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Abstract 

As the most abundant mRNA modification in mRNA, N6-methyladenosine (m6A) 

plays a crucial role in RNA fate, impacting cellular and physiological processes in 

various tumor types. However, our understanding of the function and role of the m6A 

methylome in tumor heterogeneity remains limited. Herein, we collected and analyzed 

m6A methylomes across nine human tissues from 97 m6A-seq and RNA-seq samples. 

Our findings demonstrate that m6A exhibits different heterogeneity in most tumor 

tissues compared to normal tissues, which contributes to the diverse clinical outcomes 

in different cancer types. We also found that the cancer type-specific m6A level 

regulated the expression of different cancer-related genes in distinct cancer types. 

Utilizing a novel and reliable method called “m6A-express”, we predicted m6A-

regulated genes and revealed that cancer type-specific m6A-regulated genes 

contributed to the prognosis, tumor origin and infiltration level of immune cells in 

diverse patient populations. Furthermore, we identified cell-specific m6A regulators 

that regulate cancer-specific m6A and constructed a regulatory network. Experimental 

validation was performed, confirming that the cell-specific m6A regulator CAPRIN1 

controls the m6A level of TP53. Overall, our work reveals the clinical relevance of 

m6A in various tumor tissues and explains how such heterogeneity is established. 

These results further suggest the potential of m6A for cancer precision medicine for 

patients with different cancer types. 

 

Keywords：N6-methyladenosine; Heterogeneity; m6A-reg-exp; m6A regulator; Cell 

specific
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Introduction 
It is widely accepted that cancer is a disease caused by genomic and epigenetic 

changes in oncogenes and tumor suppressor genes. Pan-cancer analysis of whole 

genomes, enhancer expression, long noncoding RNA (lncRNA) regulation, immune 

response and the like, aiming to examine the differences and similarities across 

different tumor types, has received extensive attention [1-4]. As the most prevalent 

mRNA modification, m6A is reversibly regulated by various classical m6A regulators, 

including methyltransferases (METTL3, METTL14, VIRMA, ZC3H13, WTAP, 

CBLL1/HAKAI and RBM15/RBM15B) and m6A demethylases (ALKBH5 and FTO), 

which mediate demethylation of different m6A sites [5-7]. m6A ‘readers’, YTH family 

proteins, and IGF2BPs recognize this reversible m6A and regulate post-transcriptional 

processes, such as RNA decay, alternative polyadenylation and nuclear export, in 

different cancer types [8, 9]. Previous studies have shown that m6A plays an important 

role in the progression of individual cancer types [10, 11]. However, our 

understanding of the mechanisms underlying cell and cancer type-specific m6A 

regulation in pan-cancer is limited [12, 13]. 

To investigate the complex cell type-specific regulatory network and the role of 

m6A in different cancer types, it is necessary to perform a pan-cancer analysis at the 

level of m6A methylation. Due to the limitations of m6A identification methods, some 

researchers have only tried to perform gene expression analysis of classical m6A 

regulators to analyze the heterogeneity of m6A regulators instead of real m6A in 

different cancers [14, 15]. However, key m6A regulators, such as METTL3, METTL14 

and YTHDC2, may function independently of m6A [16-18]. Therefore, these m6A 

regulators expression-based pan-cancer analysis, are far from revealing the 

characteristics and roles of m6A in different cancer types. Among the various methods 

for identifying m6A sites with high resolution, N6-methyladenosine sequencing (m6A-

seq) is the most widely used and has promoted m6A research [19]. In our previous 

study, we made multiple methodological improvements to mitigate the impact of 

technical biases caused by different immunoprecipitation efficiencies across the 

different libraries in m6A-seq [13] to provide a reliable method for m6A pan-cancer 

analysis.  

With accurate calculations based on a large number of m6A-seq datasets, we 

attempted to investigate the m6A landscape in terms of cancer tissue specificity. Then, 

we wanted to know what key clinically relevant heterogeneity of m6A leads to and 
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how this heterogeneity of m6A is established. To achieve this, we performed 

comprehensive pan-cancer analyses involving nine cancer types utilizing 97 m6A-seq 

and RNA-seq samples. We used a reliable method called “m6A-express” to predict 

m6A-reg-exp genes (m6A regulation of gene expression) in pan-cancer analysis [12]. 

Through these m6A-reg-exp genes, we comparably and comprehensively explored 

clinically relevant m6A modifications that are involved in cancer progression, 

prognostic prediction and molecular classification across 31 different cancer types. 

Additionally, we attempted experimental validation of the CAPRIN1/METTL3-m6A-

TP53 axis identified by the in silico work. To the best of our knowledge, this is the 

first pan-cancer analysis based on global m6A levels. Our results will contribute to a 

better understanding of m6A heterogeneity and its role in cancer precision therapy 

 

Results 
Systematic analysis of extensive m6A-seq data reveals distinct m6A features in 

nine types of cancer and normal tissues 

We collected m6A-seq data of 97 tumor tissues as well as corresponding normal 

tissues and explored the characteristics of these m6A sites. Various technical issues 

associated with m6A-seq data can obstruct the successful systematic analysis of 

quantitative m6A ratios calculated from m6A-seq data. As a result, we implemented 

multiple processing steps to minimize the effects of different types of technical issues 

(see the "Materials and Methods" section for details). Due to technical biases in 

preparing the m6A-seq libraries, such as variations in RNA length, the shifting of peak 

centers and divergence of peak widths will be controlled using winscore methods (see 

the "Materials and Methods" section for details). Afterwards, quantile normalization 

of the m6A ratios is performed to correct biases introduced by differences in antibody 

efficiencies across various laboratories. Based on our previous findings that m6A sites 

with a CV greater than 0.3 vary between different cells [13], we further calculated the 

specificity and function of these m6A sites. Subsequently, we utilized the expression 

levels of cell-specific m6A regulators identified in our previous research and classical 

m6A regulators to compute their correlation with the m6A we obtained. Through 

experimental validation, we identified specific regulators that modulate cancer-

specific m6A. At the same time, we employed m6A-express to calculate target genes 

regulated by m6A in different cancers and analyzed the potential impact of these m6A-

regulated genes on prognosis and cellular immune responses across various cancers 
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(Figure 1). 

To systematically reveal the basic characteristics of m6A in various cancer types at 

the tissue level, we initially made several methodological improvements to the 

winscore-based method to mitigate the impacts of technical biases of m6A-seq data 

from different laboratories (see the ‘Methods’ section for more details) [13]. This is 

important for the reliable quantification of m6A levels using m6A-seq data from 

different labs. After performing quantile normalization of the m6A level across all 

tissues, we performed unsupervised clustering using the normalized m6A level and 

found that the variable m6A levels in lung cancer and leukemia were not clustered 

according to the labs but rather according to cancer types, suggesting that we 

successfully eliminated batch effects from different labs (Figure S1A). Then, we 

conducted m6A quantitative analysis on nine tumor tissues and their controls, 

including glioma, lung cancer, liver cancer, endometrial cancer, ovarian cancer, 

leukemia, colon cancer, salivary gland cancer, and stomach cancer. Approximately 

10,000 m6A peaks were obtained for each tissue (Figure 2A), and samples from the 

same tissue type clustered well according to their m6A levels (Figure 2B), indicating 

that tissue-specific m6A methylomes indeed exist. To better understand the biological 

function of these m6A sites, we annotated them and found that m6A mostly occurred 

on protein-encoding genes (Figure S1D). Some m6A was present on non-coding RNA 

(Figure S1D), suggesting that non-coding RNA also played essential roles in these 

cancer types. We observed a trend that m6A from different cancer types had varying 

levels of enrichment in distinct m6A sub-motifs (P < 2.2×10-16), suggesting that m6A 

methylomes may be cancer-specific (Figure 2C, Figure S1E). Cancer-specific m6A 

motifs, m6A distribution, and m6A peak number indicated that m6A with different 

functions in different tumors is regulated in a cancer-specific manner. 

Then, we studied the distribution of m6A in different samples (Figure 2D-E), and 

consistent with other reports, m6A was more likely to be enriched in the 3'UTR start 

segment and the CDS segment and reached its peak at the 3'UTR start segment. By 

integrating the distributions of tumor samples and control samples, it was also found 

that m6A peaks in tumor samples are more prevalent at stop codon regions than in 

normal samples, whereas m6A peaks in normal samples were more abundant at start 

codon regions (Figure 2F) and less abundant in long internal exons (P= 5.455 × 10−8) 

(Figure 2G). In our previous research, we considered the m6A sites away from stop 
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codons as “dynamic m6A sites”. They are precisely and dynamically regulated by cell-

specific trans regulators expressed with spatial and temporal specificities across 

different cell types [13]. Herein, we suspect that m6A in cancer tissues had a greater 

coefficient of variation (CV) than that of normal tissue, which might be regulated by 

cell-specific trans regulators and contribute to the heterogeneity of cancer. We also 

used JUN, which has been associated with human cancer malignancies, as an example 

to analyze the differences in the CV of m6A between cancer and normal tissues. At the 

beginning of the JUN gene coding region, higher CV on the start codons were 

observed in nine types of cancer tissues (Figure 2H). 

To further validate our conclusions, we also gathered m6A-seq data from cancer 

and normal cell lines for further analysis, including 7 tumor cell lines (HEC1a, 

HEPG2, iSLK, MOLM13, MonoMac6, MT4tCELL, NB4) and 3 normal cell lines 

(MSC, NHDF, TIME) (Table S2). By analyzing the distribution and motif of m6A site 

characteristics, we found that m6A in normal cell lines tended to be closer to stop 

codons, whereas there were more m6A peaks in cancer cell lines in coding regions 

(Figure S1B), and there were differences in the enrichment of m6A motifs in different 

tumor types (Figure S1C). Overall, the analysis results of m6A-seq data from cell lines 

are consistent with those from tumor tissues, further indicating the reliability of our 

findings in tumor tissue. 

 

m6A shows different heterogeneity in most tumor tissues compared with normal 

human tissues 

The CVs of m6A were calculated in different regions of mRNA to explore whether the 

CVs in different cancer samples were greater than those in normal tissues. There were 

15–50% variable peaks in normal tissues (Figure S2A), consistent with a recent report 

that cis regulation accounts for 33–46% of the variability in m6A levels [20]. 

Moreover, the m6A peaks located far from stop codons had significantly higher CVs 

in colon cancer, endometrial cancer, lung cancer, salivary gland cancer and stomach 

cancer (Figure 3A–D, Figure S2B). Therefore, there were more variable peaks in 

these cancer samples than in normal samples, suggesting that m6A in these five cancer 

types tends to be variable. We also calculated the m6A CV fold-change of cancer with 

respect to normal tissues in start and stop codons. Figure 3E shows that m6A enriched 

in start codons tends to have higher CVs in cancer tissues than m6A in stop codons. 

Moreover, we used the TP53 and HSPD1 genes as examples to study variations in m6A 
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in cancer, and found that TP53 and HSPD1 showed higher variations in m6A at the 

start of coding sequences in colon cancer and endometrial cancer than in normal 

tissues (Figure 3F, Figure S2C).  

In addition to heterogeneity, we explored whether m6A in different cancer types 

had homogeneity. The samples were divided into two groups: the cancer group (45 

samples) and the normal group (39 samples). We performed whole-genome different 

m6A analysis between these two groups. Only 428 m6A sites were differentially 

methylated [false discovery rate (FDR) < 0.05] between pan-cancer and normal 

tissues. m6A at these sites showed higher heterogeneity (P < 2.2 × 10-16) (Figure S2D). 

Thus, our findings indicate that m6A displays different heterogeneity in different 

tumor tissues. 

 

Tumor type-specific m6A affects distinct cancer-related genes and immune-

related gene expression  

To delve deeper into the role of cancer-specific m6A across various cancers, we 

identified m6A sites with a CV (coefficient of variation) greater than 0.3 as cancer-

specific in tumor samples. This is because we observed that m6A sites with a CV 

greater than 0.3 often exhibit cell-specific characteristics, as previously noted [13]. 

Clustering showed that m6A levels were strongly cancer type-specific (Figure 4A). We 

also performed gene expression analysis of m6A-corresponding genes across all nine 

tumor tissues and found that gene expression may correlate with gene expression 

(Figure 4A-B). To further investigate the relationship between m6A and gene 

expression, we analyzed the correlation between the level of m6A modification at each 

site and the corresponding gene expression (Figure 4C). We observed that the 

majority of m6A modifications exhibited a positive correlation with the corresponding 

gene expression. This trend significantly differs from the results of randomly shuffled 

data for this correlation (P < 2.2 × 10-16). This outcome indicates that m6A 

modifications may be positively associated with gene regulation in tumor samples. 

This conclusion provides a valuable reference for guiding subsequent experimental 

research.  

GSVA enrichment analysis was employed to explore the biological functions 

among these distinct m6A modification patterns, and the results showed that different 

cancer-specific m6A was involved in different regulatory pathways, including various 
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immune-related pathways, highlighting the relevance of m6A and tumor immunity 

(Figure S3). For example, colon cancer-specific m6A was enriched in pathways such 

as natural killer cell mediated cytotoxicity, cytokine receptor interaction, Jak stat 

signaling pathway, and Notch signaling pathway. Endometrial cancer-specific m6A 

was involved in B-cell receptor signaling pathway, T-cell receptor signaling pathway, 

and chemokine signaling pathway. Salivary gland cancer-specific m6A was associated 

with epithelial cell signaling in Helicobacter pylori infection and Toll-like receptor 

signaling pathway. Ovarian cancer-specific m6A was involved in autoimmune thyroid 

disease. In addition, in some cases, cancer-specific m6A was tissue-specific. For 

example, glioma-specific m6A was essential in neurotrophin signaling pathway and 

TGF beta signaling pathway. Leukemia-specific m6A was related to acute myeloid 

leukemia and cell cycle pathway. We also identified cancer-specific m6A that was 

significantly involved in the regulation of key tumor pathways. For instance, liver 

cancer-specific m6A was related to the WNT signaling pathway, lung cancer-specific 

m6A was enriched in glycerophospholipid metabolism, and stomach cancer-related 

m6A was involved in oxidative phosphorylation. These results illustrate the wide and 

varied regulatory mechanisms of m6A in different tumors. 

We also performed Gene Ontology (GO) enrichment analysis (Figure 4D, Figure 

S4A and S4B). The analysis revealed significant enrichment of m6A in metabolic 

pathways, such as pyrimidine and purine and drug metabolism, as well as immune 

related pathways, including MAPK signaling, T-cell and B-cell pathways, leukocyte 

migration, infection, and inflammation. Analysis of cellular components showed that 

in pan-cancer, m6A was involved in the cell nucleus, cell membrane, Golgi apparatus, 

mitochondria, cytoplasm, endoplasmic reticulum, and exosome. These results are 

consistent with previous reports that m6A regulates tumor immunity and key tumor 

pathways [10]. Furthermore, these findings revealed that cancer-specific m6A tended 

to be enriched in different pathways and functions, highlighting the complex 

regulatory and functional specificity of m6A in different tumor types.  

 

The classification of different patients based on m6A-regulated genes was 

correlated with microenvironment and tissue origin 

To explore the impact of m6A on tumorigenesis and development in pan-cancer, m6A-

express, the first well-established algorithm to predict condition-specific m6A 

regulation of gene expression from MeRIP-seq data [12], was used to screen m6A-
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regulated genes in different cancers. A total of 1527 m6A-reg-exp genes were found in 

this article (Table S3). 

These m6A-regulated genes were analyzed in 9456 tumor samples from 31 cancers 

for cluster analysis (Figure S5A and S5B), and it was found that pan-cancer related 

m6A-reg-exp genes could be used for molecular classification and stage classification 

(Figure 5A), indicating that m6A contributed to tumor heterogeneity. Interestingly, 

these different tumor subtypes have different infiltrating levels of immune cells 

(Figure S6), indicating m6A modifications shape immune responses in the tumor 

microenvironment and may impact cancer immunotherapy. Furthermore, the 

classification of these tumors was correlated with tissue origin. For example, KICH 

(kidney chromophobe), KIRC (kidney renal clear cell carcinoma), and KIRP (kidney 

renal papillary cell carcinoma), the three different types of kidney cancer, clustered in 

C2. Moreover, two types of lung cancer, LUAD (lung adenocarcinoma) and LUSC 

(lung squamous cell carcinoma), clustered in C3, and brain cancer types LGG (brain 

lower grade glioma) and GBM (glioblastoma multiforme) clustered in category C4 

(Figure 5B). These m6A-regulated genes also have different clinical prognostic values. 

For example, patients in category C2 have a good prognosis, whereas patients in 

category C3 with a low infiltrating level of immune cells have a poor prognosis, 

indicating the influence of m6A on the clinical outcome of tumor patients (Figure 5C). 

It was proposed that m6A was a potential target for patients in category C3 who will 

not respond well to immunotherapy. Consistent with our previous conclusion, these 

m6A-regulated genes were indeed highly enriched in tumor-related pathways (Figure 

5D, Figure S5C). These results suggest that m6A-regulated genes play different roles 

in diverse tumor types, resulting in distinct clinical relevance and immune status. 

Moreover, m6A may have an impact on the efficacy of immunotherapies. However, 

the question here is how these cancer-specific m6A modifications are established. 

 

Cancer-specific m6A is regulated by cell-specific m6A regulators 

Numerous studies have reported that changes in m6A, resulting from alterations in the 

expression of m6A regulators, play essential roles in a variety of pathological and 

physiological processes [21]. We previously identified 32 high-confidence cell-

specific m6A regulators with a reasonable experimental validation rate that are 

responsible for global regulation and site-specific m6A dynamics through the interplay 

of classical m6A methyltransferase and demethylase at specific sites [21]. Herein, we 
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calculated the Pearson correlations between the level of cancer-specific m6A and the 

expression of each m6A regulator. As shown in Figure 6A and 6B, the correlation 

coefficient values between 32 high-confidence m6A regulators and cancer-specific 

m6A levels were significantly higher than those of classical m6A regulators, indicating 

that cell-specific m6A regulators contributed more to cancer-specific m6A levels. We 

also found that cell-specific m6A regulators had greater CVs than classical m6A 

regulators (Figure S7). We then constructed a regulatory network based on the m6A 

regulators and cancer-type specific m6A levels according to correlations between the 

cancer-specific m6A levels and the expression of 32 known m6A regulators (Figure 

6C). Among the m6A regulators in the regulatory network, we found that CAPRIN1, a 

novel METTL3 co-factor [13], was positively correlated with cancer-specific m6A 

(Figure 6D). To further verify the reliability of our conclusion, we validated the 

regulation of CAPRIN1 on cancer-specific m6A by knocking down CAPRIN1. We 

found that cancer-specific m6A was significantly downregulated upon CAPRIN1 

knockdown in the m6A-seq data (P = 0.006, two-tailed Wilcoxon test; Figure 6E), 

indicating that CAPRIN1 regulates the installation of these cancer-specific m6A. We 

also show an example involving TP53, where m6A levels of tumor-related genes were 

significantly reduced in HepG2 cells with CAPRIN1 knockdown (Figure 6F). p53 

expression status is highly associated with cancer-specific survival [22], and the 

CAPRIN1-m6A-TP53 axis enhances our understanding of p53-based cancer therapies. 

These results indicate that cancer-specific m6A is specifically modulated by cell-

specific regulators, leading to tumor heterogeneity and influencing clinical outcomes 

(Figure 7).  

 

Discussion 
In summary, we have demonstrated the tumor heterogeneity of m6A and m6A-reg-exp 

genes, which contribute to different functions and pathway enrichments. These 

cancer-specific m6A levels and functions are mainly regulated by cell-specific m6A 

regulators. 

As a promising therapeutic target, m6A is widely involved in various biological 

processes in tumors, including tumorigenesis, tumor cell proliferation, apoptosis, and 

drug resistance [21]. For instance, METTL3 is associated with poor prognosis in 

hepatocellular carcinoma (HCC) patients and promotes HCC cell proliferation 

through YTHDF2-mediated SOCS2 transcriptional silencing [23]. METTL14 causes 
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the occurrence and development of leukemia by modifying MYB/MYC-targeted genes 

with m6A RNA, and m6A promotes the translation of c-MYC, BCL2, and PTEN genes 

in leukemia patients [24]. It is widely accepted that tumors exhibit heterogeneity, 

which influences tumor survival and response to therapy. The detailed regulatory 

mechanisms of m6A in different tumors, particularly whether the effects of m6A in one 

tumor are applicable to other tumors, remain unclear. Herein, we systematically 

characterized the depth and breadth of the contribution of m6A to interpatient tumor 

heterogeneity. We also systematically demonstrated downstream pan-cancer-wide 

m6A-reg-exp genes and upstream comprehensive cancer-specific m6A regulators in 

pan-cancer, promoting our understanding of the mechanisms underlying tumor 

heterogeneity and the role of m6A in tumors. We propose the following suggestions 

for future studies on the role of m6A in cancer precision therapy: (1) The functions 

and regulatory mechanisms of m6A may vary across different cancer types. (2) Small-

molecule inhibition of m6A regulators such as STM2457 [25], as a strategy against 

myeloid leukemia, may not be effective for other solid cancers. Each tumor type has 

its own m6A therapeutic targets and regulator inhibitors.  

m6A regulators play an oncogenic role in different cancer types by targeting 

essential cancer-related genes [10]. A large number of studies of m6A regulatory 

mechanisms have investigated classical m6A regulators, such as METTL3, METTL14, 

WTAP, METTL16, FTO, ALKBH5, YTH family proteins, and IGF2BPs [26-28]; anti-

cancer target drugs targeting METTL3 and FTO have been proven to be effective 

against cancer [25, 29]. However, previous studies have shown that the m6A-

dependent mechanism cannot be well explained by these 20 m6A regulators [12, 13]. 

In fact, we identified hundreds of novel high-confidence m6A regulators that were 

highly associated with m6A in different tumor types, indicating a complex regulatory 

system for m6A in tumors. This also highlighted drug targets for m6A in addition to 

the 20 m6A regulators. Although previous studies performed pan-cancer analysis 

based on the 20 classical m6A regulator expression profiles, several key questions 

remained unanswered [14, 15]. (i) Changes in gene expression levels did not fully 

reflect changes in m6A levels. (ii) m6A regulators such as METTL16 function 

independently of m6A to facilitate tumorigenesis, and the effects of m6A in cancer 

may not necessarily be attributable to the effects of m6A regulator expression [18]. 

There are many more m6A regulators that function in cancer in addition to the 20 m6A 

regulators previously described [13, 26, 27, 30]. Our discoveries deepen the 
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understanding of the role of m6A regulators based on accurate and reliable regulatory 

networks. 

Beyond trans-regulation, we believe that cis-regulatory mechanisms also play a 

significant role in m6A. Consequently, mutations at m6A sites can lead to changes in 

m6A levels, which in turn affect the expression of downstream genes, further 

influencing the mechanism. Meng, Ren, and others have developed a series of 

databases that explore the interplay between m6A and genetic variations, such as 

RMVar, RMDisease and m6A-TSHub [31-33]. In the future, we will integrate these 

databases to further investigate the landscape and mechanisms of cis-regulation in 

m6A. Although many clinical features, especially immune dysfunction, have been 

associated with cancer progression, m6A is considered a key regulator of the immune 

system [34, 35]. Due to the limited availability of large samples with both m6A-seq 

and clinical data, it is challenging to investigate the reliable relationship of m6A with 

clinical features. m6A-express has made it possible for us to predict whole-

transcriptome m6A-regulation of gene expression from m6A-seq data in TCGA. 

Therefore, we associated m6A with clinical features, including immunological 

characteristics, in this article. We also identified well-known transcription factors, 

such as JUN and STAT3, which were found to be targeted and regulated by m6A 

during tumor progression and tumor immunity [36, 37]. These factors may contribute 

to interpatient tumor heterogeneity and impact the effectiveness of immunotherapy, 

resulting in clinical challenges. Our findings regarding cell-specific m6A regulators 

modulating cancer-specific m6A, resulting in dysfunction of the tumor immune 

microenvironment, are helpful for our further understanding of cancer immunotherapy. 

It was proposed that immunotherapy combined with m6A regulator inhibitors could 

enhance the efficacy of immunotherapies. However, the detailed regulatory 

mechanism of m6A and the tumor immune microenvironment will require further 

experimental validation. 

 

Conclusion 
In summary, our study has demonstrated the tumor heterogeneity in m6A and m6A-

reg-exp genes, which contribute to different functions and pathway enrichments. 

These cancer-specific m6A levels and functions are predominantly regulated by cell-

specific m6A regulators, resulting in tumor heterogeneity and tumor 

microenvironment status heterogeneity (Figure 7). Our research not only provides a 
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landscape of the m6A profile in different cancer types compared to normal tissues, but 

also explains the clinical relevance of these specific m6A modifications and how these 

specific regulations are established. To the best of our knowledge, this is the first 

study based on a large number of m6A methylome data to propose that 

immunotherapy combined with m6A modulator inhibitors may enhance the efficacy of 

immunotherapy. These findings deepen our understanding of the m6A regulatory 

mechanisms in different cancer types and enhance the clinical application of m6A 

across all cancer types. 

 

Methods 
Data collection and processing of the m6A-seq data in multiple tissues 

Overall, 93 raw sequence data of m6A-seq libraries (IP and input) were primarily 

downloaded from the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih. 

gov/geo/) and four additional m6A-seq data were collected from the First Affiliated 

Hospital of Guangxi Medical University and deposited in SRA (PRJNA848252). 

Initially, a total of 97 tissue samples were collected from nine tumor types, including 

brain tissue, lung tissue, liver tissue, endometrium, ovarian, blood, colon, salivary 

gland, and stomach [38-48] (Table S1). In addition, we used the cell lines m6A-seq 

collected in previous studies [13] to verify our results, these data include seven tumor 

cell lines (HEC1a, HEPG2, iSLK MOLM13, MonoMac6, MT4tCELL, NB4) and 

three normal cell lines (MSC, NHDF, TIME) (Table S2) 

We used FastQC (v0.11.9) [49] to assess the sequencing quality, and clean data 

were mapped to the Hg38 human reference genome by HISAT2 (v2.2.1) [50]. Then, 

StringTie (v1.3.3b) [51] was used for assembly and quantification of TPM (transcripts 

per kilobase of exon model per million mapped reads) of each annotated gene, which 

were then normalized by the input library. To identify accurate m6A sites in the nine 

types of tumor and adjacent normal tissues, we improved the winscore method as 

follows [52, 53].In detail, we performed the search for enriched m6A peaks by 

scanning each gene using sliding windows and calculating an enrichment score for 

each sliding window, which was modified from the method published earlier by 

Dominissini et al. [53]. We constructed 100 bp sliding windows with a 50 bp overlap 

across exon regions and determined the RPKM for each segment. Then, we 

designated windows with an enrichment score, or winscore, above 2 as m6A peaks 

within individual samples. To mitigate potential inaccuracies from lowly expressed 
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windows harboring unstable winscores, we incremented each window's RPKM by one 

in both IP and input datasets prior to winscore computation, thereby down-weighting 

windows characterized by low RPKMs. Subsequently, we amalgamated the identified 

m6A peaks across all samples for expansive analysis. We derived the m6A ratio of 

every peak by dividing the IP library's RPKM by the input library's RPKM. In 

subsequent stages of analysis, we relegated m6A ratios grounded on base values (the 

input peak's RPKM falling below 5) as not available (NAs). Peaks designated as NAs 

in a majority of samples were excluded. Following this, we combined adjacent m6A 

peaks within the same gene and partitioned those extending over five continuous 

windows (equating 300 bp) into several peaks, each confined to a maximum of five 

windows. 

Because different RNA interruption methods used for immunoprecipitation during 

preparation of different m6A libraries can cause changes in the short sequence signal 

of the same m6A peak, the width and center of the same m6A peak might be different. 

Therefore, we took the maximum m6A ratio of the combined m6A peaks in each 

sample as the final m6A ratio (IP/Input). Differences in activity due to different 

expression levels of m6A methylase and demethylase, as well as technical differences 

in immunoprecipitation efficiency, also contribute to overall m6A differences between 

samples. This dilutes and alters the signal selectively modulated by m6A, so we used 

quantile standardization, which is used to standardize the ratio of m6A combined with 

peaks in all samples [13]. 

 

Analyses of m6A across cancer tissues 

To compare the m6A peaks between cancer and normal tissues, we used the m6A 

identified in tumor tissues according to the above pipeline. To obtain the percentage of 

peaks enriched in representative motifs of the nine cancer tissues, HOMER software 

[54] was used for motif enrichment analysis, with randomly permutated sequences as 

the background for RNAs (HOMER parameter: line=1000, size=200). Distributions 

of m6A peaks were plotted on a mega gene with 10 bins in the 5’UTR, CDS, and 3’ 

UTR as previously described [13]. A radar plot was drawn using the ‘fmsb’ package 

implemented in R. We used bamCoverage to obtain an IP library and generate 

coverage tracks, with bigWig as the output. The short consecutive counting windows 

were set as 10 bins, and reads per kilobase per million mapped reads (RPKM) were 

used for normalization. With hg38 as the reference genome and HSPD1, TP53, and 
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JUN as target genes, IGV (v2.8.13) was used for read coverage of TP53 in m6A-seq 

data and JUN in 97 randomly selected cancer and normal samples [55]. We performed 

a T test (two-sided, unpaired, unequal variance) on each m6A site in tumor and normal 

tissues; 428 m6A sites (adjusted P < 0.05) were differentially methylated between 

tumor and normal tissues.  

We calculated the mean and standard deviation of m6A modification intensity 

across all samples at each m6A site. CV is equal to the standard deviation divided by 

the mean value of the m6A sites. According to our previous report [13], sites with CV > 

0.3 in specific cancer types were selected as cancer-specific m6A sites. 

 

Gene set variation analysis (GSVA) and functional annotation 

To investigate the activation status of m6A modification patterns in different 

biological pathways across the nine cancer tissues, GSVA enrichment analysis was 

performed using the GSVA R package [56], which allows for the differential analysis 

of various pathways at the level of gene sets. We downloaded the gene set 

"c2.cp.kegg.v7.5.1 symbol" from the MSigDB database (https://www.gsea-

msigdb.org/gsea/msigdb/), and an adjusted P < 0.05 was considered statistically 

significant. Functional annotation of m6A-related genes was performed using the 

ClusterProfiler R package (FDR_cutoff = 0.05). 

 

Identification of cancer type-specific N6-methyladenosine 

We used a highly predictive and sensitive m6A-express computing framework based 

on Bayesian negative binomials [12] to evaluate the impact of m6A strength (IP) on 

the expression level (input) of each gene. With Hg38 as the reference genome, tumor 

and normal tissues were used for analysis of m6A-regulated genes (m6A-express 

parameter: DM_CUTOFF_TYPE="pvalue", num_ctl=2, diff_peak_pvalue=0.2, 

FDR=0.2, isPairedEnd=FALSE, GENE_ANNO_GTF = gtf, 

isGTFAnnotationFile=TRUE, DIFF_GENE_cutoff_FDR=0.2, 

CUTOFF_TYPE="FDR"). Finally, 1527 m6A-express genes were screened by m6A-

express. After removing duplicate genes, 1439 unique genes were considered m6A-

regulated genes (m6A-reg-exp) (Table S3).  

 

Clustering analysis in TCGA datasets 
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We downloaded gene expression data and clinical data including 31 types of tumors 

(9456 samples), from the TCGA database. By integrating the gene expression and 

clinical data in TCGA (excluding LAML and READ with excessive deletion values), 

consensus clustering was performed to verify the effect of m6A-regulated genes on 

cancer molecular classification. Consensus clustering is an unsupervised clustering 

method that can distinguish samples into subtypes based on different histological 

datasets and allows the discovery of new disease subtypes or comparative analysis of 

different subtypes. To investigate the regulation of m6A modification on downstream 

gene expression, consensus clustering was performed using the 

“ConsensusClusterPlus” R package (k = 6) [57]. A total of 1347 m6A-reg-exp genes 

with an average TPM > 5 in TCGA were analyzed using Kyoto Encyclopedia of 

Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. We performed 

functional enrichment analysis in DAVID (https://david.ncifcrf.gov/) [58], and took 

the top five items ranked in ascending P-value order as the results. GO enrichment 

analysis included cellular component (CC), molecular function (MF), and biological 

process (BP) terms. 

Sub-motif analysis 

For our analysis, we first shuffled the m6A sub-motif sequences within all GGACA, 

AGACU, GGACU and GAACU m6A peaks for a specific sample to determine the 

expected number of windows containing all sub-motifs. Following this, we computed 

the quantity of windows that had all sub-motifs. This shuffling process was reiterated 

10,000 times, yielding 10,000 expected values. To plot and compare results from 

different samples, we performed normalization by mean-centering the values. 
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Figure legends 

Figure 1. Schematic fow chart demonstrating the process of the analysis. 

 

Figure 2. m6A features in nine tumor and normal tissues.  

A. The number of m6A peaks identified in each cancer and normal tissue is 

represented by a bar graph. Error bars denote the maximum and minimum across all 

replicates. B. Pearson correlation heatmaps of the correlation matrix representing the 

correlation between global m6A levels in different samples. C. The radar map showing 

the percentage of m6A sub-motifs of nine cancer tissues, indicated by different colored 

lines (Chi-Squared Test, P < 2.2×10-16). Normalized distributions of the m6A peak at 

5'UTR, CDS, and 3'UTR in nine tumor tissues (D) and nine normal tissues (E). F. 

Comparison of overall m6A peak distribution between tumor and normal tissues. G. 

Exon length of tumor tissues compared with normal tissues. The P value of the 

Wilcoxon test is indicated (P = 5.455×10-8). H. Track showing m6A coverage of the 

gene JUN from randomly selected samples among 97 cancer and normal subjects, 

with the 5 'UTR highlighted. The data range for each track is displayed on the left side 

(0-19254).  

 

Figure 3. Coefficient of variation (CV) of the m6A level in tumor and normal 

tissues.  

Boxplot showing CV of the m6A level at the 3'UTR (A), CDS (B), and start codon (C), 

and stop codon (D) segments (*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, 

P < 0.0001). E. Dot plots representing fold change (cancer/normal) of coefficient of 

variation (CV) of m6A in the start and stop codons across nine tissue samples. F. The 

track displays the m6A abundance of the gene TP53 in a lung tumor, with the 5'UTR 

highlighted. The data range for each track is displayed on the left side (0-201). 
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Figure 4. Relationship and functions between cancer type-specific m6A level and 

cancer type-specific gene expression.  

A. The m6A level in nine cancer types is displayed by heatmap. Each red box 

represents the cancer type-specific m6A site of each cancer. B. Heatmap showing the 

expression level of m6A targeted gene after log2 conversion to TPM in nine cancer 

types. Each red box represents the cancer type-specific m6A targeted gene of each 

cancer. C. The correlation between the level of m6A modification in each profile and 

the corresponding gene expression. The trend significantly differs from the results of 

randomly shuffled data for this correlation (P < 2.2×10-16). D. GO analysis of cancer-

specific m6A-targeted genes in each cancer type.  

 

Figure 5. Cluster analysis of 9456 samples from 31 cancers based on the m6A-

reg-exp genes reveals the potential of m6A-regulated genes in molecular subtype 

classification.  

A. Heatmap showing the expression of m6A-reg-exp genes of 31 tumors in TCGA. B. 

The proportion of each cancer in different clusters. C. Prognostic analysis showing 

different clinical outcomes of different clusters (P = 6.8×10-17). D. KEGG analysis of 

1347 m6A-reg-exp genes, with bubble size representing the gene counts enriched in 

term and color representing the P-value.  

 

Figure 6. Cell-specific m6A regulators are involved in cancer-specific m6A 

regulation.  

A. The heatmap showing the correlation between the expression level of m6A 

regulators and corresponding cancer-specific m6A level, with positive correlation in 

red and negative correlation in blue. B. Plot of cumulative fraction of absolute value 

of the correlation coefficient between expression of two types of m6A regulator and 

corresponding cancer-specific m6A levels, as well as two types of m6A regulator and 

random cancer-specific m6A levels (P < 2.2 × 10–16). C. A Sankey diagram shows the 

network constructed based on correlation between expression level of m6A regulators 

and corresponding cancer-specific m6A level to identify m6A regulators modulating 

corresponding cancer specific m6A. D. Scatter plot shows the correlation between 

expression of the CAPRIN1 gene and cancer-specific m6A level in cancer (P = 5.073 × 
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10–6). E. Boxplot showing cancer-specific m6A levels upon CPARIN1 knockout (P = 

0.0063). F. The track displays the read coverage of normalized IP input, highlighting 

the m6A level of the gene TP53 in the CPARIN1-knockout and control group. The data 

range for each track is displayed on the left side (0-309). 

 

Figure 7. Cancer-specific m6A is specifically modulated by regulators, resulting 

in tumor heterogeneity 

 

Supplement Figure 1. m6A site characteristics. 

A. The clustering heatmap showing the clustering effect of m6A-seq from different 

BioProject sources to calculate the abundance of m6A sites by improved winscore 

method. B. Comparison of overall m6A peak distribution between tumor (HEC1a, 

HEPG2, iSLK, MOLM13, MonoMac6, MT4tCELL, NB4) and normal (MSC, NHDF, 

TIME) cell lines. C. The radar map showing the percentage of classic m6A motifs of 7 

cancer cell lines, indicated by different colored lines (Chi-Squared Test, P = 0.0254). 

D. The proportion of different gene types of m6A site in nine tumor and normal tissues. 

E. Characteristic motif of m6A in nine cancer tissues. 

 

Supplement Figure 2. Variable m6A sites characteristics. 

A. The proportion of stable and variable m6A peaks is displayed by a stacked bar chart 

across all tumor and normal tissues analyzed in this study. B. Coefficient of variation 

(CV) of m6A level in tumor and normal tissues. The boxplot showing the CV of m6A 

level at the 5'UTR (*, P < 0.05; **, P < 0.01; ****, P < 0.0001). C. The track shows 

the m6A coverage of the HSPD1 gene from randomly selected samples among 97 

cancer and normal subjects. The data range for each track is displayed on the left side 

(0-96). D. Differences in m6A between cancer and normal samples (P < 2.2 × 10–16). 

 

Supplement Figure 3. GSVA enrichment analysis revealed activation status of 

different cancer-specific m6A-related KEGG pathways. After being Z-score 

normalized, the GSVA sample-wise gene set enrichment scores are used to plot a 

heatmap. 

 

Supplement Figure 4. GO enrichment analysis of cancer type-specific m6A across 
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nine cancer types. The x-axis represents the significance level of pathway 

enrichment. 

A. Cellular component. B. molecular function.  

 

Supplement Figure 5. Classification of 31 cancer types based on m6A-reg-exp 

gene profiles.  

A. Consensus clustering matrix of m6A-reg-exp genes in 31 tumors in TCGA for k = 6. 

B. Consensus clustering CDF for k = 2 to k = 12. C. Biological process of 1347 m6A-

reg-exp genes by GO enrichment analysis (Biological Progress).  

 

Supplement Figure 6. Plot of cumulative fraction and boxplot in 6 subtypes of 

immune cells 

A. B cell TIMER score, B. CD4+ T cell TIMER score, C. CD8+ T cell TIMER score, 

D. Macrophage TIMER score, E. Myeloid dendritic cell TIMER score, F. Neutrophil 

TIMER score calculated by TIMER.  

 

Supplement Figure 7. Heatmap of expression of classical m6A regulators and cell 

specific m6A regulators in 31 tumor samples in TCGA. Bar graph shows the 

coefficient of variation of corresponding genes.  

 

Supplement Table 1. Data collection of 9 types of cancer and normal tissues m6A-

seq. 

 

Supplement Table 2. Data collection of 7 types of cancer cell lines m6A-seq and 3 

types of normal cell lines m6A-seq. 

 

Supplement Table 3. m6A-express result delineates cancer specific genes that are 

regulated by m6A in distinct cancer types, alongside their expression levels across 

diverse samples. 
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