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Abstract 23 

The essential role of the gut microbiota for host health and nutrition is well established 24 

for many terrestrial animals, while its importance for fish and particularly Atlantic 25 

salmon is unclear. Here, we present the Salmon Microbial Genome Atlas (SMGA) 26 

originating from wild and farmed fish both in freshwater and seawater, and consisting 27 

of 211 high-quality bacterial genomes, recovered by cultivation (n=131) and gut 28 

metagenomics (n=80). Bacterial genomes were taxonomically assigned into 14 29 

different orders, including 28 distinctive genera and 31 potentially novel species. 30 

Benchmarking the SMGA, we functionally characterized key populations in the salmon 31 

gut that were detected in vivo. This included the ability to degrade diet-derived fibers 32 

and release vitamins and other exo-metabolites with known beneficial effects, which 33 

were validated by in vitro cultivation and untargeted metabolomics. Together, the 34 

SMGA enables high resolution functional insight into salmon gut microbiota with 35 

relevance for salmon nutrition and health.   36 
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Introduction 37 

Efficient and environmentally sustainable aquaculture production systems are urgently 38 

required to ensure long-term food security, especially as global seafood consumption 39 

is projected to double by 2050 (www.fao.org). For salmonoids, such as Atlantic salmon 40 

(Salmo salar), this necessitates new ecological sustainable feed ingredients and 41 

improvements of broodstock with respect to animal health, feed conversion, and 42 

growth. However, an additional layer of complexity that critically influences the path 43 

from “feed-to-animal” is the gastrointestinal tract (‘gut’) microbiome. In humans and 44 

other vertebrate systems, the gut microbiome has been shown to play a central role in 45 

both health and nutrition of its host1,2. Decades of research has demonstrated that 46 

dietary composition affects the gut microbiome in aquaculture production settings, 47 

including in salmon (reviewed in3,4). Additionally, since salmon is anadromous, the 48 

structure and presumed function of its microbiome is also strongly modulated by 49 

whether the fish lives in freshwater (as juveniles) or in seawater (as adults)5-7.  50 

To understand the importance of feed-microbiome-host interconnections in salmon 51 

and potentially take advantage of these couplings in fish farming, fundamental 52 

knowledge gaps must be addressed: namely, how individual microorganisms function, 53 

utilize the feed, and interact with each other or the hosts with regards to metabolism 54 

and physiology. To date, studies on the gut microbiota in salmon have been based on 55 

taxonomic composition of microbial communities via 16S rRNA gene surveys. 56 

Accordingly, there is little (if any) genomic sequence information that enable coupling 57 

of such compositional data to potential metabolic function or other functional traits in 58 

salmon gut microbiomes. Efforts to recover microbial genomes for the salmon gut 59 

microbiota have so far been limited to 20 metagenome-assembled genomes (MAGs) 60 

that are representatives of dominant Mycoplasma populations that constitute a major 61 

fraction of the total gut microbiome in adult fish at sea8,9. While certain salmon gut 62 

samples have indicated Mycoplasma spp. levels to be as high as 90%, broad 16S 63 

rRNA gene surveys portray much wider diversity that include (and are not limited to) 64 

Aliivibrio, Vibrio, Lactobacillus, Photobacterium, Carnobacterium, Flavobacterium, 65 

Pseudomonas and Psychrobacter species7,10-12. Some of these bacteria have also 66 

been recovered using cultivation-dependant approaches13, although there has so far 67 

been no comprehensive whole genome sequencing study of cultured bacteria from 68 

the salmon gut.  69 
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The limited success to recover a wide diversity of MAGs from salmon gut samples is 70 

likely related to the very low microbial biomass in the fish gut (~104-105 cells per ml), 71 

resulting in host-to-microbiome DNA ratios that typically exceed 9:18. Notwithstanding 72 

those alternative approaches, such as single cell genome sequencing and cultivation 73 

combined with long read sequencing, could complement traditional shotgun 74 

metagenome approaches and result in a more comprehensive database of high-75 

quality and near-complete microbial genomes. In this study, we therefore combine 76 

multiple approaches and present the Salmon gut Microbial Genome Atlas (SMGA), a 77 

collection of 211 annotated bacterial genomes obtained from the salmon gut 78 

microbiota. The SMGA contains genomes from gut microbiota sampled in fish at 79 

different developmental stages, in freshwater and seawater, and across farmed and 80 

wild populations. We show that the taxonomic profile of these genomes aligns with 81 

commonly reported genera that have previously been detected in public 16S rRNA 82 

gene surveys of the salmon gut (Fig. 1). Lastly, we benchmark and validate the SMGA 83 

as a valuable genome reference resource for salmon gut microbiome studies by firstly 84 

interpolating putative metabolic functions of keystone populations within an in vivo fish 85 

trial and then by coupling genomic predictions to culture-based metabolomic analyses 86 

(Fig. 1). 87 
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I 88 
Fig. 1. Conceptual overview of the SMGA’s construction and its relevance in connecting the 89 
functional potential of the salmon gut microbiota to confirmed metabolic activities. A high-quality 90 
(HQ) genome catalogue of the salmon gut microbiota was produced by combining HQ genomes from 91 
salmon gut bacterial isolates and HQ MAGs obtained through metagenomics and sorted-cells 92 
sequencing. All genomes and MAGs derived from digesta samples were collected from wild fish in 93 
seawater as well as farmed fish either from land-based freshwater aquaculture systems or directly from 94 
seawater cages. Presence of full-length 16S rRNA gene sequences in the SMGA facilitated the 95 
detection of closely related bacteria in publicly available salmon gut-derived amplicon datasets. Open 96 
reading frames provided information on the potential metabolic functions and facilitated the mapping of 97 
metatranscriptomic (metaT) data derived from salmon feeding trials.  Production and consumption of 98 
bacterial metabolites presumed from genome-scale metabolic models and from metaT-based 99 
reconstruction of active metabolic pathways in key salmon gut bacteria were experimentally validated 100 
with in vitro growth experiments using the corresponding cultured isolates. This led to confirmation of 101 
the beneficial role of the gut microbiota in salmon and uncovers bacterial targets that may be exploited 102 
to promote fish physiology and health through dietary interventions. 103 
 104 

Results 105 

The salmon microbial genome atlas (SMGA): a resource of cultured and 106 

uncultured bacteria present in the salmon gut. The recent resurgence of culture-107 

based methods in microbiology has empowered the generation of microbial genome 108 

collections that provide valuable connections between phenotype and genotype of 109 

microorganisms in a variety of different environments14-18. Here, we used different 110 

selective media to first culture 71 isolates derived from the midgut of salmons farmed 111 

in seawater followed by an additional set of 41 isolates from fish raised in freshwater. 112 
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By using Oxford Nanopore long-read sequencing, the genome sequences of the 112 113 

isolates were retrieved and reconstructed as circular chromosomes, and in some 114 

cases additional plasmids were recovered in these genomes (Supplementary Table 115 

S1). Together, these 112 sequenced isolates from the midgut of Norwegian Atlantic 116 

salmon constitute the Norwegian Atlantic Salmon Gut Bacteria Culture Collection 117 

(NAS-GBCC; Supplementary Table S1). The isolates were cryopreserved and are 118 

currently available upon request from the Norwegian University of Life Sciences.  119 

Taxonomic classification using GTDB-Tk showed that the majority (n=91) of these 120 

genomes affiliated to the Pseudomonadota (Proteobacteria) phylum, followed by the 121 

Bacillota (Firmicutes) and Bacteroidota phyla (n=10 and n=9). Using an operational 122 

species definition based on genome similarity, i.e. a 95% average nucleotide identity 123 

(ANI) threshold19,20, genome phylogeny and GTDB-Tk analysis20 showed that 35 124 

isolates represent putative novel species among the genera: Aliivibrio, 125 

Flavobacterium, Glutamicibacter, Photobacterium, Pseudomonas, Psychrobacter, 126 

and Shewanella (Fig. 2 and Supplementary Table S1). Species novelty was 127 

additionally supported with established 16S rRNA gene sequence identity of 98.7-128 

94.5% using available genomes in NCBI21. We further supplemented the resulting 129 

genome collection with 19 previously published genomes of gut-derived 130 

Latilactobacillus isolates from salmons farmed in Norway and North America22, 131 

amounting to a total of 131 genomes of isolated strains. 132 

 133 
 134 
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 135 
Fig. 2. Phylogenetic tree showing the diversity and source, of the recovered bacterial genomes 136 
and MAGs. The cladogram depicts the taxonomic classification of all the 211 SMGA genomes coloured 137 
by order (inner ring). Grey dots in the cladogram indicates a Bootstrap support higher than 70 %.  A 138 
green dot represents a genome from a cultured isolate while a purple triangle indicates a MAG. 139 
Genomes associated to undescribed species are indicated with a star (middle ring), while genomes 140 
encoding a partial or complete 16S rRNA gene operon are indicated by red squares and light blue 141 
circles, respectively (outer ring). Sample source is depicted with either a light blue or a dark blue branch 142 
for freshwater or seawater salmon, respectively. The genome of Prochlorococcus marinus subsp. 143 
marinus str. CCMP1375 (RefSeq GCF_000007925.1) was used as an outgroup (black branch). Scale 144 
bar indicates 10% estimated sequence divergence.  145 
 146 

To broaden the diversity of our genome collection, we incorporated as-yet uncultured 147 

microorganisms by producing approximately 1.2 Tbp of shotgun data from 93 samples 148 

derived from the gut content of salmons farmed both in fresh- and seawater. Notably, 149 

mapping of our raw metagenomic reads to the salmon genome revealed a 90.5-99.2% 150 

fraction originating from the host, which was higher than in previous studies8. In 151 

response to high levels of host DNA contamination we also sequenced metagenomic 152 

DNA isolated after host DNA depletion, which resulted in a lower fraction of reads 153 

mapped to the host (24.2-71.9%). Furthermore, fluorescence-activated cell sorting 154 

(FACS) was applied to partition microbial cells from debris and host cells and 155 
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subsequently sequence pools of such cells as “mini-metagenomes”. Assembly of the 156 

different metagenomes after removal of host reads, followed by binning of the 157 

assembly output, resulted in 68 MAGs fulfilling quality criteria for medium to high-158 

quality MAGs (estimated >50% completeness and <5% contamination, according to 159 

the standards described in23). Only three of these MAGs were obtained from mini-160 

metagenomes (Supplementary Table S1), reflecting the difficulties to separate out 161 

microbial cells from complex, low microbial biomass samples. We additionally 162 

assembled two MAGs from previously published metagenomes obtained from gut 163 

samples of salmons also farmed in Norway24 . Finally, we included 10 previously 164 

published medium to high-quality MAGs, which had been derived from gut samples of 165 

wild salmons caught along the coast of northern Norway9. Taken together, the SMGA 166 

thereby feature a collection of 80 MAGs, including 31 of high-quality (>90% 167 

completeness, <5% contamination) according to the standards described in the 168 

“Minimum Information about a Metagenome-Assembled Genome” (MIMAG)23. The 169 

MAGs significantly increased the taxonomic diversity of the SMGA. Besides 170 

Lactobacillales (14 MAGs), Enterobacteriales (9 MAGs) and Pseudomonadales (7 171 

MAGs) which were frequent also among the isolates, nine orders were solely 172 

represented by MAGs, with Mycoplasmatales (12 MAGs), Tissierellales (12 MAGs), 173 

Burkholderiales (7 MAGs) and Bacillales (6 MAGs) being most frequent. 174 

 175 

In total the SMGA consists of 211 genomes and MAGs (Supplementary Fig. S1), 176 

including 31 undescribed species, and comprises a total of 286,891 unique protein-177 

coding genes (and  739,323 non unique protein-coding genes). At 95% ANI (average 178 

nucleotide identity) threshold, genomes and MAGs grouped into 62 species-like 179 

clusters (mOTUs), with pan-genomes comprising up to 27,640 unique proteins 180 

(Supplementary Fig. S2). In general, genomes grouped distinctly based on whether 181 

they were isolated from freshwaters (e.g. Lelliottia and Serratia spp.) or marine 182 

systems (e.g. Photobacterium and Mycoplasma spp.). There were nevertheless taxa 183 

that were observed in both, such as Carnobacterium and Pseudomonas (Fig. 2). 184 

 185 

Benchmarking the value of SMGA - linking 16S data to complete microbial 186 

genomes. Our combined use of short and long-read DNA sequencing ensured that 187 

129 genomes and 17 MAGs from the SMGA encoded full-length 16S rRNA genes, 188 

which enabled searches for the occurrence of SMGA bacteria in the plethora of 189 
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amplicon datasets that dominate the salmon gut microbiome literature. At a 97% 190 

identity cut-off when comparing SMGA 16S rRNA sequences to amplicon sequence 191 

variants (ASVs), 144 out of 146 SMGA bacteria were detected in publicly available 192 

16S rRNA gene datasets from either in vivo trials or in vitro models with salmon gut 193 

microbial communities, as well as datasets generated within this study (ImpTrial1 and 194 

ImpTrial2) (Supplementary Fig. S3)10,25-34. SMGA bacteria were detected in 195 

microbiomes not only from Norwegian salmon populations, but also in gut samples 196 

from wild and farmed Atlantic salmon retrieved from Scotland27, the UK28 and Chile34. 197 

Our findings validate that 99% of the SMGA microbes that featured complete 16S 198 

rRNA genes are also found in a wider range of salmon gut microbiomes. This included 199 

prevalent genera such as Carnobacterium, Lactobacillus, Flavobacteria, 200 

Photobacterium, Shewanella, Vibrio and Aliivibrio that are routinely observed in 201 

salmon microbiome research7,10-12. Using the reverse approach, 16S rRNA gene 202 

amplicon data from taxonomic surveys can be linked to genome encoded functional 203 

traits from the SMGA’s collection to provide additional metabolic and functional 204 

context. This will eventually also enable cross-study comparisons and aid the 205 

prediction of microbiota functions potentially resulting in growth-related and health-206 

related metabolites beneficial for the salmon host. 207 

 208 

Putative metabolic capabilities encoded in the SMGA bacterial genomes. 209 

Equipped with our genome inventory, we subsequently explored the metabolic 210 

potential of the individual strains using functional annotation databases (Fig. 3a). We 211 

also generated genome-scale models for 94 of the 211 genomes (Methods, 212 

Supplementary Fig. S4-S5, Supplementary Table S2), three of which were 213 

validated against exo-metabolomic data (Methods, Supplementary Fig. S6-S7, 214 

Supplementary Table S3). We used these metabolic models to predict metabolic 215 

fluxes and metabolite exchange, which we also used for the exploration of the 216 

metabolic potentials. As expected, core metabolic pathways (glycolysis, etc), glucose 217 

consumption and acetate metabolism were largely similar among strains. Both 218 

facultative and strict aerobes were identified, and fittingly respiration and fermentation 219 

were predicted across the SMGA genomes. More specifically, some strains presented 220 

genes and pathways that could lead to potential beneficial metabolites in the salmon 221 

gut such as short chain fatty acids, amino acids as well as B- and K-vitamins 222 

(Supplementary Fig. S4). For example, lactic and succinic acid production was 223 
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predicted via genome annotation for many Pseudomonadota and Bacillota and was 224 

further supported by prediction of lactate and succinate metabolite exchange 225 

(Supplementary Fig. S5). Nitrogen cycling varied across the SMGA genomes, with 226 

various Pseudomonadota species predicted to either take up nitrate, excrete nitrite or 227 

perform dissimilatory nitrate reduction to ammonium (e.g. Allivibrio and Shewanella 228 

spp.). Metabolism of ammonium, ornithine and citrulline via the urea cycle was also 229 

predicted for certain bacteria, including Pseudomonas and Carnobacterium spp. 230 

Metabolism of amino acids such as glycine, alanine, leucine, valine, aspartate and 231 

arginine varied considerably in their predicted uptake and excrement, highlighting 232 

metabolic points of difference across the SMGA. 233 
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234 
Fig. 3. Metabolic functions encoded by the 211 genomes in the SMGA. a. Heatmap showing the 235 
presence of genes/pathways (listed on the lower x-axis) across various functional categories (listed on 236 
upper x-axis) found in each genome (y-axis). The presence of a gene/pathway is denoted by a black 237 
box and considered present if >50% of the genes in the DRAM module are encoded. Genes/pathways 238 
that are not detected are represented by a white box. DRAM functional categories, sub-categories and 239 
functional IDs are listed in Supplementary Table S4. b. Number of genes putatively encoding potential 240 
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Flavobacterium frigidarium S25_bc21

Sphingomonas sp. MAG_02
Sphingomonas sp. MAG_01

Phyllobacterium sp. MAG_01
Ochrobactrum_A rhizosphaerae MAG_01
Ochrobactrum_A rhizosphaerae MAG_02
Ochrobactrum_A rhizosphaerae MAG_03

Paraburkholderia fungorum MAG_06
Paraburkholderia fungorum MAG_03
Paraburkholderia fungorum MAG_01
Paraburkholderia fungorum MAG_04
Paraburkholderia fungorum MAG_07
Paraburkholderia fungorum MAG_05
Paraburkholderia fungorum MAG_02

Psychrobacter sp. S10_bc08
Psychrobacter sp. S38_bc33

Psychrobacter sp. S7_bc06
Psychrobacter cryohalolentis S24_bc20
Psychrobacter cryohalolentis S28_bc23

Psychrobacter glaciei S33_bc28
Psychrobacter glaciei S31_bc26

Psychrobacter glaciei S2_bc02
Psychrobacter glaciei A18_bc62
Psychrobacter glaciei A27_bc71

Psychrobacter sp. S18_bc14
Psychrobacter sp. S40_bc35
Psychrobacter sp. A19_bc63
Psychrobacter sp. A36_bc80

Psychrobacter sp. A1_bc48
Psychrobacter sp. S23_bc19

Oleispira sp. MAG_02
Oleispira sp. MAG_01
Oleispira sp. MAG_03
Oleispira sp. MAG_04

Pseudomonas_A stutzeri MAG_01
Pseudomonas_E qingdaonensis S29_bc29

Pseudomonas_E qingdaonensis S5_bc5
Pseudomonas_E yamanorum MAG_01
Pseudomonas_E yamanorum MAG_02

Pseudomonas_E iridis S13_bc10
Pseudomonas_E iridis S35_bc30
Pseudomonas_E iridis S37_bc32

Pseudomonas_E sp. S8_bc07
Pseudomonas_E sp. S36_bc31

Pseudomonas_E sp. S3_bc03
Shewanella sp. NWS_MAG_00001

Shewanella sp. A9_bc55
Shewanella hanedai NWS_MAG_00004

Shewanella sp. S7_bc7
Shewanella sp. S8_bc8

Shewanella baltica S4_bc04
Shewanella baltica A7_bc53

Shewanella baltica S15_bc12
Shewanella baltica S5_bc05

Shewanella baltica S32_bc27
Shewanella baltica S14_bc11
Shewanella baltica S30_bc25

Aeromonas bestiarum S11_bc11
Aeromonas bestiarum S27_bc27
Aeromonas bestiarum S25_bc25
Aeromonas bestiarum S19_bc19

Aeromonas bestiarum S6_bc6
Aeromonas bestiarum S9_bc9

Aeromonas bestiarum S14_bc14
Aeromonas bestiarum S12_bc12
Aeromonas bestiarum S23_bc23
Aeromonas bestiarum S24_bc24

Serratia liquefaciens S38_bc38
Serratia liquefaciens S45_bc45

Lelliottia amnigena S16_bc16
Lelliottia amnigena S13_bc13
Lelliottia amnigena S37_bc37
Lelliottia amnigena S18_bc18
Lelliottia amnigena S22_bc22
Lelliottia amnigena S34_bc34
Lelliottia amnigena S47_bc47
Lelliottia amnigena S32_bc32
Lelliottia amnigena S43_bc43

Lelliottia amnigena S3_bc3
Lelliottia amnigena S4_bc4

Lelliottia amnigena S28_bc28
Lelliottia amnigena S30_bc30
Lelliottia amnigena S31_bc31
Lelliottia amnigena S10_bc10
Lelliottia amnigena S20_bc20

Vibrionaceae NWS_MAG_00017
Photobacterium sp. A22_bc66

Photobacterium phosphoreum MAG_03
Photobacterium phosphoreum MAG_01
Photobacterium phosphoreum MAG_02

Photobacterium phosphoreum S20_bc16
Photobacterium phosphoreum S19_bc15
Photobacterium phosphoreum S39_bc34
Photobacterium phosphoreum S17_bc13
Photobacterium phosphoreum S22_bc18
Photobacterium phosphoreum A12_bc58
Photobacterium phosphoreum S49_bc44
Photobacterium phosphoreum A38_bc82
Photobacterium phosphoreum S48_bc43

Vibrio splendidus S43_bc38
Vibrio splendidus S51_bc46
Vibrio splendidus S52_bc47

Aliivibrio finisterrensis MAG_01
Aliivibrio finisterrensis MAG_02

Aliivibrio sp. A17_bc61
Aliivibrio sp. A2_bc49

Aliivibrio sp. A37_bc81
Aliivibrio sp. A21_bc65
Aliivibrio sp. A23_bc67
Aliivibrio sp. A11_bc57
Aliivibrio sp. A24_bc68

Aliivibrio salmonicida_A NWS_MAG_00012
Aliivibrio salmonicida_A A25_bc69
Aliivibrio salmonicida_A A32_bc76

Aliivibrio sp. A26_bc70
Aliivibrio sp. A20_bc64
Aliivibrio sp. A13_bc59
Aliivibrio sp. A10_bc56
Aliivibrio sp. A16_bc60
Aliivibrio sp. A31_bc75
Aliivibrio sp. S50_bc45
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pathogenic factors harbored by the SMGA, including factors for adherence, motility, toxins and 241 
antimicrobial resistance. 242 

Aquaculture practices are continuously evolving and with that also shifts in preferred 243 

salmon diets. Such management practices can benefit from insights about the ability 244 

of salmon gut microbiota to access and metabolize marine-, terrestrial plant- and 245 

insect-derived carbohydrates. In this context, the SMGA was also assessed for the 246 

presence of carbohydrate active enzymes (CAZymes) such as glycoside hydrolases 247 

(GH) and polysaccharide lyases (PL) (Fig. 3a, Supplementary Fig. S8 and 248 

Supplementary Table S4). Most of the genomes encoded CAZymes, with an average 249 

number of 115 genes per genome. MAGs with the smallest number of CAZymes were 250 

affiliated with the order Mycoplasmatales (average number of CAZyme = 7, 251 

Supplementary Table S4), which is in line with previous studies8,9, and imply their 252 

limited contribution to metabolism of dietary components in salmon. The dominant 253 

CAZy family within the SMGA was GH13, which has been proven to have the capacity 254 

to metabolize starch35. Notably, prevalent enzymes in Enterobacterales, 255 

Lactobacillales and Pseudomonadales were GH18 and GH19 (followed by GH20), 256 

which enable microorganisms to depolymerize chitin through the hydrolytic utilization 257 

pathway35. Intriguingly, AA10 LPMOs, that have been shown to be involved in an 258 

alternative (oxidative) chitin utilization pathway36, were detected in the genomes of 259 

Enterobacterales, Lactobacillales and a few Pseudomonadales. CAZymes involved in 260 

utilization of terrestrial and marine plant-derived carbohydrates (e.g. beta-mannan, 261 

beta-glucans, xylans, cello-oligosaccharides, manno-oligosaccharides and algal 262 

polysaccharides) included GH1, GH2, GH3, GH5, GH8, GH9, GH10, GH16, GH26, 263 

GH36, GH43 and GH94 among others35. In addition, CAZymes belonging to the 264 

families GH28, GH35, GH78, GH105, GH147, PL2, PL9 and PL22 for deconstruction 265 

of the plant pectic polysaccharide rhamnogalacturonan-I were detected in some 266 

Enterobacterales and Lactobacillales genomes35. A few Pseudomonadota and 267 

Bacteroidota genomes harboured genes encoding CAZymes for depolymerization of 268 

host mucin-derived oligosaccharides, including GH29, GH33, GH109, GH112 and 269 

GH12935. 270 

Virulence arising from the salmon gut microbiome can impact fish health. Hence, we 271 

screened the genomes for elements encoding virulence factors, bacterial toxins, and 272 

antimicrobial resistance in the 211 genomes and MAGs of the SMGA (Fig. 3b). Mobile 273 

genetic elements, including both phage- and plasmid-derived sequences, were 274 
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detected in 147 SMGA genomes/MAGs. Genes encoding putative toxins were 275 

identified in all SMGA genomes and MAGs using PathoFact searches37 against the 276 

Toxin and Toxin Target Database (T3DB)38,39. Of these putative toxins, 27% and 73% 277 

were predicted to be secreted and non-secreted pathogenic factors, respectively. The 278 

highest numbers of toxin genes were found in Pseudomonadota and particularly the 279 

genera Paraburkholderia, Pseudomonas, Serratia and Lelliottia, with up to 233 such 280 

genes in one Paraburkholderia MAG, of which 51% were predicted to be secreted. 281 

With regards to gene categories enabling antimicrobial resistance (AMR), the majority 282 

of the predicted resistance genes included beta-lactam-, fluoroquinolone-, 283 

aminoglycoside-, tetracycline-, peptide- and multidrug-resistance. Genes associated 284 

with beta-lactam resistance were found to be particularly enriched in the genera 285 

Lelliottia, Serratia, Pseudomonas and Aeromonas, suggesting they might include 286 

potentially pathogenic members. 287 

 288 

The SMGA facilitates functional understanding of the salmon gut microbiome. 289 

To showcase how the SMGA can be used to overcome one of the most obtrusive 290 

knowledge gaps in salmon gut microbiome research, namely the lack of functional 291 

understanding, we used the SMGA as a database to map metatranscriptomes from 292 

gut samples obtained from growing fish fed a standard commercial diet and collected 293 

at different life stages. This integrated omic approach facilitated detection of 116,888   294 

expressed genes (15.81% Identification Rate) and, for the first time, identified several 295 

functionally active microbial populations in vivo. Expressed metabolic pathways varied 296 

among the 4 life stages sampled, with the majority of expressed genes 297 

(Supplementary Fig. S9a, Supplementary Table S5) mapping to Enterobacterales 298 

(n=36,026), Pseudomonales (n=32,649), Lactobacillales (n=18,177), Burkholderiales 299 

(n=13,292) and Tissierellales (n=8,977). Bacteria belonging to these taxa are 300 

commonly encountered in 16S rRNA gene amplicon surveys, suggesting that they 301 

likely play active roles in the salmon gut microbiome. Lactobacillales were one of the 302 

most active populations at all the life stages sampled, with a large proportion of 303 

expressed genes in gut samples collected from salmon in seawater. Based on the 304 

expressed CAZymes, Lactobacillales metabolized starch and maltose (through 305 

GH13s, GH65s and GH126s), mannose- and cello-oligosaccharides (through GH1s, 306 

GH2s, GH3s), and potentially polymeric β-mannan and cellulose (through GH5s) (Fig. 307 

4a, Supplementary Table S6). 308 
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Given the opportunity to validate omic-based inferences with cultivation experiments, 309 

we further explored the gene expression profile of three bacteria present in our culture 310 

collection. Photobacterium phosphoreum S39_bc34 was identified as the bacterium 311 

expressing the highest number of genes during the seawater stage (Supplementary 312 

Fig. S9b). This included genes encoding CAZymes involved in depolymerization of 313 

chitin (GH18, GH20), hemicelluloses (manno- and cello-oligosaccharides, including 314 

GH2, GH3, GH9 and GH92; arabinogalactan, including GH154 and PL22), starch 315 

(GH13) and glycosaminoglycans (PL8) (Fig. 4a, Supplementary Table S6), 316 

suggesting that this bacterium is capable of readily utilizing these abundant biopolymer 317 

substrates. In all salmon gut contents, P. phosphoreum S39_bc34 showed high 318 

expression of genes coding for enzymes inferred in energy generation through 319 

glycolysis and pyruvate metabolism, with potential formation of acetate and formate. 320 

These observations were consistent with the metabolic model-based predictions 321 

(Supplementary Fig. S4-7, Supplementary Table S3). Based on the gene 322 

expression data, we also predicted several pathways involved in amino acid 323 

metabolism, with an active L-serine dehydratase [EC:4.3.1.17; VMH ID: r0060] for the 324 

conversion of serine into pyruvate; active arginine deiminase [EC:3.5.3.6; VMH ID: 325 

ARGDA], ornithine carbamoyltransferase [EC:2.1.3.3; VMH ID: OCBT] and carbamate 326 

kinase [EC:2.7.2.2; VMH ID: CBMKr] which have demonstrated activity on arginine 327 

conversion into citrulline and ornithine that can be further exchanged with putrescine 328 

using an active putrescine:ornithine antiporter40,41. Accordingly, the metabolic model 329 

could secrete ornithine and putrescine (Supplementary Table S3). Expression of 330 

genes inferred in glutaminase [EC:3.5.1.2; VMH ID: GLUN] and glutamate 331 

decarboxylase [EC:4.1.1.15; VMH ID: GLUDC] activity for conversion of glutamic acid 332 

to gamma aminobutyric acid (GABA), followed by extracellular export of GABA through 333 

an active glutamate:GABA antiporter42, were also detected (Fig. 4a, Supplementary 334 

Table S6). Expressed genes encoding enzymes involved in the route that joins 335 

glyceraldehyde 3-phosphate and D-ribulose 5-phosphate for de novo synthesis of 336 

pyridoxamine (vitamin B6) were also found43, presumably resulting in the release of 337 

this vitamin in the salmon gut (Fig. 4a, Supplementary Table S6).  338 
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 339 
 340 
Fig. 4. Schematic overview of active metabolic pathways detected in representative species of 341 
the SMGA based on metatranscriptomics, in vitro growth experiments and untargeted 342 
metabolomic of spent supernatants. a. Cartoons depicting detected active metabolic pathways of 343 
Photobacterium phosphoreum, Serratia liquefaciens, and Pseudomonas_E using metatranscriptomics 344 
data generated from hindgut samples obtained from fish farmed in fresh and seawater under a standard 345 
commercial diet. Genes are displayed as boxed numbers and are fully listed in Supplementary Table 346 
S5. Uptake and release of metabolites, amino acids and dietary fibers is indicated with arrows. b. 347 
Untargeted metabolomics of supernatant samples after growth of P. phosphoreum, S. liquefaciens, and 348 
Pseudomonas in a medium supplemented with chitin. Bars represent median and boxes interquartile 349 
range determined from 3 independent replicates. Values for control and experimental samples are in 350 
Supplementary Table S7. 351 
 352 

Focusing on bacteria from our culture collection that were highly active in the gut of 353 

salmon during the freshwater phase, Serratia liquefaciens S38_bc38 and 354 

Pseudomonas_E sp. S3_bc03 expressed genes for hydrolysis of chitin and chito-355 

oligosaccharides (GH18 and GH20), manno- and cello-oligosaccharides (GH2, GH3,), 356 

starch (GH13, GH15 and GH31) and pectic oligosaccharides (PL22), all resulting in 357 

the release of monosaccharides that can subsequently be metabolized through an 358 

active glycolytic pathway (Fig. 4a, Supplementary Table S6). Expressed genes 359 

encoding enzymes involved in metabolism of serine (arginine deiminase [EC:3.5.3.6; 360 

VMH ID: ARGDA]), arginine (arginine deiminase [EC:3.5.3.6], ornithine 361 

carbamoyltransferase [EC:2.1.3.3; VMH ID: OCBT] and carbamate kinase 362 

[EC:2.7.2.2; VMH ID: CBMKr]) and tryptophan metabolism (acetaldehyde 363 

dehydrogenase [EC:1.2.1.10; ACALD]) were detected in S. liquefaciens S38_bc38 364 

and Pseudomonas_E sp. S03_bc03. Some but not all the reactions associated with 365 

these genes were also present in the respective metabolic models (Supplementary 366 

Table S3). Expressed pathways for vitamin metabolism were detected in S. 367 

liquefaciens S38_bc38, presumably producing pantothenate (vitamin B5) from 2-368 
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dihydropantoate and b-alanine, riboflavin (vitamin B2) from guanosine triphosphate 369 

(GTP) and D-ribulose-5-phosphate as well as folate (vitamin B9) from GTP and 370 

chorismate (Fig. 4a, Supplementary Table S6). In Pseudomonas_E sp. S03_bc03, 371 

besides active genes for production of vitamin B2 and B9, we detected expressed 372 

genes that are part of the thiamine (vitamin B1) biosynthetic pathway43. Overall, these 373 

results demonstrate the power of applying the SMGA as a genome database to map 374 

realized functions at the level of individual strains and allowed us to show that salmon 375 

gut microbes can supply the host with beneficial metabolites, including short chain 376 

fatty acids, vitamins and polyamines. 377 

To validate our omic-based functional inferences from fish trials, we further functionally 378 

characterized a selection of our cultured isolates. The isolates P. phosphoreum 379 

S39_bc34, S. liquefaciens S38_bc38 and Pseudomonas_E sp. S3_bc03 were chosen 380 

and their production and/or consumption of metabolites were compared when each 381 

individual microbe was grown on a medium supplemented with chitin against a 382 

negative control. Consistent with the in vivo RNAseq-based predictions (Fig. 4b), all 383 

isolates grew on chitin in liquid monocultures. Untargeted metabolomic analyses of 384 

the spent culture media from P. phosphoreum confirmed the presence of metabolites 385 

derived from amino acids catabolism, with decreased levels (consumption) of glutamic 386 

acid, arginine and serine and increased levels (production) of GABA, citrulline, 387 

ornithine, and pyridoxamine (Fig. 4b). Production of indole-3-acetic acid (3-IAA), a 388 

metabolite from tryptophan catabolism, was detected (Fig. 4b), although this pathway 389 

remains uncharacterized in P. phosphoreum. As predicted based on the in vivo 390 

RNAseq data, P. phosphoreum produced pyridoxamine (Fig. 4b), likely from 391 

intermediates of glycolysis and the pentose phosphate pathway, while both S. 392 

liquefaciens produced B-vitamins, including riboflavin, panthotenic acids and 393 

pyridoxamine (Fig. 4b). We also found an increase of 3-IAA acid in the spent media 394 

of S. liquefaciens and Pseudomonas_E, compatible with tryptophan catabolism (Fig. 395 

4b). Synthesis of citrulline and ornithine from the arginine pathway was confirmed in 396 

Pseudomonas_E (Fig. 4b), and the corresponding metabolic models predicted that all 397 

three strains could take up lactic acid and serine, if provided in the medium 398 

(Supplementary Fig. S6, Supplementary Table S3). Together, these findings 399 

demonstrate the value of the SMGA resource by facilitating the identification and 400 
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experimental validation of active metabolic pathways and metabolites in salmon gut 401 

bacterial species. 402 

Discussion 403 

A critical obstacle for comprehensive functional understanding of the salmon gut 404 

microbiome for physiology and nutrition, is the current lack of a genome-centric view 405 

which captures the diversity and metabolic potential of the resident microbial 406 

populations. This knowledge is pivotal for identifying active metabolism of gut 407 

microbes and for translating alterations in the abundance of gut microbial populations 408 

into metabolic change with the potential to alter gut function. Here we present the 409 

hitherto most extensive microbial genome dataset from Atlantic salmon, obtained 410 

through cultivation and whole genome sequencing, as well as metagenomic 411 

sequencing of samples from gut contents of wild and farmed fish both in fresh and sea 412 

water (Fig. 1). The atlas comprises 131 genomes and 80 MAGs, and a total of 286,891 413 

unique proteins.  414 

We demonstrate that the catalogue is widely detected in the salmon gut, as 99% of 415 

the SMGA genomes with a complete 16S rRNA gene can be found in publicly available 416 

salmon gut amplicon sequencing datasets (Supplementary Fig. S3). To showcase 417 

the strength of this resource for mechanistic studies of the salmon gut microbiome, we 418 

functionally annotated all genomes, created predictive genome-scale metabolic 419 

reconstructions and mapped metatranscriptomic data from an independent fish trial to 420 

the SMGA.  We further confirmed our metabolic predictions with actual experimentally 421 

measured metabolites from selected pure bacterial cultures. This multi-faceted 422 

approach generated insights into several key populations, that are routinely detected 423 

in 16S rRNA gene-based microbiome surveys, in the metabolism of dietary 424 

components, including chitin, cello-oligosaccharides and manno-oligosaccharides 425 

(Fig. 4).  426 

Chitin is a common carbohydrate found in the natural diet of Atlantic salmon as a 427 

component of the exoskeleton of insects and crustaceans12. While Atlantic salmon 428 

possess endogenous chitinases that have some level of activity for use and 429 

exploitation of this dietary component44,45, our findings show that gut 430 

Gammaproteobacteria (P. phosphoreum, S. liquefaciens and Pseudomonas) can 431 

efficiently degrade chitin in pure culture while in vivo they express chitinases and are 432 
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inferred as active degraders that contribute towards break-down of this polymer (Fig. 433 

4). Previous work, based on amplicon sequencing, has shown that dietary inclusion of 434 

chitin-rich insect meals modulates the composition of gut microbiota in salmon post-435 

smolt, leading to increased relative abundance of gram-positive Actinomycetota and 436 

Bacilli12 and decreased abundance of Pseudomonadota. Similarly, a study from Li et 437 

al.10 reported an enrichment of Bacilli in the gut of salmon fed an insect meal diet, 438 

although the authors highlighted that the composition of the gut microbiota closely 439 

resembled that of the feed. It may be possible that reports of dietary effects of chitin-440 

rich feeds are in part biased by the fact that the 16S rRNA amplicon sequencing-based 441 

approach provides a community overview but does not discriminate between 442 

metabolically active and inactive populations in the gut (including carry-over of 443 

microbial DNA from abundant microbial populations in the feed); as a consequence of 444 

this, the observed changes in microbiome composition may not directly translate into 445 

functional alterations that impact host’s metabolism. This challenge can be addressed 446 

by using the SMGA as a reference database for metatranscriptomic studies to clearly 447 

discriminate metabolic activities as well as to decrypt microbial mechanisms for chitin 448 

degradation and their implications on salmon nutrition and physiology. 449 

From an industry perspective plant-based feed ingredients are increasingly being used 450 

as an alternative to fish-based meals. In this context, active pathways for the 451 

deconstruction of plant-derived fibers, fermentation of the resulting sugars, and 452 

production of acetate and formate, were detected in P. phosphoreum, a member of 453 

the core gut microbiota in both healthy farmed as well as wild Atlantic salmon during 454 

seawater stages46 (Fig. 4). Of further nutritional importance, we observed an 455 

upregulation of genes for B-vitamin related enzymes in several active microbial 456 

populations. Production of pyridoxamyne (vitamin B6) was indeed detected in P. 457 

phosphoreum from pure cultures and in vivo trials, while S. liquefaciens and 458 

Pseudomonas were found to be involved in both in vitro and in vivo production of 459 

vitamin riboflavin (B2), pantothenic acid (B5) and folic acid (B9) (Fig. 4a). Provision of 460 

microbially-derived B vitamins has been shown to be important for development and 461 

survival of a variety of animal hosts43,47. In essence, microbes supply vitamins that are 462 

limited in the diet or complement diet provision, ensuring growth in scarce dietary 463 

conditions. In Atlantic salmon, B-vitamins such as folate, riboflavin, niacin, 464 

pyridoxamine, and cobalamin have been shown to have effects on hepatic 465 
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transcriptional and epigenetic regulation of pathways related to lipid metabolism48, 466 

while increased amounts of pyridoxamine have been associated with improved fish 467 

health49.  468 

Pathways for metabolism of amino acids, including glutamic acid, arginine and 469 

tryptophane, were also found to be up-regulated in all the most active bacteria in the 470 

salmon gut, with production of GABA, ornithine, citrulline and 3-IAA confirmed via 471 

culture experiments and metabolomic analysis (Fig. 4b). Ornithine and citrulline have 472 

a central role in arginine metabolism and have been previously associated with 473 

increased fish growth, although the underlying mechanism is not yet known50,51. While 474 

the beneficial role of GABA and 3-IAA for host physiology has been documented in 475 

humans where the former induce a calming effect and the later improve intestinal 476 

mucosal barrier functions42,52,53, the physiological mechanism in Atlantic salmon has 477 

not been shown. Collectively, our results reveal hitherto unknown aspects of microbial 478 

fermentation, amino acid metabolism and vitamin provision and strengthen the 479 

knowledge on the involvement of the gut microbiome as a continuous source of 480 

beneficial metabolites that support health and growth in salmon. 481 

In conclusion, our findings provide valuable new insights related to carbohydrate, 482 

amino acid and vitamin metabolism in the salmon gut microbiota and reveal that gut 483 

bacteria can potentially affect host physiology through provision of several beneficial 484 

metabolites. Further, our work establishes a valuable genomic resource that can serve 485 

as a reference for genome-resolved functional omics to evaluate the metabolic 486 

potential and actual activity of key microbial players in the salmon gut under varying 487 

experimental conditions. Finally, we exemplify the in vivo detection and in-depth in 488 

vitro characterization of four bacteria and showcase how the SMGA can readily 489 

facilitate major conceptual advances regarding microbial metabolic capacities in the 490 

salmon gut and empower new research efforts to shed light on microbiome functions, 491 

dynamics and metabolic interactions with the salmon host. 492 

 493 

Materials and Methods 494 

Bacterial isolation and cultivation. For strains isolated at NMBU, samples were 495 

obtained from adult Atlantic salmon kept at the Center for Fish Research, NMBU, Ås, 496 
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Norway. The fish were reared in recirculated freshwater tanks (14.4 ± 0.4 °C) and kept 497 

under continuous light. Mid-gut contents were collected from six salmons into sterile 498 

15 mL Eppendorf tubes using aseptic techniques. Samples were immediately 499 

homogenised in sterile PBS (1:1 w/v) and a 1:10 dilution series performed. Hundred 500 

mL of each dilution was then plated onto BHI (Brain Heart Infusion, Oxoid) agar 501 

supplemented with 2.5% NaCl and TSB (Tryptone Soy Broth, Thermo Scientific) agar 502 

supplemented with 2.5% NaCl and 5% glucose. Plates were incubated at 15 °C for 3-503 

7 days prior. Pure cultures were obtained by picking individual colonies and re-504 

streaking onto fresh plates. This process was repeated until purity was achieved. Fifty-505 

six of these isolates were taxonomically classified by amplifying the full-length 16S 506 

rRNA gene using the primers 27F (5′-AGAGTTTGATCATGGCTCA-3′) and 1492R (5′-507 

TACGGTTACCTTGTTACGACTT-3′), followed by Sanger sequencing (Eurofins 508 

Genomics) with both primers. Sequences were analyzed and edited in BioEdit and 509 

BLASTed against the sequences available in GenBank. Colonies of interest were 510 

cultured on the appropriate liquid culture and genomic DNA was extracted using the 511 

Nanobind CBB Big DNA Kit (Circulomics) according to the manufacturer’s guidelines, 512 

using the high-molecular weight (HMW) protocol for gram-positive bacteria. The DNA 513 

concentration was measured on a Qubit 3.0 fluorometer with the Qubit dsDNA BR 514 

assay kit (Thermo Fisher Scientific) and the DNA quality was measured by gel 515 

electrophoresis on an BioRad Gel Doc EZ Imager (Bio-Rad Laboratories, Inc.). 516 

For bacteria isolated at NOFIMA (Norway), samples were obtained from adult Atlantic 517 

salmon kept in seawater cages. Mid-gut contents were processed as described above, 518 

with the exception that appropriate dilutions were plated onto LB (Sigma-Aldrich) agar 519 

supplemented with 2.5% NaCl or MacConkey (Merck KGaA, Germany) agar plates. 520 

Seventy-six isolates were identified using 16S rRNA gene sequencing as described 521 

above. Selected isolates were grown in liquid cultures and HMW genomic DNA for 522 

sequencing was obtained using the procedure described above. 523 

 524 

Genome sequencing and assembly of bacterial isolates. Long-fragment DNA 525 

sequencing was conducted using an Oxford Nanopore Technologies (ONT) 526 

PromethION sequencer. The sequencing libraries (one with DNA from the 56 strains 527 

isolated at NMBU and one with DNA from the 76 strains isolated at NOFIMA) were 528 

prepared using the 1D Native barcoding kit EXP-NBD196 (ONT), followed by Oxford 529 
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Nanopore 1D Genomic DNA by ligation sequencing kit SQK-LSK109 (ONT), according 530 

to the manufacturer’s instructions. The total eluted library was then loaded onto an 531 

ONT FLO-PRO002 R9.4.1 flow cell, following the manufacturer's guidelines, and 532 

sequenced for 48 h on a PromethIon device using the MinKNOW v.4.0.5 software. 533 

Basecalling was performed with Guppy v.4.0.11 in “high-accuracy basecalling” mode. 534 

After basecalling, reads were filtered by quality using FiltLong v0.2.1 (GitHub - 535 

rrwick/Filtlong: quality filtering tool for long reads) with the --min_length 1000 and --536 

keep_percent 90 parameters. Filtered reads were then assembled using Fly54 in “--537 

nano-raw” mode using default parameters. Quality of the bins was assessed using 538 

BUSCO v1.0 with the “-m geno –auto-lineage-prok” parameters55.  539 

 540 

Sample collection for metagenomics and Fluorescence-activated cell sorting 541 

(FACS). Approximately 300 mg hindgut content were collected from dissected salmon, 542 

dissolved in 1 ml PBS with 150 µl GlyTE buffer in a cryotube and stored at -80°C until 543 

processing. Three different methods were used to potentially enrich bacteria from 544 

hindgut samples before cell sorting. (I) Filtration using 1.6, 2.7 or 5 µm syringe filters. 545 

(II) Extracting the supernatant after centrifugation. Different times (5 sec – 5 min) and 546 

centrifugation speeds (500 x g – 5 000 x g) were tested. (III) Extracting different 547 

fractions from Nycodenz density gradient centrifugations at 10 000 x g for 40 min. 548 

Different Nycodenz concentrations between 45 and 80% were tested. Cell sorting was 549 

performed at the SciLifeLab Microbial Single Cell Genomics Facility with a MoFlo™ 550 

Astrios EQ sorter (Beckman Coulter, USA). Cells were stained with SYBR Green I 551 

Nucleic Acid stain (Invitrogen™, Thermo Fisher Scientific, MA, USA) and sorted based 552 

on forward scatter and fluorescence intensity at 488/530 nm excitation/emission into 553 

384-well plates by collecting 1 - 200 events per well using a 70 or 100 µm nozzle. The 554 

Phi29 enzyme was used for whole genome amplification via multiple displacement 555 

amplification (MDA). SYTO 13 nucleic acid stain was added to the reaction to monitor 556 

DNA amplification over time. Wells were screened for bacterial cells by 16S rRNA 557 

gene amplification using primers Bakt_341F and Bakt_805R56. 558 

 559 

Extraction of DNA for shotgun metagenomics. Crude metagenomes were 560 

extracted from hindgut samples using the DNeasy PowerSoil Pro Kit (Qiagen). To 561 

obtain host-depleted metagenomes, the HostZERO Microbial DNA Kit (Zymo) was 562 

used with the following protocol adjustments. Hindgut samples were centrifuged at 13 563 
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000 x g for 5 min, supernatants removed, pellets resuspended in 1.5 ml PBS buffer 564 

and transferred to 5 ml tubes containing ~0.7 ml sterile 2 mm glass beads. To mostly 565 

lyse host cells but preserve microbial cells, the tubes were agitated in a FastPrep24 566 

instrument (MP Biomedicals, Santa Ana, CA, USA) for 2 x 30 sec with a 30 sec break 567 

in between at speed level 3.4. Tubes were then centrifuged at 16 000 x g for 2 min, 568 

supernatant removed, pellet resuspended with 2 ml Host Depletion Solution (Zymo) 569 

and transferred without the beads to two 1.5 ml tubes per sample. From here, the 570 

HostZERO Microbial DNA Kit protocol was followed, whereby each sample was 571 

pooled again into one tube at the step of adding 100 µl Microbial Selection Buffer. 572 

Extracted DNA of at least nine samples needed to be pooled to obtain 5-10 ng DNA 573 

for library preparation. 574 

 575 

Genome-resolved metagenomes. 10 MAGs were obtained from a previous study of 576 

gut microbes from wild-salmon populations9. A total of 70 MAGs from gut samples of 577 

farmed salmon were assembled in this study, including 2 MAGs from re-assembling 578 

previously published metagenomes24 and 68 MAGs from sequencing data generated 579 

in this study in 1) one sequencing run at NMBU and 2) three sequencing runs at SLU 580 

and SciLifeLab (Uppsala, Sweden). Libraries for the run at NMBU and the first run at 581 

SLU (August 2021) were prepared using the Nextera XT DNA Library Preparation kit 582 

(Illumina, San Diego, CA, USA) and paired-end 250 bp sequenced on an Illumina 583 

MiSeq. Libraries for the second (April 2022) and third run (January 2023) at SLU were 584 

prepared in-house using the Celero EZ DNA-Seq Modular Workflow v2 and Revelo 585 

DNA-Seq Enz for MagicPrep NGS v1 (Tecan, Männedorf, Switzerland), respectively, 586 

and paired-end 150 bp sequenced on an Illumina NovaSeq 6000 hosted by 587 

SciLifeLab. Raw reads were quality trimmed and adapter sequences removed using 588 

Trimmomatic v0.3957 (settings: PE -phred33 ILLUMINACLIP:adapters.fasta:2:30:10 589 

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:30). 590 

To remove host contamination from both public and newly generated metagenome 591 

data, high-quality reads were mapped against the Salmo salar genome 592 

(GCF_000233375.1_ICSASG_v2) by minimap258 using default parameters for short 593 

accurate genomic reads. Non-mapped paired reads were retrieved from minimap2 594 

bam files using samtools v1259. Filtered data from each metagenome were assembled 595 

using MegaHit v 1.2.9 with the “--no-mercy” parameter. In addition, the filtered 596 
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metagenomes (excluding those obtained by FACS) were co-assembled using the 597 

same parameters. 598 

Metagenomic reads were mapped back to the respective metagenome assembly 599 

using minimap2 with the “-N 50 -ax sr” parameters. Samtools was used to produce 600 

sorted merged bam files. Bam files were then processed by the 601 

jgi_summarize_bam_contig_depths script from Metabat2 (“-m 1500” parameter) and 602 

binned with metaBat2 and MaxBin2 (“-min_contig_length 900” parameter) 603 

algorithms60,61. Completeness and contamination of each MAG was assessed with 604 

CheckM v1.2.062 using the “lineage_wf” workflow.  605 

 606 

Taxonomy and functional annotation. All isolated assembled genomes and 607 

metagenome assembled genomes (MAGs) were classified taxonomically with GTDB-608 

Tk-v-2.0.163 (GTDB release 207). A maximum-likelihood tree was de-novo built using 609 

the protein sequence alignments generated by GTDB-Tk using IQ-Tree 2.0.3 with 610 

settings “-m MFP -bb 1000 -nt 16”, and the best amino-acid substitution model 611 

(LG+R5) was automatically selected by ModelFinder64 using the Bayesian Information 612 

criterion. A combined plot showing the phylogenetic tree, taxonomy and the isolation 613 

source (metagenomics or single culture), water source and the presence of 16S rRNA 614 

gene of all bacterial genomes in the atlas were produce using the GGTree 615 

Bioconductor package65 and an in-house made R script available at 616 

https://github.com/TheMEMOLab/MetaGVisualToolBox/blob/main/scripts/GenoTaxo617 

Tree.R 618 

Functional annotation of the bacterial genomes, including gene prediction, ribosomal 619 

rRNA, tRNAs and gene annotation were performed by DRAM v 1.2.466 with the 620 

following databases: Uniref90, PFAM-A, KOfam and dbCAN-V10 (all downloaded on 621 

Sep 2021).  Antimicrobial resistance genes, toxins, virulence factors and mobile 622 

genetic elements were annotated using PathoFact v1.037 with settings ‘workflow: 623 

"complete", size_fasta: 10000, tox_threshold: 40, plasflow_threshold: 0.7, 624 

plasflow_minlen: 1000‘, and databases downloaded with the software in February 625 

2023. 626 

Species-level clustering and pan-genome estimation. The 211 SMGA genomes 627 

were grouped into species-like clusters (mOTUs) based on a 95% ANI threshold using 628 

mOTUlizer67. Pan-genomes were computed for all mOTUs using mOTUpan from the 629 

same software package, whereby the MMseqs268 amino acid identity threshold for 630 
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clustering proteins was changed to 95%, and the coverage threshold was kept at the 631 

default 80%. The software uses a Bayesian method to infer core genomes (genes 632 

present in almost all genomes of the mOTU) and accessory genomes (genes present 633 

only in some genomes of the mOTU) that takes genome completeness estimates into 634 

account and is thus also applicable to incomplete genomes. 635 

 636 

Generation and analysis of strain-specific genome-scale metabolic 637 

reconstructions. The first step in creating genome-scale metabolic reconstructions 638 

for the sequenced microbes was to map the microbial genomes against the Kbase 639 

resource69. Kbase contains over 8,000 (draft) metabolic reconstructions, which 640 

included reconstructions for 94 of the 211 genomes. After downloading these draft 641 

reconstructions, we refined them using the DEMETER pipeline70. For three of these 642 

94 microbes (Photobacterium phosphoreum sp. S39bc34, Serratia liquefaciens sp. 643 

S38bc38, and Pseudomonas_E sp. S3bc03), exo-metabolomic data was available, 644 

which was also used for the refinement with DEMETER70. Therefore, we identified 645 

those metabolites that could be consumed or secreted by the microbes by comparing 646 

untargeted metabolomics from chitin-supplemented minimal medium with and without 647 

a microbe. A metabolite was designated to be taken up if its concentration in the chitin-648 

supplemented medium with the microbe was lower than its concentrations without the 649 

microbe and vice-versa.  650 

After refinement of the microbial metabolic reconstructions, they were converted into 651 

condition-specific models by constraining to a nutrient unlimited and anoxic 652 

environment by setting the upper and lower flux bounds on the exchange reactions, 653 

which exchange metabolites to and from the extracellular environment, to 1000 and -654 

1000. The anoxic conditions were simulated by setting the lower flux bound of the 655 

oxygen exchange reaction, VMH ID: EX_o2(e), to zero. Next, the genome-scale 656 

metabolic models were interrogated using flux balance analysis (FBA)71. In FBA, an 657 

objective function, often biomass production, is either minimized or maximized, while 658 

assuming the system to be at a steady state, i.e., there is no change in concentration 659 

over time. The underlying linear optimization problem is formulated as follows: 660 

min	or	max 𝑐! ∙ 𝑣 661 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜: 𝑆 ∙ 𝑣 =
𝑑𝑥
𝑑𝑡 ≡ 0 662 

𝑣",$% ≤ 𝑣" ≤ 𝑣",&% 663 
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where c is a weight vector of zeros with one or more non-zero entries signifying the 664 

linear objective function.  v is a flux vector to be solved for, containing a flux value for 665 

each on the n reactions in the model. vj,lb  and vj,ub denominate the lower and upper 666 

flux bound for reaction j for all n reactions in the model. S(m,n) is the stoichiometric 667 

matrix, where the rows correspond to the mass-balances for each metabolite i and the 668 

columns correspond to the reactions. If a metabolite i participates in a reaction j the 669 

entry Si,j is non-zero and otherwise Si,j is zero. 670 

We used parsimonious flux balance analysis (pFBA)72, a two-step FBA-based method, 671 

where first the objective function (here, biomass reaction; EX_bio1) is maximized. The 672 

resulting maximally possible flux value is then used in a second step to constrain the 673 

lower bound on the biomass reaction. Then, a quadratic optimization problem is 674 

solved, in which the total flux is minimised: 675 

min;<|𝑣"|'
(

")*

 676 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜: 𝑆 ∙ 𝑣 =
𝑑𝑥
𝑑𝑡 ≡ 0 677 

𝑣%+,-.//,$% = max 𝑣%+,-.// 678 

𝑣",$% ≤ 𝑣" ≤ 𝑣",&% 679 

 680 

where  	681 

;<|𝑣"|'
(

")*

 682 

represents the Euclidean norm of the flux vector with size n for each j reaction. 683 

Minimization of the Euclidean norm results in a unique flux vector.  684 

Additionally, we carried out flux variability analysis73 to compute the minimally and 685 

maximally possible flux value for each reaction in the model, while setting the lower 686 

bound of the biomass reaction to either 0 or 75% of the maximally possible flux value 687 

for the biomass reaction (Supplementary Table S2). Again, an unlimited, rich, anoxic 688 

medium was simulated (see above). A metabolite could be secreted by the model if it 689 

carried a positive maximum flux and consumed if it carried a negative minimum flux 690 

value.  691 
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We then compared the predicted exo-metabolome, i.e., uptake and/or secretion of 692 

metabolites in the models with the measured exo-metabolomic data. First, we mapped 693 

the 121 measured metabolites onto the namespace of the metabolic models (i.e., onto 694 

the VMH database 74) using metabolite names and InchiKeys. In total, 57 metabolites 695 

could be mapped. Note that this does not mean that these 57 metabolites appear in 696 

all metabolic reconstructions. In silico, a metabolite can be taken up if the minimally 697 

possible flux value is negative or secreted if the minimally possible flux value is positive 698 

through the corresponding exchange reaction (denoted with an ‘EX_’, Supplementary 699 

Table S2).  700 

All simulations were performed using the COBRA Toolbox75, with MATLAB 2020b as 701 

programming environment and IBM ILOG CPLEX 12.10 as linear and quadratic 702 

programming solver. 703 

 704 

SMGA’s 16S rRNA gene mapping to public amplicon datasets. 16S amplicon 705 

datasets of Atlantic salmon gut samples were downloaded from NCBI (bioprojects: 706 

PRJEB39298, PRJNA498084, PRJNA555355, PRJNA590084, PRJNA594310, 707 

PRJNA650141, PRJNA730696, PRJNA733893, PRJNA824235, PRJNA824256, 708 

PRJNA866155) together with data derived from two in-house trials with salmons 709 

feeding on a commercial standard diet (PRJEB60544 and PRJEB60545). Fastq files 710 

in each Bioproject were downloaded using the fasterq-dump 3.0.0 tool from the SRA 711 

toolkit76 and Fastp was used to inspect reads for sequencing adapters and perform 712 

quality trimming (q >25). The DADA2 pipeline77 was then used for reads denoising, 713 

merging and screening for chimeric sequences, which were subsequently removed, 714 

to finally produce amplicon sequence variants (ASVs) of each Bioproject. ASVs were 715 

compared to a database of SMGA 16S rRNA gene sequences, complete as well as 716 

partial sequences covering the amplified regions in the used amplicon datasets, which 717 

were present in 146 of the 211 SMGA genomes. We obtained 531 distinct sequences 718 

from these 146 genomes. Comparison to all ASVs obtained from the amplicon 719 

datasets was done using ncbi-blast-2.13.0+78 with settings ‘-task "blastn"' and ‘-720 

max_target_seqs 531’ (number of sequences in the database). Hits were filtered for 721 

≥97% identity (“pident”) and ≥95% query coverage (“qcovhsp”). For each SMGA 722 

genome, the best of the remaining hits (if any) to each amplicon dataset was extracted. 723 

Results were plotted using ggplot2 v3.4.079 in R v4.2.280.  724 
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Metatranscriptomics analysis using the SMGA as a database. Midgut content 725 

samples were obtained following dissection of 33 salmons that were fed with a 726 

standard commercial diet and raised at 12 °C in freshwater (T0, T1 and T2) and 727 

transferred to seawater (T3) at EWOS Innovation Center, Dirdal, Norway. All samples 728 

were preserved in DNA/RNA SHIELD™, obtained by Zymo Research, following the 729 

Zymo Research standard procedure.  RNA was extracted using the methods reported 730 

in81. RNA concentration and purity were determined using a Qubit 3.0 fluorometer and 731 

a Nanodrop 8000 (Thermo Scientific, Wilmington, USA). RNA integrity was checked 732 

by using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).  733 

Prior to analysis, all samples were randomized. Library preparations were carried out 734 

by Novogene (Beijing, China) using a TruSeq Stranded mRNA kit (Illumina, San 735 

Diego, CA, USA), as per manufacturer’s protocol. Libraries were sequenced on the 736 

lllumina NovaSeq 6000 platform at Novogene, (Beijing, China), using 300 bp paired-737 

end sequencing. Three extraction negatives and two library negatives were included. 738 

The resulting sequence reads were filtered for quality using fastp v. 0.12.4 with an 739 

average Phred threshold of 30 (-q 30). rRNAs and tRNAs was removed from the reads 740 

using SortMeRNA v 4.3.482 with the following Silva databases: silva-bac-16s-id90, 741 

silva-arc-16s-id95, silva-bac-23s-id98, silva-arc-23s-id98, silva-euk-18s-id95, silva-742 

euk-28s-id98 and the parameters: --out2 --paired_out –fastx --thread 12. To remove 743 

all sequences derived from the host, the filtered reads were aligned to the Salmo salar 744 

genome Ssal_v3.1 RefSeq ID GCF_905237065.1 using the STAR v 2.7.9a alignment 745 

suit83. All non-mapped reads were retrieved from the sam files using Samtools 1.13 746 

and the parameters -f 12 -F 256 -c 7. These reads were used to quantify the 747 

expression of ORFs encoded by the SMGA genomes and MAGs using kallisto v 748 

0.44.0. The resulting transcripts per million (TPM) abundance tables of each 749 

metatranscriptomic sample were gathered into a single table using the Bioconductor 750 

tximport 1.26.1 library in R 4.2.3. Principal component analysis (PCA) was 751 

implemented to visualise samples clustering and manual removing of outliers resulting 752 

in 33 samples for further detection of bacterial gene expression. A bacterial gene from 753 

the SMGA was considered expressed if it shows a value higher than one TMP in at 754 

least one replicate of the experiment. Variation in the SMGA bacterial gene expression 755 

among samples were visualized in terms of Z-scores in a heatmap generated using 756 

the pheatmap function in R. The data was used to reconstruct the active metabolic 757 

pathways displayed in Fig. 4a.  758 
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Untargeted metabolomic analysis. Triplicate cultures of Photobacterium 759 

phosphoreum sp. S39bc34, Serratia liquefaciens sp. S38bc38 and Pseudomonas_E 760 

sp. S3bc03 were grown at 18 °C overnight in M9 medium ((8 g/L Na2HPO4, 4 g/L 761 

KH2PO4, 0.5 g/L NaCl, 0.5 g/L NH4Cl, 0.5 g/L EDTA, 0.083 mg/L FeCl3 x 6 H2O, 0.863 762 

mg/L ZnCl2, 0.013 mg/L CuCl2 x 2 H2O, 0.1 mg/L CoCl2 x 6 H2O, 0.1 mg/L H3BO3, 763 

0.016 mg/L MnCl2 x 6 H2O, 1 mM MgSO4, 0.3 mM CaCl2, 1 mM thiamine 764 

hydrochloride, 1 mM biotin, 0.5% [wt/vol] beef extract from Sigma-Aldrich, St. Louis, 765 

MO, USA) supplemented with 5% (wt/vol) glucose (Sigma-Aldrich). Overnight cultures 766 

were then used to inoculate M9 medium supplemented with 5% (wt/vol) chitin from 767 

shrimp shells (Sigma-Aldrich) and grown at 18 °C for 48-72 h. Uninoculated M9 media 768 

with chitin were also incubated as a negative control group and this group had three 769 

biological replicates. Cells were harvested by centrifugation at 16,000 x g for 5 minutes 770 

and culture supernatant processed for semi-polar metabolite analysis. Sample 771 

analysis was carried out by MS-Omics (Vedbæk, Denmark) using a UPLC system 772 

(Vanquish, Thermo Fisher Scientific) coupled with a high-resolution quadrupole-773 

orbitrap mass spectrometer (Orbitrap Exploris 240, Thermo Fisher Scientific). The 774 

UHPLC was performed using an ACQUITY UPLC HSS T3 C18 lined column, with 775 

dimensions of 2.1 × 150 mm and a particle size of 1.8 µm. The composition of mobile 776 

phase A was 10 mM ammonium formate at pH 3.1 in 0.1% formic acid LC–MS grade 777 

(VWR Chemicals) and 10 % ultra-pure water (Merck KGaA). The mobile phase B 778 

contained 10 mM ammonium formate at pH 3.1 in 0.1% formic acid in methanol. The 779 

flow rate was kept at 300 µl ml−1 consisting of a 2 min hold at 0% B, increased to 35% 780 

B at 12 min, increased to 90% B at 13 min and held for 1 min, and finally decreased to 781 

0% B at 15 min. The column temperature was set at 30 °C and an injection volume of 782 

50 µl was used. Surfactant removed samples (using zinc nitrate hexahydrate and 783 

ammonium thiocyanate) were diluted 10 times in mobile phase eluent A and fortified 784 

with stable isotope labelled standards before analysis before injection. An electrospray 785 

ionization interface was used as an ionization source. Analysis was performed in 786 

positive and negative ionization mode under polarity switching. Data were processed 787 

using Compound Discoverer 3.3 (ThermoFisher Scientific) and Skyline 21.2. 788 

Identification of compounds were performed at four levels; Level 1: identification by 789 

retention times (compared against in-house authentic standards), accurate mass (with 790 

an accepted deviation of 3 ppm), and MS/MS spectra, Level 2a: identification by 791 

retention times (compared against in-house authentic standards), accurate mass (with 792 
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an accepted deviation of 3 ppm). Level 2b: identification by accurate mass (with an 793 

accepted deviation of 3 ppm), and MS/MS spectra, Level 3: identification by accurate 794 

mass alone (with an accepted deviation of 3 ppm). 795 

 796 

Data availability 797 

Oxford Nanopore sequencing reads have been deposited in the sequence read 798 

archive SRA with project numbers PRJEB45024 and PRJEB61648. Amplicon 799 

sequencing reads are available under SRA BioProjects PRJEB60544 (ImpTrial2) and 800 

PRJEB60545 (ImpTrial1). Shotgun metagenomic reads have been deposited at SRA 801 

BioProjects PRJEB60591 and PRJNA947914. RNA sequencing reads can be found 802 

in SRA under accession number PRJEB60552. Mass spectrometry data for this study 803 

can be found on the Mass Spectrometry Interactive Virtual Environment (MassIVE) 804 

repository (massive.ucsd.edu) with accession number MSV000089895. The SMGA is 805 

publicly available via Figshare (Genomes_fasta, 10.6084/m9.figshare.22691881; 806 

Genes_nuc_fna, 10.6084/m9.figshare.22691869; Genes_prot_faa, 807 

10.6084/m9.figshare.22691980). 808 
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Supplementary Material 842 
 843 

 844 

Supplementary Fig. S1. Strategy for the generation of the SMGA. Digesta samples 845 
were collected from 107 farmed and 70 wild fish either at the freshwater or seawater 846 
stage. Genomic and metagenomic datasets were combined to generate a collection 847 
of 211 salmon gut microbial genomes. Green boxes indicate the number of genomes 848 
from bacterial isolates or bacterial MAGs obtained using two different approaches in 849 
this study. Turquoise boxes indicate the number of genomes for cultured isolates or 850 
bacterial MAGs from publicly available studies. For a description of the different 851 
assembly strategies, see the Methods section. 852 
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 853 
Supplementary Fig. S2. Pan- genome sizes of species-like mOTUs. The 211 SMGA 854 
genomes were clustered into 62 mOTUs (x-axis) based on 95% ANI. Bar heights 855 
indicate the number of protein clusters within the core and accessory genome of each 856 
mOTU.   857 
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 858 
Supplementary Fig. S3. Detecting genomes from the SMGA in publicly available 859 
datasets. The detection of isolate genomes and MAGs from the SMGA (y-axis) in 860 
selected publicly available 16S rRNA gene amplicon datasets (x-axis) based on 861 
alignment of 16S rRNA gene sequences (y-axis). 16S rRNA gene detection is coloured 862 
based on the % identity of the gene alignment. At a 97% identity level to amplicon 863 
sequence variants (ASVs), 144 out of 146 SMGA bacteria were detected in publicly 864 
available 16S rRNA gene datasets from either in vivo trials or in vitro models with 865 
salmon gut microbial communities.   866 
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867 
Supplementary Fig. S4. Heatmap of predicted total metabolic flux in each metabolic 868 
subsystem. The total metabolic flux for each subsystem was calculated by taking the 869 
absolute sum of all flux values of reactions within a subsystem. The species-specific 870 
reaction fluxes represent the mean average metabolic flux of all created strain models 871 
within a microbial species. All models were interrogated in an anaerobic and nutrient 872 
rich environment, meaning that all nutrients needed for growth were available in 873 
sufficient quantities for the models to produce biomass. All species predicted largely 874 
similar subsystem activities. The most active subsystems include those involved in 875 
energy metabolism, nucleotide metabolism, and amino acid metabolism.  876 
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877 
Supplementary Fig. S5. Heatmap of the largest 50 predicted metabolite exchanges 878 
for each species. The species-specific reaction fluxes represent the mean average 879 
metabolic flux of all created strain models within a microbial species. An exchange flux 880 
below zero indicates that the metabolite is taken up by the system, while an exchange 881 
flux above zero indicates an excretion of the metabolite. Metabolites that are taken up 882 
in larger quantities by all models include nitrate, glycerol-3-phosphate, fumarate, and 883 
glucose. Carbon dioxide, acetate, and ammonium on the other hand, are among the 884 
most excreted metabolites.  885 
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886 
Supplementary Fig. S6. Heatmap summarising the metabolomic results and the genome-887 
scale metabolic model capabilities. Only metabolites that could be mapped onto a VMH ID are 888 
shown. The yellow cells indicate that a metabolite was consumed in the experimental data, 889 
but was not present in the corresponding model. Gold cells indicate that a metabolite was 890 
consumed in the experimental data and was present in the model, but could not be consumed 891 
by the model. Turquoise cells indicate metabolites that were consumed by the model, but not 892 
in the experimental data, whereas blue cells indicate metabolites that were consumed in both 893 
the model and the experimental data. Dark blue cells indicate metabolites that could not be 894 
consumed in either the experimental data or the models.    895 
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 896 
Supplementary Fig. S7. Heatmap summarising the exo-metabolomic results and the 897 
genome-scale metabolic model capabilities. Only metabolites that could be mapped onto 898 
a VMH ID are shown. The yellow cells indicate that a metabolite was secret in the experimental 899 
data but was not present in the corresponding model. Gold cells indicate that a metabolite was 900 
secreted in the experimental data and was present in the model but could not be secreted by 901 
the model. Turquoise cells indicate metabolites that were secreted by the model, but not in 902 
the experimental data, whereas blue cells indicate metabolites that were secreted in both the 903 
model and the experimental data. Dark blue cells indicate metabolites that could not be 904 
secreted in either the experimental data or the models.  905 
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906 
Supplementary Fig. S8. CAZyme profiles of the 211 salmon microbial genomes and 907 
MAGs in the SMGA. Heatmap showing the presence of CAZy families (listed on the righthand 908 
y-axis) arranged into the different glycan substrate categories (listed on lefthand y-axis) found 909 
in each genome that are arranged in taxonomic orders (x-axis). The presence of CAZy genes 910 
is denoted by grey-black boxes that are weighted for copy number. CAZy families that are not 911 
detected are represented by a white box. GH: glycoside hydrolase, PL: polysaccharide lyase, 912 
AA: auxiliary activity.  913 
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 914 

 915 
 916 
Supplementary Fig. S9. Heatmap illustrating the application of the SMGA as a database 917 
to map metatranscriptomes from gut samples. a) Variation in gene expression of all 918 
bacterial genes in the SMGA database (x-axis) and b) a subset of three Enterobacterales 919 
(Photobacterium phosphoreum S39_bc34, Pseudomonas_E sp. S3_bc03 and Serratia 920 
liquefaciens S38_bc38) in metatranscriptomes generated from gut samples obtained from 33 921 
growing fish fed a standard commercial diet and collected at different life stages (y-axis). T0: 922 
30 g fish (parr), freshwater; T1, 90 g fish (pre-smolt), freshwater; T2, 130 g fish (smolt), 923 
freshwater; T3, 300 g fish (adult), seawater.  924 
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 925 
Supplementary Fig. S10. Untargeted metabolomics results for serine, arginine and lactic acid 926 
amounts in the spent supernatant of triplicate cultures growing on chitin. 927 
 928 
 929 
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