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26  Abstract

27  Translating RNA-seq into clinical diagnostics requires ensuring the reliability of
28  detecting clinically relevant subtle differential expressions, such as those between
29  different disease subtypes or stages. Moreover, cross-laboratory reproducibility and
30  consistency under diverse experimental and bioinformatics workflows urgently need to
31  be addressed. As part of the Quartet project, we presented a comprehensive RNA-seq
32  benchmarking study utilizing Quartet and MAQC RNA reference samples spiked with
33  ERCC controls in 45 independent laboratories, each employing their in-house RNA-
34  seq workflows. We assessed the data quality, accuracy and reproducibility of gene
35 expression and differential gene expression and compared over 40 experimental
36  processes and 140 combined differential analysis pipelines based on multiple 'ground
37  truths'. Here we show that real-world RNA-seq exhibited greater inter-laboratory
38  variations when detecting subtle differential expressions between Quartet samples.
39  Experimental factors including mRNA enrichment methods and strandedness, and each
40  bioinformatics step, particularly normalization, emerged as primary sources of
41  variations in gene expression and have a more pronounced impact on the subtle
42  differential expression measurement. We underscored the pivotal role of experimental
43  execution over the choice of experimental protocols, the importance of strategies for
44  filtering low-expression genes, and optimal gene annotation and analysis tools. In
45  summary, this study provided best practice recommendations for the development,

46  optimization, and quality control of RNA-seq for clinical diagnostic purposes.
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50 Introduction

51  Transcriptome sequencing (RNA-seq) has expanded new avenues for exploring global
52  expression patterns as well as identifying alternative splicing events !. Differential
53  expression analysis of transcriptomic data enables genome-wide identification of gene
54  or isoform expression changes associated with biological conditions of interest. This
55  contributes significantly to the discovery of biomarkers for disease diagnosis 2,
56  prognosis °, and therapeutic selection *. These evidences facilitate the application of
57 RNA-seq in clinical routine. Noticeably, clinically relevant biological differences
58 among study groups are often small, manifested by fewer differentially expressed genes,
59  especially between certain disease and normal tissues > °, or between different disease
60  subtypes or stages "!!. Such subtle differential gene expression is typically challenging
61  to distinguish from noises of technical replicates. Therefore, translating RNA-seq into
62 clinical diagnostics poses requirements for more sensitive differential expression
63  analysis, emphasizing the necessity for quality assessment at subtle differential
64  expression levels.

65 However, over the past decade, quality assessment of RNA-seq in the community
66  has predominantly relied on milestone MAQC reference materials, characterized by
67  significantly large biological differences between samples, which were developed by
68  the MicroArray/Sequencing Quality Control (SEQC/MAQC) Consortium from ten

69  cancer cell lines and brain tissues of 23 donors 2. The MAQC Consortium utilized these

70  samples with spike-ins of 92 synthetic RNA from the External RNA Control
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71 Consortium (ERCC) to assess RNA-seq performance and demonstrated a high accuracy
72 and reproducibility of relative expression measurements across different sites and
73 platforms under appropriate data processing and analysis conditions '*'*. More large-
74 scale studies have also employed these two RNA reference materials to compare

15-17 "and have utilized

75  different library preparation protocols and sequencing platforms
76 the MAQC datasets for benchmarking bioinformatics pipelines '®2!. Moreover, the
77  Genetic European Variation in Disease, a European Medical Sequencing (GEUVADIS)
78  Consortium sequenced RNA samples from lymphoblastoid cell lines of 465 individuals
79  across seven sites to assess reproducibility across laboratories and examine the sources
80 ofinter-laboratory variation under an identical experimental and bioinformatics process
g1 =

82 Noticeably, quality control based on the MAQC reference materials may not fully
83  ensure the accurate identification of clinically relevant subtle differential expression 3.
84  Moreover, in contrast to the rigorously controlled RNA-seq workflows of previous
85 study designs, the real-world scenarios present significant differences in sample
86  processing, experimental protocols, sequencing platforms, and analysis pipelines across
87  laboratories, where confounding factors may compromise the accuracy and
88  reproducibility of RNA-seq '* !> 22, In the context of such diverse experimental and

89  bioinformatics processes, understanding of the sources of inter-laboratory variation

90 remains limited. Therefore, a detailed quality assessment of the overall performance of
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91 real-world RNA-seq in detecting subtle differential expression for clinical diagnostic
92  purposes and of the technical factors affecting diagnostic performance is necessary.

93 Recently, the Quartet project for quality control and data integration of multi-
94  omics profiling, introduced multi-omics reference materials derived from immortalized
95  B-lymphoblastoid cell lines from a Chinese quartet family of parents and monozygotic

24 These well-

96 twin daughters, and developed ratio-based reference datasets
97  characterized, homogenous, and stable Quartet RNA reference materials with small
98 inter-sample biological differences, provided a unique opportunity for the assessment
99  and benchmarking of transcriptome profiling at subtle differential expression levels in
100  areference-based manner .
101 Within the scope of the Quartet project, this study utilized Quartet RNA samples
102  with spike-ins of ERCC controls, and MAQC RNA samples to generate RNA-seq data
103 across 45 independent laboratories, each using its own in-house experimental protocol
104  and analysis pipeline. Overall, approximately 120 billion reads of RNA-seq data were
105  generated and analyzed, representing the most extensive effort to conduct an in-depth
106  exploration of transcriptome data to date. Through the quality assessment based on
107  Quartet and MAQC samples in parallel, this study thoroughly elucidated the
108  performance of real-world RNA-seq, particularly when detecting subtle differential
109  expression levels. Subsequently, we leveraged gene expression data from over 40

110  different experimental processes and 140 differential analysis pipelines to investigate

111  sources of variation at experimental and bioinformatics aspects, respectively. This study
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112 provides best practice recommendations for the experimental and bioinformatics
113 designs of the RNA-seq toward the scientific question addressed, and underscores the
114 necessity of quality controls at subtle differential expression levels through the
115  comparisons of Quartet and MAQC reference materials.

116

117 Results

118  Study design

119  Our multi-center study involved four well-characterized Quartet RN A samples (M8, F7,
120 D5 and D6) with ERCC spike-in RNA controls added to M8 and D6 samples, T1 and
121 T2 samples constructed by mixing M8 and D6 at the defined ratios of 3:1 and 1:3,
122 respectively, and MAQC RNA samples A and B (Fig. 1a). The sample panel design
123 introduces various types of 'ground truth', encompassing three reference datasets: ratio-
124 based Quartet reference datasets, TagMan datasets for Quartet and MAQC samples, and
125  'built-in truth' involving ERCC spike-in ratios and known mixing ratios for the T1 and
126 T2 samples (Supplementary Notes, section 2.1). Each sample was provided with three
127  technical replicates, resulting in a total of 24 RNA samples, which were sequenced and
128  analyzed by 45 independent laboratories. Each laboratory employed distinct RNA-seq
129  workflows, involving different RNA processing methods, library preparation protocols,
130  sequencing platforms, and bioinformatics pipelines (Supplementary Table 1). This

131  approach accurately mirrored the actual research practices in real-world scenarios.
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132 Totally, 1,080 RNA-seq libraries were prepared, yielding a dataset of over 120
133  billion reads (15.63 Tb). Based on these extensive data for Quartet and MAQC samples,
134 this study aimed to provide real-world evidence on the performance of RNA-seq in
135  detecting both subtle and large differential expression by assessing data quality, and the
136  accuracy and reproducibility of gene expression and differential expression calls (Fig.
137 1b). Moreover, a fixed analysis pipeline was applied for all RNA-seq raw data to
138  exclusively investigate the sources of inter-laboratory variation from the experimental
139  processes (Fig. 1¢). A total of 140 different analysis pipelines consisting of two gene
140  annotations, three alignment tools, eight quantification tools following six
141  normalization methods, and five differential analysis tools were applied for high-quality
142 benchmark datasets selected from 13 laboratories to investigate the sources of variation
143 from the bioinformatics process (Fig. 1d).

144

145  Basic quality control for raw reads and read alignment

146 We first assessed the sequencing quality properties of the RNA-seq data for the Quartet
147 and MAQC samples, including sequencing depth, base quality, GC content, and
148  duplicate rate (Supplementary Table 2). The average sequencing depth ranged from
149  39.4 Mb to 418.8 Mb for Quartet samples and from 40.9 Mb to 424.2 Mb for MAQC
150  samples across laboratories (Supplementary Fig. 1). Within the same laboratory,
151  different samples exhibited variations in sequencing depth, particularly noticeable for

152  laboratories with higher average sequencing depths. Given that different flowcells or
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153  lanes can lead to variations in total reads counts, we compared 15 laboratories that
154  assigned 24 libraries to two or more lanes to other laboratories that assigned libraries to
155  asingle lane, and observed no increased variations (Supplementary Fig. 2). Therefore,
156  inter-sample variations were considered to be due to difficulties of equimolar pooling
157 2?2, Both Quartet and MAQC samples exhibited high Q30 scores, ranging from 88.4%
158  to 96.6% and from 88.3% to 96.7%, respectively, reflecting the high quality of base
159  calling (Supplementary Fig. 3). The base quality distribution of the first about 10 bases
160  was relatively lower than the highest value in most laboratories for the Quartet and
161  MAQC samples (Supplementary Fig. 4-5), which was attributed to the reverse
162  transcriptase priming step '>?2. We also observed that the quality scores of reverse reads
163  were generally lower than those of forward reads in most laboratories, which was
164  attributed to the decreased cluster size and higher number of errors due to more
165  amplification steps before sequencing the reverse reads 2°. GC content bias was found
166  across laboratories, with the average GC content ranging from 42.3% to 54.2% for the
167  Quartet samples and from 42.4% to 52.9% for the MAQC samples. Such laboratory-
168  specific GC content bias, primarily caused by different sites of library preparation 2°,
169  was more noticeable than the sample-specific GC content bias (Supplementary Fig.
170 6-7). Unusual GC content presents inherent challenges, as GC-poor genes (< 35%)
171  tended to exhibit more variable expression levels between laboratories than genes with
172 medium or high (> 65%) GC content (Supplementary Fig. 8). The average duplication

173  rates of the sequencing reads varied significantly across laboratories, ranging from 4.2%


https://doi.org/10.1101/2023.12.09.570956
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.09.570956; this version posted December 10, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

174 to 73.4% for the Quartet samples and from 5.0% to 75.5% for the MAQC samples
175  (Supplementary Fig. 9). Nine laboratories exhibited an average duplication rate
176  exceeding 30%, surpassing the typical duplication levels observed in prior research >
177 2728 These extra duplicate reads may be due to PCR amplification bias rather than
178  highly expressed genes %°.

179 We next assessed the alignment statistics after mapping the raw reads using STAR
180  (Online Methods). All laboratories exhibited a high overall alignment rate, ranging
181  from 90.69% to 98.7% for the Quartet samples and from 92.1% to 98.9% for the MAQC
182  samples (Supplementary Fig. 10). The slightly lower uniquely mapping rate was
183  noticeable in the Quartet samples in comparison to the MAQC samples, with average
184  mapping rates of 89.7% (80.9%-95.4%) and 92.0% (84.1%—96.0%), respectively. This
185  was similar to the common characteristics observed when comparing clinical samples
186  with the MAQC samples 2°. The multi-mapping rate seemed to be associated with the
187 mRNA enrichment methods. The rRNA depletion method resulted in higher average
188  multi-mapping rates than the poly(A) selection method (Supplementary Fig. 11),
189  possibly due to the capture of a greater number of small non-coding RNAs with high
190  sequence similarity *°. Meanwhile, a high multi-mapping rate was consistently
191  correlated with a higher mismatch rate (Supplementary Fig. 10). The percentage of
192  aligned reads mapping to annotated exons is directly related to expression
193  quantification, and is therefore a critical quality metric. The poly(A) selection method

194  consistently showed a higher median percentage of exonic reads at 84.5% and 80.9%,
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195  compared to the rRNA depletion method at 46.3% and 44.1% for the Quartet and
196 MAQC samples, respectively (Supplementary Fig. 12—-13).

197 Additionally, the percentage of reads mapped to ERCC reference sequences
198 allowed for the identification of problematic samples or libraries. In four samples
199 (MAQCA, B, and Quartet F7, D5) without ERCC spike-ins, we observed reads counts
200 ranging from 1 to 213,467 mapped to ERCC genes across 38 laboratories
201  (Supplementary Fig. 14). Particularly, Lab10 exhibited an exceptionally high fraction
202  of ERCC reads in the two replicates of MAQC sample A, accounting for 0.8% and 0.06%
203  of the exonic reads. This indicates potential contaminations across RNA samples or
204 libraries *'.

205

206  Significant variations in detecting subtle differential expression

207  We combined multiple metrics for a robust characterization of RNA-seq performance:
208 (i) quality of gene expression data using signal-to-noise ratio (SNR) based on principal
209  component analysis (PCA) 23, (ii) the accuracy and reproducibility of absolute and
210 relative gene expression measurements based on several 'ground truths', and (iii) the
211  accuracy of differentially expressed genes (DEGs) based on the reference datasets (Fig.
212 1b). These metrics constitutes a comprehensive performance assessment framework
213  that captures different aspects of gene-level transcriptome profiling (Supplementary

214  Notes, section 2.2).
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215 PCA-based SNR values based on both the Quartet and MAQC samples
216  discriminated all gene expression data into a wide range of quality levels, reflecting the
217  varying ability to distinguish biological difference signals in different sample groups
218  from technical noises in replicates (Fig. 2a). However, smaller intrinsic biological
219  differences appeared to be more challenging to distinguish from noises, indicated by
220  lower average SNR values for Quartet samples among laboratories compared to MAQC
221  samples, at 19.8 (0.3-37.6) and 33.0 (11.2-45.2), respectively (Supplementary Fig.
222 15). The reduced biological differences among the mixed samples led to a further
223 decrease in the average SNR values to 18.2 (0.2-36.4). Particularly, for different
224  laboratories, the gap between two sets of SNR values, one based on the Quartet and
225 mixed samples and the other based on the MAQC samples, differed from 4.7 to 29.3,
226  suggesting that diagnosing quality issues at subtle differential expression levels was
227  sensitive. Moreover, SNR examinations allowed for the identification of random
228  failures in the technical replicates. The SNR17 values, calculated from any 17 out of
229  the 18 samples (12 Quartet and 6 mixed samples), increased by six decibels compared
230  to the corresponding SNR18 values in six laboratories (Fig. 2a).

231 Gene expression measurements was assessed based on the Quartet reference
232 datasets, TagMan datasets, and the built-in truths including the ERCC spike-in ratios
233 and mixed ratios of sample T1 and T2. Gene expression exhibited significant inter-
234  laboratory variations, especially in absolute expression. Considering the varying gene

235  types of interest among laboratories (Fig. 2b), only protein-coding genes were included
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236  to facilitate comparisons between laboratories. All laboratories exhibited lower
237  correlation coefficients at 0.825 (0.738-0.856) with the MAQC TaqMan datasets of 830
238  protein-coding genes, compared to those at 0.876 (0.835-0.906) with the Quartet
239  TagMan datasets of 143 protein-coding genes (Fig. 2¢). Correlations with the nominal
240  concentrations of the 92 ERCC spike-in RNAs were consistently high for all
241  laboratories with an average correlation coefficient of 0.964 (0.828-0.963). More
242  ERCC based assessments are shown in Supplementary Notes, Section 2.3. These
243  results indicate that accurate quantification of a broader set of genes is more challenging,
244 highlighting the importance of large-scale reference datasets for performance
245  assessment. We also focused on the absolute expression for other gene types, and
246  observed that small non-coding RNAs exhibited the largest inter-laboratory variations,
247  followed by pseudogenes, long non-coding RNAs, and immunoglobulin/T cell receptor
248  segments (Supplementary Fig. 16), which appeared to be associated with gene features
249  specific to each type, such as gene lengths and gene expression levels (Supplementary
250  Fig. 17-18).

251 Relative expression measurements are more reliable than absolute expression
252  measurements, but they still present challenges when identifying subtle differential
253  expression. The variations in relative expression across laboratories decreased
254  compared to those in absolute expression, as indicated by that samples tended to cluster
255 Dbased on the source sample rather than the laboratory in PCA analyses. However,

256  laboratories still exhibited considerable variations in relative expression exceeding the
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257  small biological difference among the Quartet samples (Fig. 2d—e and Supplementary
258  Fig. 19). Despite the higher accuracy metrics among laboratories compared to absolute
259  expression (Supplementary Fig. 20), relative expression demonstrated lower average
260 correlation coefficients of 0.865 (0.288—0.978) and 0.860 (0.488—-0.944) with the
261  Quartet reference datasets of 23790 protein-coding genes and Quartet TagMan datasets,
262  respectively, compared to the average correlation coefficient of 0.927 (0.778—0.949)
263  with MAQC TagMan datasets (Fig. 2f). It is noteworthy that the Root Mean Square
264  Error (RMSE) values between laboratories and the Quartet reference datasets were the
265 lowest, reflecting the systematic deviations between RNA-seq and TagMan RT-qPCR
266  assays but not between RNA-seq and the Quartet reference datasets (Fig. 2f). In
267  addition, based on the ERCC spike-in ratios and mixing ratios of samples T1 and T2,
268 we complementarily examined the accuracy and reproducibility of the relative
269  expression across 92 ERCC RNAs and all detected genes. Our results revealed the
270  impact of low gene expression and subtle differential expression on relative expression
271 measurements. The expected ERCC spike-in ratios were more accurately recovered for
272 high-concentration ERCC genes compared to low-concentration genes (Fig. 2g). The
273 mixing ratios in the mixed samples were recovered well in most laboratories (Fig. 2h).
274  Laboratories that failed to recover the mixing ratio demonstrated the presence of
275  outliers (Supplementary Fig. 21), which are typically caused by the erroneous
276  detection or calculation of low-expressed genes (Supplementary Fig. 22). By stepwise

277  filtering of genes with low fold changes, the RMSE values between the observed and


https://doi.org/10.1101/2023.12.09.570956
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.09.570956; this version posted December 10, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

278  expected fold changes decreased, indicating a higher accuracy of gene expression
279  measurements (Fig. 2i).

280 The DEGs calls revealed significant variations across laboratories in terms of both
281  DEGs number and the accuracy of DEGs classification based on the Quartet reference
282  datasets and TagMan datasets. The number of protein-coding DEGs ranged from 787
283  to 13,194 for the Quartet and mixed samples, and from 4,275 to 12,773 for the MAQC
284  samples (Supplementary Fig. 23). As a result, true positives ranging from 0.03% to
285  78.6%, from 1.2% to 82.0%, and from 0.2% to 52.9% of the Quartet reference datasets,
286  Quartet TagMan, and MAQC TagMan datasets, respectively, were missed by the
287  laboratories. Consequently, we employed a penalized Matthews Correlation Coefficient
288 (MCC) to assess the accuracy of DEGs calls (Fig. 1b and Supplementary Notes,
289  section 2.2). The MCC values based on the Quartet reference datasets and Quartet
290 TagMan datasets were more dispersed among laboratories, ranging from 0.100 to 0.837
291  and from 0.075 to 0.756, respectively (Fig. 2j). In contrast, the MCC values based on
292  the MAQC TagMan datasets ranged from 0.251 to 0.702. Importantly, the relatively
293 low MCC values in certain laboratories could be explained by several factors
294  (Supplementary Table 3). For example, in the case of labl8, the expression data
295  exhibited a SNR 0f 0.9, indicating that the low-quality library preparation or sequencing
296  processes resulted in unreliable and uninformative RNA-seq data for differential
297  analysis. The lab03 and lab04 demonstrated low accuracy of fold change determination,

298  impacting the reliability of the DEG calls. Additionally, different thresholds to filter
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299  low-expression genes and cutoffs for DEGs identification led to variations in the
300 number of DEGs, which collectively contributed to low accuracy.

301

302  Sources of variation from the experimental process

303 The significant variations, especially at subtle differential expression levels,
304 necessitated investigating the sources of variation. To exclusively focus on variation
305 from the experimental process, we employed a uniform data analysis pipeline for all
306 RNA-seq raw data, involving the use of fastp for data pre-processing, Ensembl gene
307  annotation, STAR for reads alignment, and StringTie for gene quantification. When
308 compared to the original expression data, the SNR values and accuracy metrics for gene
309  expression measurements increased in most laboratories, indicating that the fixed
310 pipeline was reliable for excluding the influence of diverse bioinformatics tools
311  (Supplementary Fig. 24-25). These variations arising from different RNA processing
312  methods, library preparation protocols, and sequencing platforms among laboratories
313  represent ‘experimental noise’.

314 In the presence of significant inter-laboratory variations from the experimental
315  process for both Quartet (Fig. 3a) and MAQC samples (Fig. 3b), experimental factors
316  had a great impact on subtle differential expression measurement. We quantified the
317  relative contribution of technical and biological factors to the total variations by
318  principal variance component analysis (PVCA) based on absolute expression data from

319 all laboratories for all samples. A total of 17 factors from the experimental process were
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320 considered (Supplementary Table 4), and these experimental factors introduced
321  significantly greater variations than biological differences among the Quartet samples
322 (89.4% vs. 9.6%), with mRNA enrichment methods and strandedness as the primary
323  sources (Fig. 3¢). Additionally, library preparation kits, reads length, and the number of
324  exonic reads also contributed to 17.9% of the variations. In contrast, while MAQC
325  samples revealed similar sources, variations derived from experimental factors were
326  lower than biological differences between the MAQC samples (45.3% vs. 54.7%) (Fig.
327 3d).

328 Relative expression could effectively correct for the influence of experimental
329 factors, as indicated by a significant decrease of over 40% in the relative contribution
330  of experimental factors to the variations for both the Quartet and MAQC samples.
331  (Supplementary Fig. 26). The increased consistency between any two laboratories
332  compared to absolute expression further confirmed this (Fig. 3e and 3f). However,
333  Quartet samples demonstrated that there remained 27.5% of unexplained variations that
334  could not be eliminated, implying the presence of additional influencing factors within
335 the complex and diverse experimental process.

336

337  Sources of variation from the bioinformatics process

338  To assess the sources of variation from the bioinformatics process, high-quality data for
339  Quartet and MAQC samples from 13 laboratories served as benchmark datasets,

340  encompassing 13 different library preparation protocols, seven sequencing platforms,
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341  and a wide range of sequencing depths spanning 42.6 Mb to 425.3 Mb to mitigate bias
342  (Materials and Methods). Following commonly used transcriptomic profiling
343  pipelines in real-world settings, two gene annotations, three alignment tools, and eight
344  expression quantification tools were incorporated into the analysis, resulting in 28
345 combined quantification pipelines. Subsequently, six representative normalization
346  methods were systematically compared (Supplementary Fig. 27). Variations caused
347 by different combinations of analysis tools represent ‘bioinformatics noise’.

348 Bioinformatics processes introduced variations comparable to those from the
349  experimental processes, and each bioinformatics step also had a greater impact on the
350 subtle differential expression measurement (compare Fig. 4a with Fig. 3¢ and Fig. 4b
351 with Fig. 3d). We quantified the relative contribution of annotation, alignment,
352  quantification, and normalization, to variations using PVCA analysis based on the
353  absolute expression data for different samples from all combined pipelines. For the
354  Quartet samples, different bioinformatics steps collectively introduced significantly
355  greater variations than the intrinsic biological differences (75.1% vs. 5.6%).
356  Normalization methods were the primary source of variations, followed by
357  quantification tools, alignment tools, and gene annotation types (Fig. 4a). However,
358 MAQC samples revealed smaller variations introduced from different bioinformatics
359  steps than their biological differences (34.0% vs. 56.7%) (Fig. 4b).

360 Noticeably, the calculation of relative expression could help reduce these

361 variations, as indicated by the increased consistency in relative expression levels across
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362  different analysis pipelines when compared to absolute expression (Fig. 4c—d).
363  Furthermore, the contribution of each bioinformatics step to variations in relative
364  expression levels decreased significantly (compare Supplementary Fig. 28 with Fig.
365 4), suggesting that the relative expression calculations could correct for the influence
366  of different analysis tools. However, similar to the experimental process, 28.4% of the
367  variations from the bioinformatics process remained for the Quartet samples,
368  suggesting inherent performance differences among various analysis tools.

369

370  Best practices for experimental designs

371  To assess whether experimental factors are related to overall performance, we assessed
372 the accuracy of 42 experimental processes based on the reference datasets under
373  uniform analysis pipeline conditions. We observed that laboratories exhibiting high
374 correlation coefficients for relative expression measurements or high MCC values for
375  DEGs detection dispersed across various experimental protocols (Supplementary Fig.
376  29). Therefore, these results indicate that RNA-seq performance is primarily dependent
377  on experimental quality, with the choice of experimental protocols having a relatively
378  minor impact.

379 We further filtered out RNA-seq data with low experimental quality and utilized
380 the remaining data from 32 laboratories to evaluate each experimental factor with
381 regard to data quality, and accuracy of absolute expression, relative expression, and

382  differential gene expression (Materials and Methods). All performance metrics
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383  demonstrated similar patterns in assessing different protocols within each experimental
384  step (Supplementary Fig. 30), and collectively demonstrated that experimental factors
385 predominantly influence absolute expression measurements rather than relative
386  expression and differential gene expression. Specifically, certain experimental factors
387  related to performance were identified (Fig. 5). First, the poly(A) selection method
388  exhibited higher SNR values than the rRNA depletion method, which is associated with
389  the latter capturing more lowly expressed non-protein-coding genes. Second, for
390 absolute expression levels, the rRNA depletion method, strandedness, and 100 bp of
391 read length corresponded to higher accuracy, and exonic coverage also exhibited a
392  significantly positive relationship with the accuracy. Third, exonic coverage was also
393  associated with improved accuracy of relative expression or differential gene
394  expression, likely due to more reliable detection of lowly expressed genes. We also
395  observed significant differences in accuracy associated with different choices of some
396  experimental methods, such as library kit, sequencing platform, and reads length, but
397  these findings were derived solely from comparisons with a single reference dataset.
398

399  Best practices for bioinformatics designs

400 To obtain an optimal analysis pipeline for gene-level quantification and differential
401  expression measurements, we sequentially evaluated the performance of 140 combined

402  analysis pipelines with regard to alignment quality, quantification accuracy,
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403  normalization effectiveness, low-expression gene filtering efficacy, and accuracy of
404  DEGs identification.

405 We first evaluated the influence of six alignment approaches combined with two
406  annotations and three alignment tools in terms of sequence alignment and splice
407  junction discovery. In comparison to the RefSeq annotation, the Ensembl consistently
408  resulted in higher uniquely mapping rates and lower multi-mapping rates (Fig. 6a).
409  STAR exhibited the highest overall mapping rate as well as uniquely mapping rate.
410  STAR either mapped or discarded the paired reads, avoiding the alignment of unpaired
411  single-end reads (Fig. 6a). HISAT2 and Subread had comparable uniquely mapping
412  rates, yet HISAT?2 tended to have slightly higher multi-mapping rates in most samples,
413  resulting in higher overall mapping rates. Subread displayed a higher tolerance of
414  accepting mismatch, primarily concentrating in fewer mismatched bases (Fig. 6b).
415  Given that Subread did not detect exon-exon junctions, we compared the junctions from
416  STAR and HISAT2. The Ensembl annotation, being more complex, led to the validation
417  of a greater number of junctions (Fig. 6¢c and Supplementary Fig. 31). For these
418  known junctions, two alignment tools did not exhibit significant differences, whereas
419  HISAT?2 identified more completely novel junctions (Fig. 6¢). Most of novel junctions
420  were not reliable, indicated by significantly decreased number after applying a counts-
421  based threshold (Supplementary Fig. 32). Additionally, we examined the influence of

422  sequencing depth on junction discovery, and observed that even lower sequencing depth
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423  was sufficient to detect known junctions, and increasing the sequencing depth further
424 facilitated the identification of more novel junctions (Supplementary Fig. 33).

425 We next assessed the performance of 28 gene quantification pipelines, consisting
426  of six alignment approaches and eight quantification tools (Supplementary Fig. 27).
427  These pipelines demonstrated similar clustering patterns at absolute and relative
428  expression levels, primarily divided into two clusters based on quantification principles:
429  exon-level tools (featureCounts, HTSeq, StringTie, and STAR) and transcript-level
430  tools (RSEM, Salmon, kallisto, and Sailfish) (Fig. 4c—d and Supplementary Fig. 34).
431  Gene annotation and alignment tools also contributed to the clustering. In particular,
432  different gene annotations showed a pronounced impact on absolute expression
433  measurement using featureCounts, HTSeq, and STAR, and in relative expression
434  measurement using transcript-level quantification tools. We further examined the
435  impact of different annotations, alignment tools, and quantification tools on accuracy
436  based on three reference datasets, and found that the performance of each step was
437  interdependent. The choice of gene annotation should also consider the quantification
438  tool, as Ensembl annotation exhibited higher or similar accuracy when combined with
439  genome- or transcriptome-alignment quantification tools, whereas RefSeq exhibited
440  higher accuracy when combined with pseudoalignment quantification tools
441  (Supplementary Fig. 35). The impact of different alignment tools was relatively small,
442  but the combination of Subread and StringTie decreased accuracy. (Supplementary

443  Fig. 36). The accuracy also varied among different quantification tools, especially
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444 between exon-level and transcript-level quantification tools (Supplementary Fig. 37).
445  Overall, our results, derived from the performance ranking of all quantification
446  pipelines, supported the superior performance of opting for Ensembl gene annotation,
447  any alignment tool, and either featureCounts or HTSeq for quantification
448  (Supplementary Fig. 38).

449 We converted the raw counts from the 28 quantification pipelines using six
450  normalization methods, followed by an assessment of expression data quality using
451  PCA-based SNR (Supplementary Fig. 39a). Trimmed mean of M values (TMM), and
452  DESeq normalization methods appeared to improve the raw counts most effectively,
453  while upper quartile (UQ) normalization exhibited the poorest improvement
454  (Supplementary Fig. 39b). Then we examined the gene expression distribution for all
455  normalization methods, and found that the median gene expression from DESeq was
456  the highest, followed by TMM, total counts (TC), and UQ, while fragments per kilobase
457  million (FPKM) and transcripts per million (TPM) had similarly low levels
458  (Supplementary Fig. 40).

459 The setting of low-expression gene filtering conditions may affect the
460 interpretation of differential expression calls (Supplementary Fig. 23). To elucidate
461  the impact of filtering conditions on the performance of differential analysis, we
462  evaluated six filtering methods and various threshold values (0-70%) across five
463  differential analysis tools, utilizing four RNA-seq datasets representing different

464  sequencing depth levels (Supplementary Fig. 27) (Materials and Methods). Across
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465  all six filtering methods, elevating the threshold values resulted in an increase in both
466  the DEGs number and the true positive rate (TPR) until they reached their respective
467  peak values, accompanied by a slight yet acceptable decrease in precision
468  (Supplementary Fig. 41). Such threshold effects were observed for five differential
469  analysis tools, including edgeR, DESeq2, limma, and DEGseq, except for EBSeq,
470  which employed stringent internal filtering criteria (Supplementary Fig. 42). Overall,
471  the six filtering methods led to general consistency in terms of the maximum number
472 of DEGs and the highest TPR across data from all laboratories (Supplementary Fig.
473  43-44). Thus, the key consideration shifts to the determination of optimal threshold
474  value. In the context of small changes in precision, opting for a threshold value
475  corresponding to the highest TPR appears to be an effective approach, but the lack of
476  benchmark datasets for assessing sensitivity or precision presents a challenge in
477  practice. In contrast, calculating the maximum number of DEGs is practical. Although
478  there were slight differences between the thresholds based on the maximum number of
479  DEGs and the highest TPR, especially in the Quartet samples (Supplementary Fig. 45),
480  the resulting TPR values corresponding to these two thresholds were highly consistent
481  (Supplementary Fig. 46).

482 After applying a series of threshold values to filter low-expression genes, we
483  compared the optimal performance of five differential analysis tools with different
484  choices of quantification pipelines, which contributed to 140 differential analysis

485  pipelines (Supplementary Fig. 27). First, the number of DEGs identified in both the
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486  Quartet and MAQC samples was assessed. DEGseq identified the highest number of
487  DEGs, followed by edgeR, limma, and DESeq2, while EBSeq detected the lowest
488  (Supplementary Fig. 47). Compared to other tools, DEGSeq appeared to be more
489 influenced by different choices of quantification pipelines, reflected in a broader range
490  of DEGs numbers. Second, when focusing on the accuracy of DEGs calls, edgeR and
491  DESeq?2 consistently outperformed other tools, with DEGSeq and limma slightly lower,
492  and EBSeq being the lowest (Fig. 7a—b and Supplementary Fig. 48). Compared to the
493  Quartet reference datasets, alignment-free quantification tools, especially Sailfish and
494  kallisto, were associated with lower MCC coefficients, regardless of the differential
495  analysis tool used (Supplementary Fig. 49). However, the MAQC samples
496  demonstrated small impact of the different quantification pipelines on each differential
497  analysis tool (Fig. 7b and Supplementary Fig. 48). As another accuracy measure, the
498 area under the receiver operating characteristic curve (AUC) was compared across all
499  differential analysis pipelines, which captured the statistical discrimination capability
500 of the DEGs. The edgeR outperformed the other tools, and DESeq2 also exhibited
501 relatively high AUC values (Fig. 7c¢ and Supplementary Fig. 46).

502

503 Discussion

504  As part of the Quartet project, this study represents the most extensive cross-laboratory
505 examination of real-world RNA-seq data and analysis outcomes to date, employing

506  Quartet and MAQC RNA reference materials. Through the systematic assessment of
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507  transcriptome data from 45 laboratories and the comparison of over 40 experimental
508 processes and 140 bioinformatics pipelines based on several 'ground truths', we
509 attempted to address several questions: (i) the performance of real-world RNA-seq in
510  detecting subtle differential expression; (ii) the sources of inconsistency among
511 laboratories; and (iii) the recommended practices to enhance the accuracy of RNA-seq
512  in practical applications (Table 1).

513 This study, for the first time, revealed noteworthy real-world inter-laboratory
514  variations in transcriptome profiling performance, especially when detecting subtle
515  differential expression among the Quartet samples. This prompts a reconsideration of
516 the actual performance, which may not be as robust as in previous studies conducted
517  under rigorously controlled RNA-seq workflows '* '3 22 First, the PCA-based SNR
518 varied significantly across laboratories, with 35.6% (16/45) of expression data
519  considered low quality based on the previously defined cutoff value (SNR = 12) *2. Our
520  results also revealed that low data quality correlated with the accuracy of differential
521  analysis calls, highlighting the necessity of quality evaluation prior to downstream
522  analysis within laboratories. Second, absolute expression measurements exhibited
523  substantial inter-laboratory variations as reported in previous studies !*. Relative
524  expression also exhibited greater variations when detecting subtle differential
525  expression. Certain laboratories exhibited low consistency with reference datasets and
526  poor recovery of known mixing ratios between mixed samples, which were primarily

527  due to inadequate restoration of inter-sample biological differences in low-quality data
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528  or erroneous detection of low-expression genes. Third, the number of DEGs varied
529  widely, and the accuracy metrics for DEG calls demonstrated a broad range across
530 laboratories, even when focusing on protein-coding genes. Differences in data quality,
531 filtering conditions for low-expression genes, differential analysis tools, and the cutoff
532  setting for DEGs classification collectively contribute to such variations, which appear
533 to be more significant than the differences in DEGs calling performance across
534  platforms, sites, and analysis tools previously reported '* !5 2!, Therefore, our results
535 underscore the fact that real-world RNA-seq performance may not fully meet the
536  clinical diagnostic demands, requiring ongoing quality improvement specifically
537  toward subtle differential expression.

538 The greater inter-laboratory variations in detecting subtle differential expression
539  among the Quartet samples prompted to investigate the sources of variations from
540  diverse RNA-seq workflows, which compensated for previous studies that exclusively
541  focused on the sources of variation under identical protocols and analysis pipelines '®
542 2. We observed that the technical factors in experimental and bioinformatics processes
543  contributed to a higher proportion of variations in the Quartet samples (89.4% and
544 75.1%) compared to MAQC samples (45.3% and 34%). While relative expression could
545  correct for the influence of these factors to some extent, they still contributed to a higher
546  proportion of variations under small biological difference conditions (48.2% and 10.9%
547  vs. 12.6% and 1.7%). To be specific, in the experimental process, we identified factors

548  affecting absolute expression quantification, including mRNA enrichment methods,


https://doi.org/10.1101/2023.12.09.570956
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.09.570956; this version posted December 10, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

549  strandedness, library kits, read length, and exonic coverage. In the bioinformatics
550 process, normalization step is the primary source of variations, followed by
551  quantification, alignment, and annotation. These factors have been individually studied
552 153337 and in contrast, our study revealed the magnitude of their impact in real-world
553  laboratory settings, providing clarity on the priority of technical factors to consider
554  when designing RNA-seq systems.

555 The experimental design is generally considered to be centered around addressing
556  the biological questions of interest 3 (Table 1). Experimental factors contribute to
557  deviations in absolute expression measurement, limiting its application '*. Given the
558  prominent application of differential expression analysis for potential clinical usage, we
559  particularly focused on the influence of these technical factors in terms of relative
560 expression and differential gene expression measurements. Our results revealed the
561 quality of the experimental execution is the primary determinants of accuracy, not these
562  experimental factors. The impact of low-quality experiments far outweighed that of
563  different experimental protocols on accuracy, and the varied choices within each
564  experimental method have not demonstrated significant differences in differential
565 analysis performance. Nevertheless, it's important to note that different experimental
566  methods capture distinct transcriptomic features. For example, rRNA depletion method
567  detects more non-coding RNAs and pseudogenes compared to poly(A) selection
568  method '>3°. Stranded and non-stranded libraries mainly contributed to the differential

569  expression of pseudogenes and antisense genes, and stranded RNA-seq enables the
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570  accurate quantification of approximately 20% of overlapping genes transcribed from
571  the opposite strands **. Therefore, the choice of experimental protocols would be
572  primarily driven by (i) sample type and quality, such as the extent of RNA degradation
573 ! and (ii) research objectives, which may involve non-coding RNAs, pseudogenes,
574  antisense genes, as well as novel transcripts and alternative splicing events 333437,

575 The bioinformatics design, centered on the choice of optimal analysis tools,
576  requires equal attention, as the variations from the bioinformatics processes are
577  comparably significant as those from the experimental processes (Table 1). This study
578  assessed different normalization methods from the data quality aspects and found that
579  TMM and DESeq significantly improved the quality of expression data, agreeing with
580  conclusions drawn from previous studies °. For each step of the differential expression
581  analysis, we found that the performance of any analysis tool is not constant but depends
582  on the other tools used in combination with it. Nevertheless, this study provided the
583  optimal bioinformatics design through an evaluation of arbitrary combinations of
584  analysis tools. First, choose Ensembl annotation when using genome- or transcriptome-
585 alignment quantification tools, and choose RefSeq when using pseudoalignment
586  quantification tools. Second, the impact of different alignment tools is relatively small,
587  but previous studies have indicated that varying genome complexity should be
588  considered when making choices *!. Third, for quantification, choose tools operating at

589  the exon level, particularly featureCounts and HTSeq. Fourth, the threshold for filtering

590 low-expression genes is not fixed but varies with different samples and analysis tools
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591  *2. Choosing the threshold based on the maximum number of DEGs is practical. Finally,
592  edgeR or DESeq? is preferred for conducting differential gene expression analysis.

593 This study significantly advances the understanding of the role of reference
594  materials in quality control applications by utilizing Quartet and MAQC reference
595  materials in parallel (Table 1). Overall, the assessment based on these two reference
596  materials demonstrated common patterns in multiple aspects of the transcriptome
597  across laboratories. Notably, each of the two reference materials has significantly
598  enhanced the reliability and distinctiveness of the assessment and exploration of RNA-
599 seq data. On the one hand, the Quartet samples enabled the assessment in subtle
600 differential expression levels and demonstrated advantages in the performance
601 assessment for different laboratories and various analysis pipelines, underscoring the
602  need for a shift in RNA-seq benchmarking toward subtle differential expression levels.
603  First, Quartet samples with large-scale reference datasets enabled a more precise and
604  comprehensive assessment of the RNA-seq performance. The performance metrics
605  exhibited a broader range than those from the MAQC samples in terms of SNR values
606 for assessing data quality, correlation coefficients for assessing gene expression
607  accuracy, and MCC coefficients for evaluating the accuracy of DEG calls. This implies
608  ahigher discriminative ability for discovering performance differences among different
609  batches, protocols, sites, and analysis tools. Second, Quartet samples allowed for a more
610  sensitive uncovering of technical noise. In the context of subtle biological differences

611 among the Quartet samples, the variations introduced by experimental and
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612  bioinformatics factors become more pronounced. Third, the Quartet reference datasets
613 revealed no systemic differences with the RNA-seq data at both absolute and relative
614  expression levels. Methodological differences between RNA-seq and TagMan RT-
615 qPCR have previously limited gene expression assessments concerning correlation
616  analyzes ', which are considered to have limitations in representing consistency **. The
617  Quartet reference datasets showed a lower RMSE with RNA-seq data compared to
618 TagMan datasets, allowing for a direct comparison of the quantitative values of gene
619  expression. On the other hand, the MAQC samples established connections with
620  previous milestone studies, contributing to a deeper understanding of real-world RNA-
621  seq performance based on these traditional RNA reference materials in the community.
622  Moreover, a large-scale TagMan RT-qPCR dataset for the MAQC samples ensures an
623  unbiased performance assessment, effectively complementing the Quartet reference
624  datasets originated from the Ensembl-HISAT2-StringTie pipeline that may introduce
625  biases especially when assessing diverse RNA-seq analysis pipelines *2.

626 In summary, this study unveils significant inter-laboratory variations in real-world
627  transcriptome profiling when detecting subtle differential expression, especially with
628 respect to data quality, absolute expression, and differential gene expression. The
629  investigation of the sources of inter-laboratory variations at both experimental and
630  bioinformatics aspects has highlighted key points for the development and optimization
631  of RNA-seq methods. This study provided best practice recommendations regarding

632  the experimental and bioinformatics design and quality control of RNA-seq (Table 1).
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These will aid researchers in accurately identifying subtle changes in disease conditions,

accelerating the transition of RNA-seq into a diagnostic tool. Furthermore, these data

can also be used to address other aspects of transcriptome profiling, including

alternative splicing, gene fusion, RNA editing, and RNA variations.
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639  Fig. 1 Overview of study design

Fixed analysis pipeline: Ensembl » StringTie

13 benchmark datasets

Inter-lab variations  sample » Library » Sequencing 140 DEG analysis pipelines

640 (a) Two MAQC samples (A = Universal Human Reference RNA and B = Human Brain
641  Reference RNA), two ERCC synthetic RNA mix, and Quartet RNA reference materials
642  were utilized to prepare a set of samples. The M8 and D6 samples were combined with
643 ERCC controls at manufacturer recommended amounts, and then mixed at 3:1 and 1:3
644  ratios to create sample T1 and T2, respectively. Each sample was prepared with three

645  replicates, and tested by 45 laboratories with distinct protocols and analysis pipelines,
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646  resulting in a total of 1080 libraries and 15.63 Tb of data generated. All 45 laboratories
647  submitted expression data and differential expression calls at gene and transcript levels,
648  while 42 laboratories submitted complete raw sequencing data. DEG, differential
649  expression gene. (b) A comprehensive framework for assessment of real-world RNA-
650 seq data, encompassing assessment of data quality using PCA-based SNR, as well as
651  gene expression profiles and differentially expressed genes by comparing with various
652  ground truths. SNR, Signal-to-Noise Ratio; RMSE, Root Mean Square Error; CC,
653  Correlation Coefficient; MCC, Matthews Correlation Coefficient; TN, True Negative;
654 TP, True Positive; FN, False Negative; FP, False Positive. (¢) A fixed analysis pipeline
655  was applied to all raw data to exclude the influence of the bioinformatic process. Then
656  the relative contributions of experimental factors to inter-laboratory variations were
657 investigated. (d) High-quality data from 13 laboratories were selected for the
658  benchmarking study, and the performance of 140 differential analysis pipelines
659  composed of two gene annotations, three alignment tools, eight quantification tools
660  following six normalization methods, and five differential analysis tools was compared

661  to explore the sources of variations from the bioinformatics process.
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663  Fig. 2 RNA-seq performance metrics for real-world laboratories

664 (a) SNR values across 45 laboratories to measure data quality. Laboratories were
665 ordered by SNR values. Dots represented SNR values based on any 17 of the 18 samples
666 (12 Quartet and 6 mixed samples) in each laboratory. A dot in dark red represented

667 SNR17 value that increased over five decibels compared to its standard SNR (18-
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668  sample SNR), when one library in this laboratory was excluded, while a dot in orange
669  represented SNR17 value that decreased or increased less five decibels compared to its
670 standard SNR. (b) The gene types of interest for all laboratories and the corresponding
671  number of genes supported by at least one reads for all three replicates (Supplementary
672  Notes, section 2.4). Three laboratories analyzed only protein-coding genes, five
673  laboratories excluded pseudogenes from their analysis, and the remaining 37
674  laboratories analyzed all gene types. (¢) Comparison of absolute expression levels to
675 TagMan datasets and ERCC concentrations on the log; scale. (d) Scatterplots of PCA
676 on RNA-seq data of all laboratories in absolute expression levels, (e) and relative
677  expression levels. The circles of the same color represent all replicates across all
678 laboratories for each sample. (f) Assessment of relative expression levels using Pearson
679  correlation coefficient and the Root Mean Square Error (RMSE) based on Quartet
680 reference datasets and TagMan datasets on the log2 scale. (g) ERCC spike-in ratios can
681  be recovered increasingly well at higher expression levels. (h) A consistency test for
682  recovering the expected sample mixing ratio in samples T1 and T2. The red and cyan
683  solid line traces the expected curve after mRNA/total-RNA shift correction. The grey
684  dashed lines indicate the fitted curves from data of laboratories. The ERCC genes are
685  shown in black, and the other human genes are shown in grey. (i) The ability to recover
686  expected mixing ratios was measured using RMSE between the observed expression
687  profiles and the expected expression profiles. As genes with low fold changes were

688  progressively filtered out, the RMSE across all laboratories decreased, indicating an
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689 increase of accuracy. The different colors in the box plots represent varying percentage
690  of filtered genes. (j) Comparison of differentially expressed genes to Quartet reference
691  datasets and TagMan datasets using Matthews Correlation Coefficients (MCC).
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698  Fig. 3 Sources of variation from the experimental process

699  (a) Scatterplots of PCA on RNA-seq data of all laboratories for Quartet samples, (b)
700 and MAQC samples after applying fixed analysis pipeline. The circles of the same color
701  represent all replicates across all laboratories for each sample. (¢) Principal variance
702  component analysis quantifies the proportion of variance explained by each
703  experimental factor for Quartet samples, (d) and MAQC samples. (e) Heatmap and

704  hierarchical clustering of different laboratories based on the RMSE at absolute
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705  expression levels, (f) and relative expression levels for Quartet samples. RMSE, Root
706  Mean Square Error.
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713

714  Fig. 4 Sources of variation from the bioinformatics process

715  (a) Principal variance component analysis quantifies the proportion

of variance

716  explained by each data analysis step for Quartet samples, (b) and MAQC samples. (¢)

717  Heatmap and hierarchical clustering of 28 gene quantification pipelines based on the
718  RMSE at absolute expression levels, (d) and relative expression levels. RMSE, Root

719  Mean Square Error.

720
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722 Fig. 5 The influence of experimental factors based on different performance
723 metrics

724 Performance metrics included SNR for data quality, correlation coefficient for accuracy
725  of absolute and relative expression, RMSE for recovery of mixing ratios, and MCC for
726  differential gene expression. The impact of exonic coverage is evaluated by Spearman
727  correlation analyzes. Significance testing was conducted based on normal distribution
728  assumptions using one-way analysis of variance (ANOVA) and paired t-tests, or, in
729  cases where normal distribution was not observed, independent samples were subjected
730  to Kruskal-Wallis test and Mann-Whitney U test. ** indicates a p-value < 0.05. ns, not
731  significant; SNR, Signal-to-Noise Ratio; RMSE, Root Mean Square Error; CC,
732 Correlation Coefficient; MCC, Matthews Correlation Coefficient; TN, True Negative;

733 TP, True Positive; FN, False Negative; FP, False Positive.
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734 Quartet samples MAQC samples Quartet samples MAQC samples Quartet samples MAQC samples

735  Fig. 6 Performance of different alignment schemes

736  (a) Distribution of mapping status of sequenced reads for six combinations of
737  annotation and alignment tools. The 13 benchmark datasets corresponding to each
738  sample are arranged in descending order based on the uniquely mapping rate. (b)
739  Distribution of the number of reads with mismatch bases. (¢) Comparison of known

740  junctions (left), partially novel (middle), and completely novel junctions (right)
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741  detected by different alignment approaches in Quartet and MAQC samples. Only
742 junctions supported by at least one reads for all three replicates were included.
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749

750  Fig. 7 Performance of differential gene expressions analysis tools

751  (a) The Matthews Correlation Coefficients (MCC) was measured based on Quartet
752  reference datasets, and (b) MAQC TagMan dataset. (¢) ROC analysis of genes in
753  Quartet reference datasets (up), Quartet TagMan dataset (middle), and MAQC TagMan
754  dataset (down). For each differential analysis tool, the plot reflects average performance
755  when different annotations, alignment tools, and quantification tools are used for gene

756  expression estimation. The RNA-seq data from labO1 was utilized to calculated the
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757  AUC values, and the AUC values for other high-quality benchmark datasets were

758  displayed in Supplementary Figure 50. AUC, Area Under the receiver operating

759  characteristic Curve.
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Table 1. Best practice recommendations.

1. RNA-seq performance in real-world laboratory setting

RNA-seq performance RNA-seq still presents challenges in two aspects:
* detecting subtle differential expression.
* real-world scenarios characterized by a lack of quality control and significantly diverse workflows.

2. The sources of variations among laboratories

Experimental process The magnitude of the variation
« Significantly exceeding the biological differences among Quartet samples but remaining smaller
than those between MAQC samples

Sources of variation

+ mRNA enrichment method, strandedness, library kits, reads length, and exonic reads.

Bioinformatics process The magnitude of the variation
» Comparable to variations from the experimental process and exceeding the biological differences
between the Quartet samples.

Sources of variation
* Primarily normalization, followed by quantification, alignment, annotation.

3. Best practices for experimental and bioinformatics design and quality control of RNA-seq

Experimental design General principles
* The quality of experimental execution is more important than the choices of experimental protocols.
* The choice of experimental protocols should be determined by the research goals (sample types and
quality, and gene types of interest).

Impact of specific experimental factors



https://doi.org/10.1101/2023.12.09.570956
http://creativecommons.org/licenses/by-nc-nd/4.0/

* Data quality (SNR): poly(A) selection method is higher than rRNA depletion method.

* Absolute expression: rRNA depletion method, stranded library, 100 bp of read length, and higher
exonic coverage are correlated with higher accuracy.

* Relative expression: library kits, exonic coverage (To be confirmed).

* Differential gene expression: exonic coverage (To be confirmed).

Bioinformatics design

Normalization
* TMM or DESeq

Gene annotation
* Ensembl annotation when using genome- or transcriptome-alignment quantification tools; RefSeq
when using pseudoalignment quantification tools.

Alignment
* The impact of different alignment tools on differential expression measurement is minimal.
* The combination of Ensembl annotation and STAR exhibits high alignment rates.

Quantification
» Exon-level quantification tools, particularly featureCounts, and HTSeq.

Filtering of low-expression genes

* The filtering thresholds vary with different samples and analysis pipelines.

* [f benchmark datasets are available, balancing TPR and precision is feasible; otherwise, maximizing
the number of DEGs is an efficient approach.

Differential analysis tools
* edgeR and DESeq?2.

Quality control

Reference materials
* Reference materials with small biological differences are required to ensure the quality of detecting
clinically relevant subtle differential expression.
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* Reference materials with subtle differential expression allow for more precise assessment of RNA-
seq quality, and are more sensitive in uncovering issues within the RNA-seq system.

Basic quality metrics

» Sequencing QC: base quality scores, GC content, insert size 2.

* Alignment QC: gene coverage, gene mapping rate, sample swaps and contaminations 22.
RNA-seq performance assessment framework

» Expression data quality: PCA-based SNR.

* Accuracy of gene expression: RMSE or CC.

* Accuracy of DEG classification: penalized MCC.

761  SNR, Signal-to-Noise Ratio; RMSE, Root Mean Square Error; CC, Correlation Coefficient; MCC, Matthews Correlation Coefficient; QC, Quality Control.
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929  Materials and Methods

930  RNA Reference samples preparation

931  Four Quartet RNA reference materials (M8, F7, D6, D5) were used 2, and External
932  RNA Control Consortium (ERCC) spike-in transcripts were added to M8 and D6
933  samples at manufacturer recommended amounts (4456740, Thermo Fisher Scientific)
934 '3, Samples T1 and T2 represent mixtures of samples M8 and D6 at the defined ratios
935 of 3:1 and 1:3, respectively, and thus hold ‘built-in truths’ of sample mixing ratios.
936  Universal Human Reference RNA (740000, Agilent Technologies) and Human Brain
937  Reference RNA (QS0611, Thermo Fisher Scientific) were used, which were labeled as
938  MAQC samples A and B by MAQC Consortium 2. MAQC B sample was paired with
939 MAQC A sample as a control sample for differential analysis, while Quartet D6 sample
940  served as a control sample for differential analysis of sample M8, F7, D5, T1, and T2.
941  Based on these reference materials, three technical replicates were prepared for 8 RNA
942  samples, resulting in a total of 24 RNA samples (Fig. 1a). All the samples dispensed as
943 8 pL aliquots into 200 pL thin-wall polypropylene PCR tubes with a concentration of
944 200 ng/pL and stored at -80 °C.

945  RNA-seq workflow

946  The samples were transported to each laboratory on dry ice, and the ERCC reference
947  sequences and gene annotation files were provided with the names of the 92 ERCC
948  genes modified to ‘SPIKEIN’ followed by the corresponding identifier. Laboratories
949  conducted the experiments and data analysis following their routine procedures. To
950 accurately capture batch effects within the laboratories, the sample grouping
951 information was provided to the laboratories after they submitted the sample quality

952  results, raw FASTQ files, and quantification results at the gene and transcript levels.
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953  Subsequently, laboratories were required to submit differential analysis results at gene
954  and transcript level, and alternative splicing results.

955  TagMan RT-qPCR

956  Primers and TagMan probes were designed for 91 genes based on the RNA sequences.
957  Among them, C/ORF43 was selected as the reference gene for the PCR method.
958  Primers and probes were synthesized by Sangon Biotech, and the sequences are shown
959  in Supplementary Table 5. Before proceeding with the bulk qPCR experiments, we
960 designed two sets of primers and probes for the reference gene and the target gene
961 (CDI80) to verify the acceptable impact of primer and probe selection on the results.
962  Then the amplification efficiency of the primers and probes was confirmed to meet the
963  requirements by performing gradient dilution experiments with the samples. The results
964  of'the CD180 gene were used for inter-batch quality control for gPCR experiments.
965  Five ug of each Quartet RNA sample was reverse transcribed using the PrimeScript™
966  RT reagent Kit (RR037A, TaKaRa) in a 50 pl reaction. This reaction mixture was
967 incubated at 37 °C for 15 minutes, then for 5 seconds at 85 °C and finally for termination
968 at 4 °C. cDNA obtained in the previous step was used as template for gPCR. qPCR
969 reactions were run in 96-well plates, the qPCR reactions were carried out using Premix
970  Ex Tag™ (RR390A, TaKaRa) containing 2 puL of cDNA, 0.4 uL of each forward and
971  reverse primers, 0.8 uL of TagMan probes in a 20 pL final volume reaction. The qPCR
972  was performed on an Applied Biosystems 7500 Real-Time PCR System using the
973  following cycling conditions: 30 seconds at 95 °C followed by 45 cycles of 5 seconds
974  at 95 °C and 34 seconds at 56 °C. Three replicates per sample per gene were conducted
975  for eliminating random variations.

976  Comparative Ct method (delta delta Ct method) was used to calculate the fold

977  differences for the three sample pairs (M8/D6, F7/D6 and D5/D6) with housekeeping
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978 gene CIORF43 as endogenous control. For the RT-qPCR data, a gene is classified as
979  differentially expressed gene (DEG) when the student’s t-test p-value < 0.05 and fold
980 change>2 or<0.5.
981 TaqMan data for MAQC samples A and B were obtained through the Gene Expression
982 Omnibus database (accession number GSE5350), which was processed as above.
983  Undetectable CT values (CT>35 or CT=0) were removed prior to normalization. The
984  differential gene analysis was performed as previous study, with gene POLR2A serving
985  as endogenous control 1°.
986  Relative expression calculation
987  Relative expression data were obtained within each laboratory on a gene-by-gene basis.
988  Specifically, relative expressions were calculated based on logoFPKM values. For each
989  gene, the mean of expression profiles of replicates of reference sample(s) (for example,
990 D6) was first calculated and then were subtracted from the log2FPKM values of that
991  gene in other samples.
992  RNA-seq performance metrics
993 The PCA-based SNR was used to assess the data quality at the gene expression level,
994  which reflected the ability of data to distinguish the intrinsic biological differences
995 among different sample groups from technical noises present in replicates. The
996 calculation method of PCA-based SNR as shown in the previous study 2. Genes with
997 at least one reads in all selected samples were included for PCA analysis. The Pearson
998 correlation coefficient was used to evaluate the consistency between the observed
999  absolute or relative expression and the ground truth. The RMSE was used to measure
1000  the difference between RNA-seq data and Quartet reference datasets and TagMan
1001  datasets. The MCC were used to measure consistency of DEGs detected from a dataset

1002  for a given pair of samples with those from the reference datasets. The true positives,
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1003  true negatives, false positives, and false negatives were judged as shown in Fig. 1b.

1004 Then MCC was calculated as follow:

TPXTN-FPXFN

1005 MCC =
J(TP+FP)(TP+FN)(TN+FP)(TN+FN)

1006  Mixing M8 and D6 into T1 and T2 samples allows for complementary assessment of
1007  the accuracy and reproducibility of RNA-seq. The fold changes between M8/D6, T1/D6,
1008  and T2/D6 comparisons should adhere to the following equation. A nonlinear robust fit
1009  (nlrob) was performed for RNA-seq data from laboratories, and the fitted curves were
1010  compared to expected curves (Fig. 1b). Then, the RMSE between the observed fold
1011  changes and the expected fold changes from the following equation for T1 or T2 versus
1012 D6 were calculated.

1013 log,y = log, (k1 + k2  21082x)

1014  where y represents the expected fold change for T1 or T2 versus D6 and x represents
1015  the fold change for M8 versus D6. The correction z of the known mixing coefficients
1016 k1l = z/(z+3) and k2 = 3z/(3z+1) arising out of different ratios of mRNA versus total
1017  RNA in the samples M8 and D6 has been determined by RT-qPCR assay. In brief, 10
1018  genes with a broad range of fold change were tested using RT-qPCR, and average z
1019  values from 10 RT-qPCR results were calculated for samples T1 and T2. The obtained

1020  z values were 0.974 £ 0.06 for T1 and 0.949 £ 0.09 for T2. Then, the z values obtained

1021  from the top ten laboratories' RNA-seq data, capable of recovering of mixed ratios, are

1022 0.965%0.024 and 0.941 £ 0.026 for sample T1 and T2, which further validate the

1023  correction values. Finally, the z values from RT-qPCR assays were used.

1024  Alignment and gene quantification

1025 To analyze the sources of variation from the experimental process, we employed the
1026  same analysis pipeline for raw FASTQ data from all laboratories. Preliminary

1027  processing of raw reads was performed using fastp (v.0.23.2) to remove adapter
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1028  sequences **. Sequences were aligned to the GRCh38 genome assembly
1029  (https:/ftp.ensembl.org/pub/release-

1030  109/fasta’/homo_sapiens/dna/Homo sapiens.GRCh38.dna.primary assembly.fa.gz)
1031 using STAR  (v.2.7.10b) %  with Ensembl annotation release-109

1032  (https://ftp.ensembl.org/pub/release-

1033 109/gtt/homo_sapiens/Homo_sapiens.GRCh38.109.gtf.gz). Gene quantification was

1034  conducted using StringTie v2.2.1 *. The log2 transformation was then performed based
1035  on Fragments Per Kilobase of transcript per Million mapped reads (FPKM) values. To
1036  avoid infinite values, a value of 0.01 was added to the FPKM value of each gene before
1037  log2 transformation.

1038  Quality control analysis of sequencing data at pre-alignment and post-alignment level
1039  was conducted using FastQC (v.0.11.558), Qualimap (v.2.0.060) *’, and MultiQC (v.1.8)
1040 %

1041  Filtering of low-quality data

1042 To avoid the impact of low-quality experiments on the examination of experimental
1043  methods in terms of various performance metrics, including data quality and accuracy
1044 of gene expression and differential gene expression, we selected RNA-seq data from 31
1045 laboratories using two criteria: (i) SNR value greater than 20 after applying the uniform
1046  analysis pipeline and (ii) the difference less than 6 between SNR17 and SNR18 values.
1047  Bioinformatics Pipelines Benchmark Protocols

1048  Benchmark datasets. High quality data from laboratories was selected for benchmark
1049  study. The benchmark datasets were selected based on three criteria. Firstly, data
1050  displaying high duplication rate, abnormal GC distribution, abnormal sequence length
1051  distribution, uneven nucleotide composition, and low base quality was excluded based

1052  on basic sequencing quality. Subsequently, data with a SNR value below 20 was filtered
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1053  out. Third, the absence of contamination between samples was required based on ERCC
1054  spike-in evaluation. Furthermore, data derived from diverse RNA-seq protocols was
1055  required to reduce bias in the benchmark study.

1056  Gene annotation. Two human gene annotations were included as the guiding reference
1057  for alignment and quantification tasks in this study, including the Ensembl release-109

1058 annotation (https://ftp.ensembl.org/pub/release-

1059  109/gtf/homo_sapiens/Homo_sapiens.GRCh38.109.gtf.gz) and the recent RefSeq

1060  annotation (2023-03-21)

1061  (https://ftp.ncbi.nlm.nih.gov/refseq/H sapiens/annotation/GRCh38 latest/refseq ident

1062  ifiers/§GRCh38 latest genomic.gtf.gz). All these annotations were generated based on

1063  the human reference genome GRCh38. The gene annotation files were used in
1064  conjunction with reference genome or transcriptome files from the corresponding
1065  database.

1066 ~ RNA-seq analysis tools. The list of RNA-seq tools, versions, and the command line
1067  used in the analysis are listed in Supplementary Table 6. We integrated alignment tools
1068  including STAR (v.2.7.10b) *°, HISAT2 (v.2.2.1) *°, and Subread (v.2.0.3) *°, genome-
1069  alignment quantification tools like featureCounts (v.2.0.3) !, HTSeq (v.2.0.2) *2, and
1070  StringTie (v.2.2.1 *, transcriptome-alignment quantification tools, RSEM (v.1.3.1) 3,
1071  as well as alignment-free quantification tools, including Kallisto (v.0.48.0) **, Salmon
1072 (v.1.10.1) %, and Sailfish (v.0.9.0) 3°. For differential analysis, edgeR (v.3.42.4) %,
1073 limma (v.3.56.2) 3% DESeq2 (v.1.40.2) , DEGseq (v.1.54.0) %°, and EBSeq (v.1.40.0)
1074 ! were included and compared. The mapping information of each mapping tool was
1075  evaluated using Samtools flagstat and stats function %*. The number of mismatches was
1076  detected using the NM tag. The junctions were extracted from Bam files using

1077  ‘junction_annotation.py’ in RSeQC package (v.5.0.1) 6. Transcript-level reads counts
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1078  from Sailfish and kallisto were transformed to gene-level counts using tximport
1079  package (v.1.28.0) %

1080  Normalization methods. We consider six normalization methods: total counts (TC),
1081  fragments per kilobase million (FPKM), transcripts per million (TPM), trimmed mean
1082  of M values (TMM), upper quartile (UQ) normalizations, and normalization method
1083  used by DESeq?2 (v.1.40.2). TC also known as CPM (Counts Per Million), corrects for
1084  library size (expressed in million counts) so that each count is expressed as a proportion
1085  of the total number reads in the sample. FPKM and TPM are similar methods that
1086  correct for both library size and gene length, but TPM divides counts by gene length
1087  first and then by total number of transcripts in the sample, resulting in each normalized
1088  sample having the same number of total counts. The TMM approach is to choose a
1089  sample as a reference sample and the others as test samples. Under the hypothesis that
1090  the majority of genes are not DEGs, a scaling factor is calculated to adjust for each test
1091  sample after excluding highly expressed genes and genes with high log ratios between
1092  the test and the reference sample %°. The TMM normalization method is implemented
1093  in the edgeR package (v.3.42.4) by means of the calcNormFactors function *’. UQ
1094  normalization first removes all zero-count genes and calculates a scaling factor for each
1095  sample to match the 75% quantile of the counts in all the samples . UQ normalization
1096  was performed using the uqua function in package NOISeq (v.2.44.0) ¢7. DESeq
1097  normalization method is also based on the hypothesis that most genes are not DEGs.
1098  The scaling factor for a given sample is computed as the median of the ratio of the read
1099  count and the geometric mean across all samples for each gene °®. Raw counts were
1100  normalized using the estimateSizeFactors() and sizeFactors() functions in the DESeq

1101  package (v.1.40.2).
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1102  Filtering Conditions for Low-Expression Genes. Data from four different laboratories,
1103  with varying sequencing depth levels ranging from low to high, were utilized to validate
1104  the optimal filtering methods and thresholds. We calculate the maximum (max), median,
1105 and sum of raw read counts and CPM for each gene from the replicated samples,
1106  resulting in six different combined filtering methods. Using each filtering method, we
1107  applied a series of thresholds, ranging from low to high, to filter out up to 70% of lowly
1108  expressed genes. To facilitate comparison of different filtering methods, the real
1109  threshold values were transformed into percentile-based thresholds. We next examined
1110  the performance of different differential analysis tools after applying different filtering
1111 conditions. The true positive rate (TPR) measures the proportion of DEGs that are
1112 accurately detected as positive by the differential analysis tools. Precision measures the
1113 proportion of the detected DEGs made are correct (true positives).

1114 Statistical analysis

1115  All statistical analyses were performed using R statistical packages (v.4.3.0) and python
1116  (v.3.10.10). PCA was conducted with the univariance scaling, using the prcomp (v.3.6.2)
1117  function. Principal variance component analysis (PVCA) was performed by pvca
1118  package (v.1.40.0) to quantifies the proportion of variance explained by each
1119  influencing factor .

1120

1121  Data availability

1122 The raw sequence data reported in this paper have been deposited in the Genome
1123 Sequence Archive (Genomics, Proteomics & Bioinformatics 2021) in National
1124  Genomics Data Center (Nucleic Acids Res 2022), China National Center for
1125  Bioinformation / Beijing Institute of Genomics, Chinese Academy of Sciences (GSA-

1126  Human: HRA005937) that are publicly accessible at https://ngdc.cncb.ac.cn/gsa-human.
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