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Abstract  

Thalamic ventral intermediate nucleus (Vim) is the primary surgical target of deep brain 

stimulation (DBS) for reducing symptoms of essential tremor. High-frequency Vim-DBS 

(≥100Hz) has been clinically effective, generating two experimentally-observed features in 

Vim spiking activity: 1) a large transient excitatory response (lasting <1s), followed by 2) a 

suppressed steady-state consisting of oscillations. Yet, mechanisms underlying these 

observations have not been fully understood by previous studies. In this work, we developed 

a network rate model and a novel parameter optimization method that accurately fit in-vivo 

single-unit recordings of Vim in human patients with essential tremor receiving a wide range 

of DBS frequencies (5~200Hz). Our model incorporates both the DBS-induced synaptic 

plasticity of Vim neurons, and the recurrent connections among excitatory and inhibitory 

neurons in Vim-network. We hypothesized that besides inducing synaptic depression, the 

therapeutic mechanism of high-frequency Vim-DBS could be to engage more inhibitory 

neurons in stabilizing the underlying circuits.  

 

Introduction  

Deep brain stimulation (DBS) delivers electrical pulses to adjacent neuronal circuits and 

is known to modulate neuronal activity 1,2,3. DBS has become a standard therapy for many 

movement disorders, including Parkinson’s disease 2, essential tremor 3, and dystonia 4. DBS 

is now being investigated as a treatment for psychiatric or cognitive disorders, including 

depression 5, obsessive-compulsive disorder 6 and Alzheimer’s disease 7. DBS of the thalamic 

ventral intermediate nucleus (Vim) – i.e., Vim-DBS – is the primary surgical option of DBS for 

treating essential tremor 8,9. Essential tremor is the most common adult tremor disorder 

affecting up to 1% of adults over 40 years of age, and features attention tremor and 

uncontrollable shaking of the affected body parts 10,11.  

Despite the recognized clinical benefits of DBS, its therapeutic mechanisms on the 

disease-affected neuronal circuits are not fully understood 1,12. High-frequency DBS (≥100 

Hz) can be clinically effective for relieving symptoms of Parkinson’s disease 2, essential 

tremor 9 and depression 5. Single-unit recordings of Vim neurons receiving high-frequency 

DBS demonstrated two critical features of firing rate dynamics: 1) an initial large excitatory 
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transient response, lasting for <1 s, followed by 2) a suppressed steady-state consisting of 

oscillations 12,13. Suppression of local activity was suggested as a primary mechanism of high-

frequency DBS 14,15, which could induce effects such as synaptic plasticity 12, axonal failure 16 

or GABAergic activation 17. These DBS effects could depend on a combination of factors such 

as the stimulation sites 12 and the time-course of synaptic depression 18. Besides these 

existing hypotheses, computational models are needed to quantify and further explore the 

underlying physiological mechanisms 19,13. The dynamics of DBS-induced membrane and 

local field potentials (LFP) are commonly modeled 20,21,22; yet, these models lack the efficacy 

of tracking instantaneous firing rate observed from single-unit recordings. A recently 

developed firing rate model of DBS-induced synaptic plasticity represented experimental 

single-unit recordings, but deviated from observations during high-frequency Vim-DBS 13. 

Thus, there is a need for a firing rate model of more detailed network mechanisms, besides 

synaptic plasticity. To the best of our knowledge, there has been no neuronal network model 

that can accurately track the instantaneous firing rate from in-vivo human single-unit 

recordings during DBS. 

In a neuronal network, besides synaptic plasticity, the recurrent interplays among 

neurons are critical in forming the network dynamics 23,24. Feedback inhibition characterizes 

the recurrent connections between excitatory and inhibitory neurons, and is critical in 

stabilizing the neuronal networks, e.g., hippocampus 25, basal ganglia 26, sensory cortex 27 

and thalamus 28. Lack of inhibitory effect in thalamic circuits could lead to excessive firings 

of thalamocortical relay neurons, whose over-activity could further induce essential tremor 

through corticomuscular projections 29,30. Murphy and Miller (2009) 31 proposed a Balanced 

Amplification mechanism demonstrating strong inhibition in response to strong external 

drive of excitatory neurons. Such strong external inputs could be specified as intensive visual 

stimuli 31, strong injection current 32, high-frequency DBS 33, etc. In addition to balancing the 

effect of strong inputs, during weak inputs (e.g., low-frequency DBS), the inhibitory nuclei 

are less activated, and this leads to a supralinear increase of neuronal firing rate 34. Such 

inhibition-stabilization mechanisms are ubiquitous in cortical networks because of the 

prevalence of cortical inhibitory interneurons 24,35, and should be also universal in general 

brain networks, e.g. cortical-subcortical networks 22,26,20, when the role of inhibitory nuclei 

is significant. 
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In this work, we developed a firing rate model of the neuronal network of Vim impacted 

by Vim-DBS. In our model, the Vim-network consists of recurrent connections among three 

neuronal groups: DBS-targeted Vim neurons, external excitatory nuclei and inhibitory nuclei. 

For the Vim neurons, the DBS-induced short-term synaptic plasticity is characterized by the 

Tsodyks & Markram model 36. The external nuclei are mainly from thalamus, cerebellum and 

motor cortex 37,38,39. The incorporation of an external excitatory feedback component to the 

model may allow the model to capture the indirect effects of thalamic-DBS as they 

recurrently propagate through the motor control network, away from and back towards the 

Vim 37,38. An inhibitory feedback component may capture the contributions of the thalamic 

reticular nucleus (TRN), as well as intra-nucleus inhibitory interneurons 39,12. We then 

developed a novel parameter optimization method that accurately fits the model to clinical 

data recorded from human patients receiving DBS with varying stimulation frequencies 

(range 5 to 200 Hz). During the optimization process, we observed that the network 

mechanism evolves from Hebbian (dominant recurrent excitation) 24,23 to Balanced 

Amplification (equally strong excitation and feedback inhibition), which accurately 

reproduces the initial large transient response observed during high-frequency DBS. We 

further developed a spiking model of the membrane potential dynamics 22,40, and found that 

the Balanced Amplification spiking network could characterize the oscillations observed in 

the steady-state response during high-frequency DBS. Then, we further observed Vim 

membrane potential data and found that the inhibitory effect was observed as evoked 

hyperpolarized potential in 5 out of 19 Vim neurons receiving high-frequency DBS, yet less 

often observed during low-frequency DBS 33. From our results, we hypothesized that high-

frequency DBS could engage more firings from inhibitory neurons, which stabilize the 

underlying network and lead to better therapeutic outcomes. 

Our models and optimization method can be potentially extended to identify and study 

various brain neuronal circuits. Our rate model can be implemented to optimize the DBS 

frequency in a closed-loop control system 41 potentially used in clinics. 

 

Results 

Framework of rate model, optimization and mechanism analysis 
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We developed a firing rate model of the Vim-network in patients with essential tremor 

(Fig. 1). The model was fitted to the firing rate dynamics from experimental single-unit 

recordings of human Vim neurons receiving DBS with different frequencies – 5, 10, 20, 30, 

50, 100, and 200 Hz 12. The model incorporates the short-term synaptic plasticity (STP) 36 of 

DBS-impacted Vim neurons, and their recurrent connections with the external excitatory 

and inhibitory nuclei (Fig. 1). To detect the optimal model parameters, we developed a novel 

optimization method that found the consistent model parameters that accurately replicate 

the experimental data across different DBS frequencies (Fig. 1). The optimization includes 

the sequential fittings to Focused Feature (more clinically effective high-frequency Vim-DBS 

data 8) and Stabilized Feature (balancing fitting accuracy across data from various DBS 

frequencies) (Fig. 1). During the optimization process, we observed that the modeled Vim-

network evolves from an excitation-dominant mechanism (Hebbian) 42 to an inhibition-

stabilized mechanism (Balanced Amplification) 24 (Fig. 1). The optimal modeled Vim-

network is characterized by a Balanced Amplification mechanism with strong recurrent 

excitation stabilized by equally strong feedback inhibition (Fig. 1). 
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Fig. 1. Schematic illustration of the rate model, optimization and mechanism analysis 

framework 

(rate network model) The firing rate network model consists of 3 recurrent neural groups: “𝐷” represents the 

ventral intermediate nucleus (Vim) neurons directly receiving DBS, “𝐸” represents the external excitatory nuclei, 

and “𝐼” represents the external inhibitory nuclei. 𝑤𝑒𝑖  represents the connectivity strength from inhibitory neurons 

to excitatory neurons; similar meanings for 𝑤𝑒𝑒 , 𝑤𝑖𝑒  and 𝑤𝑖𝑖 . The connection with a dot (respectively, a bar) 

represents excitation (respectively, inhibition). DBS is delivered to the neural group 𝐷  (Vim neurons), and we 

model the corresponding synaptic anatomic structure. Excitatory (respectively, inhibitory) synapses consist of 3 

types: “F” (facilitation), “P” (pseudo-linear)”, and “S” (depression) (12, Methods). We formulate the DBS-induced 

post-synaptic current (𝐼𝐷𝐵𝑆 ) with the Tsodyks & Markram model of short-term synaptic plasticity (STP) (36, 
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Methods). 𝐼𝐷𝐵𝑆  is then transformed to the corresponding firing rate dynamics 𝐹(𝐼𝐷𝐵𝑆), which is the external DBS 

input into the rate network model. 

(parameter optimization) The model is fitted to human clinical Vim-DBS data. The initial model parameters 

(𝛷𝑖𝑛𝑖) are from our previous work of a single-ensemble Vim model 13. We define two features of the clinical Vim-

DBS data: Focused Feature stresses data from high frequency DBS, which is more clinically effective 8; Stabilized 

Feature balances the fitting accuracy between low and high frequency DBS data. During the optimization, the 

resulting parameters of fitting one feature are the initial parameters for fitting the other feature. The optimization 

loops are sequentially executed until an exit rule representing small fitting error is satisfied, and we obtain the 

optimal model parameters (𝛷𝑜𝑝𝑡𝑖𝑚𝑎𝑙). 

(network mechanism) During our optimization, we observe that the modeled network mechanism evolves from 

Hebbian (dominant excitation) to Balanced Amplification (inhibition comparable to excitation). The model fitting 

error fast decreases in optimization Global Stage (wide exploration of parameter space), and converges in Refining 

Stage (exploitation of the parameter rage with low fitting errors). The optimal network is characterized by a 

Balanced Amplification mechanism with equally strong excitation and inhibition. 

 

Firing rate network model 

The rate network model of the Vim-DBS is illustrated in Fig. 1. The model consists of three 

differential equations, 

 

                                    

{
 
 

 
 𝜏𝑒

𝑑𝑟𝐷

𝑑𝑡
= −(𝑟𝐷 − 𝑟𝐷,0) + [𝑊𝒓]𝐷 + 𝐹(𝐼𝐷𝐵𝑆)

𝜏𝑒
𝑑𝑟𝐸

𝑑𝑡
= −(𝑟𝐸 − 𝑟𝐸,𝑏) + [𝑊𝒓]𝐸

𝜏𝑖
𝑑𝑟𝐼

𝑑𝑡
= −(𝑟𝐼 − 𝑟𝐼,0) + [𝑊𝒓]𝐼

                                                 (1) 

where, 

𝒓 = (

𝑟𝐷
𝑟𝐸
𝑟𝐼
), 

 𝑊 = (

𝑤𝐷𝐷 𝑤𝐷𝐸 𝑤𝐷𝐼
𝑤𝐸𝐷 𝑤𝐸𝐸 𝑤𝐸𝐼
𝑤𝐼𝐷 𝑤𝐼𝐸 𝑤𝐼𝐼

) = (

𝑤𝑒𝑒 𝑤𝑒𝑒 −𝑤𝑒𝑖
𝑤𝑒𝑒 𝑤𝑒𝑒 −𝑤𝑒𝑖
𝑤𝑖𝑒 𝑤𝑖𝑒 −𝑤𝑖𝑖

), 

 𝐹(𝐼𝐷𝐵𝑆) =
𝑐

1+exp⁡[−𝑠∗(𝐼𝐷𝐵𝑆−𝑘)]
 ;  

The parameters 𝛷 = {𝑤𝑒𝑒, 𝑤𝑖𝑒 , 𝑤𝑒𝑖, 𝑤𝑖𝑖, 𝜏𝑖, 𝜏𝑒 , 𝑟𝐸,𝑏 , 𝑐, 𝑠, 𝑘} are undetermined 

 

In Equation (1), neural group “𝐷” represents the Vim neurons directly receiving DBS, neural 

group “𝐸” represents the external excitatory nuclei, and neural group “𝐼” represents the 
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external inhibitory nuclei (Fig. 1). The group “𝐸” neurons are mainly the cerebellum dentate 

nucleus and the pyramidal cells of primary motor cortex (M1) deep layers (Layer 5 and 6) 

37,12,38. The group “𝐼” neurons mainly consist of the thalamic reticular nucleus (TRN) and 

interneurons 39,12. 𝑟𝑚 (𝑚 ∈ {𝐷, 𝐸, 𝐼}) represents the firing rate of the corresponding neural 

group. The baseline firing rate (with DBS–OFF) of Vim neurons (𝑟𝐷,0) and the average firing 

rate of external inhibitory nuclei (𝑟𝐼,0) were obtained from single-unit recordings reported 

in other studies 12,43. We chose 𝑟𝐷,0  = 25 Hz to be consistent with the human Vim 

experimental recordings in our previous work Milosevic et al. (2021) 12, and 𝑟𝐼,0 = 5 Hz to be 

consistent with the experimental data recorded in both TRN (human) 12 and thalamic 

interneurons (mice) 43. Since the external excitatory nuclei (group “𝐸 ”) originate from 

multiple sources with highly variable firing rates 44,45, the corresponding baseline firing rate 

(𝑟𝐸,𝑏) is left as an unknown variable (Equation (1)). In the experimental recordings from mice, 

the regular firing rate of cerebellum dentate nucleus ranged from 10 to 80 Hz 44,46. For M1 

Layer 5 and 6 neurons in mice, the firing rate ranged from 10 to 60 Hz 45,47. Thus, we 

constrained 𝑟𝐸,𝑏 in the range of 10 to 70 Hz, and initialize it at 𝑟𝐸,𝑏,0⁡= 40 Hz.  

      In the rate network model, we use 𝜏𝑒 and 𝜏𝑖 to denote the excitatory and inhibitory time 

constants, respectively (Equation (1)). Since Vim neurons are excitatory 12, the time constant 

of the neural group “𝐷” was 𝜏𝑒 . In a firing rate model of a population of neurons, the time 

constant (𝜏) represents the changing speed of the firing rate in response to the post-synaptic 

current 48. Generally, time constants in firing rate models were considered in the range of 0 

to 30 ms 48,49. The rate model time constant is consistent with the membrane time constant 

48, and generally, the time constant of the inhibitory neurons is larger than that of the 

excitatory neurons 12,50. 

The matrix W  (Equation (1)) indicates strength of connectivity between different groups 

of neurons 24,51. In matrix W, 𝑤𝑝𝑞  (for 𝑝 ,𝑞  belong to group “𝐷”, “𝐸”, “𝐼”) represents the 

connectivity strength from the neural group “𝑞” to group “𝑝”, and the +/- sign denotes the 

excitatory/inhibitory effect. The total network input into each neural group is computed as 

the matrix multiplication 𝑊𝒓 = ([𝑊𝒓]𝐷 , [𝑊𝒓]𝐸 , [𝑊𝒓]𝐼)
𝑇 , where [𝑊𝒓]𝐷 , [𝑊𝒓]𝐸  and [𝑊𝒓]𝐼 

represent the inputs into group “𝐷”, “𝐸” and “𝐼”, respectively (Equation (1)).  
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For the Vim neurons directly receiving DBS (group “𝐷”), we modeled the DBS-induced 

post-synaptic current (𝐼𝐷𝐵𝑆) with the Tsodyks & Markram model 36 of short-term synaptic 

plasticity (STP) (Methods, Supplementary Fig. S2) in agreement with Milosevic et al. (2021) 

12; 𝐼𝐷𝐵𝑆  is then transformed (with a sigmoid function) to the corresponding firing rate 

dynamics 𝐹(𝐼𝐷𝐵𝑆) (13, Fig. 1, Supplementary Figs. S3 and S5, Equation (1)). In the sigmoid 

transfer function 𝐹(𝐼𝐷𝐵𝑆), 𝑐, 𝑠 and 𝑘 are the scale, shape and shift parameters, respectively 

(Equation (1)).  

The undetermined parameter set in the rate network model is 𝛷 =

{𝑤𝑒𝑒, 𝑤𝑖𝑒, 𝑤𝑒𝑖, 𝑤𝑖𝑖, 𝜏𝑖 , 𝜏𝑒 , 𝑟𝐸,𝑏 , 𝑐, 𝑠, 𝑘}  (see Equation (1)). All rate model simulations were 

conducted with the sampling resolution of 0.1 ms. 

 

Proposed rate network model captures neural dynamics of human 

experimental data 

The rate model was developed based on the experimental single-unit recordings of 

human Vim neurons in patients undergoing DBS surgery for essential tremor. While 

recording activity of an individual Vim neuron, DBS was applied with one of the stimulation 

frequencies {5, 10, 20, 30, 50, 100, and 200 Hz}, with specific stimulation length {10, 5, 3, 2, 

1, 5, and 2 s}, respectively (see Methods for detailed data protocols which were already 

reported in our previous work 12). We obtained 5~8 recordings during each frequency of 

DBS. During high-frequency DBS, we observed initial transient responses with intensive 

spikes; the transient response length (mean ± standard deviation) for 100-Hz and 200-Hz 

DBS is 690.76 ± 217.38 ms and 254.88 ± 59.88 ms, respectively (Supplementary Table 

S10). The transient response length during 100-Hz DBS is significantly longer than that 

during 200-Hz DBS (F (1,11) = 18.63, p = 0.0012, Supplementary Table S10), and this 

implies that the Vim spiking activity is suppressed to a higher extent during 200-Hz DBS. For 

data from each DBS frequency, we computed the instantaneous firing rate with a time 

histogram method based on these multiple recordings (Methods). The instantaneous firing 

rate was computed by convolving the experimentally recorded spike trains with an 

optimized Gaussian kernel that best characterized the spikes using a Poisson process (52,53, 

Methods, Supplementary Fig. S1). We concatenated the instantaneous firing rate of each 
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DBS frequency, and optimized the consistent model parameters across different DBS 

frequencies (5 to 200 Hz) (13, Supplementary Notes 1). In Fig. 2, we showed the 

instantaneous firing rate calculated from experimental data, the results of our model fit, and 

the optimal model parameters. 

 

 

Fig. 2. Fitting rate network model to Vim-DBS in humans 

The firing rate network model is fitted to the experimental data recorded in the neurons in the ventral 

intermediate nucleus (Vim) of the human patients with essential tremor, during DBS of various stimulation 

frequencies (5 to 200 Hz). For each frequency of DBS, we obtained 5 to 8 spike trains from experimental single-

unit recordings in different patients, and compute the instantaneous firing rate using a time histogram method. 

In computing the experimental instantaneous firing rate, we implement an optimized Gaussian kernel that best 

characterized the Poisson process underlying the spiking data (53, Methods). From the data of each DBS frequency, 

we present the model fit of the initial 2 seconds; an exception is 50-Hz DBS data, where the length of recording was 

~1 second. We compare the model fit (green line) with the experimental instantaneous firing rate (black line). The 

optimal model parameters (Equation (1)) are obtained with our route optimization method (see text). 𝑤𝑝𝑞 (𝑝, 𝑞 ∈

{𝑖, 𝑒}) is the connectivity strength (see Fig. 1 legend for specific descriptions). 𝜏𝑒  and 𝜏𝑖  are the excitatory and 

inhibitory time constants, respectively. 𝑟𝐸,𝑏 is the baseline firing rate of the external excitatory nuclei (group 𝐸, 

Fig. 1). 𝑐, 𝑠 and 𝑘 are the phenomenological parameters in the sigmoid transfer function 𝐹 (Equation (1)). 
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As shown in Fig. 2, the rate network model accurately reproduced the recorded firing 

rates across different DBS frequencies (5 to 200 Hz). The model could capture both transient 

and steady-state firing rate responses to each frequency of DBS. In particular, for 100-Hz and 

200-Hz DBS data, the model is almost identical to the experimental data; this improves the 

result from our previous model that incorporated a single population of Vim neurons, and 

ignored the recurrent connections with other nuclei (13, Supplementary Fig. S6). For Vim-

DBS, high-frequency DBS (100 to 200 Hz) is more clinically effective than low-frequency DBS 

(<100 Hz) 8,9. Additionally, we optimized the model parameters based on the concatenated 

signal across different DBS frequencies (5 to 200 Hz). When fitting a rate model to such DBS 

data with concatenated frequencies, the fit accuracy is consistent between observed and 

unobserved DBS frequencies (e.g., 130 Hz, 160 Hz; see Table 1 in Tian et al. (2023) 13).  

We quantitatively validated the model goodness of fit by computing the normalized mean 

squared error (NMSE) between the experimental instantaneous firing rate (reference) and 

the model generated firing rate. Since high-frequency (100 to 200 Hz) Vim-DBS is more 

clinically effective 8,9 we emphasized the high-frequency DBS data, and defined the total 

fitting error (ER) for model validation: 

              𝐸𝑅⁡ = ⁡
1

3
⁡ ∗ ⁡𝑁𝑀𝑆𝐸⁡(5⁡𝑡𝑜⁡50⁡𝐻𝑧) ⁡+⁡

1

3
∗ ⁡𝑁𝑀𝑆𝐸⁡(100⁡𝐻𝑧) ⁡+⁡

1

3
∗ ⁡𝑁𝑀𝑆𝐸⁡(200⁡𝐻𝑧)     (2) 

The NMSE (5 to 50 Hz) represents the NMSE of the model fit to the concatenated data from 

DBS frequencies 5 to 50 Hz. NMSE (100 Hz) and NMSE (200 Hz) were computed with data 

from the 100-Hz and 200-Hz DBS, respectively. For the rate network model fit shown in Fig. 

2, ER = 7.6%, with NMSE (5 to 50 Hz) = 13.9%, NMSE (100 Hz) = 3.2% and NMSE (200 Hz) = 

5.7%. See Supplementary Table S7 for the NMSE of the model fit to data from each DBS 

frequency.  

 

Effective DBS-induced inputs characterize the balance between excitation 

and inhibition 

      The dynamics of a neural network is shaped by the effective transmission of the firing 

rate among interacting nuclei 51,54. Such transmission is determined by two factors: (i) the 

connectivity strength modeled by 𝑊  in Equation (1); and (ii) the firing rate of the pre-

synaptic nuclei. Thus, in our model, we formulate the effective input 51 into a neural group as 
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the product of connectivity strength and pre-synaptic firing rate. The “effective input matrix” 

of the Vim-network receiving DBS is defined in Equation (3), 

                                                                𝑆 = (
𝑠𝐷𝜉 𝑠𝐷𝐼
𝑠𝐼𝜉 𝑠𝐼𝐼

)                                                                                 (3) 

where 𝑠𝐷𝐼 = 𝑟̅𝐼𝑤𝑒𝑖 , 𝑠𝐷𝜉 = (𝑟̅𝐸 + 𝑟̅𝐷)𝑤𝑒𝑒, 𝑠𝐼𝐼 = 𝑟̅𝐼𝑤𝑖𝑖, 𝑠𝐼𝜉 = (𝑟̅𝐸 + 𝑟̅𝐷)𝑤𝑖𝑒 

 

The subscript “𝐷” represents the Vim neural group directly receiving DBS; “𝐸” and “𝐼” 

represent the external excitatory and inhibitory nuclei, respectively (Equation (1), Fig. 1). 

The subscript “𝜉” represents total input projected by excitatory neurons consisting of “𝐷” 

and “𝐸” groups of neurons. 𝑠𝑚𝑛  (𝑚 ∈ {𝐷, 𝐼} , 𝑛 ∈ {𝜉, 𝐼}) indicates the effective input from 

group “𝑛” to group “𝑚”, and it is equal to the product of the corresponding connectivity 

strength and pre-synaptic firing rate. 𝑤𝑝𝑞 (𝑝, 𝑞 ∈ {𝑒, 𝑖}) is the modeled connectivity strength 

(Equation (1), Fig. 1). The pre-synaptic firing rate 𝑟̅𝑛  (𝑛 ∈ {𝐷, 𝐸, 𝐼}) of the corresponding 

neural groups was calculated by averaging model generated firing rates across different DBS 

frequencies (5 to 200 Hz). See Fig. 2 and Supplementary Figs. S3 to S5 for 𝑟𝐷, 𝑟𝐸  and 𝑟𝐼 of 

model simulations from all DBS frequencies. 

To characterize the balance of excitation and inhibition in network models, we define the 

“inhibition strength ratio” (𝜌𝑖𝑛ℎ) as the ratio of inhibitory to excitatory effective inputs. For 

a certain neural group “𝑚” in the network, we define 

                                                          𝜌𝑖𝑛ℎ,𝑚 =
𝑠𝑚𝐼

𝑠𝑚𝜉
 , where 𝑚 ∈ {𝐷, 𝐼}                                                       (4) 

A network model that stresses the recurrent connections among excitatory nuclei is a 

“Hebbian network” 24,42,55. The effect from inhibitory nuclei is negligible in a Hebbian 

network 42, or incorporated in the background noise 55. Thus, we denote the network with 

small 𝜌𝑖𝑛ℎ,𝐷 (i.e., dominant excitatory effects) as a Hebbian network (Supplementary Table 

S6). In the networks with relatively large 𝜌𝑖𝑛ℎ,𝐷 (𝜌𝑖𝑛ℎ,𝐷⁡> 0.5), the inhibitory effective input 

(𝑠𝐷𝐼 ) is an essential component of the network and is comparable with its excitatory 

counterpart. A network model with sufficient inhibitory effects in balancing excitatory 

effects is known as “Balanced Amplification network” 24, and we consider the network with 

𝜌𝑖𝑛ℎ,𝐷  > 0.5 (i.e., essential inhibitory effects) as a Balanced Amplification network. The 

network with the optimal model parameters (Fig. 2) is the typical Balanced Amplification 
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network (𝜌𝑖𝑛ℎ,𝐷 = 0.91), in which the excitatory and inhibitory effects are equally strong. This 

optimal network minimizes the model fitting error (ER = 7.6%, Supplementary Table S5). 

To this end, we abbreviate “Balanced Amplification network” as “BA network” in text.  

 

Analysis of mechanism of Vim-network in response to DBS 

The Vim-network mechanism is analyzed with the rate network model together with a 

further spiking network model (Methods) that we developed in this work. The spiking 

network model is a classical and ongoing approach for fitting the neural activity patterns in 

experimental data based on microscopic-level membrane potential dynamics 22,40; the 

commonly in-silico implemented Izhikevich spiking network model is a typical example 22. 

Based on the rate model parameters, we fitted the firing rate experimental data (Fig. 2) with 

an Izhikevich spiking network model (Methods) to explore the dynamics in clinical Vim-DBS 

data. 

Similar to the rate model, the Izhikevich spiking network model was on three groups of 

neurons: (1) 20 Vim neurons (excitatory) directly receiving DBS; (2) 100 excitatory neurons 

from the cerebellum; (3) 40 inhibitory neurons from TRN. Compared with the rate model, in 

the spiking model, we incorporated more physiological details of the DBS effects and 

synaptic connections (Methods). Besides the DBS activation of the synapses afferent into the 

Vim neurons (Fig. 1), we incorporated the DBS effect of the axons efferent from the Vim 

neurons to the other neurons, and all synapses in the spiking network were characterized 

by the Tsodyks & Markram model 36 (Methods). The spiking model parameters were 

consistent with previous works 22,56, and were tuned so that for each group of neurons, the 

baseline firing rate (with DBS-OFF) was consistent with our rate network model (Methods 

and Supplementary Table S8). All spiking model simulations were conducted with the 

sampling resolution of 0.1 ms (same as the rate model). We simulated the spiking model with 

different frequencies (5~200 Hz) of Vim-DBS, and obtained the instantaneous firing rate of 

the Vim neurons with a time histogram, which was computed with the optimized Gaussian 

kernel (same as the rate model, see Supplementary Table S1) on 20 simulated spike trains. 

We investigated two network mechanisms – Hebbian and Balanced Amplification – with the 

spiking network model; the two network mechanisms were characterized with the 
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corresponding connectivity strength matrix W (Equation (1) and Supplementary Table S4), 

which is the result of our rate network model. To compare the two mechanisms, in the 

simulations, all the model parameters are the same except for the connectivity strength 

matrix W. We schematized the spiking network model mechanisms (Fig. 3A), and showed 

their impacts on the Vim firing rate (Fig. 3C); the spiking network model was compared with 

the rate network model (Fig. 3B and D). Note that in the spiking network, a cerebellar 

neuron is not connected with a TRN neuron 37,39 (Fig. 3A, Methods). In the rate network, 

there are recurrent connections among 𝐸⁡and 𝐼  groups of neurons, because 𝐸  group is a 

more abstract structure incorporating cortical neurons (Fig. 3B). 

 

 

Fig. 3. Mechanism analysis of Vim-network impacted by DBS 

(A – B) Schematic representation of the network mechanisms. The synaptic connection with a dot (respectively, a 

bar) represents an excitatory (respectively, inhibitory) synapse. The boldness of the connection represents the 

effective input, which is the multiplication of connectivity strength and firing rate (Equation (3)). In the Hebbian 

mechanism, the ratio of inhibitory to excitatory effective inputs is low; such ratio is balanced (close to 1) in the 

Balanced Amplification mechanism.  
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(A) Mechanisms of the spiking neuron network. The spiking network model consists of 3 groups of neurons: 

excitatory ventral intermediate nucleus (Vim) neurons directly receiving DBS, excitatory neurons in the 

cerebellum (Cer), and inhibitory neurons in the thalamic reticular nucleus (TRN).  

(B) Mechanisms of the rate network. The firing rate network model consists of 3 neural groups: “𝐷” represents the 

Vim neurons directly receiving DBS, “𝐸” represents the external excitatory nuclei, and “𝐼” represents the external 

inhibitory nuclei. 

(C – D) Model simulations with the network mechanisms. We simulate the network models and present the results 

of Vim, receiving Vim-DBS of a typical low-frequency (3 Hz) and high-frequency (100Hz), respectively. We present 

the results from two network mechanisms: Hebbian and Balanced Amplification, corresponding to the mechanism 

schematics in (A) and (B). In each plot, the results are normalized to the maximum rate across the two mechanisms. 

(C) The spiking neuron network model simulations. 

(D) The firing rate network model simulations. 

 

The spiking network model qualitatively represented the underlying mechanisms and the 

results of the rate network model (Fig. 3C and D). See Supplementary Figs. S7 and S8 for 

the spiking model fits to data from different frequencies (5~200 Hz) of Vim-DBS. In the 

spiking network, we found that the model fits with Hebbian and Balanced Amplification 

mechanisms were similar during 30-Hz DBS (a typical low-frequency DBS), but distinct 

during 100-Hz DBS (a typical high-frequency DBS) (Fig. 3C); consistent comparisons were 

observed in the rate network (Fig. 3D). The results from rate network model demonstrated 

that during low-frequency (≤50 Hz) DBS, the fitting accuracy with the Hebbian network is 

comparable to the BA network; this may implicate that the inhibitory neurons are not 

sufficiently engaged during weak inputs (low-frequency DBS) 34. However, during high-

frequency (≥100 Hz) DBS, the Hebbian network deviates greatly from the BA network and 

experimental data (Supplementary Table S7, Fig. 2 and Supplementary Fig. S6). These 

results implicated that the Balanced Amplification mechanism (strong inhibition-stabilized 

effect) could be more evident during strong external inputs, e.g., a high-frequency of DBS 

pulses. This was consistent with the previous result on the ferret V1 neurons receiving 

various strengths of visual stimuli; it was hypothesized that the inhibition-stabilized effect 

dominated the network when the external visual stimuli were strong 34 . 

During 100-Hz DBS, in the clinical data, we observed an initial large transient response 

lasting ~600 ms and such transient response is accurately reproduced by the optimal BA 

rate network (Fig. 2). The existence and depression of the transient response can be 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2024. ; https://doi.org/10.1101/2023.12.09.570924doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.09.570924
http://creativecommons.org/licenses/by-nc-nd/4.0/


explained by short-term synaptic plasticity (STP) 18,12. However, STP can’t explain the 

difference in the transient response between Hebbian and BA networks (Fig. 3C and D), 

where the same STP model and parameters are used in this work. In both rate and spiking 

network models, during 100-Hz DBS, we observed a shorter transient response in the 

Hebbian network than the BA network (Fig. 3C and D). A Hebbian network (small 𝜌𝑖𝑛ℎ,𝐷 , 

Equation (4)) stresses the recurrent excitation, which is less regulated by feedback inhibition 

24. Thus, in the Hebbian network, the firing rate dynamics is less robust in response to strong 

external inputs like DBS. In a BA network (𝜌𝑖𝑛ℎ,𝐷 > 0.5), the strong external and recurrent 

excitation is stabilized by the strong feedback inhibition. In the optimal BA network, the 

inhibitory course has a longer time constant (𝜏𝑖 , table in Fig. 2) than excitatory effect (𝜏𝑒 , 

table in Fig. 2), and this may explain the longer initial transient response to 100-Hz DBS, 

compared with an excitation-dominant Hebbian network (Fig. 3C and D). 

In the steady state firing rate in Vim clinical data, we observed some oscillatory dynamics 

during high-frequency DBS (Fig. 2). Such dynamics were observed in the spiking BA network, 

but almost completely missing in the spiking Hebbian network (Fig. 3C). These oscillatory 

dynamics can be explained by the Balanced Amplification mechanism stressing the critical 

role of inhibitory neurons, whose functions are hypothesized as follows. During 100-Hz DBS, 

due to the consecutive stimulation, Vim firing rate increased to a maximum at ~200 ms, 

when the inhibitory neurons started to be sufficiently engaged and brought down the Vim 

firing rate after 200 ms. Then, the decreased Vim firing rate reduced the excitation to 

inhibitory neurons, whose firing rate decreased and thus disinhibited Vim neurons. So, Vim 

firing rate increased again, and this restored the engagement of inhibitory neurons. Such 

interplay between excitatory and inhibitory neurons formed the oscillatory activities in the 

steady-state response during 100-Hz Vim-DBS (Fig. 3C – model, and Fig. 2 – clinical data). 

The role of inhibitory neurons is further observed in the single-unit membrane potential 

data recorded in Vim neurons receiving high-frequency DBS (Fig. 4). We observed 

significant hyperpolarizing effects of inhibition, during both 100-Hz and 200-Hz DBS (Fig. 4). 

These evoked inhibitory activities were seldom observed during low-frequency (≤50Hz) 

DBS 33. Such a biomarker of inhibition starts to take effect after about 50 DBS pulses, which 
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may indicate the time when the firing rate reaches the maximum and starts to decrease (Fig. 

2).  

 

Fig. 4. Biomarker of inhibition observed in single-unit membrane potential data 

Single-unit recordings of the membrane potential of Vim neurons receiving DBS of high frequencies (100Hz and 

200Hz). The recording corresponding to DBS pulse #i is from the inter-DBS-pulse-interval between the ith and 

(i+1)th DBS pulses. We present the recordings in the initial 4ms of each inter-DBS-pulse-interval. For each DBS 

frequency, we obtained recordings from 3 neurons, corresponding to each of the 3 rows. In each set of DBS pulses 

(e.g., pulses 3-5), the recordings are denoted with 3 colors: black, red and blue, corresponding to the ascending 

indices of the DBS pulses. For example, in pulses 3-5 from 100Hz DBS data, “the black, red and blue traces” denote 

data from “pulse 3, 4, and 5”, respectively. In each recording, the initial 1ms of data is truncated because it denotes 

the DBS artifact. The evident depolarizing feature, e.g., the red trace of the 1st neuron (row) receiving pulses 3-5 

of 100Hz DBS, represents the spiking activity. The evident hyperpolarizing feature, e.g., the 3 traces of the 2nd 

neuron (row) receiving pulses 250-252 of 100Hz DBS, represents the inhibitory effects. The biomarker of inhibition 

is characterized by the difference between the peak of hyperpolarization and a preceding “valley” representing 

the initialization of inhibition (Supplementary Table S11). Prior to DBS pulse 50, the biomarker of inhibition is 

generally not observed. The biomarker is significantly observed in the shown data starting from DBS pulse 50. In 

the box-whisker plot, “x” marks the mean value of the biomarker. We use a one-sample one-tailed t-test to show 

that the biomarker of inhibition is significantly greater than 0. “n” represents the number of recordings used in the 

t-test. n=9 for all scenarios (3 pulses × 3 neurons), except for “200Hz DBS, pulses 450-452”, where the blue trace 

in the 3rd row is excluded because the biomarker is hidden by the spiking (depolarizing) activity (Supplementary 

Table S11). One-sample one-tailed t-test: *p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001 
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Route optimization method and evolution of mechanisms 

The rate model parameters (Equation (1)) were obtained from an optimization method 

that we developed (Methods). The network mechanism evolves from Hebbian to Balanced 

Amplification during the optimization process (Fig. 1). Our method, referred to as route 

optimization, effectively navigates the initial parameters in a route towards the globally 

optimal solution in a relatively large parameter space (the undetermined parameter set 𝛷 in 

Equation (1) is relatively high dimensional with dim = 10). During the optimization process, 

we reduce the mean squared errors (MSE) between the experimental instantaneous firing 

rate and model predicted firing rates of the Vim neurons directly receiving DBS (group “D” 

in Fig. 1) (Supplementary Notes 1). Our aim was to find the optimal parameters that 

consistently fit the model to the instantaneous firing rate of Vim neurons receiving DBS 

across varying frequencies (5 to 200 Hz), where high-frequency (100 and 200 Hz) DBS are 

more stressed because they are more clinically effective 8,9. 
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Fig. 5. Route optimization method and evolution of mechanisms 

(A) Schematic illustration of the route optimization method. From a set of initial parameters (𝛷𝑖𝑛𝑖), we do a 

preliminary model fit and obtain the parameters 𝛷𝑝𝑟𝑒 . 𝛷𝑖𝑛𝑖  and 𝛷𝑝𝑟𝑒  that are in the “non-physiological” 

parameter range, meaning that the fitting errors (ER, Equation (2)) with these parameters are very high 

(Methods). The main stages of the optimization process are Global Stage and Refining Stage. Compared to Global 

Stage, Refining Stage stresses high-frequency DBS data to a higher extent. During the optimization process, 𝛷𝐹  

represents the model parameter set fitted to the Focused Feature (stressing high-frequency DBS data), and 𝛷𝑆 is 

fitted to the Stabilized Feature (balancing low and high-frequency DBS data). 𝑊𝑖  is the connectivity strength 

matrix (Equation (1)) in 𝛷𝑆,𝑊𝑖
 , which evolves to 𝛷𝐹,𝑊𝑖

 in the next model fit. 𝛷𝑆,𝑊𝑖
 is represented by a fully filled 

circle, and 𝛷𝐹,𝑊𝑖
 is represented by a half-filled circle of the same color as 𝛷𝑆,𝑊𝑖

; this means that part of the 

parameters (specifically, 𝑊𝑖) are the same between 𝛷𝐹,𝑊𝑖
 and 𝛷𝑆,𝑊𝑖

 (Methods). 

(B)  Route optimization flow chart. Pushing Function emphasizes the Focused Feature, and Stabilizing Function 

emphasizes the Stabilized Feature. The sequential iterations terminate after an exit rule (i.e., small fitting error, 
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see Equation (22) in Supplementary Notes 1) is satisfied, and the final output is the optimal parameter set 

𝛷𝑜𝑝𝑡𝑖𝑚𝑎𝑙  that minimizes ER (error). 

(C – E) The model parameter set associated with the leftmost Hebbian network is 𝛷𝐵,𝑊1  (in (A), Supplementary 

Table S4), which is the start of the Global Stage.  

(C) Evolution of the dominant connectivity strengths (𝑤𝑒𝑒  and 𝑤𝑒𝑖  , Equation (1), Supplementary Table S4). 

(D) Evolution of the effective synaptic inputs (𝑠𝐷𝜉  and 𝑠𝐷𝐼 ⁡, Equation (3), Supplementary Table S6).  

(E) Evolution of the inhibition strength ratio (𝜌𝑖𝑛ℎ,𝐷 ,  Equation (4), Supplementary Table S6). 

(F) 1st eigenvalue (𝜆1) of the effective input matrix (Equation (3)) and the excitatory effective input (𝑠𝐷𝜉). “NMSE” 

is the normalized mean squared error. 𝑠̂𝐷𝜉 = 𝜆1 is a simple linear estimate. 

(G) 2nd eigenvector (𝒗𝟐) of the effective input matrix (Equation (3)) and the inhibition strength ratio (𝜌𝑖𝑛ℎ,𝐷). 

𝜌̂𝑖𝑛ℎ,𝐷 = −
𝑣1,2

𝑣2,2
⁡ is a simple linear estimate. 

 

We design two main stages of optimization, namely, Global Stage and Refining Stage in 

the route optimization method (Fig. 5A). Compared to Global Stage, Refining Stage stresses 

high-frequency DBS data to a higher extent (Methods). The Global Stage explores the 

parameter space and leads the route towards a “low error area”, which is exploited by the 

Refining Stage to locate the optimal parameters (Fig. 5A). Within each stage, the algorithm 

iterates between two objective functions, referred to as “Pushing Function” and “Stabilizing 

Function” (Fig. 5B), to estimate model parameters across different DBS frequencies. The 

objective functions are defined by the weighted sum of the MSE of individual DBS 

frequencies (Supplementary Notes 1). We use the term “Focused Feature” to represent the 

higher weights of the MSE of high-frequency (100-Hz and 200-Hz) DBS data (Fig. 5B, 

Supplementary Notes 1). Compared to Focused Feature, the term “Stabilized Feature” 

represents more balanced weights of the MSE of both low and high-frequency DBS (Fig. 5B, 

Supplementary Notes 1). Focused Feature is important in increasing the fitting accuracy 

during high-frequency DBS, which is underfitted in our previous study 13. Stabilized Feature 

is important to keep the balance of the fitting accuracy across all DBS frequencies. Pushing 

Function emphasizes Focused Feature, whereas Stabilized Feature is stressed in Stabilizing 

Function. Within each iteration in either Global Stage or Refining Stage, the two objective 

functions were sequentially executed: from the Pushing Function, the output parameters 

(𝛷𝐹  , “F” represents Focused Feature) are the inputs to the Stabilizing Function (𝛷𝑆  , “S” 

represents Stabilized Feature) (Fig. 5B). The output parameters of the Stabilizing Function 
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will become the inputs to the Pushing Function in the next iteration (Fig. 5B). Pushing 

Function (on Focused Feature) “pushes” the model parameters away from the local solution 

towards the parameter range better representing Focused Feature, then Stabilizing Function 

(on Stabilized Feature) “stabilizes” the model parameters by fitting consistently across the 

whole data (i.e., Stabilized Feature) with high accuracy (Fig. 5A, Methods). Essentially, the 

pushing-and-stabilizing strategy keeps updating and improving the prior knowledge of the 

initial model parameters for each iteration of fits. This sequential process continues until the 

total fitting error (ER) (Equation (2)) was sufficiently small, and satisfies an exit rule (Fig. 

5B, see Equation (22) in Supplementary Notes 1 for details). The optimal parameters 

(𝛷𝑜𝑝𝑡𝑖𝑚𝑎𝑙) are the output of the route optimization method. See Fig. 5A and Methods for 

more details of the iterations during the optimization process. 

As the route optimization evolved, the total fitting error ER (Equation (2)) decreased, and 

both 𝑤𝑒𝑖  and 𝑠𝐷𝐼  evidently increased, representing an increasing inhibitory effect (Fig. 5C 

and D). 𝑤𝑒𝑖 and 𝑤𝑒𝑒 are the dominant connectivity strengths (Fig. 2, Supplementary Table 

S5). As shown in Fig. 5E, ER decreased fast as 𝜌𝑖𝑛ℎ,𝐷 increased from ~0.1 to ~0.6, then ER 

stabilized and reached the minimum when 𝜌𝑖𝑛ℎ,𝐷~0.9 (Supplementary Tables S5 and S6). 

Initially, the very low 𝜌𝑖𝑛ℎ,𝐷  (~0.1) represented a Hebbian network, where the excitatory 

effective input (𝑠𝐷𝜉) is dominant and the inhibitory effective input (𝑠𝐷𝐼) is negligible (Fig. 5D 

and E). As the optimization proceeds, the network evolved to the Balanced Amplification 

mechanism (𝜌𝑖𝑛ℎ,𝐷 > 0.5, Fig. 5E), with the optimal BA network (𝜌𝑖𝑛ℎ,𝐷= 0.91) representing 

equally strong excitation and inhibition. Supplementary Video S1 illustrates the evolution 

of mechanisms during the route optimization process as shown in Fig. 5E (specified in 

Supplementary Table S6). 

We implemented the inhibition strength ratio ( 𝜌𝑖𝑛ℎ,𝐷 ) to quantify the network 

mechanisms; small 𝜌𝑖𝑛ℎ,𝐷 represents a Hebbian network, whereas large 𝜌𝑖𝑛ℎ,𝐷 represents a 

BA network. 𝜌𝑖𝑛ℎ,𝐷 was determined by the network excitatory and inhibitory effective inputs 

(𝑠𝐷𝜉 and 𝑠𝐷𝐼) into the Vim neurons directly receiving DBS. Now the question is: Can 𝜌𝑖𝑛ℎ,𝐷 

represent the network features identified by the effective input matrix 𝑆  (Equation (3)), 

which characterizes all nuclei in the modeled neural network? The answer is yes, 
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substantiated by the following analysis in the perspective of the eigenvalues and 

eigenvectors of 𝑆. 

The effective input matrix 𝑆 consists of two eigenpairs: (𝜆1, 𝒗𝟏) and (𝜆2, 𝒗𝟐), where 𝜆𝑗  is 

the jth eigenvalue, and the associated jth eigenvector is 𝒗𝒋 =  (
𝑣1,𝑗
𝑣2,𝑗

) (𝑗 ∈ {1,2}). We analyzed 

the evolution of eigenpairs during the route optimization process (Methods, 

Supplementary Table S6). We found that the 1st eigenpair (𝜆1, 𝒗𝟏) characterized 𝑠𝐷𝜉 , i.e., 

the excitatory effective input into the Vim neurons directly receiving DBS; we deduced that 

𝑠𝐷𝜉 ⁡≈ 𝜆1 (Methods, Fig. 5G). The 2nd eigenpair (𝜆2, 𝒗𝟐) characterized 𝜌𝑖𝑛ℎ,𝐷, i.e., the ratio of 

inhibitory to excitatory effective inputs to the Vim neurons directly receiving DBS (Equation 

(4)); we deduced that 𝜌𝑖𝑛ℎ,𝐷 ≈ ⁡−
𝑣1,2

𝑣2,2
 (Methods, Fig. 5G). We quantified these relationships 

by performing linear regression fits. The regression line of 𝑠𝐷𝜉⁡~⁡𝜆1 was  

𝑠̂𝐷𝜉 = 0.988𝜆1 + 0.400 

where the 95% confidence interval of the slope and vertical intercept was, respectively 

[0.962, 1.015] and [-0.977, 1.777]. Thus, this regression line very closely approximated 𝑠̂𝐷𝜉 =

𝜆1 (Fig. 5G, gray dashed line). Similarly, the linear regression fit result of 𝜌𝑖𝑛ℎ,𝐷⁡~ ⁡−
𝑣1,2

𝑣2,2
  was 

𝜌̂𝑖𝑛ℎ,𝐷 = 1.008 (−
𝑣1,2

𝑣2,2
) − 0.003 

where the 95% confidence interval of the slope and vertical intercept was, respectively 

[1.002, 1.014] and [-0.007, 0.002]. This result was almost identical to 𝜌̂𝑖𝑛ℎ,𝐷 = −
𝑣1,2

𝑣2,2
 (Fig. 5G, 

gray dashed line). For both simplified linear fits 𝑠̂𝐷𝜉 = 𝜆1 and 𝜌̂𝑖𝑛ℎ,𝐷 = −
𝑣1,2

𝑣2,2
 , the NMSE was 

smaller than 10-4 (Fig. 5F and G). This demonstrated that the full variation of 𝑠𝐷𝜉 

(respectively, 𝜌𝑖𝑛ℎ,𝐷) was captured by 𝜆1  (respectively, −
𝑣1,2

𝑣2,2
 ) in all networks, with either 

Hebbian (small 𝜌𝑖𝑛ℎ,𝐷) or Balanced Amplification (large 𝜌𝑖𝑛ℎ,𝐷) features. 

The analysis with the eigenvectors and linear regressions demonstrated that the network 

features of 𝑆 can be characterized by 𝑠𝐷𝜉  and 𝜌𝑖𝑛ℎ,𝐷 . In Fig. 5G, we saw that as the route 

optimization evolved, the dynamics of 𝑠𝐷𝜉 was random, except for the initial smaller value. 

Despite such randomness in 𝑠𝐷𝜉, its dynamics could always be perfectly captured by the 1st 

eigenvalue 𝜆1 (𝑠̂𝐷𝜉 = 𝜆1 , Fig. 5G). As the route optimization evolved, 𝜌𝑖𝑛ℎ,𝐷 first increased 
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then stabilized around the optimal value at ~0.9; the dynamics of 𝜌𝑖𝑛ℎ,𝐷  could always be 

perfectly captured by the 2nd eigenvector 𝒗𝟐 (𝜌̂𝑖𝑛ℎ,𝐷 = −
𝑣1,2

𝑣2,2
 , Fig. 5G). 

 

Discussion 

The route optimization method is automatic and accurate 

We developed a model parameter optimization method that constructs a route leading to 

the globally optimal solution. Our route optimization method is automatic, in the sense that 

there is no hand-tuning of the model parameter set 𝛷  (Equation (1)) throughout the 

optimization process. Automatic parameter optimization is more accurate and efficient than 

the parameter hand-tuning, which is the most often implemented approach in analyzing 

network models or fitting data 57,26,58. Although easy to explore, the parameter hand-tuning 

is often laborious and complicated to be implemented to find appropriate results 59, and 

depends heavily on prior knowledge which may not be optimal for the current data 26,58. With 

an effective automatic optimization method, we can efficiently find the optimal model 

parameters that accurately fit an experimental dataset, and these optimal parameters 

probably characterize the physiological underpinnings. During our optimization, we 

observed that the high fitting accuracy requires the large value of the variable 𝑤𝑒𝑖 (Equation 

(1), table in Fig. 2), which represents the synaptic connectivity strength from inhibitory 

neurons to excitatory neurons. 𝑤𝑒𝑖  is the critical quantity representing the inhibition-

stabilized effect. By validating sufficient rounds of simulations, we confirmed that the model 

fitting accuracy was low if 𝑤𝑒𝑖 was not large enough (data not shown). These observations 

from optimization processes further imply that inhibitory effects are essential in fitting Vim-

DBS data and further characterizing the Vim-network. 

 

Clinical evidences of Balanced Amplification mechanism 

The Balanced Amplification mechanism stressing the critical role of inhibitory neurons 

has been validated in experimental works of different brain circuits 60,61,62. In-vitro brain-

slice experiments showed that in response to external stimuli, in general, the depression 

effect can be more evident for excitatory (glutamatergic) synapses than inhibitory 
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(GABAergic) synapses, and E/I balance shifted towards inhibition as the stimulation 

frequency increases 61,62,63,64,65. In the thalamic circuits, the main inhibitory input to thalamic 

relay nuclei is from thalamic reticular nuclei (TRN) 66. With in-vitro slice recordings, 

Campbell et al. (2020) 60 demonstrated that the firing rate of thalamic relay nuclei 

significantly decreases as the optogenetic stimulation frequency increases. The significant 

firing rate reduction implied that E/I was shifted towards inhibition during higher frequency 

of stimulation, and the possible mechanism was further demonstrated by analyzing the 

recorded inhibitory post-synaptic potential (IPSP) of the thalamic relay nuclei 60. The levels 

of hyperpolarization (i.e., IPSP amplitude) during high-frequency stimulation is significantly 

larger than during low-frequency stimulation 60. This showed that the inhibitory effect from 

TRN is resilient and significantly increased under high-frequency stimulation 60,67. These 

experimental results are consistent with the prediction from our model: in the simulations 

of both rate and spiking network models, we observed that the Balanced Amplification 

mechanism is more evident during high-frequency DBS than low-frequency DBS (Fig. 3). 

Clinical observations demonstrated that thalamic-DBS with low-frequency (≤50 Hz) can 

exacerbate essential tremor 68,69. The appearance of tremor – in the disease state and low-

frequency DBS – may indicate an underlying lack of Balanced Amplification mechanism 

(inhibition stabilization effects) of otherwise suppressed excitatory oscillations – these 

oscillations manifest as tremors in the muscles. Thus, a possible therapeutic mechanism of 

high-frequency Vim-DBS is to restore the Balanced Amplification that could have perhaps 

been lost due to the disease state or low-frequency DBS. 

 

Potential generalizability of mechanism analysis to other circuits 

We wanted to investigate the compatibility of our modeling strategy with different types 

of neuromodulations besides DBS.  Another study observed the experimental single-unit 

recordings in ferret primary visual cortex (V1) neurons receiving visual stimuli with various 

stimulation strengths (e.g., different contrast or stimulus size) 34.  As the visual stimulation 

strength increased, the steady-state firing rate of ferret V1 neurons increased supralinearly 

when the stimuli were weak, and started to decrease when the stimuli became strong (see 

Figs. 4 and S10 in Rubin et al. (2015) 34). Such firing rate dynamics in response to various 
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strengths of visual stimuli was modeled as a “stabilized-supralinear network”: as external 

input strength increases, the network transits from dominantly externally driven 

(supralinear increase in firing rate) to dominantly network driven, with the network 

inhibition stabilizing effect becomes increasingly dominant 34. This stabilized-supralinear 

network model was developed and implemented to qualitatively represent the ferret V1 

neuron experimental recordings in response to various strengths of visual stimuli 34. In Vim-

DBS (Supplementary Fig. S10A), during low-frequency DBS (5 to 50 Hz), the steady-state 

firing rate of the group 𝐷 neurons (Vim neurons directly receiving DBS) increased as the DBS 

frequency increased; the steady-state firing rate decreased during high-frequency DBS (100 

and 200 Hz). Such dynamics of experimental steady-state firing rate in response to various 

frequencies of DBS was accurately reproduced by our rate network model (Supplementary 

Fig. S10A and C). Besides, human Vim and ferret V1 neurons reacted similarly to the 

external drive (DBS and visual stimulation, respectively); as the strength of the external 

drive increased (increasing DBS frequency or visual stimulation strength), the steady-state 

firing rate first increased, then fast decreased. This implies that our modeling framework – 

including the rate network model, optimization method and mechanism analysis strategy – 

can be potentially generalizable to studying visual cortex and various brain circuits, 

receiving different types of external stimuli. 

 

Limitation of study  

      The DBS experimental data implemented in this work were recorded in a relatively short 

time scale (≤10 s) for each stimulation frequency (5~200 Hz) (Methods). Within these short 

windows of recorded activity immediately following each DBS pulse, we divide the neuronal 

temporal response profile into an early-transient response and a latter steady-state 

response (Fig. 2) within the context of clinical DBS for essential tremor. Since tremor 

symptoms often respond to stimulation on the scale of seconds, the relatively short 

timescales of our experimental data are nonetheless likely sufficient for initializing optimal 

DBS settings in clinics 70,71. However, in considering the effects of stimulation at a longer time 

scale (≥  minutes), the stimulated neurons may exhibit features of long term synaptic 

plasticity (LTP), which is the long-term change in the synaptic connectivity or morphology 
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72,73. LTP is widely observed in cortical neural circuits pertinent to memory 72 , learning 73 

and neuromodulations 73, etc. The modeling of the possible LTP in long-duration DBS is part 

of our future work. 

      Our model extracts the main architecture of the Vim-circuitry, i.e., the Vim neural group 

and its recurrent connections with external excitatory and inhibitory neural groups. We 

incorporated all the external excitatory (resp., inhibitory) neurons into one group. Such 

structure blurred the details of these excitatory (resp., inhibitory) neurons. The connections 

among the neural groups were modeled by static synapses, i.e., the synaptic connectivity 

strength – e.g., 𝑤𝑒𝑖 (Equation (1)) – is not time-varying. We incorporated synaptic plasticity 

(characterized by the Tsodyks & Markram model 36) in the DBS-induced inputs into the Vim 

neural group, but synaptic plasticity was not considered within the modeled network. The 

purpose for such abstraction is to reduce the dimensionality and complexity of the rate 

model. We found that the robustness of model simulation decreases if incorporating more 

variables of synaptic connectivity into the model (data not shown). Thus, in the rate model, 

due to lack of synaptic plasticity within the modeled network, we didn’t explicitly 

incorporate the DBS effect of the axons efferent from the Vim neurons towards external 

neural groups. The modeling of detailed synapses – including the DBS effect of Vim efferent 

axons – was incorporated in the spiking network model (Fig. 3 and Methods) that we 

developed.  

 

Conclusions and future work 

We developed a firing rate network model of the Vim-circuitry impacted by Vim-DBS, and 

a parameter route optimization method that automatically and effectively found the globally 

optimal model parameters fitted accurately and consistently across experimental data from 

various DBS frequencies (5~200 Hz). Inferred from these optimal model parameters, we 

detected the Balanced Amplification mechanism characterizing the strong inhibition 

stabilization effects underlying the Vim-circuitry. Our modeling, parameter optimization and 

mechanism analysis strategies are potentially generalizable to studying various brain 

circuits, receiving different types of neuromodulations besides DBS. The current work could 

be extended to construct detailed macroscopic thalamocortical network models on 
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quantifying different neurological disease mechanisms (Supplementary Notes 2), and 

these future models can be potentially implemented in developing model-based closed-loop 

DBS control systems 41 for automatic disease treatments. 

 

Methods 

Human experimental data 

We used the same human experimental single-unit recordings which were previously 

published in Milosevic et al. (2021) 12. Thus, the commitment to ethics policies have already 

been fulfilled 12. All human experiments conformed to the guidelines set by the Tri-Council 

Policy on Ethical Conduct for Research Involving Humans and were approved by the 

University Health Network Research Ethics Board 12. Moreover, each patient provided 

written informed consent prior to taking part in the studies 12. 

The human experimental data protocols and offline analysis methods were from 

Milosevic et al. (2021) 12. Microelectrodes were used to both deliver DBS and perform single-

unit recordings.  DBS was delivered using 100 µA and symmetric 0.3ms biphasic pulses 

(150µs cathodal followed by 150 µs anodal) 12. In this work, we used the single-unit 

recordings of the neurons in the thalamic ventral intermediate nucleus (Vim) of essential 

tremor patients, during various DBS frequencies (5 to 200 Hz) in Vim. The single-unit 

recordings during {5, 10, 20, 30, 50, 100, and 200 Hz} Vim-DBS are of length {10, 5, 3, 2, 1, 5, 

and 2 s}, respectively; for each frequency of DBS, we did 5 to 8 recordings in different 

patients (total number of patients = 19). To obtain spikes from the single-unit recordings, 

we did offline analysis and spike template matching. For each single-unit recording, all the 

narrow stimulus artifacts were removed (0.5 ms from the onset of a DBS pulse). Then the 

recordings were high pass filtered (≥300 Hz) to better isolate the spikes, which were 

identified by the template matching using a principal component analysis method in Spike2 

(Cambridge Electronic Design, UK). 

 

Time histogram with the optimized Gaussian kernel 

After offline processing of the Vim single-unit recordings, we obtained 5 to 8 spike trains 

for each frequency of Vim-DBS (5, 10, 20, 30, 50, 100, and 200 Hz), and computed the 
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corresponding instantaneous firing rate with a time histogram method, which is a common 

practice in processing spiking data. However, people usually subjectively choose the kernel 

width for the time histogram, and ignore the underlying mechanisms generating the spikes 

52. In our work, we computed the instantaneous firing rate by convolving the spike trains 

with the optimized Gaussian kernel, which was obtained by the method in Shimazaki et al. 

(2007) 52 and Shimazaki et al. (2010) 53. The optimized Gaussian kernel characterized the 

true Poisson process underlying the experimental spiking data 52,53. Specifically, the 

optimized kernel minimized the mean integrated square error (MISE) from the true 

inhomogeneous Poisson point process underlying the experimental spike trains 52,53. A time 

histogram kernel with small MISE could capture the abrupt firing rate fluctuations, while 

reducing the excessive overfitting 52,53. From the spike trains recorded during each frequency 

of DBS, we computed the instantaneous firing rate with the optimized Gaussian kernel; see 

Supplementary Table S1 for the optimized kernel of the data from each DBS frequency. The 

instantaneous firing rate with the optimized Gaussian kernel grasped the transient 

fluctuations very well, while the overfitting was prevented, in both 5-Hz and 200-Hz DBS 

data (Supplementary Fig. S1). Compared with the optimized Gaussian kernel, a larger 

kernel caused the instantaneous firing rate to deviate from the transient fluctuations, and a 

smaller kernel made the instantaneous firing rate exhibit excessive overfitting 

(Supplementary Fig. S1). 

 

The Tsodyks & Markram model of short-term synaptic plasticity (STP) 

The external input into the Vim-network was the DBS-induced post-synaptic current 

(𝐼𝐷𝐵𝑆 , Fig. 1, Equation (1)), which was formulated with the Tsodyks & Markram (TM) model 

of short-term synaptic plasticity (STP) 36. Thus, the immediate impact of DBS pulses was 

modeled as inducing synaptic release, and such modeling method is consistent with 

previously established works 12,13,74. For the Vim neurons directly receiving DBS, we 

modeled that each neuron receives inputs from 500 synapses, with 90% excitatory synapses 

(𝑁𝑒𝑥𝑐 = 450) and 10% inhibitory synapses (𝑁𝑖𝑛ℎ = 50) (12, Fig. 1, Supplementary Table S2). 

We assumed that each DBS pulse generates one spike in each of these synapses 

simultaneously 12,13. These DBS-evoked spikes were filtered by the TM model, generating the 
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post-synaptic current, 𝐼𝐷𝐵𝑆 , that was obtained by a linear combination of post-synaptic 

excitatory (𝐼𝑒𝑥𝑐) and inhibitory (𝐼𝑖𝑛ℎ) currents as follows: 

                                 ⁡𝐼𝐷𝐵𝑆(𝑡) = ⁡𝑤𝑒𝑥𝑐⁡𝐼𝑒𝑥𝑐(𝑡) −⁡𝑤𝑖𝑛ℎ𝐼𝑖𝑛ℎ(𝑡)                                       (5)  

where 𝑤𝑒𝑥𝑐  and 𝑤𝑖𝑛ℎ  denote the scaling weights of the excitatory and inhibitory currents, 

respectively (Supplementary Table S2). 𝐼𝑒𝑥𝑐 (respectively, 𝐼𝑖𝑛ℎ) is the total post-synaptic 

current from all excitatory (respectively, inhibitory) synapses; each synapse (excitatory or 

inhibitory) was modeled by the TM model of short-term synaptic plasticity:  

                                        
𝑑𝑢

𝑑𝑡
= −

𝑢

𝜏𝑓𝑎𝑐𝑖𝑙
+ 𝑈(1 − 𝑢−)𝛿(𝑡 − 𝑡𝑠𝑝)                                               (6) 

                                        
𝑑𝑚

𝑑𝑡
=⁡

1−𝑚

𝜏𝑟𝑒𝑐
− 𝑢+𝑚−𝛿(𝑡 − 𝑡𝑠𝑝)                                                (7) 

                                       ⁡
𝑑𝐼

𝑑𝑡
= −

𝐼

𝜏𝑠
+ 𝐴𝑢+𝑚−𝛿(𝑡 − 𝑡𝑠𝑝)                                      (8) 

where 𝑢 is a utilization parameter, indicating the fraction of neurotransmitters ready for 

release into the synaptic cleft (due to calcium ion flux in the pre-synaptic terminal). The 

variable 𝑚 indicates the fraction of resources remaining available after the neurotransmitter 

depletion caused by neural spikes. We denote as 𝑢− and 𝑚− the corresponding variables just 

before the arrival of the spike; similarly, 𝑢+ and 𝑚+ refer to the moment just after the spike. 

The 𝛿–function modeled the abrupt change upon the arrival of each pre-synaptic spike 𝑡𝑠𝑝; 

for example, at 𝑡 = 𝑡𝑠𝑝 in Equation (6), 𝑢 increases by 𝑈(1 − 𝑢−), and 𝛿(𝑡 − 𝑡𝑠𝑝) = 0 when 

𝑡 ≠ 𝑡𝑠𝑝. If there is no pre-synaptic activity (spike), 𝑢 exponentially decays to zero; this decay 

rate is the facilitation time constant, 𝜏𝑓𝑎𝑐𝑖𝑙  (Equation (6)). In contrast to the increase of 𝑢 

upon the arrival of each pre-synaptic spike, 𝑚 drops and then recovers to its steady state 

value (= 1); this recovery rate is given by the recovery time constant 𝜏𝑟𝑒𝑐 (Equation (7)). The 

competition between the facilitation (𝜏𝑓𝑎𝑐𝑖𝑙) and recovery (𝜏𝑟𝑒𝑐) time constants determined 

the dynamics of the synapse. In the TM model, 𝑈,⁡𝜏𝑓𝑎𝑐𝑖𝑙, and 𝜏𝑟𝑒𝑐 were the parameters that 

determined the three types of the synapse: facilitation (“F”), pseudo-linear (“P”), and 

depression (“S”) (12, Fig. 1, Supplementary Table S2). In Equation (8), 𝐼 is the post-synaptic 

current, 𝐴  is the absolute response amplitude, and 𝜏𝑠⁡ is the post-synaptic time constant 

(Supplementary Table S2).  We obtained 𝐼𝑒𝑥𝑐  (respectively, 𝐼𝑖𝑛ℎ ) by adding the post-

synaptic currents from all excitatory (respectively, inhibitory) synapses. The TM model 
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parameters in Supplementary Table S2 were chosen based on the previous modeling 

works on specific experimental datasets 12,75,76. 

 

Route optimization method for model parameters 

The route optimization starts with a set of initial parameters (𝛷𝑖𝑛𝑖), which came from 

previously reported parameters in other studies and a one-step fit with our previous single-

ensemble model of the Vim neural group receiving DBS (13, Supplementary Notes 1). In 

particular, the initial connectivity strength parameters ({𝑤𝑒𝑒, 𝑤𝑖𝑒, 𝑤𝑒𝑖, 𝑤𝑖𝑖}) were all set to 1. 

The output parameters from each optimization objective function (Pushing Function or   

Stabilizing Function) were obtained with the MATLAB custom function “fminsearch”, which 

implemented the Nelder-Mead simplex method 77. Starting from 𝛷𝑖𝑛𝑖 , we did a preliminary 

fit with Stabilizing Function, and the output parameters were 𝛷𝑝𝑟𝑒  (Fig. 5A and B). The 

NMSE of the model fits with 𝛷𝑖𝑛𝑖 and 𝛷𝑝𝑟𝑒 were very large (>40%, Supplementary Table 

S5); thus, the networks with these model parameters were considered to be in the “non-

physiological” regime, meaning that they were very different from the experimental data 

(Fig. 5A). 𝛷𝑝𝑟𝑒 was also denoted as 𝛷𝑆,𝑊𝑝𝑟𝑒  (Fig. 5A); the subscript “S” represents that it was 

the output of Stabilizing Function emphasizing the Stabilized Feature, and the subscript 

“𝑊𝑝𝑟𝑒” stresses the strength of connectivity among neural groups in the network associated 

with 𝛷𝑝𝑟𝑒. Starting from 𝛷𝑆,𝑊𝑝𝑟𝑒  , we performed a fit with Pushing Function, and obtained the 

output parameters 𝛷𝐹,𝑊𝑝𝑟𝑒 ; the subscript “F” represents that it was the output of Pushing 

Function that emphasizes Focused Feature  (Fig. 5A). Note that in the fit for obtaining 𝛷𝐹,𝑊𝑝𝑟𝑒  

from 𝛷𝑆,𝑊𝑝𝑟𝑒 , we fixed the connectivity strength 𝑊𝑝𝑟𝑒 ; and for 𝛷𝐹,𝑊𝑝𝑟𝑒  , this feature (fixed 

𝑊𝑝𝑟𝑒) is illustrated as a half-filled circle (Fig. 5A). During the route optimization process, the 

connectivity strength was left unchanged in the Pushing Function to obtain 𝛷𝐹 from 𝛷𝑆. Our 

purpose of this design was to increase the prediction robustness of the connectivity strength, 

which was the essential feature of a neural network. With the same connectivity strength 𝑊, 

the error of model fit with 𝛷𝐹,𝑊 was often larger than 𝛷𝑆,𝑊 (Fig. 5A, Supplementary Table 

S5) because 𝛷𝐹,𝑊  was obtained during fitting Focused Feature stressing part of the data 

(high-frequency DBS). However, from 𝛷𝑆,𝑊  to 𝛷𝐹,𝑊  , the model parameters always moved 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 12, 2024. ; https://doi.org/10.1101/2023.12.09.570924doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.09.570924
http://creativecommons.org/licenses/by-nc-nd/4.0/


away from the local minimum, and the chances were opened up to explore the global 

minimum satisfying our optimization objective (Fig. 5A). Thus, Pushing Function (on 

Focused Feature) “pushes” the model parameters away from the local solution towards the 

parameter range better representing Focused Feature, then Stabilizing Function (on 

Stabilized Feature) “stabilizes” the model parameters by fitting consistently across the whole 

data (i.e., Stabilized Feature) with high accuracy. Such sequential execution of Pushing 

Function and Stabilizing Function (Fig. 5B) is the critical idea of the route optimization 

method in effectively finding the globally optimal solution. 

Starting from 𝛷𝑝𝑟𝑒  , the 1st sequential optimization iteration is 𝛷𝑝𝑟𝑒  → 𝛷𝐹,𝑊𝑝𝑟𝑒  → 𝛷𝑆,𝑊1 

(Fig. 5A and B). The model fitting error (ER) of the network with parameters as the 1st 

iteration output (𝛷𝑆,𝑊1 ) was 35.9%, which is far smaller than the networks in the non-

physiological regime (Fig. 5A, Supplementary Table S5). Thus, we considered the network 

associated with 𝛷𝑆,𝑊1 as physiologically meaningful, as well as each of the following network 

associated with a subsequent iteration output (𝛷𝑆,𝑊𝑘
⁡, 𝑘 ≥ 2 ); for these networks, ER 

decreases as the iteration number 𝑘 increases (Fig. 5A, Supplementary Table S5). In the 

physiological regime, starting from 1st iteration output (𝛷𝑆,𝑊1 ), the route optimization 

proceeds as the sequential iteration number increases; the 𝑘th iteration  (𝑘 ≥ 2) is 𝛷𝑆,𝑊𝑘−1
→ 

𝛷𝐹,𝑊𝑘−1
→ 𝛷𝑆,𝑊𝑘

 (Fig. 5A). The route optimization process in the physiological regime 

consists of two stages: Global Stage and Refining Stage (Fig. 5A). The difference between the 

two stages is that, Refining Stage emphasizes the high-frequency DBS data to a greater extent 

in the objective functions (Supplementary Notes 1). Compared to Global Stage, in Refining 

Stage, the weight of high-frequency DBS data was greater in both Pushing Function and 

Stabilizing Function (Supplementary Notes 1). The purpose of Global Stage is to navigate 

the model parameters towards the appropriate range for fitting the data across all DBS 

frequencies; Refining Stage refines the parameter range obtained by Global Stage to further 

reduce the fitting error, in particular of the more clinically effective high-frequency DBS data. 

The fitting error of the network associated with the final output of Global Stage (𝛷𝑆,𝑊𝐺
 , Fig. 

5A) was already small (ER = 9.5%, NMSE (100 Hz) = 4.3%, NMSE (200 Hz) = 10.6%); 

however, utilizing the objective functions of Global Stage solely would cause ER to stop 

decreasing (data not shown). Thus, we switched to Refining Stage to fully explore and exploit 
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the “low error area” (Fig. 5A) to minimize ER; after such local refinement, we finally found 

the desired globally optimal solution 𝛷𝑜𝑝𝑡𝑖𝑚𝑎𝑙  (ER = 7.6%, NMSE (100 Hz) = 3.2%, NMSE 

(200 Hz) = 5.7%), which satisfied an exit rule (Supplementary Notes 1) to quit the 

optimization iterations (Fig. 5B). The optimal model fit the associated model parameters 

(𝛷𝑜𝑝𝑡𝑖𝑚𝑎𝑙) were shown in Fig. 2. 

 

Eigenpairs of the effective input matrix 

We computed the eigenpairs – eigenvalues and the associated eigenvectors – of the 

effective input matrix 𝑆 (Equation (3)); Supplementary Table S6 showed the evolution of 

𝑆 and its eigenpairs during the route optimization process (as illustrated in Fig. 5F and G). 

Suppose that the 𝑖𝑡ℎ  eigenpair of the effective input matrix 𝑆  is (𝜆𝑖 , 𝒗𝒊 = (
𝑣1,𝑖
𝑣2,𝑖

)), and we 

deduced the following equations: 

                            𝑆𝒗𝟏 = (
𝑠𝐷𝜉 𝑠𝐷𝐼
𝑠𝐼𝜉 𝑠𝐼𝐼

) (
𝑣1,1
𝑣2,1

) = 𝜆1 (
𝑣1,1
𝑣2,1

) ⇒ 𝑠𝐷𝜉 = −
𝑣2,1

𝑣1,1
𝑠𝐷𝐼 +⁡𝜆1                                           (9) 

                            𝑆𝒗𝟐 = (
𝑠𝐷𝜉 𝑠𝐷𝐼
𝑠𝐼𝜉 𝑠𝐼𝐼

) (
𝑣1,2
𝑣2,2

) = 𝜆2 (
𝑣1,2
𝑣2,2

) ⇒ 𝑠𝐷𝜉 = −
𝑣2,2

𝑣1,2
𝑠𝐷𝐼 +⁡𝜆2⁡                                   (10) 

where 𝜆𝑖 (𝑖 = 1,2) is the 𝑖𝑡ℎ eigenvalue of 𝑆, and 𝒗𝒊 = (
𝑣1,𝑖
𝑣2,𝑖

) (𝑖 = 1,2) is the 𝑖𝑡ℎ eigenvector of 

𝑆 associated with 𝜆𝑖 .  

During the route optimization process, we always observed that 
𝜆1

𝑠𝐷𝜉
 ≈ 1 and  

𝑣2,1

𝑣1,1
⁡≈ 0 

(Supplementary Table S6). This observation was consistent with Equation (9), which 

concretely showed that 𝑠𝐷𝜉  ≈ 𝜆1  when 
𝑣2,1

𝑣1,1
⁡≈ 0. Thus, the excitatory effective input (𝑠𝐷𝜉 ) 

could mostly be represented by the 1st eigenvalue (𝜆1). When observing the 2nd eigenpair 

(𝜆2, 𝒗𝟐) during the route optimization process, we found that 
𝜆2

𝑠𝐷𝜉
 is always small; in fact, max 

(
𝜆2

𝑠𝐷𝜉
) < 2% (Supplementary Table S6). Thus, in analyzing the inhibition strength ratio 

𝜌𝑖𝑛ℎ,𝐷 =
𝑠𝐷𝐼

𝑠𝐷𝜉
 (Equation (4)), we deduced the following equation from Equation (10): 

                                   𝜌𝐷,𝑖𝑛ℎ =
𝑠𝐷𝐼

𝑠𝐷𝜉
=⁡−

𝑣1,2

𝑣2,2
(1 −

𝜆2

𝑠𝐷𝜉
) ≈ ⁡−

𝑣1,2

𝑣2,2
                                                       (11) 
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because max (
𝜆2

𝑠𝐷𝜉
) < 2% ≪ 1 (Supplementary Table S6). Thus, the inhibition strength ratio 

𝜌𝑖𝑛ℎ,𝐷 could mostly be represented by the 2nd eigenvector 𝒗𝟐 = (
𝑣1,2
𝑣2,2

). 

 

The Izhikevich spiking network model 

We developed an Izhikevich spiking network model of the Vim-network, and compared 

its fitting results with our rate network model. The purpose was to validate our rate network 

model, and further discuss the network mechanism. The Izhikevich spiking network model 

was of 3 groups of neurons: (1) 20 Vim neurons (excitatory) directly receiving DBS; (2) 100 

excitatory neurons from the cerebellum; (3) 40 inhibitory neurons from the thalamic 

reticular nuclei (TRN). This setup of the Izhikevich model is consistent with the previous 

spiking models of the thalamocortical network 22,56. The Izhikevich spiking network model 

equations are stated as follows, 

𝑣𝑛𝑚
′ = 0.04𝑣𝑛𝑚

2 + 5𝑣𝑛𝑚 + 140 − 𝑢𝑛𝑚 + 𝐼𝑏𝑖𝑎𝑠,𝑚 + 𝜉𝑚 + 𝐼𝐷𝐵𝑆,𝑚⁡𝑘𝑚 

                                                 +𝛽∑ 𝐼𝑇𝑀,𝑚𝑞𝑤𝑚𝑞
3
𝑞=1                                                                              (12) 

 

                                                   ⁡⁡⁡𝑢𝑛𝑚
′ = 𝑎𝑚(𝑏𝑚𝑣𝑛𝑚 − 𝑢𝑛𝑚)                                                           (13) 

 

                                if 𝑣𝑛𝑚 ≥ 𝜃 + 𝜁𝑚 , then 𝑣𝑛𝑚 ← 𝑐𝑚 , 𝑢𝑛𝑚 ← 𝑢𝑛𝑚 + 𝑑𝑚                                 (14) 

 

                               𝑊 = (

𝑤11 𝑤12 𝑤13
𝑤21 𝑤22 𝑤23
𝑤31 𝑤32 𝑤33

) = (

𝑤𝑒𝑒 𝑤𝑒𝑒 −𝑤𝑒𝑖
𝑤𝑒𝑒 𝑤𝑒𝑒 0
𝑤𝑖𝑒 0 −𝑤𝑖𝑖

)                                          (15) 

 

where m is the index of the neural group; m = 1, 2, 3 corresponds to the neural group Vim, 

cerebellum and TRN, respectively. Each group consists of 𝑁𝑚 neurons, which are indexed by 

n = 1, 2, 3, ..., 𝑁𝑚 ;  𝑁1⁡= 20, 𝑁2 = 100, and 𝑁3⁡= 40. The simulation of the Izhikevich spiking 

network model was performed with the Neural Simulation Tool (NEST) platform 78. 

In Equation (12), 𝑣𝑛𝑚 is the membrane potential of the nth neuron in the mth group, and 

𝑢𝑛𝑚 is the corresponding membrane recovery variable.⁡𝐼𝑏𝑖𝑎𝑠,𝑚 is the constant biased current 

injected to each neuron in the mth group, and  𝜉𝑚  is the Gaussian white noise (see 
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Supplementary Table S8 for its standard deviation). 𝐼𝐷𝐵𝑆,𝑚  is the DBS-induced post-

synaptic current into the mth group, with synapses characterized by the Tsodyks & Markram 

(TM) model 36; 𝑘𝑚  is a scaling parameter. 𝐼𝐷𝐵𝑆,1  represents the DBS activation of the 

synapses afferent into the Vim neurons (Fig. 1). To be consistent with the input to the Vim-

network in our rate model, 𝐼𝐷𝐵𝑆,1 was determined to be the same as the rate model input 

(𝐼𝐷𝐵𝑆) in Equation (1). 𝐼𝐷𝐵𝑆,2  (respectively, 𝐼𝐷𝐵𝑆,3) represents the DBS effect of the axons 

efferent from the Vim neurons into the cerebellar neurons (respectively, neurons in TRN). 

𝐼𝐷𝐵𝑆,2 and 𝐼𝐷𝐵𝑆,3 were simulated by the NEST built-in function “tsodyks2_synapse”. We tuned 

the parameters in “tsodyks2_synapse” so that its simulation result is consistent with the 

Tsodyks & Markram synapses used in our rate model, across different DBS frequencies 

(5~200 Hz) (Supplementary Table S9, Supplementary Figs. S2 and S9). We tuned 𝑘1 (the 

scaling of DBS effect of Vim afferent) so that the amplitude of the simulated DBS-evoked 

activities is consistent with our rate network model (Fig. 2 and Supplementary Fig. S8). 

The scaling parameters of DBS effect of Vim efferent (𝑘2  and 𝑘3 ) are smaller than Vim 

afferent (𝑘1), because there is energy loss during the transmission on the axons efferent from 

Vim 79,80. The ratio 𝑘2/𝑘3 (i.e., the comparison of Vim efferent effects to cerebellum and TRN) 

is the same as the ratio of the corresponding connectivity strength (𝑤𝑒𝑒/𝑤𝑖𝑒 , Equations (1) 

and (22)). 

In Equation (12), 𝛽 is a scaling parameter of the effect of synaptic connections within the 

network. 𝐼𝑇𝑀,𝑚𝑞 is the sum of TM-modeled post-synaptic currents induced by each spike of 

the group “q” neurons projecting to a group “m” neuron. 𝐼𝑇𝑀,𝑚𝑞 was simulated by the NEST 

built-in function “tsodyks2_synapse” with parameters specified in Supplementary Table S9. 

In the simulation of 𝐼𝑇𝑀,𝑚𝑞 , we used the sparse synaptic connection, which is commonly used 

in spiking network models 81,82. In our simulation, there is no synaptic connection between 

a cerebellar neuron and a TRN neuron 37,39 (𝑤23 = 𝑤32 = 0, Equation (15)). For the connected 

neurons, each neuron received synaptic inputs from 10% of Vim neurons (excitatory), 10% 

of cerebellar neurons (excitatory), and 25% of TRN neurons (inhibitory). The connection 

probability from an inhibitory neuron was set to be higher, because an inhibitory neuron is 

generally dense in axons, and can project axons to distal neurons 83,39. In the connectivity 

matrix W, 𝑤𝑚𝑞 represents the connectivity strength from the neural group “𝑞” to group “𝑚”, 
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and the +/- sign denotes the excitatory/inhibitory effect (Equation (15)). The connectivity 

matrix W in the spiking model is the same as the rate model (Equation (1)). In particular, in 

the spiking model, the two mechanisms – Hebbian and Balanced Amplification – are 

characterized by the connectivity strengths shown in Supplementary Table S4 (results of 

our rate model). 

In Equation (13), 𝑢𝑛𝑚 is the membrane recovery variable, 𝑎𝑚 is the time scale, and 𝑏𝑚 is 

the sensitivity to the membrane potential 𝑣𝑛𝑚  . The neuron fires when 𝑣𝑛𝑚  reaches a 

fluctuating threshold 𝜃 + 𝜁𝑚  (Equation (14)); 𝜃 = 30 mV is the mean firing threshold, and 𝜁𝑚 

is the Gaussian white noise (see Supplementary Table S8 for its standard deviation). 

Immediately after the neuron fires, 𝑣𝑛𝑚  is reset to 𝑐𝑚  , and 𝑢𝑛𝑚  is reset to 𝑢𝑛𝑚 + 𝑑𝑚 

(Equation (14)). The Izhikevich model parameters {a, b, c, d} for the neurons in each group 

were shown in Supplementary Table S8; these parameters were chosen to be consistent 

with other works 22,56 . Other spiking model parameters were tuned so that for all neurons 

(Vim, cerebellum, or TRN), the simulated baseline firing rate (with DBS-OFF) was consistent 

with our rate network model.  

 

Statistical analyses 

One-sample one-tailed t-test was performed to analyze the statistical significance of the 

biomarker of inhibitory effects observed in single-unit recordings, as shown in Fig. 4. 

Analysis of variance (ANOVA) test with F-statistic was performed to compare the length of 

initial transient responses between 100-Hz and 200-Hz DBS clinical data (Supplementary 

Table S10). A linear regression analysis was performed to generate the results related to 

Fig. 5. The regression methods include 95% confidence intervals of the slope and vertical 

intercept. 

 

Data availability 

Human experimental data – Vim spike timings during different frequencies of Vim-DBS – 

have been deposited at https://github.com/nsbspl/rate_network_model.  

 

Code availability 
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The codes for generating results are openly accessible at 

https://github.com/nsbspl/rate_network_model. 
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