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Abstract

As the most abundant mRNA modification in mRNA, N°-methyladenosine (m°A)
plays a crucial role in RNA fate, impacting cellular and physiological processes in
various tumor types. However, our understanding of the function and role of the m°A
methylome in tumor heterogeneity remains limited. Herein, we collected and analyzed
m°®A methylomes across nine human tissues from 97 m°A-seq and RNA-seq samples.
Our findings demonstrate that m°A exhibits different heterogeneity in most tumor
tissues compared to normal tissues, which contributes to the diverse clinical outcomes
in different cancer types. We also found that the cancer type-specific m°A level
regulated the expression of different cancer-related genes in distinct cancer types.
Utilizing a novel and reliable method called “m°A-express”, we predicted m°A-
regulated genes and revealed that cancer type-specific m°A-regulated genes
contributed to the prognosis, tumor origin and infiltration level of immune cells in
diverse patient populations. Furthermore, we identified cell-specific m°A regulators
that regulate cancer-specific m°A and constructed a regulatory network. Experimental
validation was performed, confirming that the cell-specific m°A regulator CAPRIN1
controls the m°A level of TP53. Overall, our work reveals the clinical relevance of
m°®A in various tumor tissues and explains how such heterogeneity is established.
These results further suggest the potential of m®A for cancer precision medicine for

patients with different cancer types.
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Introduction

It is widely accepted that cancer is a disease caused by genomic and epigenetic
changes in oncogenes and tumor suppressor genes. Pan-cancer analysis of whole
genomes, enhancer expression, long noncoding RNA (IncRNA) regulation, immune
response and the like, aiming to examine the differences and similarities across
different tumor types, has received extensive attention [1-4]. As the most prevalent
mRNA modification, m°A is reversibly regulated by various classical m°A regulators,
including methyltransferases (METTL3, METTL14, VIRMA, ZC3H13, WTAP,
CBLLY/HAKAI and RBM15/RBM15B) and m®A demethylases (ALKBH5 and FTO),
which mediate demethylation of different m°A sites [5-7]. m®A ‘readers’, YTH family
proteins, and |GF2BPs recognize this reversible m°A and regulate post-transcriptional
processes, such as RNA decay, alternative polyadenylation and nuclear export, in
different cancer types [8, 9]. Previous studies have shown that m°A plays an important
role in the progression of individual cancer types [10, 11]. However, our
understanding of the mechanisms underlying cell and cancer type-specific m°A
regulation in pan-cancer is limited [12, 13].

To investigate the complex cell type-specific regulatory network and the role of
m°®A in different cancer types, it is necessary to perform a pan-cancer analysis at the
level of m®A methylation. Due to the limitations of m°A identification methods, some
researchers have only tried to perform gene expression analysis of classical m°A
regulators to analyze the heterogeneity of m°A regulators instead of real m°A in
different cancers [14, 15]. However, key m°A regulators, such as METTL3, METTL14
and YTHDC2, may function independently of m°A [16-18]. Therefore, these m°A
regulators expression-based pan-cancer analysis, are far from revealing the
characteristics and roles of m°A in different cancer types. Among the various methods
for identifying m°A sites with high resolution, N®-methyladenosine sequencing (m°A-
seq) is the most widely used and has promoted m°A research [19]. In our previous
study, we made multiple methodological improvements to mitigate the impact of
technical biases caused by different immunoprecipitation efficiencies across the
different libraries in m°A-seq [13] to provide a reliable method for m°A pan-cancer
analysis.

With accurate calculations based on a large number of m°A-seq datasets, we
attempted to investigate the m°A landscape in terms of cancer tissue specificity. Then,
we wanted to know what key clinically relevant heterogeneity of m°A leads to and
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how this heterogeneity of m°A is established. To achieve this, we performed
comprehensive pan-cancer analyses involving nine cancer types utilizing 97 m°A-seq
and RNA-seq samples. We used a reliable method called “m°A-express” to predict
m®A-reg-exp genes (m°A regulation of gene expression) in pan-cancer analysis [12].
Through these m°A-reg-exp genes, we comparably and comprehensively explored
clinically relevant m°A modifications that are involved in cancer progression,
prognostic prediction and molecular classification across 31 different cancer types.
Additionally, we attempted experimental validation of the CAPRINLY/METTL3-m°A-
TP53 axis identified by the in silico work. To the best of our knowledge, this is the
first pan-cancer analysis based on global m®A levels. Our results will contribute to a

better understanding of m®A heterogeneity and its role in cancer precision therapy

Results

Systematic analysis of extensive m°A-seq data reveals distinct m°A features in
nine types of cancer and normal tissues

We collected m°A-seq data of 97 tumor tissues as well as corresponding normal
tissues and explored the characteristics of these m°A sites. Various technical issues
associated with m°A-seq data can obstruct the successful systematic analysis of
quantitative m°A ratios calculated from m°A-seq data. As a result, we implemented
multiple processing steps to minimize the effects of different types of technical issues
(see the "Materials and Methods" section for details). Due to technical biases in
preparing the m°A-seq libraries, such as variations in RNA length, the shifting of peak
centers and divergence of peak widths will be controlled using winscore methods (see
the "Materials and Methods" section for details). Afterwards, quantile normalization
of the m®A ratios is performed to correct biases introduced by differences in antibody
efficiencies across various laboratories. Based on our previous findings that m°A sites
with a CV greater than 0.3 vary between different cells [13], we further calculated the
specificity and function of these m°A sites. Subsequently, we utilized the expression
levels of cell-specific m°A regulators identified in our previous research and classical
m°A regulators to compute their correlation with the m°A we obtained. Through
experimental validation, we identified specific regulators that modulate cancer-
specific m°A. At the same time, we employed m°A-express to calculate target genes
regulated by m°A in different cancers and analyzed the potential impact of these m°A-

regulated genes on prognosis and cellular immune responses across various cancers
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(Figure 1).

To systematically reveal the basic characteristics of m°A in various cancer types at
the tissue level, we initially made several methodological improvements to the
winscore-based method to mitigate the impacts of technical biases of m°A-seq data
from different laboratories (see the ‘Methods’ section for more details) [13]. This is
important for the reliable quantification of m°A levels using m°A-seq data from
different labs. After performing quantile normalization of the m°A level across all
tissues, we performed unsupervised clustering using the normalized m°A level and
found that the variable m°A levels in lung cancer and leukemia were not clustered
according to the labs but rather according to cancer types, suggesting that we
successfully eliminated batch effects from different labs (Figure S1A). Then, we
conducted mPA quantitative analysis on nine tumor tissues and their controls,
including glioma, lung cancer, liver cancer, endometrial cancer, ovarian cancer,
leukemia, colon cancer, salivary gland cancer, and stomach cancer. Approximately
10,000 m°A peaks were obtained for each tissue (Figure 2A), and samples from the
same tissue type clustered well according to their m®A levels (Figure 2B), indicating
that tissue-specific m°A methylomes indeed exist. To better understand the biological
function of these m°A sites, we annotated them and found that m°A mostly occurred
on protein-encoding genes (Figure S1D). Some m°A was present on non-coding RNA
(Figure S1D), suggesting that non-coding RNA also played essential roles in these
cancer types. We observed a trend that m°A from different cancer types had varying

levels of enrichment in distinct m°A sub-motifs (P < 2.2x107*°), suggesting that m°A

methylomes may be cancer-specific (Figure 2C, Figure S1E). Cancer-specific m°A
motifs, m°A distribution, and m°®A peak number indicated that m°A with different
functions in different tumors is regulated in a cancer-specific manner.

Then, we studied the distribution of m®A in different samples (Figure 2D-E), and
consistent with other reports, m°A was more likely to be enriched in the 3'UTR start
segment and the CDS segment and reached its peak at the 3'UTR start segment. By
integrating the distributions of tumor samples and control samples, it was also found
that m°A peaks in tumor samples are more prevalent at stop codon regions than in
normal samples, whereas m®A peaks in normal samples were more abundant at start
codon regions (Figure 2F) and less abundant in long internal exons (P= 5.455 x 107°)

(Figure 2G). In our previous research, we considered the m°A sites away from stop
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codons as “dynamic m®A sites”. They are precisely and dynamically regulated by cell-
specific trans regulators expressed with spatial and temporal specificities across
different cell types [13]. Herein, we suspect that m°A in cancer tissues had a greater
coefficient of variation (CV) than that of normal tissue, which might be regulated by
cell-specific trans regulators and contribute to the heterogeneity of cancer. We also
used JUN, which has been associated with human cancer malignancies, as an example
to analyze the differences in the CV of m°A between cancer and normal tissues. At the
beginning of the JUN gene coding region, higher CV on the start codons were
observed in nine types of cancer tissues (Figure 2H).

To further validate our conclusions, we also gathered m®A-seq data from cancer
and normal cell lines for further analysis, including 7 tumor cell lines (HEC1a,
HEPG2, iSLK, MOLM13, MonoMac6, MT4tCELL, NB4) and 3 normal cell lines
(MSC, NHDF, TIME) (Table S2). By analyzing the distribution and motif of m°A site
characteristics, we found that m°A in normal cell lines tended to be closer to stop
codons, whereas there were more m°A peaks in cancer cell lines in coding regions
(Figure S1B), and there were differences in the enrichment of m®A motifs in different
tumor types (Figure S1C). Overall, the analysis results of m°A-seq data from cell lines
are consistent with those from tumor tissues, further indicating the reliability of our
findings in tumor tissue.

mP°A shows different heterogeneity in most tumor tissues compared with normal
human tissues

The CVs of m®A were calculated in different regions of mMRNA to explore whether the
CVs in different cancer samples were greater than those in normal tissues. There were
15-50% variable peaks in normal tissues (Figure S2A), consistent with a recent report
that cis regulation accounts for 33-46% of the variability in m°A levels [20].
Moreover, the m°A peaks located far from stop codons had significantly higher CVs
in colon cancer, endometrial cancer, lung cancer, salivary gland cancer and stomach
cancer (Figure 3A-D, Figure S2B). Therefore, there were more variable peaks in
these cancer samples than in normal samples, suggesting that m°A in these five cancer
types tends to be variable. We also calculated the m°A CV fold-change of cancer with
respect to normal tissues in start and stop codons. Figure 3E shows that m°A enriched
in start codons tends to have higher CVs in cancer tissues than m°A in stop codons.
Moreover, we used the TP53 and HSPD1 genes as examples to study variations in m°A
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in cancer, and found that TP53 and HSPD1 showed higher variations in m°A at the
start of coding sequences in colon cancer and endometrial cancer than in normal
tissues (Figure 3F, Figure S2C).

In addition to heterogeneity, we explored whether m°A in different cancer types
had homogeneity. The samples were divided into two groups: the cancer group (45
samples) and the normal group (39 samples). We performed whole-genome different
m°A analysis between these two groups. Only 428 m°A sites were differentially
methylated [false discovery rate (FDR) < 0.05] between pan-cancer and normal
tissues. m°A at these sites showed higher heterogeneity (P < 2.2 x 10™°) (Figure S2D).
Thus, our findings indicate that m°A displays different heterogeneity in different
tumor tissues.

Tumor type-specific m°A affects distinct cancer-related genes and immune-
related gene expression

To delve deeper into the role of cancer-specific m°A across various cancers, we
identified m°A sites with a CV (coefficient of variation) greater than 0.3 as cancer-
specific in tumor samples. This is because we observed that m°A sites with a CV
greater than 0.3 often exhibit cell-specific characteristics, as previously noted [13].
Clustering showed that m®A levels were strongly cancer type-specific (Figure 4A). We
also performed gene expression analysis of m°A-corresponding genes across all nine
tumor tissues and found that gene expression may correlate with gene expression
(Figure 4A-B). To further investigate the relationship between m°A and gene
expression, we analyzed the correlation between the level of m°A modification at each
site and the corresponding gene expression (Figure 4C). We observed that the
majority of m®A modifications exhibited a positive correlation with the corresponding

gene expression. This trend significantly differs from the results of randomly shuffled
data for this correlation (P < 2.2 x 10™). This outcome indicates that m°A

modifications may be positively associated with gene regulation in tumor samples.
This conclusion provides a valuable reference for guiding subsequent experimental
research.

GSVA enrichment analysis was employed to explore the biological functions
among these distinct m°A modification patterns, and the results showed that different
cancer-specific m°A was involved in different regulatory pathways, including various
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immune-related pathways, highlighting the relevance of m°A and tumor immunity
(Figure S3). For example, colon cancer-specific m°A was enriched in pathways such
as natural killer cell mediated cytotoxicity, cytokine receptor interaction, Jak stat
signaling pathway, and Notch signaling pathway. Endometrial cancer-specific m°A
was involved in B-cell receptor signaling pathway, T-cell receptor signaling pathway,
and chemokine signaling pathway. Salivary gland cancer-specific m°A was associated
with epithelial cell signaling in Helicobacter pylori infection and Toll-like receptor
signaling pathway. Ovarian cancer-specific m°A was involved in autoimmune thyroid
disease. In addition, in some cases, cancer-specific m°A was tissue-specific. For
example, glioma-specific m°A was essential in neurotrophin signaling pathway and
TGF beta signaling pathway. Leukemia-specific m°A was related to acute myeloid
leukemia and cell cycle pathway. We also identified cancer-specific m°A that was
significantly involved in the regulation of key tumor pathways. For instance, liver
cancer-specific m®A was related to the WNT signaling pathway, lung cancer-specific
m°A was enriched in glycerophospholipid metabolism, and stomach cancer-related
m°®A was involved in oxidative phosphorylation. These results illustrate the wide and
varied regulatory mechanisms of m°A in different tumors.

We also performed Gene Ontology (GO) enrichment analysis (Figure 4D, Figure
S4A and S4B). The analysis revealed significant enrichment of m°A in metabolic
pathways, such as pyrimidine and purine and drug metabolism, as well as immune
related pathways, including MAPK signaling, T-cell and B-cell pathways, leukocyte
migration, infection, and inflammation. Analysis of cellular components showed that
in pan-cancer, m°A was involved in the cell nucleus, cell membrane, Golgi apparatus,
mitochondria, cytoplasm, endoplasmic reticulum, and exosome. These results are
consistent with previous reports that m°A regulates tumor immunity and key tumor
pathways [10]. Furthermore, these findings revealed that cancer-specific m°A tended
to be enriched in different pathways and functions, highlighting the complex
regulatory and functional specificity of m°A in different tumor types.

The classification of different patients based on m°A-regulated genes was
correlated with microenvironment and tissue origin

To explore the impact of m°A on tumorigenesis and development in pan-cancer, m°A-
express, the first well-established algorithm to predict condition-specific m°A
regulation of gene expression from MeRIP-seq data [12], was used to screen m°A-
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regulated genes in different cancers. A total of 1527 m°A-reg-exp genes were found in
this article (Table S3).

These m®A-regulated genes were analyzed in 9456 tumor samples from 31 cancers
for cluster analysis (Figure S5A and S5B), and it was found that pan-cancer related
m°A-reg-exp genes could be used for molecular classification and stage classification
(Figure 5A), indicating that m°A contributed to tumor heterogeneity. Interestingly,
these different tumor subtypes have different infiltrating levels of immune cells
(Figure S6), indicating m°A modifications shape immune responses in the tumor
microenvironment and may impact cancer immunotherapy. Furthermore, the
classification of these tumors was correlated with tissue origin. For example, KICH
(kidney chromophobe), KIRC (kidney renal clear cell carcinoma), and KIRP (kidney
renal papillary cell carcinoma), the three different types of kidney cancer, clustered in
C2. Moreover, two types of lung cancer, LUAD (lung adenocarcinoma) and LUSC
(lung squamous cell carcinoma), clustered in C3, and brain cancer types LGG (brain
lower grade glioma) and GBM (glioblastoma multiforme) clustered in category C4
(Figure 5B). These m°A-regulated genes also have different clinical prognostic values.
For example, patients in category C2 have a good prognosis, whereas patients in
category C3 with a low infiltrating level of immune cells have a poor prognosis,
indicating the influence of m®A on the clinical outcome of tumor patients (Figure 5C).
It was proposed that m°A was a potential target for patients in category C3 who will
not respond well to immunotherapy. Consistent with our previous conclusion, these
m°A-regulated genes were indeed highly enriched in tumor-related pathways (Figure
5D, Figure S5C). These results suggest that m°A-regulated genes play different roles
in diverse tumor types, resulting in distinct clinical relevance and immune status.
Moreover, m°A may have an impact on the efficacy of immunotherapies. However,

the question here is how these cancer-specific m®A modifications are established.

Cancer-specific m°A is regulated by cell-specific m°A regulators

Numerous studies have reported that changes in m°A, resulting from alterations in the
expression of m°A regulators, play essential roles in a variety of pathological and
physiological processes [21]. We previously identified 32 high-confidence cell-
specific m°A regulators with a reasonable experimental validation rate that are
responsible for global regulation and site-specific m°A dynamics through the interplay
of classical m°A methyltransferase and demethylase at specific sites [21]. Herein, we
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calculated the Pearson correlations between the level of cancer-specific m°A and the
expression of each m°A regulator. As shown in Figure 6A and 6B, the correlation
coefficient values between 32 high-confidence m°A regulators and cancer-specific
m°®A levels were significantly higher than those of classical m°A regulators, indicating
that cell-specific m°A regulators contributed more to cancer-specific m°A levels. We
also found that cell-specific m°A regulators had greater CVs than classical m°A
regulators (Figure S7). We then constructed a regulatory network based on the m°A
regulators and cancer-type specific m°A levels according to correlations between the
cancer-specific m°A levels and the expression of 32 known m°A regulators (Figure
6C). Among the m°A regulators in the regulatory network, we found that CAPRIN1, a
novel METTL3 co-factor [13], was positively correlated with cancer-specific m°A
(Figure 6D). To further verify the reliability of our conclusion, we validated the
regulation of CAPRIN1 on cancer-specific m°A by knocking down CAPRINL. We
found that cancer-specific m°®A was significantly downregulated upon CAPRIN1
knockdown in the m°A-seq data (P = 0.006, two-tailed Wilcoxon test; Figure 6E),
indicating that CAPRIN1 regulates the installation of these cancer-specific m°A. We
also show an example involving TP53, where m°A levels of tumor-related genes were
significantly reduced in HepG2 cells with CAPRIN1 knockdown (Figure 6F). p53
expression status is highly associated with cancer-specific survival [22], and the
CAPRIN1-m°A-TP53 axis enhances our understanding of p53-based cancer therapies.
These results indicate that cancer-specific m°A is specifically modulated by cell-
specific regulators, leading to tumor heterogeneity and influencing clinical outcomes
(Figure 7).

Discussion

In summary, we have demonstrated the tumor heterogeneity of m°®A and m°A-reg-exp
genes, which contribute to different functions and pathway enrichments. These
cancer-specific m°A levels and functions are mainly regulated by cell-specific m°A
regulators.

As a promising therapeutic target, m°A is widely involved in various biological
processes in tumors, including tumorigenesis, tumor cell proliferation, apoptosis, and
drug resistance [21]. For instance, METTL3 is associated with poor prognosis in
hepatocellular carcinoma (HCC) patients and promotes HCC cell proliferation

through YTHDF2-mediated SOCS2 transcriptional silencing [23]. METTL14 causes
1/27


https://doi.org/10.1101/2023.12.11.571179
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.11.571179; this version posted December 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

the occurrence and development of leukemia by modifying MYB/MYC-targeted genes
with m®A RNA, and m°A promotes the translation of c-MYC, BCL2, and PTEN genes
in leukemia patients [24]. It is widely accepted that tumors exhibit heterogeneity,
which influences tumor survival and response to therapy. The detailed regulatory
mechanisms of m°A in different tumors, particularly whether the effects of m°A in one
tumor are applicable to other tumors, remain unclear. Herein, we systematically
characterized the depth and breadth of the contribution of m°A to interpatient tumor
heterogeneity. We also systematically demonstrated downstream pan-cancer-wide
m®A-reg-exp genes and upstream comprehensive cancer-specific m°A regulators in
pan-cancer, promoting our understanding of the mechanisms underlying tumor
heterogeneity and the role of m°A in tumors. We propose the following suggestions
for future studies on the role of m°A in cancer precision therapy: (1) The functions
and regulatory mechanisms of m°A may vary across different cancer types. (2) Small-
molecule inhibition of m°A regulators such as STM2457 [25], as a strategy against
myeloid leukemia, may not be effective for other solid cancers. Each tumor type has
its own m°A therapeutic targets and regulator inhibitors.

m°A regulators play an oncogenic role in different cancer types by targeting
essential cancer-related genes [10]. A large number of studies of m°A regulatory
mechanisms have investigated classical m°A regulators, such as METTL3, METTL14,
WTAP, METTL16, FTO, ALKBHS5, YTH family proteins, and |GF2BPs [26-28]; anti-
cancer target drugs targeting METTL3 and FTO have been proven to be effective
against cancer [25, 29]. However, previous studies have shown that the m°A-
dependent mechanism cannot be well explained by these 20 m°A regulators [12, 13].
In fact, we identified hundreds of novel high-confidence m®A regulators that were
highly associated with m®A in different tumor types, indicating a complex regulatory
system for m®A in tumors. This also highlighted drug targets for m°A in addition to
the 20 m°A regulators. Although previous studies performed pan-cancer analysis
based on the 20 classical m°A regulator expression profiles, several key questions
remained unanswered [14, 15]. (i) Changes in gene expression levels did not fully
reflect changes in m°A levels. (ii) m°A regulators such as METTL16 function
independently of m°A to facilitate tumorigenesis, and the effects of m°A in cancer
may not necessarily be attributable to the effects of m°A regulator expression [18].
There are many more m°A regulators that function in cancer in addition to the 20 m°A
regulators previously described [13, 26, 27, 30]. Our discoveries deepen the
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understanding of the role of m®A regulators based on accurate and reliable regulatory
networks.

Beyond trans-regulation, we believe that cis-regulatory mechanisms also play a
significant role in m®A. Consequently, mutations at m°A sites can lead to changes in
mPA levels, which in turn affect the expression of downstream genes, further
influencing the mechanism. Meng, Ren, and others have developed a series of
databases that explore the interplay between m°A and genetic variations, such as
RMVar, RMDisease and m°A-TSHub [31-33]. In the future, we will integrate these
databases to further investigate the landscape and mechanisms of cis-regulation in
m°A. Although many clinical features, especially immune dysfunction, have been
associated with cancer progression, m°A is considered a key regulator of the immune
system [34, 35]. Due to the limited availability of large samples with both m®A-seq
and clinical data, it is challenging to investigate the reliable relationship of m°A with
clinical features. m°A-express has made it possible for us to predict whole-
transcriptome m°A-regulation of gene expression from m°A-seq data in TCGA.
Therefore, we associated m°A with clinical features, including immunological
characteristics, in this article. We also identified well-known transcription factors,
such as JUN and STAT3, which were found to be targeted and regulated by m°A
during tumor progression and tumor immunity [36, 37]. These factors may contribute
to interpatient tumor heterogeneity and impact the effectiveness of immunotherapy;,
resulting in clinical challenges. Our findings regarding cell-specific m®A regulators
modulating cancer-specific m°A, resulting in dysfunction of the tumor immune
microenvironment, are helpful for our further understanding of cancer immunotherapy.
It was proposed that immunotherapy combined with m°A regulator inhibitors could
enhance the efficacy of immunotherapies. However, the detailed regulatory
mechanism of m°A and the tumor immune microenvironment will require further

experimental validation.

Conclusion

In summary, our study has demonstrated the tumor heterogeneity in m°A and m°A-
reg-exp genes, which contribute to different functions and pathway enrichments.
These cancer-specific m°A levels and functions are predominantly regulated by cell-
specific m°A  regulators, resulting in tumor heterogeneity and tumor

microenvironment status heterogeneity (Figure 7). Our research not only provides a
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landscape of the m°A profile in different cancer types compared to normal tissues, but
also explains the clinical relevance of these specific m°A modifications and how these
specific regulations are established. To the best of our knowledge, this is the first
study based on a large number of mPA methylome data to propose that
immunotherapy combined with m°A modulator inhibitors may enhance the efficacy of
immunotherapy. These findings deepen our understanding of the m°A regulatory
mechanisms in different cancer types and enhance the clinical application of m°A

across all cancer types.

Methods

Data collection and processing of the m°A-seq data in multiple tissues

Overall, 93 raw sequence data of m°A-seq libraries (IP and input) were primarily
downloaded from the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.
gov/geo/) and four additional m®A-seq data were collected from the First Affiliated
Hospital of Guangxi Medical University and deposited in SRA (PRINA848252).
Initially, a total of 97 tissue samples were collected from nine tumor types, including
brain tissue, lung tissue, liver tissue, endometrium, ovarian, blood, colon, salivary
gland, and stomach [38-48] (Table S1). In addition, we used the cell lines m°A-seq
collected in previous studies [13] to verify our results, these data include seven tumor
cell lines (HECla, HEPG2, iISLK MOLM13, MonoMac6, MT4tCELL, NB4) and
three normal cell lines (MSC, NHDF, TIME) (Table S2)

We used FastQC (v0.11.9) [49] to assess the sequencing quality, and clean data
were mapped to the Hg38 human reference genome by HISAT2 (v2.2.1) [50]. Then,
StringTie (v1.3.3b) [51] was used for assembly and quantification of TPM (transcripts
per kilobase of exon model per million mapped reads) of each annotated gene, which
were then normalized by the input library. To identify accurate m°A sites in the nine
types of tumor and adjacent normal tissues, we improved the winscore method as
follows [52, 53].In detail, we performed the search for enriched m°A peaks by
scanning each gene using sliding windows and calculating an enrichment score for
each sliding window, which was modified from the method published earlier by
Dominissini et al. [53]. We constructed 100 bp sliding windows with a 50 bp overlap
across exon regions and determined the RPKM for each segment. Then, we
designated windows with an enrichment score, or winscore, above 2 as m°A peaks

within individual samples. To mitigate potential inaccuracies from lowly expressed
14/27


https://doi.org/10.1101/2023.12.11.571179
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.11.571179; this version posted December 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

windows harboring unstable winscores, we incremented each window's RPKM by one
in both IP and input datasets prior to winscore computation, thereby down-weighting
windows characterized by low RPKMs. Subsequently, we amalgamated the identified
m°®A peaks across all samples for expansive analysis. We derived the m°A ratio of
every peak by dividing the IP library's RPKM by the input library's RPKM. In
subsequent stages of analysis, we relegated m°A ratios grounded on base values (the
input peak's RPKM falling below 5) as not available (NAs). Peaks designated as NAs
in a majority of samples were excluded. Following this, we combined adjacent m°A
peaks within the same gene and partitioned those extending over five continuous
windows (equating 300 bp) into several peaks, each confined to a maximum of five
windows.

Because different RNA interruption methods used for immunoprecipitation during
preparation of different m°A libraries can cause changes in the short sequence signal
of the same m°®A peak, the width and center of the same m°A peak might be different.
Therefore, we took the maximum m°A ratio of the combined m°A peaks in each
sample as the final m®A ratio (IP/Input). Differences in activity due to different
expression levels of m°A methylase and demethylase, as well as technical differences
in immunoprecipitation efficiency, also contribute to overall m°A differences between
samples. This dilutes and alters the signal selectively modulated by m®A, so we used
quantile standardization, which is used to standardize the ratio of mPA combined with

peaks in all samples [13].

Analyses of m°A across cancer tissues

To compare the m®A peaks between cancer and normal tissues, we used the m°A
identified in tumor tissues according to the above pipeline. To obtain the percentage of
peaks enriched in representative motifs of the nine cancer tissues, HOMER software
[54] was used for motif enrichment analysis, with randomly permutated sequences as
the background for RNAs (HOMER parameter: line=1000, size=200). Distributions
of m°A peaks were plotted on a mega gene with 10 bins in the 5’UTR, CDS, and 3’
UTR as previously described [13]. A radar plot was drawn using the ‘fmsb’ package
implemented in R. We used bamCoverage to obtain an IP library and generate
coverage tracks, with bigWig as the output. The short consecutive counting windows
were set as 10 bins, and reads per kilobase per million mapped reads (RPKM) were

used for normalization. With hg38 as the reference genome and HSPD1, TP53, and
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JUN as target genes, IGV (v2.8.13) was used for read coverage of TP53 in m°A-seq
data and JUN in 97 randomly selected cancer and normal samples [55]. We performed
a T test (two-sided, unpaired, unequal variance) on each m°A site in tumor and normal
tissues; 428 m°A sites (adjusted P < 0.05) were differentially methylated between
tumor and normal tissues.

We calculated the mean and standard deviation of m°A modification intensity
across all samples at each m°A site. CV is equal to the standard deviation divided by
the mean value of the m°Assites. According to our previous report [13], sites with CV >

0.3 in specific cancer types were selected as cancer-specific m°A sites.

Gene set variation analysis (GSVA) and functional annotation

To investigate the activation status of m°A modification patterns in different
biological pathways across the nine cancer tissues, GSVA enrichment analysis was
performed using the GSVA R package [56], which allows for the differential analysis
of various pathways at the level of gene sets. We downloaded the gene set
"c2.cp.kegg.v7.5.1 symbol" from the MSigDB database (https://www.gsea-
msigdb.org/gsea/msigdb/), and an adjusted P < 0.05 was considered statistically
significant. Functional annotation of m°A-related genes was performed using the
ClusterProfiler R package (FDR_cutoff = 0.05).

| dentification of cancer type-specific N®-methyladenosine

We used a highly predictive and sensitive m°A-express computing framework based
on Bayesian negative binomials [12] to evaluate the impact of m°A strength (IP) on
the expression level (input) of each gene. With Hg38 as the reference genome, tumor
and normal tissues were used for analysis of m°A-regulated genes (m°A-express
parameter: DM_CUTOFF_TYPE="pvalue", num_ctl=2, diff_peak_pvalue=0.2,
FDR=0.2, isPairedEnd=FALSE, GENE_ANNO_GTF = gtf,
iISGTFANnnotationFile=TRUE, DIFF_GENE_cutoff FDR=0.2,
CUTOFF_TYPE="FDR"). Finally, 1527 m®A-express genes were screened by m°A-
express. After removing duplicate genes, 1439 unique genes were considered m°A-
regulated genes (m®A-reg-exp) (Table S3).

Clustering analysisin TCGA datasets
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We downloaded gene expression data and clinical data including 31 types of tumors
(9456 samples), from the TCGA database. By integrating the gene expression and
clinical data in TCGA (excluding LAML and READ with excessive deletion values),
consensus clustering was performed to verify the effect of m°®A-regulated genes on
cancer molecular classification. Consensus clustering is an unsupervised clustering
method that can distinguish samples into subtypes based on different histological
datasets and allows the discovery of new disease subtypes or comparative analysis of
different subtypes. To investigate the regulation of m°A modification on downstream
gene  expression, consensus  clustering was  performed using the
“ConsensusClusterPlus” R package (k = 6) [57]. A total of 1347 m°A-reg-exp genes
with an average TPM > 5 in TCGA were analyzed using Kyoto Encyclopedia of
Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. We performed
functional enrichment analysis in DAVID (https://david.ncifcrf.gov/) [58], and took
the top five items ranked in ascending P-value order as the results. GO enrichment
analysis included cellular component (CC), molecular function (MF), and biological
process (BP) terms.

Sub-motif analysis

For our analysis, we first shuffled the m°A sub-motif sequences within all GGACA,
AGACU, GGACU and GAACU m°®A peaks for a specific sample to determine the
expected number of windows containing all sub-motifs. Following this, we computed
the quantity of windows that had all sub-motifs. This shuffling process was reiterated
10,000 times, yielding 10,000 expected values. To plot and compare results from

different samples, we performed normalization by mean-centering the values.
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Figure legends

Figure 1. Schematic fow chart demonstr ating the process of the analysis.

Figure 2. m°A featuresin nine tumor and normal tissues.

A. The number of mPA peaks identified in each cancer and normal tissue is
represented by a bar graph. Error bars denote the maximum and minimum across all
replicates. B. Pearson correlation heatmaps of the correlation matrix representing the
correlation between global m®A levels in different samples. C. The radar map showing
the percentage of m°A sub-motifs of nine cancer tissues, indicated by different colored

lines (Chi-Squared Test, P < 2.2x10™*®). Normalized distributions of the m°A peak at

5'UTR, CDS, and 3'UTR in nine tumor tissues (D) and nine normal tissues (E). F.
Comparison of overall m°A peak distribution between tumor and normal tissues. G.
Exon length of tumor tissues compared with normal tissues. The P value of the

Wilcoxon test is indicated (P = 5.455x10°®). H. Track showing m°A coverage of the

gene JUN from randomly selected samples among 97 cancer and normal subjects,
with the 5 'UTR highlighted. The data range for each track is displayed on the left side
(0-19254).

Figure 3. Coefficient of variation (CV) of the m°A level in tumor and normal
tissues.

Boxplot showing CV of the m°A level at the 3'UTR (A), CDS (B), and start codon (C),
and stop codon (D) segments (*, P<0.05; ** P<0.01; *** P <0.001; ****,
P < 0.0001). E. Dot plots representing fold change (cancer/normal) of coefficient of
variation (CV) of m°A in the start and stop codons across nine tissue samples. F. The
track displays the m°A abundance of the gene TP53 in a lung tumor, with the 5UTR
highlighted. The data range for each track is displayed on the left side (0-201).
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Figure 4. Relationship and functions between cancer type-specific m°A level and
cancer type-specific gene expression.

A. The m°A level in nine cancer types is displayed by heatmap. Each red box
represents the cancer type-specific m°A site of each cancer. B. Heatmap showing the
expression level of m°A targeted gene after log, conversion to TPM in nine cancer
types. Each red box represents the cancer type-specific m°A targeted gene of each
cancer. C. The correlation between the level of m®A modification in each profile and

the corresponding gene expression. The trend significantly differs from the results of
randomly shuffled data for this correlation (P < 2.2x10™°). D. GO analysis of cancer-

specific m°A-targeted genes in each cancer type.

Figure 5. Cluster analysis of 9456 samples from 31 cancers based on the m°A-
reg-exp genes reveals the potential of m°A-regulated genes in molecular subtype
classification.

A. Heatmap showing the expression of m®A-reg-exp genes of 31 tumors in TCGA. B.
The proportion of each cancer in different clusters. C. Prognostic analysis showing

different clinical outcomes of different clusters (P = 6.8x10™""). D. KEGG analysis of

1347 m°A-reg-exp genes, with bubble size representing the gene counts enriched in

term and color representing the P-value.

Figure 6. Cell-specific m°A regulators are involved in cancer-specific m°A
regulation.

A. The heatmap showing the correlation between the expression level of m°A
regulators and corresponding cancer-specific m°A level, with positive correlation in
red and negative correlation in blue. B. Plot of cumulative fraction of absolute value
of the correlation coefficient between expression of two types of m°A regulator and
corresponding cancer-specific m°A levels, as well as two types of m°A regulator and

random cancer-specific m®A levels (P < 2.2 x 107

). C. A Sankey diagram shows the
network constructed based on correlation between expression level of m°A regulators
and corresponding cancer-specific m°A level to identify m°A regulators modulating
corresponding cancer specific m°®A. D. Scatter plot shows the correlation between

expression of the CAPRIN1 gene and cancer-specific m°A level in cancer (P = 5.073 x
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107°). E. Boxplot showing cancer-specific m°A levels upon CPARIN1 knockout (P =
0.0063). F. The track displays the read coverage of normalized IP input, highlighting
the m°A level of the gene TP53 in the CPARIN1-knockout and control group. The data
range for each track is displayed on the left side (0-309).

Figure 7. Cancer-specific m°A is specifically modulated by regulators, resulting
in tumor heterogeneity

Supplement Figure 1. m°®A site characteristics.

A. The clustering heatmap showing the clustering effect of m°A-seq from different
BioProject sources to calculate the abundance of m°A sites by improved winscore
method. B. Comparison of overall m°A peak distribution between tumor (HEC1a,
HEPG2, iSLK, MOLM13, MonoMac6, MT4tCELL, NB4) and normal (MSC, NHDF,
TIME) cell lines. C. The radar map showing the percentage of classic m°A motifs of 7
cancer cell lines, indicated by different colored lines (Chi-Squared Test, P = 0.0254).
D. The proportion of different gene types of m°®A site in nine tumor and normal tissues.
E. Characteristic motif of m°A in nine cancer tissues.

Supplement Figure 2. Variable m°A sites char acteristics.

A. The proportion of stable and variable m°A peaks is displayed by a stacked bar chart
across all tumor and normal tissues analyzed in this study. B. Coefficient of variation
(CV) of m°A level in tumor and normal tissues. The boxplot showing the CV of m°A
level at the 5'UTR (*, P < 0.05; **, P <0.01; ****, P <0.0001). C. The track shows
the m®A coverage of the HSPD1 gene from randomly selected samples among 97
cancer and normal subjects. The data range for each track is displayed on the left side
(0-96). D. Differences in m®A between cancer and normal samples (P < 2.2 x 107).

Supplement Figure 3. GSVA enrichment analysis revealed activation status of
different cancer-specific m°A-related KEGG pathways. After being Z-score
normalized, the GSVA sample-wise gene set enrichment scores are used to plot a
heatmap.

Supplement Figure 4. GO enrichment analysis of cancer type-specific m°A across
26 /27


https://doi.org/10.1101/2023.12.11.571179
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.11.571179; this version posted December 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

nine cancer types. The x-axis represents the significance level of pathway
enrichment.
A. Cellular component. B. molecular function.

Supplement Figure 5. Classification of 31 cancer types based on m°A-reg-exp
geneprofiles.

A. Consensus clustering matrix of m°A-reg-exp genes in 31 tumors in TCGA for k = 6.
B. Consensus clustering CDF for k = 2 to k = 12. C. Biological process of 1347 m°A-
reg-exp genes by GO enrichment analysis (Biological Progress).

Supplement Figure 6. Plot of cumulative fraction and boxplot in 6 subtypes of
immune cells

A. B cell TIMER score, B. CD4+ T cell TIMER score, C. CD8+ T cell TIMER score,
D. Macrophage TIMER score, E. Myeloid dendritic cell TIMER score, F. Neutrophil
TIMER score calculated by TIMER.

Supplement Figure 7. Heatmap of expression of classical m°A regulators and cell
specific mPA regulators in 31 tumor samples in TCGA. Bar graph shows the
coefficient of variation of corresponding genes.

Supplement Table 1. Data collection of 9 types of cancer and normal tissues m°A-

Seq.

Supplement Table 2. Data collection of 7 types of cancer cell lines m°A-seq and 3
types of normal cell lines m®A-seq.

Supplement Table 3. m°A-express result delineates cancer specific genes that are
regulated by m°A in distinct cancer types, alongside their expression levels across

diverse samples.
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