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Abstract

Thalamic ventral intermediate nucleus (Vim) is the primary surgical target of deep brain
stimulation (DBS) for reducing symptoms of essential tremor. High-frequency Vim-DBS
(=100Hz) has been clinically effective, generating two experimentally-observed features in
Vim spiking activity: 1) a large transient excitatory response (lasting <1s), followed by 2) a
suppressed steady-state consisting of oscillations. Yet, mechanisms underlying these
observations have not been fully understood by previous studies. In this work, we developed
a network rate model and a novel parameter optimization method that accurately fit in-vivo
single-unit recordings of Vim in human patients with essential tremor receiving a wide range
of DBS frequencies (5~200Hz). Our model incorporates both the DBS-induced synaptic
plasticity of Vim neurons, and the recurrent connections among excitatory and inhibitory
neurons in Vim-network. We hypothesized that besides inducing synaptic depression, the
therapeutic mechanism of high-frequency Vim-DBS could be to engage more inhibitory

neurons in stabilizing the underlying circuits.

Introduction

Deep brain stimulation (DBS) delivers electrical pulses to adjacent neuronal circuits and
is known to modulate neuronal activity 1.23. DBS has become a standard therapy for many
movement disorders, including Parkinson’s disease 2, essential tremor 3, and dystonia 4. DBS
is now being investigated as a treatment for psychiatric or cognitive disorders, including
depression >, obsessive-compulsive disorder ¢ and Alzheimer’s disease 7. DBS of the thalamic
ventral intermediate nucleus (Vim) - i.e., Vim-DBS - is the primary surgical option of DBS for
treating essential tremor 8°. Essential tremor is the most common adult tremor disorder
affecting up to 1% of adults over 40 years of age, and features attention tremor and
uncontrollable shaking of the affected body parts 10.11,

Despite the recognized clinical benefits of DBS, its therapeutic mechanisms on the
disease-affected neuronal circuits are not fully understood 112, High-frequency DBS (=100
Hz) can be clinically effective for relieving symptoms of Parkinson’s disease 2, essential
tremor ° and depression °. Single-unit recordings of Vim neurons receiving high-frequency

DBS demonstrated two critical features of firing rate dynamics: 1) an initial large excitatory
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transient response, lasting for <1 s, followed by 2) a suppressed steady-state consisting of
oscillations 1213, Suppression of local activity was suggested as a primary mechanism of high-
frequency DBS 1415, which could induce effects such as synaptic plasticity 12, axonal failure 16
or GABAergic activation 17. These DBS effects could depend on a combination of factors such
as the stimulation sites 12 and the time-course of synaptic depression 18. Besides these
existing hypotheses, computational models are needed to quantify and further explore the
underlying physiological mechanisms 1913, The dynamics of DBS-induced membrane and
local field potentials (LFP) are commonly modeled 20.21.22; yet, these models lack the efficacy
of tracking instantaneous firing rate observed from single-unit recordings. A recently
developed firing rate model of DBS-induced synaptic plasticity represented experimental
single-unit recordings, but deviated from observations during high-frequency Vim-DBS 13,
Thus, there is a need for a firing rate model of more detailed network mechanisms, besides
synaptic plasticity. To the best of our knowledge, there has been no neuronal network model
that can accurately track the instantaneous firing rate from in-vivo human single-unit
recordings during DBS.

In a neuronal network, besides synaptic plasticity, the recurrent interplays among
neurons are critical in forming the network dynamics 2324, Feedback inhibition characterizes
the recurrent connections between excitatory and inhibitory neurons, and is critical in
stabilizing the neuronal networks, e.g., hippocampus 25, basal ganglia 26, sensory cortex 27
and thalamus 28, Lack of inhibitory effect in thalamic circuits could lead to excessive firings
of thalamocortical relay neurons, whose over-activity could further induce essential tremor
through corticomuscular projections 2230, Murphy and Miller (2009) 31 proposed a Balanced
Amplification mechanism demonstrating strong inhibition in response to strong external
drive of excitatory neurons. Such strong external inputs could be specified as intensive visual
stimuli 31, strong injection current 32, high-frequency DBS 33, etc. In addition to balancing the
effect of strong inputs, during weak inputs (e.g., low-frequency DBS), the inhibitory nuclei
are less activated, and this leads to a supralinear increase of neuronal firing rate 34. Such
inhibition-stabilization mechanisms are ubiquitous in cortical networks because of the
prevalence of cortical inhibitory interneurons 2435, and should be also universal in general
brain networks, e.g. cortical-subcortical networks 222620, when the role of inhibitory nuclei

is significant.
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In this work, we developed a firing rate model of the neuronal network of Vim impacted
by Vim-DBS. In our model, the Vim-network consists of recurrent connections among three
neuronal groups: DBS-targeted Vim neurons, external excitatory nuclei and inhibitory nuclei.
For the Vim neurons, the DBS-induced short-term synaptic plasticity is characterized by the
Tsodyks & Markram model 3¢. The external nuclei are mainly from thalamus, cerebellum and
motor cortex 373839 The incorporation of an external excitatory feedback component to the
model may allow the model to capture the indirect effects of thalamic-DBS as they
recurrently propagate through the motor control network, away from and back towards the
Vim 3738, An inhibitory feedback component may capture the contributions of the thalamic
reticular nucleus (TRN), as well as intra-nucleus inhibitory interneurons 3912, We then
developed a novel parameter optimization method that accurately fits the model to clinical
data recorded from human patients receiving DBS with varying stimulation frequencies
(range 5 to 200 Hz). During the optimization process, we observed that the network
mechanism evolves from Hebbian (dominant recurrent excitation) 2423 to Balanced
Amplification (equally strong excitation and feedback inhibition), which accurately
reproduces the initial large transient response observed during high-frequency DBS. We
further developed a spiking model of the membrane potential dynamics 2249, and found that
the Balanced Amplification spiking network could characterize the oscillations observed in
the steady-state response during high-frequency DBS. Then, we further observed Vim
membrane potential data and found that the inhibitory effect was observed as evoked
hyperpolarized potential in 5 out of 19 Vim neurons receiving high-frequency DBS, yet less
often observed during low-frequency DBS 33. From our results, we hypothesized that high-
frequency DBS could engage more firings from inhibitory neurons, which stabilize the
underlying network and lead to better therapeutic outcomes.

Our models and optimization method can be potentially extended to identify and study
various brain neuronal circuits. Our rate model can be implemented to optimize the DBS

frequency in a closed-loop control system 4! potentially used in clinics.

Results

Framework of rate model, optimization and mechanism analysis
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We developed a firing rate model of the Vim-network in patients with essential tremor
(Fig. 1). The model was fitted to the firing rate dynamics from experimental single-unit
recordings of human Vim neurons receiving DBS with different frequencies - 5, 10, 20, 30,
50, 100, and 200 Hz 12, The model incorporates the short-term synaptic plasticity (STP) 3¢ of
DBS-impacted Vim neurons, and their recurrent connections with the external excitatory
and inhibitory nuclei (Fig. 1). To detect the optimal model parameters, we developed a novel
optimization method that found the consistent model parameters that accurately replicate
the experimental data across different DBS frequencies (Fig. 1). The optimization includes
the sequential fittings to Focused Feature (more clinically effective high-frequency Vim-DBS
data 8) and Stabilized Feature (balancing fitting accuracy across data from various DBS
frequencies) (Fig. 1). During the optimization process, we observed that the modeled Vim-
network evolves from an excitation-dominant mechanism (Hebbian) 42 to an inhibition-
stabilized mechanism (Balanced Amplification) 24 (Fig. 1). The optimal modeled Vim-
network is characterized by a Balanced Amplification mechanism with strong recurrent

excitation stabilized by equally strong feedback inhibition (Fig. 1).
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Fig. 1. Schematic illustration of the rate model, optimization and mechanism analysis
framework

(rate network model) The firing rate network model consists of 3 recurrent neural groups: “D” represents the
ventral intermediate nucleus (Vim) neurons directly receiving DBS, “E” represents the external excitatory nuclei,
and “1” represents the external inhibitory nuclei. w,; represents the connectivity strength from inhibitory neurons
to excitatory neurons; similar meanings for w,,, w;, and w;;. The connection with a dot (respectively, a bar)
represents excitation (respectively, inhibition). DBS is delivered to the neural group D (Vim neurons), and we
model the corresponding synaptic anatomic structure. Excitatory (respectively, inhibitory) synapses consist of 3
types: “F” (facilitation), “P” (pseudo-linear)”, and “S” (depression) (12, Methods). We formulate the DBS-induced
post-synaptic current (Ipgs) with the Tsodyks & Markram model of short-term synaptic plasticity (STP) (36,
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Methods). I, is then transformed to the corresponding firing rate dynamics F (Ipgs), which is the external DBS
input into the rate network model.

(parameter optimization) The model is fitted to human clinical Vim-DBS data. The initial model parameters
(@) are from our previous work of a single-ensemble Vim model 3. We define two features of the clinical Vim-
DBS data: Focused Feature stresses data from high frequency DBS, which is more clinically effective 8; Stabilized
Feature balances the fitting accuracy between low and high frequency DBS data. During the optimization, the
resulting parameters of fitting one feature are the initial parameters for fitting the other feature. The optimization
loops are sequentially executed until an exit rule representing small fitting error is satisfied, and we obtain the
optimal model parameters (P optimar)-

(network mechanism) During our optimization, we observe that the modeled network mechanism evolves from
Hebbian (dominant excitation) to Balanced Amplification (inhibition comparable to excitation). The model fitting
error fast decreases in optimization Global Stage (wide exploration of parameter space), and converges in Refining
Stage (exploitation of the parameter rage with low fitting errors). The optimal network is characterized by a

Balanced Amplification mechanism with equally strong excitation and inhibition.

Firing rate network model
The rate network model of the Vim-DBS is illustrated in Fig. 1. The model consists of three

differential equations,

dar
Te d_f = _(TD - TD,o) + [Wr]p + F(Ipgs)
dr
e d_tE = —(TE - TE,b) + [Wr]g (1)
dar
Tid_tl = —(7"1 - 7"1,0) + [Wr];
where,
Tp
r=\|T1g ,
T
Wpp Wpg Wpy Wee Wee —We
W =|Wep WEg Wgr|=|Wee Wee —Wegi],
Wip Wig Wy Wie Wie —Wy
[
F(lpps) = 1+exp [-s*(Ipps—k)]’

The parameters @ = {Wee, Wie, Wei» Wii, Tiy Tes TE by €, S, k} are undetermined

In Equation (1), neural group “D” represents the Vim neurons directly receiving DBS, neural

group “E” represents the external excitatory nuclei, and neural group “I” represents the
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external inhibitory nuclei (Fig. 1). The group “E” neurons are mainly the cerebellum dentate
nucleus and the pyramidal cells of primary motor cortex (M1) deep layers (Layer 5 and 6)
371238 The group “I” neurons mainly consist of the thalamic reticular nucleus (TRN) and
interneurons 3%12.r,, (m € {D, E, I}) represents the firing rate of the corresponding neural
group. The baseline firing rate (with DBS-OFF) of Vim neurons (p o) and the average firing
rate of external inhibitory nuclei (r; o) were obtained from single-unit recordings reported
in other studies 1243, We chose 1,4 = 25 Hz to be consistent with the human Vim
experimental recordings in our previous work Milosevic et al. (2021) 12, and 17 o = 5 Hz to be
consistent with the experimental data recorded in both TRN (human) 12 and thalamic
interneurons (mice) 43. Since the external excitatory nuclei (group “E”) originate from
multiple sources with highly variable firing rates 4445, the corresponding baseline firing rate
(rz p) is left as an unknown variable (Equation (1)). In the experimental recordings from mice,
the regular firing rate of cerebellum dentate nucleus ranged from 10 to 80 Hz 4446, For M1
Layer 5 and 6 neurons in mice, the firing rate ranged from 10 to 60 Hz 4547, Thus, we
constrained rg , in the range of 10 to 70 Hz, and initialize it at 75 5, o = 40 Hz.

In the rate network model, we use 7, and t; to denote the excitatory and inhibitory time
constants, respectively (Equation (1)). Since Vim neurons are excitatory 12, the time constant
of the neural group “D” was t,. In a firing rate model of a population of neurons, the time
constant (7) represents the changing speed of the firing rate in response to the post-synaptic
current 48, Generally, time constants in firing rate models were considered in the range of 0
to 30 ms 4849, The rate model time constant is consistent with the membrane time constant
48 and generally, the time constant of the inhibitory neurons is larger than that of the
excitatory neurons 1259,

The matrix W (Equation (1)) indicates strength of connectivity between different groups
of neurons 241, In matrix W, wy, (for p,q belong to group “D”, “E”, “I”) represents the
connectivity strength from the neural group “q” to group “p”, and the +/- sign denotes the
excitatory/inhibitory effect. The total network input into each neural group is computed as
the matrix multiplication Wr = ([Wr]p, [Wr]g, [Wr])T, where [Wr]y, [Wr]gs and [Wr],
represent the inputs into group “D”, “E” and “I”, respectively (Equation (1)).
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For the Vim neurons directly receiving DBS (group “D”), we modeled the DBS-induced
post-synaptic current (Ipgs) with the Tsodyks & Markram model 3¢ of short-term synaptic
plasticity (STP) (Methods, Supplementary Fig. S2) in agreement with Milosevic etal. (2021)
12; Ipps is then transformed (with a sigmoid function) to the corresponding firing rate
dynamics F (Ipgs) (13, Fig. 1, Supplementary Figs. S3 and S5, Equation (1)). In the sigmoid
transfer function F(Ipgs), ¢, s and k are the scale, shape and shift parameters, respectively
(Equation (1)).

The undetermined parameter set in the rate network model is @ =
{Wee» Wie, Wi, Wi, Ti, To, Te ) €, S, k) (see Equation (1)). All rate model simulations were

conducted with the sampling resolution of 0.1 ms.

Proposed rate network model captures neural dynamics of human

experimental data

The rate model was developed based on the experimental single-unit recordings of
human Vim neurons in patients undergoing DBS surgery for essential tremor. While
recording activity of an individual Vim neuron, DBS was applied with one of the stimulation
frequencies {5, 10, 20, 30, 50, 100, and 200 Hz}, with specific stimulation length {10, 5, 3, 2,
1, 5, and 2 s}, respectively (see Methods for detailed data protocols which were already
reported in our previous work 12). We obtained 5~8 recordings during each frequency of
DBS. During high-frequency DBS, we observed initial transient responses with intensive
spikes; the transient response length (mean + standard deviation) for 100-Hz and 200-Hz
DBS is 690.76 + 217.38 ms and 254.88 + 59.88 ms, respectively (Supplementary Table
$10). The transient response length during 100-Hz DBS is significantly longer than that
during 200-Hz DBS (F (1,11) = 18.63, p = 0.0012, Supplementary Table $10), and this
implies that the Vim spiking activity is suppressed to a higher extent during 200-Hz DBS. For
data from each DBS frequency, we computed the instantaneous firing rate with a time
histogram method based on these multiple recordings (Methods). The instantaneous firing
rate was computed by convolving the experimentally recorded spike trains with an
optimized Gaussian kernel that best characterized the spikes using a Poisson process (523,

Methods, Supplementary Fig. S1). We concatenated the instantaneous firing rate of each
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DBS frequency, and optimized the consistent model parameters across different DBS
frequencies (5 to 200 Hz) (13, Supplementary Notes 1). In Fig. 2, we showed the
instantaneous firing rate calculated from experimental data, the results of our model fit, and

the optimal model parameters.

— experimental instantaneous firing rate  — rate network model fit
300 5Hz DBS 300 30Hz DBS 300
N
s
F l , F l 100Hz DBS
0 0 0
300 10Hz DBS 300 50Hz DBS 300
==
No Data 200Hz DBS
0 0! 0 — N
0 time (ms) 2000 0 time (ms) 2000
300 20Hz DBS
N optimal model parameters
Weo | Wie | Wwor | Wi T Te | TED ¢ s k
(ms) | (ms) | (Hz)
0 0.529 5‘994 8.95 1‘9572 209 | 9.40 | 18.8 | 305 4‘82,, 453
0 time (ms) 2000 X 10 x 10 X 10

Fig. 2. Fitting rate network model to Vim-DBS in humans

The firing rate network model is fitted to the experimental data recorded in the neurons in the ventral
intermediate nucleus (Vim) of the human patients with essential tremor, during DBS of various stimulation
frequencies (5 to 200 Hz). For each frequency of DBS, we obtained 5 to 8 spike trains from experimental single-
unit recordings in different patients, and compute the instantaneous firing rate using a time histogram method.
In computing the experimental instantaneous firing rate, we implement an optimized Gaussian kernel that best
characterized the Poisson process underlying the spiking data (53, Methods). From the data of each DBS frequency,
we present the model fit of the initial 2 seconds; an exception is 50-Hz DBS data, where the length of recording was
~1 second. We compare the model fit (green line) with the experimental instantaneous firing rate (black line). The
optimal model parameters (Equation (1)) are obtained with our route optimization method (see text). wy,q (p,q €
{i, e}) is the connectivity strength (see Fig. 1 legend for specific descriptions). T, and t; are the excitatory and
inhibitory time constants, respectively. 1z ;, is the baseline firing rate of the external excitatory nuclei (group E,

Fig. 1). c, s and k are the phenomenological parameters in the sigmoid transfer function F (Equation (1)).
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As shown in Fig. 2, the rate network model accurately reproduced the recorded firing
rates across different DBS frequencies (5 to 200 Hz). The model could capture both transient
and steady-state firing rate responses to each frequency of DBS. In particular, for 100-Hz and
200-Hz DBS data, the model is almost identical to the experimental data; this improves the
result from our previous model that incorporated a single population of Vim neurons, and
ignored the recurrent connections with other nuclei (13, Supplementary Fig. $6). For Vim-
DBS, high-frequency DBS (100 to 200 Hz) is more clinically effective than low-frequency DBS
(<100 Hz) 8°. Additionally, we optimized the model parameters based on the concatenated
signal across different DBS frequencies (5 to 200 Hz). When fitting a rate model to such DBS
data with concatenated frequencies, the fit accuracy is consistent between observed and
unobserved DBS frequencies (e.g., 130 Hz, 160 Hz; see Table 1 in Tian et al. (2023) 13).

We quantitatively validated the model goodness of fit by computing the normalized mean
squared error (NMSE) between the experimental instantaneous firing rate (reference) and
the model generated firing rate. Since high-frequency (100 to 200 Hz) Vim-DBS is more
clinically effective 8° we emphasized the high-frequency DBS data, and defined the total
fitting error (ER) for model validation:

ER = - x NMSE (5to 50 Hz) + >+ NMSE (100 Hz) + ;* NMSE (200 Hz) (2)
The NMSE (5 to 50 Hz) represents the NMSE of the model fit to the concatenated data from
DBS frequencies 5 to 50 Hz. NMSE (100 Hz) and NMSE (200 Hz) were computed with data
from the 100-Hz and 200-Hz DBS, respectively. For the rate network model fit shown in Fig.
2, ER = 7.6%, with NMSE (5 to 50 Hz) = 13.9%, NMSE (100 Hz) = 3.2% and NMSE (200 Hz) =
5.7%. See Supplementary Table S7 for the NMSE of the model fit to data from each DBS

frequency.

Effective DBS-induced inputs characterize the balance between excitation
and inhibition

The dynamics of a neural network is shaped by the effective transmission of the firing
rate among interacting nuclei 5154, Such transmission is determined by two factors: (i) the
connectivity strength modeled by W in Equation (1); and (ii) the firing rate of the pre-

synaptic nuclei. Thus, in our model, we formulate the effective input >! into a neural group as
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the product of connectivity strength and pre-synaptic firing rate. The “effective input matrix”
of the Vim-network receiving DBS is defined in Equation (3),
_ (Sp¢  Spi
S = (515 511) (3)

where sp; = TiWe;, Spg = (Tg + Tp)Wee, Sip = TiWyj, Sig = (T + Tp)Wie

The subscript “D” represents the Vim neural group directly receiving DBS; “E” and “I”
represent the external excitatory and inhibitory nuclei, respectively (Equation (1), Fig. 1).
The subscript “¢” represents total input projected by excitatory neurons consisting of “D”
and “E” groups of neurons. s,,, (m € {D, [}, n € {¢,1}) indicates the effective input from
group “n” to group “m”, and it is equal to the product of the corresponding connectivity
strength and pre-synaptic firing rate. w,, (p, q € {e, i}) is the modeled connectivity strength
(Equation (1), Fig. 1). The pre-synaptic firing rate 13, (n € {D, E,I}) of the corresponding
neural groups was calculated by averaging model generated firing rates across different DBS
frequencies (5 to 200 Hz). See Fig. 2 and Supplementary Figs. S3 to S5 for rp, rz and 77 of
model simulations from all DBS frequencies.

To characterize the balance of excitation and inhibition in network models, we define the
“inhibition strength ratio” (p;,,) as the ratio of inhibitory to excitatory effective inputs. For

a certain neural group “m” in the network, we define

Pinhm = jml; where m € {D, I} (4)

A network model that stresses the recurrent connections among excitatory nuclei is a
“Hebbian network” 244255 The effect from inhibitory nuclei is negligible in a Hebbian
network 42, or incorporated in the background noise >>. Thus, we denote the network with
small p;,p, p (i.€., dominant excitatory effects) as a Hebbian network (Supplementary Table
$6). In the networks with relatively large p;,, p (Pinnp > 0.5), the inhibitory effective input
(spr) is an essential component of the network and is comparable with its excitatory
counterpart. A network model with sufficient inhibitory effects in balancing excitatory
effects is known as “Balanced Amplification network” 24, and we consider the network with
Pinnp > 0.5 (i.e., essential inhibitory effects) as a Balanced Amplification network. The

network with the optimal model parameters (Fig. 2) is the typical Balanced Amplification
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network (p;nn p = 0.91), in which the excitatory and inhibitory effects are equally strong. This
optimal network minimizes the model fitting error (ER = 7.6%, Supplementary Table S5).

To this end, we abbreviate “Balanced Amplification network” as “BA network” in text.

Analysis of mechanism of Vim-network in response to DBS

The Vim-network mechanism is analyzed with the rate network model together with a
further spiking network model (Methods) that we developed in this work. The spiking
network model is a classical and ongoing approach for fitting the neural activity patterns in
experimental data based on microscopic-level membrane potential dynamics 2240; the
commonly in-silico implemented Izhikevich spiking network model is a typical example 22.
Based on the rate model parameters, we fitted the firing rate experimental data (Fig. 2) with
an Izhikevich spiking network model (Methods) to explore the dynamics in clinical Vim-DBS
data.

Similar to the rate model, the Izhikevich spiking network model was on three groups of
neurons: (1) 20 Vim neurons (excitatory) directly receiving DBS; (2) 100 excitatory neurons
from the cerebellum; (3) 40 inhibitory neurons from TRN. Compared with the rate model, in
the spiking model, we incorporated more physiological details of the DBS effects and
synaptic connections (Methods). Besides the DBS activation of the synapses afferent into the
Vim neurons (Fig. 1), we incorporated the DBS effect of the axons efferent from the Vim
neurons to the other neurons, and all synapses in the spiking network were characterized
by the Tsodyks & Markram model 3¢ (Methods). The spiking model parameters were
consistent with previous works 2256, and were tuned so that for each group of neurons, the
baseline firing rate (with DBS-OFF) was consistent with our rate network model (Methods
and Supplementary Table S8). All spiking model simulations were conducted with the
sampling resolution of 0.1 ms (same as the rate model). We simulated the spiking model with
different frequencies (5~200 Hz) of Vim-DBS, and obtained the instantaneous firing rate of
the Vim neurons with a time histogram, which was computed with the optimized Gaussian
kernel (same as the rate model, see Supplementary Table S1) on 20 simulated spike trains.
We investigated two network mechanisms - Hebbian and Balanced Amplification - with the

spiking network model; the two network mechanisms were characterized with the
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corresponding connectivity strength matrix W (Equation (1) and Supplementary Table S4),
which is the result of our rate network model. To compare the two mechanisms, in the
simulations, all the model parameters are the same except for the connectivity strength
matrix W. We schematized the spiking network model mechanisms (Fig. 3A), and showed
their impacts on the Vim firing rate (Fig. 3C); the spiking network model was compared with
the rate network model (Fig. 3B and D). Note that in the spiking network, a cerebellar
neuron is not connected with a TRN neuron 373° (Fig. 3A, Methods). In the rate network,
there are recurrent connections among E and I groups of neurons, because E group is a

more abstract structure incorporating cortical neurons (Fig. 3B).

A B

Spiking Network Rate Network

Hebbian Balanced Amplification Hebbian Balanced Amplification
QP Vim 4% Vim DBS 08

C D

Spiking Network Rate Network

30Hz DBS 100Hz DBS 30Hz DBS 100Hz DBS

firing rate (Vim) —— Hebbian firing rate (Vim) firing rate (Vim) firing rate (Vim)

1 —— Balanced Amplification 1 1 1
—— Hebbian

—— Balanced Amplification —— Hebbian

— Balanced Amplification

normalized
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normalized
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—— Hebbian

0 .IJJmem..J.JlJ\mm....;MHHm.J.JJ\h“h 0 0 — Balanced Amplification

0
time (ms) 2000 0 time (ms) 2000 0 time {ms) 2000 0 time (ms) 2000

Fig. 3. Mechanism analysis of Vim-network impacted by DBS

(A - B) Schematic representation of the network mechanisms. The synaptic connection with a dot (respectively, a
bar) represents an excitatory (respectively, inhibitory) synapse. The boldness of the connection represents the
effective input, which is the multiplication of connectivity strength and firing rate (Equation (3)). In the Hebbian

mechanism, the ratio of inhibitory to excitatory effective inputs is low; such ratio is balanced (close to 1) in the

Balanced Amplification mechanism.
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(A) Mechanisms of the spiking neuron network. The spiking network model consists of 3 groups of neurons:
excitatory ventral intermediate nucleus (Vim) neurons directly receiving DBS, excitatory neurons in the
cerebellum (Cer), and inhibitory neurons in the thalamic reticular nucleus (TRN).

(B) Mechanisms of the rate network. The firing rate network model consists of 3 neural groups: “D” represents the
Vim neurons directly receiving DBS, “E” represents the external excitatory nuclei, and “1” represents the external
inhibitory nuclei.

(C - D) Model simulations with the network mechanisms. We simulate the network models and present the results
of Vim, receiving Vim-DBS of a typical low-frequency (3 Hz) and high-frequency (100Hz), respectively. We present
the results from two network mechanisms: Hebbian and Balanced Amplification, corresponding to the mechanism
schematics in (A) and (B). In each plot, the results are normalized to the maximum rate across the two mechanismes.
(C) The spiking neuron network model simulations.

(D) The firing rate network model simulations.

The spiking network model qualitatively represented the underlying mechanisms and the
results of the rate network model (Fig. 3C and D). See Supplementary Figs. S7 and S8 for
the spiking model fits to data from different frequencies (5~200 Hz) of Vim-DBS. In the
spiking network, we found that the model fits with Hebbian and Balanced Amplification
mechanisms were similar during 30-Hz DBS (a typical low-frequency DBS), but distinct
during 100-Hz DBS (a typical high-frequency DBS) (Fig. 3C); consistent comparisons were
observed in the rate network (Fig. 3D). The results from rate network model demonstrated
that during low-frequency (<50 Hz) DBS, the fitting accuracy with the Hebbian network is
comparable to the BA network; this may implicate that the inhibitory neurons are not
sufficiently engaged during weak inputs (low-frequency DBS) 34 However, during high-
frequency (=100 Hz) DBS, the Hebbian network deviates greatly from the BA network and
experimental data (Supplementary Table S7, Fig. 2 and Supplementary Fig. S6). These
results implicated that the Balanced Amplification mechanism (strong inhibition-stabilized
effect) could be more evident during strong external inputs, e.g., a high-frequency of DBS
pulses. This was consistent with the previous result on the ferret V1 neurons receiving
various strengths of visual stimuli; it was hypothesized that the inhibition-stabilized effect
dominated the network when the external visual stimuli were strong 34.

During 100-Hz DBS, in the clinical data, we observed an initial large transient response
lasting ~600 ms and such transient response is accurately reproduced by the optimal BA

rate network (Fig. 2). The existence and depression of the transient response can be
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explained by short-term synaptic plasticity (STP) 1812, However, STP can’t explain the
difference in the transient response between Hebbian and BA networks (Fig. 3C and D),
where the same STP model and parameters are used in this work. In both rate and spiking
network models, during 100-Hz DBS, we observed a shorter transient response in the
Hebbian network than the BA network (Fig. 3C and D). A Hebbian network (small p;,p, p ,
Equation (4)) stresses the recurrent excitation, which is less regulated by feedback inhibition
24 Thus, in the Hebbian network, the firing rate dynamics is less robust in response to strong
external inputs like DBS. In a BA network (p;,5p > 0.5), the strong external and recurrent
excitation is stabilized by the strong feedback inhibition. In the optimal BA network, the
inhibitory course has a longer time constant (z;, table in Fig. 2) than excitatory effect (7.,
table in Fig. 2), and this may explain the longer initial transient response to 100-Hz DBS,
compared with an excitation-dominant Hebbian network (Fig. 3C and D).

In the steady state firing rate in Vim clinical data, we observed some oscillatory dynamics
during high-frequency DBS (Fig. 2). Such dynamics were observed in the spiking BA network,
but almost completely missing in the spiking Hebbian network (Fig. 3C). These oscillatory
dynamics can be explained by the Balanced Amplification mechanism stressing the critical
role of inhibitory neurons, whose functions are hypothesized as follows. During 100-Hz DBS,
due to the consecutive stimulation, Vim firing rate increased to a maximum at ~200 ms,
when the inhibitory neurons started to be sufficiently engaged and brought down the Vim
firing rate after 200 ms. Then, the decreased Vim firing rate reduced the excitation to
inhibitory neurons, whose firing rate decreased and thus disinhibited Vim neurons. So, Vim
firing rate increased again, and this restored the engagement of inhibitory neurons. Such
interplay between excitatory and inhibitory neurons formed the oscillatory activities in the
steady-state response during 100-Hz Vim-DBS (Fig. 3C - model, and Fig. 2 - clinical data).

The role of inhibitory neurons is further observed in the single-unit membrane potential
data recorded in Vim neurons receiving high-frequency DBS (Fig. 4). We observed
significant hyperpolarizing effects of inhibition, during both 100-Hz and 200-Hz DBS (Fig. 4).
These evoked inhibitory activities were seldom observed during low-frequency (<50Hz)

DBS 33. Such a biomarker of inhibition starts to take effect after about 50 DBS pulses, which
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may indicate the time when the firing rate reaches the maximum and starts to decrease (Fig.

2).
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Fig. 4. Biomarker of inhibition observed in single-unit membrane potential data
Single-unit recordings of the membrane potential of Vim neurons receiving DBS of high frequencies (100Hz and
200Hz). The recording corresponding to DBS pulse #i is from the inter-DBS-pulse-interval between the ith and
(i+1)% DBS pulses. We present the recordings in the initial 4ms of each inter-DBS-pulse-interval. For each DBS
frequency, we obtained recordings from 3 neurons, corresponding to each of the 3 rows. In each set of DBS pulses
(e.g., pulses 3-5), the recordings are denoted with 3 colors: black, red and blue, corresponding to the ascending
indices of the DBS pulses. For example, in pulses 3-5 from 100Hz DBS data, “the black, red and blue traces” denote
data from “pulse 3, 4, and 5”, respectively. In each recording, the initial 1ms of data is truncated because it denotes
the DBS artifact. The evident depolarizing feature, e.g., the red trace of the 1t neuron (row) receiving pulses 3-5
of 100Hz DBS, represents the spiking activity. The evident hyperpolarizing feature, e.g., the 3 traces of the 2nd
neuron (row) receiving pulses 250-252 of 100Hz DBS, represents the inhibitory effects. The biomarker of inhibition
is characterized by the difference between the peak of hyperpolarization and a preceding “valley” representing
the initialization of inhibition (Supplementary Table S11). Prior to DBS pulse 50, the biomarker of inhibition is
generally not observed. The biomarker is significantly observed in the shown data starting from DBS pulse 50. In
the box-whisker plot, “x” marks the mean value of the biomarker. We use a one-sample one-tailed t-test to show
that the biomarker of inhibition is significantly greater than 0. “n” represents the number of recordings used in the
t-test. n=9 for all scenarios (3 pulses X 3 neurons), except for “200Hz DBS, pulses 450-452", where the blue trace
in the 3 row is excluded because the biomarker is hidden by the spiking (depolarizing) activity (Supplementary
Table S11). One-sample one-tailed t-test: *p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001
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Route optimization method and evolution of mechanisms

The rate model parameters (Equation (1)) were obtained from an optimization method
that we developed (Methods). The network mechanism evolves from Hebbian to Balanced
Amplification during the optimization process (Fig. 1). Our method, referred to as route
optimization, effectively navigates the initial parameters in a route towards the globally
optimal solution in a relatively large parameter space (the undetermined parameter set @ in
Equation (1) is relatively high dimensional with dim = 10). During the optimization process,
we reduce the mean squared errors (MSE) between the experimental instantaneous firing
rate and model predicted firing rates of the Vim neurons directly receiving DBS (group “D”
in Fig. 1) (Supplementary Notes 1). Our aim was to find the optimal parameters that
consistently fit the model to the instantaneous firing rate of Vim neurons receiving DBS
across varying frequencies (5 to 200 Hz), where high-frequency (100 and 200 Hz) DBS are

more stressed because they are more clinically effective 8°.
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Fig. 5. Route optimization method and evolution of mechanisms

(A) Schematic illustration of the route optimization method. From a set of initial parameters (®,;), we do a
preliminary model fit and obtain the parameters ®,,.,. @y,; and ®,,. that are in the “non-physiological”
parameter range, meaning that the fitting errors (ER, Equation (2)) with these parameters are very high
(Methods). The main stages of the optimization process are Global Stage and Refining Stage. Compared to Global
Stage, Refining Stage stresses high-frequency DBS data to a higher extent. During the optimization process, @p
represents the model parameter set fitted to the Focused Feature (stressing high-frequency DBS data), and ®g is
fitted to the Stabilized Feature (balancing low and high-frequency DBS data). W; is the connectivity strength
matrix (Equation (1)) in @y, , which evolves to @y, in the next model fit. @y, is represented by a fully filled
circle, and @y, is represented by a half-filled circle of the same color as ®g,; this means that part of the
parameters (specifically, W;) are the same between @y, and @, (Methods).

(B) Route optimization flow chart. Pushing Function emphasizes the Focused Feature, and Stabilizing Function

emphasizes the Stabilized Feature. The sequential iterations terminate after an exit rule (i.e., small fitting error,
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see Equation (22) in Supplementary Notes 1) is satisfied, and the final output is the optimal parameter set
Poptimar that minimizes ER (error).

(C - E) The model parameter set associated with the leftmost Hebbian network is gy, (in (A), Supplementary
Table S4), which is the start of the Global Stage.

(C) Evolution of the dominant connectivity strengths (w,, and w,; , Equation (1), Supplementary Table $4).

(D) Evolution of the effective synaptic inputs (sp¢ and sp, , Equation (3), Supplementary Table S6).

(E) Evolution of the inhibition strength ratio (pi,n p , Equation (4), Supplementary Table 56).

(F) 1t eigenvalue (4,) of the effective input matrix (Equation (3)) and the excitatory effective input (sp;). “NMSE”
is the normalized mean squared error. $ps = A, Is a simple linear estimate.

(G) 2nd eigenvector (V) of the effective input matrix (Equation (3)) and the inhibition strength ratio (piunp).

v . . . .
Pinhp = — 1]1—2 is a simple linear estimate.
2,2

We design two main stages of optimization, namely, Global Stage and Refining Stage in
the route optimization method (Fig. 5A). Compared to Global Stage, Refining Stage stresses
high-frequency DBS data to a higher extent (Methods). The Global Stage explores the
parameter space and leads the route towards a “low error area”, which is exploited by the
Refining Stage to locate the optimal parameters (Fig. 5A). Within each stage, the algorithm
iterates between two objective functions, referred to as “Pushing Function” and “Stabilizing
Function” (Fig. 5B), to estimate model parameters across different DBS frequencies. The
objective functions are defined by the weighted sum of the MSE of individual DBS
frequencies (Supplementary Notes 1). We use the term “Focused Feature” to represent the
higher weights of the MSE of high-frequency (100-Hz and 200-Hz) DBS data (Fig. 5B,
Supplementary Notes 1). Compared to Focused Feature, the term “Stabilized Feature”
represents more balanced weights of the MSE of both low and high-frequency DBS (Fig. 5B,
Supplementary Notes 1). Focused Feature is important in increasing the fitting accuracy
during high-frequency DBS, which is underfitted in our previous study 13. Stabilized Feature
is important to keep the balance of the fitting accuracy across all DBS frequencies. Pushing
Function emphasizes Focused Feature, whereas Stabilized Feature is stressed in Stabilizing
Function. Within each iteration in either Global Stage or Refining Stage, the two objective
functions were sequentially executed: from the Pushing Function, the output parameters
(®r, “F” represents Focused Feature) are the inputs to the Stabilizing Function (&g, “S”

represents Stabilized Feature) (Fig. 5B). The output parameters of the Stabilizing Function
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will become the inputs to the Pushing Function in the next iteration (Fig. 5B). Pushing
Function (on Focused Feature) “pushes” the model parameters away from the local solution
towards the parameter range better representing Focused Feature, then Stabilizing Function
(on Stabilized Feature) “stabilizes” the model parameters by fitting consistently across the
whole data (i.e., Stabilized Feature) with high accuracy (Fig. 5A, Methods). Essentially, the
pushing-and-stabilizing strategy keeps updating and improving the prior knowledge of the
initial model parameters for each iteration of fits. This sequential process continues until the
total fitting error (ER) (Equation (2)) was sufficiently small, and satisfies an exit rule (Fig.
5B, see Equation (22) in Supplementary Notes 1 for details). The optimal parameters
(Poptimar) are the output of the route optimization method. See Fig. 5A and Methods for
more details of the iterations during the optimization process.

As the route optimization evolved, the total fitting error ER (Equation (2)) decreased, and
both w,; and s, evidently increased, representing an increasing inhibitory effect (Fig. 5C
and D). w,; and w,,, are the dominant connectivity strengths (Fig. 2, Supplementary Table
$5). As shown in Fig. 5E, ER decreased fast as p;,p, p increased from ~0.1 to ~0.6, then ER
stabilized and reached the minimum when p;,,;, p~0.9 (Supplementary Tables S5 and S6).
Initially, the very low p;,n p (~0.1) represented a Hebbian network, where the excitatory
effective input (sp¢) is dominant and the inhibitory effective input (sp;) is negligible (Fig. 5D
and E). As the optimization proceeds, the network evolved to the Balanced Amplification
mechanism (p;,p p > 0.5, Fig. 5E), with the optimal BA network (p;,, p= 0.91) representing
equally strong excitation and inhibition. Supplementary Video S1 illustrates the evolution
of mechanisms during the route optimization process as shown in Fig. 5E (specified in
Supplementary Table S6).

We implemented the inhibition strength ratio ( pj,np ) to quantify the network
mechanisms; small p;,,, p represents a Hebbian network, whereas large p;,, p represents a
BA network. p;,p p was determined by the network excitatory and inhibitory effective inputs
(spg and sp;) into the Vim neurons directly receiving DBS. Now the question is: Can p;,p p
represent the network features identified by the effective input matrix S (Equation (3)),

which characterizes all nuclei in the modeled neural network? The answer is yes,
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substantiated by the following analysis in the perspective of the eigenvalues and
eigenvectors of S.

The effective input matrix S consists of two eigenpairs: (14, v1) and (4;, v3), where 4, is
v .
the jth eigenvalue, and the associated jth eigenvector is v; = (v;) (j € {1,2}). We analyzed

the evolution of eigenpairs during the route optimization process (Methods,

Supplementary Table S6). We found that the 15t eigenpair (4,, V1) characterized sy, i.e.,

the excitatory effective input into the Vim neurons directly receiving DBS; we deduced that

Spe ~ A1 (Methods, Fig. 5G). The 2nd eigenpair (A;, v;) characterized pp p, i.€., the ratio of

inhibitory to excitatory effective inputs to the Vim neurons directly receiving DBS (Equation
12

(4)); we deduced that pjpp = — 22 (Methods, Fig. 5G). We quantified these relationships

V2,2

by performing linear regression fits. The regression line of sp¢ ~ 4, was
$pe = 0.9881; + 0.400
where the 95% confidence interval of the slope and vertical intercept was, respectively

[0.962,1.015] and [-0.977, 1.777]. Thus, this regression line very closely approximated $p; =

A1 (Fig. 5G, gray dashed line). Similarly, the linear regression fit result of p;,, p ~ — 22 was
V2,2

A~ V1,2
Pinnp = 1.008 <— —> —0.003

U3,2

where the 95% confidence interval of the slope and vertical intercept was, respectively

[1.002, 1.014] and [-0.007, 0.002]. This result was almost identical to p;,pp = — L2 (Fig. 5G,
V2,2

gray dashed line). For both simplified linear fits $5; = 4; and pipp = — =2, the NMSE was

)
V2,2

smaller than 10 (Fig. 5F and G). This demonstrated that the full variation of sp¢

(respectively, p;, p) Was captured by 4, (respectively, —?) in all networks, with either
2,2

Hebbian (small p;,p, p) or Balanced Amplification (large p;, p) features.
The analysis with the eigenvectors and linear regressions demonstrated that the network

features of S can be characterized by sps and pjppp. In Fig. 5G, we saw that as the route
optimization evolved, the dynamics of sy was random, except for the initial smaller value.
Despite such randomness in spg, its dynamics could always be perfectly captured by the 1st

eigenvalue A, (Sps = 4,1, Fig. 5G). As the route optimization evolved, p;,p p first increased
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then stabilized around the optimal value at ~0.9; the dynamics of p;,,; p could always be

perfectly captured by the 2nd eigenvector v, (Dippp = — 22 Fig, 5G).
V2,2

Discussion

The route optimization method is automatic and accurate

We developed a model parameter optimization method that constructs a route leading to
the globally optimal solution. Our route optimization method is automatic, in the sense that
there is no hand-tuning of the model parameter set @ (Equation (1)) throughout the
optimization process. Automatic parameter optimization is more accurate and efficient than
the parameter hand-tuning, which is the most often implemented approach in analyzing
network models or fitting data 57.2658, Although easy to explore, the parameter hand-tuning
is often laborious and complicated to be implemented to find appropriate results 5% and
depends heavily on prior knowledge which may not be optimal for the current data 2658, With
an effective automatic optimization method, we can efficiently find the optimal model
parameters that accurately fit an experimental dataset, and these optimal parameters
probably characterize the physiological underpinnings. During our optimization, we
observed that the high fitting accuracy requires the large value of the variable w,; (Equation
(1), table in Fig. 2), which represents the synaptic connectivity strength from inhibitory
neurons to excitatory neurons. w,; is the critical quantity representing the inhibition-
stabilized effect. By validating sufficient rounds of simulations, we confirmed that the model
fitting accuracy was low if w,; was not large enough (data not shown). These observations
from optimization processes further imply that inhibitory effects are essential in fitting Vim-

DBS data and further characterizing the Vim-network.

Clinical evidences of Balanced Amplification mechanism

The Balanced Amplification mechanism stressing the critical role of inhibitory neurons
has been validated in experimental works of different brain circuits %6162, [n-vitro brain-
slice experiments showed that in response to external stimuli, in general, the depression

effect can be more evident for excitatory (glutamatergic) synapses than inhibitory
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(GABAergic) synapses, and E/I balance shifted towards inhibition as the stimulation
frequency increases 61.62,63,6465 [n the thalamic circuits, the main inhibitory input to thalamic
relay nuclei is from thalamic reticular nuclei (TRN) 6. With in-vitro slice recordings,
Campbell et al. (2020) ¢ demonstrated that the firing rate of thalamic relay nuclei
significantly decreases as the optogenetic stimulation frequency increases. The significant
firing rate reduction implied that E /I was shifted towards inhibition during higher frequency
of stimulation, and the possible mechanism was further demonstrated by analyzing the
recorded inhibitory post-synaptic potential (IPSP) of the thalamic relay nuclei 0. The levels
of hyperpolarization (i.e., IPSP amplitude) during high-frequency stimulation is significantly
larger than during low-frequency stimulation 0. This showed that the inhibitory effect from
TRN is resilient and significantly increased under high-frequency stimulation 6967, These
experimental results are consistent with the prediction from our model: in the simulations
of both rate and spiking network models, we observed that the Balanced Amplification
mechanism is more evident during high-frequency DBS than low-frequency DBS (Fig. 3).
Clinical observations demonstrated that thalamic-DBS with low-frequency (<50 Hz) can
exacerbate essential tremor ¢869, The appearance of tremor - in the disease state and low-
frequency DBS - may indicate an underlying lack of Balanced Amplification mechanism
(inhibition stabilization effects) of otherwise suppressed excitatory oscillations - these
oscillations manifest as tremors in the muscles. Thus, a possible therapeutic mechanism of
high-frequency Vim-DBS is to restore the Balanced Amplification that could have perhaps

been lost due to the disease state or low-frequency DBS.

Potential generalizability of mechanism analysis to other circuits

We wanted to investigate the compatibility of our modeling strategy with different types
of neuromodulations besides DBS. Another study observed the experimental single-unit
recordings in ferret primary visual cortex (V1) neurons receiving visual stimuli with various
stimulation strengths (e.g., different contrast or stimulus size) 34. As the visual stimulation
strength increased, the steady-state firing rate of ferret V1 neurons increased supralinearly
when the stimuli were weak, and started to decrease when the stimuli became strong (see

Figs. 4 and S10 in Rubin et al. (2015) 34). Such firing rate dynamics in response to various
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strengths of visual stimuli was modeled as a “stabilized-supralinear network”: as external
input strength increases, the network transits from dominantly externally driven
(supralinear increase in firing rate) to dominantly network driven, with the network
inhibition stabilizing effect becomes increasingly dominant 34. This stabilized-supralinear
network model was developed and implemented to qualitatively represent the ferret V1
neuron experimental recordings in response to various strengths of visual stimuli 34. In Vim-
DBS (Supplementary Fig. S10A), during low-frequency DBS (5 to 50 Hz), the steady-state
firing rate of the group D neurons (Vim neurons directly receiving DBS) increased as the DBS
frequency increased; the steady-state firing rate decreased during high-frequency DBS (100
and 200 Hz). Such dynamics of experimental steady-state firing rate in response to various
frequencies of DBS was accurately reproduced by our rate network model (Supplementary
Fig. S10A and C). Besides, human Vim and ferret V1 neurons reacted similarly to the
external drive (DBS and visual stimulation, respectively); as the strength of the external
drive increased (increasing DBS frequency or visual stimulation strength), the steady-state
firing rate first increased, then fast decreased. This implies that our modeling framework -
including the rate network model, optimization method and mechanism analysis strategy -
can be potentially generalizable to studying visual cortex and various brain circuits,

receiving different types of external stimuli.

Limitation of study

The DBS experimental data implemented in this work were recorded in a relatively short
time scale (<10 s) for each stimulation frequency (5~200 Hz) (Methods). Within these short
windows of recorded activity immediately following each DBS pulse, we divide the neuronal
temporal response profile into an early-transient response and a latter steady-state
response (Fig. 2) within the context of clinical DBS for essential tremor. Since tremor
symptoms often respond to stimulation on the scale of seconds, the relatively short
timescales of our experimental data are nonetheless likely sufficient for initializing optimal
DBS settings in clinics 7071, However, in considering the effects of stimulation at alonger time
scale (= minutes), the stimulated neurons may exhibit features of long term synaptic

plasticity (LTP), which is the long-term change in the synaptic connectivity or morphology
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7273 LTP is widely observed in cortical neural circuits pertinent to memory 72, learning 73
and neuromodulations 73, etc. The modeling of the possible LTP in long-duration DBS is part
of our future work.

Our model extracts the main architecture of the Vim-circuitry, i.e., the Vim neural group
and its recurrent connections with external excitatory and inhibitory neural groups. We
incorporated all the external excitatory (resp., inhibitory) neurons into one group. Such
structure blurred the details of these excitatory (resp., inhibitory) neurons. The connections
among the neural groups were modeled by static synapses, i.e., the synaptic connectivity
strength - e.g., w,; (Equation (1)) - is not time-varying. We incorporated synaptic plasticity
(characterized by the Tsodyks & Markram model 3¢) in the DBS-induced inputs into the Vim
neural group, but synaptic plasticity was not considered within the modeled network. The
purpose for such abstraction is to reduce the dimensionality and complexity of the rate
model. We found that the robustness of model simulation decreases if incorporating more
variables of synaptic connectivity into the model (data not shown). Thus, in the rate model,
due to lack of synaptic plasticity within the modeled network, we didn’t explicitly
incorporate the DBS effect of the axons efferent from the Vim neurons towards external
neural groups. The modeling of detailed synapses - including the DBS effect of Vim efferent
axons - was incorporated in the spiking network model (Fig. 3 and Methods) that we

developed.

Conclusions and future work

We developed a firing rate network model of the Vim-circuitry impacted by Vim-DBS, and
a parameter route optimization method that automatically and effectively found the globally
optimal model parameters fitted accurately and consistently across experimental data from
various DBS frequencies (5~200 Hz). Inferred from these optimal model parameters, we
detected the Balanced Amplification mechanism characterizing the strong inhibition
stabilization effects underlying the Vim-circuitry. Our modeling, parameter optimization and
mechanism analysis strategies are potentially generalizable to studying various brain
circuits, receiving different types of neuromodulations besides DBS. The current work could

be extended to construct detailed macroscopic thalamocortical network models on
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quantifying different neurological disease mechanisms (Supplementary Notes 2), and
these future models can be potentially implemented in developing model-based closed-loop

DBS control systems 41 for automatic disease treatments.

Methods

Human experimental data

We used the same human experimental single-unit recordings which were previously
published in Milosevic et al. (2021) 12. Thus, the commitment to ethics policies have already
been fulfilled 12. All human experiments conformed to the guidelines set by the Tri-Council
Policy on Ethical Conduct for Research Involving Humans and were approved by the
University Health Network Research Ethics Board 12. Moreover, each patient provided
written informed consent prior to taking part in the studies 12.

The human experimental data protocols and offline analysis methods were from
Milosevic etal. (2021) 12. Microelectrodes were used to both deliver DBS and perform single-
unit recordings. DBS was delivered using 100 pA and symmetric 0.3ms biphasic pulses
(150pus cathodal followed by 150 ps anodal) 2. In this work, we used the single-unit
recordings of the neurons in the thalamic ventral intermediate nucleus (Vim) of essential
tremor patients, during various DBS frequencies (5 to 200 Hz) in Vim. The single-unit
recordings during {5, 10, 20, 30, 50, 100, and 200 Hz} Vim-DBS are of length {10, 5, 3,2, 1, 5,
and 2 s}, respectively; for each frequency of DBS, we did 5 to 8 recordings in different
patients (total number of patients = 19). To obtain spikes from the single-unit recordings,
we did offline analysis and spike template matching. For each single-unit recording, all the
narrow stimulus artifacts were removed (0.5 ms from the onset of a DBS pulse). Then the
recordings were high pass filtered (=300 Hz) to better isolate the spikes, which were
identified by the template matching using a principal component analysis method in SpikeZ2

(Cambridge Electronic Design, UK).

Time histogram with the optimized Gaussian kernel

After offline processing of the Vim single-unit recordings, we obtained 5 to 8 spike trains

for each frequency of Vim-DBS (5, 10, 20, 30, 50, 100, and 200 Hz), and computed the
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corresponding instantaneous firing rate with a time histogram method, which is a common
practice in processing spiking data. However, people usually subjectively choose the kernel
width for the time histogram, and ignore the underlying mechanisms generating the spikes
52, In our work, we computed the instantaneous firing rate by convolving the spike trains
with the optimized Gaussian kernel, which was obtained by the method in Shimazaki et al.
(2007) 52 and Shimazaki et al. (2010) 3. The optimized Gaussian kernel characterized the
true Poisson process underlying the experimental spiking data 5253. Specifically, the
optimized kernel minimized the mean integrated square error (MISE) from the true
inhomogeneous Poisson point process underlying the experimental spike trains 5253, A time
histogram kernel with small MISE could capture the abrupt firing rate fluctuations, while
reducing the excessive overfitting 5253, From the spike trains recorded during each frequency
of DBS, we computed the instantaneous firing rate with the optimized Gaussian kernel; see
Supplementary Table S1 for the optimized kernel of the data from each DBS frequency. The
instantaneous firing rate with the optimized Gaussian kernel grasped the transient
fluctuations very well, while the overfitting was prevented, in both 5-Hz and 200-Hz DBS
data (Supplementary Fig. S1). Compared with the optimized Gaussian kernel, a larger
kernel caused the instantaneous firing rate to deviate from the transient fluctuations, and a
smaller kernel made the instantaneous firing rate exhibit excessive overfitting

(Supplementary Fig. S1).

The Tsodyks & Markram model of short-term synaptic plasticity (STP)
The external input into the Vim-network was the DBS-induced post-synaptic current
(Ipps , Fig. 1, Equation (1)), which was formulated with the Tsodyks & Markram (TM) model
of short-term synaptic plasticity (STP) 36. Thus, the immediate impact of DBS pulses was
modeled as inducing synaptic release, and such modeling method is consistent with
previously established works 121374 For the Vim neurons directly receiving DBS, we
modeled that each neuron receives inputs from 500 synapses, with 90% excitatory synapses
(Ngxe =450) and 10% inhibitory synapses (N, = 50) (12, Fig. 1, Supplementary Table S2).
We assumed that each DBS pulse generates one spike in each of these synapses

simultaneously 1213, These DBS-evoked spikes were filtered by the TM model, generating the
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post-synaptic current, Ipgs, that was obtained by a linear combination of post-synaptic
excitatory (I,,.) and inhibitory (I;,,,) currents as follows:

Ipps(t) = Wexc lexc(t) = Winnlinn () (5)
where w,,. and w;,;, denote the scaling weights of the excitatory and inhibitory currents,
respectively (Supplementary Table S2). I, . (respectively, I;,;) is the total post-synaptic
current from all excitatory (respectively, inhibitory) synapses; each synapse (excitatory or

inhibitory) was modeled by the TM model of short-term synaptic plasticity:

du u -

i i—— U(l—u)8(t —tsp) (6)
dm 1-m -

P T utm 5(t — tsp) (7)
dal I —

- = + Autm=6(t — tsp) (8)

where u is a utilization parameter, indicating the fraction of neurotransmitters ready for
release into the synaptic cleft (due to calcium ion flux in the pre-synaptic terminal). The
variable m indicates the fraction of resources remaining available after the neurotransmitter
depletion caused by neural spikes. We denote as u~ and m™ the corresponding variables just
before the arrival of the spike; similarly, u* and m™* refer to the moment just after the spike.
The §-function modeled the abrupt change upon the arrival of each pre-synaptic spike t;
for example, att = tg, in Equation (6), u increases by U(1 —u™), and 6(t — tsp) = 0 when
t # tgp-. If there is no pre-synaptic activity (spike), u exponentially decays to zero; this decay
rate is the facilitation time constant, 7¢,¢; (Equation (6)). In contrast to the increase of u
upon the arrival of each pre-synaptic spike, m drops and then recovers to its steady state
value (= 1); this recovery rate is given by the recovery time constant 7. (Equation (7)). The
competition between the facilitation (z4;) and recovery (7,..) time constants determined
the dynamics of the synapse. In the TM model, U, 754, and 7, were the parameters that
determined the three types of the synapse: facilitation (“F”), pseudo-linear (“P”), and
depression (“S”) (12, Fig. 1, Supplementary Table S2). In Equation (8), I is the post-synaptic
current, A is the absolute response amplitude, and 7, is the post-synaptic time constant
(Supplementary Table S2). We obtained I,,. (respectively, I;,;,) by adding the post-

synaptic currents from all excitatory (respectively, inhibitory) synapses. The TM model
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parameters in Supplementary Table S2 were chosen based on the previous modeling

works on specific experimental datasets 127576,

Route optimization method for model parameters

The route optimization starts with a set of initial parameters (®;,;), which came from
previously reported parameters in other studies and a one-step fit with our previous single-
ensemble model of the Vim neural group receiving DBS (13, Supplementary Notes 1). In
particular, the initial connectivity strength parameters ({We,, Wi, Wei, w;;}) were all set to 1.
The output parameters from each optimization objective function (Pushing Function or
Stabilizing Function) were obtained with the MATLAB custom function “fminsearch”, which
implemented the Nelder-Mead simplex method 77. Starting from &;,,; , we did a preliminary
fit with Stabilizing Function, and the output parameters were @,,. (Fig. 5A and B). The
NMSE of the model fits with &;,,; and @,,, were very large (>40%, Supplementary Table
$5); thus, the networks with these model parameters were considered to be in the “non-
physiological” regime, meaning that they were very different from the experimental data

(Fig. 5A). &, was also denoted as (DS;Wpre (Fig. 5A); the subscript “S” represents that it was

the output of Stabilizing Function emphasizing the Stabilized Feature, and the subscript

MW

pre Stresses the strength of connectivity among neural groups in the network associated

with @,,... Starting from ¢S;Wpre , we performed a fit with Pushing Function, and obtained the
output parameters @y, . ; the subscript “F” represents that it was the output of Pushing
Function that emphasizes Focused Feature (Fig.5A). Note thatin the fit for obtaining CDF'Wpre
from (pSerre’ we fixed the connectivity strength W,,..; and for CDF,WWQ , this feature (fixed
Wpre) is illustrated as a half-filled circle (Fig. 5A). During the route optimization process, the
connectivity strength was left unchanged in the Pushing Function to obtain @, from ®s. Our
purpose of this design was to increase the prediction robustness of the connectivity strength,
which was the essential feature of a neural network. With the same connectivity strength W,
the error of model fit with &, was often larger than @, (Fig. 5A, Supplementary Table
S5) because @y, was obtained during fitting Focused Feature stressing part of the data

(high-frequency DBS). However, from &g, to @, , the model parameters always moved
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away from the local minimum, and the chances were opened up to explore the global
minimum satisfying our optimization objective (Fig. 5A). Thus, Pushing Function (on
Focused Feature) “pushes” the model parameters away from the local solution towards the
parameter range better representing Focused Feature, then Stabilizing Function (on
Stabilized Feature) “stabilizes” the model parameters by fitting consistently across the whole
data (i.e., Stabilized Feature) with high accuracy. Such sequential execution of Pushing
Function and Stabilizing Function (Fig. 5B) is the critical idea of the route optimization
method in effectively finding the globally optimal solution.

Starting from @, , the 15t sequential optimization iteration is @, = P Wy 2 D,

(Fig. 5A and B). The model fitting error (ER) of the network with parameters as the 1st
iteration output (&g, ) was 35.9%, which is far smaller than the networks in the non-
physiological regime (Fig. 5A, Supplementary Table S5). Thus, we considered the network
associated with &g, as physiologically meaningful, as well as each of the following network
associated with a subsequent iteration output (®sy, ,k = 2); for these networks, ER
decreases as the iteration number k increases (Fig. 5A, Supplementary Table S5). In the
physiological regime, starting from 1t iteration output (®gy, ), the route optimization
proceeds as the sequential iteration number increases; the kthiteration (k = 2) is &gy, 2
Prw,_, ? Psw, (Fig. 5A). The route optimization process in the physiological regime
consists of two stages: Global Stage and Refining Stage (Fig. 5A). The difference between the
two stages is that, Refining Stage emphasizes the high-frequency DBS data to a greater extent
in the objective functions (Supplementary Notes 1). Compared to Global Stage, in Refining
Stage, the weight of high-frequency DBS data was greater in both Pushing Function and
Stabilizing Function (Supplementary Notes 1). The purpose of Global Stage is to navigate
the model parameters towards the appropriate range for fitting the data across all DBS
frequencies; Refining Stage refines the parameter range obtained by Global Stage to further
reduce the fitting error, in particular of the more clinically effective high-frequency DBS data.
The fitting error of the network associated with the final output of Global Stage (&g . , Fig.
5A) was already small (ER = 9.5%, NMSE (100 Hz) = 4.3%, NMSE (200 Hz) = 10.6%);
however, utilizing the objective functions of Global Stage solely would cause ER to stop

decreasing (data not shown). Thus, we switched to Refining Stage to fully explore and exploit
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the “low error area” (Fig. 5A) to minimize ER; after such local refinement, we finally found
the desired globally optimal solution ®@,,:imq (ER = 7.6%, NMSE (100 Hz) = 3.2%, NMSE
(200 Hz) = 5.7%), which satisfied an exit rule (Supplementary Notes 1) to quit the
optimization iterations (Fig. 5B). The optimal model fit the associated model parameters

(Poptimar) Were shown in Fig. 2.

Eigenpairs of the effective input matrix

We computed the eigenpairs - eigenvalues and the associated eigenvectors - of the
effective input matrix S (Equation (3)); Supplementary Table S6 showed the evolution of

S and its eigenpairs during the route optimization process (as illustrated in Fig. 5F and G).
v .

Suppose that the i*" eigenpair of the effective input matrix S is (4;,v; = (v;l)) and we
,L

deduced the following equations:

Svy = (i?j ?;11) (z;) =h (z;) = Spg = _%501 + 4 (9)
Sv, = (i?j ?;11) (22) =4 (22) =Spg = _%2501 + 4 (10)

. . th s vl,i . . th
where A; (i = 1,2)is the i*" eigenvalue of S, and v; = (vz ) (i = 1,2) isthe i*" eigenvector of
,L
S associated with 4; .

. Lo 2
During the route optimization process, we always observed that 5—1 ~ 1 and ? ~ 0
D& 1,1

(Supplementary Table S6). This observation was consistent with Equation (9), which

concretely showed that sp; = 1; when ? ~ 0. Thus, the excitatory effective input (sp¢)
1,1

could mostly be represented by the 1st eigenvalue (1,). When observing the 2nd eigenpair

. o A . .
A,, V) during the route optimization process, we found that —= is always small; in fact, max
8 p p Soe y

(:—2) < 2% (Supplementary Table S6). Thus, in analyzing the inhibition strength ratio
D&

Pinhp = zﬂ (Equation (4)), we deduced the following equation from Equation (10):
D¢

P == —U2(1 - 2], (1

Spg V2,2 Spg V22


https://doi.org/10.1101/2023.12.09.570924
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.09.570924; this version posted December 12, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

because max (;—2) <2% « 1 (Supplementary Table S6). Thus, the inhibition strength ratio
D¢

v
Pinn,p could mostly be represented by the 2nd eigenvector v, = (U;z)

The Izhikevich spiking network model

We developed an Izhikevich spiking network model of the Vim-network, and compared
its fitting results with our rate network model. The purpose was to validate our rate network
model, and further discuss the network mechanism. The Izhikevich spiking network model
was of 3 groups of neurons: (1) 20 Vim neurons (excitatory) directly receiving DBS; (2) 100
excitatory neurons from the cerebellum; (3) 40 inhibitory neurons from the thalamic
reticular nuclei (TRN). This setup of the Izhikevich model is consistent with the previous
spiking models of the thalamocortical network 2256, The Izhikevich spiking network model
equations are stated as follows,

Vpm = 0.04v5, + 5Upm + 140 — Upp + lyigsm + Em + Ippsm km

+B 22=1 ITM,mqWmq (12)

u;lm = am(bmvnm - unm) (13)

ifvy, =20+, thenv,,, « ¢, Upm < Unm + din (14)
W11 Wiz Wi3 Wee Wee —We;

W = <W21 W2 W3 | = <Wee Wee 0 ) (15)
W31 W3z Wi Wie 0 —Wy;

where m is the index of the neural group; m = 1, 2, 3 corresponds to the neural group Vim,
cerebellum and TRN, respectively. Each group consists of N,,, neurons, which are indexed by
n=1,23,.,N,; N;=20,N, =100, and N3 = 40. The simulation of the Izhikevich spiking
network model was performed with the Neural Simulation Tool (NEST) platform 78.

In Equation (12), v,,,, is the membrane potential of the nth neuron in the mth group, and
Unm 1S the corresponding membrane recovery variable. I, ,,, is the constant biased current

injected to each neuron in the mth group, and ¢&,, is the Gaussian white noise (see
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Supplementary Table S8 for its standard deviation). Ipgs,, is the DBS-induced post-
synaptic current into the mth group, with synapses characterized by the Tsodyks & Markram
(TM) model 3¢; k,, is a scaling parameter. Ipgs; represents the DBS activation of the
synapses afferent into the Vim neurons (Fig. 1). To be consistent with the input to the Vim-
network in our rate model, Ipgs; was determined to be the same as the rate model input
(Ipps) in Equation (1). Ipps, (respectively, Ipps3) represents the DBS effect of the axons
efferent from the Vim neurons into the cerebellar neurons (respectively, neurons in TRN).
Ipps > and Ipps 3 were simulated by the NEST built-in function “tsodyks2_synapse”. We tuned
the parameters in “tsodyks2_synapse” so that its simulation result is consistent with the
Tsodyks & Markram synapses used in our rate model, across different DBS frequencies
(5~200 Hz) (Supplementary Table S9, Supplementary Figs. S2 and S9). We tuned k; (the
scaling of DBS effect of Vim afferent) so that the amplitude of the simulated DBS-evoked
activities is consistent with our rate network model (Fig. 2 and Supplementary Fig. S8).
The scaling parameters of DBS effect of Vim efferent (k, and k3) are smaller than Vim
afferent (k;), because there is energy loss during the transmission on the axons efferent from
Vim 7980, The ratio k,/k5 (i.e., the comparison of Vim efferent effects to cerebellum and TRN)
is the same as the ratio of the corresponding connectivity strength (w,./w;. , EqQuations (1)
and (22)).

In Equation (12), § is a scaling parameter of the effect of synaptic connections within the
network. Iy ;mq is the sum of TM-modeled post-synaptic currents induced by each spike of
the group “q” neurons projecting to a group “m” neuron. Iy ,, was simulated by the NEST
built-in function “tsodyks2_synapse” with parameters specified in Supplementary Table S9.
In the simulation of Iy 4, we used the sparse synaptic connection, which is commonly used
in spiking network models 8182, [n our simulation, there is no synaptic connection between
a cerebellar neuron and a TRN neuron 3739 (w,3 = w3, = 0, Equation (15)). For the connected
neurons, each neuron received synaptic inputs from 10% of Vim neurons (excitatory), 10%
of cerebellar neurons (excitatory), and 25% of TRN neurons (inhibitory). The connection
probability from an inhibitory neuron was set to be higher, because an inhibitory neuron is
generally dense in axons, and can project axons to distal neurons 8339 In the connectivity

“ »

matrix W, wy,, represents the connectivity strength from the neural group “g” to group “m”,
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and the +/- sign denotes the excitatory/inhibitory effect (Equation (15)). The connectivity
matrix W in the spiking model is the same as the rate model (Equation (1)). In particular, in
the spiking model, the two mechanisms - Hebbian and Balanced Amplification - are
characterized by the connectivity strengths shown in Supplementary Table S4 (results of
our rate model).

In Equation (13), u,,, is the membrane recovery variable, a,, is the time scale, and b,, is
the sensitivity to the membrane potential v,,,, . The neuron fires when v, reaches a
fluctuating threshold 6 + {;,, (Equation (14)); 8 = 30 mV is the mean firing threshold, and ¢,
is the Gaussian white noise (see Supplementary Table S8 for its standard deviation).
Immediately after the neuron fires, v,,, is reset to ¢, , and u,, is reset to u,, + d,
(Equation (14)). The Izhikevich model parameters {a, b, ¢, d} for the neurons in each group
were shown in Supplementary Table $8; these parameters were chosen to be consistent
with other works 2256 . Other spiking model parameters were tuned so that for all neurons
(Vim, cerebellum, or TRN), the simulated baseline firing rate (with DBS-OFF) was consistent

with our rate network model.

Statistical analyses

One-sample one-tailed t-test was performed to analyze the statistical significance of the
biomarker of inhibitory effects observed in single-unit recordings, as shown in Fig. 4.
Analysis of variance (ANOVA) test with F-statistic was performed to compare the length of
initial transient responses between 100-Hz and 200-Hz DBS clinical data (Supplementary
Table S10). A linear regression analysis was performed to generate the results related to
Fig. 5. The regression methods include 95% confidence intervals of the slope and vertical

intercept.

Data availability

Human experimental data - Vim spike timings during different frequencies of Vim-DBS -

have been deposited at https://github.com/nsbspl/rate network model.

Code availability
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The codes for generating results are openly accessible at

https://github.com/nsbspl/rate network model.
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