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Abstract

The essential role of the gut microbiota for host health and nutrition is well established
for many terrestrial animals, while its importance for fish and particularly Atlantic
salmon is unclear. Here, we present the Salmon Microbial Genome Atlas (SMGA)
originating from wild and farmed fish both in freshwater and seawater, and consisting
of 211 high-quality bacterial genomes, recovered by cultivation (n=131) and gut
metagenomics (n=80). Bacterial genomes were taxonomically assigned into 14
different orders, including 28 distinctive genera and 31 potentially novel species.
Benchmarking the SMGA, we functionally characterized key populations in the salmon
gut that were detected in vivo. This included the ability to degrade diet-derived fibers
and release vitamins and other exo-metabolites with known beneficial effects, which
were validated by in vitro cultivation and untargeted metabolomics. Together, the
SMGA enables high resolution functional insight into salmon gut microbiota with

relevance for salmon nutrition and health.
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Introduction

Efficient and environmentally sustainable aquaculture production systems are urgently
required to ensure long-term food security, especially as global seafood consumption
is projected to double by 2050 (www.fao.org). For salmonoids, such as Atlantic salmon
(Salmo salar), this necessitates new ecological sustainable feed ingredients and
improvements of broodstock with respect to animal health, feed conversion, and
growth. However, an additional layer of complexity that critically influences the path
from “feed-to-animal” is the gastrointestinal tract (‘gut’) microbiome. In humans and
other vertebrate systems, the gut microbiome has been shown to play a central role in
both health and nutrition of its host'2. Decades of research has demonstrated that
dietary composition affects the gut microbiome in aquaculture production settings,
including in salmon (reviewed in34). Additionally, since salmon is anadromous, the
structure and presumed function of its microbiome is also strongly modulated by
whether the fish lives in freshwater (as juveniles) or in seawater (as adults)®”’.

To understand the importance of feed-microbiome-host interconnections in salmon
and potentially take advantage of these couplings in fish farming, fundamental
knowledge gaps must be addressed: namely, how individual microorganisms function,
utilize the feed, and interact with each other or the hosts with regards to metabolism
and physiology. To date, studies on the gut microbiota in salmon have been based on
taxonomic composition of microbial communities via 16S rRNA gene surveys.
Accordingly, there is little (if any) genomic sequence information that enable coupling
of such compositional data to potential metabolic function or other functional traits in
salmon gut microbiomes. Efforts to recover microbial genomes for the salmon gut
microbiota have so far been limited to 20 metagenome-assembled genomes (MAGs)
that are representatives of dominant Mycoplasma populations that constitute a major
fraction of the total gut microbiome in adult fish at sea®®. While certain salmon gut
samples have indicated Mycoplasma spp. levels to be as high as 90%, broad 16S
rRNA gene surveys portray much wider diversity that include (and are not limited to)
Aliivibrio, Vibrio, Lactobacillus, Photobacterium, Carnobacterium, Flavobacterium,
Pseudomonas and Psychrobacter species’- %12, Some of these bacteria have also
been recovered using cultivation-dependant approaches'3, although there has so far
been no comprehensive whole genome sequencing study of cultured bacteria from

the salmon gut.
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The limited success to recover a wide diversity of MAGs from salmon gut samples is
likely related to the very low microbial biomass in the fish gut (~10%-10° cells per ml),
resulting in host-to-microbiome DNA ratios that typically exceed 9:18. Notwithstanding
those alternative approaches, such as single cell genome sequencing and cultivation
combined with long read sequencing, could complement traditional shotgun
metagenome approaches and result in a more comprehensive database of high-
quality and near-complete microbial genomes. In this study, we therefore combine
multiple approaches and present the Salmon gut Microbial Genome Atlas (SMGA), a
collection of 211 annotated bacterial genomes obtained from the salmon gut
microbiota. The SMGA contains genomes from gut microbiota sampled in fish at
different developmental stages, in freshwater and seawater, and across farmed and
wild populations. We show that the taxonomic profile of these genomes aligns with
commonly reported genera that have previously been detected in public 16S rRNA
gene surveys of the salmon gut (Fig. 1). Lastly, we benchmark and validate the SMGA
as a valuable genome reference resource for salmon gut microbiome studies by firstly
interpolating putative metabolic functions of keystone populations within an in vivo fish
trial and then by coupling genomic predictions to culture-based metabolomic analyses

(Fig. 1).
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Fig. 1. Conceptual overview of the SMGA’s construction and its relevance in connecting the
functional potential of the salmon gut microbiota to confirmed metabolic activities. A high-quality
(HQ) genome catalogue of the salmon gut microbiota was produced by combining HQ genomes from
salmon gut bacterial isolates and HQ MAGs obtained through metagenomics and sorted-cells
sequencing. All genomes and MAGs derived from digesta samples were collected from wild fish in
seawater as well as farmed fish either from land-based freshwater aquaculture systems or directly from
seawater cages. Presence of full-length 16S rRNA gene sequences in the SMGA facilitated the
detection of closely related bacteria in publicly available salmon gut-derived amplicon datasets. Open
reading frames provided information on the potential metabolic functions and facilitated the mapping of
metatranscriptomic (metaT) data derived from salmon feeding trials. Production and consumption of
bacterial metabolites presumed from genome-scale metabolic models and from metaT-based
reconstruction of active metabolic pathways in key salmon gut bacteria were experimentally validated
with in vitro growth experiments using the corresponding cultured isolates. This led to confirmation of
the beneficial role of the gut microbiota in salmon and uncovers bacterial targets that may be exploited
to promote fish physiology and health through dietary interventions.

Results

The salmon microbial genome atlas (SMGA): a resource of cultured and
uncultured bacteria present in the salmon gut. The recent resurgence of culture-
based methods in microbiology has empowered the generation of microbial genome
collections that provide valuable connections between phenotype and genotype of
microorganisms in a variety of different environments'+'8. Here, we used different
selective media to first culture 71 isolates derived from the midgut of salmons farmed
in seawater followed by an additional set of 41 isolates from fish raised in freshwater.
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113 By using Oxford Nanopore long-read sequencing, the genome sequences of the 112
114  isolates were retrieved and reconstructed as circular chromosomes, and in some
115 cases additional plasmids were recovered in these genomes (Supplementary Table
116 ~ S1). Together, these 112 sequenced isolates from the midgut of Norwegian Atlantic
117  salmon constitute the Norwegian Atlantic Salmon Gut Bacteria Culture Collection
118 (NAS-GBCC; Supplementary Table S1). The isolates were cryopreserved and are
119  currently available upon request from the Norwegian University of Life Sciences.

120  Taxonomic classification using GTDB-Tk showed that the majority (n=91) of these
121  genomes affiliated to the Pseudomonadota (Proteobacteria) phylum, followed by the
122 Bacillota (Firmicutes) and Bacteroidota phyla (n=10 and n=9). Using an operational
123 species definition based on genome similarity, i.e. a 95% average nucleotide identity
124 (ANI) threshold'®?°, genome phylogeny and GTDB-Tk analysis®® showed that 35
125 isolates represent putative novel species among the genera: Aliivibrio,
126  Flavobacterium, Glutamicibacter, Photobacterium, Pseudomonas, Psychrobacter,
127 and Shewanella (Fig. 2 and Supplementary Table S1). Species novelty was
128  additionally supported with established 16S rRNA gene sequence identity of 98.7-
129  94.5% using available genomes in NCBI?'. We further supplemented the resulting
130 genome collection with 19 previously published genomes of gut-derived
131  Latilactobacillus isolates from salmons farmed in Norway and North America??,

132 amounting to a total of 131 genomes of isolated strains.

133
134
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and MAGs. The cladogram depicts the taxonomic classification of all the 211 SMGA genomes coloured
by order (inner ring). Grey dots in the cladogram indicates a Bootstrap support higher than 70 %. A
green dot represents a genome from a cultured isolate while a purple triangle indicates a MAG.
Genomes associated to undescribed species are indicated with a star (middle ring), while genomes
encoding a partial or complete 16S rRNA gene operon are indicated by red squares and light blue
circles, respectively (outer ring). Sample source is depicted with either a light blue or a dark blue branch
for freshwater or seawater salmon, respectively. The genome of Prochlorococcus marinus subsp.
marinus str. CCMP1375 (RefSeq GCF_000007925.1) was used as an outgroup (black branch). Scale
bar indicates 10% estimated sequence divergence.

To broaden the diversity of our genome collection, we incorporated as-yet uncultured
microorganisms by producing approximately 1.2 Tbp of shotgun data from 93 samples
derived from the gut content of salmons farmed both in fresh- and seawater. Notably,
mapping of our raw metagenomic reads to the salmon genome revealed a 90.5-99.2%
fraction originating from the host, which was higher than in previous studies®. In
response to high levels of host DNA contamination we also sequenced metagenomic
DNA isolated after host DNA depletion, which resulted in a lower fraction of reads
mapped to the host (24.2-71.9%). Furthermore, fluorescence-activated cell sorting

(FACS) was applied to partition microbial cells from debris and host cells and
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156  subsequently sequence pools of such cells as “mini-metagenomes”. Assembly of the
157  different metagenomes after removal of host reads, followed by binning of the
158 assembly output, resulted in 68 MAGs fulfilling quality criteria for medium to high-
159  quality MAGs (estimated >50% completeness and <5% contamination, according to
160 the standards described in?®). Only three of these MAGs were obtained from mini-
161 metagenomes (Supplementary Table S1), reflecting the difficulties to separate out
162  microbial cells from complex, low microbial biomass samples. We additionally
163 assembled two MAGs from previously published metagenomes obtained from gut
164 samples of salmons also farmed in Norway?* . Finally, we included 10 previously
165 published medium to high-quality MAGs, which had been derived from gut samples of
166  wild salmons caught along the coast of northern Norway®. Taken together, the SMGA
167 thereby feature a collection of 80 MAGs, including 31 of high-quality (>90%
168 completeness, <5% contamination) according to the standards described in the
169  “Minimum Information about a Metagenome-Assembled Genome” (MIMAG)?3. The
170  MAGs significantly increased the taxonomic diversity of the SMGA. Besides
171  Lactobacillales (14 MAGs), Enterobacteriales (9 MAGs) and Pseudomonadales (7
172 MAGs) which were frequent also among the isolates, nine orders were solely
173 represented by MAGs, with Mycoplasmatales (12 MAGs), Tissierellales (12 MAGSs),
174  Burkholderiales (7 MAGs) and Bacillales (6 MAGs) being most frequent.

175

176  In total the SMGA consists of 211 genomes and MAGs (Supplementary Fig. S1),
177  including 31 undescribed species, and comprises a total of 286,891 unique protein-
178  coding genes (and 739,323 non unique protein-coding genes). At 95% ANI (average
179  nucleotide identity) threshold, genomes and MAGs grouped into 62 species-like
180 clusters (mOTUs), with pan-genomes comprising up to 27,640 unique proteins
181 (Supplementary Fig. S2). In general, genomes grouped distinctly based on whether
182 they were isolated from freshwaters (e.g. Lelliottia and Serratia spp.) or marine
183  systems (e.g. Photobacterium and Mycoplasma spp.). There were nevertheless taxa
184  that were observed in both, such as Carnobacterium and Pseudomonas (Fig. 2).

185

186 Benchmarking the value of SMGA - linking 16S data to complete microbial
187 genomes. Our combined use of short and long-read DNA sequencing ensured that
188 129 genomes and 17 MAGs from the SMGA encoded full-length 16S rRNA genes,
189  which enabled searches for the occurrence of SMGA bacteria in the plethora of

7
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190 amplicon datasets that dominate the salmon gut microbiome literature. At a 97%
191 identity cut-off when comparing SMGA 16S rRNA sequences to amplicon sequence
192 variants (ASVs), 144 out of 146 SMGA bacteria were detected in publicly available
193  16S rRNA gene datasets from either in vivo trials or in vitro models with salmon gut
194  microbial communities, as well as datasets generated within this study (ImpTrial1 and
195 ImpTrial2) (Supplementary Fig. $3)'925-3% SMGA bacteria were detected in
196  microbiomes not only from Norwegian salmon populations, but also in gut samples
197  from wild and farmed Atlantic salmon retrieved from Scotland?’, the UK?® and Chile34.
198  Our findings validate that 99% of the SMGA microbes that featured complete 16S
199  rRNA genes are also found in a wider range of salmon gut microbiomes. This included
200 prevalent genera such as Carnobacterium, Lactobacillus, Flavobacteria,
201  Photobacterium, Shewanella, Vibrio and Aliivibrio that are routinely observed in
202 salmon microbiome research’-'%12 Using the reverse approach, 16S rRNA gene
203  amplicon data from taxonomic surveys can be linked to genome encoded functional
204 traits from the SMGA’s collection to provide additional metabolic and functional
205 context. This will eventually also enable cross-study comparisons and aid the
206  prediction of microbiota functions potentially resulting in growth-related and health-
207  related metabolites beneficial for the salmon host.

208

209 Putative metabolic capabilities encoded in the SMGA bacterial genomes.

210 Equipped with our genome inventory, we subsequently explored the metabolic
211  potential of the individual strains using functional annotation databases (Fig. 3a). We
212 also generated genome-scale models for 94 of the 211 genomes (Methods,
213 Supplementary Fig. S4-S5, Supplementary Table S2), three of which were
214  validated against exo-metabolomic data (Methods, Supplementary Fig. S$6-S7,
215  Supplementary Table S3). We used these metabolic models to predict metabolic
216  fluxes and metabolite exchange, which we also used for the exploration of the
217  metabolic potentials. As expected, core metabolic pathways (glycolysis, etc), glucose
218 consumption and acetate metabolism were largely similar among strains. Both
219  facultative and strict aerobes were identified, and fittingly respiration and fermentation
220  were predicted across the SMGA genomes. More specifically, some strains presented
221 genes and pathways that could lead to potential beneficial metabolites in the salmon
222 gut such as short chain fatty acids, amino acids as well as B- and K-vitamins

223  (Supplementary Fig. S4). For example, lactic and succinic acid production was

8
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predicted via genome annotation for many Pseudomonadota and Bacillota and was
further supported by prediction of lactate and succinate metabolite exchange
(Supplementary Fig. S5). Nitrogen cycling varied across the SMGA genomes, with
various Pseudomonadota species predicted to either take up nitrate, excrete nitrite or
perform dissimilatory nitrate reduction to ammonium (e.g. Allivibrio and Shewanella
spp.)- Metabolism of ammonium, ornithine and citrulline via the urea cycle was also
predicted for certain bacteria, including Pseudomonas and Carnobacterium spp.
Metabolism of amino acids such as glycine, alanine, leucine, valine, aspartate and
arginine varied considerably in their predicted uptake and excrement, highlighting
metabolic points of difference across the SMGA.
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Fig. 3. Metabolic functions encoded by the 211 genomes in the SMGA. a. Heatmap showing the
presence of genes/pathways (listed on the lower x-axis) across various functional categories (listed on
upper x-axis) found in each genome (y-axis). The presence of a gene/pathway is denoted by a black
box and considered present if >50% of the genes in the DRAM module are encoded. Genes/pathways
that are not detected are represented by a white box. DRAM functional categories, sub-categories and
functional IDs are listed in Supplementary Table S4. b. Number of genes putatively encoding potential
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241 pathogenic factors harbored by the SMGA, including factors for adherence, motility, toxins and
242 antimicrobial resistance.

243  Aquaculture practices are continuously evolving and with that also shifts in preferred
244  salmon diets. Such management practices can benefit from insights about the ability
245  of salmon gut microbiota to access and metabolize marine-, terrestrial plant- and
246 insect-derived carbohydrates. In this context, the SMGA was also assessed for the
247  presence of carbohydrate active enzymes (CAZymes) such as glycoside hydrolases
248 (GH) and polysaccharide lyases (PL) (Fig. 3a, Supplementary Fig. S8 and
249  Supplementary Table S4). Most of the genomes encoded CAZymes, with an average
250  number of 115 genes per genome. MAGs with the smallest number of CAZymes were
251  affiliated with the order Mycoplasmatales (average number of CAZyme = 7,
252  Supplementary Table S4), which is in line with previous studies®®, and imply their
253  limited contribution to metabolism of dietary components in salmon. The dominant
254  CAZy family within the SMGA was GH13, which has been proven to have the capacity
255 to metabolize starch3®. Notably, prevalent enzymes in Enterobacterales,
256 Lactobacillales and Pseudomonadales were GH18 and GH19 (followed by GHZ20),
257  which enable microorganisms to depolymerize chitin through the hydrolytic utilization
258  pathway?®. Intriguingly, AA10 LPMOs, that have been shown to be involved in an
259 alternative (oxidative) chitin utilization pathway¢, were detected in the genomes of
260 Enterobacterales, Lactobacillales and a few Pseudomonadales. CAZymes involved in
261 utilization of terrestrial and marine plant-derived carbohydrates (e.g. beta-mannan,
262  beta-glucans, xylans, cello-oligosaccharides, manno-oligosaccharides and algal
263  polysaccharides) included GH1, GH2, GH3, GH5, GH8, GH9, GH10, GH16, GH26,
264 GH36, GH43 and GH94 among others®. In addition, CAZymes belonging to the
265  families GH28, GH35, GH78, GH105, GH147, PL2, PL9 and PL22 for deconstruction
266 of the plant pectic polysaccharide rhamnogalacturonan-l were detected in some
267 Enterobacterales and Lactobacillales genomes®®. A few Pseudomonadota and
268 Bacteroidota genomes harboured genes encoding CAZymes for depolymerization of
269  host mucin-derived oligosaccharides, including GH29, GH33, GH109, GH112 and
270 GH129%,.

271  Virulence arising from the salmon gut microbiome can impact fish health. Hence, we
272  screened the genomes for elements encoding virulence factors, bacterial toxins, and
273  antimicrobial resistance in the 211 genomes and MAGs of the SMGA (Fig. 3b). Mobile

274  genetic elements, including both phage- and plasmid-derived sequences, were

11
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275 detected in 147 SMGA genomes/MAGs. Genes encoding putative toxins were
276 identified in all SMGA genomes and MAGs using PathoFact searches®’ against the
277  Toxin and Toxin Target Database (T3DB)38:3%, Of these putative toxins, 27% and 73%
278  were predicted to be secreted and non-secreted pathogenic factors, respectively. The
279  highest numbers of toxin genes were found in Pseudomonadota and particularly the
280  genera Paraburkholderia, Pseudomonas, Serratia and Lelliottia, with up to 233 such
281 genes in one Paraburkholderia MAG, of which 51% were predicted to be secreted.
282  With regards to gene categories enabling antimicrobial resistance (AMR), the majority
283 of the predicted resistance genes included beta-lactam-, fluoroquinolone-,
284  aminoglycoside-, tetracycline-, peptide- and multidrug-resistance. Genes associated
285  with beta-lactam resistance were found to be particularly enriched in the genera
286  Lelliottia, Serratia, Pseudomonas and Aeromonas, suggesting they might include
287  potentially pathogenic members.

288

289  The SMGA facilitates functional understanding of the salmon gut microbiome.
290 To showcase how the SMGA can be used to overcome one of the most obtrusive
291  knowledge gaps in salmon gut microbiome research, namely the lack of functional
292  understanding, we used the SMGA as a database to map metatranscriptomes from
293  gut samples obtained from growing fish fed a standard commercial diet and collected
294  at different life stages. This integrated omic approach facilitated detection of 116,888
295  expressed genes (15.81% Identification Rate) and, for the first time, identified several
296 functionally active microbial populations in vivo. Expressed metabolic pathways varied
297 among the 4 life stages sampled, with the majority of expressed genes
298 (Supplementary Fig. S9a, Supplementary Table S5) mapping to Enterobacterales
299  (n=36,026), Pseudomonales (n=32,649), Lactobacillales (n=18,177), Burkholderiales
300 (n=13,292) and Tissierellales (n=8,977). Bacteria belonging to these taxa are
301 commonly encountered in 16S rRNA gene amplicon surveys, suggesting that they
302 likely play active roles in the salmon gut microbiome. Lactobacillales were one of the
303 most active populations at all the life stages sampled, with a large proportion of
304 expressed genes in gut samples collected from salmon in seawater. Based on the
305 expressed CAZymes, Lactobacillales metabolized starch and maltose (through
306 GH13s, GH65s and GH126s), mannose- and cello-oligosaccharides (through GH1s,
307 GH2s, GH3s), and potentially polymeric B-mannan and cellulose (through GH5s) (Fig.
308 4a, Supplementary Table S6).

12
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309 Given the opportunity to validate omic-based inferences with cultivation experiments,
310  we further explored the gene expression profile of three bacteria present in our culture
311  collection. Photobacterium phosphoreum S39 bc34 was identified as the bacterium
312 expressing the highest number of genes during the seawater stage (Supplementary
313 Fig. S9b). This included genes encoding CAZymes involved in depolymerization of
314  chitin (GH18, GH20), hemicelluloses (manno- and cello-oligosaccharides, including
315  GH2, GH3, GH9 and GH92; arabinogalactan, including GH154 and PL22), starch
316 (GH13) and glycosaminoglycans (PL8) (Fig. 4a, Supplementary Table S6),
317  suggesting that this bacterium is capable of readily utilizing these abundant biopolymer
318 substrates. In all salmon gut contents, P. phosphoreum S39 bc34 showed high
319 expression of genes coding for enzymes inferred in energy generation through
320 glycolysis and pyruvate metabolism, with potential formation of acetate and formate.
321 These observations were consistent with the metabolic model-based predictions
322  (Supplementary Fig. S4-7, Supplementary Table S3). Based on the gene
323 expression data, we also predicted several pathways involved in amino acid
324  metabolism, with an active L-serine dehydratase [EC:4.3.1.17; VMH ID: r0060] for the
325 conversion of serine into pyruvate; active arginine deiminase [EC:3.5.3.6; VMH ID:
326 ARGDA], ornithine carbamoyltransferase [EC:2.1.3.3; VMH ID: OCBT] and carbamate
327 kinase [EC:2.7.2.2; VMH ID: CBMKTr] which have demonstrated activity on arginine
328  conversion into citrulline and ornithine that can be further exchanged with putrescine
329  using an active putrescine:ornithine antiporter*®4!. Accordingly, the metabolic model
330 could secrete ornithine and putrescine (Supplementary Table S3). Expression of
331 genes inferred in glutaminase [EC:3.5.1.2; VMH ID: GLUN] and glutamate
332 decarboxylase [EC:4.1.1.15; VMH ID: GLUDC] activity for conversion of glutamic acid
333 togamma aminobutyric acid (GABA), followed by extracellular export of GABA through
334  an active glutamate:GABA antiporter*?, were also detected (Fig. 4a, Supplementary
335 Table S6). Expressed genes encoding enzymes involved in the route that joins
336  glyceraldehyde 3-phosphate and D-ribulose 5-phosphate for de novo synthesis of
337 pyridoxamine (vitamin B6) were also found*3, presumably resulting in the release of
338 this vitamin in the salmon gut (Fig. 4a, Supplementary Table S6).
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Fig. 4. Schematic overview of active metabolic pathways detected in representative species of
the SMGA based on metatranscriptomics, in vitro growth experiments and untargeted
metabolomic of spent supernatants. a. Cartoons depicting detected active metabolic pathways of
Photobacterium phosphoreum, Serratia liquefaciens, and Pseudomonas_E using metatranscriptomics
data generated from hindgut samples obtained from fish farmed in fresh and seawater under a standard
commercial diet. Genes are displayed as boxed numbers and are fully listed in Supplementary Table
S5. Uptake and release of metabolites, amino acids and dietary fibers is indicated with arrows. b.
Untargeted metabolomics of supernatant samples after growth of P. phosphoreum, S. liquefaciens, and
Pseudomonas in a medium supplemented with chitin. Bars represent median and boxes interquartile
range determined from 3 independent replicates. Values for control and experimental samples are in
Supplementary Table S7.

Focusing on bacteria from our culture collection that were highly active in the gut of
salmon during the freshwater phase, Serratia liquefaciens S38 bc38 and
Pseudomonas_E sp. S3_bc03 expressed genes for hydrolysis of chitin and chito-
oligosaccharides (GH18 and GH20), manno- and cello-oligosaccharides (GH2, GH3,),
starch (GH13, GH15 and GH31) and pectic oligosaccharides (PL22), all resulting in
the release of monosaccharides that can subsequently be metabolized through an
active glycolytic pathway (Fig. 4a, Supplementary Table S6). Expressed genes
encoding enzymes involved in metabolism of serine (arginine deiminase [EC:3.5.3.6;
VMH ID: ARGDA]), arginine (arginine deiminase [EC:3.5.3.6], ornithine
carbamoyltransferase [EC:2.1.3.3; VMH ID: OCBT] and carbamate kinase
[EC:2.7.2.2; VMH ID: CBMKr]) and tryptophan metabolism (acetaldehyde
dehydrogenase [EC:1.2.1.10; ACALD]) were detected in S. liquefaciens S38_bc38
and Pseudomonas_E sp. S03_bc03. Some but not all the reactions associated with
these genes were also present in the respective metabolic models (Supplementary
Table S3). Expressed pathways for vitamin metabolism were detected in S.
liquefaciens S38_bc38, presumably producing pantothenate (vitamin BS) from 2-
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369 dihydropantoate and b-alanine, riboflavin (vitamin B2) from guanosine triphosphate
370  (GTP) and D-ribulose-5-phosphate as well as folate (vitamin B9) from GTP and
371  chorismate (Fig. 4a, Supplementary Table S6). In Pseudomonas_E sp. S03_bc03,
372  besides active genes for production of vitamin B2 and B9, we detected expressed
373  genes that are part of the thiamine (vitamin B1) biosynthetic pathway*3. Overall, these
374  results demonstrate the power of applying the SMGA as a genome database to map
375 realized functions at the level of individual strains and allowed us to show that salmon
376  gut microbes can supply the host with beneficial metabolites, including short chain
377 fatty acids, vitamins and polyamines.

378  To validate our omic-based functional inferences from fish trials, we further functionally
379  characterized a selection of our cultured isolates. The isolates P. phosphoreum
380 S39 bc34, S. liquefaciens S38 bc38 and Pseudomonas_E sp. S3_bc03 were chosen
381 and their production and/or consumption of metabolites were compared when each
382 individual microbe was grown on a medium supplemented with chitin against a
383  negative control. Consistent with the in vivo RNAseg-based predictions (Fig. 4b), all
384 isolates grew on chitin in liquid monocultures. Untargeted metabolomic analyses of
385 the spent culture media from P. phosphoreum confirmed the presence of metabolites
386  derived from amino acids catabolism, with decreased levels (consumption) of glutamic
387 acid, arginine and serine and increased levels (production) of GABA, citrulline,
388  ornithine, and pyridoxamine (Fig. 4b). Production of indole-3-acetic acid (3-1AA), a
389  metabolite from tryptophan catabolism, was detected (Fig. 4b), although this pathway
390 remains uncharacterized in P. phosphoreum. As predicted based on the in vivo
391 RNAseq data, P. phosphoreum produced pyridoxamine (Fig. 4b), likely from
392 intermediates of glycolysis and the pentose phosphate pathway, while both S.
393  liquefaciens produced B-vitamins, including riboflavin, panthotenic acids and
394  pyridoxamine (Fig. 4b). We also found an increase of 3-IAA acid in the spent media
395 of S. liquefaciens and Pseudomonas_E, compatible with tryptophan catabolism (Fig.
396 4b). Synthesis of citrulline and ornithine from the arginine pathway was confirmed in
397 Pseudomonas_E (Fig. 4b), and the corresponding metabolic models predicted that all
398 three strains could take up lactic acid and serine, if provided in the medium
399 (Supplementary Fig. S6, Supplementary Table S3). Together, these findings
400 demonstrate the value of the SMGA resource by facilitating the identification and
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401  experimental validation of active metabolic pathways and metabolites in salmon gut
402  bacterial species.

403 Discussion

404 A critical obstacle for comprehensive functional understanding of the salmon gut
405  microbiome for physiology and nutrition, is the current lack of a genome-centric view
406  which captures the diversity and metabolic potential of the resident microbial
407  populations. This knowledge is pivotal for identifying active metabolism of gut
408 microbes and for translating alterations in the abundance of gut microbial populations
409 into metabolic change with the potential to alter gut function. Here we present the
410  hitherto most extensive microbial genome dataset from Atlantic salmon, obtained
411  through cultivation and whole genome sequencing, as well as metagenomic
412  sequencing of samples from gut contents of wild and farmed fish both in fresh and sea
413  water (Fig. 1). The atlas comprises 131 genomes and 80 MAGs, and a total of 286,891
414 unique proteins.

415  We demonstrate that the catalogue is widely detected in the salmon gut, as 99% of
416 the SMGA genomes with a complete 16S rRNA gene can be found in publicly available
417  salmon gut amplicon sequencing datasets (Supplementary Fig. S3). To showcase
418  the strength of this resource for mechanistic studies of the salmon gut microbiome, we
419  functionally annotated all genomes, created predictive genome-scale metabolic
420  reconstructions and mapped metatranscriptomic data from an independent fish trial to
421 the SMGA. We further confirmed our metabolic predictions with actual experimentally
422 measured metabolites from selected pure bacterial cultures. This multi-faceted
423  approach generated insights into several key populations, that are routinely detected
424 in 16S rRNA gene-based microbiome surveys, in the metabolism of dietary
425  components, including chitin, cello-oligosaccharides and manno-oligosaccharides
426  (Fig. 4).

427  Chitin is a common carbohydrate found in the natural diet of Atlantic salmon as a
428 component of the exoskeleton of insects and crustaceans'?. While Atlantic salmon
429  possess endogenous chitinases that have some level of activity for use and
430 exploitation of this dietary component**45, our findings show that gut
431  Gammaproteobacteria (P. phosphoreum, S. liquefaciens and Pseudomonas) can
432  efficiently degrade chitin in pure culture while in vivo they express chitinases and are
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433  inferred as active degraders that contribute towards break-down of this polymer (Fig.
434  4). Previous work, based on amplicon sequencing, has shown that dietary inclusion of
435  chitin-rich insect meals modulates the composition of gut microbiota in salmon post-
436  smolt, leading to increased relative abundance of gram-positive Actinomycetota and
437  Bacilli"? and decreased abundance of Pseudomonadota. Similarly, a study from Li et
438  al.'® reported an enrichment of Bacilli in the gut of salmon fed an insect meal diet,
439  although the authors highlighted that the composition of the gut microbiota closely
440 resembled that of the feed. It may be possible that reports of dietary effects of chitin-
441  rich feeds are in part biased by the fact that the 16S rRNA amplicon sequencing-based
442  approach provides a community overview but does not discriminate between
443  metabolically active and inactive populations in the gut (including carry-over of
444  microbial DNA from abundant microbial populations in the feed); as a consequence of
445  this, the observed changes in microbiome composition may not directly translate into
446  functional alterations that impact host’'s metabolism. This challenge can be addressed
447 by using the SMGA as a reference database for metatranscriptomic studies to clearly
448  discriminate metabolic activities as well as to decrypt microbial mechanisms for chitin
449  degradation and their implications on salmon nutrition and physiology.

450  From an industry perspective plant-based feed ingredients are increasingly being used
451 as an alternative to fish-based meals. In this context, active pathways for the
452  deconstruction of plant-derived fibers, fermentation of the resulting sugars, and
453  production of acetate and formate, were detected in P. phosphoreum, a member of
454  the core gut microbiota in both healthy farmed as well as wild Atlantic salmon during
455 seawater stages*® (Fig. 4). Of further nutritional importance, we observed an
456  upregulation of genes for B-vitamin related enzymes in several active microbial
457  populations. Production of pyridoxamyne (vitamin B6) was indeed detected in P.
458  phosphoreum from pure cultures and in vivo trials, while S. liquefaciens and
459  Pseudomonas were found to be involved in both in vitro and in vivo production of
460  vitamin riboflavin (B2), pantothenic acid (B5) and folic acid (B9) (Fig. 4a). Provision of
461  microbially-derived B vitamins has been shown to be important for development and
462  survival of a variety of animal hosts**#’. In essence, microbes supply vitamins that are
463  limited in the diet or complement diet provision, ensuring growth in scarce dietary
464 conditions. In Atlantic salmon, B-vitamins such as folate, riboflavin, niacin,
465 pyridoxamine, and cobalamin have been shown to have effects on hepatic
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466  transcriptional and epigenetic regulation of pathways related to lipid metabolism*®,
467  while increased amounts of pyridoxamine have been associated with improved fish
468  health*’.

469 Pathways for metabolism of amino acids, including glutamic acid, arginine and
470  tryptophane, were also found to be up-regulated in all the most active bacteria in the
471  salmon gut, with production of GABA, ornithine, citrulline and 3-IAA confirmed via
472  culture experiments and metabolomic analysis (Fig. 4b). Ornithine and citrulline have
473  a central role in arginine metabolism and have been previously associated with
474  increased fish growth, although the underlying mechanism is not yet known%%51, While
475  the beneficial role of GABA and 3-IAA for host physiology has been documented in
476  humans where the former induce a calming effect and the later improve intestinal
477  mucosal barrier functions*25253, the physiological mechanism in Atlantic salmon has
478  not been shown. Collectively, our results reveal hitherto unknown aspects of microbial
479  fermentation, amino acid metabolism and vitamin provision and strengthen the
480 knowledge on the involvement of the gut microbiome as a continuous source of

481  beneficial metabolites that support health and growth in salmon.

482  In conclusion, our findings provide valuable new insights related to carbohydrate,
483  amino acid and vitamin metabolism in the salmon gut microbiota and reveal that gut
484  bacteria can potentially affect host physiology through provision of several beneficial
485  metabolites. Further, our work establishes a valuable genomic resource that can serve
486 as a reference for genome-resolved functional omics to evaluate the metabolic
487  potential and actual activity of key microbial players in the salmon gut under varying
488  experimental conditions. Finally, we exemplify the in vivo detection and in-depth in
489  vitro characterization of four bacteria and showcase how the SMGA can readily
490 facilitate major conceptual advances regarding microbial metabolic capacities in the
491  salmon gut and empower new research efforts to shed light on microbiome functions,
492  dynamics and metabolic interactions with the salmon host.

493

494  Materials and Methods

495  Bacterial isolation and cultivation. For strains isolated at NMBU, samples were
496  obtained from adult Atlantic salmon kept at the Center for Fish Research, NMBU, As,
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497  Norway. The fish were reared in recirculated freshwater tanks (14.4 + 0.4 °C) and kept
498  under continuous light. Mid-gut contents were collected from six salmons into sterile
499 15 mL Eppendorf tubes using aseptic techniques. Samples were immediately
500 homogenised in sterile PBS (1:1 w/v) and a 1:10 dilution series performed. Hundred
501 mL of each dilution was then plated onto BHI (Brain Heart Infusion, Oxoid) agar
502  supplemented with 2.5% NaCl and TSB (Tryptone Soy Broth, Thermo Scientific) agar
503  supplemented with 2.5% NaCl and 5% glucose. Plates were incubated at 15 °C for 3-
504 7 days prior. Pure cultures were obtained by picking individual colonies and re-
505  streaking onto fresh plates. This process was repeated until purity was achieved. Fifty-
506 six of these isolates were taxonomically classified by amplifying the full-length 16S
507  rRNA gene using the primers 27F (5'-AGAGTTTGATCATGGCTCA-3') and 1492R (5-
508 TACGGTTACCTTGTTACGACTT-3'), followed by Sanger sequencing (Eurofins
509  Genomics) with both primers. Sequences were analyzed and edited in BioEdit and
510 BLASTed against the sequences available in GenBank. Colonies of interest were
511  cultured on the appropriate liquid culture and genomic DNA was extracted using the
512 Nanobind CBB Big DNA Kit (Circulomics) according to the manufacturer’s guidelines,
513  using the high-molecular weight (HMW) protocol for gram-positive bacteria. The DNA
514  concentration was measured on a Qubit 3.0 fluorometer with the Qubit dsSDNA BR
515 assay kit (Thermo Fisher Scientific) and the DNA quality was measured by gel

516  electrophoresis on an BioRad Gel Doc EZ Imager (Bio-Rad Laboratories, Inc.).

517  For bacteria isolated at NOFIMA (Norway), samples were obtained from adult Atlantic
518 salmon kept in seawater cages. Mid-gut contents were processed as described above,
519  with the exception that appropriate dilutions were plated onto LB (Sigma-Aldrich) agar
520  supplemented with 2.5% NaCl or MacConkey (Merck KGaA, Germany) agar plates.
521  Seventy-six isolates were identified using 16S rRNA gene sequencing as described
522  above. Selected isolates were grown in liquid cultures and HMW genomic DNA for
523  sequencing was obtained using the procedure described above.

524

525 Genome sequencing and assembly of bacterial isolates. Long-fragment DNA
526 sequencing was conducted using an Oxford Nanopore Technologies (ONT)
527  PromethlON sequencer. The sequencing libraries (one with DNA from the 56 strains
528 isolated at NMBU and one with DNA from the 76 strains isolated at NOFIMA) were
529  prepared using the 1D Native barcoding kit EXP-NBD196 (ONT), followed by Oxford
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530  Nanopore 1D Genomic DNA by ligation sequencing kit SQK-LSK109 (ONT), according
531 to the manufacturer’s instructions. The total eluted library was then loaded onto an
532 ONT FLO-PRO002 R9.4.1 flow cell, following the manufacturer's guidelines, and
533  sequenced for 48 h on a Promethlon device using the MinKNOW v.4.0.5 software.
534  Basecalling was performed with Guppy v.4.0.11 in “high-accuracy basecalling” mode.
535  After basecalling, reads were filtered by quality using FiltLong v0.2.1 (GitHub -
536  rrwick/Filtlong: quality filtering tool for long reads) with the --min_length 1000 and --

537 keep_percent 90 parameters. Filtered reads were then assembled using Fly%* in “--
538 nano-raw” mode using default parameters. Quality of the bins was assessed using
539  BUSCO v1.0 with the “-m geno —auto-lineage-prok” parameters®®.

540

541 Sample collection for metagenomics and Fluorescence-activated cell sorting
542 (FACS). Approximately 300 mg hindgut content were collected from dissected salmon,
543  dissolved in 1 ml PBS with 150 yl GIyTE buffer in a cryotube and stored at -80°C until
544  processing. Three different methods were used to potentially enrich bacteria from
545  hindgut samples before cell sorting. (I) Filtration using 1.6, 2.7 or 5 ym syringe filters.
546  (ll) Extracting the supernatant after centrifugation. Different times (5 sec — 5 min) and
547  centrifugation speeds (500 x g — 5 000 x g) were tested. (lll) Extracting different
548 fractions from Nycodenz density gradient centrifugations at 10 000 x g for 40 min.
549  Different Nycodenz concentrations between 45 and 80% were tested. Cell sorting was
550 performed at the SciLifeLab Microbial Single Cell Genomics Facility with a MoFlo™
551 Astrios EQ sorter (Beckman Coulter, USA). Cells were stained with SYBR Green |
552 Nucleic Acid stain (Invitrogen™, Thermo Fisher Scientific, MA, USA) and sorted based
553  on forward scatter and fluorescence intensity at 488/530 nm excitation/emission into
554  384-well plates by collecting 1 - 200 events per well using a 70 or 100 um nozzle. The
555  Phi29 enzyme was used for whole genome amplification via multiple displacement
556  amplification (MDA). SYTO 13 nucleic acid stain was added to the reaction to monitor
557  DNA amplification over time. Wells were screened for bacterial cells by 16S rRNA
558  gene amplification using primers Bakt_341F and Bakt_805R%®.

559

560 Extraction of DNA for shotgun metagenomics. Crude metagenomes were
561 extracted from hindgut samples using the DNeasy PowerSoil Pro Kit (Qiagen). To
562  obtain host-depleted metagenomes, the HostZERO Microbial DNA Kit (Zymo) was
563  used with the following protocol adjustments. Hindgut samples were centrifuged at 13
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564 000 x g for 5 min, supernatants removed, pellets resuspended in 1.5 ml PBS buffer
565 and transferred to 5 ml tubes containing ~0.7 ml sterile 2 mm glass beads. To mostly
566 lyse host cells but preserve microbial cells, the tubes were agitated in a FastPrep24
567 instrument (MP Biomedicals, Santa Ana, CA, USA) for 2 x 30 sec with a 30 sec break
568 in between at speed level 3.4. Tubes were then centrifuged at 16 000 x g for 2 min,
569  supernatant removed, pellet resuspended with 2 ml Host Depletion Solution (Zymo)
570  and transferred without the beads to two 1.5 ml tubes per sample. From here, the
571  HostZERO Microbial DNA Kit protocol was followed, whereby each sample was
572 pooled again into one tube at the step of adding 100 ul Microbial Selection Buffer.
573  Extracted DNA of at least nine samples needed to be pooled to obtain 5-10 ng DNA
574  for library preparation.

575

576  Genome-resolved metagenomes. 10 MAGs were obtained from a previous study of
577  gut microbes from wild-salmon populations®. A total of 70 MAGs from gut samples of
578  farmed salmon were assembled in this study, including 2 MAGs from re-assembling
579  previously published metagenomes?* and 68 MAGs from sequencing data generated
580 in this study in 1) one sequencing run at NMBU and 2) three sequencing runs at SLU
581 and SciLifeLab (Uppsala, Sweden). Libraries for the run at NMBU and the first run at
582  SLU (August 2021) were prepared using the Nextera XT DNA Library Preparation kit
583  (lllumina, San Diego, CA, USA) and paired-end 250 bp sequenced on an lllumina
584  MiSeq. Libraries for the second (April 2022) and third run (January 2023) at SLU were
585  prepared in-house using the Celero EZ DNA-Seq Modular Workflow v2 and Revelo
586 DNA-Seq Enz for MagicPrep NGS v1 (Tecan, Mannedorf, Switzerland), respectively,
587 and paired-end 150 bp sequenced on an lllumina NovaSeq 6000 hosted by
588  SciLifeLab. Raw reads were quality trimmed and adapter sequences removed using
589  Trimmomatic v0.39%" (settings: PE -phred33 ILLUMINACLIP:adapters.fasta:2:30:10
590 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:30).

591 To remove host contamination from both public and newly generated metagenome
592 data, high-quality reads were mapped against the Salmo salar genome
593 (GCF_000233375.1_ICSASG_v2) by minimap2%8 using default parameters for short
594  accurate genomic reads. Non-mapped paired reads were retrieved from minimap2
595  bam files using samtools v12%°. Filtered data from each metagenome were assembled

“

596 using MegaHit v 1.2.9 with the “-no-mercy” parameter. In addition, the filtered
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597 metagenomes (excluding those obtained by FACS) were co-assembled using the
598 same parameters.

599  Metagenomic reads were mapped back to the respective metagenome assembly
600 using minimap2 with the “-N 50 -ax sr’ parameters. Samtools was used to produce
601 sorted merged bam files. Bam files were then processed by the
602  jgi_summarize_bam_contig_depths script from Metabat2 (“-m 1500” parameter) and
603 binned with metaBat2 and MaxBin2 (“-min_contig_length 900” parameter)
604  algorithms®%8'. Completeness and contamination of each MAG was assessed with
605 CheckM v1.2.0%2 using the “lineage_wf” workflow.

606

607 Taxonomy and functional annotation. All isolated assembled genomes and
608 metagenome assembled genomes (MAGs) were classified taxonomically with GTDB-
609  Tk-v-2.0.1%3 (GTDB release 207). A maximum-likelihood tree was de-novo built using
610 the protein sequence alignments generated by GTDB-Tk using 1Q-Tree 2.0.3 with
611 settings “m MFP -bb 1000 -nt 16”, and the best amino-acid substitution model
612  (LG+R5) was automatically selected by ModelFinder®* using the Bayesian Information
613  criterion. A combined plot showing the phylogenetic tree, taxonomy and the isolation
614  source (metagenomics or single culture), water source and the presence of 16S rRNA
615 gene of all bacterial genomes in the atlas were produce using the GGTree
616 Bioconductor package®® and an in-house made R script available at
617  https://github.com/TheMEMOLab/MetaGVisualToolBox/blob/main/scripts/GenoTaxo
618 Tree.R

619  Functional annotation of the bacterial genomes, including gene prediction, ribosomal
620 rRNA, tRNAs and gene annotation were performed by DRAM v 1.2.4% with the
621 following databases: Uniref90, PFAM-A, KOfam and dbCAN-V10 (all downloaded on
622  Sep 2021). Antimicrobial resistance genes, toxins, virulence factors and mobile

623  genetic elements were annotated using PathoFact v1.0%" with settings ‘workflow:
624  "complete", size fasta: 10000, tox threshold: 40, plasflow threshold: 0.7,
625 plasflow_minlen: 1000°, and databases downloaded with the software in February
626  2023.

627 Species-level clustering and pan-genome estimation. The 211 SMGA genomes
628  were grouped into species-like clusters (mOTUs) based on a 95% ANI threshold using
629 mOTUlizer®”. Pan-genomes were computed for all mOTUs using mOTUpan from the
630 same software package, whereby the MMseqs2% amino acid identity threshold for
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631 clustering proteins was changed to 95%, and the coverage threshold was kept at the
632 default 80%. The software uses a Bayesian method to infer core genomes (genes
633  present in almost all genomes of the mOTU) and accessory genomes (genes present
634  only in some genomes of the mOTU) that takes genome completeness estimates into
635 account and is thus also applicable to incomplete genomes.

636

637 Generation and analysis of strain-specific genome-scale metabolic
638 reconstructions. The first step in creating genome-scale metabolic reconstructions
639 for the sequenced microbes was to map the microbial genomes against the Kbase
640 resource®. Kbase contains over 8,000 (draft) metabolic reconstructions, which
641 included reconstructions for 94 of the 211 genomes. After downloading these draft
642  reconstructions, we refined them using the DEMETER pipeline’. For three of these
643 94 microbes (Photobacterium phosphoreum sp. S39bc34, Serratia liquefaciens sp.
644  S38bc38, and Pseudomonas_E sp. S3bc03), exo-metabolomic data was available,
645  which was also used for the refinement with DEMETER'C. Therefore, we identified
646  those metabolites that could be consumed or secreted by the microbes by comparing
647  untargeted metabolomics from chitin-supplemented minimal medium with and without
648 amicrobe. A metabolite was designated to be taken up if its concentration in the chitin-
649  supplemented medium with the microbe was lower than its concentrations without the
650  microbe and vice-versa.

651  After refinement of the microbial metabolic reconstructions, they were converted into
652  condition-specific models by constraining to a nutrient unlimited and anoxic
653  environment by setting the upper and lower flux bounds on the exchange reactions,
654  which exchange metabolites to and from the extracellular environment, to 1000 and -
655 1000. The anoxic conditions were simulated by setting the lower flux bound of the
656 oxygen exchange reaction, VMH ID: EX_o2(e), to zero. Next, the genome-scale
657  metabolic models were interrogated using flux balance analysis (FBA)"'. In FBA, an
658  objective function, often biomass production, is either minimized or maximized, while
659 assuming the system to be at a steady state, i.e., there is no change in concentration
660 over time. The underlying linear optimization problem is formulated as follows:

661 min or maxcT - v
dx

662 subjectto:S-v=—=0
dt

663 vj,lb < Uj < vj,ub
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664  where c is a weight vector of zeros with one or more non-zero entries signifying the
665 linear objective function. v is a flux vector to be solved for, containing a flux value for
666  each on the n reactions in the model. v;» and v;u denominate the lower and upper
667  flux bound for reaction j for all n reactions in the model. S(m,n) is the stoichiometric
668  matrix, where the rows correspond to the mass-balances for each metabolite / and the
669  columns correspond to the reactions. If a metabolite i participates in a reaction j the
670 entry S;jis non-zero and otherwise S;; is zero.

671  We used parsimonious flux balance analysis (pFBA)"?, a two-step FBA-based method,
672  where first the objective function (here, biomass reaction; EX_bio1) is maximized. The
673  resulting maximally possible flux value is then used in a second step to constrain the
674 lower bound on the biomass reaction. Then, a quadratic optimization problem is

675 solved, in which the total flux is minimised:

676
dx
677 subjectto:S-v=—=0
dt
678 vbiomass,lb = MaxXVpiomass
679 vj,lb < Uj < vj,ub
680
681 where
682

683 represents the Euclidean norm of the flux vector with size n for each j reaction.
684  Minimization of the Euclidean norm results in a unique flux vector.

685  Additionally, we carried out flux variability analysis’® to compute the minimally and
686  maximally possible flux value for each reaction in the model, while setting the lower
687  bound of the biomass reaction to either 0 or 75% of the maximally possible flux value
688  for the biomass reaction (Supplementary Table S2). Again, an unlimited, rich, anoxic
689 medium was simulated (see above). A metabolite could be secreted by the model if it
690 carried a positive maximum flux and consumed if it carried a negative minimum flux

691 value.
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692 We then compared the predicted exo-metabolome, i.e., uptake and/or secretion of
693 metabolites in the models with the measured exo-metabolomic data. First, we mapped
694  the 121 measured metabolites onto the namespace of the metabolic models (i.e., onto
695 the VMH database 7#) using metabolite names and InchiKeys. In total, 57 metabolites
696  could be mapped. Note that this does not mean that these 57 metabolites appear in
697  all metabolic reconstructions. In silico, a metabolite can be taken up if the minimally
698  possible flux value is negative or secreted if the minimally possible flux value is positive
699 through the corresponding exchange reaction (denoted with an ‘EX_’, Supplementary
700 Table S2).

701  All simulations were performed using the COBRA Toolbox"®, with MATLAB 2020b as
702 programming environment and IBM ILOG CPLEX 12.10 as linear and quadratic
703  programming solver.

704

705 SMGA’s 16S rRNA gene mapping to public amplicon datasets. 16S amplicon
706  datasets of Atlantic salmon gut samples were downloaded from NCBI (bioprojects:
707 PRJEB39298, PRJNA498084, PRJNA555355, PRJNA590084, PRJNA594310,
708 PRJINA650141, PRJNA730696, PRJUNA733893, PRJNA824235, PRJNA824256,
709 PRJNA866155) together with data derived from two in-house trials with salmons
710  feeding on a commercial standard diet (PRJEB60544 and PRJEB60545). Fastq files
711  in each Bioproject were downloaded using the fasterg-dump 3.0.0 tool from the SRA
712 toolkit’® and Fastp was used to inspect reads for sequencing adapters and perform
713 quality trimming (q >25). The DADA2 pipeline’” was then used for reads denoising,
714 merging and screening for chimeric sequences, which were subsequently removed,
715  to finally produce amplicon sequence variants (ASVs) of each Bioproject. ASVs were
716  compared to a database of SMGA 16S rRNA gene sequences, complete as well as
717  partial sequences covering the amplified regions in the used amplicon datasets, which
718  were present in 146 of the 211 SMGA genomes. We obtained 531 distinct sequences
719  from these 146 genomes. Comparison to all ASVs obtained from the amplicon
720  datasets was done using ncbi-blast-2.13.0+7® with settings ‘-task "blastn" and ‘-
721  max_target_seqs 531’ (number of sequences in the database). Hits were filtered for
722 297% identity (“pident”) and =95% query coverage (“‘qcovhsp”). For each SMGA
723  genome, the best of the remaining hits (if any) to each amplicon dataset was extracted.
724  Results were plotted using ggplot2 v3.4.07° in R v4.2.28°,
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725  Metatranscriptomics analysis using the SMGA as a database. Midgut content
726  samples were obtained following dissection of 33 salmons that were fed with a
727  standard commercial diet and raised at 12 °C in freshwater (TO, T1 and T2) and
728  transferred to seawater (T3) at EWOS Innovation Center, Dirdal, Norway. All samples
729  were preserved in DNA/RNA SHIELD™, obtained by Zymo Research, following the
730  Zymo Research standard procedure. RNA was extracted using the methods reported
731  in®'. RNA concentration and purity were determined using a Qubit 3.0 fluorometer and
732 a Nanodrop 8000 (Thermo Scientific, Wilmington, USA). RNA integrity was checked
733 by using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).
734  Prior to analysis, all samples were randomized. Library preparations were carried out
735 by Novogene (Beijing, China) using a TruSeq Stranded mRNA kit (Illumina, San
736  Diego, CA, USA), as per manufacturer’s protocol. Libraries were sequenced on the
737  lllumina NovaSeq 6000 platform at Novogene, (Beijing, China), using 300 bp paired-
738  end sequencing. Three extraction negatives and two library negatives were included.
739  The resulting sequence reads were filtered for quality using fastp v. 0.12.4 with an
740  average Phred threshold of 30 (-q 30). rRNAs and tRNAs was removed from the reads
741  using SortMeRNA v 4.3.48 with the following Silva databases: silva-bac-16s-id90,
742 silva-arc-16s-id95, silva-bac-23s-id98, silva-arc-23s-id98, silva-euk-18s-id95, silva-
743  euk-28s-id98 and the parameters: --out2 --paired_out —fastx --thread 12. To remove
744 all sequences derived from the host, the filtered reads were aligned to the Salmo salar
745  genome Ssal_v3.1 RefSeq ID GCF_905237065.1 using the STAR v 2.7.9a alignment
746  suit®3. All non-mapped reads were retrieved from the sam files using Samtools 1.13
747 and the parameters -f 12 -F 256 -c 7. These reads were used to quantify the
748  expression of ORFs encoded by the SMGA genomes and MAGs using kallisto v
749  0.44.0. The resulting transcripts per million (TPM) abundance tables of each
750  metatranscriptomic sample were gathered into a single table using the Bioconductor
751  tximport 1.26.1 library in R 4.2.3. Principal component analysis (PCA) was
752  implemented to visualise samples clustering and manual removing of outliers resulting
753  in 33 samples for further detection of bacterial gene expression. A bacterial gene from
754  the SMGA was considered expressed if it shows a value higher than one TMP in at
755  least one replicate of the experiment. Variation in the SMGA bacterial gene expression
756  among samples were visualized in terms of Z-scores in a heatmap generated using
757  the pheatmap function in R. The data was used to reconstruct the active metabolic
758  pathways displayed in Fig. 4a.
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759 Untargeted metabolomic analysis. Triplicate cultures of Photobacterium
760  phosphoreum sp. S39bc34, Serratia liquefaciens sp. S38bc38 and Pseudomonas E
761  sp. S3bc03 were grown at 18 °C overnight in M9 medium ((8 g/L Na2HPO4, 4 g/L
762  KH2PO4, 0.5 g/L NaCl, 0.5 g/L NH4Cl, 0.5 g/L EDTA, 0.083 mg/L FeCl3 x 6 H20, 0.863
763  mg/L ZnClz, 0.013 mg/L CuClz x 2 H20, 0.1 mg/L CoCl2 x 6 H20, 0.1 mg/L H3BOs3,
764  0.016 mg/L MnCl2 x 6 H20, 1 mM MgSO4, 0.3 mM CaClz, 1 mM thiamine
765  hydrochloride, 1 mM biotin, 0.5% [wt/vol] beef extract from Sigma-Aldrich, St. Louis,
766 MO, USA) supplemented with 5% (wt/vol) glucose (Sigma-Aldrich). Overnight cultures
767  were then used to inoculate M9 medium supplemented with 5% (wt/vol) chitin from
768  shrimp shells (Sigma-Aldrich) and grown at 18 °C for 48-72 h. Uninoculated M9 media
769  with chitin were also incubated as a negative control group and this group had three
770  biological replicates. Cells were harvested by centrifugation at 16,000 x g for 5 minutes
771 and culture supernatant processed for semi-polar metabolite analysis. Sample
772  analysis was carried out by MS-Omics (Vedbaek, Denmark) using a UPLC system
773 (Vanquish, Thermo Fisher Scientific) coupled with a high-resolution quadrupole-
774  orbitrap mass spectrometer (Orbitrap Exploris 240, Thermo Fisher Scientific). The
775  UHPLC was performed using an ACQUITY UPLC HSS T3 C18 lined column, with
776  dimensions of 2.1 x 150 mm and a particle size of 1.8 ym. The composition of mobile
777  phase A was 10 mM ammonium formate at pH 3.1 in 0.1% formic acid LC-MS grade
778  (VWR Chemicals) and 10 % ultra-pure water (Merck KGaA). The mobile phase B
779  contained 10 mM ammonium formate at pH 3.1 in 0.1% formic acid in methanol. The
780  flow rate was kept at 300 pl ml-1 consisting of a 2 min hold at 0% B, increased to 35%
781 B at 12 min, increased to 90% B at 13 min and held for 1 min, and finally decreased to
782 0% B at 15 min. The column temperature was set at 30 °C and an injection volume of
783 50yl was used. Surfactant removed samples (using zinc nitrate hexahydrate and
784  ammonium thiocyanate) were diluted 10 times in mobile phase eluent A and fortified
785  with stable isotope labelled standards before analysis before injection. An electrospray
786  ionization interface was used as an ionization source. Analysis was performed in
787  positive and negative ionization mode under polarity switching. Data were processed
788 using Compound Discoverer 3.3 (ThermoFisher Scientific) and Skyline 21.2.
789 Identification of compounds were performed at four levels; Level 1: identification by
790  retention times (compared against in-house authentic standards), accurate mass (with
791 an accepted deviation of 3 ppm), and MS/MS spectra, Level 2a: identification by
792  retention times (compared against in-house authentic standards), accurate mass (with
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793  an accepted deviation of 3 ppm). Level 2b: identification by accurate mass (with an
794  accepted deviation of 3 ppm), and MS/MS spectra, Level 3: identification by accurate
795  mass alone (with an accepted deviation of 3 ppm).

796

797  Data availability

798  Oxford Nanopore sequencing reads have been deposited in the sequence read
799 archive SRA with project numbers PRJEB45024 and PRJEB61648. Amplicon
800  sequencing reads are available under SRA BioProjects PRJEB60544 (ImpTrial2) and
801 PRJEB60545 (ImpTrial1). Shotgun metagenomic reads have been deposited at SRA
802  BioProjects PRJEB60591 and PRIJNA947914. RNA sequencing reads can be found
803  in SRA under accession number PRJEB60552. Mass spectrometry data for this study
804 can be found on the Mass Spectrometry Interactive Virtual Environment (MassIVE)
805  repository (massive.ucsd.edu) with accession number MSV000089895. The SMGA is
806  publicly available via Figshare (Genomes_fasta, 10.6084/m9.figshare.22691881;

807 Genes_nuc _fna, 10.6084/m9.figshare.22691869; Genes_prot _faa,
808  10.6084/m9.figshare.22691980).
809
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842  Supplementary Material
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845  Supplementary Fig. S1. Strategy for the generation of the SMGA. Digesta samples
846  were collected from 107 farmed and 70 wild fish either at the freshwater or seawater
847  stage. Genomic and metagenomic datasets were combined to generate a collection
848  of 211 salmon gut microbial genomes. Green boxes indicate the number of genomes
849  from bacterial isolates or bacterial MAGs obtained using two different approaches in
850  this study. Turquoise boxes indicate the number of genomes for cultured isolates or
851 bacterial MAGs from publicly available studies. For a description of the different
852  assembly strategies, see the Methods section.
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Supplementary Fig. S2. Pan- genome sizes of species-like mOTUs. The 211 SMGA
genomes were clustered into 62 mOTUs (x-axis) based on 95% ANI. Bar heights
indicate the number of protein clusters within the core and accessory genome of each
mOTU.
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858
859  Supplementary Fig. S3. Detecting genomes from the SMGA in publicly available

860 datasets. The detection of isolate genomes and MAGs from the SMGA (y-axis) in
861 selected publicly available 16S rRNA gene amplicon datasets (x-axis) based on
862  alignment of 16S rRNA gene sequences (y-axis). 16S rRNA gene detection is coloured
863 based on the % identity of the gene alignment. At a 97% identity level to amplicon
864  sequence variants (ASVs), 144 out of 146 SMGA bacteria were detected in publicly
865 available 16S rRNA gene datasets from either in vivo trials or in vitro models with
866  salmon gut microbial communities.
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Supplementary Fig. S4. Heatmap of predlcted total metabolic qux in each metabolic
subsystem. The total metabolic flux for each subsystem was calculated by taking the
absolute sum of all flux values of reactions within a subsystem. The species-specific
reaction fluxes represent the mean average metabolic flux of all created strain models
within a microbial species. All models were interrogated in an anaerobic and nutrient
rich environment, meaning that all nutrients needed for growth were available in
sufficient quantities for the models to produce biomass. All species predicted largely
similar subsystem activities. The most active subsystems include those involved in
energy metabolism, nucleotide metabolism, and amino acid metabolism.
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878  Supplementary Fig. S5. Heatmap of the largest 50 predicted metabolite exchanges
879  for each species. The species-specific reaction fluxes represent the mean average
880  metabolic flux of all created strain models within a microbial species. An exchange flux
881  below zero indicates that the metabolite is taken up by the system, while an exchange
882  flux above zero indicates an excretion of the metabolite. Metabolites that are taken up
883 in larger quantities by all models include nitrate, glycerol-3-phosphate, fumarate, and
884  glucose. Carbon dioxide, acetate, and ammonium on the other hand, are among the
885  most excreted metabolites.
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Supplementary Fig. S6. Heatmap summarising the metabolomic results and the genome-
scale metabolic model capabilities. Only metabolites that could be mapped onto a VMH ID are
shown. The yellow cells indicate that a metabolite was consumed in the experimental data,
but was not present in the corresponding model. Gold cells indicate that a metabolite was
consumed in the experimental data and was present in the model, but could not be consumed
by the model. Turquoise cells indicate metabolites that were consumed by the model, but not
in the experimental data, whereas blue cells indicate metabolites that were consumed in both
the model and the experimental data. Dark blue cells indicate metabolites that could not be
consumed in either the experimental data or the models.
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896
897  Supplementary Fig. S7. Heatmap summarising the exo-metabolomic results and the

898 genome-scale metabolic model capabilities. Only metabolites that could be mapped onto
899 aVMH ID are shown. The yellow cells indicate that a metabolite was secret in the experimental
900 data but was not present in the corresponding model. Gold cells indicate that a metabolite was
901 secreted in the experimental data and was present in the model but could not be secreted by
902 the model. Turquoise cells indicate metabolites that were secreted by the model, but not in
903 the experimental data, whereas blue cells indicate metabolites that were secreted in both the
904 model and the experimental data. Dark blue cells indicate metabolites that could not be
905  secreted in either the experimental data or the models.
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Supplementary Fig. S8. CAZyme profiles of the 211 salmon microbial genomes and
MAGs in the SMGA. Heatmap showing the presence of CAZy families (listed on the righthand
y-axis) arranged into the different glycan substrate categories (listed on lefthand y-axis) found
in each genome that are arranged in taxonomic orders (x-axis). The presence of CAZy genes
is denoted by grey-black boxes that are weighted for copy number. CAZy families that are not

detected are represented by a white box. GH: glycoside hydrolase, PL: polysaccharide lyase,
AA: auxiliary activity.
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Supplementary Fig. S9. Heatmap illustrating the application of the SMGA as a database
to map metatranscriptomes from gut samples. a) Variation in gene expression of all
bacterial genes in the SMGA database (x-axis) and b) a subset of three Enterobacterales
(Photobacterium phosphoreum S39 bc34, Pseudomonas E sp. S3_bc03 and Serratia
liquefaciens S38_bc38) in metatranscriptomes generated from gut samples obtained from 33
growing fish fed a standard commercial diet and collected at different life stages (y-axis). TO:
30 g fish (parr), freshwater; T1, 90 g fish (pre-smolt), freshwater; T2, 130 g fish (smolt),
freshwater; T3, 300 g fish (adult), seawater.
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