

Seasonal fluctuations in bone microstructure

van Heteren et al.

1 Seasonal fluctuations in the bone microstructure of 2 *Sciurus vulgaris fuscoater* humeri: a case study using 3 phenomics on μ CT-scans

4

5 van Heteren AH^{1,2,3}, Luft AS^{1,3}, Toth M³, Dewanckele J⁴, Marsh M⁵, De Beenhouwer J⁶

6

7 ¹Sektion Mammalogie, Zoologische Staatssammlung München, Staatliche Naturwissenschaftliche
8 Sammlungen Bayerns, 81247 München, Germany (vanHeteren@snsb.de), AHvH: 0000-0003-1018-
9 7991, ASL: 0000-0002-9322-8463

10 ²GeoBio-Center, Ludwig-Maximilians-Universität München, 80539 München, Germany

11 ³Department Biologie II, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried,
12 Germany.

13 ⁴ Tescan XRE, 9052 Ghent, Belgium. 0000-0002-4889-2613

14 ⁵ Object Research Systems, H3B 1A7 Montréal, Canada.

15 ⁶ imec - Vision Lab, University of Antwerp, 2610 Antwerpen, Belgium. 0000-0001-5253-1274

16

17 Author contributions

18

19 AHvH and JD scanned the specimens, AHvH and JDB reconstructed the scans, MM provided the
20 Dragonfly macro, ASL and MT segmented the scans and analysed the data, and AHvH and ASL wrote the
21 manuscript and prepared the figures with input from all other authors. All authors agreed to the final
22 version of the manuscript.

23

24 Competing Interests Statement

25

26 MM is affiliated with Object Research Systems (ORS), which developed Dragonfly, the software package
27 that was used in this work. The software is licensed commercially, at a cost to most industry licensees,
28 but at no cost for non-commercial use in most territories around the world. All other authors declare
29 that they have no known competing financial interests or personal relationships that could have
30 appeared to influence the work reported in this paper.

31

32

33 Abstract

34

35 *Sciurus vulgaris* Linnaeus, 1758, the red squirrel, is a small, mostly arboreally living rodent, spread across
36 the Palearctic. It is mostly vegetarian, feeding on plants, fungi and seeds, and is less active in the winter
37 months, but does not hibernate. In this lateral study, the humeri of the subspecies *Sciurus vulgaris*
38 *fuscoater*, the Central European red squirrel, were analysed to uncover potential intraspecific variation
39 between individuals found in different seasons.

40 The μ CT-scans were obtained with a resolution of 26 microns. Five bone parameters were calculated
41 and statistically evaluated with regards to seasonal variations: total volume, bone volume, endocortical
42 surface, cortical thickness, and average trabecular thickness.

43 Bone volume, trabecular thickness and endocortical thickness correlate with bone size, whereas cortical
44 thickness does not. Seasonal differences were observed between the warmer summer and autumn
45 months versus the colder winter and spring months for all parameters. We, speculatively, relate the
46 observed seasonal variation to nutrient intake, notably calcium. These results offer a deeper
47 understanding of intraindividual variation in red squirrels, that may be useful in further ecological,
48 taxonomic, and paleontological research.

49

50 Key Words

51 Red squirrel

52 Microstructure analysis

53 Functional adaptation

54 Seasonality

55 Physiology

56

57 Introduction

58

59 The importance of seasonality is undeniable. Yearly temperature and precipitation cycles are
60 fundamental to the availability of food and water to animals (Kwiecien *et al.* 2022). Due to global climate
61 change, seasonality is changing in many parts of the world (Marelle *et al.* 2018; Santer *et al.* 2018). It is
62 important to understand the physiological response of animals to seasonality to comprehend the
63 challenges they might face soon. Seasonal adaptations in mammals are widely reported and mostly
64 concern pelage and adiposity (e.g, Scherbarth & Steinlechner 2010; Zimova *et al.* 2018). There is limited
65 research on the response of cortical bone to seasonality during growth (Köhler *et al.* 2012), but, until
66 now, the response of trabecular bone has remained unknown. Although, the trabecular and cortical
67 architecture of two squirrel femora has been studied (Mielke *et al.* 2018), such a small sample size does
68 not allow for an analysis of seasonality. Here, we will analyse the trabecular bone structure of the red
69 squirrel (*Sciurus vulgaris* Linnaeus, 1758) to assess whether this mammal displays a physiological
70 response to seasonality.

71

72 The red squirrel is a medium-sized, arboreal mammal belonging to the order Rodentia, and the family
73 Sciuridae (Lurz *et al.* 2005). The red squirrel is one of the most common squirrel species worldwide,
74 populating big parts of the European and Asian continents. Living an arboreal lifestyle, their preferred
75 habitat is the deciduous and coniferous forest, where they build their nests, also called dreys. More
76 than 40 subspecies have been described, not all of them valid (Corbet 1978). It has previously been
77 observed, that *S. vulgaris fuscoater* has a larger geographic variation in skull size, than other subspecies
78 (Wiltafsky 1978). Red squirrels are found in forest regions across the Palearctic from the Iberian
79 Peninsula and Britain, all the way to Japan (Lee & Fukuda 1999; Thorington Jr & Hoffmann 2005). They
80 are found mainly in conifer forests or mixed woodland to provide for a year-round sufficient diet (Moller
81 1983a; Moller 1983b; Lurz *et al.* 1995; Lurz *et al.* 1998).

82 Red squirrels have a wide-ranging diet, consisting mainly of the fruits and seeds of different tree species
83 but can also include eggs and small birds, depending on seasonal availability (Lurz *et al.* 2005). Overall,

Seasonal fluctuations in bone microstructure van Heteren et al.
84 foraging behaviour in red squirrels is highly dependent on their environment (Krauze-Gryz & Gryz 2015).
85 Squirrel body mass does not increase in autumn in preparation for winter (A. Wauters *et al.* 2007) and,
86 in the winter, red squirrels do not go into hibernation, but they adapt their foraging behaviour, looking
87 for more high-energy resources, such as pine seeds, (Krauze-Gryz & Gryz 2015). Their most important
88 food sources are conifer seeds, fungi, nuts, fruits, buds, and catkins (Moller 1983a; Moller 1983b), but
89 knowledge on their scatter-hoarding behaviour and the influence on diet composition throughout the
90 year is still very limited (Krauze-Gryz & Gryz 2015) and mostly anecdotal. A study from Poland showed
91 that, when offered supplemental feeding, 80% of the animals took supplemental nuts in winter, but
92 only 67% took supplemental nuts in autumn (Kostrzewska & Krauze-Gryz 2020), suggesting that, despite
93 scatter-hoarding, nuts are less readily available in winter than in autumn. Tree buds and flowers were a
94 significant part of the red squirrel diet (>70%) during late winter and spring in England (Shuttleworth
95 1997). The only study, to our knowledge, that is based on stomach contents comes from East Scotland
96 and only lists occurrence data (Tittensor 1970).

97
98 Bone structure and composition can provide information about taxonomic affiliation, age, health status,
99 and life history, thus making it an important study material in biology (Boskey & Coleman 2010; Barak
100 *et al.* 2013a; Barak *et al.* 2013b; Meier *et al.* 2013; Amson *et al.* 2017; de Bakker *et al.* 2018).
101 Bone parameters can be quantified and analysed, enabling conclusions to be drawn about the organism
102 and its life circumstances (Mullender *et al.* 1996; Doube *et al.* 2011; Chirchir *et al.* 2017; Tsegai *et al.*
103 2018). As bone mineralization and bone microstructure are dependent on nutrient intake (Scholz-
104 Ahrens & Schrezenmeir 2007; De Cuyper *et al.* 2020), a fluctuating food availability across seasons could
105 result in detectable changes in squirrel bones.

106 While intraspecific microstructure variation has been studied in human skeletons (e.g., Saers *et al.* 2018;
107 Vom Scheidt *et al.* 2019), the focus in other animals has been mainly on interspecific variation, caused
108 by, for example, different forms of locomotion, adaptation to their environment and evolutionary
109 history (e.g., Meier *et al.* 2013; Mielke *et al.* 2018). Studies focusing on interspecific variation in bone
110 microstructure use a relatively low sample size for each species (Barak *et al.* 2013a; Meier *et al.* 2013;

111 Seasonal fluctuations in bone microstructure van Heteren et al.
111 Amson *et al.* 2017; Mielke *et al.* 2018), even though it is not necessarily true that the individuals chosen
112 are representative for the entire population or species. To determine the extent of intraspecific
113 variation, for example associated with seasonality, a large sample of specimens belonging to the same
114 species, in this case *S. vulgaris fuscoater*, needs to be quantified, analysed, and statistically tested.
115

116 Materials

117

118 The specimens used in this study are listed in Suppl. Info 1. All specimens belong to the subspecies
119 *Sciurus vulgaris fuscoater* and are from Bavaria (Germany). They entered the Bavarian State Collection
120 of Zoology between April 1907 and February 1917, and they consist of complete skeletons. It is not
121 known how the specimens were collected but given their completeness, it seems likely that they were
122 either trapped or hunted, rather than coincident finds of dead animals.
123 A total of 40 humeral bones, belonging to mature individual based on the external morphology of the
124 skeletons and absence of a symphysial line, were scanned. The humerus was chosen, because previous
125 research on dogs suggests that the proximal-most bones of weight-bearing limbs show the smallest
126 anabolic and catabolic responses to exercise and disuse, respectively (Jaworski *et al.* 1980; Turner 1999;
127 Robling *et al.* 2006), possibly because the proximal-most bones are loaded more indirectly (Robling *et*
128 *al.* 2006). Furthermore, empirical studies on other sciurids showed that the humerus developed
129 significantly lower stresses than the radius and the ulna (Biewener 1983). Additionally, the humerus is
130 expected to experience less substrate reaction forces than the femur (Andrade *et al.* 2013), the most
131 proximal bone in the hind limb. As such, it would logically follow that the humerus would be less
132 influenced by load and could respond more freely to environmental factors, such as seasonal changes.
133 For the trabecular analyses, the proximal trabeculae were chosen, because trabecular morphology has
134 a functional significance. For example, once a discontinuity in a trabecular element is created, that
135 element can no longer support load (Nazarian *et al.* 2008). As the cross-struts between longitudinally
136 oriented trabeculae become disconnected, the remaining trabeculae become functionally longer and

137 Seasonal fluctuations in bone microstructure van Heteren et al.
weaker. Previous research in dogs, however, suggests that the proximal-most bones of weight-bearing
138 limbs are loaded more indirectly, and that interstitial fluid pressure could be important for bone
139 maintenance (Jaworski *et al.* 1980; Turner 1999; Robling *et al.* 2006). As such, it would logically follow
140 that the proximal part of the humerus could respond to environmental factors, such as seasonal
141 changes, without impeding functionality.

142
143 Collection year, month, and day (presumably within days of death) were available for all bones except
144 one, which was only labelled January 1915. For this specimen, we used the 15th of January, as it is the
145 middle of the month, when a more precise date was needed in the analyses. The weather from 1907 to
146 1917 was comparable to preceding and following decades (meteo.plus 2023). A multivariate multiple
147 linear regression shows there is no relationship between bone anatomy and annual temperature or
148 annual precipitation for that period (Overall multivariate analysis of variance, Wilks' lambda=0.7098,
149 F(10, 66)=1.234, p=0.2864, with each of the regression coefficients p>0.0669, R²<0.1131). Therefore,
150 weather fluctuations over this 11-year period should not influence the analyses. As might be expected,
151 however, the temperatures the squirrels in this study (11-year period between 1907 and 1917) and
152 more recent squirrels (11-year period between 2012 and 2022) were exposed to were significantly
153 (t=7.3268, p<0.0001), but precipitation was similar (t=0.2384, p=0.8140) (data from meteo.plus (2023)).
154 The effect of this temperature increase on weather fluctuations and squirrel behaviour is not yet clear
155 at present.

156 Trailing and leading forelimbs serve different functions in red squirrels; the trailing forelimb functions
157 as a shock absorber and the leading forelimb stabilises and supports the body (Schmidt 2011). Since it
158 is impossible to know which forelimb was preferentially used in which function by the squirrels in this
159 study, using only one side could bias the results. Therefore, where possible, both left and right bones of
160 the same individual were included. Inclusion of bilateral data, however, assumes independence
161 between paired data when in fact there might be dependence, increasing the likelihood of Type I error
162 (Sullivan *et al.* 2016; Ying *et al.* 2018). On the other hand, a single measure per individual or an average
163 of the paired measures is unnecessarily conservative and increases the likelihood of a Type II error

164 Seasonal fluctuations in bone microstructure van Heteren et al.

164 (Camarillo *et al.* 2023). No significant difference was found between left and right bones in our dataset

165 (Multivariate analysis of variance, Pillai trace=0.0708, F(5, 34)=0.5180, p=0.7608), so this should not

166 have biased the relationships between the variables. For completeness, we have additionally done all

167 statistical analyses presented below using the left-right means for those individuals for which both

168 values were available (Suppl. Info. 2). The general patterns are the same, but the p-values are generally

169 higher. These more conservative results do not change our interpretations.

170 The animals were grouped into four seasonal groups. Division into seasons was based on feeding

171 behaviour (Moller 1983a) and the availability of tree seeds (Gurnell 1993): summer (June to September),

172 fall (October and November), winter (December to February) and spring (March to May). It is worth

173 noting that the present sample only contains 2 fall bones from the same individual. This is because red

174 squirrels are difficult to catch in fall, when food is plentiful, and are often not sampled at all that time

175 of year (e.g., Moller 1983a; Gurnell 1996). The two fall bones are not included in analyses with fall as a

176 separate group, since the sample size would be smaller than $k+1$, where k is the number of groups.

177

178 Methods

179

180 The μ CT scans were obtained with a CoreTOM, located at Tescan in Ghent. The humeri were placed in

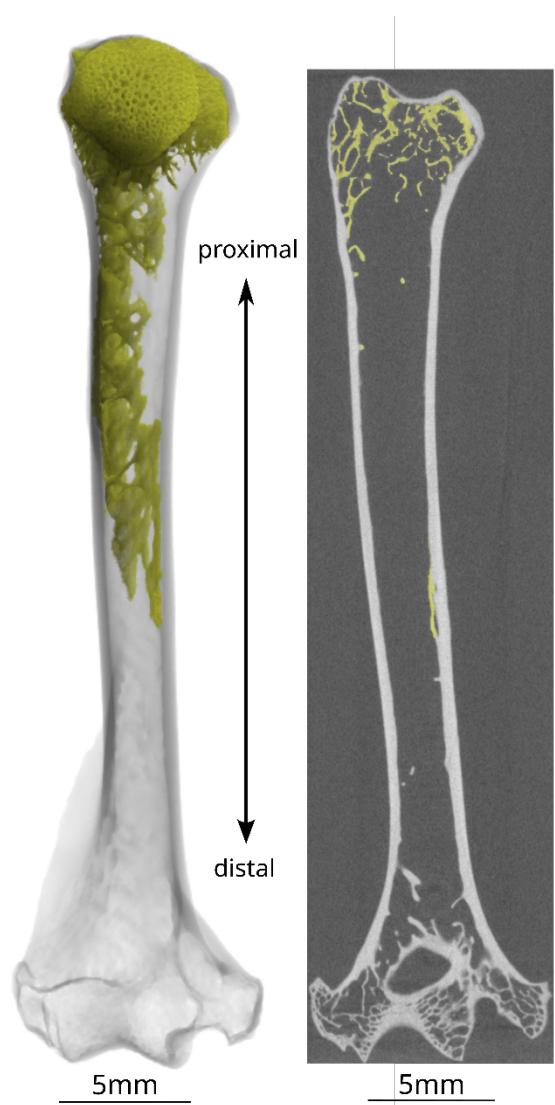
181 individual plastic specimen jars and then stacked per 18 in a large PVC sample tube. A scan lasted 180

182 minutes per tube (10 minutes per humerus). Scans were taken at 160 kV, 0.156 mA and 25 W with 901

183 views over a 360° rotation per bone resulting in a 0.4° angular step size. The tube turned continuously

184 rather than stepwise. The radiation source and detector were programmed to automatically move up

185 to the next bone and take another 901 views. The reconstruction of the scans was largely automated


186 using a Python script (Suppl. Info. 3; van Aarle *et al.* 2015; van Aarle *et al.* 2016) and the results were

187 improved by removing ring artefacts. Each resultant image stack comprised of 2500 sectional images.

188 The developmental stage of the squirrel (adult or subadult) was determined by the presence or absence

189 of an epiphyseal plate in the trabecular bone of the proximal humerus.

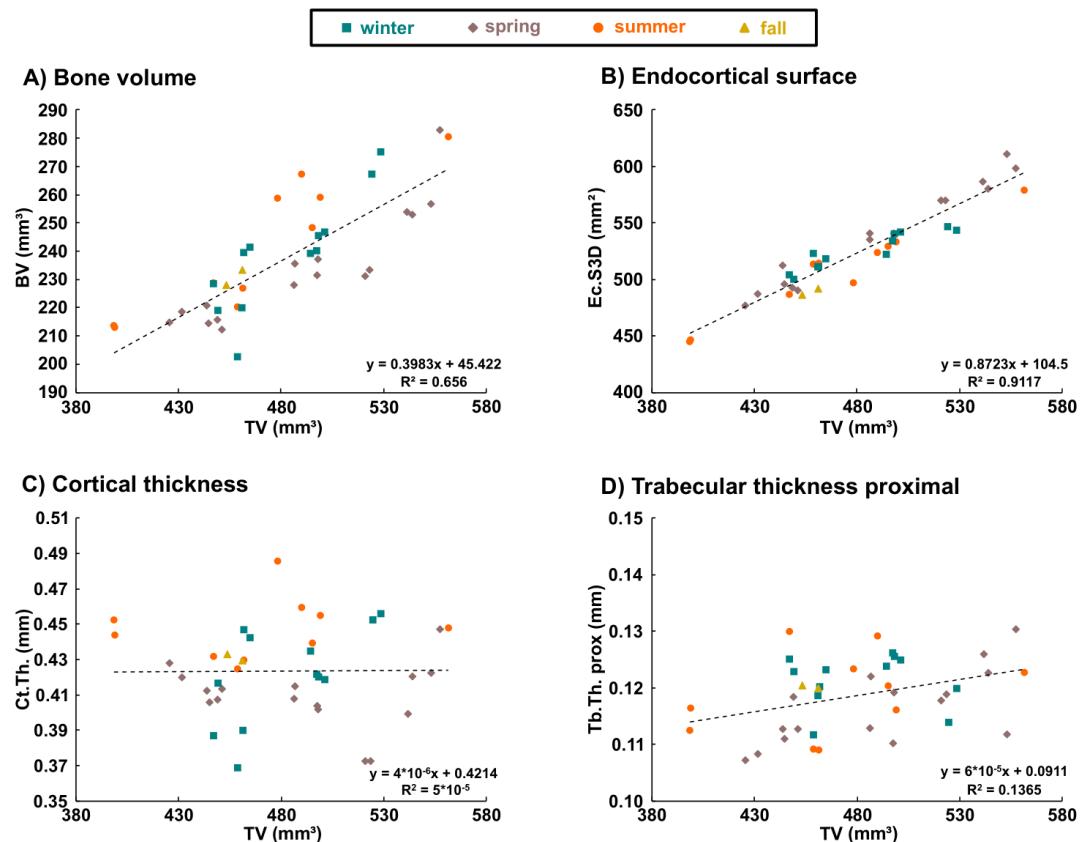
Seasonal fluctuations in bone microstructure van Heteren et al.
190 The image stacks of the individual bones were read into Dragonfly 2021.1 with a voxel size of 0.026 mm.
191 A python-based macro (Suppl. Info. 4) was used to create a 3D region of interest (ROI) that only includes
192 the bone tissue of the humerus. The processing duration of the macro was approximately 5 min for each
193 bone. The approximate thickness of the trabeculae was measured with the ruler tool for each individual,
194 since the trabecular thickness varies intraspecifically. The Buie method, which is based on a dual
195 threshold method, was then selected to start the automated segmentation between trabecular and
196 cortical bone (Buie *et al.* 2007). This largely automatically generated segmentation required only minor
197 manual corrections. Before calculating the
198 parameters, the trabecular ROI was split by connected
199 components and of the two largest connected
200 components the proximal component was kept
201 (*Figure 1*). This ensures all relevant trabeculae are
202 included in the analysis and obviates the need to
203 manually, and by human nature subjectively, choose a
204 core-shaped (Benito *et al.* 2003; Benito *et al.* 2005),
205 spherical (Skedros *et al.* 2012; Bachmann *et al.* 2022)
206 or cubic (Hoechel *et al.* 2015; Amson *et al.* 2017;
207 Marcián *et al.* 2017) ROI. After calculation of the
208 parameters in the bone analysis module of the ORS
209 Dragonfly software, the data was exported as CSV files
210 and subjected to statistical testing.
211 All statistical tests were conducted in the software
212 Past 4.11 (Hammer *et al.* 2001) with a significance
213 level of $\alpha = 0.05$ and p-values that are below $\alpha = 0.01$
214 are considered highly significant. All plots were made
215 in Excel. The quartiles in the boxplots were calculated
216 exclusive of the median and any datapoints beyond

Figure 1: Example of the two largest connected components of trabecular bone (coloured) in a squirrel humerus. The region of interest for trabecular thickness in the proximal part is indicated in yellow. A. Longitudinal slice. B. 3D view with transparent cortical bone.

Seasonal fluctuations in bone microstructure van Heteren et al.
217 one and a half box lengths from either end of the box are considered outliers. The sinus trendlines in
218 the scatterplots were created with Solver, a Microsoft Excel add-in. The regressions onto size were kept
219 blind to season and season colour was only added later for illustrative purposes. In all other analyses
220 (e.g., ANOVA) season or date was an integral part of the analysis. The following parameters were taken
221 into consideration following the definitions of Bouxsein (Bouxsein *et al.* 2010), except endocortical
222 surface (Object Research Systems 2019), but these parameters often have different abbreviations in the
223 preclinical literature (Dempster *et al.* 2013):
224 Total volume (TV) = Volume of the entire region of interest (mm³), this includes non-bone spaces within
225 the bone.
226 Bone volume (BV) = Volume of the region segmented as bone (mm³).
227 Endocortical surface (Ec.S3D) = Endocortical surface (mm²), assessed using direct 3D methods.
228 Average cortical thickness (Ct.Th.) = Mean cortical thickness (mm).
229 Trabecular thickness of the proximal trabeculae (Tb.Th.prox) = Mean thickness of trabeculae (mm),
230 assessed using direct 3D methods, as applied to the largest continuous network of trabeculae in the
231 proximal part of the bone.
232
233 Total volume would be a logical candidate for a measure of absolute size of the bone that includes both
234 a length and a robusticity component. ANOVAs were performed on total volume to assure that it was
235 not influenced by any seasonal variations (see below for how the assumptions were tested). The
236 dependence of the variables of interest on size was tested using a multivariate regression of those
237 variables onto total volume as a proxy for bone size. In those instances where the regression was
238 significant, analyses were continued with the regression residuals. When the regression was non-
239 significant, analyses were continued with the raw data.
240 Levene's tests for homogeneity of variance from means and from medians were performed, as well as
241 the Shapiro-Wilk test for normal distribution. Parametric testing was only continued if all these tests
242 provided insignificant results, which was fortunately the case for all variables.

Seasonal fluctuations in bone microstructure van Heteren et al.
243 To test for any seasonal differences in the bone microstructure of squirrels, multivariate analyses of
244 variance (MANOVAs) were performed for the estival (summer) semiyear vs the hibernal (winter)
245 semiyear, as well as for the four seasons on cortical thickness, proximal trabecular thickness,
246 endocortical surface and bone volume. Hotelling's T² analyses were conducted to determine where in
247 the data the significance arises. The p-values and the Mahalanobis D² effect size were reported.
248 To determine which factors might be important, individual analyses of variance (ANOVAs) were
249 performed on cortical thickness, proximal trabecular thickness, endocortical surface and bone volume
250 for seasonality, and in case of significant findings additional Tukey's pairwise tests were performed.
251 Since these are Model II (random effects) ANOVAs, the intraclass correlation coefficient (ICC) is also
252 given for significant results, in addition to the customary parameters.
253

254 Results


255
256 Total volume was found to be independent of estival or hibernal semiyear ($F(1, 38)=2.111, p=0.1545$)
257 and of the four seasons ($F(3, 36)=0.874, p=0.4638$). As such, it can be used as an independent proxy for
258 bone size to be used in the regression analyses.

259

260 *Table 1: Results of the multivariate regression of bone volume (BV), cortical thickness (Ct.Th.),*
261 *endocortical surface (Ec.S3D) and thickness of the proximal trabeculae (Tb.Th. prox) onto total volume.*
262 *The significant values are indicated in bold font.*

Variable	Slope	Error	Intercept	Error	r	p
BV	0.39833	0.04679	45.422	22.589	0.80997	2.45E-10
Ec.S3D	0.87231	0.04303	104.500	21.258	0.95485	1.25E-21
Ct.Th.	4.23E-06	0.00010	0.421	0.049	0.00680	0.96677
Tb.Th. prox	5.73E-05	2.34E-05	0.091	0.011	0.36942	0,0190

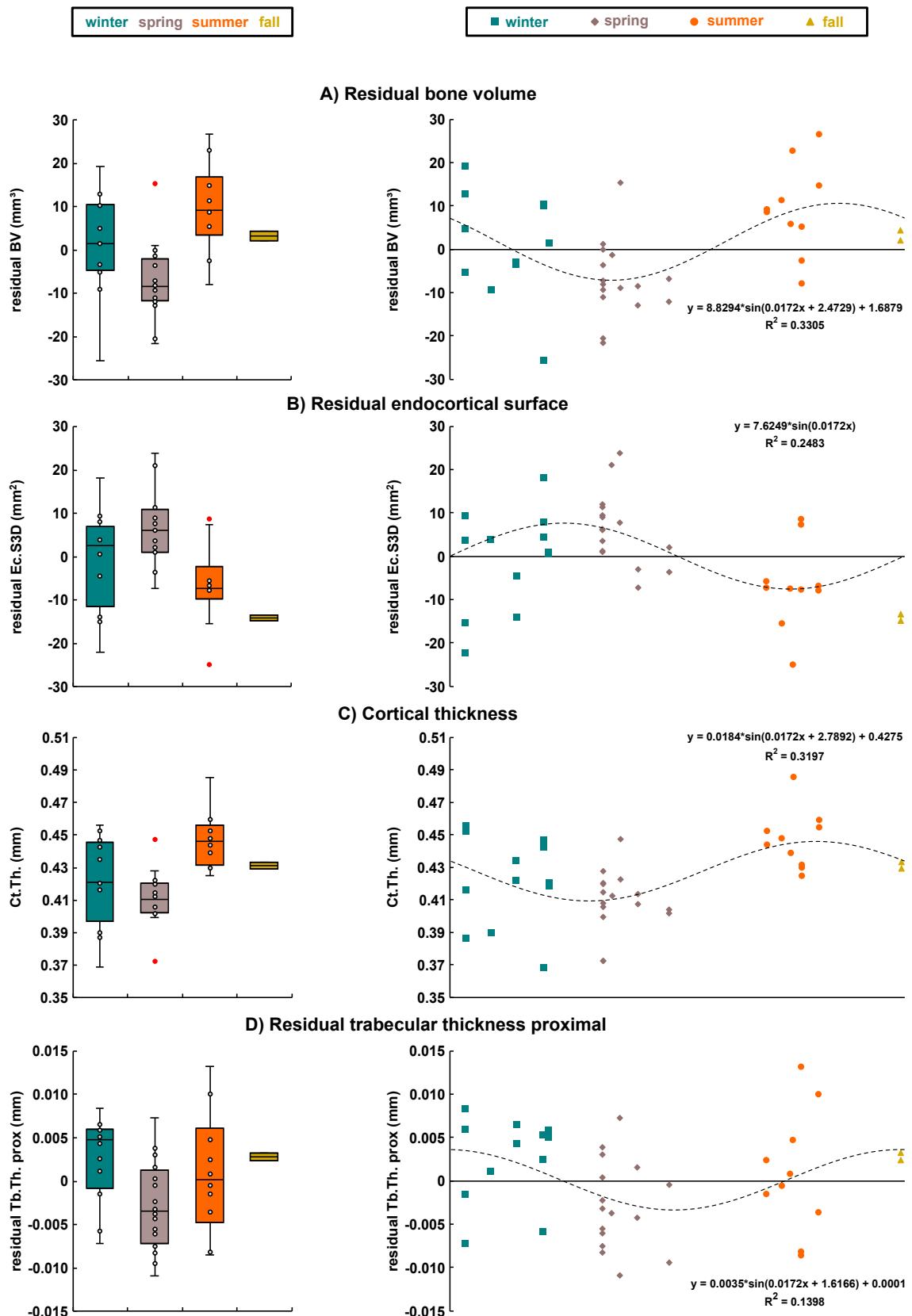
263

264

265 *Figure 2: Multivariate linear regression of bone microstructure parameters onto total volume (TV) as a*
266 *proxy for size. A. Average cortical thickness (Ct.Th.). B. Bone volume (BV). C. Endocortical surface*
267 *(Ec.S3D). D. Mean trabecular thickness (Tb.Th. prox).*

268

269 Bone volume and endocortical surface were highly significantly correlated with total volume, but
270 cortical thickness and proximal trabecular thickness were not (*Table 1* and *Figure 2*). Bone volume and
271 endocortical surface show a significant correlation with total volume. For those variable, subsequent
272 analyses were done on the regression residuals. For cortical thickness and trabecular thickness, the raw
273 data were used.


274 Bone microstructure as a whole (residual bone volume, cortical thickness, residual endocortical surface
275 and residual trabecular thickness) is highly significantly different in estival vs hibernal squirrels (Pillai
276 trace=0.3214, $F(4, 35)=4.144$, $p=0.0075$). Bone microstructure is also significantly influenced by season
277 (Pillai trace=0.5067, $F(8, 66)=2.799$, $p=0.0099$). The post-hoc Hotelling's T^2 tests show that this
278 significance is caused by a significant difference between spring and summer ($p=0.0076$, $D^2=3.4579$).
279 Season has a highly significant effect on residual endocortical surface, cortical thickness and residual
280 bone volume (*Table 2* and *Figure 3*). According to the Tukey post-hoc tests, this is caused by highly

Seasonal fluctuations in bone microstructure van Heteren et al.
281 significant differences between spring and summer, and a significant difference between winter and
282 summer in the case of cortical thickness. Additionally, the seasons significantly affect residual trabecular
283 thickness (*Table 2* and *Figure 3*). According to the post-hoc Tukey tests, spring and winter are
284 significantly different from each other. The seasons explain between 16% and 35% of the variance (*Table*
285 *2*) and the trendline explains between 14% and 33% of the variation (*Figure 3*).

286
287 *Table 2: Results of the ANOVAs per season for residual bone volume (Res.BV), residual endocortical*
288 *surface (Res.Ec.S3D), cortical thickness (Ct.Th.) and proximal trabecular thickness (Res.Tb.Th. prox) as*
289 *well as the intraclass correlation coefficient (ICC) and the post-hoc Tukey tests. For the post-hoc tests,*
290 *only significant values are provided. Highly significant values are indicated in bold font. For all F values,*
291 *the between group degrees of freedom are 2 and the within group degrees of freedom are 35.*

ANOVA	F	p	ICC	explaine <i>d (%)</i>	Variance	Winter - <i>spring</i>	Spring - <i>summer</i>	Winter - <i>summer</i>
					(Q)	p (Q)	p (Q)	p (Q)
<i>Res. BV</i>	8.370	0.0011	0.3724	32 (5.729)			0.0008	
<i>Res. Ec.S3D</i>	5.480	0.0085	0.2651	24 (4.624)			0.0067	
<i>Ct.Th.</i>	9.388	0.0005	0.4031	35 (6.110)			0.0004	0.0235 (3.921)
<i>Res. Tb.Th. prox</i>	3.416	0.0441	0.1629	16 (3.564)			0.0424	

292

293
294 *Figure 3: Boxplots (left) and scatterplots with sinus trendlines (right) of bone microstructure parameters.*
295 *In the boxplots, the dots represent the datapoints, the length of the box is the interquartile range, the*
296 *horizontal line is the sample median, and the whiskers extend to the minimum and maximum values,*
297 *except for datapoints that are outside 1.5 times the interquartile range above the upper quartile or below*
298 *the lower quartile, which are considered outliers and indicated in red rather than white. A. Average*
299 *cortical thickness (Ct.Th.). B. Residual bone volume (Res.BV). C. Residual endocortical surface*
300 *(Res.Ec.S3D). D. Residual mean trabecular thickness (Res.Tb.Th. prox).*

Seasonal fluctuations in bone microstructure

van Heteren et al.

301 Discussion

302

303 Intraspecific variation in bone microstructure is rarely studied and, generally, humans are the focal
304 taxon (e.g., Saers *et al.* 2018; Vom Scheidt *et al.* 2019). Most studies, however, focus on interspecific
305 comparisons (e.g., Meier *et al.* 2013; Ryan & Shaw 2013; Mielke *et al.* 2018). In the present study, the
306 intraspecific bone microstructure is analysed for a single subspecies of red squirrel (*S. vulgaris fuscoater*)
307 from Bavaria (Germany) from a 11-year period at the beginning of the 20th century, implying minimal
308 geographical or temporal influences on the data. The squirrels used in this study are collection
309 specimens from more than 100 years ago. Individual information on activity levels, breeding status,
310 feeding behaviour or local environment is not available. Nevertheless, this is an important source of
311 information. It does not require the sacrifice of additional animals, whether from the wild or from
312 laboratory setting, both associated with their own ethical issues.

313

314 The effect of season on bone turnover is controversial (Rico *et al.* 1994; Woitge *et al.* 2000; Patel *et al.*
315 2001; Blumsohn *et al.* 2003; Seibel *et al.* 2004; Seibel 2005) and a previous study on microstructure
316 parameters in sheep did not find any significant differences between the seasons (Arens *et al.* 2007).
317 This study aims to uncover how the bone physiology of a non-human mammal responds to seasonality.
318 The Central European squirrel (*S. vulgaris fuscoater*) was used as a model study system.
319 Significant differences were found between squirrels that were collected in the estival semiyear versus
320 those that were collected in the hibernal semiyear. Subsequent analyses, with the year divided into four
321 seasons, showed that this was mainly caused by a difference in the bone parameters in spring versus
322 fall, with summer and winter as intermediate stages (*Figure 3*).

323

324 Almost 35% of the variance in bone volume was found to be related to season (*Table 2*). Since bone
325 volume is comprised of the entire bone, both cortical and spongy, it is important to analyse further
326 parameters to determine which aspects of the bone's micromorphology might be responsible for such
327 differences and how we can interpret those in terms of functional or eco-morphology.

Seasonal fluctuations in bone microstructure van Heteren et al.
328 In fall and winter the trabeculae are the thickest, in spring they are the thinnest, whereas squirrels
329 display intermediate trabecular thicknesses in summer (*Figure 3*). Hazelnuts, especially, are very high in
330 calcium (Łoźna *et al.* 2020; NutritionValue.org 2023) and primarily available at end of August and in
331 September (Gurnell 1993), whereas acorns are particularly high in phosphorus (NutritionValue.org
332 2023) and are available from September to November with a noteworthy peak in the middle of
333 November (Gurnell 1993). Their availability might allow for the thickening of the trabeculae over
334 summer and fall.
335 Seasonal changes in cortical thickness seem to be shifted to earlier in the year relative to changes in
336 trabecular thickness. Cortical thickness is higher in summer and fall than in winter and spring in squirrels
337 (*Figure 3*). The seasonal pattern is the strongest in cortical thickness values; 35% of the variance is
338 explained by season. Based on the available data, the mechanism behind the seasonal changes in
339 cortical thickness remain unclear.
340 Endocortical surface is highest in spring and lowest in autumn, and season explains almost 25% of the
341 variance in this parameter (*Table 2*). It shows a reversed pattern to bone cortical thickness, and they are
342 essentially two sides to the same coin. When the periosteal surface stays the same throughout the
343 seasons, but the endocortical surface increases or decreases, the cortical thickness also decreases or
344 increases respectively. The same pattern is also observed in human smokers who have a smaller cortical
345 thickness and a larger endocortical surface (Lorentzon *et al.* 2007). As such it would be plausible that a
346 similar mechanism might be at play causing seasonal variations.
347
348 Summarising, this study showed that the cortical thickness increases highly significantly between spring
349 and summer (*Table 2*) and decreases again in winter (*Figure 3*). Furthermore, trabecular thickness
350 decreases from winter to spring (*Table 2*) and increases from spring to summer to fall (*Figure 3*). Both
351 the categorical seasons as well as the gradual trendline, which is perhaps more in line with a squirrel-
352 like perception of the environment explain close to one thirds of the variance.
353 Tree food availability for squirrels is highest in autumn, lowest in spring and intermediate in summer
354 whereas winter was not assessed, (Reher *et al.* 2016), but is likely to be intermediate as well. Red

Seasonal fluctuations in bone microstructure van Heteren et al.
355 squirrels depend on a variety of scatter-hoarded food types, when seeds are scarce in spring (Krauze-
356 Gryz & Gryz 2015). Not all animals are equally successful and those that retrieve more cached tree seeds
357 are more likely to survive the spring breeding season (Wauters *et al.* 1995).
358 Red squirrels are known to predate on eggs, juvenile birds (Lurz *et al.* 2005), which, in Europe, tend to
359 be available between March and June (Lack 1950), and other animals (Moller 1983a). In grey squirrels,
360 % animal matter in the stomach is highest in spring and summer (Moller 1983a) and red squirrels are
361 likely to show similar behaviour. Until now, it was not clear whether squirrels predate on other animals
362 to obtain proteins (i.e., meat) or minerals like (i.e., calcium and/or phosphorus) (Callahan 1993),
363 although American red squirrels (*Tamiasciurus hudsonicus*) (Leech 1977) and Eastern fox squirrels
364 (*Sciurus niger*) (Callahan 1993) have been reported to eat bones, suggesting the latter for those species.
365 Grey squirrels have been reported to strip tree bark and eat the phloem (Nichols *et al.* 2016). This was
366 thought this counteracted to a seasonal calcium deficiency (Nichols *et al.* 2016), but more recent
367 research has shown that grey squirrels are unable to utilise calcium oxalate, the form in which calcium
368 is available in phloem (Nichols *et al.* 2018). Red squirrels, being closely related to grey squirrels, are also
369 unlikely to be able to utilise the calcium from phloem and must obtain it elsewhere. The present study
370 suggests that Eurasian red squirrels might predate to replenish their calcium and/or phosphorus, in
371 addition to eating hazelnuts and acorns, so their bones can recover. The lower cortical thickness
372 detected in the hibernal semiyear samples and the delayed lower trabecular thickness in spring and
373 summer could potentially be explained by the role of bone as a calcium reservoir. Calcium is messenger
374 which couples intracellular responses to extracellular signals, for example the activation of muscle
375 contraction (Awumey & Bukoski 2006). Since squirrels do not hibernate, calcium must be used
376 throughout winter. In the case of low calcium availability in the diet, the skeleton might possibly be used
377 for bone resorption (Heaney 2006). This might result in the observed decrease in trabecular thickness
378 over the winter months.
379
380 There are also alternative explanations. Disuse of bones, such as in hibernating mammals, also leads to
381 bone loss, because bone formation and bone resorption become unbalanced (McGee-Lawrence *et al.*

382 Seasonal fluctuations in bone microstructure van Heteren et al.
382 2008). The red squirrel is not a hibernating species, nevertheless physical activity is reduced in winter
383 months (Tonkin 1983). Whether this also contributes to fluctuations in bone parameters cannot
384 presently be excluded and would require experimental research.
385 Bone homeostasis is maintained by osteoclastic-osteoblastic activity (Guo *et al.* 2018), as well as
386 osteocytic osteolysis (Tsourdi *et al.* 2018). The present study does not provide enough information to
387 assess which of these processes plays the most important role, but both osteoclastic-osteoblastic
388 activity and osteocytic osteolysis are affected by vitamin D (Lanske *et al.* 2014; Takahashi *et al.* 2014;
389 van Driel & van Leeuwen 2014). Vitamin D is produced by the body under the influence of sun light and
390 cannot be taken up through food. Since the days are shorter and red squirrel activity is reduced in winter
391 (Tonkin 1983), red squirrels would be expected to produce less vitamin D in the colder months. The
392 influence of vitamin D on bone mineralisation is complex and it seems to stimulate osteoblast
393 mineralisation in humans, but the effect on mineralisation in murines (Old World rats and mice) is not
394 uniform (van Driel & van Leeuwen 2017) and vitamin D can both positively and negatively regulate
395 osteoblasts in rats (Owen *et al.* 1991). Since red squirrels are rodents too, their physiological response
396 to fluctuations in vitamin D availability cannot be predicted and will have to be assessed experimentally.
397

398 Acknowledgements

399
400 The authors would like to thank Stefan Filser (Bavarian State Collection of Zoology) and Thijs Heesters
401 for their assistance, Alexander Floroni (Ludwig-Maximilians-Universität München) for contributions to
402 the artwork, Yves Maris (University of Antwerp) for IT support, and Mathieu Gendron, Nicolas Piché and
403 Emimal Jabason (Object Research Systems) for methodological advice and help. Funding was provided
404 by the Bayerische Staatsministerium through the Pakt für Forschung und Innovation as an SNSB
405 Innovativ grant.

406

407 References

408

409 A. Wauters, L., Vermeulen, M., Van Dongen, S., Bertolino, S., Molinari, A., Tosi, G. & Matthysen, E. 2007:
410 Effects of spatio-temporal variation in food supply on red squirrel *Sciurus vulgaris* body size and
411 body mass and its consequences for some fitness components. *Ecography* 30, 51-65.

412 Amson, E., Arnold, P., van Heteren, A. H., Canoville, A. & Nyakatura, J. A. 2017: Trabecular architecture
413 in the forelimb epiphyses of extant xenarthrans (Mammalia). *Frontiers in Zoology* 14, 1-17.

414 Andrada, E., MÄMpel, J., Schmidt, A., Fischer, M. S., Karguth, A. & Witte, H. 2013: From biomechanics
415 of rats' inclined locomotion to a climbing robot. *International Journal of Design & Nature and*
416 *Ecodynamics* 8, 191-212.

417 Arens, D., Sigrist, I., Alini, M., Schawalder, P., Schneider, E. & Egermann, M. 2007: Seasonal changes in
418 bone metabolism in sheep. *The Veterinary Journal* 174, 585-591.

419 Awumey, E. M. & Bukoski, R. D. 2006: Cellular functions and fluxes of calcium. *Calcium in Human Health*,
420 13-35 pp. Springer.

421 Bachmann, S., Dunmore, C. J., Skinner, M. M., Pahr, D. H. & Synek, A. 2022: A computational framework
422 for canonical holistic morphometric analysis of trabecular bone. *Scientific Reports* 12, 5187.

423 Barak, M. M., Lieberman, D. E. & Hublin, J.-J. 2013a: Of mice, rats and men: Trabecular bone architecture
424 in mammals scales to body mass with negative allometry. *Journal of structural biology* 183, 123-
425 131.

426 Barak, M. M., Lieberman, D. E., Raichlen, D., Pontzer, H., Warrener, A. G. & Hublin, J.-J. 2013b:
427 Trabecular evidence for a human-like gait in *Australopithecus africanus*. *PLOS ONE* 8, e77687.

428 Benito, M., Gomberg, B., Wehrli, F. W., Weening, R. H., Zemel, B., Wright, A. C., Song, H. K., Cucchiara,
429 A. & Snyder, P. J. 2003: Deterioration of trabecular architecture in hypogonadal men. *The*
430 *Journal of Clinical Endocrinology & Metabolism* 88, 1497-1502.

431 Benito, M., Vasilic, B., Wehrli, F. W., Bunker, B., Wald, M., Gomberg, B., Wright, A. C., Zemel, B.,
432 Cucchiara, A. & Snyder, P. J. 2005: Effect of testosterone replacement on trabecular
433 architecture in hypogonadal men. *Journal of Bone and Mineral Research* 20, 1785-1791.

434 Biewener, A. A. 1983: Locomotory stresses in the limb bones of two small mammals: The ground squirrel
435 and chipmunk. *Journal of Experimental Biology* 103, 131-154.

436 Blumsohn, A., Naylor, K. E., Timm, W., Eagleton, A. C., Hannon, R. A. & Eastell, R. 2003: Absence of
437 marked seasonal change in bone turnover: a longitudinal and multicenter cross-sectional study.
438 *Journal of Bone and Mineral Research* 18, 1274-1281.

439 Boskey, A. L. & Coleman, R. 2010: Aging and bone. *Journal of dental research* 89, 1333-1348.

440 Bouxsein, M. L., Boyd, S. K., Christiansen, B. A., Guldberg, R. E., Jepsen, K. J. & Müller, R. 2010: Guidelines
441 for assessment of bone microstructure in rodents using micro-computed tomography. *Journal of*
442 *Bone and Mineral Research* 25, 1468-1486.

443 Buie, H. R., Campbell, G. M., Klinck, R. J., MacNeil, J. A. & Boyd, S. K. 2007: Automatic segmentation of
444 cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT
445 bone analysis. *Bone* 41, 505-515.

446 Callahan, J. 1993: Squirrels as predators. *The Great Basin Naturalist*, 137-144.

447 Camarillo, N. D., Jiménez-Silva, R. & Sheehan, F. T. 2023: Using bilateral data in controls and patients
448 with bilateral and unilateral pathology requires increased scrutiny. *Journal of biomechanics*,
449 111855.

450 Chirchir, H., Ruff, C. B., Junno, J. A. & Potts, R. 2017: Low trabecular bone density in recent sedentary
451 modern humans. *American Journal of Physical Anthropology* 162, 550-560.

452 Corbet, G. B. 1978: *The mammals of the Palaearctic region: a taxonomic review*. pp. British Museum
453 (Natural History), London.

454 de Bakker, C. M., Zhao, H., Tseng, W.-J., Li, Y., Altman-Singh, A. R., Liu, Y., Leavitt, L. & Liu, X. S. 2018:
455 Effects of reproduction on sexual dimorphisms in rat bone mechanics. *Journal of biomechanics*
456 77, 40-47.

Seasonal fluctuations in bone microstructure van Heteren et al.
457 De Cuyper, C., Nollet, L., Aluwé, M., De Boever, J., Douidah, L., Vanderbeke, E., Outchkourov, N., Petkov, S. & Millet, S. 2020: Effect of supplementing phytase on piglet performance, nutrient digestibility and bone mineralisation. *Journal of Applied Animal Nutrition* 8, 3-10.
458 Dempster, D. W., Compston, J. E., Drezner, M. K., Glorieux, F. H., Kanis, J. A., Malluche, H., Meunier, P. J., Ott, S. M., Recker, R. R. & Parfitt, A. M. 2013: Standardized nomenclature, symbols, and units for bone histomorphometry: A 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. *Journal of Bone and Mineral Research* 28, 2-17.
459 Doube, M., Kłosowski, M. M., Wiktorowicz-Conroy, A. M., Hutchinson, J. R. & Shefelbine, S. J. 2011: Trabecular bone scales allometrically in mammals and birds. *Proceedings of the Royal Society B: Biological Sciences* 278, 3067-3073.
460 Guo, Y.-c., Wang, M.-y., Zhang, S.-w., Wu, Y.-s., Zhou, C.-c., Zheng, R.-x., Shao, B., Wang, Y., Xie, L., Liu, W.-q., Sun, N.-y., Jing, J.-j., Ye, L., Chen, Q.-m. & Yuan, Q. 2018: Ubiquitin-specific protease USP34 controls osteogenic differentiation and bone formation by regulating BMP2 signaling. *The EMBO Journal* 37, e99398.
461 Gurnell, J. 1993: Tree seed production and food conditions for rodents in an oak wood in southern England. *Forestry: An International Journal of Forest Research* 66, 291-315.
462 Gurnell, J. 1996: The effects of food availability and winter weather on the dynamics of a grey squirrel population in southern England. *Journal of Applied Ecology* 33, 325-338.
463 Hammer, Ø., Harper, D. A. T. & Ryan, P. D. 2001: PAST: Paleontological statistics software package for education and data analysis. *Palaeontologia Electronica* 4, 1-9.
464 Heaney, R. P. 2006: Calcium intake and disease prevention. *Arquivos Brasileiros de Endocrinologia & Metabologia* 50, 685-693.
465 Hoechel, S., Schulz, G. & Müller-Gerbl, M. 2015: Insight into the 3D-trabecular architecture of the human patella. *Annals of Anatomy - Anatomischer Anzeiger* 200, 98-104.
466 Jaworski, Z. F., Liskova-Kiar, M. & Uhthoff, H. K. 1980: Effect of long-term immobilisation on the pattern of bone loss in older dogs. *J Bone Joint Surg Br* 62-b, 104-110.
467 Köhler, M., Marín-Moratalla, N., Jordana, X. & Aanes, R. 2012: Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology. *Nature* 487, 358-361.
468 Kostrzewska, A. & Krauze-Gryz, D. 2020: The choice and handling of supplemental food by red squirrels in an urban park. *Behavioural Processes* 178, 104153.
469 Krauze-Gryz, D. & Gryz, J. 2015: A review of the diet of the red squirrel (*Sciurus vulgaris*) in different types of habitats. *Red squirrels: ecology, conservation & management in Europe. European Squirrel Initiative, Stoneleigh Park, Warwickshire CV8 2LG, England*, 39-50.
470 Kwiecien, O., Braun, T., Brunello, C. F., Faulkner, P., Hausmann, N., Helle, G., Hoggarth, J. A., Ionita, M., Jazwa, C. S., Kelmelis, S., Marwan, N., Nava-Fernandez, C., Nehme, C., Opel, T., Oster, J. L., Perşoiu, A., Petrie, C., Prüfer, K., Saarni, S. M., Wolf, A. & Breitenbach, S. F. M. 2022: What we talk about when we talk about seasonality – A transdisciplinary review. *Earth-Science Reviews* 225, 103843.
471 Lack, D. 1950: The breeding seasons of European birds. *Ibis* 92, 288-316.
472 Lanske, B., Densmore, M. J. & Erben, R. G. 2014: Vitamin D endocrine system and osteocytes. *Bonekey Rep* 3, 494.
473 Lee, T. H. & Fukuda, H. 1999: The distribution and habitat use of the Eurasian red squirrel *Sciurus vulgaris* L. during summer, in Nopporo Forest Park, Hokkaido. *Mammal Study* 24, 7-15.
474 Leech, D. 1977: Osteophagy in the red squirrel. *Blue Jay* 35.
475 Lorentzon, M., Mellström, D., Haug, E. & Ohlsson, C. 2007: Smoking is associated with lower bone mineral density and reduced cortical thickness in young men. *The Journal of Clinical Endocrinology & Metabolism* 92, 497-503.
476 Łoźna, K., Styczyńska, M., Biernat, J., Hyla, J., Bienkiewicz, M., Figurska-Ciura, D. & Bronkowska, M. 2020: Mineral composition of tree nuts and seeds. *Journal of Elementology*.
477 Lurz, P., Garson, P. & Ogilvie, J. 1998: Conifer species mixtures, cone crops and red squirrel conservation. *Forestry: An International Journal of Forest Research* 71, 67-71.
478 Lurz, P. W., Garson, P. & Rushton, S. 1995: The ecology of squirrels in spruce dominated plantations: implications for forest management. *Forest ecology and management* 79, 79-90.
479 Lurz, P. W., Gurnell, J. & Magris, L. 2005: *Sciurus vulgaris*. *Mammalian species* 2005, 1-10.

Seasonal fluctuations in bone microstructure van Heteren et al.
511 Marcián, P., Florian, Z., Horáčková, L., Kaiser, J. & Borák, L. 2017: Microstructural finite-element analysis
512 of influence of bone density and histomorphometric parameters on mechanical behavior of
513 mandibular cancellous bone structure. *Solid State Phenomena* 258, 362-365.
514 Marelle, L., Myhre, G., Hodnebrog, Ø., Sillmann, J. & Samset, B. H. 2018: The changing seasonality of
515 extreme daily precipitation. *Geophysical Research Letters* 45, 11,352-311,360.
516 McGee-Lawrence, M. E., Carey, H. V. & Donahue, S. W. 2008: Mammalian hibernation as a model of
517 disuse osteoporosis: the effects of physical inactivity on bone metabolism, structure, and
518 strength. *American Journal of Physiology-Regulatory, Integrative and Comparative Physiology*
519 295, R1999-R2014.
520 Meier, P. S., Bickelmann, C., Scheyer, T. M., Koyabu, D. & Sánchez-Villagra, M. R. 2013: Evolution of bone
521 compactness in extant and extinct moles (Talpidae): exploring humeral microstructure in small
522 fossorial mammals. *BMC evolutionary biology* 13, 1-10.
523 meteo.plus 2023: *Wetterstatistik Bayern - Jahr.* <https://meteo.plus/wetterstatistik-bayern-jahr.php>.
524 Date accessed: November 27th 2023.
525 Mielke, M., Wölfer, J., Arnold, P., van Heteren, A. H., Amson, E. & Nyakatura, J. A. 2018: Trabecular
526 architecture in the sciuromorph femoral head: allometry and functional adaptation. *Zoological*
527 *Letters* 4, 10.
528 Moller, H. 1983a: Foods and foraging behaviour of red (*Sciurus vulgaris*) and grey (*Sciurus carolinensis*)
529 squirrels. *Mammal review* 13, 81-98.
530 Moller, H. 1983b: *Foraging strategies of red squirrels (sciurus vulgaris l.) in a scots pine (pinus sylvestris*
531 *l.) plantation.* pp. University of Aberdeen (United Kingdom).
532 Mullender, M., Huiskes, R., Versleyen, H. & Buma, P. 1996: Osteocyte density and histomorphometric
533 parameters in cancellous bone of the proximal femur in five mammalian species. *Journal of*
534 *Orthopaedic Research* 14, 972-979.
535 Nazarian, A., von Stechow, D., Zurakowski, D., Müller, R. & Snyder, B. D. 2008: Bone volume fraction
536 explains the variation in strength and stiffness of cancellous bone affected by metastatic cancer
537 and osteoporosis. *Calcified Tissue International* 83, 368-379.
538 Nichols, C. P., Drewe, J. A., Gill, R., Goode, N. & Gregory, N. 2016: A novel causal mechanism for grey
539 squirrel bark stripping: The Calcium Hypothesis. *Forest ecology and management* 367, 12-20.
540 Nichols, C. P., Gregory, N. G., Goode, N., Gill, R. M. A. & Drewe, J. A. 2018: Regulation of bone mineral
541 density in the grey squirrel, *Sciurus carolinensis*: Bioavailability of calcium oxalate, and
542 implications for bark stripping. *Journal of Animal Physiology and Animal Nutrition* 102, 330-336.
543 NutritionValue.org 2023: Compare nutritional values.
544 <https://www.nutritionvalue.org/comparefoods.php?foods=170157%252A100%2Bg%2C52982>
545 [8%252A100%2Bg%2C170575%252A100%2Bg%2C595005%252A100%2Bg%2C170161%252A100%2Bg](https://www.nutritionvalue.org/comparefoods.php?foods=170157%252A100%2Bg%2C595005%252A100%2Bg%2C170161%252A100%2Bg)[]. Date accessed: January 24th 2023.
546 Object Research Systems 2019: Dragonfly bone analysis: For superior bone micro-architecture
547 investigations. BR013-A-02. Object Research Systems Inc.
548 Owen, T. A., Aronow, M. S., Barone, L. M., Bettencourt, B., Stein, G. S. & Lian, J. B. 1991: Pleiotropic
549 effects of vitamin D on osteoblast gene expression are related to the proliferative and
550 differentiated state of the bone cell phenotype: dependency upon basal levels of gene
551 expression, duration of exposure, and bone matrix competency in normal rat osteoblast
552 cultures. *Endocrinology* 128, 1496-1504.
553 Patel, R., Collins, D., Bullock, S., Swaminathan, R., Blake, G. & Fogelman, I. 2001: The effect of season
554 and vitamin D supplementation on bone mineral density in healthy women: a double-masked
555 crossover study. *Osteoporosis International* 12, 319-325.
556 Reher, S., Dausmann, K. H., Warnecke, L. & Turner, J. M. 2016: Food availability affects habitat use of
557 Eurasian red squirrels (*Sciurus vulgaris*) in a semi-urban environment. *Journal of Mammalogy*
558 97, 1543-1554.
559 Rico, H., Revilla, M., Cardenas, J. L., Villa, L. F., Fraile, E., Martín, F. J. & Arribas, I. 1994: Influence of
560 weight and seasonal changes on radiogrammetry and bone densitometry. *Calcified Tissue*
561 *International* 54, 385-388.
562 Robling, A. G., Castillo, A. B. & Turner, C. H. 2006: Biomechanical and molecular regulation of bone
563 remodeling. *Annual review of biomedical engineering* 8, 455-498.

Seasonal fluctuations in bone microstructure van Heteren et al.
565 Ryan, T. M. & Shaw, C. N. 2013: Trabecular bone microstructure scales allometrically in the primate
566 humerus and femur. *Proc Biol Sci* 280, 20130172.
567 Saers, J. P. P., Ryan, T. M. & Stock, J. T. 2018: Trabecular bone functional adaptation and sexual
568 dimorphism in the human foot. *Am J Phys Anthropol* 2018, 1-16.
569 Santer, B. D., Po-Chedley, S., Zelinka, M. D., Cvijanovic, I., Bonfils, C., Durack, P. J., Fu, Q., Kiehl, J., Mears,
570 C., Painter, J., Pallotta, G., Solomon, S., Wentz, F. J. & Zou, C.-Z. 2018: Human influence on the
571 seasonal cycle of tropospheric temperature. *Science* 361, eaas8806.
572 Scherbarth, F. & Steinlechner, S. 2010: Endocrine mechanisms of seasonal adaptation in small
573 mammals: from early results to present understanding. *Journal of Comparative Physiology B*
574 180, 935-952.
575 Schmidt, A. 2011: Functional differentiation of trailing and leading forelimbs during locomotion on the
576 ground and on a horizontal branch in the European red squirrel (*Sciurus vulgaris*, Rodentia).
577 *Zoology (Jena)* 114, 155-164.
578 Scholz-Ahrens, K. E. & Schrezenmeir, J. r. 2007: Inulin and oligofructose and mineral metabolism: the
579 evidence from animal trials. *The Journal of Nutrition* 137, 2513S-2523S.
580 Seibel, M. J. 2005: Biochemical markers of bone turnover part I: biochemistry and variability. *The Clinical
581 biochemist. Reviews/Australian Association of Clinical Biochemists*. 26, 97.
582 Seibel, M. J., Meier, C., Woitge, H. W., Witte, K. & Lemmer, B. 2004: Seasonal Variation of Bone
583 Turnover? *Journal of Bone and Mineral Research* 19, 168-169.
584 Shuttleworth, C. 1997: The effect of supplemental feeding on the diet, population density and
585 reproduction of red squirrels. In Gurnell, J. & Lurz, P. W. W. (eds.): *The Conservation of Red
586 Squirrels, Sciurus vulgaris L.*, 13-24 pp. Peoples Trust for Endangered Species.
587 Skedros, J. G., Knight, A. N., Farnsworth, R. W. & Bloebaum, R. D. 2012: Do regional modifications in
588 tissue mineral content and microscopic mineralization heterogeneity adapt trabecular bone
589 tracts for habitual bending? Analysis in the context of trabecular architecture of deer calcanei.
590 *Journal of anatomy* 220, 242-255.
591 Sullivan, L. M., Weinberg, J. & Keaney, J. F. 2016: Common statistical pitfalls in basic science research.
592 *Journal of the American Heart Association* 5, e004142.
593 Takahashi, N., Udagawa, N. & Suda, T. 2014: Vitamin D endocrine system and osteoclasts. *Bonekey Rep*
594 3, 495.
595 Thorington Jr, R. W. & Hoffmann, R. S. 2005: Family sciuridae. *Mammal Species of the World, A
596 taxonomic and geographic reference. Third edition*.
597 Tittensor, A. M. 1970: The red squirrel (*Sciurus vulgaris* L.) in relation to its food resource. *Department
598 of Forestry and Natural Resources*. University of Edinburgh, Edinburgh.
599 Tonkin, J. 1983: Activity patterns of the red squirrel (*Sciurus vulgaris*). *Mammal review* 13, 99-111.
600 Tsegai, Z. J., Skinner, M. M., Pahr, D. H., Hublin, J. J. & Kivell, T. L. 2018: Systemic patterns of trabecular
601 bone across the human and chimpanzee skeleton. *Journal of anatomy* 232, 641-656.
602 Tsourdi, E., Jähn, K., Rauner, M., Busse, B. & Bonewald, L. F. 2018: Physiological and pathological
603 osteocytic osteolysis. *J Musculoskelet Neuronal Interact* 18, 292-303.
604 Turner, C. H. 1999: Site-specific skeletal effects of exercise: importance of interstitial fluid pressure.
605 *Bone* 24, 161-162.
606 van Aarle, W., Palenstijn, W. J., Cant, J., Janssens, E., Bleichrodt, F., Dabrowski, A., De Beenhouwer, J.,
607 Joost Batenburg, K. & Sijbers, J. 2016: Fast and flexible X-ray tomography using the ASTRA
608 toolbox. *Optics Express* 24, 25129-25147.
609 van Aarle, W., Palenstijn, W. J., De Beenhouwer, J., Altantzis, T., Bals, S., Batenburg, K. J. & Sijbers, J.
610 2015: The ASTRA Toolbox: A platform for advanced algorithm development in electron
611 tomography. *Ultramicroscopy* 157, 35-47.
612 van Driel, M. & van Leeuwen, J. P. 2014: Vitamin D endocrine system and osteoblasts. *Bonekey Rep* 3,
613 493.
614 van Driel, M. & van Leeuwen, J. P. T. M. 2017: Vitamin D endocrinology of bone mineralization.
615 *Molecular and Cellular Endocrinology* 453, 46-51.
616 Vom Scheidt, A., Seifert, E. F. G., Pokrant, C., Püschel, K., Amling, M., Busse, B. & Milovanovic, P. 2019:
617 Subregional areal bone mineral density (aBMD) is a better predictor of heterogeneity in

Seasonal fluctuations in bone microstructure van Heteren et al.
618 trabecular microstructure of vertebrae in young and aged women than subregional trabecular
619 bone score (TBS). *Bone* 122, 156-165.
620 Wauters, L. A., Suhonen, J. & Dhondt, A. A. 1995: Fitness consequences of hoarding behaviour in the
621 Eurasian red squirrel. *Proceedings of the Royal Society of London. Series B: Biological Sciences*
622 262, 277-281.
623 Wiltafsky, H. 1978: *Sciurus vulgaris* Linnaeus, 1758. Eichhörnchen. In J. N. & F. K. (eds.): *Handbuch der*
624 *Säugetiere Europas, Rodentia*, 85-105 pp. Akademische Verlagsgesellschaft, Wiesbaden.
625 Woitge, H. W., Knothe, A., Witte, K., Schmidt-Gayk, H., Ziegler, R., Lemmer, B. & Seibel, M. J. 2000:
626 Circannual rhythms and interactions of vitamin D metabolites, parathyroid hormone, and
627 biochemical markers of skeletal homeostasis: A prospective study. *Journal of Bone and Mineral*
628 *Research* 15, 2443-2450.
629 Ying, G.-s., Maguire, M. G., Glynn, R. & Rosner, B. 2018: Tutorial on biostatistics: Statistical analysis for
630 correlated binary eye data. *Ophthalmic Epidemiology* 25, 1-12.
631 Zimova, M., Hackländer, K., Good, J. M., Melo-Ferreira, J., Alves, P. C. & Mills, L. S. 2018: Function and
632 underlying mechanisms of seasonal colour moulting in mammals and birds: what keeps them
633 changing in a warming world? *Biological Reviews* 93, 1478-1498.
634

635 **Supplementary material**

636
637 All supplementary information can be found in a collection on Figshare at
638 <https://doi.org/10.6084/m9.figshare.c.6435755>. Raw data (Suppl. Info. 1) are available at
639 <https://doi.org/10.6084/m9.figshare.22121447>. Alternative statistics using specimen means instead of
640 bilateral data can be found in Suppl. Info. 2 here: <https://doi.org/10.6084/m9.figshare.24716520>. Code
641 for the reconstruction of the CT scans (van Aarle *et al.* 2015; van Aarle *et al.* 2016) is not novel, but is
642 provided at <https://doi.org/10.6084/m9.figshare.22121441> for ease of use as Suppl. Info 3. Novel code
643 for isolating bone tissue in Dragonfly (Suppl. Info. 4) is available at
644 <https://doi.org/10.6084/m9.figshare.22121456>.
645