

1 **Toward Best Practice in Identifying Subtle Differential Expression with RNA-seq:**

2 **A Real-World Multi-Center Benchmarking Study Using Quartet and MAQC**

3 **Reference Materials**

4

5 Duo Wang ^{1,2,3,#}, Yaqing Liu ^{4,#}, Yuanfeng Zhang ^{1,2,3}, Qingwang Chen ⁴, Yanxi Han ^{1,2,3}, Wanwan
6 Hou ⁴, Cong Liu ^{1,2,3}, Yin Yu ⁴, Ziyang Li ⁶, Ziqiang Li ^{1,2,3}, Jiaxin Zhao ^{1,2,3}, Yuanting Zheng
7 ^{4,5,*}, Leming Shi ^{4,5,*}, Jinming Li ^{1,2,3,*}, Rui Zhang ^{1,2,3,*}

8

9 ¹ National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese
10 Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, P. R.
11 China

12 ² National Center for Clinical Laboratories, Chinese Academy of Medical Sciences &
13 Peking Union Medical College, Beijing, P. R. China

14 ³ Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital,
15 Beijing, P. R. China

16 ⁴ State Key Laboratory of Genetic Engineering, School of Life Sciences, Human
17 Phenome Institute, and Shanghai Cancer Center, Fudan University, Shanghai, China.

18 ⁵ International Human Phenome Institutes, Shanghai, China.

19 ⁶ Department of Laboratory Medicine, The Second Xiangya Hospital, Central South
20 University, Changsha, Hunan, P.R. China.

21

22 #These authors contributed equally: Duo Wang and Yaqing Liu.

23

24 *Corresponding authors' e-mail addresses: zhengyuanting@fudan.edu.cn;
25 lemingshi@fudan.edu.cn; jmli@nccl.org.cn; ruizhang@nccl.org.cn

26 **Abstract**

27 Translating RNA-seq into clinical diagnostics requires ensuring the reliability of
28 detecting clinically relevant subtle differential expressions, such as those between
29 different disease subtypes or stages. Moreover, cross-laboratory reproducibility and
30 consistency under diverse experimental and bioinformatics workflows urgently need to
31 be addressed. As part of the Quartet project, we presented a comprehensive RNA-seq
32 benchmarking study utilizing Quartet and MAQC RNA reference samples spiked with
33 ERCC controls in 45 independent laboratories, each employing their in-house RNA-
34 seq workflows. We assessed the data quality, accuracy and reproducibility of gene
35 expression and differential gene expression and compared over 40 experimental
36 processes and 140 combined differential analysis pipelines based on multiple 'ground
37 truths'. Here we show that real-world RNA-seq exhibited greater inter-laboratory
38 variations when detecting subtle differential expressions between Quartet samples.
39 Experimental factors including mRNA enrichment methods and strandedness, and each
40 bioinformatics step, particularly normalization, emerged as primary sources of
41 variations in gene expression and have a more pronounced impact on the subtle
42 differential expression measurement. We underscored the pivotal role of experimental
43 execution over the choice of experimental protocols, the importance of strategies for
44 filtering low-expression genes, and optimal gene annotation and analysis tools. In
45 summary, this study provided best practice recommendations for the development,
46 optimization, and quality control of RNA-seq for clinical diagnostic purposes.

47

48 **Keywords:** RNA sequencing, Subtle differential expression, Quartet, MAQC, ERCC,

49 Performance assessment, Real world, Quality control

50 **Introduction**

51 Transcriptome sequencing (RNA-seq) has expanded new avenues for exploring global
52 expression patterns as well as identifying alternative splicing events ¹. Differential
53 expression analysis of transcriptomic data enables genome-wide identification of gene
54 or isoform expression changes associated with biological conditions of interest. This
55 contributes significantly to the discovery of biomarkers for disease diagnosis ²,
56 prognosis ³, and therapeutic selection ⁴. These evidences facilitate the application of
57 RNA-seq in clinical routine. Noticeably, clinically relevant biological differences
58 among study groups are often small, manifested by fewer differentially expressed genes,
59 especially between certain disease and normal tissues ^{5, 6}, or between different disease
60 subtypes or stages ⁷⁻¹¹. Such subtle differential gene expression is typically challenging
61 to distinguish from noises of technical replicates. Therefore, translating RNA-seq into
62 clinical diagnostics poses requirements for more sensitive differential expression
63 analysis, emphasizing the necessity for quality assessment at subtle differential
64 expression levels.

65 However, over the past decade, quality assessment of RNA-seq in the community
66 has predominantly relied on milestone MAQC reference materials, characterized by
67 significantly large biological differences between samples, which were developed by
68 the MicroArray/Sequencing Quality Control (SEQC/MAQC) Consortium from ten
69 cancer cell lines and brain tissues of 23 donors ¹². The MAQC Consortium utilized these
70 samples with spike-ins of 92 synthetic RNA from the External RNA Control

71 Consortium (ERCC) to assess RNA-seq performance and demonstrated a high accuracy
72 and reproducibility of relative expression measurements across different sites and
73 platforms under appropriate data processing and analysis conditions ^{13, 14}. More large-
74 scale studies have also employed these two RNA reference materials to compare
75 different library preparation protocols and sequencing platforms ¹⁵⁻¹⁷, and have utilized
76 the MAQC datasets for benchmarking bioinformatics pipelines ¹⁸⁻²¹. Moreover, the
77 Genetic European Variation in Disease, a European Medical Sequencing (GEUVADIS)
78 Consortium sequenced RNA samples from lymphoblastoid cell lines of 465 individuals
79 across seven sites to assess reproducibility across laboratories and examine the sources
80 of inter-laboratory variation under an identical experimental and bioinformatics process
81 ²².

82 Noticeably, quality control based on the MAQC reference materials may not fully
83 ensure the accurate identification of clinically relevant subtle differential expression ²³.
84 Moreover, in contrast to the rigorously controlled RNA-seq workflows of previous
85 study designs, the real-world scenarios present significant differences in sample
86 processing, experimental protocols, sequencing platforms, and analysis pipelines across
87 laboratories, where confounding factors may compromise the accuracy and
88 reproducibility of RNA-seq ^{14, 15, 22}. In the context of such diverse experimental and
89 bioinformatics processes, understanding of the sources of inter-laboratory variation
90 remains limited. Therefore, a detailed quality assessment of the overall performance of

91 real-world RNA-seq in detecting subtle differential expression for clinical diagnostic
92 purposes and of the technical factors affecting diagnostic performance is necessary.

93 Recently, the Quartet project for quality control and data integration of multi-
94 omics profiling, introduced multi-omics reference materials derived from immortalized
95 B-lymphoblastoid cell lines from a Chinese quartet family of parents and monozygotic
96 twin daughters, and developed ratio-based reference datasets ²⁴. These well-
97 characterized, homogenous, and stable Quartet RNA reference materials with small
98 inter-sample biological differences, provided a unique opportunity for the assessment
99 and benchmarking of transcriptome profiling at subtle differential expression levels in
100 a reference-based manner ²³.

101 Within the scope of the Quartet project, this study utilized Quartet RNA samples
102 with spike-ins of ERCC controls, and MAQC RNA samples to generate RNA-seq data
103 across 45 independent laboratories, each using its own in-house experimental protocol
104 and analysis pipeline. Overall, approximately 120 billion reads of RNA-seq data were
105 generated and analyzed, representing the most extensive effort to conduct an in-depth
106 exploration of transcriptome data to date. Through the quality assessment based on
107 Quartet and MAQC samples in parallel, this study thoroughly elucidated the
108 performance of real-world RNA-seq, particularly when detecting subtle differential
109 expression levels. Subsequently, we leveraged gene expression data from over 40
110 different experimental processes and 140 differential analysis pipelines to investigate
111 sources of variation at experimental and bioinformatics aspects, respectively. This study

112 provides best practice recommendations for the experimental and bioinformatics
113 designs of the RNA-seq toward the scientific question addressed, and underscores the
114 necessity of quality controls at subtle differential expression levels through the
115 comparisons of Quartet and MAQC reference materials.

116

117 **Results**

118 **Study design**

119 Our multi-center study involved four well-characterized Quartet RNA samples (M8, F7,
120 D5 and D6) with ERCC spike-in RNA controls added to M8 and D6 samples, T1 and
121 T2 samples constructed by mixing M8 and D6 at the defined ratios of 3:1 and 1:3,
122 respectively, and MAQC RNA samples A and B (**Fig. 1a**). The sample panel design
123 introduces various types of 'ground truth', encompassing three reference datasets: ratio-
124 based Quartet reference datasets, TaqMan datasets for Quartet and MAQC samples, and
125 'built-in truth' involving ERCC spike-in ratios and known mixing ratios for the T1 and
126 T2 samples (**Supplementary Notes, section 2.1**). Each sample was provided with three
127 technical replicates, resulting in a total of 24 RNA samples, which were sequenced and
128 analyzed by 45 independent laboratories. Each laboratory employed distinct RNA-seq
129 workflows, involving different RNA processing methods, library preparation protocols,
130 sequencing platforms, and bioinformatics pipelines (**Supplementary Table 1**). This
131 approach accurately mirrored the actual research practices in real-world scenarios.

132 Totally, 1,080 RNA-seq libraries were prepared, yielding a dataset of over 120
133 billion reads (15.63 Tb). Based on these extensive data for Quartet and MAQC samples,
134 this study aimed to provide real-world evidence on the performance of RNA-seq in
135 detecting both subtle and large differential expression by assessing data quality, and the
136 accuracy and reproducibility of gene expression and differential expression calls (**Fig.**
137 **1b**). Moreover, a fixed analysis pipeline was applied for all RNA-seq raw data to
138 exclusively investigate the sources of inter-laboratory variation from the experimental
139 processes (**Fig. 1c**). A total of 140 different analysis pipelines consisting of two gene
140 annotations, three alignment tools, eight quantification tools following six
141 normalization methods, and five differential analysis tools were applied for high-quality
142 benchmark datasets selected from 13 laboratories to investigate the sources of variation
143 from the bioinformatics process (**Fig. 1d**).

144

145 **Basic quality control for raw reads and read alignment**

146 We first assessed the sequencing quality properties of the RNA-seq data for the Quartet
147 and MAQC samples, including sequencing depth, base quality, GC content, and
148 duplicate rate (**Supplementary Table 2**). The average sequencing depth ranged from
149 39.4 Mb to 418.8 Mb for Quartet samples and from 40.9 Mb to 424.2 Mb for MAQC
150 samples across laboratories (**Supplementary Fig. 1**). Within the same laboratory,
151 different samples exhibited variations in sequencing depth, particularly noticeable for
152 laboratories with higher average sequencing depths. Given that different flowcells or

153 lanes can lead to variations in total reads counts, we compared 15 laboratories that
154 assigned 24 libraries to two or more lanes to other laboratories that assigned libraries to
155 a single lane, and observed no increased variations (**Supplementary Fig. 2**). Therefore,
156 inter-sample variations were considered to be due to difficulties of equimolar pooling
157 ²². Both Quartet and MAQC samples exhibited high Q30 scores, ranging from 88.4%
158 to 96.6% and from 88.3% to 96.7%, respectively, reflecting the high quality of base
159 calling (**Supplementary Fig. 3**). The base quality distribution of the first about 10 bases
160 was relatively lower than the highest value in most laboratories for the Quartet and
161 MAQC samples (**Supplementary Fig. 4–5**), which was attributed to the reverse
162 transcriptase priming step ^{15,22}. We also observed that the quality scores of reverse reads
163 were generally lower than those of forward reads in most laboratories, which was
164 attributed to the decreased cluster size and higher number of errors due to more
165 amplification steps before sequencing the reverse reads ²⁵. GC content bias was found
166 across laboratories, with the average GC content ranging from 42.3% to 54.2% for the
167 Quartet samples and from 42.4% to 52.9% for the MAQC samples. Such laboratory-
168 specific GC content bias, primarily caused by different sites of library preparation ²⁶,
169 was more noticeable than the sample-specific GC content bias (**Supplementary Fig.**
170 **6–7**). Unusual GC content presents inherent challenges, as GC-poor genes (< 35%)
171 tended to exhibit more variable expression levels between laboratories than genes with
172 medium or high (> 65%) GC content (**Supplementary Fig. 8**). The average duplication
173 rates of the sequencing reads varied significantly across laboratories, ranging from 4.2%

174 to 73.4% for the Quartet samples and from 5.0% to 75.5% for the MAQC samples
175 (**Supplementary Fig. 9**). Nine laboratories exhibited an average duplication rate
176 exceeding 30%, surpassing the typical duplication levels observed in prior research ¹⁵,
177 ^{27, 28}. These extra duplicate reads may be due to PCR amplification bias rather than
178 highly expressed genes ²⁹.

179 We next assessed the alignment statistics after mapping the raw reads using STAR
180 (**Online Methods**). All laboratories exhibited a high overall alignment rate, ranging
181 from 90.69% to 98.7% for the Quartet samples and from 92.1% to 98.9% for the MAQC
182 samples (**Supplementary Fig. 10**). The slightly lower uniquely mapping rate was
183 noticeable in the Quartet samples in comparison to the MAQC samples, with average
184 mapping rates of 89.7% (80.9%–95.4%) and 92.0% (84.1%–96.0%), respectively. This
185 was similar to the common characteristics observed when comparing clinical samples
186 with the MAQC samples ²⁰. The multi-mapping rate seemed to be associated with the
187 mRNA enrichment methods. The rRNA depletion method resulted in higher average
188 multi-mapping rates than the poly(A) selection method (**Supplementary Fig. 11**),
189 possibly due to the capture of a greater number of small non-coding RNAs with high
190 sequence similarity ³⁰. Meanwhile, a high multi-mapping rate was consistently
191 correlated with a higher mismatch rate (**Supplementary Fig. 10**). The percentage of
192 aligned reads mapping to annotated exons is directly related to expression
193 quantification, and is therefore a critical quality metric. The poly(A) selection method
194 consistently showed a higher median percentage of exonic reads at 84.5% and 80.9%,

195 compared to the rRNA depletion method at 46.3% and 44.1% for the Quartet and
196 MAQC samples, respectively (**Supplementary Fig. 12–13**).

197 Additionally, the percentage of reads mapped to ERCC reference sequences
198 allowed for the identification of problematic samples or libraries. In four samples
199 (MAQC A, B, and Quartet F7, D5) without ERCC spike-ins, we observed reads counts
200 ranging from 1 to 213,467 mapped to ERCC genes across 38 laboratories
201 (**Supplementary Fig. 14**). Particularly, Lab10 exhibited an exceptionally high fraction
202 of ERCC reads in the two replicates of MAQC sample A, accounting for 0.8% and 0.06%
203 of the exonic reads. This indicates potential contaminations across RNA samples or
204 libraries³¹.

205

206 **Significant variations in detecting subtle differential expression**

207 We combined multiple metrics for a robust characterization of RNA-seq performance:
208 (i) quality of gene expression data using signal-to-noise ratio (SNR) based on principal
209 component analysis (PCA)²³, (ii) the accuracy and reproducibility of absolute and
210 relative gene expression measurements based on several 'ground truths', and (iii) the
211 accuracy of differentially expressed genes (DEGs) based on the reference datasets (**Fig.**
212 **1b**). These metrics constitutes a comprehensive performance assessment framework
213 that captures different aspects of gene-level transcriptome profiling (**Supplementary**
214 **Notes, section 2.2**).

215 PCA-based SNR values based on both the Quartet and MAQC samples
216 discriminated all gene expression data into a wide range of quality levels, reflecting the
217 varying ability to distinguish biological difference signals in different sample groups
218 from technical noises in replicates (**Fig. 2a**). However, smaller intrinsic biological
219 differences appeared to be more challenging to distinguish from noises, indicated by
220 lower average SNR values for Quartet samples among laboratories compared to MAQC
221 samples, at 19.8 (0.3–37.6) and 33.0 (11.2–45.2), respectively (**Supplementary Fig.**
222 **15**). The reduced biological differences among the mixed samples led to a further
223 decrease in the average SNR values to 18.2 (0.2–36.4). Particularly, for different
224 laboratories, the gap between two sets of SNR values, one based on the Quartet and
225 mixed samples and the other based on the MAQC samples, differed from 4.7 to 29.3,
226 suggesting that diagnosing quality issues at subtle differential expression levels was
227 sensitive. Moreover, SNR examinations allowed for the identification of random
228 failures in the technical replicates. The SNR17 values, calculated from any 17 out of
229 the 18 samples (12 Quartet and 6 mixed samples), increased by six decibels compared
230 to the corresponding SNR18 values in six laboratories (**Fig. 2a**).

231 Gene expression measurements was assessed based on the Quartet reference
232 datasets, TaqMan datasets, and the built-in truths including the ERCC spike-in ratios
233 and mixed ratios of sample T1 and T2. Gene expression exhibited significant inter-
234 laboratory variations, especially in absolute expression. Considering the varying gene
235 types of interest among laboratories (**Fig. 2b**), only protein-coding genes were included

236 to facilitate comparisons between laboratories. All laboratories exhibited lower
237 correlation coefficients at 0.825 (0.738–0.856) with the MAQC TaqMan datasets of 830
238 protein-coding genes, compared to those at 0.876 (0.835–0.906) with the Quartet
239 TaqMan datasets of 143 protein-coding genes (**Fig. 2c**). Correlations with the nominal
240 concentrations of the 92 ERCC spike-in RNAs were consistently high for all
241 laboratories with an average correlation coefficient of 0.964 (0.828–0.963). More
242 ERCC based assessments are shown in **Supplementary Notes, Section 2.3**. These
243 results indicate that accurate quantification of a broader set of genes is more challenging,
244 highlighting the importance of large-scale reference datasets for performance
245 assessment. We also focused on the absolute expression for other gene types, and
246 observed that small non-coding RNAs exhibited the largest inter-laboratory variations,
247 followed by pseudogenes, long non-coding RNAs, and immunoglobulin/T cell receptor
248 segments (**Supplementary Fig. 16**), which appeared to be associated with gene features
249 specific to each type, such as gene lengths and gene expression levels (**Supplementary**
250 **Fig. 17–18**).

251 Relative expression measurements are more reliable than absolute expression
252 measurements, but they still present challenges when identifying subtle differential
253 expression. The variations in relative expression across laboratories decreased
254 compared to those in absolute expression, as indicated by that samples tended to cluster
255 based on the source sample rather than the laboratory in PCA analyses. However,
256 laboratories still exhibited considerable variations in relative expression exceeding the

257 small biological difference among the Quartet samples (**Fig. 2d–e and Supplementary**
258 **Fig. 19**). Despite the higher accuracy metrics among laboratories compared to absolute
259 expression (**Supplementary Fig. 20**), relative expression demonstrated lower average
260 correlation coefficients of 0.865 (0.288–0.978) and 0.860 (0.488–0.944) with the
261 Quartet reference datasets of 23790 protein-coding genes and Quartet TaqMan datasets,
262 respectively, compared to the average correlation coefficient of 0.927 (0.778–0.949)
263 with MAQC TaqMan datasets (**Fig. 2f**). It is noteworthy that the Root Mean Square
264 Error (RMSE) values between laboratories and the Quartet reference datasets were the
265 lowest, reflecting the systematic deviations between RNA-seq and TaqMan RT-qPCR
266 assays but not between RNA-seq and the Quartet reference datasets (**Fig. 2f**). In
267 addition, based on the ERCC spike-in ratios and mixing ratios of samples T1 and T2,
268 we complementarily examined the accuracy and reproducibility of the relative
269 expression across 92 ERCC RNAs and all detected genes. Our results revealed the
270 impact of low gene expression and subtle differential expression on relative expression
271 measurements. The expected ERCC spike-in ratios were more accurately recovered for
272 high-concentration ERCC genes compared to low-concentration genes (**Fig. 2g**). The
273 mixing ratios in the mixed samples were recovered well in most laboratories (**Fig. 2h**).
274 Laboratories that failed to recover the mixing ratio demonstrated the presence of
275 outliers (**Supplementary Fig. 21**), which are typically caused by the erroneous
276 detection or calculation of low-expressed genes (**Supplementary Fig. 22**). By stepwise
277 filtering of genes with low fold changes, the RMSE values between the observed and

278 expected fold changes decreased, indicating a higher accuracy of gene expression
279 measurements (**Fig. 2i**).

280 The DEGs calls revealed significant variations across laboratories in terms of both
281 DEGs number and the accuracy of DEGs classification based on the Quartet reference
282 datasets and TaqMan datasets. The number of protein-coding DEGs ranged from 787
283 to 13,194 for the Quartet and mixed samples, and from 4,275 to 12,773 for the MAQC
284 samples (**Supplementary Fig. 23**). As a result, true positives ranging from 0.03% to
285 78.6%, from 1.2% to 82.0%, and from 0.2% to 52.9% of the Quartet reference datasets,
286 Quartet TaqMan, and MAQC TaqMan datasets, respectively, were missed by the
287 laboratories. Consequently, we employed a penalized Matthews Correlation Coefficient
288 (MCC) to assess the accuracy of DEGs calls (**Fig. 1b and Supplementary Notes**,
289 **section 2.2**). The MCC values based on the Quartet reference datasets and Quartet
290 TaqMan datasets were more dispersed among laboratories, ranging from 0.100 to 0.837
291 and from 0.075 to 0.756, respectively (**Fig. 2j**). In contrast, the MCC values based on
292 the MAQC TaqMan datasets ranged from 0.251 to 0.702. Importantly, the relatively
293 low MCC values in certain laboratories could be explained by several factors
294 (**Supplementary Table 3**). For example, in the case of lab18, the expression data
295 exhibited a SNR of 0.9, indicating that the low-quality library preparation or sequencing
296 processes resulted in unreliable and uninformative RNA-seq data for differential
297 analysis. The lab03 and lab04 demonstrated low accuracy of fold change determination,
298 impacting the reliability of the DEG calls. Additionally, different thresholds to filter

299 low-expression genes and cutoffs for DEGs identification led to variations in the
300 number of DEGs, which collectively contributed to low accuracy.

301

302 **Sources of variation from the experimental process**

303 The significant variations, especially at subtle differential expression levels,
304 necessitated investigating the sources of variation. To exclusively focus on variation
305 from the experimental process, we employed a uniform data analysis pipeline for all
306 RNA-seq raw data, involving the use of fastp for data pre-processing, Ensembl gene
307 annotation, STAR for reads alignment, and StringTie for gene quantification. When
308 compared to the original expression data, the SNR values and accuracy metrics for gene
309 expression measurements increased in most laboratories, indicating that the fixed
310 pipeline was reliable for excluding the influence of diverse bioinformatics tools
311 (**Supplementary Fig. 24–25**). These variations arising from different RNA processing
312 methods, library preparation protocols, and sequencing platforms among laboratories
313 represent ‘experimental noise’.

314 In the presence of significant inter-laboratory variations from the experimental
315 process for both Quartet (**Fig. 3a**) and MAQC samples (**Fig. 3b**), experimental factors
316 had a great impact on subtle differential expression measurement. We quantified the
317 relative contribution of technical and biological factors to the total variations by
318 principal variance component analysis (PVCA) based on absolute expression data from
319 all laboratories for all samples. A total of 17 factors from the experimental process were

320 considered (**Supplementary Table 4**), and these experimental factors introduced
321 significantly greater variations than biological differences among the Quartet samples
322 (89.4% vs. 9.6%), with mRNA enrichment methods and strandedness as the primary
323 sources (**Fig. 3c**). Additionally, library preparation kits, reads length, and the number of
324 exonic reads also contributed to 17.9% of the variations. In contrast, while MAQC
325 samples revealed similar sources, variations derived from experimental factors were
326 lower than biological differences between the MAQC samples (45.3% vs. 54.7%) (**Fig.**
327 **3d**).

328 Relative expression could effectively correct for the influence of experimental
329 factors, as indicated by a significant decrease of over 40% in the relative contribution
330 of experimental factors to the variations for both the Quartet and MAQC samples.
331 (**Supplementary Fig. 26**). The increased consistency between any two laboratories
332 compared to absolute expression further confirmed this (**Fig. 3e and 3f**). However,
333 Quartet samples demonstrated that there remained 27.5% of unexplained variations that
334 could not be eliminated, implying the presence of additional influencing factors within
335 the complex and diverse experimental process.

336

337 **Sources of variation from the bioinformatics process**

338 To assess the sources of variation from the bioinformatics process, high-quality data for
339 Quartet and MAQC samples from 13 laboratories served as benchmark datasets,
340 encompassing 13 different library preparation protocols, seven sequencing platforms,

341 and a wide range of sequencing depths spanning 42.6 Mb to 425.3 Mb to mitigate bias
342 **(Materials and Methods).** Following commonly used transcriptomic profiling
343 pipelines in real-world settings, two gene annotations, three alignment tools, and eight
344 expression quantification tools were incorporated into the analysis, resulting in 28
345 combined quantification pipelines. Subsequently, six representative normalization
346 methods were systematically compared (**Supplementary Fig. 27**). Variations caused
347 by different combinations of analysis tools represent ‘bioinformatics noise’.

348 Bioinformatics processes introduced variations comparable to those from the
349 experimental processes, and each bioinformatics step also had a greater impact on the
350 subtle differential expression measurement (**compare Fig. 4a with Fig. 3c and Fig. 4b**
351 **with Fig. 3d**). We quantified the relative contribution of annotation, alignment,
352 quantification, and normalization, to variations using PVCA analysis based on the
353 absolute expression data for different samples from all combined pipelines. For the
354 Quartet samples, different bioinformatics steps collectively introduced significantly
355 greater variations than the intrinsic biological differences (75.1% vs. 5.6%).
356 Normalization methods were the primary source of variations, followed by
357 quantification tools, alignment tools, and gene annotation types (**Fig. 4a**). However,
358 MAQC samples revealed smaller variations introduced from different bioinformatics
359 steps than their biological differences (34.0% vs. 56.7%) (**Fig. 4b**).

360 Noticeably, the calculation of relative expression could help reduce these
361 variations, as indicated by the increased consistency in relative expression levels across

362 different analysis pipelines when compared to absolute expression (**Fig. 4c–d**).
363 Furthermore, the contribution of each bioinformatics step to variations in relative
364 expression levels decreased significantly (**compare Supplementary Fig. 28 with Fig.**
365 **4**), suggesting that the relative expression calculations could correct for the influence
366 of different analysis tools. However, similar to the experimental process, 28.4% of the
367 variations from the bioinformatics process remained for the Quartet samples,
368 suggesting inherent performance differences among various analysis tools.

369

370 **Best practices for experimental designs**

371 To assess whether experimental factors are related to overall performance, we assessed
372 the accuracy of 42 experimental processes based on the reference datasets under
373 uniform analysis pipeline conditions. We observed that laboratories exhibiting high
374 correlation coefficients for relative expression measurements or high MCC values for
375 DEGs detection dispersed across various experimental protocols (**Supplementary Fig.**
376 **29**). Therefore, these results indicate that RNA-seq performance is primarily dependent
377 on experimental quality, with the choice of experimental protocols having a relatively
378 minor impact.

379 We further filtered out RNA-seq data with low experimental quality and utilized
380 the remaining data from 32 laboratories to evaluate each experimental factor with
381 regard to data quality, and accuracy of absolute expression, relative expression, and
382 differential gene expression (**Materials and Methods**). All performance metrics

383 demonstrated similar patterns in assessing different protocols within each experimental
384 step (**Supplementary Fig. 30**), and collectively demonstrated that experimental factors
385 predominantly influence absolute expression measurements rather than relative
386 expression and differential gene expression. Specifically, certain experimental factors
387 related to performance were identified (**Fig. 5**). First, the poly(A) selection method
388 exhibited higher SNR values than the rRNA depletion method, which is associated with
389 the latter capturing more lowly expressed non-protein-coding genes. Second, for
390 absolute expression levels, the rRNA depletion method, strandedness, and 100 bp of
391 read length corresponded to higher accuracy, and exonic coverage also exhibited a
392 significantly positive relationship with the accuracy. Third, exonic coverage was also
393 associated with improved accuracy of relative expression or differential gene
394 expression, likely due to more reliable detection of lowly expressed genes. We also
395 observed significant differences in accuracy associated with different choices of some
396 experimental methods, such as library kit, sequencing platform, and reads length, but
397 these findings were derived solely from comparisons with a single reference dataset.

398

399 **Best practices for bioinformatics designs**

400 To obtain an optimal analysis pipeline for gene-level quantification and differential
401 expression measurements, we sequentially evaluated the performance of 140 combined
402 analysis pipelines with regard to alignment quality, quantification accuracy,

403 normalization effectiveness, low-expression gene filtering efficacy, and accuracy of
404 DEGs identification.

405 We first evaluated the influence of six alignment approaches combined with two
406 annotations and three alignment tools in terms of sequence alignment and splice
407 junction discovery. In comparison to the RefSeq annotation, the Ensembl consistently
408 resulted in higher uniquely mapping rates and lower multi-mapping rates (**Fig. 6a**).

409 STAR exhibited the highest overall mapping rate as well as uniquely mapping rate.
410 STAR either mapped or discarded the paired reads, avoiding the alignment of unpaired
411 single-end reads (**Fig. 6a**). HISAT2 and Subread had comparable uniquely mapping
412 rates, yet HISAT2 tended to have slightly higher multi-mapping rates in most samples,
413 resulting in higher overall mapping rates. Subread displayed a higher tolerance of
414 accepting mismatch, primarily concentrating in fewer mismatched bases (**Fig. 6b**).

415 Given that Subread did not detect exon-exon junctions, we compared the junctions from
416 STAR and HISAT2. The Ensembl annotation, being more complex, led to the validation
417 of a greater number of junctions (**Fig. 6c and Supplementary Fig. 31**). For these
418 known junctions, two alignment tools did not exhibit significant differences, whereas
419 HISAT2 identified more completely novel junctions (**Fig. 6c**). Most of novel junctions
420 were not reliable, indicated by significantly decreased number after applying a counts-
421 based threshold (**Supplementary Fig. 32**). Additionally, we examined the influence of
422 sequencing depth on junction discovery, and observed that even lower sequencing depth

423 was sufficient to detect known junctions, and increasing the sequencing depth further
424 facilitated the identification of more novel junctions (**Supplementary Fig. 33**).

425 We next assessed the performance of 28 gene quantification pipelines, consisting
426 of six alignment approaches and eight quantification tools (**Supplementary Fig. 27**).

427 These pipelines demonstrated similar clustering patterns at absolute and relative
428 expression levels, primarily divided into two clusters based on quantification principles:
429 exon-level tools (featureCounts, HTSeq, StringTie, and STAR) and transcript-level
430 tools (RSEM, Salmon, kallisto, and Sailfish) (**Fig. 4c–d and Supplementary Fig. 34**).

431 Gene annotation and alignment tools also contributed to the clustering. In particular,
432 different gene annotations showed a pronounced impact on absolute expression
433 measurement using featureCounts, HTSeq, and STAR, and in relative expression
434 measurement using transcript-level quantification tools. We further examined the
435 impact of different annotations, alignment tools, and quantification tools on accuracy
436 based on three reference datasets, and found that the performance of each step was
437 interdependent. The choice of gene annotation should also consider the quantification
438 tool, as Ensembl annotation exhibited higher or similar accuracy when combined with
439 genome- or transcriptome-alignment quantification tools, whereas RefSeq exhibited
440 higher accuracy when combined with pseudoalignment quantification tools
441 (**Supplementary Fig. 35**). The impact of different alignment tools was relatively small,
442 but the combination of Subread and StringTie decreased accuracy. (**Supplementary**
443 **Fig. 36**). The accuracy also varied among different quantification tools, especially

444 between exon-level and transcript-level quantification tools (**Supplementary Fig. 37**).
445 Overall, our results, derived from the performance ranking of all quantification
446 pipelines, supported the superior performance of opting for Ensembl gene annotation,
447 any alignment tool, and either featureCounts or HTSeq for quantification
448 (**Supplementary Fig. 38**).

449 We converted the raw counts from the 28 quantification pipelines using six
450 normalization methods, followed by an assessment of expression data quality using
451 PCA-based SNR (**Supplementary Fig. 39a**). Trimmed mean of M values (TMM), and
452 DESeq normalization methods appeared to improve the raw counts most effectively,
453 while upper quartile (UQ) normalization exhibited the poorest improvement
454 (**Supplementary Fig. 39b**). Then we examined the gene expression distribution for all
455 normalization methods, and found that the median gene expression from DESeq was
456 the highest, followed by TMM, total counts (TC), and UQ, while fragments per kilobase
457 million (FPKM) and transcripts per million (TPM) had similarly low levels
458 (**Supplementary Fig. 40**).

459 The setting of low-expression gene filtering conditions may affect the
460 interpretation of differential expression calls (**Supplementary Fig. 23**). To elucidate
461 the impact of filtering conditions on the performance of differential analysis, we
462 evaluated six filtering methods and various threshold values (0–70%) across five
463 differential analysis tools, utilizing four RNA-seq datasets representing different
464 sequencing depth levels (**Supplementary Fig. 27**) (**Materials and Methods**). Across

465 all six filtering methods, elevating the threshold values resulted in an increase in both
466 the DEGs number and the true positive rate (TPR) until they reached their respective
467 peak values, accompanied by a slight yet acceptable decrease in precision
468 (**Supplementary Fig. 41**). Such threshold effects were observed for five differential
469 analysis tools, including edgeR, DESeq2, limma, and DEGseq, except for EBSeq,
470 which employed stringent internal filtering criteria (**Supplementary Fig. 42**). Overall,
471 the six filtering methods led to general consistency in terms of the maximum number
472 of DEGs and the highest TPR across data from all laboratories (**Supplementary Fig.**
473 **43–44**). Thus, the key consideration shifts to the determination of optimal threshold
474 value. In the context of small changes in precision, opting for a threshold value
475 corresponding to the highest TPR appears to be an effective approach, but the lack of
476 benchmark datasets for assessing sensitivity or precision presents a challenge in
477 practice. In contrast, calculating the maximum number of DEGs is practical. Although
478 there were slight differences between the thresholds based on the maximum number of
479 DEGs and the highest TPR, especially in the Quartet samples (**Supplementary Fig. 45**),
480 the resulting TPR values corresponding to these two thresholds were highly consistent
481 (**Supplementary Fig. 46**).

482 After applying a series of threshold values to filter low-expression genes, we
483 compared the optimal performance of five differential analysis tools with different
484 choices of quantification pipelines, which contributed to 140 differential analysis
485 pipelines (**Supplementary Fig. 27**). First, the number of DEGs identified in both the

486 Quartet and MAQC samples was assessed. DEGseq identified the highest number of
487 DEGs, followed by edgeR, limma, and DESeq2, while EBSeq detected the lowest
488 (**Supplementary Fig. 47**). Compared to other tools, DEGSeq appeared to be more
489 influenced by different choices of quantification pipelines, reflected in a broader range
490 of DEGs numbers. Second, when focusing on the accuracy of DEGs calls, edgeR and
491 DESeq2 consistently outperformed other tools, with DEGSeq and limma slightly lower,
492 and EBSeq being the lowest (**Fig. 7a–b and Supplementary Fig. 48**). Compared to the
493 Quartet reference datasets, alignment-free quantification tools, especially Sailfish and
494 kallisto, were associated with lower MCC coefficients, regardless of the differential
495 analysis tool used (**Supplementary Fig. 49**). However, the MAQC samples
496 demonstrated small impact of the different quantification pipelines on each differential
497 analysis tool (**Fig. 7b and Supplementary Fig. 48**). As another accuracy measure, the
498 area under the receiver operating characteristic curve (AUC) was compared across all
499 differential analysis pipelines, which captured the statistical discrimination capability
500 of the DEGs. The edgeR outperformed the other tools, and DESeq2 also exhibited
501 relatively high AUC values (**Fig. 7c and Supplementary Fig. 46**).
502

503 **Discussion**

504 As part of the Quartet project, this study represents the most extensive cross-laboratory
505 examination of real-world RNA-seq data and analysis outcomes to date, employing
506 Quartet and MAQC RNA reference materials. Through the systematic assessment of

507 transcriptome data from 45 laboratories and the comparison of over 40 experimental
508 processes and 140 bioinformatics pipelines based on several 'ground truths', we
509 attempted to address several questions: (i) the performance of real-world RNA-seq in
510 detecting subtle differential expression; (ii) the sources of inconsistency among
511 laboratories; and (iii) the recommended practices to enhance the accuracy of RNA-seq
512 in practical applications (**Table 1**).

513 This study, for the first time, revealed noteworthy real-world inter-laboratory
514 variations in transcriptome profiling performance, especially when detecting subtle
515 differential expression among the Quartet samples. This prompts a reconsideration of
516 the actual performance, which may not be as robust as in previous studies conducted
517 under rigorously controlled RNA-seq workflows ^{14, 15, 22}. First, the PCA-based SNR
518 varied significantly across laboratories, with 35.6% (16/45) of expression data
519 considered low quality based on the previously defined cutoff value (SNR = 12) ³². Our
520 results also revealed that low data quality correlated with the accuracy of differential
521 analysis calls, highlighting the necessity of quality evaluation prior to downstream
522 analysis within laboratories. Second, absolute expression measurements exhibited
523 substantial inter-laboratory variations as reported in previous studies ¹⁴. Relative
524 expression also exhibited greater variations when detecting subtle differential
525 expression. Certain laboratories exhibited low consistency with reference datasets and
526 poor recovery of known mixing ratios between mixed samples, which were primarily
527 due to inadequate restoration of inter-sample biological differences in low-quality data

528 or erroneous detection of low-expression genes. Third, the number of DEGs varied
529 widely, and the accuracy metrics for DEG calls demonstrated a broad range across
530 laboratories, even when focusing on protein-coding genes. Differences in data quality,
531 filtering conditions for low-expression genes, differential analysis tools, and the cutoff
532 setting for DEGs classification collectively contribute to such variations, which appear
533 to be more significant than the differences in DEGs calling performance across
534 platforms, sites, and analysis tools previously reported ^{14, 15, 21}. Therefore, our results
535 underscore the fact that real-world RNA-seq performance may not fully meet the
536 clinical diagnostic demands, requiring ongoing quality improvement specifically
537 toward subtle differential expression.

538 The greater inter-laboratory variations in detecting subtle differential expression
539 among the Quartet samples prompted to investigate the sources of variations from
540 diverse RNA-seq workflows, which compensated for previous studies that exclusively
541 focused on the sources of variation under identical protocols and analysis pipelines ^{16,}
542 ²². We observed that the technical factors in experimental and bioinformatics processes
543 contributed to a higher proportion of variations in the Quartet samples (89.4% and
544 75.1%) compared to MAQC samples (45.3% and 34%). While relative expression could
545 correct for the influence of these factors to some extent, they still contributed to a higher
546 proportion of variations under small biological difference conditions (48.2% and 10.9%
547 vs. 12.6% and 1.7%). To be specific, in the experimental process, we identified factors
548 affecting absolute expression quantification, including mRNA enrichment methods,

549 strandedness, library kits, read length, and exonic coverage. In the bioinformatics
550 process, normalization step is the primary source of variations, followed by
551 quantification, alignment, and annotation. These factors have been individually studied
552 ^{15, 33-37}, and in contrast, our study revealed the magnitude of their impact in real-world
553 laboratory settings, providing clarity on the priority of technical factors to consider
554 when designing RNA-seq systems.

555 The experimental design is generally considered to be centered around addressing
556 the biological questions of interest ³⁸ (**Table 1**). Experimental factors contribute to
557 deviations in absolute expression measurement, limiting its application ¹⁴. Given the
558 prominent application of differential expression analysis for potential clinical usage, we
559 particularly focused on the influence of these technical factors in terms of relative
560 expression and differential gene expression measurements. Our results revealed the
561 quality of the experimental execution is the primary determinants of accuracy, not these
562 experimental factors. The impact of low-quality experiments far outweighed that of
563 different experimental protocols on accuracy, and the varied choices within each
564 experimental method have not demonstrated significant differences in differential
565 analysis performance. Nevertheless, it's important to note that different experimental
566 methods capture distinct transcriptomic features. For example, rRNA depletion method
567 detects more non-coding RNAs and pseudogenes compared to poly(A) selection
568 method ^{15, 33}. Stranded and non-stranded libraries mainly contributed to the differential
569 expression of pseudogenes and antisense genes, and stranded RNA-seq enables the

570 accurate quantification of approximately 20% of overlapping genes transcribed from
571 the opposite strands ³⁴. Therefore, the choice of experimental protocols would be
572 primarily driven by (i) sample type and quality, such as the extent of RNA degradation
573 ¹⁷, and (ii) research objectives, which may involve non-coding RNAs, pseudogenes,
574 antisense genes, as well as novel transcripts and alternative splicing events ^{33, 34, 39}.

575 The bioinformatics design, centered on the choice of optimal analysis tools,
576 requires equal attention, as the variations from the bioinformatics processes are
577 comparably significant as those from the experimental processes (**Table 1**). This study
578 assessed different normalization methods from the data quality aspects and found that
579 TMM and DESeq significantly improved the quality of expression data, agreeing with
580 conclusions drawn from previous studies ⁴⁰. For each step of the differential expression
581 analysis, we found that the performance of any analysis tool is not constant but depends
582 on the other tools used in combination with it. Nevertheless, this study provided the
583 optimal bioinformatics design through an evaluation of arbitrary combinations of
584 analysis tools. First, choose Ensembl annotation when using genome- or transcriptome-
585 alignment quantification tools, and choose RefSeq when using pseudoalignment
586 quantification tools. Second, the impact of different alignment tools is relatively small,
587 but previous studies have indicated that varying genome complexity should be
588 considered when making choices ⁴¹. Third, for quantification, choose tools operating at
589 the exon level, particularly featureCounts and HTSeq. Fourth, the threshold for filtering
590 low-expression genes is not fixed but varies with different samples and analysis tools

591 42. Choosing the threshold based on the maximum number of DEGs is practical. Finally,
592 edgeR or DESeq2 is preferred for conducting differential gene expression analysis.

593 This study significantly advances the understanding of the role of reference
594 materials in quality control applications by utilizing Quartet and MAQC reference
595 materials in parallel (**Table 1**). Overall, the assessment based on these two reference
596 materials demonstrated common patterns in multiple aspects of the transcriptome
597 across laboratories. Notably, each of the two reference materials has significantly
598 enhanced the reliability and distinctiveness of the assessment and exploration of RNA-
599 seq data. On the one hand, the Quartet samples enabled the assessment in subtle
600 differential expression levels and demonstrated advantages in the performance
601 assessment for different laboratories and various analysis pipelines, underscoring the
602 need for a shift in RNA-seq benchmarking toward subtle differential expression levels.

603 First, Quartet samples with large-scale reference datasets enabled a more precise and
604 comprehensive assessment of the RNA-seq performance. The performance metrics
605 exhibited a broader range than those from the MAQC samples in terms of SNR values
606 for assessing data quality, correlation coefficients for assessing gene expression
607 accuracy, and MCC coefficients for evaluating the accuracy of DEG calls. This implies
608 a higher discriminative ability for discovering performance differences among different
609 batches, protocols, sites, and analysis tools. Second, Quartet samples allowed for a more
610 sensitive uncovering of technical noise. In the context of subtle biological differences
611 among the Quartet samples, the variations introduced by experimental and

612 bioinformatics factors become more pronounced. Third, the Quartet reference datasets
613 revealed no systemic differences with the RNA-seq data at both absolute and relative
614 expression levels. Methodological differences between RNA-seq and TaqMan RT-
615 qPCR have previously limited gene expression assessments concerning correlation
616 analyzes¹⁴, which are considered to have limitations in representing consistency⁴³. The
617 Quartet reference datasets showed a lower RMSE with RNA-seq data compared to
618 TaqMan datasets, allowing for a direct comparison of the quantitative values of gene
619 expression. On the other hand, the MAQC samples established connections with
620 previous milestone studies, contributing to a deeper understanding of real-world RNA-
621 seq performance based on these traditional RNA reference materials in the community.
622 Moreover, a large-scale TaqMan RT-qPCR dataset for the MAQC samples ensures an
623 unbiased performance assessment, effectively complementing the Quartet reference
624 datasets originated from the Ensembl-HISAT2-StringTie pipeline that may introduce
625 biases especially when assessing diverse RNA-seq analysis pipelines³².

626 In summary, this study unveils significant inter-laboratory variations in real-world
627 transcriptome profiling when detecting subtle differential expression, especially with
628 respect to data quality, absolute expression, and differential gene expression. The
629 investigation of the sources of inter-laboratory variations at both experimental and
630 bioinformatics aspects has highlighted key points for the development and optimization
631 of RNA-seq methods. This study provided best practice recommendations regarding
632 the experimental and bioinformatics design and quality control of RNA-seq (**Table 1**).

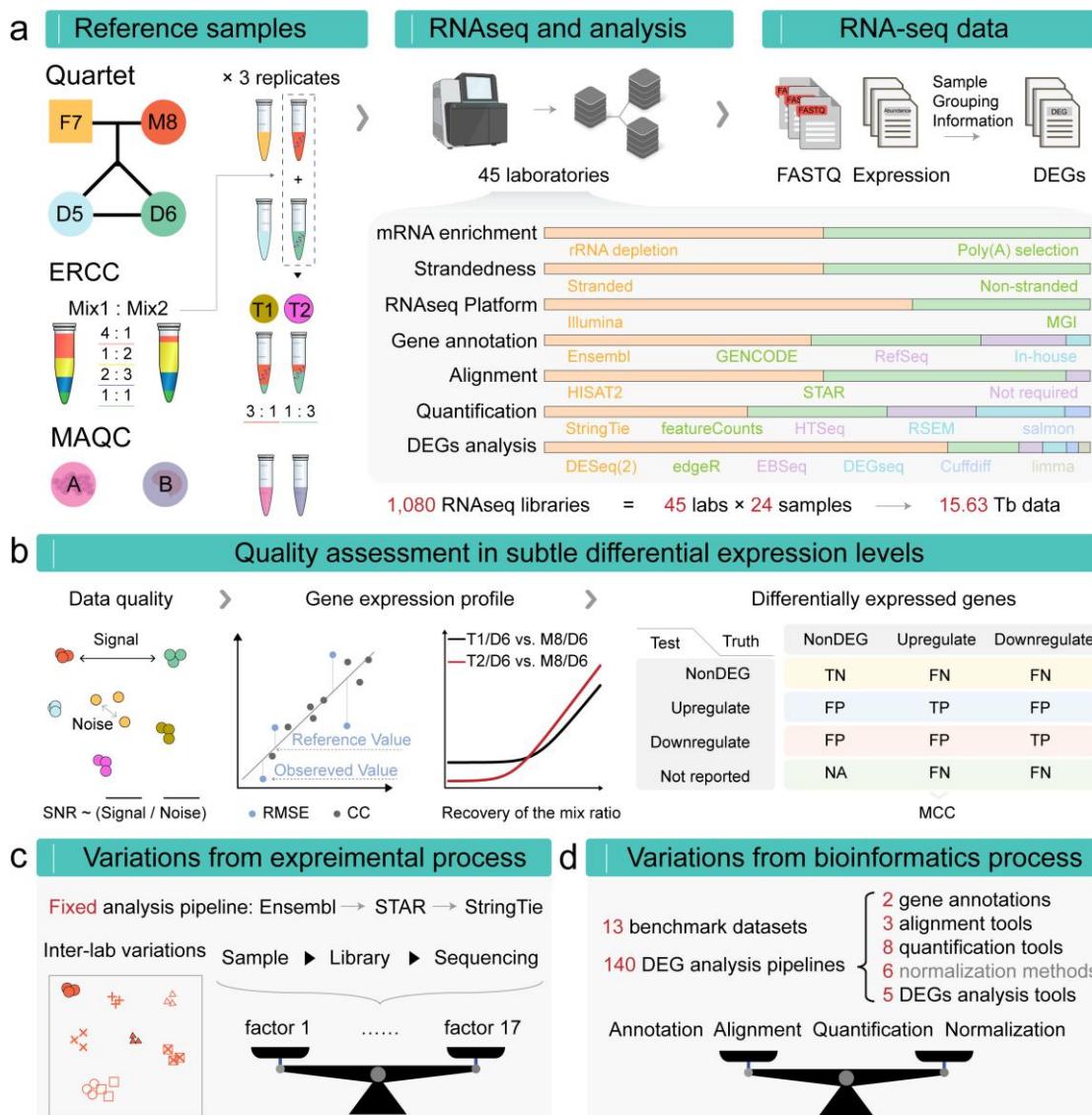
633 These will aid researchers in accurately identifying subtle changes in disease conditions,

634 accelerating the transition of RNA-seq into a diagnostic tool. Furthermore, these data

635 can also be used to address other aspects of transcriptome profiling, including

636 alternative splicing, gene fusion, RNA editing, and RNA variations.

637 **Figure**

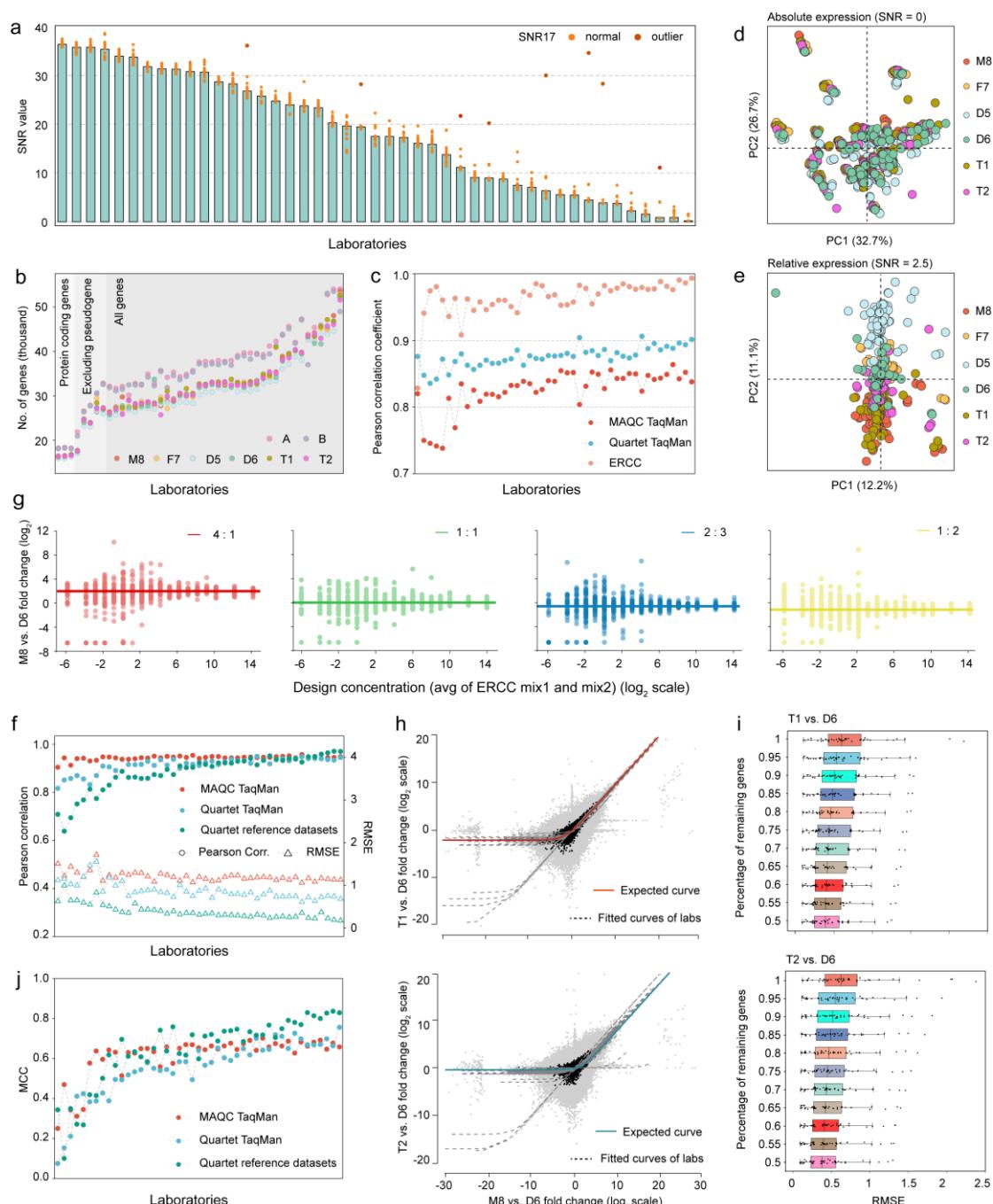


638

639 **Fig. 1 Overview of study design**

640 (a) Two MAQC samples (A = Universal Human Reference RNA and B = Human Brain
 641 Reference RNA), two ERCC synthetic RNA mix, and Quartet RNA reference materials
 642 were utilized to prepare a set of samples. The M8 and D6 samples were combined with
 643 ERCC controls at manufacturer recommended amounts, and then mixed at 3:1 and 1:3
 644 ratios to create sample T1 and T2, respectively. Each sample was prepared with three
 645 replicates, and tested by 45 laboratories with distinct protocols and analysis pipelines,

646 resulting in a total of 1080 libraries and 15.63 Tb of data generated. All 45 laboratories
647 submitted expression data and differential expression calls at gene and transcript levels,
648 while 42 laboratories submitted complete raw sequencing data. DEG, differential
649 expression gene. **(b)** A comprehensive framework for assessment of real-world RNA-
650 seq data, encompassing assessment of data quality using PCA-based SNR, as well as
651 gene expression profiles and differentially expressed genes by comparing with various
652 ground truths. SNR, Signal-to-Noise Ratio; RMSE, Root Mean Square Error; CC,
653 Correlation Coefficient; MCC, Matthews Correlation Coefficient; TN, True Negative;
654 TP, True Positive; FN, False Negative; FP, False Positive. **(c)** A fixed analysis pipeline
655 was applied to all raw data to exclude the influence of the bioinformatic process. Then
656 the relative contributions of experimental factors to inter-laboratory variations were
657 investigated. **(d)** High-quality data from 13 laboratories were selected for the
658 benchmarking study, and the performance of 140 differential analysis pipelines
659 composed of two gene annotations, three alignment tools, eight quantification tools
660 following six normalization methods, and five differential analysis tools was compared
661 to explore the sources of variations from the bioinformatics process.



662

663 **Fig. 2 RNA-seq performance metrics for real-world laboratories**

664 **(a)** SNR values across 45 laboratories to measure data quality. Laboratories were
 665 ordered by SNR values. Dots represented SNR values based on any 17 of the 18 samples
 666 (12 Quartet and 6 mixed samples) in each laboratory. A dot in dark red represented
 667 SNR17 value that increased over five decibels compared to its standard SNR (18-

668 sample SNR), when one library in this laboratory was excluded, while a dot in orange
669 represented SNR17 value that decreased or increased less five decibels compared to its
670 standard SNR. **(b)** The gene types of interest for all laboratories and the corresponding
671 number of genes supported by at least one reads for all three replicates (**Supplementary**
672 **Notes, section 2.4**). Three laboratories analyzed only protein-coding genes, five
673 laboratories excluded pseudogenes from their analysis, and the remaining 37
674 laboratories analyzed all gene types. **(c)** Comparison of absolute expression levels to
675 TaqMan datasets and ERCC concentrations on the \log_2 scale. **(d)** Scatterplots of PCA
676 on RNA-seq data of all laboratories in absolute expression levels, **(e)** and relative
677 expression levels. The circles of the same color represent all replicates across all
678 laboratories for each sample. **(f)** Assessment of relative expression levels using Pearson
679 correlation coefficient and the Root Mean Square Error (RMSE) based on Quartet
680 reference datasets and TaqMan datasets on the \log_2 scale. **(g)** ERCC spike-in ratios can
681 be recovered increasingly well at higher expression levels. **(h)** A consistency test for
682 recovering the expected sample mixing ratio in samples T1 and T2. The red and cyan
683 solid line traces the expected curve after mRNA/total-RNA shift correction. The grey
684 dashed lines indicate the fitted curves from data of laboratories. The ERCC genes are
685 shown in black, and the other human genes are shown in grey. **(i)** The ability to recover
686 expected mixing ratios was measured using RMSE between the observed expression
687 profiles and the expected expression profiles. As genes with low fold changes were
688 progressively filtered out, the RMSE across all laboratories decreased, indicating an

689 increase of accuracy. The different colors in the box plots represent varying percentage

690 of filtered genes. **(j)** Comparison of differentially expressed genes to Quartet reference

691 datasets and TaqMan datasets using Matthews Correlation Coefficients (MCC).

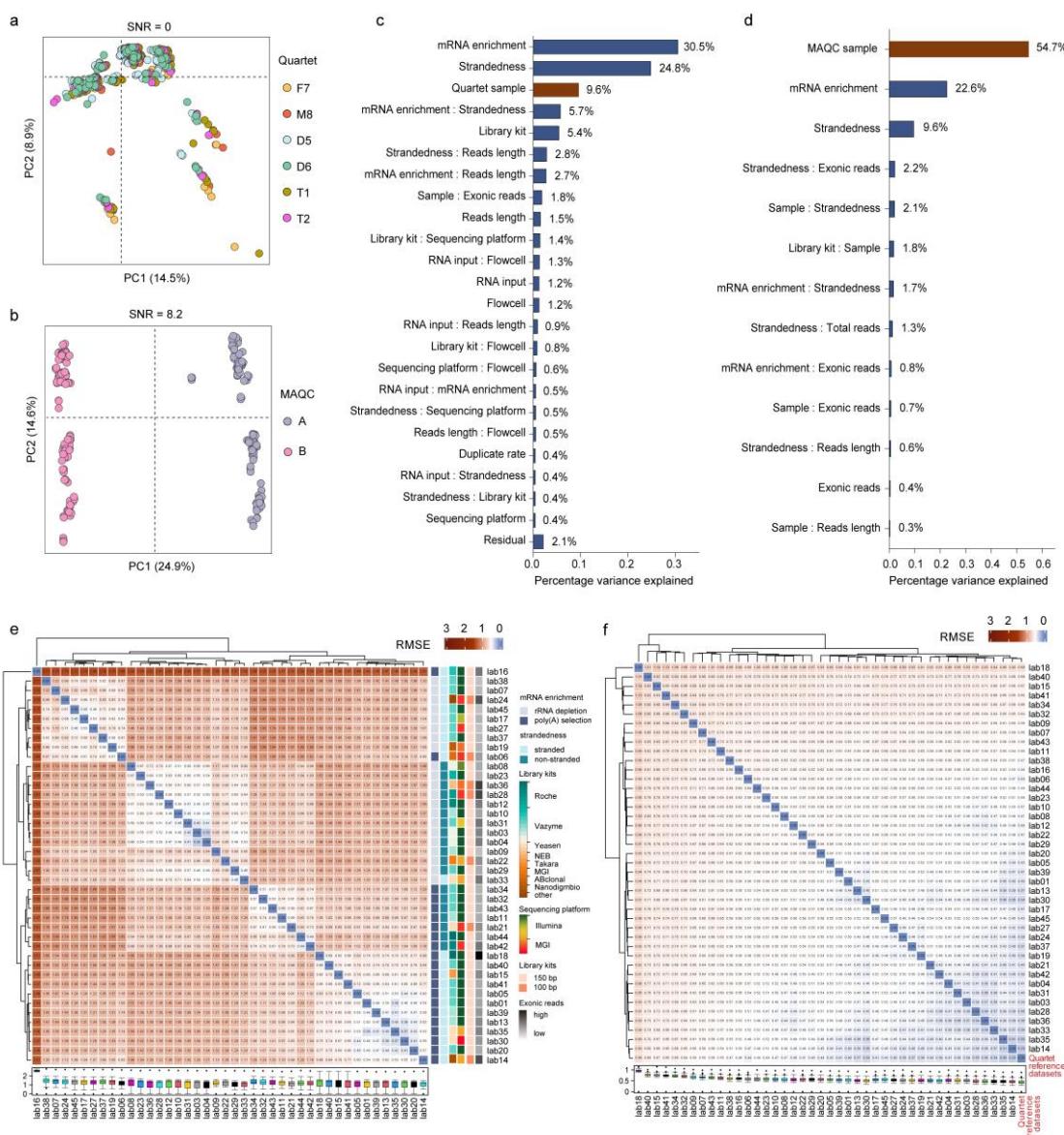
692

693

694

695

696



697

698 **Fig. 3 Sources of variation from the experimental process**

699 **(a)** Scatterplots of PCA on RNA-seq data of all laboratories for Quartet samples, **(b)**
700 and MAQC samples after applying fixed analysis pipeline. The circles of the same color
701 represent all replicates across all laboratories for each sample. **(c)** Principal variance
702 component analysis quantifies the proportion of variance explained by each
703 experimental factor for Quartet samples, **(d)** and MAQC samples. **(e)** Heatmap and
704 hierarchical clustering of different laboratories based on the RMSE at absolute

705 expression levels, **(f)** and relative expression levels for Quartet samples. RMSE, Root

706 Mean Square Error.

707

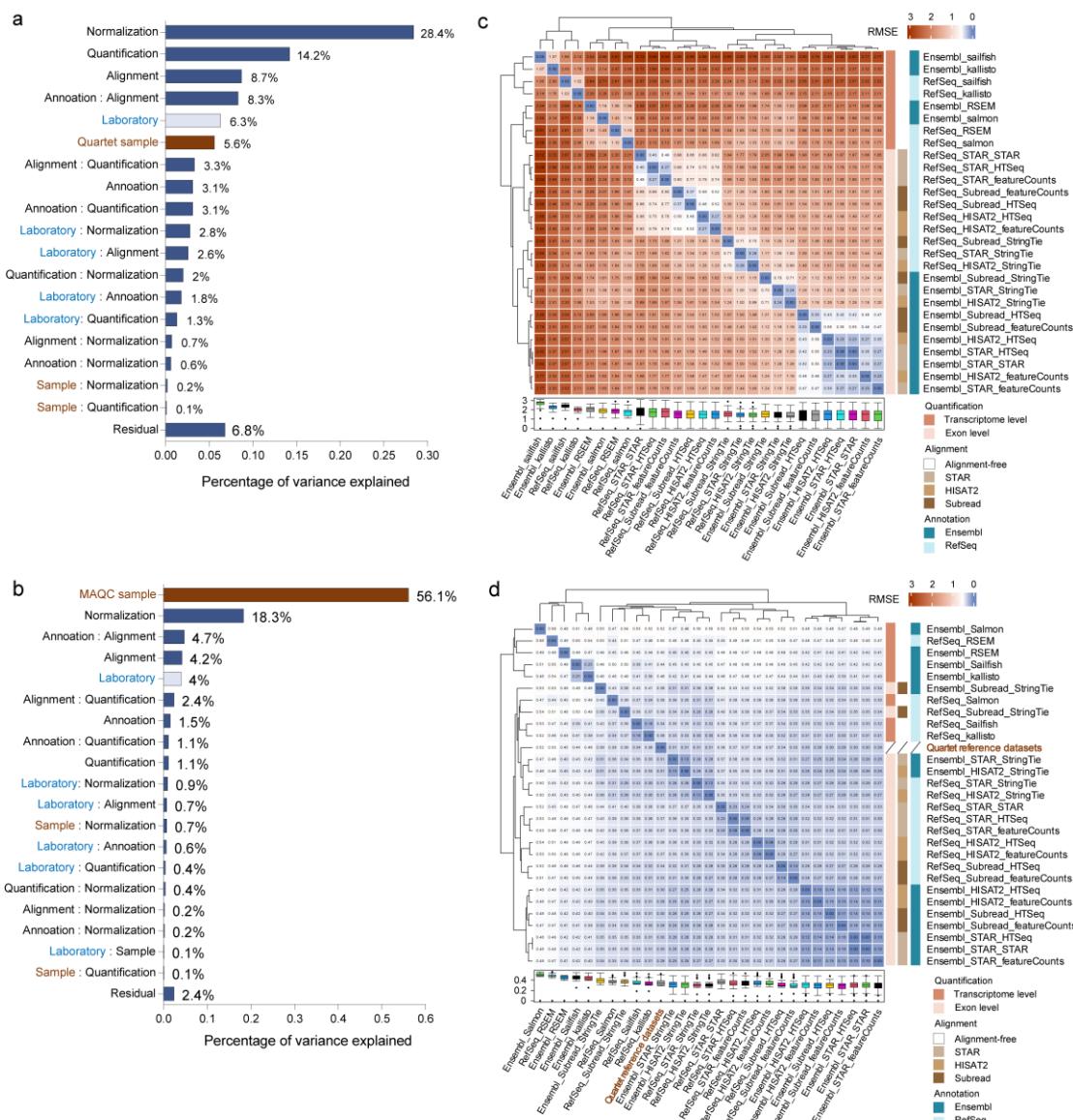
708

709

710

711

712

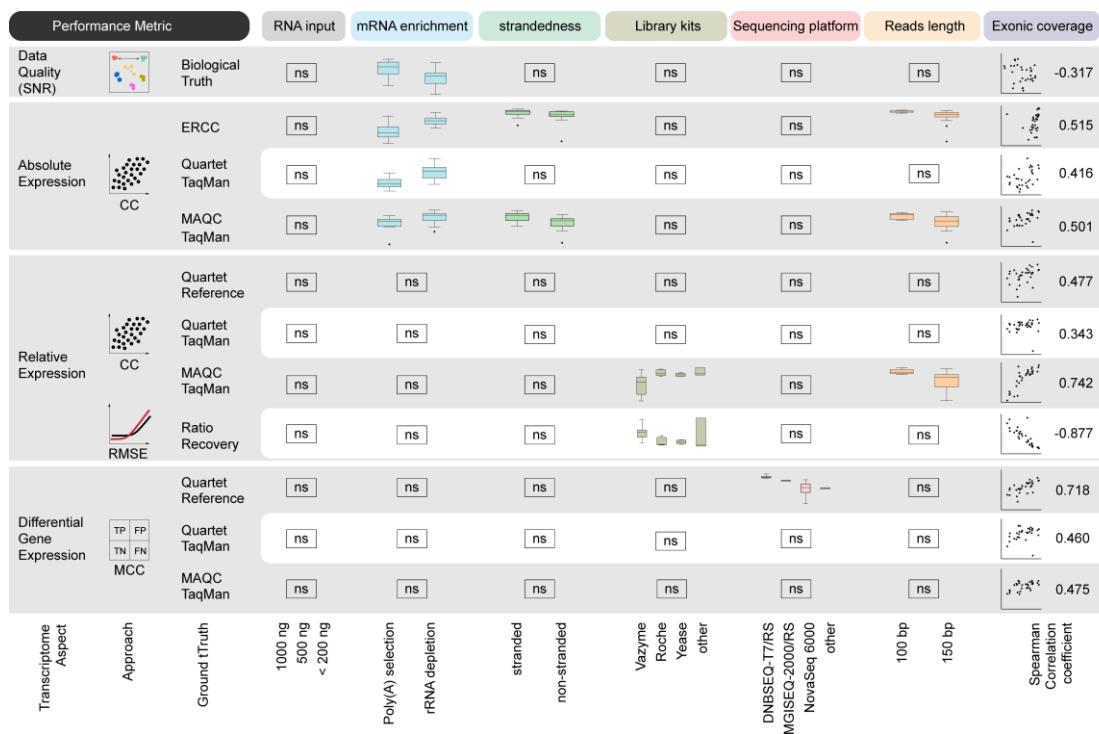


713

714 **Fig. 4 Sources of variation from the bioinformatics process**

715 **(a)** Principal variance component analysis quantifies the proportion of variance
 716 explained by each data analysis step for Quartet samples, **(b)** and MAQC samples. **(c)**
 717 Heatmap and hierarchical clustering of 28 gene quantification pipelines based on the
 718 RMSE at absolute expression levels, **(d)** and relative expression levels. RMSE, Root
 719 Mean Square Error.

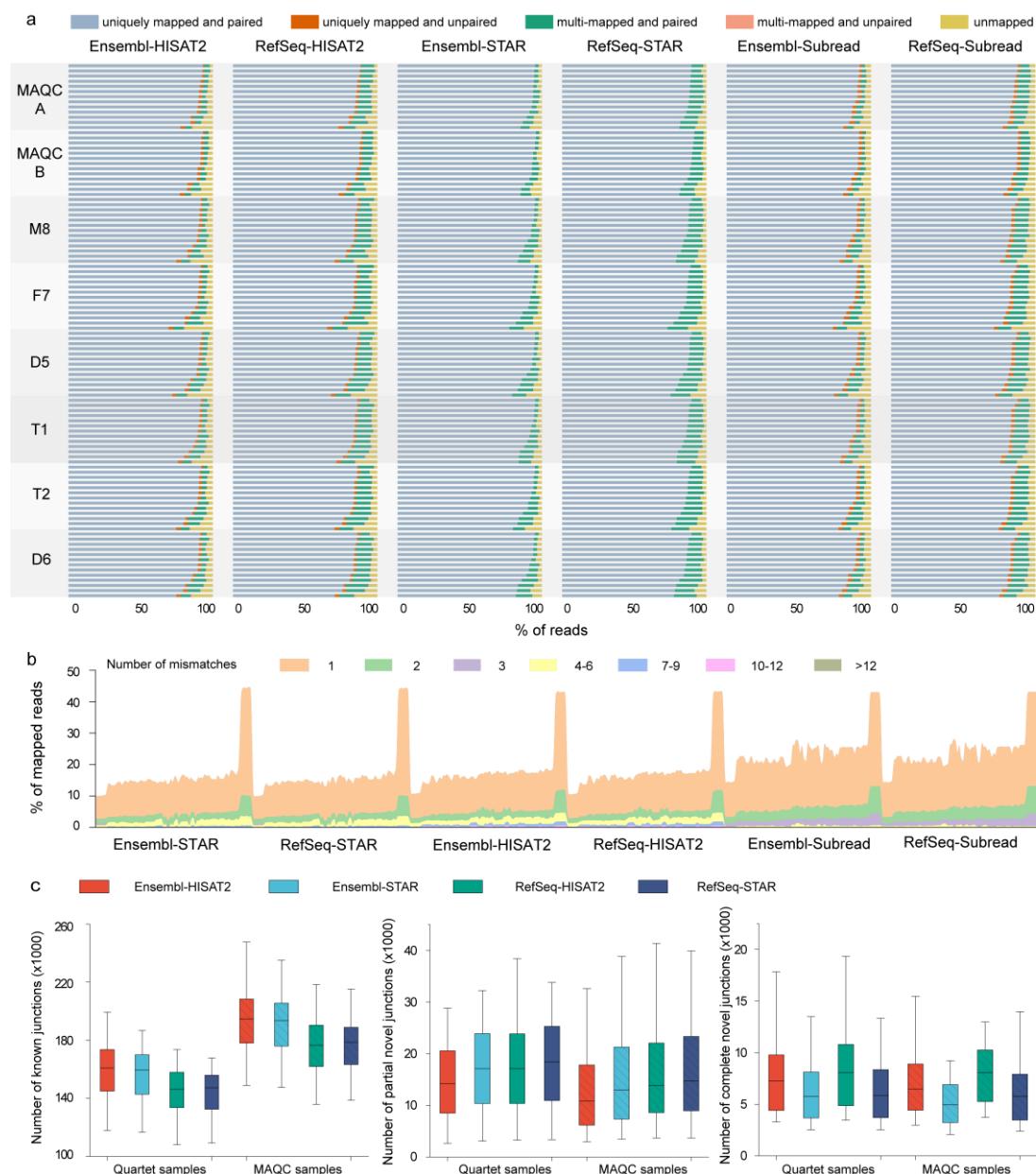
720



721

722 **Fig. 5 The influence of experimental factors based on different performance**
723 **metrics**

724 Performance metrics included SNR for data quality, correlation coefficient for accuracy
725 of absolute and relative expression, RMSE for recovery of mixing ratios, and MCC for
726 differential gene expression. The impact of exonic coverage is evaluated by Spearman
727 correlation analyzes. Significance testing was conducted based on normal distribution
728 assumptions using one-way analysis of variance (ANOVA) and paired t-tests, or, in
729 cases where normal distribution was not observed, independent samples were subjected
730 to Kruskal-Wallis test and Mann-Whitney U test. ** indicates a p-value < 0.05. ns, not
731 significant; SNR, Signal-to-Noise Ratio; RMSE, Root Mean Square Error; CC,
732 Correlation Coefficient; MCC, Matthews Correlation Coefficient; TN, True Negative;
733 TP, True Positive; FN, False Negative; FP, False Positive.



734

735 **Fig. 6 Performance of different alignment schemes**

736 **(a)** Distribution of mapping status of sequenced reads for six combinations of
737 annotation and alignment tools. The 13 benchmark datasets corresponding to each
738 sample are arranged in descending order based on the uniquely mapping rate. **(b)**
739 Distribution of the number of reads with mismatch bases. **(c)** Comparison of known
740 junctions (left), partially novel (middle), and completely novel junctions (right)

741 detected by different alignment approaches in Quartet and MAQC samples. Only

742 junctions supported by at least one reads for all three replicates were included.

743

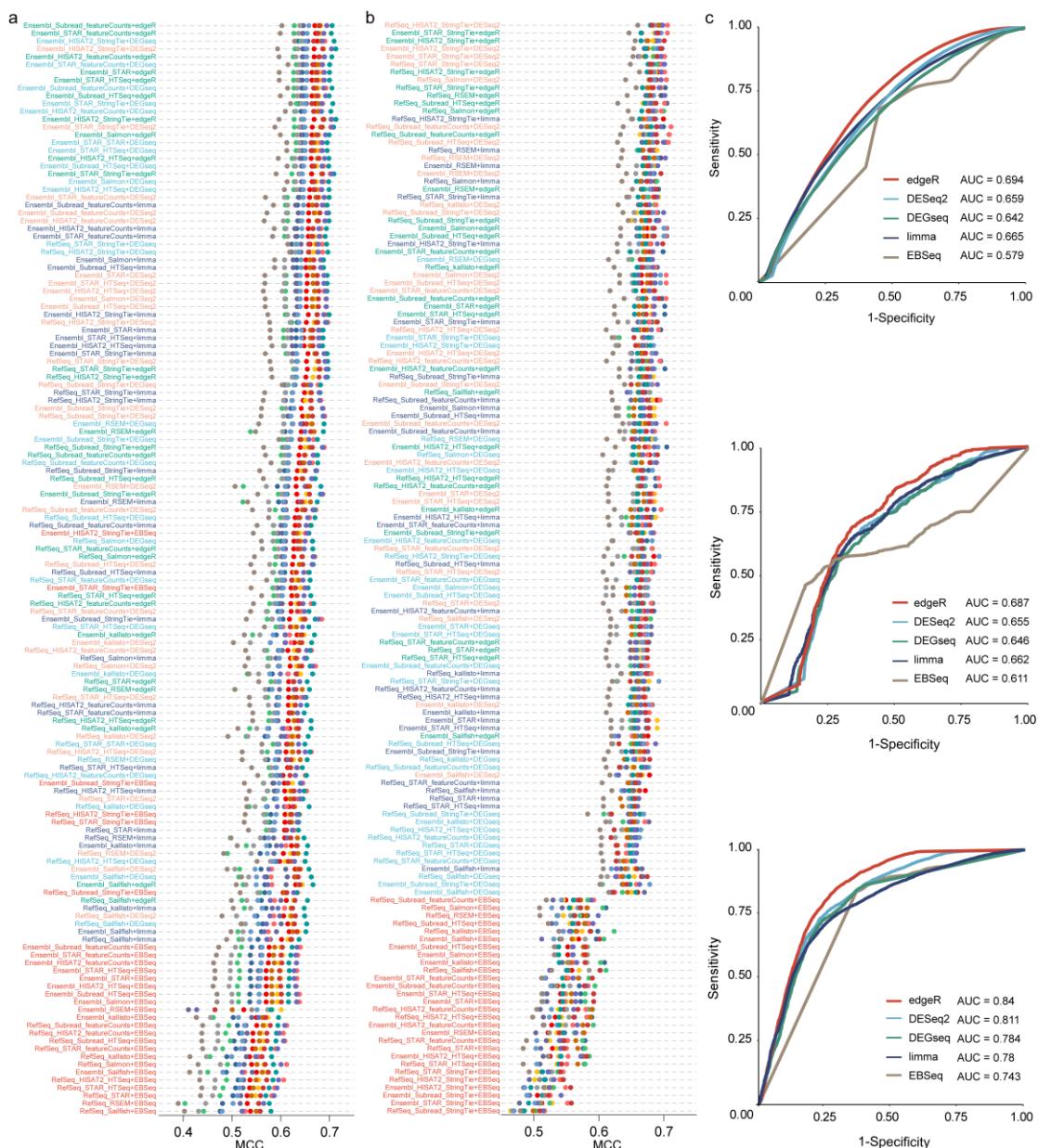
744

745

746

747

748



749

750 **Fig. 7 Performance of differential gene expressions analysis tools**

751 **(a)** The Matthews Correlation Coefficients (MCC) was measured based on Quartet
 752 reference datasets, and **(b)** MAQC TaqMan dataset. **(c)** ROC analysis of genes in
 753 Quartet reference datasets (up), Quartet TaqMan dataset (middle), and MAQC TaqMan
 754 dataset (down). For each differential analysis tool, the plot reflects average performance
 755 when different annotations, alignment tools, and quantification tools are used for gene
 756 expression estimation. The RNA-seq data from lab01 was utilized to calculated the

757 AUC values, and the AUC values for other high-quality benchmark datasets were
758 displayed in **Supplementary Figure 50**. AUC, Area Under the receiver operating
759 characteristic Curve.

Table 1. Best practice recommendations.

Key considerations	Recommendations
1. RNA-seq performance in real-world laboratory setting	<p>RNA-seq performance</p> <p>RNA-seq still presents challenges in two aspects:</p> <ul style="list-style-type: none"> detecting subtle differential expression. real-world scenarios characterized by a lack of quality control and significantly diverse workflows.
2. The sources of variations among laboratories	<p>Experimental process</p> <p>The magnitude of the variation</p> <ul style="list-style-type: none"> Significantly exceeding the biological differences among Quartet samples but remaining smaller than those between MAQC samples <p>Sources of variation</p> <ul style="list-style-type: none"> mRNA enrichment method, strandedness, library kits, reads length, and exonic reads. <p>Bioinformatics process</p> <p>The magnitude of the variation</p> <ul style="list-style-type: none"> Comparable to variations from the experimental process and exceeding the biological differences between the Quartet samples. <p>Sources of variation</p> <ul style="list-style-type: none"> Primarily normalization, followed by quantification, alignment, annotation.
3. Best practices for experimental and bioinformatics design and quality control of RNA-seq	<p>Experimental design</p> <p>General principles</p> <ul style="list-style-type: none"> The quality of experimental execution is more important than the choices of experimental protocols. The choice of experimental protocols should be determined by the research goals (sample types and quality, and gene types of interest). <p>Impact of specific experimental factors</p>

	<ul style="list-style-type: none"> • Data quality (SNR): poly(A) selection method is higher than rRNA depletion method. • Absolute expression: rRNA depletion method, stranded library, 100 bp of read length, and higher exonic coverage are correlated with higher accuracy. • Relative expression: library kits, exonic coverage (To be confirmed). • Differential gene expression: exonic coverage (To be confirmed).
Bioinformatics design	<p>Normalization</p> <ul style="list-style-type: none"> • TMM or DESeq <p>Gene annotation</p> <ul style="list-style-type: none"> • Ensembl annotation when using genome- or transcriptome-alignment quantification tools; RefSeq when using pseudoalignment quantification tools. <p>Alignment</p> <ul style="list-style-type: none"> • The impact of different alignment tools on differential expression measurement is minimal. • The combination of Ensembl annotation and STAR exhibits high alignment rates. <p>Quantification</p> <ul style="list-style-type: none"> • Exon-level quantification tools, particularly featureCounts, and HTSeq. <p>Filtering of low-expression genes</p> <ul style="list-style-type: none"> • The filtering thresholds vary with different samples and analysis pipelines. • If benchmark datasets are available, balancing TPR and precision is feasible; otherwise, maximizing the number of DEGs is an efficient approach. <p>Differential analysis tools</p> <ul style="list-style-type: none"> • edgeR and DESeq2.
Quality control	<p>Reference materials</p> <ul style="list-style-type: none"> • Reference materials with small biological differences are required to ensure the quality of detecting clinically relevant subtle differential expression.

- Reference materials with subtle differential expression allow for more precise assessment of RNA-seq quality, and are more sensitive in uncovering issues within the RNA-seq system.

Basic quality metrics

- Sequencing QC: base quality scores, GC content, insert size ²².
- Alignment QC: gene coverage, gene mapping rate, sample swaps and contaminations ²².

RNA-seq performance assessment framework

- Expression data quality: PCA-based SNR.
- Accuracy of gene expression: RMSE or CC.
- Accuracy of DEG classification: penalized MCC.

761 SNR, Signal-to-Noise Ratio; RMSE, Root Mean Square Error; CC, Correlation Coefficient; MCC, Matthews Correlation Coefficient; QC, Quality Control.

762 **Reference**

- 763 1. Stark, R., Grzelak, M. & Hadfield, J. RNA sequencing: the teenage years. *Nat Rev Genet* **20**, 631-656 (2019).
- 764 2. Habgood-Coote, D. et al. Diagnosis of childhood febrile illness using a multi-class blood RNA molecular signature. *Med* (2023).
- 765 3. Tan, Z. et al. Comprehensive analysis of scRNA-Seq and bulk RNA-Seq reveals dynamic changes in the tumor immune microenvironment of bladder cancer and establishes a prognostic model. *Journal of translational medicine* **21**, 223 (2023).
- 766 4. Nicot, C. RNA-seq reveals novel CircRNAs involved in breast cancer progression and patient therapy response. *Molecular cancer* **19**, 76 (2020).
- 767 5. Slattery, M.L., Herrick, J.S., Mullany, L.E., Gertz, J. & Wolff, R.K. Improved survival among colon cancer patients with increased differentially expressed pathways. *BMC medicine* **13**, 75.
- 768 6. Li, Y. et al. Transcriptomics based multi-dimensional characterization and drug screen in esophageal squamous cell carcinoma. *EBioMedicine* **70**, 103510.
- 769 7. Grossman, R.L. et al. Toward a Shared Vision for Cancer Genomic Data. *N Engl J Med* **375**, 1109-1112 (2016).
- 770 8. Jiang, Y.-Z. et al. Genomic and Transcriptomic Landscape of Triple-Negative Breast Cancers : Subtypes and Treatment Strategies. *Cancer cell* **35**, 428-440.e425.
- 771 9. Lessi, F. et al. Molecular profiling of microinvasive breast cancer microenvironment progression. *Journal of translational medicine* **17**, 187.
- 772 10. Ren, Z. et al. Distinct placental molecular processes associated with early-onset and late-onset preeclampsia. *Theranostics* **11**, 5028-5044 (2021).
- 773 11. Toor, S.M. et al. Differential gene expression of tumor-infiltrating CD33(+) myeloid cells in advanced- versus early-stage colorectal cancer. *Cancer Immunol Immunother* **70**, 803-815 (2021).
- 774 12. Shi, L. et al. The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. *Nat Biotechnol* **24**, 1151-1161 (2006).
- 775 13. Munro, S.A. et al. Assessing technical performance in differential gene expression experiments with external spike-in RNA control ratio mixtures. *Nature Communications* **5**, 5125 (2014).
- 776 14. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. *Nat Biotechnol* **32**, 903-914 (2014).
- 777 15. Li, S. et al. Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study. *Nat Biotechnol* **32**, 915-925 (2014).
- 778 16. Li, S. et al. Detecting and correcting systematic variation in large-scale RNA sequencing data. *Nat Biotechnol* **32**, 888-895 (2014).
- 779 17. Schuierer, S. et al. A comprehensive assessment of RNA-seq protocols for degraded and low-quality samples. *BMC genomics* **18**, 442 (2017).
- 780 18. Chisanga, D., Liao, Y. & Shi, W. Impact of gene annotation choice on the quantification of RNA-seq data. *BMC Bioinformatics* **23**, 107 (2022).
- 781 19. Everaert, C. et al. Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data. *Sci Rep* **7**, 1559 (2017).
- 782 20. Sahraeian, S.M.E. et al. Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis. *Nat Commun* **8**, 59 (2017).
- 783 21. Rapaport, F. et al. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. *Genome Biol* **14**, R95 (2013).
- 784 22. t Hoen, P.A. et al. Reproducibility of high-throughput mRNA and small RNA sequencing across laboratories. *Nat Biotechnol* **31**, 1015-1022 (2013).

814 23. Yu, Y. et al. Quartet RNA reference materials improve the quality of transcriptomic
815 data through ratio-based profiling. *Nat Biotechnol*, 10.1038/s41587-41023-01867-
816 41589 (2023).

817 24. Zheng, Y. et al. Multi-omics data integration using ratio-based quantitative profiling
818 with Quartet reference materials. *Nat Biotechnol*, 10.1038/s41587-41023-01934-
819 41581.

820 25. Kwon, S., Park, S., Lee, B. & Yoon, S. In-depth analysis of interrelation between
821 quality scores and real errors in Illumina reads. *Annual International Conference of*
822 *the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in*
823 *Medicine and Biology Society. Annual International Conference* **2013**, 635-638
824 (2013).

825 26. Love, M.I., Hogenesch, J.B. & Irizarry, R.A. Modeling of RNA-seq fragment
826 sequence bias reduces systematic errors in transcript abundance estimation. *Nat*
827 *Biotechnol* **34**, 1287-1291 (2016).

828 27. Parekh, S., Ziegenhain, C., Vieth, B., Enard, W. & Hellmann, I. The impact of
829 amplification on differential expression analyses by RNA-seq. *Sci Rep* **6**, 25533
830 (2016).

831 28. Bansal, V. A computational method for estimating the PCR duplication rate in DNA
832 and RNA-seq experiments. *BMC Bioinformatics* **18**, 43 (2017).

833 29. Risso, D., Schwartz, K., Sherlock, G. & Dudoit, S. GC-content normalization for
834 RNA-Seq data. *BMC Bioinformatics* **12**, 480 (2011).

835 30. Hita, A. et al. MGcount: a total RNA-seq quantification tool to address multi-
836 mapping and multi-overlapping alignments ambiguity in non-coding transcripts. *BMC*
837 *Bioinformatics* **23**, 39 (2022).

838 31. Nieuwenhuis, T.O. et al. Consistent RNA sequencing contamination in GTEx and
839 other data sets. *Nature communications* **11**, 1933 (2020).

840 32. Yu, Y. et al. Quartet RNA reference materials improve the quality of transcriptomic
841 data through ratio-based profiling. *Nat Biotechnol* (2023).

842 33. Zhao, S., Zhang, Y., Gamini, R., Zhang, B. & von Schack, D. Evaluation of two main
843 RNA-seq approaches for gene quantification in clinical RNA sequencing: polyA+
844 selection versus rRNA depletion. *Sci Rep* **8**, 4781 (2018).

845 34. Zhao, S. et al. Comparison of stranded and non-stranded RNA-seq transcriptome
846 profiling and investigation of gene overlap. *BMC Genomics* **16**, 675 (2015).

847 35. Chao, H.-P. et al. Systematic evaluation of RNA-Seq preparation protocol
848 performance. *BMC genomics* **20**, 571.

849 36. Schuierer, S. et al. A comprehensive assessment of RNA-seq protocols for degraded
850 and low-quantity samples. *BMC Genomics* **18**, 442 (2017).

851 37. Tong, L. et al. Impact of RNA-seq data analysis algorithms on gene expression
852 estimation and downstream prediction. *Scientific reports* **10**, 17925 (2020).

853 38. Conesa, A. et al. A survey of best practices for RNA-seq data analysis. *Genome*
854 *biology* **17**, 13.

855 39. Palomares, M.A. et al. Systematic analysis of TruSeq, SMARTer and SMARTer
856 Ultra-Low RNA-seq kits for standard, low and ultra-low quantity samples. *Sci Rep* **9**,
857 7550 (2019).

858 40. Dillies, M.-A. et al. A comprehensive evaluation of normalization methods for
859 Illumina high-throughput RNA sequencing data analysis. *Briefings in bioinformatics*
860 **14**, 671-683.

861 41. Baruzzo, G. et al. Simulation-based comprehensive benchmarking of RNA-seq
862 aligners. *Nat Methods* **14**, 135-139 (2017).

863 42. Sha, Y., Phan, J.H. & Wang, M.D. Effect of low-expression gene filtering on detection
864 of differentially expressed genes in RNA-seq data. *Annu Int Conf IEEE Eng Med Biol*
865 *Soc* **2015**, 6461-6464 (2015).

866 43. Janse, R.J. et al. Conducting correlation analysis: important limitations and pitfalls.
867 *Clin Kidney J* **14**, 2332-2337 (2021).

868 44. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ
869 preprocessor. *Bioinformatics* **34**, i884-i890 (2018).

870 45. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21
871 (2013).

872 46. Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from
873 RNA-seq reads. *Nat Biotechnol* **33**, 290-295 (2015).

874 47. García-Alcalde, F. et al. Qualimap: evaluating next-generation sequencing alignment
875 data. *Bioinformatics (Oxford, England)* **28**, 2678-2679 (2012).

876 48. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis
877 results for multiple tools and samples in a single report. *Bioinformatics (Oxford, England)* **32**,
878 3047-3048 (2016).

879 49. Kim, D., Paggi, J.M., Park, C., Bennett, C. & Salzberg, S.L. Graph-based genome
880 alignment and genotyping with HISAT2 and HISAT-genotype. *Nat Biotechnol* **37**,
881 907-915 (2019).

882 50. Liao, Y., Smyth, G.K. & Shi, W. The Subread aligner: fast, accurate and scalable read
883 mapping by seed- and-vote. *Nucleic Acids Res* **41**, e108 (2013).

884 51. Liao, Y., Smyth, G.K. & Shi, W. featureCounts: an efficient general purpose program
885 for assigning sequencing reads to genomic features. *Bioinformatics (Oxford, England)* **30**,
886 923-930 (2014).

887 52. Anders, S., Pyl, P.T. & Huber, W. HTSeq--a Python framework to work with high-
888 throughput sequencing data. *Bioinformatics (Oxford, England)* **31**, 166-169 (2015).

889 53. Li, B. & Dewey, C.N. RSEM: accurate transcript quantification from RNA-Seq data
890 with or without a reference genome. *BMC bioinformatics* **12**, 323 (2011).

891 54. Bray, N.L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-
892 seq quantification. *Nat Biotechnol* **34**, 525-527 (2016).

893 55. Patro, R., Duggal, G., Love, M.I., Irizarry, R.A. & Kingsford, C. Salmon provides fast
894 and bias-aware quantification of transcript expression. *Nature methods* **14**, 417-419
895 (2017).

896 56. Patro, R., Mount, S.M. & Kingsford, C. Sailfish enables alignment-free isoform
897 quantification from RNA-seq reads using lightweight algorithms. *Nat Biotechnol* **32**,
898 462-464 (2014).

899 57. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for
900 differential expression analysis of digital gene expression data. *Bioinformatics (Oxford, England)* **26**,
901 139-140 (2010).

902 58. Ritchie, M.E. et al. limma powers differential expression analyses for RNA-
903 sequencing and microarray studies. *Nucleic Acids Res* **43**, e47 (2015).

904 59. Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and
905 dispersion for RNA-seq data with DESeq2. *Genome biology* **15**, 550 (2014).

906 60. Wang, L., Feng, Z., Wang, X., Wang, X. & Zhang, X. DEGseq: an R package for
907 identifying differentially expressed genes from RNA-seq data. *Bioinformatics (Oxford, England)* **26**,
908 136-138 (2010).

909 61. Leng, N. et al. EBSeq: an empirical Bayes hierarchical model for inference in RNA-
910 seq experiments. *Bioinformatics (Oxford, England)* **29**, 1035-1043 (2013).

911 62. Li, H. et al. The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**,
912 2078-2079 (2009).

913 63. Wang, L., Wang, S. & Li, W. RSeQC: quality control of RNA-seq experiments.
914 *Bioinformatics* **28**, 2184-2185 (2012).

915 64. Soneson, C., Love, M.I. & Robinson, M.D. Differential analyses for RNA-seq:
916 transcript-level estimates improve gene-level inferences. *F1000Res* **4**, 1521 (2015).

917 65. Robinson, M.D. & Oshlack, A. A scaling normalization method for differential
918 expression analysis of RNA-seq data. *Genome Biol* **11**, R25 (2010).

919 66. Bullard, J.H., Purdom, E., Hansen, K.D. & Dudoit, S. Evaluation of statistical
920 methods for normalization and differential expression in mRNA-Seq experiments.
921 *BMC Bioinformatics* **11**, 94 (2010).

922 67. Tarazona, S. et al. Data quality aware analysis of differential expression in RNA-seq
923 with NOISeq R/Bioc package. *Nucleic Acids Res* **43**, e140 (2015).

924 68. Anders, S. & Huber, W. Differential expression analysis for sequence count data.
925 *Genome Biol* **11**, R106 (2010).

926 69. Li, J., Bushel, P.R., Chu, T.-M. & Wolfinger, R.D. in Batch Effects and Noise in
927 Microarray Experiments 141-154 (2009).

928

929 **Materials and Methods**

930 ***RNA Reference samples preparation***

931 Four Quartet RNA reference materials (M8, F7, D6, D5) were used ³², and External
932 RNA Control Consortium (ERCC) spike-in transcripts were added to M8 and D6
933 samples at manufacturer recommended amounts (4456740, Thermo Fisher Scientific)
934 ¹³. Samples T1 and T2 represent mixtures of samples M8 and D6 at the defined ratios
935 of 3:1 and 1:3, respectively, and thus hold ‘built-in truths’ of sample mixing ratios.
936 Universal Human Reference RNA (740000, Agilent Technologies) and Human Brain
937 Reference RNA (QS0611, Thermo Fisher Scientific) were used, which were labeled as
938 MAQC samples A and B by MAQC Consortium ¹². MAQC B sample was paired with
939 MAQC A sample as a control sample for differential analysis, while Quartet D6 sample
940 served as a control sample for differential analysis of sample M8, F7, D5, T1, and T2.
941 Based on these reference materials, three technical replicates were prepared for 8 RNA
942 samples, resulting in a total of 24 RNA samples (**Fig. 1a**). All the samples dispensed as
943 8 µL aliquots into 200 µL thin-wall polypropylene PCR tubes with a concentration of
944 200 ng/µL and stored at -80 °C.

945 ***RNA-seq workflow***

946 The samples were transported to each laboratory on dry ice, and the ERCC reference
947 sequences and gene annotation files were provided with the names of the 92 ERCC
948 genes modified to ‘SPIKEIN’ followed by the corresponding identifier. Laboratories
949 conducted the experiments and data analysis following their routine procedures. To
950 accurately capture batch effects within the laboratories, the sample grouping
951 information was provided to the laboratories after they submitted the sample quality
952 results, raw FASTQ files, and quantification results at the gene and transcript levels.

953 Subsequently, laboratories were required to submit differential analysis results at gene
954 and transcript level, and alternative splicing results.

955 **TaqMan RT-qPCR**

956 Primers and TaqMan probes were designed for 91 genes based on the RNA sequences.
957 Among them, *CIORF43* was selected as the reference gene for the PCR method.
958 Primers and probes were synthesized by Sangon Biotech, and the sequences are shown
959 in **Supplementary Table 5**. Before proceeding with the bulk qPCR experiments, we
960 designed two sets of primers and probes for the reference gene and the target gene
961 (*CD180*) to verify the acceptable impact of primer and probe selection on the results.
962 Then the amplification efficiency of the primers and probes was confirmed to meet the
963 requirements by performing gradient dilution experiments with the samples. The results
964 of the *CD180* gene were used for inter-batch quality control for qPCR experiments.

965 Five µg of each Quartet RNA sample was reverse transcribed using the PrimeScript™
966 RT reagent Kit (RR037A, TaKaRa) in a 50 µl reaction. This reaction mixture was
967 incubated at 37 °C for 15 minutes, then for 5 seconds at 85 °C and finally for termination
968 at 4 °C. cDNA obtained in the previous step was used as template for qPCR. qPCR
969 reactions were run in 96-well plates, the qPCR reactions were carried out using Premix
970 Ex Taq™ (RR390A, TaKaRa) containing 2 µL of cDNA, 0.4 µL of each forward and
971 reverse primers, 0.8 µL of TaqMan probes in a 20 µL final volume reaction. The qPCR
972 was performed on an Applied Biosystems 7500 Real-Time PCR System using the
973 following cycling conditions: 30 seconds at 95 °C followed by 45 cycles of 5 seconds
974 at 95 °C and 34 seconds at 56 °C. Three replicates per sample per gene were conducted
975 for eliminating random variations.

976 Comparative Ct method (delta delta Ct method) was used to calculate the fold
977 differences for the three sample pairs (M8/D6, F7/D6 and D5/D6) with housekeeping

978 gene *CIORF43* as endogenous control. For the RT-qPCR data, a gene is classified as
979 differentially expressed gene (DEG) when the student's t-test p-value < 0.05 and fold
980 change ≥ 2 or ≤ 0.5 .

981 TaqMan data for MAQC samples A and B were obtained through the Gene Expression
982 Omnibus database (accession number GSE5350), which was processed as above.
983 Undetectable CT values (CT>35 or CT=0) were removed prior to normalization. The
984 differential gene analysis was performed as previous study, with gene *POLR2A* serving
985 as endogenous control ¹⁵.

986 ***Relative expression calculation***

987 Relative expression data were obtained within each laboratory on a gene-by-gene basis.
988 Specifically, relative expressions were calculated based on log₂FPKM values. For each
989 gene, the mean of expression profiles of replicates of reference sample(s) (for example,
990 D6) was first calculated and then were subtracted from the log₂FPKM values of that
991 gene in other samples.

992 ***RNA-seq performance metrics***

993 The PCA-based SNR was used to assess the data quality at the gene expression level,
994 which reflected the ability of data to distinguish the intrinsic biological differences
995 among different sample groups from technical noises present in replicates. The
996 calculation method of PCA-based SNR as shown in the previous study ²³. Genes with
997 at least one reads in all selected samples were included for PCA analysis. The Pearson
998 correlation coefficient was used to evaluate the consistency between the observed
999 absolute or relative expression and the ground truth. The RMSE was used to measure
1000 the difference between RNA-seq data and Quartet reference datasets and TaqMan
1001 datasets. The MCC were used to measure consistency of DEGs detected from a dataset
1002 for a given pair of samples with those from the reference datasets. The true positives,

1003 true negatives, false positives, and false negatives were judged as shown in Fig. 1b.

1004 Then MCC was calculated as follow:

1005
$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP+FP)(TP+FN)(TN+FP)(TN+FN)}}$$

1006 Mixing M8 and D6 into T1 and T2 samples allows for complementary assessment of
1007 the accuracy and reproducibility of RNA-seq. The fold changes between M8/D6, T1/D6,
1008 and T2/D6 comparisons should adhere to the following equation. A nonlinear robust fit
1009 (nlrob) was performed for RNA-seq data from laboratories, and the fitted curves were
1010 compared to expected curves (**Fig. 1b**). Then, the RMSE between the observed fold
1011 changes and the expected fold changes from the following equation for T1 or T2 versus
1012 D6 were calculated.

1013
$$\log_2 y = \log_2(k1 + k2 * 2^{\log_2 x})$$

1014 where y represents the expected fold change for T1 or T2 versus D6 and x represents
1015 the fold change for M8 versus D6. The correction z of the known mixing coefficients
1016 $k1 = z/(z+3)$ and $k2 = 3z/(3z+1)$ arising out of different ratios of mRNA versus total
1017 RNA in the samples M8 and D6 has been determined by RT-qPCR assay. In brief, 10
1018 genes with a broad range of fold change were tested using RT-qPCR, and average z
1019 values from 10 RT-qPCR results were calculated for samples T1 and T2. The obtained
1020 z values were 0.974 ± 0.06 for T1 and 0.949 ± 0.09 for T2. Then, the z values obtained
1021 from the top ten laboratories' RNA-seq data, capable of recovering of mixed ratios, are
1022 0.965 ± 0.024 and 0.941 ± 0.026 for sample T1 and T2, which further validate the
1023 correction values. Finally, the z values from RT-qPCR assays were used.

1024 ***Alignment and gene quantification***

1025 To analyze the sources of variation from the experimental process, we employed the
1026 same analysis pipeline for raw FASTQ data from all laboratories. Preliminary
1027 processing of raw reads was performed using fastp (v.0.23.2) to remove adapter

1028 sequences⁴⁴. Sequences were aligned to the GRCh38 genome assembly
1029 (https://ftp.ensembl.org/pub/release-109/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz)
1030 using STAR (v.2.7.10b)⁴⁵ with Ensembl annotation release-109
1031 (https://ftp.ensembl.org/pub/release-109/gtf/homo_sapiens/Homo_sapiens.GRCh38.109.gtf.gz). Gene quantification was
1032 conducted using StringTie v2.2.1⁴⁶. The log2 transformation was then performed based
1033 on Fragments Per Kilobase of transcript per Million mapped reads (FPKM) values. To
1034 avoid infinite values, a value of 0.01 was added to the FPKM value of each gene before
1035 log2 transformation.

1036 Quality control analysis of sequencing data at pre-alignment and post-alignment level
1037 was conducted using FastQC (v.0.11.558), Qualimap (v.2.0.060)⁴⁷, and MultiQC (v.1.8)
1038⁴⁸.

1041 ***Filtering of low-quality data***

1042 To avoid the impact of low-quality experiments on the examination of experimental
1043 methods in terms of various performance metrics, including data quality and accuracy
1044 of gene expression and differential gene expression, we selected RNA-seq data from 31
1045 laboratories using two criteria: (i) SNR value greater than 20 after applying the uniform
1046 analysis pipeline and (ii) the difference less than 6 between SNR17 and SNR18 values.

1047 ***Bioinformatics Pipelines Benchmark Protocols***

1048 *Benchmark datasets.* High quality data from laboratories was selected for benchmark
1049 study. The benchmark datasets were selected based on three criteria. Firstly, data
1050 displaying high duplication rate, abnormal GC distribution, abnormal sequence length
1051 distribution, uneven nucleotide composition, and low base quality was excluded based
1052 on basic sequencing quality. Subsequently, data with a SNR value below 20 was filtered

1053 out. Third, the absence of contamination between samples was required based on ERCC
1054 spike-in evaluation. Furthermore, data derived from diverse RNA-seq protocols was
1055 required to reduce bias in the benchmark study.

1056 *Gene annotation.* Two human gene annotations were included as the guiding reference
1057 for alignment and quantification tasks in this study, including the Ensembl release-109
1058 annotation (https://ftp.ensembl.org/pub/release-109/gtf/homo_sapiens/Homo_sapiens.GRCh38.109.gtf.gz) and the recent RefSeq
1059 annotation (2023-03-21)
1060 (https://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/annotation/GRCh38_latest/refseq_identifiers/GRCh38_latest_genomic.gtf.gz). All these annotations were generated based on
1061 the human reference genome GRCh38. The gene annotation files were used in
1062 conjunction with reference genome or transcriptome files from the corresponding
1063 database.

1064 *RNA-seq analysis tools.* The list of RNA-seq tools, versions, and the command line
1065 used in the analysis are listed in **Supplementary Table 6**. We integrated alignment tools
1066 including STAR (v.2.7.10b)⁴⁵, HISAT2 (v.2.2.1)⁴⁹, and Subread (v.2.0.3)⁵⁰, genome-
1067 alignment quantification tools like featureCounts (v.2.0.3)⁵¹, HTSeq (v.2.0.2)⁵², and
1068 StringTie (v.2.2.1)⁴⁶, transcriptome-alignment quantification tools, RSEM (v.1.3.1)⁵³,
1069 as well as alignment-free quantification tools, including Kallisto (v.0.48.0)⁵⁴, Salmon
1070 (v.1.10.1)⁵⁵, and Sailfish (v.0.9.0)⁵⁶. For differential analysis, edgeR (v.3.42.4)⁵⁷,
1071 limma (v.3.56.2)⁵⁸, DESeq2 (v.1.40.2)⁵⁹, DEGseq (v.1.54.0)⁶⁰, and EBSeq (v.1.40.0)
1072⁶¹ were included and compared. The mapping information of each mapping tool was
1073 evaluated using Samtools flagstat and stats function⁶². The number of mismatches was
1074 detected using the NM tag. The junctions were extracted from Bam files using
1075 'junction_annotation.py' in RSeQC package (v.5.0.1)⁶³. Transcript-level reads counts

1078 from Sailfish and kallisto were transformed to gene-level counts using tximport
1079 package (v.1.28.0)⁶⁴.

1080 *Normalization methods.* We consider six normalization methods: total counts (TC),
1081 fragments per kilobase million (FPKM), transcripts per million (TPM), trimmed mean
1082 of M values (TMM), upper quartile (UQ) normalizations, and normalization method
1083 used by DESeq2 (v.1.40.2). TC also known as CPM (Counts Per Million), corrects for
1084 library size (expressed in million counts) so that each count is expressed as a proportion
1085 of the total number reads in the sample. FPKM and TPM are similar methods that
1086 correct for both library size and gene length, but TPM divides counts by gene length
1087 first and then by total number of transcripts in the sample, resulting in each normalized
1088 sample having the same number of total counts. The TMM approach is to choose a
1089 sample as a reference sample and the others as test samples. Under the hypothesis that
1090 the majority of genes are not DEGs, a scaling factor is calculated to adjust for each test
1091 sample after excluding highly expressed genes and genes with high log ratios between
1092 the test and the reference sample⁶⁵. The TMM normalization method is implemented
1093 in the edgeR package (v.3.42.4) by means of the calcNormFactors function⁵⁷. UQ
1094 normalization first removes all zero-count genes and calculates a scaling factor for each
1095 sample to match the 75% quantile of the counts in all the samples⁶⁶. UQ normalization
1096 was performed using the uqua function in package NOISeq (v.2.44.0)⁶⁷. DESeq
1097 normalization method is also based on the hypothesis that most genes are not DEGs.
1098 The scaling factor for a given sample is computed as the median of the ratio of the read
1099 count and the geometric mean across all samples for each gene⁶⁸. Raw counts were
1100 normalized using the estimateSizeFactors() and sizeFactors() functions in the DESeq
1101 package (v.1.40.2).

1102 *Filtering Conditions for Low-Expression Genes.* Data from four different laboratories,
1103 with varying sequencing depth levels ranging from low to high, were utilized to validate
1104 the optimal filtering methods and thresholds. We calculate the maximum (max), median,
1105 and sum of raw read counts and CPM for each gene from the replicated samples,
1106 resulting in six different combined filtering methods. Using each filtering method, we
1107 applied a series of thresholds, ranging from low to high, to filter out up to 70% of lowly
1108 expressed genes. To facilitate comparison of different filtering methods, the real
1109 threshold values were transformed into percentile-based thresholds. We next examined
1110 the performance of different differential analysis tools after applying different filtering
1111 conditions. The true positive rate (TPR) measures the proportion of DEGs that are
1112 accurately detected as positive by the differential analysis tools. Precision measures the
1113 proportion of the detected DEGs made are correct (true positives).

1114 ***Statistical analysis***

1115 All statistical analyses were performed using R statistical packages (v.4.3.0) and python
1116 (v.3.10.10). PCA was conducted with the univariance scaling, using the prcomp (v.3.6.2)
1117 function. Principal variance component analysis (PVCA) was performed by pvca
1118 package (v.1.40.0) to quantifies the proportion of variance explained by each
1119 influencing factor⁶⁹.

1120

1121 **Data availability**

1122 The raw sequence data reported in this paper have been deposited in the Genome
1123 Sequence Archive (Genomics, Proteomics & Bioinformatics 2021) in National
1124 Genomics Data Center (Nucleic Acids Res 2022), China National Center for
1125 Bioinformation / Beijing Institute of Genomics, Chinese Academy of Sciences (GSA-
1126 Human: HRA005937) that are publicly accessible at <https://ngdc.cncb.ac.cn/gsa-human>.

1127

1128 **Acknowledgements**

1129 This study was supported by National Key R&D Project of China (2023YFC3402500).

1130 We thank the 45 laboratories for performing RNA-seq and for returning the raw data

1131 and analysis results on time.

