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Abstract 26 

Translating RNA-seq into clinical diagnostics requires ensuring the reliability of 27 

detecting clinically relevant subtle differential expressions, such as those between 28 

different disease subtypes or stages. Moreover, cross-laboratory reproducibility and 29 

consistency under diverse experimental and bioinformatics workflows urgently need to 30 

be addressed. As part of the Quartet project, we presented a comprehensive RNA-seq 31 

benchmarking study utilizing Quartet and MAQC RNA reference samples spiked with 32 

ERCC controls in 45 independent laboratories, each employing their in-house RNA-33 

seq workflows. We assessed the data quality, accuracy and reproducibility of gene 34 

expression and differential gene expression and compared over 40 experimental 35 

processes and 140 combined differential analysis pipelines based on multiple 'ground 36 

truths'. Here we show that real-world RNA-seq exhibited greater inter-laboratory 37 

variations when detecting subtle differential expressions between Quartet samples. 38 

Experimental factors including mRNA enrichment methods and strandedness, and each 39 

bioinformatics step, particularly normalization, emerged as primary sources of 40 

variations in gene expression and have a more pronounced impact on the subtle 41 

differential expression measurement. We underscored the pivotal role of experimental 42 

execution over the choice of experimental protocols, the importance of strategies for 43 

filtering low-expression genes, and optimal gene annotation and analysis tools. In 44 

summary, this study provided best practice recommendations for the development, 45 

optimization, and quality control of RNA-seq for clinical diagnostic purposes. 46 
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Introduction 50 

Transcriptome sequencing (RNA-seq) has expanded new avenues for exploring global 51 

expression patterns as well as identifying alternative splicing events 1. Differential 52 

expression analysis of transcriptomic data enables genome-wide identification of gene 53 

or isoform expression changes associated with biological conditions of interest. This 54 

contributes significantly to the discovery of biomarkers for disease diagnosis 2, 55 

prognosis 3, and therapeutic selection 4. These evidences facilitate the application of 56 

RNA-seq in clinical routine. Noticeably, clinically relevant biological differences 57 

among study groups are often small, manifested by fewer differentially expressed genes, 58 

especially between certain disease and normal tissues 5, 6, or between different disease 59 

subtypes or stages 7-11. Such subtle differential gene expression is typically challenging 60 

to distinguish from noises of technical replicates.  Therefore, translating RNA-seq into 61 

clinical diagnostics poses requirements for more sensitive differential expression 62 

analysis, emphasizing the necessity for quality assessment at subtle differential 63 

expression levels. 64 

However, over the past decade, quality assessment of RNA-seq in the community 65 

has predominantly relied on milestone MAQC reference materials, characterized by 66 

significantly large biological differences between samples, which were developed by 67 

the MicroArray/Sequencing Quality Control (SEQC/MAQC) Consortium from ten 68 

cancer cell lines and brain tissues of 23 donors 12. The MAQC Consortium utilized these 69 

samples with spike-ins of 92 synthetic RNA from the External RNA Control 70 
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Consortium (ERCC) to assess RNA-seq performance and demonstrated a high accuracy 71 

and reproducibility of relative expression measurements across different sites and 72 

platforms under appropriate data processing and analysis conditions 13, 14. More large-73 

scale studies have also employed these two RNA reference materials to compare 74 

different library preparation protocols and sequencing platforms 15-17, and have utilized 75 

the MAQC datasets for benchmarking bioinformatics pipelines 18-21. Moreover, the 76 

Genetic European Variation in Disease, a European Medical Sequencing (GEUVADIS) 77 

Consortium sequenced RNA samples from lymphoblastoid cell lines of 465 individuals 78 

across seven sites to assess reproducibility across laboratories and examine the sources 79 

of inter-laboratory variation under an identical experimental and bioinformatics process 80 

22.  81 

Noticeably, quality control based on the MAQC reference materials may not fully 82 

ensure the accurate identification of clinically relevant subtle differential expression 23. 83 

Moreover, in contrast to the rigorously controlled RNA-seq workflows of previous 84 

study designs, the real-world scenarios present significant differences in sample 85 

processing, experimental protocols, sequencing platforms, and analysis pipelines across 86 

laboratories, where confounding factors may compromise the accuracy and 87 

reproducibility of RNA-seq 14, 15, 22. In the context of such diverse experimental and 88 

bioinformatics processes, understanding of the sources of inter-laboratory variation 89 

remains limited. Therefore, a detailed quality assessment of the overall performance of 90 
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real-world RNA-seq in detecting subtle differential expression for clinical diagnostic 91 

purposes and of the technical factors affecting diagnostic performance is necessary. 92 

Recently, the Quartet project for quality control and data integration of multi-93 

omics profiling, introduced multi-omics reference materials derived from immortalized 94 

B-lymphoblastoid cell lines from a Chinese quartet family of parents and monozygotic 95 

twin daughters, and developed ratio-based reference datasets 24. These well-96 

characterized, homogenous, and stable Quartet RNA reference materials with small 97 

inter-sample biological differences, provided a unique opportunity for the assessment 98 

and benchmarking of transcriptome profiling at subtle differential expression levels in 99 

a reference-based manner 23.  100 

Within the scope of the Quartet project, this study utilized Quartet RNA samples 101 

with spike-ins of ERCC controls, and MAQC RNA samples to generate RNA-seq data 102 

across 45 independent laboratories, each using its own in-house experimental protocol 103 

and analysis pipeline. Overall, approximately 120 billion reads of RNA-seq data were 104 

generated and analyzed, representing the most extensive effort to conduct an in-depth 105 

exploration of transcriptome data to date. Through the quality assessment based on 106 

Quartet and MAQC samples in parallel, this study thoroughly elucidated the 107 

performance of real-world RNA-seq, particularly when detecting subtle differential 108 

expression levels. Subsequently, we leveraged gene expression data from over 40 109 

different experimental processes and 140 differential analysis pipelines to investigate 110 

sources of variation at experimental and bioinformatics aspects, respectively. This study 111 
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provides best practice recommendations for the experimental and bioinformatics 112 

designs of the RNA-seq toward the scientific question addressed, and underscores the 113 

necessity of quality controls at subtle differential expression levels through the 114 

comparisons of Quartet and MAQC reference materials. 115 

 116 

Results 117 

Study design 118 

Our multi-center study involved four well-characterized Quartet RNA samples (M8, F7, 119 

D5 and D6) with ERCC spike-in RNA controls added to M8 and D6 samples, T1 and 120 

T2 samples constructed by mixing M8 and D6 at the defined ratios of 3:1 and 1:3, 121 

respectively, and MAQC RNA samples A and B (Fig. 1a). The sample panel design 122 

introduces various types of 'ground truth', encompassing three reference datasets: ratio-123 

based Quartet reference datasets, TaqMan datasets for Quartet and MAQC samples, and 124 

'built-in truth' involving ERCC spike-in ratios and known mixing ratios for the T1 and 125 

T2 samples (Supplementary Notes, section 2.1). Each sample was provided with three 126 

technical replicates, resulting in a total of 24 RNA samples, which were sequenced and 127 

analyzed by 45 independent laboratories. Each laboratory employed distinct RNA-seq 128 

workflows, involving different RNA processing methods, library preparation protocols, 129 

sequencing platforms, and bioinformatics pipelines (Supplementary Table 1). This 130 

approach accurately mirrored the actual research practices in real-world scenarios.  131 
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Totally, 1,080 RNA-seq libraries were prepared, yielding a dataset of over 120 132 

billion reads (15.63 Tb). Based on these extensive data for Quartet and MAQC samples, 133 

this study aimed to provide real-world evidence on the performance of RNA-seq in 134 

detecting both subtle and large differential expression by assessing data quality, and the 135 

accuracy and reproducibility of gene expression and differential expression calls (Fig. 136 

1b). Moreover, a fixed analysis pipeline was applied for all RNA-seq raw data to 137 

exclusively investigate the sources of inter-laboratory variation from the experimental 138 

processes (Fig. 1c). A total of 140 different analysis pipelines consisting of two gene 139 

annotations, three alignment tools, eight quantification tools following six 140 

normalization methods, and five differential analysis tools were applied for high-quality 141 

benchmark datasets selected from 13 laboratories to investigate the sources of variation 142 

from the bioinformatics process (Fig. 1d). 143 

 144 

Basic quality control for raw reads and read alignment 145 

We first assessed the sequencing quality properties of the RNA-seq data for the Quartet 146 

and MAQC samples, including sequencing depth, base quality, GC content, and 147 

duplicate rate (Supplementary Table 2). The average sequencing depth ranged from 148 

39.4 Mb to 418.8 Mb for Quartet samples and from 40.9 Mb to 424.2 Mb for MAQC 149 

samples across laboratories (Supplementary Fig. 1). Within the same laboratory, 150 

different samples exhibited variations in sequencing depth, particularly noticeable for 151 

laboratories with higher average sequencing depths. Given that different flowcells or 152 
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lanes can lead to variations in total reads counts, we compared 15 laboratories that 153 

assigned 24 libraries to two or more lanes to other laboratories that assigned libraries to 154 

a single lane, and observed no increased variations (Supplementary Fig. 2). Therefore, 155 

inter-sample variations were considered to be due to difficulties of equimolar pooling 156 

22. Both Quartet and MAQC samples exhibited high Q30 scores, ranging from 88.4% 157 

to 96.6% and from 88.3% to 96.7%, respectively, reflecting the high quality of base 158 

calling (Supplementary Fig. 3). The base quality distribution of the first about 10 bases 159 

was relatively lower than the highest value in most laboratories for the Quartet and 160 

MAQC samples (Supplementary Fig. 4–5), which was attributed to the reverse 161 

transcriptase priming step 15, 22. We also observed that the quality scores of reverse reads 162 

were generally lower than those of forward reads in most laboratories, which was 163 

attributed to the decreased cluster size and higher number of errors due to more 164 

amplification steps before sequencing the reverse reads 25.  GC content bias was found 165 

across laboratories, with the average GC content ranging from 42.3% to 54.2% for the 166 

Quartet samples and from 42.4% to 52.9% for the MAQC samples. Such laboratory-167 

specific GC content bias, primarily caused by different sites of library preparation 26, 168 

was more noticeable than the sample-specific GC content bias (Supplementary Fig. 169 

6–7). Unusual GC content presents inherent challenges, as GC-poor genes (< 35%) 170 

tended to exhibit more variable expression levels between laboratories than genes with 171 

medium or high (> 65%) GC content (Supplementary Fig. 8). The average duplication 172 

rates of the sequencing reads varied significantly across laboratories, ranging from 4.2% 173 
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to 73.4% for the Quartet samples and from 5.0% to 75.5% for the MAQC samples 174 

(Supplementary Fig. 9). Nine laboratories exhibited an average duplication rate 175 

exceeding 30%, surpassing the typical duplication levels observed in prior research 15, 176 

27, 28. These extra duplicate reads may be due to PCR amplification bias rather than 177 

highly expressed genes 29. 178 

We next assessed the alignment statistics after mapping the raw reads using STAR 179 

(Online Methods). All laboratories exhibited a high overall alignment rate, ranging 180 

from 90.69% to 98.7% for the Quartet samples and from 92.1% to 98.9% for the MAQC 181 

samples (Supplementary Fig. 10). The slightly lower uniquely mapping rate was 182 

noticeable in the Quartet samples in comparison to the MAQC samples, with average 183 

mapping rates of 89.7% (80.9%–95.4%) and 92.0% (84.1%–96.0%), respectively. This 184 

was similar to the common characteristics observed when comparing clinical samples 185 

with the MAQC samples 20. The multi-mapping rate seemed to be associated with the 186 

mRNA enrichment methods. The rRNA depletion method resulted in higher average 187 

multi-mapping rates than the poly(A) selection method (Supplementary Fig. 11), 188 

possibly due to the capture of a greater number of small non-coding RNAs with high 189 

sequence similarity 30. Meanwhile, a high multi-mapping rate was consistently 190 

correlated with a higher mismatch rate (Supplementary Fig. 10). The percentage of 191 

aligned reads mapping to annotated exons is directly related to expression 192 

quantification, and is therefore a critical quality metric. The poly(A) selection method 193 

consistently showed a higher median percentage of exonic reads at 84.5% and 80.9%, 194 
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compared to the rRNA depletion method at 46.3% and 44.1% for the Quartet and 195 

MAQC samples, respectively (Supplementary Fig. 12–13).  196 

Additionally, the percentage of reads mapped to ERCC reference sequences 197 

allowed for the identification of problematic samples or libraries. In four samples 198 

(MAQC A, B, and Quartet F7, D5) without ERCC spike-ins, we observed reads counts 199 

ranging from 1 to 213,467 mapped to ERCC genes across 38 laboratories 200 

(Supplementary Fig. 14). Particularly, Lab10 exhibited an exceptionally high fraction 201 

of ERCC reads in the two replicates of MAQC sample A, accounting for 0.8% and 0.06% 202 

of the exonic reads. This indicates potential contaminations across RNA samples or 203 

libraries 31. 204 

 205 

Significant variations in detecting subtle differential expression 206 

We combined multiple metrics for a robust characterization of RNA-seq performance: 207 

(i) quality of gene expression data using signal-to-noise ratio (SNR) based on principal 208 

component analysis (PCA) 23, (ii) the accuracy and reproducibility of absolute and 209 

relative gene expression measurements based on several 'ground truths', and (iii) the 210 

accuracy of differentially expressed genes (DEGs) based on the reference datasets (Fig. 211 

1b). These metrics constitutes a comprehensive performance assessment framework 212 

that captures different aspects of gene-level transcriptome profiling (Supplementary 213 

Notes, section 2.2). 214 
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PCA-based SNR values based on both the Quartet and MAQC samples 215 

discriminated all gene expression data into a wide range of quality levels, reflecting the 216 

varying ability to distinguish biological difference signals in different sample groups 217 

from technical noises in replicates (Fig. 2a). However, smaller intrinsic biological 218 

differences appeared to be more challenging to distinguish from noises, indicated by 219 

lower average SNR values for Quartet samples among laboratories compared to MAQC 220 

samples, at 19.8 (0.3–37.6) and 33.0 (11.2–45.2), respectively (Supplementary Fig. 221 

15). The reduced biological differences among the mixed samples led to a further 222 

decrease in the average SNR values to 18.2 (0.2–36.4). Particularly, for different 223 

laboratories, the gap between two sets of SNR values, one based on the Quartet and 224 

mixed samples and the other based on the MAQC samples, differed from 4.7 to 29.3, 225 

suggesting that diagnosing quality issues at subtle differential expression levels was 226 

sensitive. Moreover, SNR examinations allowed for the identification of random 227 

failures in the technical replicates. The SNR17 values, calculated from any 17 out of 228 

the 18 samples (12 Quartet and 6 mixed samples), increased by six decibels compared 229 

to the corresponding SNR18 values in six laboratories (Fig. 2a). 230 

Gene expression measurements was assessed based on the Quartet reference 231 

datasets, TaqMan datasets, and the built-in truths including the ERCC spike-in ratios 232 

and mixed ratios of sample T1 and T2. Gene expression exhibited significant inter-233 

laboratory variations, especially in absolute expression. Considering the varying gene 234 

types of interest among laboratories (Fig. 2b), only protein-coding genes were included 235 
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to facilitate comparisons between laboratories. All laboratories exhibited lower 236 

correlation coefficients at 0.825 (0.738–0.856) with the MAQC TaqMan datasets of 830 237 

protein-coding genes, compared to those at 0.876 (0.835–0.906) with the Quartet 238 

TaqMan datasets of 143 protein-coding genes (Fig. 2c). Correlations with the nominal 239 

concentrations of the 92 ERCC spike-in RNAs were consistently high for all 240 

laboratories with an average correlation coefficient of 0.964 (0.828–0.963). More 241 

ERCC based assessments are shown in Supplementary Notes, Section 2.3. These 242 

results indicate that accurate quantification of a broader set of genes is more challenging, 243 

highlighting the importance of large-scale reference datasets for performance 244 

assessment. We also focused on the absolute expression for other gene types, and 245 

observed that small non-coding RNAs exhibited the largest inter-laboratory variations, 246 

followed by pseudogenes, long non-coding RNAs, and immunoglobulin/T cell receptor 247 

segments (Supplementary Fig. 16), which appeared to be associated with gene features 248 

specific to each type, such as gene lengths and gene expression levels (Supplementary 249 

Fig. 17–18). 250 

Relative expression measurements are more reliable than absolute expression 251 

measurements, but they still present challenges when identifying subtle differential 252 

expression. The variations in relative expression across laboratories decreased 253 

compared to those in absolute expression, as indicated by that samples tended to cluster 254 

based on the source sample rather than the laboratory in PCA analyses. However, 255 

laboratories still exhibited considerable variations in relative expression exceeding the 256 
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small biological difference among the Quartet samples (Fig. 2d–e and Supplementary 257 

Fig. 19). Despite the higher accuracy metrics among laboratories compared to absolute 258 

expression (Supplementary Fig. 20), relative expression demonstrated lower average 259 

correlation coefficients of 0.865 (0.288–0.978) and 0.860 (0.488–0.944) with the 260 

Quartet reference datasets of 23790 protein-coding genes and Quartet TaqMan datasets, 261 

respectively, compared to the average correlation coefficient of 0.927 (0.778–0.949) 262 

with MAQC TaqMan datasets (Fig. 2f). It is noteworthy that the Root Mean Square 263 

Error (RMSE) values between laboratories and the Quartet reference datasets were the 264 

lowest, reflecting the systematic deviations between RNA-seq and TaqMan RT-qPCR 265 

assays but not between RNA-seq and the Quartet reference datasets (Fig. 2f). In 266 

addition, based on the ERCC spike-in ratios and mixing ratios of samples T1 and T2, 267 

we complementarily examined the accuracy and reproducibility of the relative 268 

expression across 92 ERCC RNAs and all detected genes. Our results revealed the 269 

impact of low gene expression and subtle differential expression on relative expression 270 

measurements. The expected ERCC spike-in ratios were more accurately recovered for 271 

high-concentration ERCC genes compared to low-concentration genes (Fig. 2g). The 272 

mixing ratios in the mixed samples were recovered well in most laboratories (Fig. 2h). 273 

Laboratories that failed to recover the mixing ratio demonstrated the presence of 274 

outliers (Supplementary Fig. 21), which are typically caused by the erroneous 275 

detection or calculation of low-expressed genes (Supplementary Fig. 22). By stepwise 276 

filtering of genes with low fold changes, the RMSE values between the observed and 277 
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expected fold changes decreased, indicating a higher accuracy of gene expression 278 

measurements (Fig. 2i). 279 

The DEGs calls revealed significant variations across laboratories in terms of both 280 

DEGs number and the accuracy of DEGs classification based on the Quartet reference 281 

datasets and TaqMan datasets. The number of protein-coding DEGs ranged from 787 282 

to 13,194 for the Quartet and mixed samples, and from 4,275 to 12,773 for the MAQC 283 

samples (Supplementary Fig. 23). As a result, true positives ranging from 0.03% to 284 

78.6%, from 1.2% to 82.0%, and from 0.2% to 52.9% of the Quartet reference datasets, 285 

Quartet TaqMan, and MAQC TaqMan datasets, respectively, were missed by the 286 

laboratories. Consequently, we employed a penalized Matthews Correlation Coefficient 287 

(MCC) to assess the accuracy of DEGs calls (Fig. 1b and Supplementary Notes, 288 

section 2.2). The MCC values based on the Quartet reference datasets and Quartet 289 

TaqMan datasets were more dispersed among laboratories, ranging from 0.100 to 0.837 290 

and from 0.075 to 0.756, respectively (Fig. 2j). In contrast, the MCC values based on 291 

the MAQC TaqMan datasets ranged from 0.251 to 0.702. Importantly, the relatively 292 

low MCC values in certain laboratories could be explained by several factors 293 

(Supplementary Table 3). For example, in the case of lab18, the expression data 294 

exhibited a SNR of 0.9, indicating that the low-quality library preparation or sequencing 295 

processes resulted in unreliable and uninformative RNA-seq data for differential 296 

analysis. The lab03 and lab04 demonstrated low accuracy of fold change determination, 297 

impacting the reliability of the DEG calls. Additionally, different thresholds to filter 298 
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low-expression genes and cutoffs for DEGs identification led to variations in the 299 

number of DEGs, which collectively contributed to low accuracy. 300 

 301 

Sources of variation from the experimental process 302 

The significant variations, especially at subtle differential expression levels, 303 

necessitated investigating the sources of variation. To exclusively focus on variation 304 

from the experimental process, we employed a uniform data analysis pipeline for all 305 

RNA-seq raw data, involving the use of fastp for data pre-processing, Ensembl gene 306 

annotation, STAR for reads alignment, and StringTie for gene quantification. When 307 

compared to the original expression data, the SNR values and accuracy metrics for gene 308 

expression measurements increased in most laboratories, indicating that the fixed 309 

pipeline was reliable for excluding the influence of diverse bioinformatics tools 310 

(Supplementary Fig. 24–25). These variations arising from different RNA processing 311 

methods, library preparation protocols, and sequencing platforms among laboratories 312 

represent ‘experimental noise’. 313 

In the presence of significant inter-laboratory variations from the experimental 314 

process for both Quartet (Fig. 3a) and MAQC samples (Fig. 3b), experimental factors 315 

had a great impact on subtle differential expression measurement. We quantified the 316 

relative contribution of technical and biological factors to the total variations by 317 

principal variance component analysis (PVCA) based on absolute expression data from 318 

all laboratories for all samples. A total of 17 factors from the experimental process were 319 
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considered (Supplementary Table 4), and these experimental factors introduced 320 

significantly greater variations than biological differences among the Quartet samples 321 

(89.4% vs. 9.6%), with mRNA enrichment methods and strandedness as the primary 322 

sources (Fig. 3c). Additionally, library preparation kits, reads length, and the number of 323 

exonic reads also contributed to 17.9% of the variations. In contrast, while MAQC 324 

samples revealed similar sources, variations derived from experimental factors were 325 

lower than biological differences between the MAQC samples (45.3% vs. 54.7%) (Fig. 326 

3d).  327 

Relative expression could effectively correct for the influence of experimental 328 

factors, as indicated by a significant decrease of over 40% in the relative contribution 329 

of experimental factors to the variations for both the Quartet and MAQC samples. 330 

(Supplementary Fig. 26). The increased consistency between any two laboratories 331 

compared to absolute expression further confirmed this (Fig. 3e and 3f). However, 332 

Quartet samples demonstrated that there remained 27.5% of unexplained variations that 333 

could not be eliminated, implying the presence of additional influencing factors within 334 

the complex and diverse experimental process. 335 

 336 

Sources of variation from the bioinformatics process  337 

To assess the sources of variation from the bioinformatics process, high-quality data for 338 

Quartet and MAQC samples from 13 laboratories served as benchmark datasets, 339 

encompassing 13 different library preparation protocols, seven sequencing platforms, 340 
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and a wide range of sequencing depths spanning 42.6 Mb to 425.3 Mb to mitigate bias 341 

(Materials and Methods). Following commonly used transcriptomic profiling 342 

pipelines in real-world settings, two gene annotations, three alignment tools, and eight 343 

expression quantification tools were incorporated into the analysis, resulting in 28 344 

combined quantification pipelines. Subsequently, six representative normalization 345 

methods were systematically compared (Supplementary Fig. 27). Variations caused 346 

by different combinations of analysis tools represent ‘bioinformatics noise’.  347 

Bioinformatics processes introduced variations comparable to those from the 348 

experimental processes, and each bioinformatics step also had a greater impact on the 349 

subtle differential expression measurement (compare Fig. 4a with Fig. 3c and Fig. 4b 350 

with Fig. 3d). We quantified the relative contribution of annotation, alignment, 351 

quantification, and normalization, to variations using PVCA analysis based on the 352 

absolute expression data for different samples from all combined pipelines. For the 353 

Quartet samples, different bioinformatics steps collectively introduced significantly 354 

greater variations than the intrinsic biological differences (75.1% vs. 5.6%). 355 

Normalization methods were the primary source of variations, followed by 356 

quantification tools, alignment tools, and gene annotation types (Fig. 4a). However, 357 

MAQC samples revealed smaller variations introduced from different bioinformatics 358 

steps than their biological differences (34.0% vs. 56.7%) (Fig. 4b).  359 

Noticeably, the calculation of relative expression could help reduce these 360 

variations, as indicated by the increased consistency in relative expression levels across 361 
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different analysis pipelines when compared to absolute expression (Fig. 4c–d). 362 

Furthermore, the contribution of each bioinformatics step to variations in relative 363 

expression levels decreased significantly (compare Supplementary Fig. 28 with Fig. 364 

4), suggesting that the relative expression calculations could correct for the influence 365 

of different analysis tools. However, similar to the experimental process, 28.4% of the 366 

variations from the bioinformatics process remained for the Quartet samples, 367 

suggesting inherent performance differences among various analysis tools. 368 

 369 

Best practices for experimental designs 370 

To assess whether experimental factors are related to overall performance, we assessed 371 

the accuracy of 42 experimental processes based on the reference datasets under 372 

uniform analysis pipeline conditions. We observed that laboratories exhibiting high 373 

correlation coefficients for relative expression measurements or high MCC values for 374 

DEGs detection dispersed across various experimental protocols (Supplementary Fig. 375 

29). Therefore, these results indicate that RNA-seq performance is primarily dependent 376 

on experimental quality, with the choice of experimental protocols having a relatively 377 

minor impact. 378 

We further filtered out RNA-seq data with low experimental quality and utilized 379 

the remaining data from 32 laboratories to evaluate each experimental factor with 380 

regard to data quality, and accuracy of absolute expression, relative expression, and 381 

differential gene expression (Materials and Methods). All performance metrics 382 
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demonstrated similar patterns in assessing different protocols within each experimental 383 

step (Supplementary Fig. 30), and collectively demonstrated that experimental factors 384 

predominantly influence absolute expression measurements rather than relative 385 

expression and differential gene expression. Specifically, certain experimental factors 386 

related to performance were identified (Fig. 5). First, the poly(A) selection method 387 

exhibited higher SNR values than the rRNA depletion method, which is associated with 388 

the latter capturing more lowly expressed non-protein-coding genes. Second, for 389 

absolute expression levels, the rRNA depletion method, strandedness, and 100 bp of 390 

read length corresponded to higher accuracy, and exonic coverage also exhibited a 391 

significantly positive relationship with the accuracy. Third, exonic coverage was also 392 

associated with improved accuracy of relative expression or differential gene 393 

expression, likely due to more reliable detection of lowly expressed genes. We also 394 

observed significant differences in accuracy associated with different choices of some 395 

experimental methods, such as library kit, sequencing platform, and reads length, but 396 

these findings were derived solely from comparisons with a single reference dataset. 397 

 398 

Best practices for bioinformatics designs 399 

To obtain an optimal analysis pipeline for gene-level quantification and differential 400 

expression measurements, we sequentially evaluated the performance of 140 combined 401 

analysis pipelines with regard to alignment quality, quantification accuracy, 402 
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normalization effectiveness, low-expression gene filtering efficacy, and accuracy of 403 

DEGs identification.  404 

We first evaluated the influence of six alignment approaches combined with two 405 

annotations and three alignment tools in terms of sequence alignment and splice 406 

junction discovery. In comparison to the RefSeq annotation, the Ensembl consistently 407 

resulted in higher uniquely mapping rates and lower multi-mapping rates (Fig. 6a). 408 

STAR exhibited the highest overall mapping rate as well as uniquely mapping rate. 409 

STAR either mapped or discarded the paired reads, avoiding the alignment of unpaired 410 

single-end reads (Fig. 6a). HISAT2 and Subread had comparable uniquely mapping 411 

rates, yet HISAT2 tended to have slightly higher multi-mapping rates in most samples, 412 

resulting in higher overall mapping rates. Subread displayed a higher tolerance of 413 

accepting mismatch, primarily concentrating in fewer mismatched bases (Fig. 6b). 414 

Given that Subread did not detect exon-exon junctions, we compared the junctions from 415 

STAR and HISAT2. The Ensembl annotation, being more complex, led to the validation 416 

of a greater number of junctions (Fig. 6c and Supplementary Fig. 31). For these 417 

known junctions, two alignment tools did not exhibit significant differences, whereas 418 

HISAT2 identified more completely novel junctions (Fig. 6c). Most of novel junctions 419 

were not reliable, indicated by significantly decreased number after applying a counts-420 

based threshold (Supplementary Fig. 32). Additionally, we examined the influence of 421 

sequencing depth on junction discovery, and observed that even lower sequencing depth 422 
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was sufficient to detect known junctions, and increasing the sequencing depth further 423 

facilitated the identification of more novel junctions (Supplementary Fig. 33).  424 

We next assessed the performance of 28 gene quantification pipelines, consisting 425 

of six alignment approaches and eight quantification tools (Supplementary Fig. 27). 426 

These pipelines demonstrated similar clustering patterns at absolute and relative 427 

expression levels, primarily divided into two clusters based on quantification principles: 428 

exon-level tools (featureCounts, HTSeq, StringTie, and STAR) and transcript-level 429 

tools (RSEM, Salmon, kallisto, and Sailfish) (Fig. 4c–d and Supplementary Fig. 34). 430 

Gene annotation and alignment tools also contributed to the clustering. In particular, 431 

different gene annotations showed a pronounced impact on absolute expression 432 

measurement using featureCounts, HTSeq, and STAR, and in relative expression 433 

measurement using transcript-level quantification tools. We further examined the 434 

impact of different annotations, alignment tools, and quantification tools on accuracy 435 

based on three reference datasets, and found that the performance of each step was 436 

interdependent. The choice of gene annotation should also consider the quantification 437 

tool, as Ensembl annotation exhibited higher or similar accuracy when combined with 438 

genome- or transcriptome-alignment quantification tools, whereas RefSeq exhibited 439 

higher accuracy when combined with pseudoalignment quantification tools 440 

(Supplementary Fig. 35). The impact of different alignment tools was relatively small, 441 

but the combination of Subread and StringTie decreased accuracy. (Supplementary 442 

Fig. 36). The accuracy also varied among different quantification tools, especially 443 
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between exon-level and transcript-level quantification tools (Supplementary Fig. 37). 444 

Overall, our results, derived from the performance ranking of all quantification 445 

pipelines, supported the superior performance of opting for Ensembl gene annotation, 446 

any alignment tool, and either featureCounts or HTSeq for quantification 447 

(Supplementary Fig. 38). 448 

We converted the raw counts from the 28 quantification pipelines using six 449 

normalization methods, followed by an assessment of expression data quality using 450 

PCA-based SNR (Supplementary Fig. 39a). Trimmed mean of M values (TMM), and 451 

DESeq normalization methods appeared to improve the raw counts most effectively, 452 

while upper quartile (UQ) normalization exhibited the poorest improvement 453 

(Supplementary Fig. 39b). Then we examined the gene expression distribution for all 454 

normalization methods, and found that the median gene expression from DESeq was 455 

the highest, followed by TMM, total counts (TC), and UQ, while fragments per kilobase 456 

million (FPKM) and transcripts per million (TPM) had similarly low levels 457 

(Supplementary Fig. 40). 458 

The setting of low-expression gene filtering conditions may affect the 459 

interpretation of differential expression calls (Supplementary Fig. 23). To elucidate 460 

the impact of filtering conditions on the performance of differential analysis, we 461 

evaluated six filtering methods and various threshold values (0–70%) across five 462 

differential analysis tools, utilizing four RNA-seq datasets representing different 463 

sequencing depth levels (Supplementary Fig. 27) (Materials and Methods). Across 464 
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all six filtering methods, elevating the threshold values resulted in an increase in both 465 

the DEGs number and the true positive rate (TPR) until they reached their respective 466 

peak values, accompanied by a slight yet acceptable decrease in precision 467 

(Supplementary Fig. 41). Such threshold effects were observed for five differential 468 

analysis tools, including edgeR, DESeq2, limma, and DEGseq, except for EBSeq, 469 

which employed stringent internal filtering criteria (Supplementary Fig. 42). Overall, 470 

the six filtering methods led to general consistency in terms of the maximum number 471 

of DEGs and the highest TPR across data from all laboratories (Supplementary Fig. 472 

43–44). Thus, the key consideration shifts to the determination of optimal threshold 473 

value. In the context of small changes in precision, opting for a threshold value 474 

corresponding to the highest TPR appears to be an effective approach, but the lack of 475 

benchmark datasets for assessing sensitivity or precision presents a challenge in 476 

practice. In contrast, calculating the maximum number of DEGs is practical. Although 477 

there were slight differences between the thresholds based on the maximum number of 478 

DEGs and the highest TPR, especially in the Quartet samples (Supplementary Fig. 45), 479 

the resulting TPR values corresponding to these two thresholds were highly consistent 480 

(Supplementary Fig. 46).  481 

After applying a series of threshold values to filter low-expression genes, we 482 

compared the optimal performance of five differential analysis tools with different 483 

choices of quantification pipelines, which contributed to 140 differential analysis 484 

pipelines (Supplementary Fig. 27). First, the number of DEGs identified in both the 485 
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Quartet and MAQC samples was assessed. DEGseq identified the highest number of 486 

DEGs, followed by edgeR, limma, and DESeq2, while EBSeq detected the lowest 487 

(Supplementary Fig. 47). Compared to other tools, DEGSeq appeared to be more 488 

influenced by different choices of quantification pipelines, reflected in a broader range 489 

of DEGs numbers. Second, when focusing on the accuracy of DEGs calls, edgeR and 490 

DESeq2 consistently outperformed other tools, with DEGSeq and limma slightly lower, 491 

and EBSeq being the lowest (Fig. 7a–b and Supplementary Fig. 48). Compared to the 492 

Quartet reference datasets, alignment-free quantification tools, especially Sailfish and 493 

kallisto, were associated with lower MCC coefficients, regardless of the differential 494 

analysis tool used (Supplementary Fig. 49). However, the MAQC samples 495 

demonstrated small impact of the different quantification pipelines on each differential 496 

analysis tool (Fig. 7b and Supplementary Fig. 48). As another accuracy measure, the 497 

area under the receiver operating characteristic curve (AUC) was compared across all 498 

differential analysis pipelines, which captured the statistical discrimination capability 499 

of the DEGs. The edgeR outperformed the other tools, and DESeq2 also exhibited 500 

relatively high AUC values (Fig. 7c and Supplementary Fig. 46). 501 

 502 

Discussion 503 

As part of the Quartet project, this study represents the most extensive cross-laboratory 504 

examination of real-world RNA-seq data and analysis outcomes to date, employing 505 

Quartet and MAQC RNA reference materials. Through the systematic assessment of 506 
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transcriptome data from 45 laboratories and the comparison of over 40 experimental 507 

processes and 140 bioinformatics pipelines based on several 'ground truths', we 508 

attempted to address several questions: (i) the performance of real-world RNA-seq in 509 

detecting subtle differential expression; (ii) the sources of inconsistency among 510 

laboratories; and (iii) the recommended practices to enhance the accuracy of RNA-seq 511 

in practical applications (Table 1).  512 

This study, for the first time, revealed noteworthy real-world inter-laboratory 513 

variations in transcriptome profiling performance, especially when detecting subtle 514 

differential expression among the Quartet samples. This prompts a reconsideration of 515 

the actual performance, which may not be as robust as in previous studies conducted 516 

under rigorously controlled RNA-seq workflows 14, 15, 22. First, the PCA-based SNR 517 

varied significantly across laboratories, with 35.6% (16/45) of expression data 518 

considered low quality based on the previously defined cutoff value (SNR = 12) 32. Our 519 

results also revealed that low data quality correlated with the accuracy of differential 520 

analysis calls, highlighting the necessity of quality evaluation prior to downstream 521 

analysis within laboratories. Second, absolute expression measurements exhibited 522 

substantial inter-laboratory variations as reported in previous studies 14. Relative 523 

expression also exhibited greater variations when detecting subtle differential 524 

expression. Certain laboratories exhibited low consistency with reference datasets and 525 

poor recovery of known mixing ratios between mixed samples, which were primarily 526 

due to inadequate restoration of inter-sample biological differences in low-quality data 527 
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or erroneous detection of low-expression genes. Third, the number of DEGs varied 528 

widely, and the accuracy metrics for DEG calls demonstrated a broad range across 529 

laboratories, even when focusing on protein-coding genes. Differences in data quality, 530 

filtering conditions for low-expression genes, differential analysis tools, and the cutoff 531 

setting for DEGs classification collectively contribute to such variations, which appear 532 

to be more significant than the differences in DEGs calling performance across 533 

platforms, sites, and analysis tools previously reported 14, 15, 21. Therefore, our results 534 

underscore the fact that real-world RNA-seq performance may not fully meet the 535 

clinical diagnostic demands, requiring ongoing quality improvement specifically 536 

toward subtle differential expression. 537 

The greater inter-laboratory variations in detecting subtle differential expression 538 

among the Quartet samples prompted to investigate the sources of variations from 539 

diverse RNA-seq workflows, which compensated for previous studies that exclusively 540 

focused on the sources of variation under identical protocols and analysis pipelines 16, 541 

22. We observed that the technical factors in experimental and bioinformatics processes 542 

contributed to a higher proportion of variations in the Quartet samples (89.4% and 543 

75.1%) compared to MAQC samples (45.3% and 34%). While relative expression could 544 

correct for the influence of these factors to some extent, they still contributed to a higher 545 

proportion of variations under small biological difference conditions (48.2% and 10.9% 546 

vs. 12.6% and 1.7%). To be specific, in the experimental process, we identified factors 547 

affecting absolute expression quantification, including mRNA enrichment methods, 548 
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strandedness, library kits, read length, and exonic coverage. In the bioinformatics 549 

process, normalization step is the primary source of variations, followed by 550 

quantification, alignment, and annotation. These factors have been individually studied 551 

15, 33-37, and in contrast, our study revealed the magnitude of their impact in real-world 552 

laboratory settings, providing clarity on the priority of technical factors to consider 553 

when designing RNA-seq systems.  554 

The experimental design is generally considered to be centered around addressing 555 

the biological questions of interest 38 (Table 1). Experimental factors contribute to 556 

deviations in absolute expression measurement, limiting its application 14. Given the 557 

prominent application of differential expression analysis for potential clinical usage, we 558 

particularly focused on the influence of these technical factors in terms of relative 559 

expression and differential gene expression measurements. Our results revealed the 560 

quality of the experimental execution is the primary determinants of accuracy, not these 561 

experimental factors. The impact of low-quality experiments far outweighed that of 562 

different experimental protocols on accuracy, and the varied choices within each 563 

experimental method have not demonstrated significant differences in differential 564 

analysis performance. Nevertheless, it's important to note that different experimental 565 

methods capture distinct transcriptomic features. For example, rRNA depletion method 566 

detects more non-coding RNAs and pseudogenes compared to poly(A) selection 567 

method 15, 33. Stranded and non-stranded libraries mainly contributed to the differential 568 

expression of pseudogenes and antisense genes, and stranded RNA-seq enables the 569 
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accurate quantification of approximately 20% of overlapping genes transcribed from 570 

the opposite strands 34. Therefore, the choice of experimental protocols would be 571 

primarily driven by (i) sample type and quality, such as the extent of RNA degradation 572 

17, and (ii) research objectives, which may involve non-coding RNAs, pseudogenes, 573 

antisense genes, as well as novel transcripts and alternative splicing events 33, 34, 39.   574 

The bioinformatics design, centered on the choice of optimal analysis tools, 575 

requires equal attention, as the variations from the bioinformatics processes are 576 

comparably significant as those from the experimental processes (Table 1). This study 577 

assessed different normalization methods from the data quality aspects and found that 578 

TMM and DESeq significantly improved the quality of expression data, agreeing with 579 

conclusions drawn from previous studies 40. For each step of the differential expression 580 

analysis, we found that the performance of any analysis tool is not constant but depends 581 

on the other tools used in combination with it. Nevertheless, this study provided the 582 

optimal bioinformatics design through an evaluation of arbitrary combinations of 583 

analysis tools. First, choose Ensembl annotation when using genome- or transcriptome-584 

alignment quantification tools, and choose RefSeq when using pseudoalignment 585 

quantification tools. Second, the impact of different alignment tools is relatively small, 586 

but previous studies have indicated that varying genome complexity should be 587 

considered when making choices 41. Third, for quantification, choose tools operating at 588 

the exon level, particularly featureCounts and HTSeq. Fourth, the threshold for filtering 589 

low-expression genes is not fixed but varies with different samples and analysis tools 590 
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42. Choosing the threshold based on the maximum number of DEGs is practical. Finally, 591 

edgeR or DESeq2 is preferred for conducting differential gene expression analysis. 592 

This study significantly advances the understanding of the role of reference 593 

materials in quality control applications by utilizing Quartet and MAQC reference 594 

materials in parallel (Table 1). Overall, the assessment based on these two reference 595 

materials demonstrated common patterns in multiple aspects of the transcriptome 596 

across laboratories. Notably, each of the two reference materials has significantly 597 

enhanced the reliability and distinctiveness of the assessment and exploration of RNA-598 

seq data. On the one hand, the Quartet samples enabled the assessment in subtle 599 

differential expression levels and demonstrated advantages in the performance 600 

assessment for different laboratories and various analysis pipelines, underscoring the 601 

need for a shift in RNA-seq benchmarking toward subtle differential expression levels. 602 

First, Quartet samples with large-scale reference datasets enabled a more precise and 603 

comprehensive assessment of the RNA-seq performance. The performance metrics 604 

exhibited a broader range than those from the MAQC samples in terms of SNR values 605 

for assessing data quality, correlation coefficients for assessing gene expression 606 

accuracy, and MCC coefficients for evaluating the accuracy of DEG calls. This implies 607 

a higher discriminative ability for discovering performance differences among different 608 

batches, protocols, sites, and analysis tools. Second, Quartet samples allowed for a more 609 

sensitive uncovering of technical noise. In the context of subtle biological differences 610 

among the Quartet samples, the variations introduced by experimental and 611 
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bioinformatics factors become more pronounced. Third, the Quartet reference datasets 612 

revealed no systemic differences with the RNA-seq data at both absolute and relative 613 

expression levels. Methodological differences between RNA-seq and TaqMan RT-614 

qPCR have previously limited gene expression assessments concerning correlation 615 

analyzes 14, which are considered to have limitations in representing consistency 43. The 616 

Quartet reference datasets showed a lower RMSE with RNA-seq data compared to 617 

TaqMan datasets, allowing for a direct comparison of the quantitative values of gene 618 

expression. On the other hand, the MAQC samples established connections with 619 

previous milestone studies, contributing to a deeper understanding of real-world RNA-620 

seq performance based on these traditional RNA reference materials in the community. 621 

Moreover, a large-scale TaqMan RT-qPCR dataset for the MAQC samples ensures an 622 

unbiased performance assessment, effectively complementing the Quartet reference 623 

datasets originated from the Ensembl-HISAT2-StringTie pipeline that may introduce 624 

biases especially when assessing diverse RNA-seq analysis pipelines 32. 625 

In summary, this study unveils significant inter-laboratory variations in real-world 626 

transcriptome profiling when detecting subtle differential expression, especially with 627 

respect to data quality, absolute expression, and differential gene expression. The 628 

investigation of the sources of inter-laboratory variations at both experimental and 629 

bioinformatics aspects has highlighted key points for the development and optimization 630 

of RNA-seq methods. This study provided best practice recommendations regarding 631 

the experimental and bioinformatics design and quality control of RNA-seq (Table 1). 632 
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These will aid researchers in accurately identifying subtle changes in disease conditions, 633 

accelerating the transition of RNA-seq into a diagnostic tool. Furthermore, these data 634 

can also be used to address other aspects of transcriptome profiling, including 635 

alternative splicing, gene fusion, RNA editing, and RNA variations. 636 
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Figure 637 

 638 

Fig. 1 Overview of study design 639 

(a) Two MAQC samples (A = Universal Human Reference RNA and B = Human Brain 640 

Reference RNA), two ERCC synthetic RNA mix, and Quartet RNA reference materials 641 

were utilized to prepare a set of samples. The M8 and D6 samples were combined with 642 

ERCC controls at manufacturer recommended amounts, and then mixed at 3:1 and 1:3 643 

ratios to create sample T1 and T2, respectively. Each sample was prepared with three 644 

replicates, and tested by 45 laboratories with distinct protocols and analysis pipelines, 645 
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resulting in a total of 1080 libraries and 15.63 Tb of data generated. All 45 laboratories 646 

submitted expression data and differential expression calls at gene and transcript levels, 647 

while 42 laboratories submitted complete raw sequencing data. DEG, differential 648 

expression gene. (b) A comprehensive framework for assessment of real-world RNA-649 

seq data, encompassing assessment of data quality using PCA-based SNR, as well as 650 

gene expression profiles and differentially expressed genes by comparing with various 651 

ground truths. SNR, Signal-to-Noise Ratio; RMSE, Root Mean Square Error; CC, 652 

Correlation Coefficient; MCC, Matthews Correlation Coefficient; TN, True Negative; 653 

TP, True Positive; FN, False Negative; FP, False Positive. (c) A fixed analysis pipeline 654 

was applied to all raw data to exclude the influence of the bioinformatic process. Then 655 

the relative contributions of experimental factors to inter-laboratory variations were 656 

investigated. (d) High-quality data from 13 laboratories were selected for the 657 

benchmarking study, and the performance of 140 differential analysis pipelines 658 

composed of two gene annotations, three alignment tools, eight quantification tools 659 

following six normalization methods, and five differential analysis tools was compared 660 

to explore the sources of variations from the bioinformatics process. 661 
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 662 

Fig. 2 RNA-seq performance metrics for real-world laboratories 663 

(a) SNR values across 45 laboratories to measure data quality. Laboratories were 664 

ordered by SNR values. Dots represented SNR values based on any 17 of the 18 samples 665 

(12 Quartet and 6 mixed samples) in each laboratory. A dot in dark red represented 666 

SNR17 value that increased over five decibels compared to its standard SNR (18-667 
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sample SNR), when one library in this laboratory was excluded, while a dot in orange 668 

represented SNR17 value that decreased or increased less five decibels compared to its 669 

standard SNR. (b) The gene types of interest for all laboratories and the corresponding 670 

number of genes supported by at least one reads for all three replicates (Supplementary 671 

Notes, section 2.4). Three laboratories analyzed only protein-coding genes, five 672 

laboratories excluded pseudogenes from their analysis, and the remaining 37 673 

laboratories analyzed all gene types. (c) Comparison of absolute expression levels to 674 

TaqMan datasets and ERCC concentrations on the log2 scale. (d) Scatterplots of PCA 675 

on RNA-seq data of all laboratories in absolute expression levels, (e) and relative 676 

expression levels. The circles of the same color represent all replicates across all 677 

laboratories for each sample. (f) Assessment of relative expression levels using Pearson 678 

correlation coefficient and the Root Mean Square Error (RMSE) based on Quartet 679 

reference datasets and TaqMan datasets on the log2 scale. (g) ERCC spike-in ratios can 680 

be recovered increasingly well at higher expression levels. (h) A consistency test for 681 

recovering the expected sample mixing ratio in samples T1 and T2. The red and cyan 682 

solid line traces the expected curve after mRNA/total-RNA shift correction. The grey 683 

dashed lines indicate the fitted curves from data of laboratories. The ERCC genes are 684 

shown in black, and the other human genes are shown in grey. (i) The ability to recover 685 

expected mixing ratios was measured using RMSE between the observed expression 686 

profiles and the expected expression profiles. As genes with low fold changes were 687 

progressively filtered out, the RMSE across all laboratories decreased, indicating an 688 
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increase of accuracy. The different colors in the box plots represent varying percentage 689 

of filtered genes. (j) Comparison of differentially expressed genes to Quartet reference 690 

datasets and TaqMan datasets using Matthews Correlation Coefficients (MCC). 691 

 692 

 693 

 694 

 695 

 696 
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 697 

Fig. 3 Sources of variation from the experimental process 698 

(a) Scatterplots of PCA on RNA-seq data of all laboratories for Quartet samples, (b) 699 

and MAQC samples after applying fixed analysis pipeline. The circles of the same color 700 

represent all replicates across all laboratories for each sample. (c) Principal variance 701 

component analysis quantifies the proportion of variance explained by each 702 

experimental factor for Quartet samples, (d) and MAQC samples. (e) Heatmap and 703 

hierarchical clustering of different laboratories based on the RMSE at absolute 704 
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expression levels, (f) and relative expression levels for Quartet samples. RMSE, Root 705 

Mean Square Error. 706 

 707 

 708 

 709 

 710 

 711 
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 713 

Fig. 4 Sources of variation from the bioinformatics process 714 

(a) Principal variance component analysis quantifies the proportion of variance 715 

explained by each data analysis step for Quartet samples, (b) and MAQC samples. (c) 716 

Heatmap and hierarchical clustering of 28 gene quantification pipelines based on the 717 

RMSE at absolute expression levels, (d) and relative expression levels. RMSE, Root 718 

Mean Square Error. 719 

 720 
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 721 

Fig. 5 The influence of experimental factors based on different performance 722 

metrics 723 

Performance metrics included SNR for data quality, correlation coefficient for accuracy 724 

of absolute and relative expression, RMSE for recovery of mixing ratios, and MCC for 725 

differential gene expression. The impact of exonic coverage is evaluated by Spearman 726 

correlation analyzes. Significance testing was conducted based on normal distribution 727 

assumptions using one-way analysis of variance (ANOVA) and paired t-tests, or, in 728 

cases where normal distribution was not observed, independent samples were subjected 729 

to Kruskal-Wallis test and Mann-Whitney U test. ** indicates a p-value < 0.05. ns, not 730 

significant; SNR, Signal-to-Noise Ratio; RMSE, Root Mean Square Error; CC, 731 

Correlation Coefficient; MCC, Matthews Correlation Coefficient; TN, True Negative; 732 

TP, True Positive; FN, False Negative; FP, False Positive. 733 
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 734 

Fig. 6 Performance of different alignment schemes 735 

(a) Distribution of mapping status of sequenced reads for six combinations of 736 

annotation and alignment tools. The 13 benchmark datasets corresponding to each 737 

sample are arranged in descending order based on the uniquely mapping rate. (b) 738 

Distribution of the number of reads with mismatch bases. (c) Comparison of known 739 

junctions (left), partially novel (middle), and completely novel junctions (right) 740 
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detected by different alignment approaches in Quartet and MAQC samples. Only 741 

junctions supported by at least one reads for all three replicates were included. 742 

 743 

 744 

 745 

 746 

 747 

 748 
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 749 

Fig. 7 Performance of differential gene expressions analysis tools 750 

(a) The Matthews Correlation Coefficients (MCC) was measured based on Quartet 751 

reference datasets, and (b) MAQC TaqMan dataset. (c) ROC analysis of genes in 752 

Quartet reference datasets (up), Quartet TaqMan dataset (middle), and MAQC TaqMan 753 

dataset (down). For each differential analysis tool, the plot reflects average performance 754 

when different annotations, alignment tools, and quantification tools are used for gene 755 

expression estimation. The RNA-seq data from lab01 was utilized to calculated the 756 
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AUC values, and the AUC values for other high-quality benchmark datasets were 757 

displayed in Supplementary Figure 50. AUC, Area Under the receiver operating 758 

characteristic Curve. 759 
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Table 1. Best practice recommendations. 760 

Key considerations Recommendations 

1. RNA-seq performance in real-world laboratory setting 

RNA-seq performance RNA-seq still presents challenges in two aspects: 

• detecting subtle differential expression. 

• real-world scenarios characterized by a lack of quality control and significantly diverse workflows. 

2. The sources of variations among laboratories 

Experimental process The magnitude of the variation 

• Significantly exceeding the biological differences among Quartet samples but remaining smaller 

than those between MAQC samples 

Sources of variation 

• mRNA enrichment method, strandedness, library kits, reads length, and exonic reads. 

Bioinformatics process The magnitude of the variation 

• Comparable to variations from the experimental process and exceeding the biological differences 

between the Quartet samples. 

Sources of variation 

• Primarily normalization, followed by quantification, alignment, annotation. 

3. Best practices for experimental and bioinformatics design and quality control of RNA-seq 

Experimental design General principles 

• The quality of experimental execution is more important than the choices of experimental protocols. 

• The choice of experimental protocols should be determined by the research goals (sample types and 

quality, and gene types of interest). 

Impact of specific experimental factors 
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• Data quality (SNR): poly(A) selection method is higher than rRNA depletion method. 

• Absolute expression: rRNA depletion method, stranded library, 100 bp of read length, and higher 

exonic coverage are correlated with higher accuracy. 

• Relative expression: library kits, exonic coverage (To be confirmed). 

• Differential gene expression: exonic coverage (To be confirmed). 

Bioinformatics design Normalization 

• TMM or DESeq 

Gene annotation 

• Ensembl annotation when using genome- or transcriptome-alignment quantification tools; RefSeq 

when using pseudoalignment quantification tools. 

Alignment 

•  The impact of different alignment tools on differential expression measurement is minimal. 

•  The combination of Ensembl annotation and STAR exhibits high alignment rates. 

Quantification 

• Exon-level quantification tools, particularly featureCounts, and HTSeq. 

Filtering of low-expression genes 

• The filtering thresholds vary with different samples and analysis pipelines. 

• If benchmark datasets are available, balancing TPR and precision is feasible; otherwise, maximizing 

the number of DEGs is an efficient approach. 

Differential analysis tools 

• edgeR and DESeq2. 

Quality control Reference materials 

• Reference materials with small biological differences are required to ensure the quality of detecting 

clinically relevant subtle differential expression. 
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• Reference materials with subtle differential expression allow for more precise assessment of RNA-

seq quality, and are more sensitive in uncovering issues within the RNA-seq system. 

Basic quality metrics 

• Sequencing QC: base quality scores, GC content, insert size 22. 

• Alignment QC: gene coverage, gene mapping rate, sample swaps and contaminations 22. 

RNA-seq performance assessment framework 

• Expression data quality: PCA-based SNR. 

• Accuracy of gene expression: RMSE or CC. 

• Accuracy of DEG classification: penalized MCC. 

SNR, Signal-to-Noise Ratio; RMSE, Root Mean Square Error; CC, Correlation Coefficient; MCC, Matthews Correlation Coefficient; QC, Quality Control. 761 
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Materials and Methods 929 

RNA Reference samples preparation 930 

Four Quartet RNA reference materials (M8, F7, D6, D5) were used 32, and External 931 

RNA Control Consortium (ERCC) spike-in transcripts were added to M8 and D6 932 

samples at manufacturer recommended amounts (4456740, Thermo Fisher Scientific) 933 

13. Samples T1 and T2 represent mixtures of samples M8 and D6 at the defined ratios 934 

of 3:1 and 1:3, respectively, and thus hold ‘built-in truths’ of sample mixing ratios. 935 

Universal Human Reference RNA (740000, Agilent Technologies) and Human Brain 936 

Reference RNA (QS0611, Thermo Fisher Scientific) were used, which were labeled as 937 

MAQC samples A and B by MAQC Consortium 12. MAQC B sample was paired with 938 

MAQC A sample as a control sample for differential analysis, while Quartet D6 sample 939 

served as a control sample for differential analysis of sample M8, F7, D5, T1, and T2. 940 

Based on these reference materials, three technical replicates were prepared for 8 RNA 941 

samples, resulting in a total of 24 RNA samples (Fig. 1a). All the samples dispensed as 942 

8 μL aliquots into 200 μL thin-wall polypropylene PCR tubes with a concentration of 943 

200 ng/μL and stored at -80 ℃. 944 

RNA-seq workflow 945 

The samples were transported to each laboratory on dry ice, and the ERCC reference 946 

sequences and gene annotation files were provided with the names of the 92 ERCC 947 

genes modified to ‘SPIKEIN’ followed by the corresponding identifier. Laboratories 948 

conducted the experiments and data analysis following their routine procedures. To 949 

accurately capture batch effects within the laboratories, the sample grouping 950 

information was provided to the laboratories after they submitted the sample quality 951 

results, raw FASTQ files, and quantification results at the gene and transcript levels. 952 
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Subsequently, laboratories were required to submit differential analysis results at gene 953 

and transcript level, and alternative splicing results.  954 

TaqMan RT-qPCR 955 

Primers and TaqMan probes were designed for 91 genes based on the RNA sequences. 956 

Among them, C1ORF43 was selected as the reference gene for the PCR method. 957 

Primers and probes were synthesized by Sangon Biotech, and the sequences are shown 958 

in Supplementary Table 5. Before proceeding with the bulk qPCR experiments, we 959 

designed two sets of primers and probes for the reference gene and the target gene 960 

(CD180) to verify the acceptable impact of primer and probe selection on the results. 961 

Then the amplification efficiency of the primers and probes was confirmed to meet the 962 

requirements by performing gradient dilution experiments with the samples. The results 963 

of the CD180 gene were used for inter-batch quality control for qPCR experiments. 964 

Five µg of each Quartet RNA sample was reverse transcribed using the PrimeScript™ 965 

RT reagent Kit (RR037A, TaKaRa) in a 50 µl reaction. This reaction mixture was 966 

incubated at 37 ºC for 15 minutes, then for 5 seconds at 85 ºC and finally for termination 967 

at 4 ºC. cDNA obtained in the previous step was used as template for qPCR. qPCR 968 

reactions were run in 96-well plates, the qPCR reactions were carried out using Premix 969 

Ex Taq™ (RR390A, TaKaRa) containing 2 μL of cDNA, 0.4 μL of each forward and 970 

reverse primers, 0.8 μL of TaqMan probes in a 20 μL final volume reaction. The qPCR 971 

was performed on an Applied Biosystems 7500 Real-Time PCR System using the 972 

following cycling conditions: 30 seconds at 95 ºC followed by 45 cycles of 5 seconds 973 

at 95 ºC and 34 seconds at 56 ºC. Three replicates per sample per gene were conducted 974 

for eliminating random variations.  975 

Comparative Ct method (delta delta Ct method) was used to calculate the fold 976 

differences for the three sample pairs (M8/D6, F7/D6 and D5/D6) with housekeeping 977 
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gene C1ORF43 as endogenous control. For the RT-qPCR data, a gene is classified as 978 

differentially expressed gene (DEG) when the student’s t-test p-value < 0.05 and fold 979 

change ≥ 2 or ≤ 0.5.  980 

TaqMan data for MAQC samples A and B were obtained through the Gene Expression 981 

Omnibus database (accession number GSE5350), which was processed as above. 982 

Undetectable CT values (CT>35 or CT=0) were removed prior to normalization. The 983 

differential gene analysis was performed as previous study, with gene POLR2A serving 984 

as endogenous control 15. 985 

Relative expression calculation 986 

Relative expression data were obtained within each laboratory on a gene-by-gene basis. 987 

Specifically, relative expressions were calculated based on log2FPKM values. For each 988 

gene, the mean of expression profiles of replicates of reference sample(s) (for example, 989 

D6) was first calculated and then were subtracted from the log2FPKM values of that 990 

gene in other samples. 991 

RNA-seq performance metrics 992 

The PCA-based SNR was used to assess the data quality at the gene expression level, 993 

which reflected the ability of data to distinguish the intrinsic biological differences 994 

among different sample groups from technical noises present in replicates. The 995 

calculation method of PCA-based SNR as shown in the previous study 23. Genes with 996 

at least one reads in all selected samples were included for PCA analysis. The Pearson 997 

correlation coefficient was used to evaluate the consistency between the observed 998 

absolute or relative expression and the ground truth. The RMSE was used to measure 999 

the difference between RNA-seq data and Quartet reference datasets and TaqMan 1000 

datasets. The MCC were used to measure consistency of DEGs detected from a dataset 1001 

for a given pair of samples with those from the reference datasets. The true positives, 1002 
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true negatives, false positives, and false negatives were judged as shown in Fig. 1b. 1003 

Then MCC was calculated as follow: 1004 

𝑀𝐶𝐶 =
TP×TN−FP×FN

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
  1005 

Mixing M8 and D6 into T1 and T2 samples allows for complementary assessment of 1006 

the accuracy and reproducibility of RNA-seq. The fold changes between M8/D6, T1/D6, 1007 

and T2/D6 comparisons should adhere to the following equation. A nonlinear robust fit 1008 

(nlrob) was performed for RNA-seq data from laboratories, and the fitted curves were 1009 

compared to expected curves (Fig. 1b). Then, the RMSE between the observed fold 1010 

changes and the expected fold changes from the following equation for T1 or T2 versus 1011 

D6 were calculated. 1012 

log2𝑦 = log2(k1 + k2 ∗ 2 log2x) 1013 

where y represents the expected fold change for T1 or T2 versus D6 and x represents 1014 

the fold change for M8 versus D6. The correction z of the known mixing coefficients 1015 

k1 = z/(z+3) and k2 = 3z/(3z+1) arising out of different ratios of mRNA versus total 1016 

RNA in the samples M8 and D6 has been determined by RT-qPCR assay. In brief, 10 1017 

genes with a broad range of fold change were tested using RT-qPCR, and average z 1018 

values from 10 RT-qPCR results were calculated for samples T1 and T2. The obtained 1019 

z values were 0.974 ± 0.06 for T1 and 0.949 ± 0.09 for T2. Then, the z values obtained 1020 

from the top ten laboratories' RNA-seq data, capable of recovering of mixed ratios, are 1021 

0.965±0.024 and 0.941 ± 0.026 for sample T1 and T2, which further validate the 1022 

correction values. Finally, the z values from RT-qPCR assays were used. 1023 

Alignment and gene quantification 1024 

To analyze the sources of variation from the experimental process, we employed the 1025 

same analysis pipeline for raw FASTQ data from all laboratories. Preliminary 1026 

processing of raw reads was performed using fastp (v.0.23.2) to remove adapter 1027 
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sequences 44. Sequences were aligned to the GRCh38 genome assembly 1028 

(https://ftp.ensembl.org/pub/release-1029 

109/fasta/homo_sapiens/dna/Homo_sapiens.GRCh38.dna.primary_assembly.fa.gz) 1030 

using STAR (v.2.7.10b) 45 with Ensembl annotation release-109 1031 

(https://ftp.ensembl.org/pub/release-1032 

109/gtf/homo_sapiens/Homo_sapiens.GRCh38.109.gtf.gz). Gene quantification was 1033 

conducted using StringTie v2.2.1 46. The log2 transformation was then performed based 1034 

on Fragments Per Kilobase of transcript per Million mapped reads (FPKM) values. To 1035 

avoid infinite values, a value of 0.01 was added to the FPKM value of each gene before 1036 

log2 transformation.  1037 

Quality control analysis of sequencing data at pre-alignment and post-alignment level 1038 

was conducted using FastQC (v.0.11.558), Qualimap (v.2.0.060) 47, and MultiQC (v.1.8) 1039 

48. 1040 

Filtering of low-quality data 1041 

To avoid the impact of low-quality experiments on the examination of experimental 1042 

methods in terms of various performance metrics, including data quality and accuracy 1043 

of gene expression and differential gene expression, we selected RNA-seq data from 31 1044 

laboratories using two criteria: (i) SNR value greater than 20 after applying the uniform 1045 

analysis pipeline and (ii) the difference less than 6 between SNR17 and SNR18 values.  1046 

Bioinformatics Pipelines Benchmark Protocols 1047 

Benchmark datasets. High quality data from laboratories was selected for benchmark 1048 

study. The benchmark datasets were selected based on three criteria. Firstly, data 1049 

displaying high duplication rate, abnormal GC distribution, abnormal sequence length 1050 

distribution, uneven nucleotide composition, and low base quality was excluded based 1051 

on basic sequencing quality. Subsequently, data with a SNR value below 20 was filtered 1052 
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out. Third, the absence of contamination between samples was required based on ERCC 1053 

spike-in evaluation. Furthermore, data derived from diverse RNA-seq protocols was 1054 

required to reduce bias in the benchmark study. 1055 

Gene annotation. Two human gene annotations were included as the guiding reference 1056 

for alignment and quantification tasks in this study, including the Ensembl release-109 1057 

annotation (https://ftp.ensembl.org/pub/release-1058 

109/gtf/homo_sapiens/Homo_sapiens.GRCh38.109.gtf.gz) and the recent RefSeq 1059 

annotation (2023-03-21) 1060 

(https://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/annotation/GRCh38_latest/refseq_ident1061 

ifiers/GRCh38_latest_genomic.gtf.gz). All these annotations were generated based on 1062 

the human reference genome GRCh38. The gene annotation files were used in 1063 

conjunction with reference genome or transcriptome files from the corresponding 1064 

database. 1065 

RNA-seq analysis tools. The list of RNA-seq tools, versions, and the command line 1066 

used in the analysis are listed in Supplementary Table 6. We integrated alignment tools 1067 

including STAR (v.2.7.10b) 45, HISAT2 (v.2.2.1) 49, and Subread (v.2.0.3) 50, genome-1068 

alignment quantification tools like featureCounts (v.2.0.3) 51, HTSeq (v.2.0.2) 52, and 1069 

StringTie (v.2.2.1 46, transcriptome-alignment quantification tools, RSEM (v.1.3.1) 53, 1070 

as well as alignment-free quantification tools, including Kallisto (v.0.48.0) 54, Salmon 1071 

(v.1.10.1) 55, and Sailfish (v.0.9.0) 56. For differential analysis, edgeR (v.3.42.4) 57, 1072 

limma (v.3.56.2) 58, DESeq2 (v.1.40.2) 59, DEGseq (v.1.54.0) 60, and EBSeq (v.1.40.0) 1073 

61 were included and compared. The mapping information of each mapping tool was 1074 

evaluated using Samtools flagstat and stats function 62. The number of mismatches was 1075 

detected using the NM tag. The junctions were extracted from Bam files using 1076 

‘junction_annotation.py’ in RSeQC package (v.5.0.1) 63. Transcript-level reads counts 1077 
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from Sailfish and kallisto were transformed to gene-level counts using tximport  1078 

package (v.1.28.0) 64. 1079 

Normalization methods. We consider six normalization methods: total counts (TC), 1080 

fragments per kilobase million (FPKM), transcripts per million (TPM), trimmed mean 1081 

of M values (TMM), upper quartile (UQ) normalizations, and normalization method 1082 

used by DESeq2 (v.1.40.2). TC also known as CPM (Counts Per Million), corrects for 1083 

library size (expressed in million counts) so that each count is expressed as a proportion 1084 

of the total number reads in the sample. FPKM and TPM are similar methods that 1085 

correct for both library size and gene length, but TPM divides counts by gene length 1086 

first and then by total number of transcripts in the sample, resulting in each normalized 1087 

sample having the same number of total counts. The TMM approach is to choose a 1088 

sample as a reference sample and the others as test samples. Under the hypothesis that 1089 

the majority of genes are not DEGs, a scaling factor is calculated to adjust for each test 1090 

sample after excluding highly expressed genes and genes with high log ratios between 1091 

the test and the reference sample 65. The TMM normalization method is implemented 1092 

in the edgeR package (v.3.42.4)  by means of the calcNormFactors function 57. UQ 1093 

normalization first removes all zero-count genes and calculates a scaling factor for each 1094 

sample to match the 75% quantile of the counts in all the samples 66. UQ normalization 1095 

was performed using the uqua function in package NOISeq (v.2.44.0) 67. DESeq 1096 

normalization method is also based on the hypothesis that most genes are not DEGs. 1097 

The scaling factor for a given sample is computed as the median of the ratio of the read 1098 

count and the geometric mean across all samples for each gene 68. Raw counts were 1099 

normalized using the estimateSizeFactors() and sizeFactors() functions in the DESeq 1100 

package (v.1.40.2). 1101 
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Filtering Conditions for Low-Expression Genes. Data from four different laboratories, 1102 

with varying sequencing depth levels ranging from low to high, were utilized to validate 1103 

the optimal filtering methods and thresholds. We calculate the maximum (max), median, 1104 

and sum of raw read counts and CPM for each gene from the replicated samples, 1105 

resulting in six different combined filtering methods. Using each filtering method, we 1106 

applied a series of thresholds, ranging from low to high, to filter out up to 70% of lowly 1107 

expressed genes. To facilitate comparison of different filtering methods, the real 1108 

threshold values were transformed into percentile-based thresholds. We next examined 1109 

the performance of different differential analysis tools after applying different filtering 1110 

conditions. The true positive rate (TPR) measures the proportion of DEGs that are 1111 

accurately detected as positive by the differential analysis tools. Precision measures the 1112 

proportion of the detected DEGs made are correct (true positives). 1113 

Statistical analysis 1114 

All statistical analyses were performed using R statistical packages (v.4.3.0) and python 1115 

(v.3.10.10). PCA was conducted with the univariance scaling, using the prcomp (v.3.6.2) 1116 

function.  Principal variance component analysis (PVCA) was performed by pvca 1117 

package (v.1.40.0) to quantifies the proportion of variance explained by each 1118 

influencing factor 69. 1119 

 1120 

Data availability 1121 

The raw sequence data reported in this paper have been deposited in the Genome 1122 

Sequence Archive (Genomics, Proteomics & Bioinformatics 2021) in National 1123 

Genomics Data Center (Nucleic Acids Res 2022), China National Center for 1124 

Bioinformation / Beijing Institute of Genomics, Chinese Academy of Sciences (GSA-1125 

Human: HRA005937) that are publicly accessible at https://ngdc.cncb.ac.cn/gsa-human. 1126 
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