A level and found that the variable m⁶A levels in lung cancer and leukemia were not clustered according to the labs but rather according to cancer types, suggesting that we successfully eliminated batch effects from different labs (Figure S1A). Then, we conducted m⁶A quantitative analysis on nine tumor tissues and their controls, including glioma, lung cancer, liver cancer, endometrial cancer, ovarian cancer, leukemia, colon cancer, salivary gland cancer, and stomach cancer. Approximately 10,000 m⁶A peaks were obtained for each tissue (Figure 2A), and samples from the same tissue type clustered well according to their m⁶A levels (Figure 2B), indicating that *tissue-specific* m⁶A methylomes indeed exist. To better understand the biological function of these m⁶A sites, we annotated them and found that m⁶A mostly occurred on protein-encoding genes (Figure S1D). Some m⁶A was present on non-coding RNA (Figure S1D), suggesting that non-coding RNA also played essential roles in these cancer types. We observed a trend that m⁶A from different cancer types had varying levels of enrichment in distinct m⁶A sub-motifs ($P < 2.2 \times 10^{-16}$), suggesting that m⁶A methylomes may be cancer-specific (Figure 2C, Figure S1E). Cancer-specific m⁶A motifs, m⁶A distribution, and m⁶A peak number indicated that m⁶A with different functions in different tumors is regulated in a cancer-specific manner.

Then, we studied the distribution of m⁶A in different samples (Figure 2D-E), and consistent with other reports, m⁶A was more likely to be enriched in the 3'UTR start segment and the CDS segment and reached its peak at the 3'UTR start segment. By integrating the distributions of tumor samples and control samples, it was also found that m⁶A peaks in tumor samples are more prevalent at stop codon regions than in normal samples, whereas m⁶A peaks in normal samples were more abundant at start codon regions (Figure 2F) and less abundant in long internal exons ($P = 5.455 \times 10^{-8}$) (Figure 2G). In our previous research, we considered the m⁶A sites away from stop

codons as “dynamic m⁶A sites”. They are precisely and dynamically regulated by cell-specific *trans* regulators expressed with spatial and temporal specificities across different cell types [13]. Herein, we suspect that m⁶A in cancer tissues had a greater coefficient of variation (CV) than that of normal tissue, which might be regulated by cell-specific *trans* regulators and contribute to the heterogeneity of cancer. We also used *JUN*, which has been associated with human cancer malignancies, as an example to analyze the differences in the CV of m⁶A between cancer and normal tissues. At the beginning of the *JUN* gene coding region, higher CV on the start codons were observed in nine types of cancer tissues (Figure 2H).

To further validate our conclusions, we also gathered m⁶A-seq data from cancer and normal cell lines for further analysis, including 7 tumor cell lines (HEC1a, HEPG2, iSLK, MOLM13, MonoMac6, MT4tCELL, NB4) and 3 normal cell lines (MSC, NHDF, TIME) (Table S2). By analyzing the distribution and motif of m⁶A site characteristics, we found that m⁶A in normal cell lines tended to be closer to stop codons, whereas there were more m⁶A peaks in cancer cell lines in coding regions (Figure S1B), and there were differences in the enrichment of m⁶A motifs in different tumor types (Figure S1C). Overall, the analysis results of m⁶A-seq data from cell lines are consistent with those from tumor tissues, further indicating the reliability of our findings in tumor tissue.

m⁶A shows different heterogeneity in most tumor tissues compared with normal human tissues

The CVs of m⁶A were calculated in different regions of mRNA to explore whether the CVs in different cancer samples were greater than those in normal tissues. There were 15–50% variable peaks in normal tissues (Figure S2A), consistent with a recent report that *cis* regulation accounts for 33–46% of the variability in m⁶A levels [20]. Moreover, the m⁶A peaks located far from stop codons had significantly higher CVs in colon cancer, endometrial cancer, lung cancer, salivary gland cancer and stomach cancer (Figure 3A–D, Figure S2B). Therefore, there were more variable peaks in these cancer samples than in normal samples, suggesting that m⁶A in these five cancer types tends to be variable. We also calculated the m⁶A CV fold-change of cancer with respect to normal tissues in start and stop codons. Figure 3E shows that m⁶A enriched in start codons tends to have higher CVs in cancer tissues than m⁶A in stop codons. Moreover, we used the *TP53* and *HSPD1* genes as examples to study variations in m⁶A

in cancer, and found that *TP53* and *HSPD1* showed higher variations in m⁶A at the start of coding sequences in colon cancer and endometrial cancer than in normal tissues (Figure 3F, Figure S2C).

In addition to heterogeneity, we explored whether m⁶A in different cancer types had homogeneity. The samples were divided into two groups: the cancer group (45 samples) and the normal group (39 samples). We performed whole-genome different m⁶A analysis between these two groups. Only 428 m⁶A sites were differentially methylated [false discovery rate (FDR) < 0.05] between pan-cancer and normal tissues. m⁶A at these sites showed higher heterogeneity ($P < 2.2 \times 10^{-16}$) (Figure S2D). Thus, our findings indicate that m⁶A displays different heterogeneity in different tumor tissues.

Tumor type-specific m⁶A affects distinct cancer-related genes and immune-related gene expression

To delve deeper into the role of cancer-specific m⁶A across various cancers, we identified m⁶A sites with a CV (coefficient of variation) greater than 0.3 as cancer-specific in tumor samples. This is because we observed that m⁶A sites with a CV greater than 0.3 often exhibit cell-specific characteristics, as previously noted [13]. Clustering showed that m⁶A levels were strongly cancer type-specific (Figure 4A). We also performed gene expression analysis of m⁶A-corresponding genes across all nine tumor tissues and found that gene expression may correlate with gene expression (Figure 4A-B). To further investigate the relationship between m⁶A and gene expression, we analyzed the correlation between the level of m⁶A modification at each site and the corresponding gene expression (Figure 4C). We observed that the majority of m⁶A modifications exhibited a positive correlation with the corresponding gene expression. This trend significantly differs from the results of randomly shuffled data for this correlation ($P < 2.2 \times 10^{-16}$). This outcome indicates that m⁶A modifications may be positively associated with gene regulation in tumor samples. This conclusion provides a valuable reference for guiding subsequent experimental research.

GSVA enrichment analysis was employed to explore the biological functions among these distinct m⁶A modification patterns, and the results showed that different cancer-specific m⁶A was involved in different regulatory pathways, including various

immune-related pathways, highlighting the relevance of m⁶A and tumor immunity (Figure S3). For example, colon cancer-specific m⁶A was enriched in pathways such as natural killer cell mediated cytotoxicity, cytokine receptor interaction, Jak stat signaling pathway, and Notch signaling pathway. Endometrial cancer-specific m⁶A was involved in B-cell receptor signaling pathway, T-cell receptor signaling pathway, and chemokine signaling pathway. Salivary gland cancer-specific m⁶A was associated with epithelial cell signaling in *Helicobacter pylori* infection and Toll-like receptor signaling pathway. Ovarian cancer-specific m⁶A was involved in autoimmune thyroid disease. In addition, in some cases, cancer-specific m⁶A was *tissue-specific*. For example, glioma-specific m⁶A was essential in neurotrophin signaling pathway and TGF beta signaling pathway. Leukemia-specific m⁶A was related to acute myeloid leukemia and cell cycle pathway. We also identified cancer-specific m⁶A that was significantly involved in the regulation of key tumor pathways. For instance, liver cancer-specific m⁶A was related to the WNT signaling pathway, lung cancer-specific m⁶A was enriched in glycerophospholipid metabolism, and stomach cancer-related m⁶A was involved in oxidative phosphorylation. These results illustrate the wide and varied regulatory mechanisms of m⁶A in different tumors.

We also performed Gene Ontology (GO) enrichment analysis (Figure 4D, Figure S4A and S4B). The analysis revealed significant enrichment of m⁶A in metabolic pathways, such as pyrimidine and purine and drug metabolism, as well as immune related pathways, including MAPK signaling, T-cell and B-cell pathways, leukocyte migration, infection, and inflammation. Analysis of cellular components showed that in pan-cancer, m⁶A was involved in the cell nucleus, cell membrane, Golgi apparatus, mitochondria, cytoplasm, endoplasmic reticulum, and exosome. These results are consistent with previous reports that m⁶A regulates tumor immunity and key tumor pathways [10]. Furthermore, these findings revealed that cancer-specific m⁶A tended to be enriched in different pathways and functions, highlighting the complex regulatory and functional specificity of m⁶A in different tumor types.

The classification of different patients based on m⁶A-regulated genes was correlated with microenvironment and tissue origin

To explore the impact of m⁶A on tumorigenesis and development in pan-cancer, m⁶A-express, the first well-established algorithm to predict condition-specific m⁶A regulation of gene expression from MeRIP-seq data [12], was used to screen m⁶A-

regulated genes in different cancers. A total of 1527 m⁶A-reg-exp genes were found in this article (Table S3).

These m⁶A-regulated genes were analyzed in 9456 tumor samples from 31 cancers for cluster analysis (Figure S5A and S5B), and it was found that pan-cancer related m⁶A-reg-exp genes could be used for molecular classification and stage classification (Figure 5A), indicating that m⁶A contributed to tumor heterogeneity. Interestingly, these different tumor subtypes have different infiltrating levels of immune cells (Figure S6), indicating m⁶A modifications shape immune responses in the tumor microenvironment and may impact cancer immunotherapy. Furthermore, the classification of these tumors was correlated with tissue origin. For example, KICH (kidney chromophobe), KIRC (kidney renal clear cell carcinoma), and KIRP (kidney renal papillary cell carcinoma), the three different types of kidney cancer, clustered in C2. Moreover, two types of lung cancer, LUAD (lung adenocarcinoma) and LUSC (lung squamous cell carcinoma), clustered in C3, and brain cancer types LGG (brain lower grade glioma) and GBM (glioblastoma multiforme) clustered in category C4 (Figure 5B). These m⁶A-regulated genes also have different clinical prognostic values. For example, patients in category C2 have a good prognosis, whereas patients in category C3 with a low infiltrating level of immune cells have a poor prognosis, indicating the influence of m⁶A on the clinical outcome of tumor patients (Figure 5C). It was proposed that m⁶A was a potential target for patients in category C3 who will not respond well to immunotherapy. Consistent with our previous conclusion, these m⁶A-regulated genes were indeed highly enriched in tumor-related pathways (Figure 5D, Figure S5C). These results suggest that m⁶A-regulated genes play different roles in diverse tumor types, resulting in distinct clinical relevance and immune status. Moreover, m⁶A may have an impact on the efficacy of immunotherapies. However, the question here is how these cancer-specific m⁶A modifications are established.

Cancer-specific m⁶A is regulated by cell-specific m⁶A regulators

Numerous studies have reported that changes in m⁶A, resulting from alterations in the expression of m⁶A regulators, play essential roles in a variety of pathological and physiological processes [21]. We previously identified 32 high-confidence cell-specific m⁶A regulators with a reasonable experimental validation rate that are responsible for global regulation and site-specific m⁶A dynamics through the interplay of classical m⁶A methyltransferase and demethylase at specific sites [21]. Herein, we

calculated the Pearson correlations between the level of cancer-specific m⁶A and the expression of each m⁶A regulator. As shown in Figure 6A and 6B, the correlation coefficient values between 32 high-confidence m⁶A regulators and cancer-specific m⁶A levels were significantly higher than those of classical m⁶A regulators, indicating that cell-specific m⁶A regulators contributed more to cancer-specific m⁶A levels. We also found that cell-specific m⁶A regulators had greater CVs than classical m⁶A regulators (Figure S7). We then constructed a regulatory network based on the m⁶A regulators and cancer-type specific m⁶A levels according to correlations between the cancer-specific m⁶A levels and the expression of 32 known m⁶A regulators (Figure 6C). Among the m⁶A regulators in the regulatory network, we found that *CAPRIN1*, a novel *METTL3* co-factor [13], was positively correlated with cancer-specific m⁶A (Figure 6D). To further verify the reliability of our conclusion, we validated the regulation of *CAPRIN1* on cancer-specific m⁶A by knocking down *CAPRIN1*. We found that cancer-specific m⁶A was significantly downregulated upon *CAPRIN1* knockdown in the m⁶A-seq data ($P = 0.006$, two-tailed Wilcoxon test; Figure 6E), indicating that *CAPRIN1* regulates the installation of these cancer-specific m⁶A. We also show an example involving *TP53*, where m⁶A levels of tumor-related genes were significantly reduced in HepG2 cells with *CAPRIN1* knockdown (Figure 6F). p53 expression status is highly associated with cancer-specific survival [22], and the *CAPRIN1*-m⁶A-*TP53* axis enhances our understanding of p53-based cancer therapies. These results indicate that cancer-specific m⁶A is specifically modulated by cell-specific regulators, leading to tumor heterogeneity and influencing clinical outcomes (Figure 7).

Discussion

In summary, we have demonstrated the tumor heterogeneity of m⁶A and m⁶A-reg-exp genes, which contribute to different functions and pathway enrichments. These cancer-specific m⁶A levels and functions are mainly regulated by cell-specific m⁶A regulators.

As a promising therapeutic target, m⁶A is widely involved in various biological processes in tumors, including tumorigenesis, tumor cell proliferation, apoptosis, and drug resistance [21]. For instance, *METTL3* is associated with poor prognosis in hepatocellular carcinoma (HCC) patients and promotes HCC cell proliferation through *YTHDF2*-mediated *SOCS2* transcriptional silencing [23]. *METTL14* causes

the occurrence and development of leukemia by modifying *MYB/MYC*-targeted genes with m⁶A RNA, and m⁶A promotes the translation of *c-MYC*, *BCL2*, and *PTEN* genes in leukemia patients [24]. It is widely accepted that tumors exhibit heterogeneity, which influences tumor survival and response to therapy. The detailed regulatory mechanisms of m⁶A in different tumors, particularly whether the effects of m⁶A in one tumor are applicable to other tumors, remain unclear. Herein, we systematically characterized the depth and breadth of the contribution of m⁶A to interpatient tumor heterogeneity. We also systematically demonstrated downstream pan-cancer-wide m⁶A-reg-exp genes and upstream comprehensive cancer-specific m⁶A regulators in pan-cancer, promoting our understanding of the mechanisms underlying tumor heterogeneity and the role of m⁶A in tumors. We propose the following suggestions for future studies on the role of m⁶A in cancer precision therapy: (1) The functions and regulatory mechanisms of m⁶A may vary across different cancer types. (2) Small-molecule inhibition of m⁶A regulators such as *STM2457* [25], as a strategy against myeloid leukemia, may not be effective for other solid cancers. Each tumor type has its own m⁶A therapeutic targets and regulator inhibitors.

m⁶A regulators play an oncogenic role in different cancer types by targeting essential cancer-related genes [10]. A large number of studies of m⁶A regulatory mechanisms have investigated classical m⁶A regulators, such as *METTL3*, *METTL14*, *WTAP*, *METTL16*, *FTO*, *ALKBH5*, YTH family proteins, and *IGF2BPs* [26-28]; anti-cancer target drugs targeting *METTL3* and *FTO* have been proven to be effective against cancer [25, 29]. However, previous studies have shown that the m⁶A-dependent mechanism cannot be well explained by these 20 m⁶A regulators [12, 13]. In fact, we identified hundreds of novel high-confidence m⁶A regulators that were highly associated with m⁶A in different tumor types, indicating a complex regulatory system for m⁶A in tumors. This also highlighted drug targets for m⁶A in addition to the 20 m⁶A regulators. Although previous studies performed pan-cancer analysis based on the 20 classical m⁶A regulator expression profiles, several key questions remained unanswered [14, 15]. (i) Changes in gene expression levels did not fully reflect changes in m⁶A levels. (ii) m⁶A regulators such as *METTL16* function independently of m⁶A to facilitate tumorigenesis, and the effects of m⁶A in cancer may not necessarily be attributable to the effects of m⁶A regulator expression [18]. There are many more m⁶A regulators that function in cancer in addition to the 20 m⁶A regulators previously described [13, 26, 27, 30]. Our discoveries deepen the

understanding of the role of m⁶A regulators based on accurate and reliable regulatory networks.

Beyond *trans*-regulation, we believe that *cis*-regulatory mechanisms also play a significant role in m⁶A. Consequently, mutations at m⁶A sites can lead to changes in m⁶A levels, which in turn affect the expression of downstream genes, further influencing the mechanism. Meng, Ren, and others have developed a series of databases that explore the interplay between m⁶A and genetic variations, such as RMVar, RMDisease and m⁶A-TSHub [31-33]. In the future, we will integrate these databases to further investigate the landscape and mechanisms of *cis*-regulation in m⁶A. Although many clinical features, especially immune dysfunction, have been associated with cancer progression, m⁶A is considered a key regulator of the immune system [34, 35]. Due to the limited availability of large samples with both m⁶A-seq and clinical data, it is challenging to investigate the reliable relationship of m⁶A with clinical features. m⁶A-express has made it possible for us to predict whole-transcriptome m⁶A-regulation of gene expression from m⁶A-seq data in TCGA. Therefore, we associated m⁶A with clinical features, including immunological characteristics, in this article. We also identified well-known transcription factors, such as *JUN* and *STAT3*, which were found to be targeted and regulated by m⁶A during tumor progression and tumor immunity [36, 37]. These factors may contribute to interpatient tumor heterogeneity and impact the effectiveness of immunotherapy, resulting in clinical challenges. Our findings regarding cell-specific m⁶A regulators modulating cancer-specific m⁶A, resulting in dysfunction of the tumor immune microenvironment, are helpful for our further understanding of cancer immunotherapy. It was proposed that immunotherapy combined with m⁶A regulator inhibitors could enhance the efficacy of immunotherapies. However, the detailed regulatory mechanism of m⁶A and the tumor immune microenvironment will require further experimental validation.

Conclusion

In summary, our study has demonstrated the tumor heterogeneity in m⁶A and m⁶A-reg-exp genes, which contribute to different functions and pathway enrichments. These cancer-specific m⁶A levels and functions are predominantly regulated by cell-specific m⁶A regulators, resulting in tumor heterogeneity and tumor microenvironment status heterogeneity (Figure 7). Our research not only provides a

landscape of the m⁶A profile in different cancer types compared to normal tissues, but also explains the clinical relevance of these specific m⁶A modifications and how these specific regulations are established. To the best of our knowledge, this is the first study based on a large number of m⁶A methylome data to propose that immunotherapy combined with m⁶A modulator inhibitors may enhance the efficacy of immunotherapy. These findings deepen our understanding of the m⁶A regulatory mechanisms in different cancer types and enhance the clinical application of m⁶A across all cancer types.

Methods

Data collection and processing of the m⁶A-seq data in multiple tissues

Overall, 93 raw sequence data of m⁶A-seq libraries (IP and input) were primarily downloaded from the Gene Expression Omnibus (GEO, <https://www.ncbi.nlm.nih.gov/geo/>) and four additional m⁶A-seq data were collected from the First Affiliated Hospital of Guangxi Medical University and deposited in SRA (PRJNA848252). Initially, a total of 97 tissue samples were collected from nine tumor types, including brain tissue, lung tissue, liver tissue, endometrium, ovarian, blood, colon, salivary gland, and stomach [38-48] (Table S1). In addition, we used the cell lines m⁶A-seq collected in previous studies [13] to verify our results, these data include seven tumor cell lines (HEC1a, HEPG2, iSLK MOLM13, MonoMac6, MT4tCELL, NB4) and three normal cell lines (MSC, NHDF, TIME) (Table S2)

We used FastQC (v0.11.9) [49] to assess the sequencing quality, and clean data were mapped to the Hg38 human reference genome by HISAT2 (v2.2.1) [50]. Then, StringTie (v1.3.3b) [51] was used for assembly and quantification of TPM (transcripts per kilobase of exon model per million mapped reads) of each annotated gene, which were then normalized by the input library. To identify accurate m⁶A sites in the nine types of tumor and adjacent normal tissues, we improved the winscore method as follows [52, 53]. In detail, we performed the search for enriched m⁶A peaks by scanning each gene using sliding windows and calculating an enrichment score for each sliding window, which was modified from the method published earlier by Dominissini et al. [53]. We constructed 100 bp sliding windows with a 50 bp overlap across exon regions and determined the RPKM for each segment. Then, we designated windows with an enrichment score, or winscore, above 2 as m⁶A peaks within individual samples. To mitigate potential inaccuracies from lowly expressed

windows harboring unstable winscores, we incremented each window's RPKM by one in both IP and input datasets prior to winscore computation, thereby down-weighting windows characterized by low RPKMs. Subsequently, we amalgamated the identified m⁶A peaks across all samples for expansive analysis. We derived the m⁶A ratio of every peak by dividing the IP library's RPKM by the input library's RPKM. In subsequent stages of analysis, we relegated m⁶A ratios grounded on base values (the input peak's RPKM falling below 5) as not available (NAs). Peaks designated as NAs in a majority of samples were excluded. Following this, we combined adjacent m⁶A peaks within the same gene and partitioned those extending over five continuous windows (equating 300 bp) into several peaks, each confined to a maximum of five windows.

Because different RNA interruption methods used for immunoprecipitation during preparation of different m⁶A libraries can cause changes in the short sequence signal of the same m⁶A peak, the width and center of the same m⁶A peak might be different. Therefore, we took the maximum m⁶A ratio of the combined m⁶A peaks in each sample as the final m⁶A ratio (IP/Input). Differences in activity due to different expression levels of m⁶A methylase and demethylase, as well as technical differences in immunoprecipitation efficiency, also contribute to overall m⁶A differences between samples. This dilutes and alters the signal selectively modulated by m⁶A, so we used quantile standardization, which is used to standardize the ratio of m⁶A combined with peaks in all samples [13].

Analyses of m⁶A across cancer tissues

To compare the m⁶A peaks between cancer and normal tissues, we used the m⁶A identified in tumor tissues according to the above pipeline. To obtain the percentage of peaks enriched in representative motifs of the nine cancer tissues, HOMER software [54] was used for motif enrichment analysis, with randomly permuted sequences as the background for RNAs (HOMER parameter: line=1000, size=200). Distributions of m⁶A peaks were plotted on a mega gene with 10 bins in the 5'UTR, CDS, and 3' UTR as previously described [13]. A radar plot was drawn using the 'fmsb' package implemented in R. We used bamCoverage to obtain an IP library and generate coverage tracks, with bigWig as the output. The short consecutive counting windows were set as 10 bins, and reads per kilobase per million mapped reads (RPKM) were used for normalization. With hg38 as the reference genome and *HSPD1*, *TP53*, and

JUN as target genes, IGV (v2.8.13) was used for read coverage of *TP53* in m⁶A-seq data and *JUN* in 97 randomly selected cancer and normal samples [55]. We performed a T test (two-sided, unpaired, unequal variance) on each m⁶A site in tumor and normal tissues; 428 m⁶A sites (adjusted $P < 0.05$) were differentially methylated between tumor and normal tissues.

We calculated the mean and standard deviation of m⁶A modification intensity across all samples at each m⁶A site. CV is equal to the standard deviation divided by the mean value of the m⁶A sites. According to our previous report [13], sites with $CV > 0.3$ in specific cancer types were selected as cancer-specific m⁶A sites.

Gene set variation analysis (GSVA) and functional annotation

To investigate the activation status of m⁶A modification patterns in different biological pathways across the nine cancer tissues, GSVA enrichment analysis was performed using the GSVA R package [56], which allows for the differential analysis of various pathways at the level of gene sets. We downloaded the gene set "c2.cp.kegg.v7.5.1 symbol" from the MSigDB database (<https://www.gsea-msigdb.org/gsea/msigdb/>), and an adjusted $P < 0.05$ was considered statistically significant. Functional annotation of m⁶A-related genes was performed using the ClusterProfiler R package (FDR_cutoff = 0.05).

Identification of cancer type-specific N⁶-methyladenosine

We used a highly predictive and sensitive m⁶A-express computing framework based on Bayesian negative binomials [12] to evaluate the impact of m⁶A strength (IP) on the expression level (input) of each gene. With Hg38 as the reference genome, tumor and normal tissues were used for analysis of m⁶A-regulated genes (m⁶A-express parameter: DM_CUTOFF_TYPE="pvalue", num_ctl=2, diff_peak_pvalue=0.2, FDR=0.2, isPairedEnd=FALSE, GENE_ANNO_GTF = gtf, isGTFAnnotationFile=TRUE, DIFF_GENE_cutoff_FDR=0.2, CUTOFF_TYPE="FDR"). Finally, 1527 m⁶A-express genes were screened by m⁶A-express. After removing duplicate genes, 1439 unique genes were considered m⁶A-regulated genes (m⁶A-reg-exp) (Table S3).

Clustering analysis in TCGA datasets

We downloaded gene expression data and clinical data including 31 types of tumors (9456 samples), from the TCGA database. By integrating the gene expression and clinical data in TCGA (excluding LAML and READ with excessive deletion values), consensus clustering was performed to verify the effect of m⁶A-regulated genes on cancer molecular classification. Consensus clustering is an unsupervised clustering method that can distinguish samples into subtypes based on different histological datasets and allows the discovery of new disease subtypes or comparative analysis of different subtypes. To investigate the regulation of m⁶A modification on downstream gene expression, consensus clustering was performed using the “ConsensusClusterPlus” R package (k = 6) [57]. A total of 1347 m⁶A-reg-exp genes with an average TPM > 5 in TCGA were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. We performed functional enrichment analysis in DAVID (<https://david.ncifcrf.gov/>) [58], and took the top five items ranked in ascending *P*-value order as the results. GO enrichment analysis included cellular component (CC), molecular function (MF), and biological process (BP) terms.

Sub-motif analysis

For our analysis, we first shuffled the m⁶A sub-motif sequences within all GGACA, AGACU, GGACU and GAACU m⁶A peaks for a specific sample to determine the expected number of windows containing all sub-motifs. Following this, we computed the quantity of windows that had all sub-motifs. This shuffling process was reiterated 10,000 times, yielding 10,000 expected values. To plot and compare results from different samples, we performed normalization by mean-centering the values.

Acknowledgments

We thank Jinkai Wang from Sun Yat-sen University for the suggestions in preparing the manuscript.

Data availability

All the data were available upon appropriate request and were deposited in public databases. Figure6 was created by Figdraw (www.figdraw.com).

Funding

We are grateful for the support from the National Natural Science Foundation of China (Grant No.: 82160389 to Sanqi An), Guangxi Medical University Training Program for Distinguished Young Scholars to Sanqi An, Guangxi Science and Technology Base and Talent Project (Grant No.: 2022AC19006 to Sanqi An) and the National Natural Science Foundation of China (Grant No.: 82002134 and 82160385 to Ping Cui).

Authors' Contributions

Yao Lin: Performed data collections, Conducted the analysis, Writing the manuscript, Interpreting the results, Preparing the report for publication, Revised the manuscript; **Jingyi Li:** Performed data collections, Conducted the analysis; **Shuaiyi Liang:** Revised the manuscript; **Yixin Chen:** Partial data collection, Result collation; **Yueqi Li:** Partial data collection, Result collation; **Yixian Cun:** Partial data collection, Result collation; **Lei Tian:** Partial data collection, Result collation; **Yuanli Zhou:** Partial data collection, Result collation; **Yitong Chen:** Partial data collection, Result collation; **Jiemei Chu:** Partial data collection, Result collation; **Hubin Chen:** Partial data collection, Result collation; **Qiang Luo:** Partial data collection, Result collation; **Ruili Zheng:** Partial data collection, Result collation; **Gang Wang:** Partial data collection, Result collation; **Hao Liang:** Designed this study; **Ping Cui:** Writing the manuscript, Interpreting the results, Preparing the report for publication; **Sanqi An:** Designed this study, Performed data collections, Conducted the analysis, Writing the manuscript, Interpreting the results, Preparing the report for publication, Revised the manuscript. All authors read and approved the final manuscript.

Competing Interests

The authors declare that they have no competing interests.

ORCID

ORCID 0000-0003-1728-3791 (Yao Lin)

ORCID 0009-0002-6440-5106 (Jingyi Li)

ORCID 0000-0001-8099-6159 (Shuaiyi Liang)

ORCID 0000-0002-5469-7080 (Yixin Chen)

ORCID 0000-0002-2640-4906 (Yueqi Li)

ORCID 0000-0002-3951-942X (Yixian Cun)

ORCID 0000-0002-5268-5270 (Lei Tian)

ORCID 0000-0001-8855-489X (Yuanli Zhou)

ORCID 0000-0002-2577-2897 (Yitong Chen)

ORCID 0000-0003-2942-0490 (Jiemei Chu)

ORCID 0009-0003-0216-7138 (Hubin Chen)

ORCID 0000-0002-3753-7325 (Qiang Luo)

ORCID 0000-0002-3246-0269 (Ruili Zheng)

ORCID 0000-0001-7264-2457 (Gang Wang)

ORCID 0000-0001-7534-5124 (Hao Liang)

ORCID 0000-0001-7195-2832 (Ping Cui)

ORCID 0000-0002-3177-213X (Sanqi An)

Reference

- [1] ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. *Nature* 2020; (578):82-93.
- [2] Chiu HS, Somvanshi S, Patel E, Chen TW, Singh VP, Zorman B, et al. Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context. *Cell Rep* 2018; (23):297-312 e12.
- [3] Chen H, Li C, Peng X, Zhou Z, Weinstein JN, Cancer Genome Atlas Research N, et al. A Pan-Cancer Analysis of Enhancer Expression in Nearly 9000 Patient Samples. *Cell* 2018; (173):386-99 e12.
- [4] Bin Lim S, Chua MLK, Yeong JPS, Tan SJ, Lim WT, Lim CT. Pan-cancer analysis connects tumor matrisome to immune response. *NPJ Precis Oncol* 2019; (3):15.
- [5] Cheng M, Sheng L, Gao Q, Xiong Q, Zhang H, Wu M, et al. The m(6)A methyltransferase METTL3 promotes bladder cancer progression via AFF4/NF-kappaB/MYC signaling network. *Oncogene* 2019; (38):3667-80.
- [6] Chen Y, Zhou C, Sun Y, He X, Xue D. m(6)A RNA modification modulates gene expression and cancer-related pathways in clear cell renal cell carcinoma. *Epigenomics* 2020; (12):87-99.
- [7] Schumann U, Shafik A, Preiss T. METTL3 Gains R/W Access to the Epitranscriptome. *Molecular Cell* 2016; (62):323-4.
- [8] Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. *Nature Cell Biology* 2018; (20):285-95.
- [9] Zhang C, Huang S, Zhuang H, Ruan S, Zhou Z, Huang K, et al. YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6A RNA methylation. *Oncogene* 2020; (39):4507-18.
- [10] Barbieri I, Kouzarides T. Role of RNA modifications in cancer. *Nat Rev Cancer* 2020; (20):303-22.
- [11] Nombela P, Miguel-Lopez B, Blanco S. The role of m(6)A, m(5)C and Psi RNA modifications in cancer: Novel therapeutic opportunities. *Mol Cancer* 2021; (20):18.
- [12] Zhang T, Zhang SW, Zhang SY, Gao SJ, Chen Y, Huang Y. m6A-express: uncovering complex and condition-specific m6A regulation of gene expression. *Nucleic Acids Res* 2021; (49):e116.
- [13] An S, Huang W, Huang X, Cun Y, Cheng W, Sun X, et al. Integrative network analysis identifies cell-specific trans regulators of m6A. *Nucleic Acids Res* 2020; (48):1715-29.
- [14] Shen S, Zhang R, Jiang Y, Li Y, Lin L, Liu Z, et al. Comprehensive analyses of m6A regulators and interactive coding and non-coding RNAs across 32 cancer types. *Mol Cancer* 2021; (20):67.

- [15] Li Y, Xiao J, Bai J, Tian Y, Qu Y, Chen X, et al. Molecular characterization and clinical relevance of m(6)A regulators across 33 cancer types. *Mol Cancer* 2019; (18):137.
- [16] Larivera S, Meister G. Domain confusion 2: m(6)A-independent role of YTHDC2. *Molecular Cell* 2022; (82):1608-9.
- [17] Liu P, Li F, Lin J, Fukumoto T, Nacarelli T, Hao X, et al. m(6)A-independent genome-wide METTL3 and METTL14 redistribution drives the senescence-associated secretory phenotype. *Nature Cell Biology* 2021; (23):355-65.
- [18] Su R, Dong L, Li Y, Gao M, He PC, Liu W, et al. METTL16 exerts an m(6)A-independent function to facilitate translation and tumorigenesis. *Nature Cell Biology* 2022; (24):205-16.
- [19] Dominissini D, Moshitch-Moshkovitz S, Salmon-Divon M, Amariglio N, Rechavi G. Transcriptome-wide mapping of N(6)-methyladenosine by m(6)A-seq based on immunocapturing and massively parallel sequencing. *Nature Protocols* 2013; (8):176-89.
- [20] Garcia-Campos MA, Edelheit S, Toth U, Safra M, Shachar R, Viukov S, et al. Deciphering the "m(6)A Code" via Antibody-Independent Quantitative Profiling. *Cell* 2019; (178):731-47 e16.
- [21] Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, et al. The role of m6A modification in the biological functions and diseases. *Signal Transduct Target Ther* 2021; (6):74.
- [22] Oh HJ, Bae JM, Wen X, Jung S, Kim Y, Kim KJ, et al. p53 expression status is associated with cancer-specific survival in stage III and high-risk stage II colorectal cancer patients treated with oxaliplatin-based adjuvant chemotherapy. *British Journal of Cancer* 2019; (120):797-805.
- [23] Chen M, Wei L, Law CT, Tsang FH, Shen J, Cheng CL, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. *Hepatology* 2018; (67):2254-70.
- [24] Liu X, Du Y, Huang Z, Qin H, Chen J, Zhao Y. Insights into roles of METTL14 in tumors. *Cell Proliferation* 2022; (55):e13168.
- [25] Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. *Nature* 2021; (593):597-601.
- [26] Liu M, Xu K, Saaoud F, Shao Y, Zhang R, Lu Y, et al. 29 m(6)A-RNA Methylation (Epitranscriptomic) Regulators Are Regulated in 41 Diseases including Atherosclerosis and Tumors Potentially via ROS Regulation - 102 Transcriptomic Dataset Analyses. *J Immunol Res* 2022; (2022):143323.
- [27] Zhu J, Xiao J, Wang M, Hu D. Pan-Cancer Molecular Characterization of m(6)A Regulators and Immunogenomic Perspective on the Tumor Microenvironment. *Front Oncol* 2020; (10):618374.
- [28] Zhang Y, Hamada M. Identification of m(6)A-Associated RNA Binding

Proteins Using an Integrative Computational Framework. *Front Genet* 2021; (12):625797.

[29] Su R, Dong L, Li Y, Gao M, Han L, Wunderlich M, et al. Targeting FTO Suppresses Cancer Stem Cell Maintenance and Immune Evasion. *Cancer Cell* 2020; (38):79-96 e11.

[30] Xu T, Wu X, Wong CE, Fan S, Zhang Y, Zhang S, et al. FIONA1-Mediated m(6)A Modification Regulates the Floral Transition in *Arabidopsis*. *Adv Sci (Weinh)* 2022; (9):e2103628.

[31] Luo X, Li H, Liang J, Zhao Q, Xie Y, Ren J, et al. RMVar: an updated database of functional variants involved in RNA modifications. *Nucleic Acids Res* 2021; (49):D1405-D12.

[32] Song B, Wang X, Liang Z, Ma J, Huang D, Wang Y, et al. RMDisease V2.0: an updated database of genetic variants that affect RNA modifications with disease and trait implication. *Nucleic Acids Res* 2023; (51):D1388-D96.

[33] Song B, Huang D, Zhang Y, Wei Z, Su J, Pedro de Magalhaes J, et al. m6A-TSHub: Unveiling the Context-specific m(6)A Methylation and m6A-affecting Mutations in 23 Human Tissues. *Genomics Proteomics & Bioinformatics* 2022.

[34] Chong W, Shang L, Liu J, Fang Z, Du F, Wu H, et al. m(6)A regulator-based methylation modification patterns characterized by distinct tumor microenvironment immune profiles in colon cancer. *Theranostics* 2021; (11):2201-17.

[35] Shulman Z, Stern-Ginossar N. The RNA modification N(6)-methyladenosine as a novel regulator of the immune system. *Nat Immunol* 2020; (21):501-12.

[36] Zhu W, Wang JZ, Wei JF, Lu C. Role of m6A methyltransferase component VIRMA in multiple human cancers (Review). *Cancer Cell Int* 2021; (21):172.

[37] Yang Z, Cai Z, Yang C, Luo Z, Bao X. ALKBH5 regulates STAT3 activity to affect the proliferation and tumorigenicity of osteosarcoma via an m6A-YTHDF2-dependent manner. *EBioMedicine* 2022; (80):104019.

[38] Hou J, Zhang H, Liu J, Zhao Z, Wang J, Lu Z, et al. YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma. *Mol Cancer* 2019; (18):163.

[39] An S, Xie Z, Liao Y, Jiang J, Dong W, Yin F, et al. Systematic analysis of clinical relevance and molecular characterization of m(6)A in COVID-19 patients. *Genes Dis* 2022; (9):1170-3.

[40] Zhang Z, Zhan Q, Eckert M, Zhu A, Chryplewicz A, De Jesus DF, et al. RADAR: differential analysis of MeRIP-seq data with a random effect model. *Genome Biol* 2019; (20):294.

[41] Choe J, Lin S, Zhang W, Liu Q, Wang L, Ramirez-Moya J, et al. mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. *Nature* 2018; (561):556-60.

[42] Liu J, Eckert MA, Harada BT, Liu SM, Lu Z, Yu K, et al. m(6)A mRNA methylation regulates AKT activity to promote the proliferation and

tumorigenicity of endometrial cancer. *Nat Cell Biol* 2018; (20):1074-83.

[43] Niu X, Xu J, Liu J, Chen L, Qiao X, Zhong M. Landscape of N(6)-Methyladenosine Modification Patterns in Human Ameloblastoma. *Front Oncol* 2020; (10):556497.

[44] Liu J, Li K, Cai J, Zhang M, Zhang X, Xiong X, et al. Landscape and Regulation of m(6)A and m(6)Am Methylome across Human and Mouse Tissues. *Molecular Cell* 2020; (77):426-40 e6.

[45] Han Z, Ren H, Sun J, Jin L, Wang Q, Guo C, et al. Integrated weighted gene coexpression network analysis identifies Frizzled 2 (FZD2) as a key gene in invasive malignant pleomorphic adenoma. *J Transl Med* 2022; (20):15.

[46] Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, et al. FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N(6)-Methyladenosine RNA Demethylase. *Cancer Cell* 2017; (31):127-41.

[47] Zhou Y, Zhou H, Shi J, Guan A, Zhu Y, Hou Z, et al. Decreased m6A Modification of CD34/CD276(B7-H3) Leads to Immune Escape in Colon Cancer. *Front Cell Dev Biol* 2021; (9):715674.

[48] Han Z, Yang B, Wang Q, Hu Y, Wu Y, Tian Z. Comprehensive analysis of the transcriptome-wide m(6)A methylome in invasive malignant pleomorphic adenoma. *Cancer Cell Int* 2021; (21):142.

[49] S A. FastQC: a quality control tool for high throughput sequence data <http://www.bioinformatics.babraham.ac.uk/projects/fastqc>. 2010.

[50] Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. *Nature Methods* 2015; (12):357-60.

[51] Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. *Nature Biotechnology* 2015; (33):290-5.

[52] Batista PJ, Molinie B, Wang J, Qu K, Zhang J, Li L, et al. m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. *Cell Stem Cell* 2014; (15):707-19.

[53] Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. *Nature* 2012; (485):201-6.

[54] Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. *Molecular Cell* 2010; (38):576-89.

[55] Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. *Brief Bioinform* 2013; (14):178-92.

[56] Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. *BMC Bioinformatics* 2013; (14):7.

[57] Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with

confidence assessments and item tracking. *Bioinformatics* 2010; (26):1572-3.

[58] Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. *Nucleic Acids Res* 2007; (35):W169-75.

Figure legends

Figure 1. Schematic flow chart demonstrating the process of the analysis.

Figure 2. m⁶A features in nine tumor and normal tissues.

A. The number of m⁶A peaks identified in each cancer and normal tissue is represented by a bar graph. Error bars denote the maximum and minimum across all replicates. **B.** Pearson correlation heatmaps of the correlation matrix representing the correlation between global m⁶A levels in different samples. **C.** The radar map showing the percentage of m⁶A sub-motifs of nine cancer tissues, indicated by different colored lines (Chi-Squared Test, $P < 2.2 \times 10^{-16}$). Normalized distributions of the m⁶A peak at 5'UTR, CDS, and 3'UTR in nine tumor tissues (**D**) and nine normal tissues (**E**). **F.** Comparison of overall m⁶A peak distribution between tumor and normal tissues. **G.** Exon length of tumor tissues compared with normal tissues. The P value of the Wilcoxon test is indicated ($P = 5.455 \times 10^{-8}$). **H.** Track showing m⁶A coverage of the gene *JUN* from randomly selected samples among 97 cancer and normal subjects, with the 5'UTR highlighted. The data range for each track is displayed on the left side (0-19254).

Figure 3. Coefficient of variation (CV) of the m⁶A level in tumor and normal tissues.

Boxplot showing CV of the m⁶A level at the 3'UTR (**A**), CDS (**B**), and start codon (**C**), and stop codon (**D**) segments (*, $P < 0.05$; **, $P < 0.01$; ***, $P < 0.001$; ****, $P < 0.0001$). **E.** Dot plots representing fold change (cancer/normal) of coefficient of variation (CV) of m⁶A in the start and stop codons across nine tissue samples. **F.** The track displays the m⁶A abundance of the gene *TP53* in a lung tumor, with the 5'UTR highlighted. The data range for each track is displayed on the left side (0-201).

Figure 4. Relationship and functions between cancer type-specific m⁶A level and cancer type-specific gene expression.

A. The m⁶A level in nine cancer types is displayed by heatmap. Each red box represents the cancer type-specific m⁶A site of each cancer. **B.** Heatmap showing the expression level of m⁶A targeted gene after log₂ conversion to TPM in nine cancer types. Each red box represents the cancer type-specific m⁶A targeted gene of each cancer. **C.** The correlation between the level of m⁶A modification in each profile and the corresponding gene expression. The trend significantly differs from the results of randomly shuffled data for this correlation ($P < 2.2 \times 10^{-16}$). **D.** GO analysis of cancer-specific m⁶A-targeted genes in each cancer type.

Figure 5. Cluster analysis of 9456 samples from 31 cancers based on the m⁶A-reg-exp genes reveals the potential of m⁶A-regulated genes in molecular subtype classification.

A. Heatmap showing the expression of m⁶A-reg-exp genes of 31 tumors in TCGA. **B.** The proportion of each cancer in different clusters. **C.** Prognostic analysis showing different clinical outcomes of different clusters ($P = 6.8 \times 10^{-17}$). **D.** KEGG analysis of 1347 m⁶A-reg-exp genes, with bubble size representing the gene counts enriched in term and color representing the P -value.

Figure 6. Cell-specific m⁶A regulators are involved in cancer-specific m⁶A regulation.

A. The heatmap showing the correlation between the expression level of m⁶A regulators and corresponding cancer-specific m⁶A level, with positive correlation in red and negative correlation in blue. **B.** Plot of cumulative fraction of absolute value of the correlation coefficient between expression of two types of m⁶A regulator and corresponding cancer-specific m⁶A levels, as well as two types of m⁶A regulator and random cancer-specific m⁶A levels ($P < 2.2 \times 10^{-16}$). **C.** A Sankey diagram shows the network constructed based on correlation between expression level of m⁶A regulators and corresponding cancer-specific m⁶A level to identify m⁶A regulators modulating corresponding cancer specific m⁶A. **D.** Scatter plot shows the correlation between expression of the *CAPRIN1* gene and cancer-specific m⁶A level in cancer ($P = 5.073 \times$

10^{-6}). **E.** Boxplot showing cancer-specific m⁶A levels upon *CPARIN1* knockout ($P = 0.0063$). **F.** The track displays the read coverage of normalized IP input, highlighting the m⁶A level of the gene *TP53* in the *CPARIN1*-knockout and control group. The data range for each track is displayed on the left side (0-309).

Figure 7. Cancer-specific m⁶A is specifically modulated by regulators, resulting in tumor heterogeneity

Supplement Figure 1. m⁶A site characteristics.

- A.** The clustering heatmap showing the clustering effect of m⁶A-seq from different BioProject sources to calculate the abundance of m⁶A sites by improved winscore method.
- B.** Comparison of overall m⁶A peak distribution between tumor (HEC1a, HEPG2, iSLK, MOLM13, MonoMac6, MT4tCELL, NB4) and normal (MSC, NHDF, TIME) cell lines.
- C.** The radar map showing the percentage of classic m⁶A motifs of 7 cancer cell lines, indicated by different colored lines (Chi-Squared Test, $P = 0.0254$).
- D.** The proportion of different gene types of m⁶A site in nine tumor and normal tissues.
- E.** Characteristic motif of m⁶A in nine cancer tissues.

Supplement Figure 2. Variable m⁶A sites characteristics.

- A.** The proportion of stable and variable m⁶A peaks is displayed by a stacked bar chart across all tumor and normal tissues analyzed in this study.
- B.** Coefficient of variation (CV) of m⁶A level in tumor and normal tissues. The boxplot showing the CV of m⁶A level at the 5'UTR (*, $P < 0.05$; **, $P < 0.01$; ****, $P < 0.0001$).
- C.** The track shows the m⁶A coverage of the *HSPD1* gene from randomly selected samples among 97 cancer and normal subjects. The data range for each track is displayed on the left side (0-96).
- D.** Differences in m⁶A between cancer and normal samples ($P < 2.2 \times 10^{-16}$).

Supplement Figure 3. GSVA enrichment analysis revealed activation status of different cancer-specific m⁶A-related KEGG pathways. After being Z-score normalized, the GSVA sample-wise gene set enrichment scores are used to plot a heatmap.

Supplement Figure 4. GO enrichment analysis of cancer type-specific m⁶A across

nine cancer types. The x-axis represents the significance level of pathway enrichment.

A. Cellular component. **B.** molecular function.

Supplement Figure 5. Classification of 31 cancer types based on m⁶A-reg-exp gene profiles.

A. Consensus clustering matrix of m⁶A-reg-exp genes in 31 tumors in TCGA for k = 6. **B.** Consensus clustering CDF for k = 2 to k = 12. **C.** Biological process of 1347 m⁶A-reg-exp genes by GO enrichment analysis (Biological Progress).

Supplement Figure 6. Plot of cumulative fraction and boxplot in 6 subtypes of immune cells

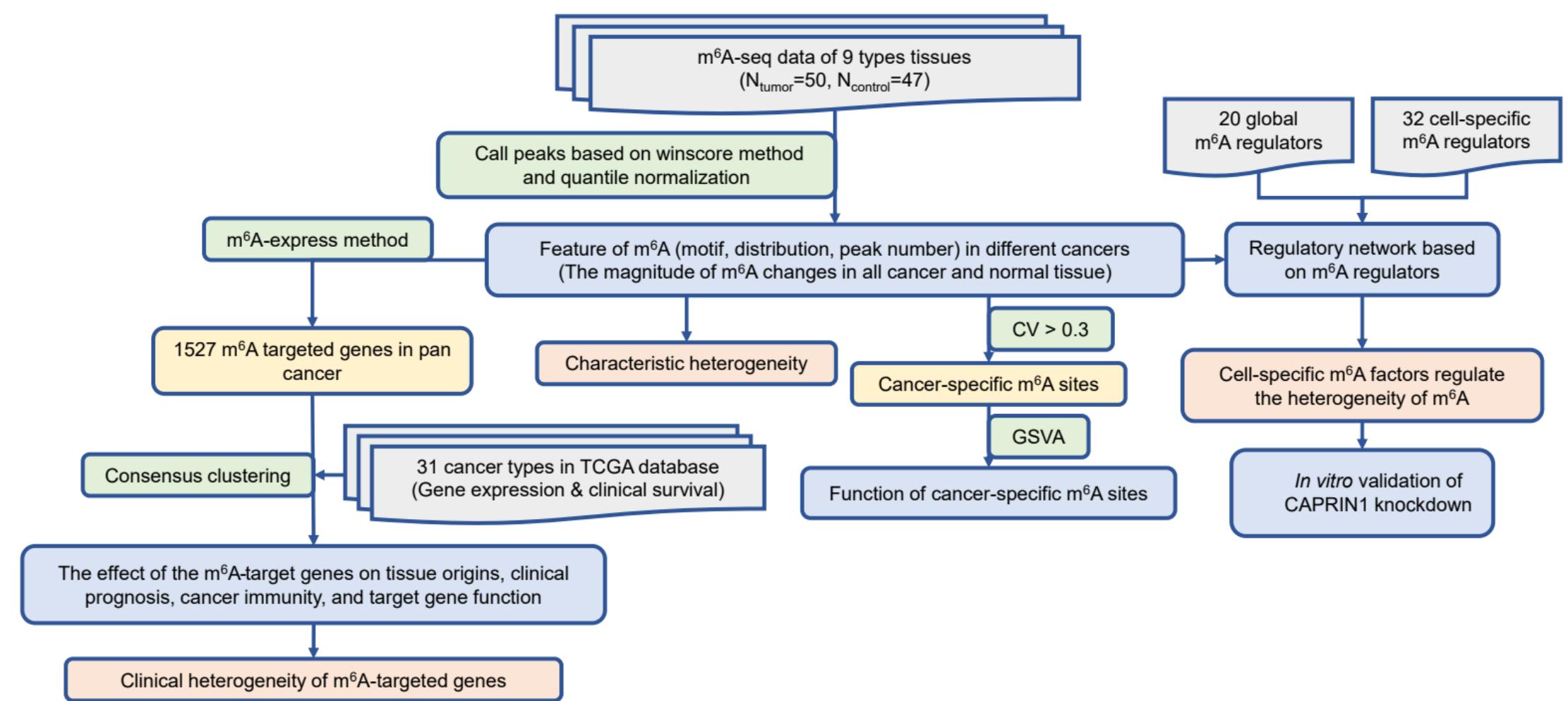
A. B cell TIMER score, **B.** CD4+ T cell TIMER score, **C.** CD8+ T cell TIMER score, **D.** Macrophage TIMER score, **E.** Myeloid dendritic cell TIMER score, **F.** Neutrophil TIMER score calculated by TIMER.

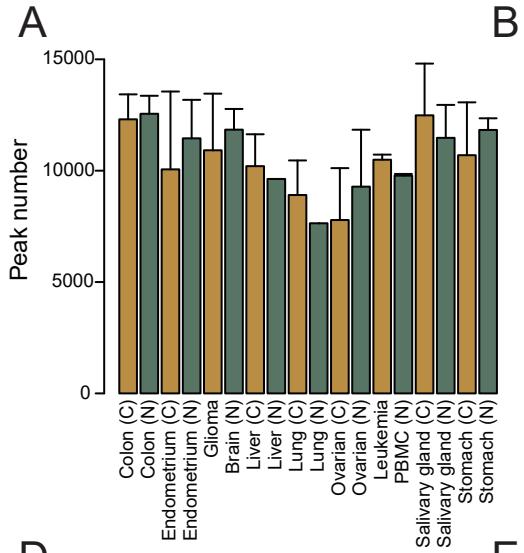
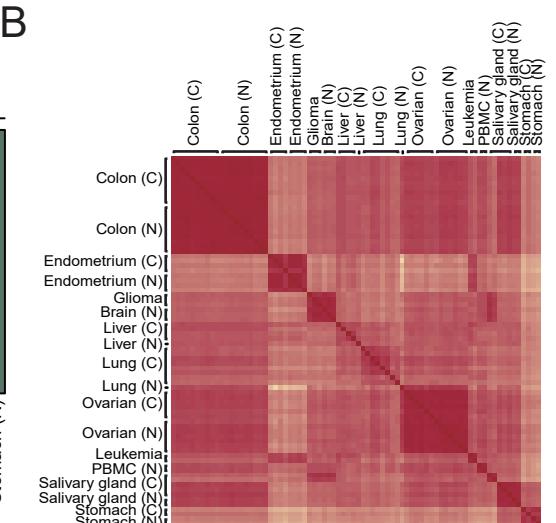
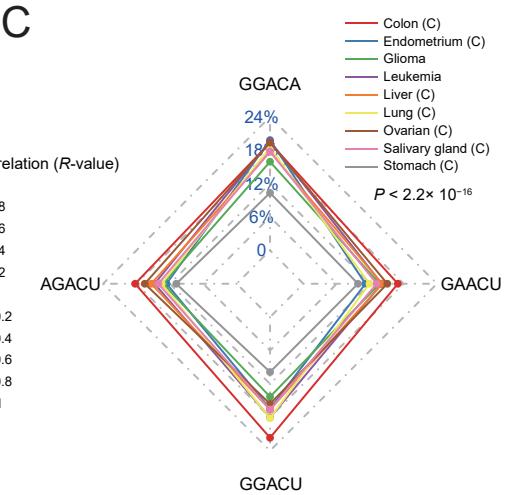
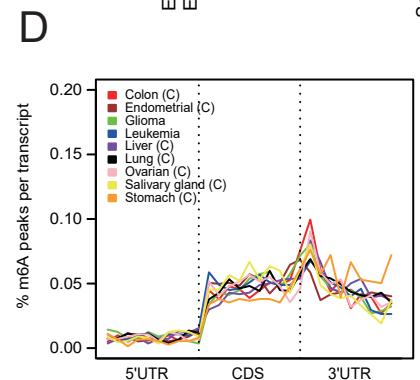
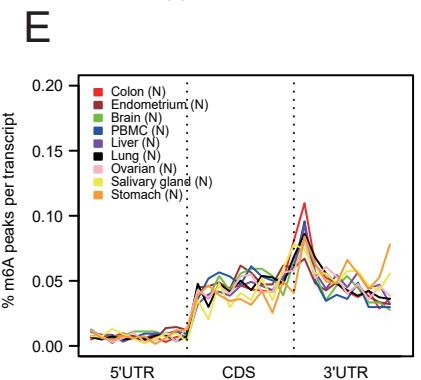
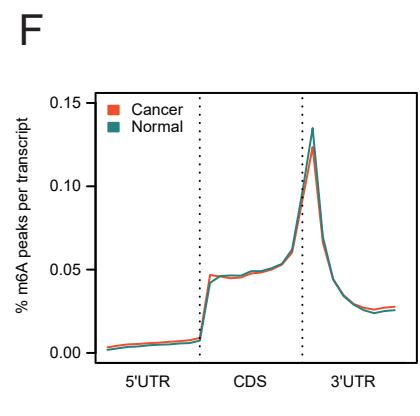
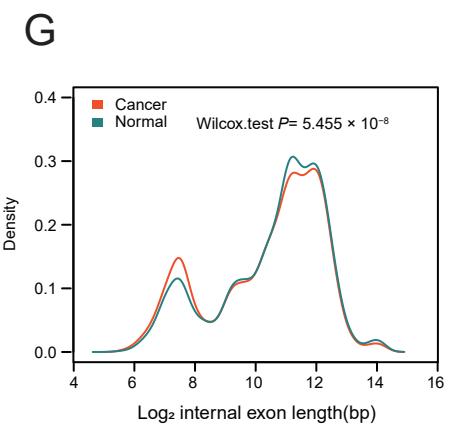
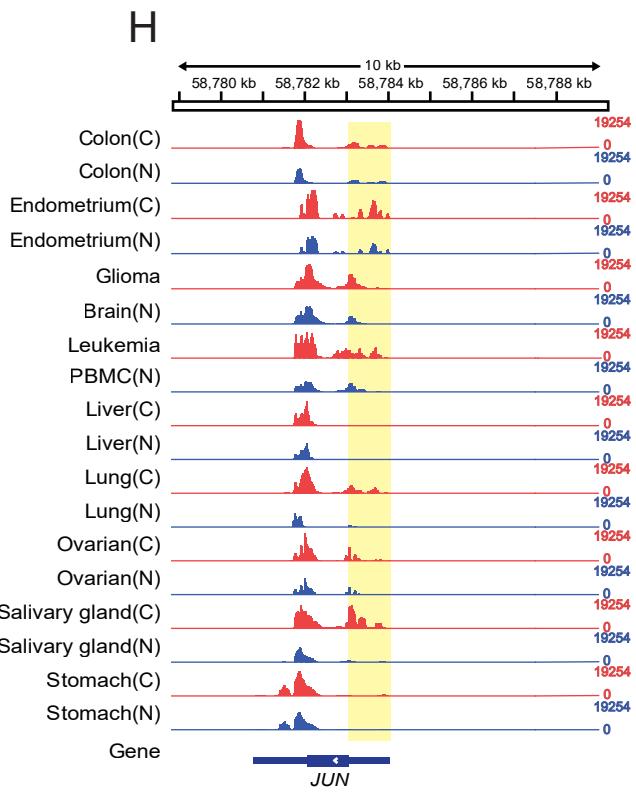
Supplement Figure 7. Heatmap of expression of classical m⁶A regulators and cell specific m⁶A regulators in 31 tumor samples in TCGA. Bar graph shows the coefficient of variation of corresponding genes.

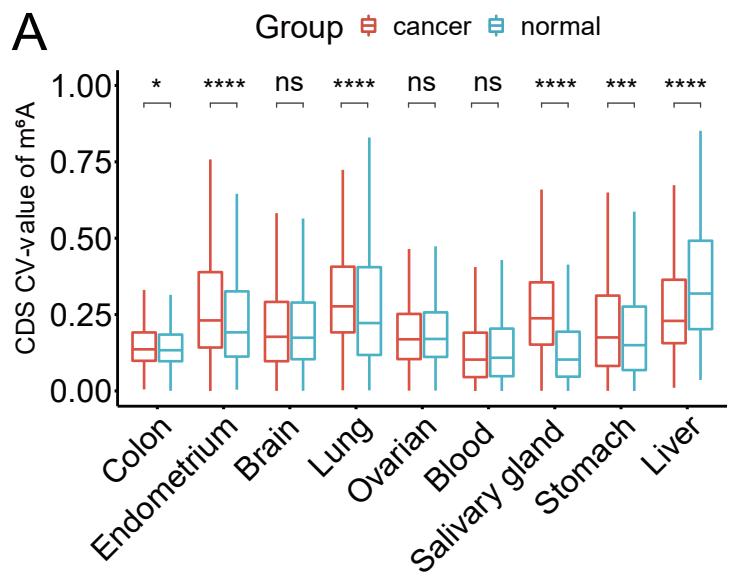
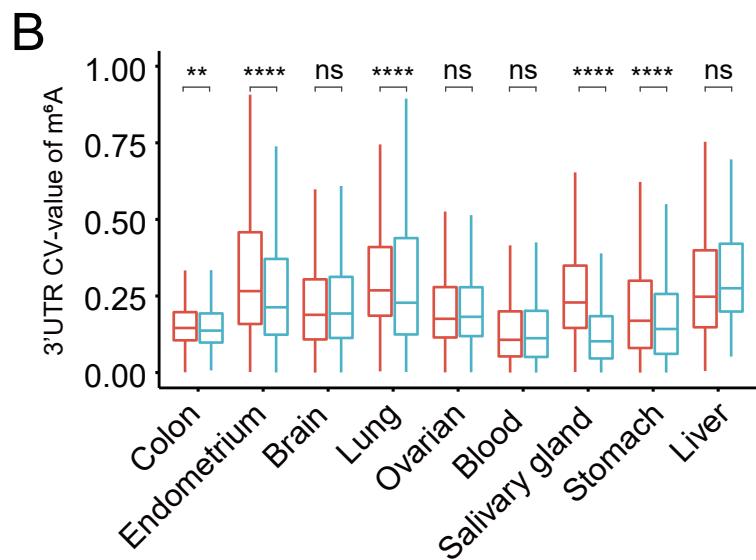
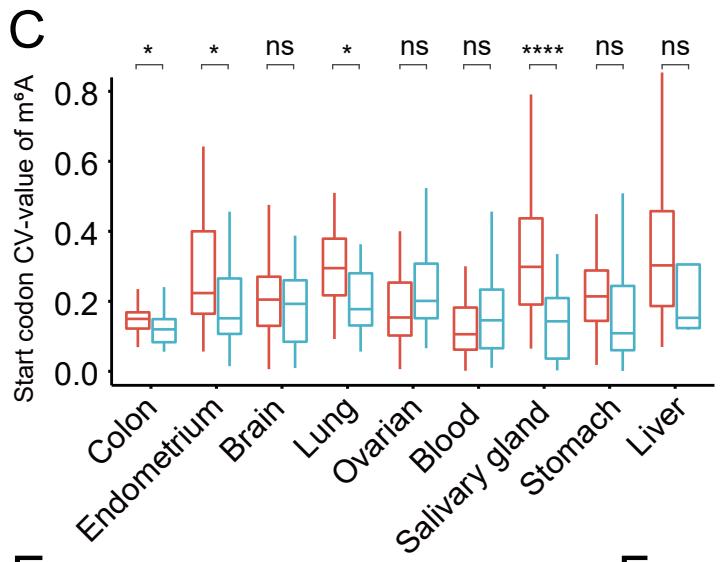
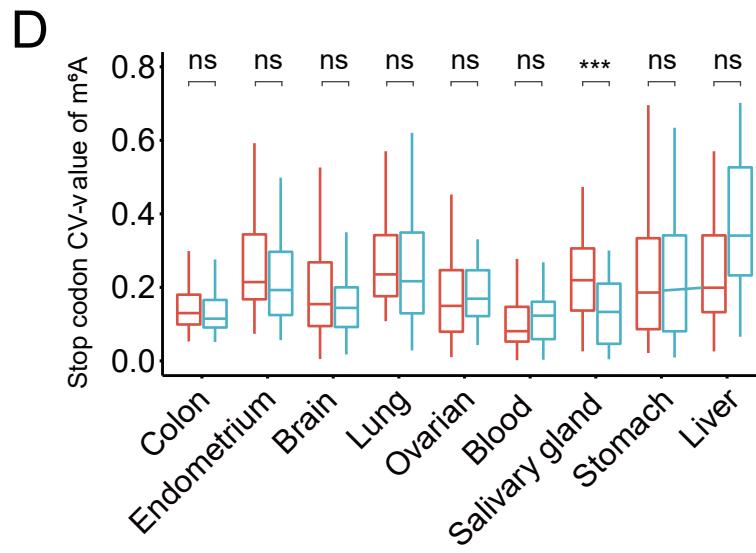
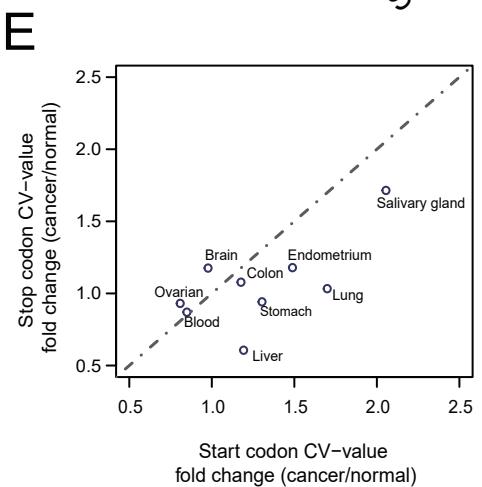
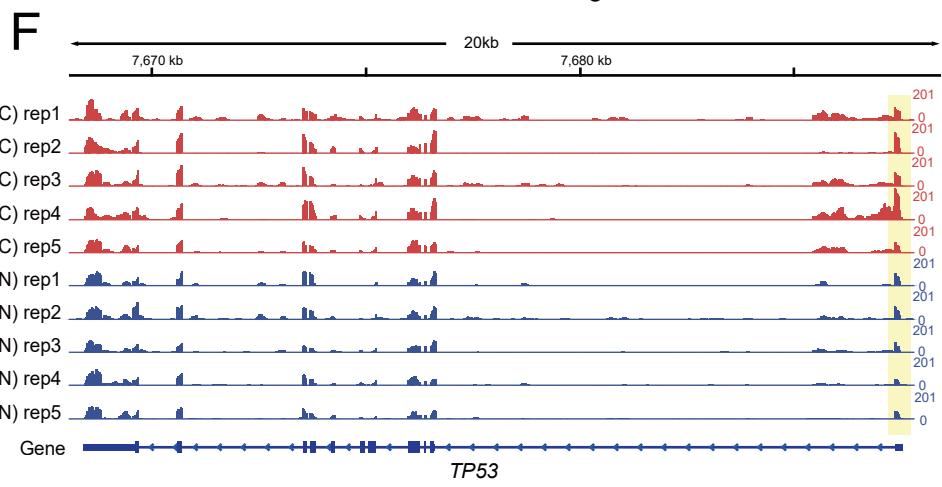
Supplement Table 1. Data collection of 9 types of cancer and normal tissues m⁶A-seq.

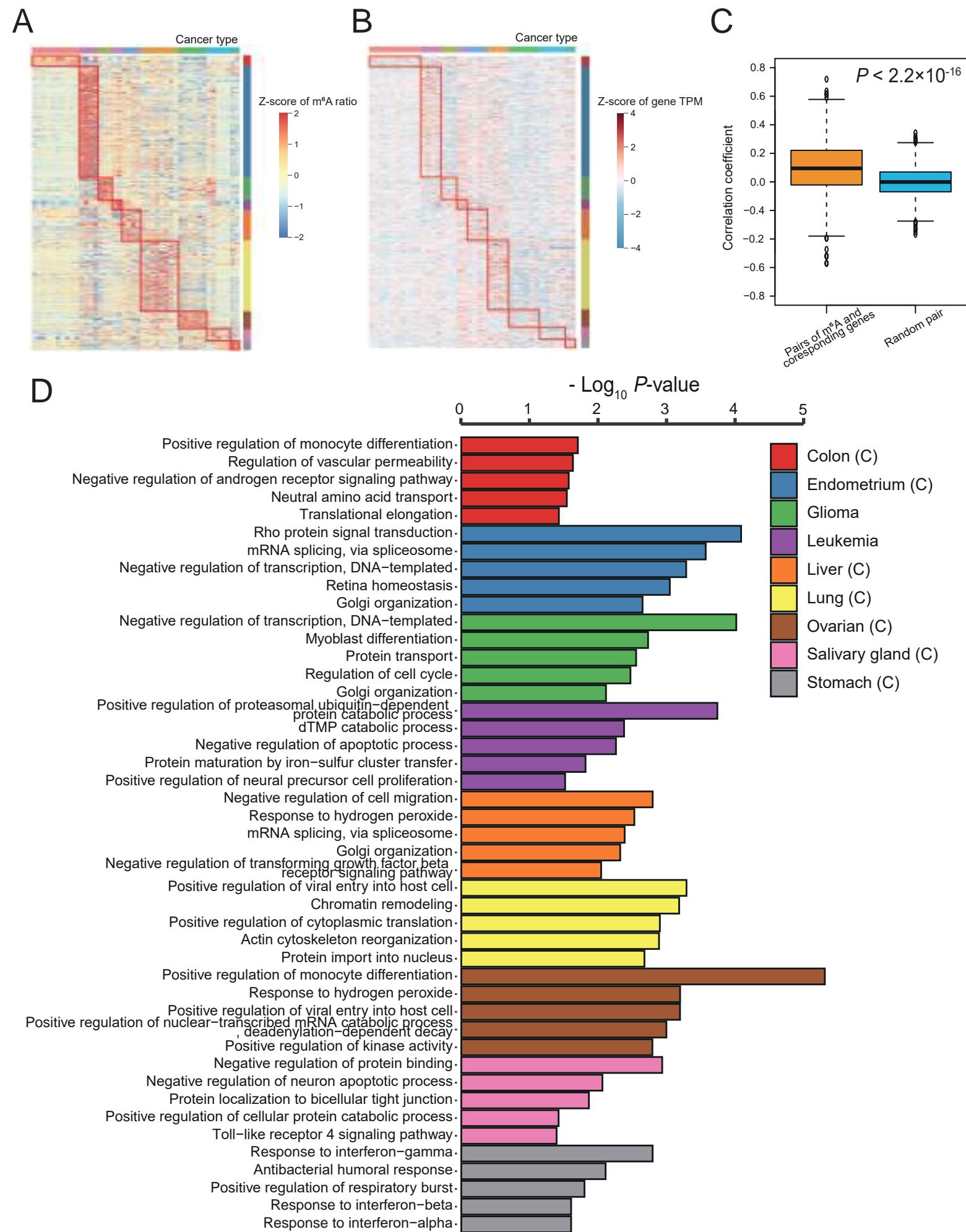
Supplement Table 2. Data collection of 7 types of cancer cell lines m⁶A-seq and 3 types of normal cell lines m⁶A-seq.

Supplement Table 3. m⁶A-express result delineates cancer specific genes that are regulated by m⁶A in distinct cancer types, alongside their expression levels across diverse samples.

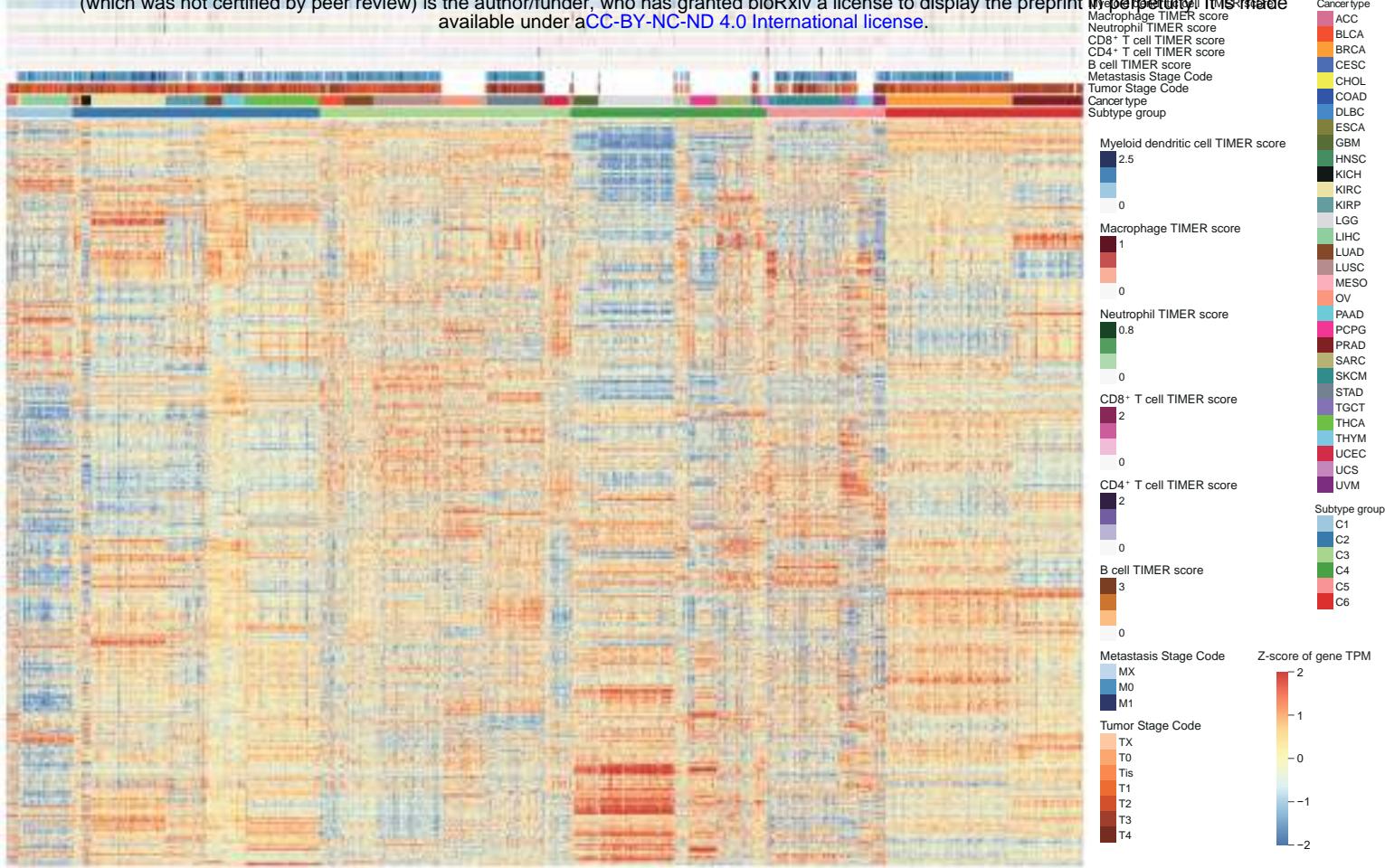




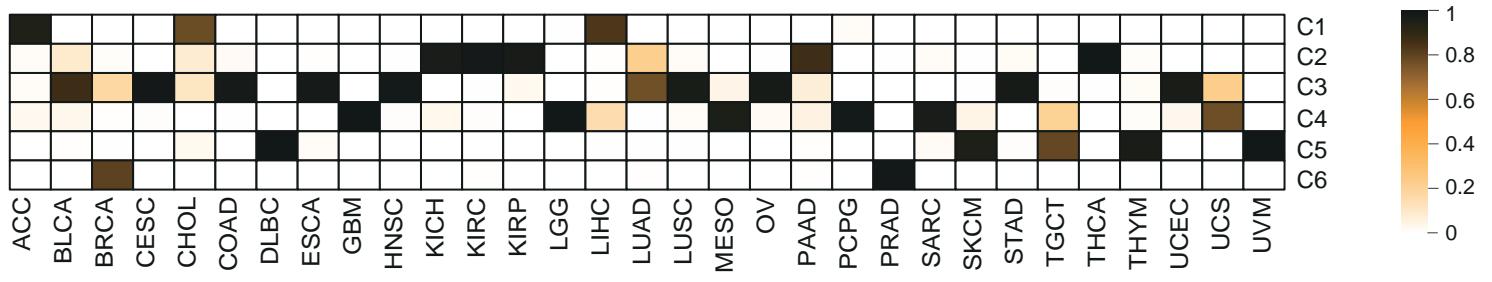




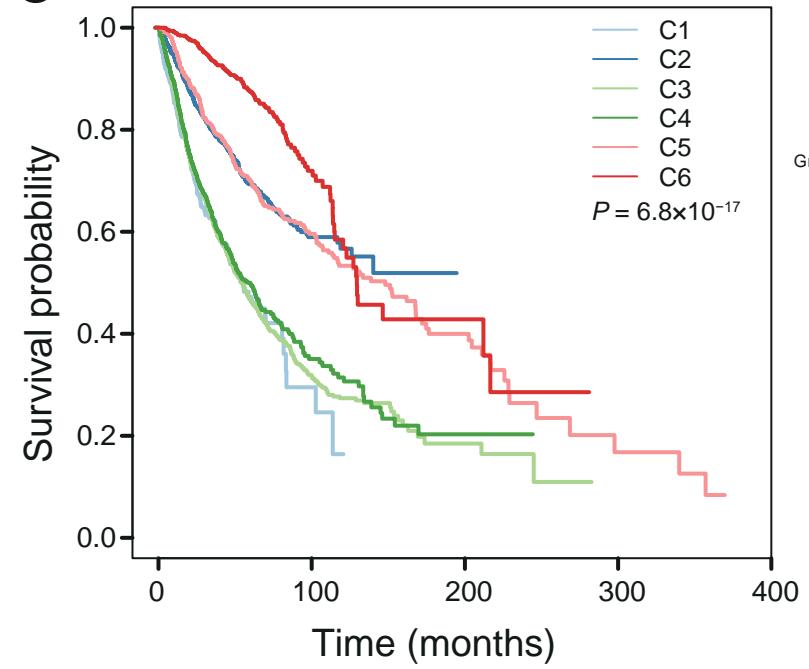
A



B



C



D

