

1 NS2B-D55E and NS2B-E65D Variations are Responsible for Differences in 2 NS2B-NS3 Protease Activities Between Japanese Encephalitis Virus 3 Genotype I and III in Fluorogenic Peptide Model

4 Abdul Wahaab^{1,2}, Yan Zhang¹, Jason L. Rasgon², Lei Kang¹, Muddassar Hameed^{1,3}, Chenxi
5 Li^{1,4}, Muhammad Naveed Anwar¹, Yanbing Zhang^{1,5}, Anam Shoaib⁶, Ke Liu¹, Beibei Lee
6¹, Jianchao Wei^{1*}, Yafeng Qiu^{1*}, Zhiyong Ma^{1*}

7¹ Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences,
8 Shanghai 200241, China.

9² The Department of Entomology, Center for Infectious Disease Dynamics, and the Huck
10 Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United
11 States.

12³ Department of Biomedical Science and Pathobiology, Virginia-Maryland College of
13 Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA,
14 United States.

15⁴ College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.

16⁵ College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China.

17⁶ School of Behavior and Brain Sciences, University of Texas at Dallas, TX, United States.

18^{*} **Correspondence:** zhiyongma@shvri.ac.cn (Z.M.); yafengq@shvri.ac.cn (Y.Q.); and
19 jianchaowei@shvri.ac.cn (J.W.).

20

21 **Abstract**

22 Japanese Encephalitis Virus (JEV) NS2B-NS3 is a protein complex composed of NS3
23 proteases and a NS2B cofactor. The N-terminal protease domain (180 residues) of NS3
24 (NS3(pro)) interacts directly with a central 40-amino acid hydrophilic domain of NS2B
25 (NS2B(H)) to form an active serine protease. In this study, the recombinant NS2B(H)-
26 NS3(pro) proteases were prepared in *E. coli* and used to compare the enzymatic activity
27 between genotype I (GI) and III (GIII) NS2B-NS3 proteases. The GI NS2B(H)-NS3(pro) was
28 able to cleave the sites at internal C, NS2A/NS2B, NS2B/NS3 and NS3/NS4A junctions that
29 were identical to the sites proteolytically processed by GIII NS2B(H)-NS3(pro). Analysis of
30 the enzymatic activity of recombinant NS2B(H)-NS3(pro) proteases using a model of
31 fluorogenic peptide substrate revealed that the proteolytical processing activity of GIII
32 NS2B(H)-NS3(pro) was significantly higher than that of GI NS2B(H)-NS3(pro). There were
33 eight amino acid variations between GI and GIII NS2B(H)-NS3(pro), which may be
34 responsible for the difference in enzymatic activities between GI and GIII proteases. Therefore,
35 recombinant mutants were generated by exchanging NS2B(H) and NS3(pro) domains between

36 GI and GIII NS2B(H)-NS3(pro) and subjected to protease activity analysis. Substitution of
37 NS2B(H) significantly altered the protease activities, as compared to the parental NS2B(H)-
38 NS3(pro), suggesting that NS2B(H) played an essential role in regulation of NS3(pro) protease
39 activity. To further identify the amino acids responsible for the difference in protease activities,
40 multiple substitution mutants including the individual and combined mutations at the variant
41 residue 55 and 65 of NS2B(H) were generated and subjected to protease activity analysis.
42 Replacement of NS2B-55 and NS2B-65 of GI to GIII significantly increased the enzymatic
43 activity of GI NS2B(H)-NS3(pro) protease, whereas mutation of NS2B-55 and NS2B-65 of
44 GIII to GI remarkably reduced the enzymatic activity of GIII NS2B(H)-NS3(pro) protease.
45 Overall, these data demonstrated that NS2B-55 and NS2B-65 variations in hydrophilic domain
46 of NS2B co-contributed to the difference in NS2B(H)-NS3(pro) protease activities between GI
47 and GIII. These observations gain an insight into the role of NS2B in regulation of NS3
48 protease activities, which is useful for understanding the replication of JEV GI and GIII viruses.

49 **Key Words**

50 Japanese encephalitis virus, genotype, NS2B-NS3 proteases, protease activity, cleavage site,
51 fluorogenic peptide substrate.

52 **Introduction**

53 Zika Virus (ZIKV), Dengue Virus (DENV) and Japanese Encephalitis virus (JEV) are
54 mosquito borne members of the genus flavivirus and are resurging and emerging pathogens
55 responsible for enormous disease burden. The flavivirus genome is ~11kb single stranded,
56 positive sense RNA comprising a large open reading frame encoding single protein precursor
57 which is cleaved by a complex combination of cellular and viral encoded proteases during and
58 immediately after translation. This cleavage generates three structural [Capsid (C), precursor
59 membrane (prM) ,Envelope (E)] and seven nonstructural (NS1, NS2, NS2b, NS3, NS4a, NS4b
60 and NS5) proteins necessary for viral genome replication [1-3]. JEV was first isolated in 1935
61 and since then has been classified to five genotypes (GI – GV) with geographic distribution in
62 all continents except Antarctica, encompassing 67,900 human cases annually with a case
63 fatality rate approaching 20-30%, and where 30-50% of survivors suffering from neurological
64 sequelae [4-7].

65 JEV GI emerged in the 1990s and has progressively replaced GIII as the most frequently
66 isolated JEV genotype from stillborn piglets, *Culex tritaeniorhynchus* mosquitoes, and clinical
67 JE patients in Korea, China, Vietnam, India, Thailand, Taiwan and Japan [8-14]. It is suggested

68 that JEV GI possibly competes with JEV GIII in same pig-mosquito cycle and has a
69 transmission advantage over areas formerly dominated by GIII [11, 15]. Emerging JEV GI
70 replicates more efficiently in wild birds, ducklings and cell cultures derived from *Aedes*
71 *albopictus* mosquitoes compared to GIII [16-20] and shows similar infectivity in *Culex pipiens*
72 [21]; however, it is unclear if replication efficiency of JEV GI vs JEV GIII occurs in *Culex*
73 *tritaeniorhynchus* mosquitoes or/and pigs, which have crucial role in local JEV transmission.
74 Additionally, experimental evidence linked with variance in viral genomic factors does not
75 fully explain the occurrence of JEV GIII replacement during past two decades[11, 17, 22].

76 JEV encodes a protease complex comprising the viral NS3 protein and a NS2B cofactor which
77 are requisite for generating functional viral particles. NS2B is an integral membrane protein
78 comprising two hydrophobic and a central hydrophilic domain and plays a crucial role in viral
79 replication [23, 24]. The central hydrophilic region of NS2B(H) comprising around 50 residues
80 is essential for activation of NS3pro and accurate processing of viral polyprotein and is the
81 principal determinant in substrate selection [25-27]. NS3 usually possess RNA Helicase, serine
82 proteases, RNA triphosphatase and Nucleoside triphosphatase enzymatic activities [28].These
83 two component encoded NS2B-NS3 proteases are involved in polypeptide processing, RNA
84 replication, infectious particle assembly via enzymatic-independent or -dependent processes
85 and thus it substitutions may augment viral replications in different hosts [29-31]. Moreover,
86 this two-component protein harbors diverse strategies to escape host innate immunity [22, 32].
87 It has potential to cleave interferon stimulators and surface receptors tyrosine kinase. These
88 interferon antagonistic abilities facilitate efficient viral replication, viral particle release, and
89 neuroinvasion which contributes to augmented virulence and high mortality in laboratory
90 animals [33-36].

91 In this study, we investigated the contribution of NS2B/NS3 proteases for their possible role in
92 emergence of JEV GI over previously emerged GIII *in vitro*, using a fluorogenic peptide-based
93 model. The methodology involved cloning, expression, and purification of active and inactive
94 JEV GI and GIII Ns2B(H)-NS3(pro) serine proteases and obtaining numerical data on kinetic
95 constants through fluorescence resonance energy transfer (FRET) modeling, using substrate
96 sites suspected to be cleaved by viral serine proteases. The involvement of mutations in
97 NS2B(H) hydrophilic and NS3(pro) protease domains with different proteolytic processing
98 activities of GI and GIII was also determined using recombinant proteins. The identified
99 genetic determinants will be crucial for selection of genes to monitor GI virus evolution,
100 replication, and activities in natural transmission cycles.

101

102 **Material and Methods**

103 **Virus stock, Cells and Antibodies**

104 Japanese encephalitis virus GI strain SH7 (MH753129) and GIII strain SH15 (MH753130),
105 isolated from *Cx. tritaeniorhynchus* and *An. sinensis* (respectively) in 2016 were used in this
106 study [37, 38]. All JEV strains were plaque-purified three times and amplified in BHK cells at
107 0.1 MOI as described previously [37]. The fifty percent tissue culture infective dose (TCID50)
108 was determined, and fresh virus suspensions were used in all experiments. Baby hamster
109 kidney cells (BHK-21) cell line was obtained from the American Type Culture Collection
110 (ATCC) and cultured in Dulbecco's modified Eagle's medium (DMEM, Invitrogen, GIBCO,
111 Carlsbad, CA, USA) containing 10% fetal bovine serum (FBS) (Gibco, Thermo Fisher
112 Scientific, Waltham, MA, USA) and 100 µg/ml streptomycin and 100 IU/ml penicillin at 37°C.
113 The commercial antibodies used in this study included a GFP (D5.1) XP Rabbit monoclonal
114 antibody (Cell Signaling Technology, Danvers, MA, USA), GAPDH (glyceraldehyde-3-
115 phosphate dehydrogenase) monoclonal antibody (Proteintech, Chicago, IL, USA), monoclonal
116 His-tag antibody (GeneScript, Piscataway, NJ, USA) and a self-generated antibody specific to
117 JEV NS3 [39].

118 **Sequence Alignment**

119 Amino acid sequences of Japanese Encephalitis Virus genotypes including GI-SH7 strain
120 (GenBank no MH753129.1) and GIII-SH15 strain (GenBank no MH753130.1) were assembled
121 from the NCBI database (<http://www.ncbi.nlm.nih.gov>). Sequence of recombinant NS2B(H)-
122 NS3(pro) proteases and the predicted/anticipated cleavage sites at internal capsid (internal C),
123 Cap/prM, prM/E, E/NS1, NS1/NS2A, NS2A/NS2B, NS2B/NS3, internal NS3, NS3/NS4A,
124 internal NS4A), NS4A/NS4B and NS4B/NS5 intersections were aligned using SnapGene
125 (GSL Biotech LLC, San Diego, CA, USA) and MegAlign (DNASTAR Inc, Madison, WI,
126 USA) software.

127 **Construction of PTrcHis-A NS2B(H)-NS3pro**

128 Total RNAs from BHK cells infected with JEV GI-SH 7 and JEV GIII-SH15 strains were
129 extracted using TRIzol reagent (Thermo Fisher Scientific, Waltham, MA, USA) according to
130 the manufacturer's protocol. Reverse transcription was performed to make cDNA using
131 PrimeScript RT reagent kit with gDNA Eraser (TaKaRa, Kyoto, Japan). Sequences encoding
132 the C-terminal portion (amino acid 45 to 131) of NS2B and N-terminal portion (amino acid 1

133 to 185) of NS3 were amplified and inserted into the multiple cloning site of protein expression
134 plasmid pTrcHisA (Thermo Fisher Scientific, MA, USA) through restriction sites XhoI and
135 EcoRI. Sequence encoding the 96-120 NS2B residues was removed from recombinant
136 pTrcHisA plasmid by PCR based site directed mutagenesis [40] using Pfu ultra II fusion HS
137 DNA polymerase (Agilent, Santa Clara, USA) to generate recombinant plasmids expressing
138 N-terminal hexahistidine tag fused active NS2B(H)-NS3(pro) proteases [41, 42]. The active
139 recombinant NS2B(H)-NS3(pro) proteases were inactivated [43] by replacing a serine at
140 residue 135 with an alanine residue. Point mutations in NS2B(H) regions of proteases were
141 attained through PCR based site directed mutagenesis [40]. The resulting constructs were
142 sequenced in both direction through plasmid universal primers (PTrcHis Forward/Reverse)
143 with an ABI Prism 3730 DNA sequencer (Applied Biosystem, USA) at Invitrogen
144 (Guangzhou, PR China).

145 **Construction of Recombinant PET Duet1 Co-Expressing Artificial GFP Substrate and**
146 **NS2B(H)-NS3(pro):**

147 Sequences encoding JEV GI (SH 7) active and inactive NS2B(H)-NS3 pro proteases were
148 generated as described previously and cloned into the MCS1 (multiple cloning site 1) of dual
149 protein expression plasmid pETDuet-1 (Novagen, Beijing, China) through restriction sites
150 EcoRI and NotI. For artificial GFP substrate, sequence encoding anticipated cleavage sites i.e.
151 Internal C, C/prM, prM/E, E/NS1, NS1/NS2A, NS2A/NS2B, NS2B/NS3, internal NS3,
152 NS3/NS4A, internal NS4A, NS4A/NS4B and NS4B/NS5 intersections were cloned from JEV
153 GI SH7 (Figure 1B, 1C) strain with particularly designed oligo dT primer pairs (Shanghai
154 Sunny Biotec, Shanghai , China) by reverse transcriptase polymerase chain reaction (RT-PCR)
155 and inserted between N-terminal (amino acid 1 to 173) and C-Terminal (amino acid 174 to
156 239) of GFP by overlap extension PCR. The obtained sequence was cloned to MCS2 (multiple
157 cloning site 2) of pETDuet-1 using[44]. Sequence of twenty alanine residues was inserted
158 between N-Terminal and C terminal part of GFP to generate a control artificial GFP substrate.

159 **Detection of Cleavage Sites in competent *E. coli***

160 *E. coli* BL21 (DE-3) cells were transformed with recombinant pETDuet-1 expressing JEV GI
161 NS2B(H)-NS3(pro) proteases and artificial GFP substrate and incubated at 37°C until OD600
162 reached 0.6. Isopropyl b-D-1pthiogalactopyranoside (IPTG) was used to induce expression at
163 a final concentration of 0.70 mM. The cells were harvested after 24 h incubation by
164 centrifugation at 10000xg for 10 minutes at 4°C. The pellets were washed and resuspended in
165 cold phosphate buffered saline (PBS 1X) and recentrifuged at 10000xg for 10 minutes at 4°C.

166 The pellet was subjected to western blot analysis using specific antibodies as described
167 previously [45]. The cleavage of artificial GFP substrate was detected by monoclonal anti-GFP
168 antibody (GFP (D5.1) XP Rabbit). The expression of NS2B(H)-NS3(pro) was probed by
169 antibodies specific to NS3 [39].

170 **Expression and Purification of NS2B(H)-NS3(pro) proteases**

171 PTrc His-A vector harboring various JEV NS2B-NS3 proteases were propagated in
172 *Escherichia coli* DH5 (TIANGEN Biotech, Beijing, China) and extracted using Plasmid
173 Miniprep Kit (Corning, NY, USA). Extracted constructs were transformed to *E. coli* BL-21
174 (DE-3) cells for expression and cells were grown in 1000 ml LB medium comprising 100mg/ml
175 ampicillin at 37°C until the OD600 reached 0.6. The temperature was reduced to 18C and
176 isopropyl b-D-1pithiogalactopyranoside (IPTG) was used to induce expression at a final
177 concentration of 0.70mM. The cells were incubated for 14 hours at 18C. The cells were
178 harvested by centrifugation at 8000xg for 10 minutes at 4°C. The pellets were washed and
179 resuspended in cold phosphate buffered saline (PBS 1X) and recentrifuged at 8000xg for 10
180 minutes at 4°C. Pellet was kept on ice and resuspended in 40 ml Lysis buffer (0.1 M Tris-HCl,
181 0.3 M NaCl, PH 7.5, 10 mg ml-1 DNase, 0.25mg ml-1 lysozyme and 5mM MgCl2). Cells were
182 kept at room temperature for 30 minutes and lysed on ice by sonication with an Ultrasonic
183 Processor XL (Misonix Inc, NY, USA) Residues in solution were pelleted by centrifugation at
184 12000Xg for 30 minutes at 4°C and soluble fraction was filtered through 0.22-micron filters
185 (Merck Millipore Ltd, Cork, IRL). Supernatant was loaded to a 5 ml Nickel-Sepharose HisTrap
186 Chelating column (GE Healthcare) pre-equilibrated with lysis buffer at flow rate of 1.0 ml per
187 minute. The column was washed with five column volumes of buffer A (0.1M Tris HCl, pH
188 7.5, 0.3M Nacl, 20mM imidazole) and five column volumes of Buffer B (A (0.1M Tris HCl,
189 pH 7.5, 0.3M Nacl, 50mM imidazole) respectively. Proteins were eluted with ten column
190 volumes of elution buffer (0.1M Tris HCl, pH 7.5, 0.3M Nacl, 250mM imidazole) in fractions
191 of 1.0 ml in DNA/protease-free Eppendorf tubes. Aliquots of 20ul from each tube were
192 subjected to 15% SDS-page and Gels were stained with One-Step Blue, Protein Gel Stain, 1X
193 (Biotium, Fremont, CA, USA) as per manufacturer instructions. Fractions containing
194 NS2B/NS3 proteins were pooled and desalting through stepwise dialysis as described
195 previously [42]. Purified NS2B-NS3 pro was concentrated to 1.0 mg ml-1 using centrifugal
196 filter columns (Centricon 20 ml, 3000 MWCO, Millipore, USA). Protein concentration was
197 determined with enhanced BCA protein assay kit (Beyotime, Shanghai, China) with bovine
198 serum albumin as standard. Samples were stored in 50mM Tris-HCl, pH 9.0, glycerol (50%

199 V/V) at 20C. Proteins were subjected to western analysis using Anti-Ns3 and His Tagged
200 antibodies.

201 **Protease activity Assay**

202 The assay of protease activity of purified NS2B(H)-NS3(pro) was carried out using previously
203 reported fluorogenic peptides from JEV conserved cleavage sites NS2B/NS3 (Pyr-RTKR-amc)
204 and NS2A/NS2B (Dabcyl-PNKKRGWP-(EDANS)G) synthesized by A+Peptide (Pudong,
205 Shanghai, China) [42]. Assays were conducted on 96-well black, flat bottom, tissue culture
206 treated polystyrene microplates (Corning Life Sciences, MA, USA) in total reaction volume of
207 0.1 ml containing 0.5 mM NS2B(H)-NS3(pro) proteases, assay buffer (50mM Tris HCl, pH9.5,
208 20% glycerol) and substrate. For kinetic assessments, fluorescence measurements were
209 recorded at 20 minutes interval for 520 minutes through Multimode plate reader (Bio Tek) at
210 an excitation wavelength(λ_{ex}) of 360nm and emission wavelength(λ_{em}) of 460 nm. Assay was
211 carried out with three repeats for each group in two independent experiments at a constant
212 temperature of 37°C. Inner filter effects of microplate reader were corrected as described in
213 literature [46]. To determine the amount of AMC/fluorescence released, a standard curve was
214 plotted with various value of kinetic data. No significant hydrolysis of peptide substrate was
215 noted in dead NS2B(H)-NS3(pro) and/or groups without enzymes. Data was analyzed using
216 GraphPad Prism version 7.00 for windows (GraphPad Software, La Jolla, California, USA)[47,
217 48].

218 **Homology Modeling**

219 The image of NS2B/NS3 was created using SWISS-MODEL (www.swissmodel.expacy.org).
220 The structure of NS2B/NS3 was downloaded from protein data bank and was assembled and
221 analyzed with PyMOL (<http://pymol.org>) and SPDV (DeepView) software's (<https://spdv.vital-it.ch>) .

223 **Statistical Analysis**

224 Statistical analysis was performed using GraphPad Prism version 7.0 (GraphPad Software, La
225 Jolla, California, USA). Data were assembled as mean with standard deviation. Significant
226 differences between groups were determined by Student's t-test. A "p value" less than 0.05
227 (P<0.05) was considered as significant.

228 **Results**

229 **Amino acid variation in cleavage sites and viral NS2B-NS3 proteases**

230 JEV polyprotein is cleaved to generate functional proteins by a combination of host and viral
231 proteases. The cleavage is anticipated to occur at connections between C/prM, prM/E, E/NS1,

232 NS1/NS2A, NS2B/NS3, NS3/NS4A, NS4A/NS4B, NS4B/NS5 and sites of internal C, NS4A
233 and NS3 (Fig. 1A). Alignment of prophesied cleavage site sequence revealed no variations
234 among strains of GI and GIII (Fig. 1B). However, the two components viral
235 NS2N(H)/NS3(pro) proteases involved in proteolytic processing of virus polyprotein exhibited
236 eight mutations between GI and III (Fig. 1C). Two conserved mutations were spotted in
237 hydrophilic domain of NS2B region i.e E55D and D65E with conservation rate of 90-100 %,
238 and six mutations were spotted in protease domain of NS3 region i.e L14S, S78A, P105A,
239 D177E, K185R with conservation rate of 90-100 % and S182 with a conservation rate of 58-
240 89% (data obtained after alignment of 50 random represented strains from GI and GIII) [49].
241 Three mutations in NS2B-NS3 regions of JEV were previously reported to be involved in
242 replication advantage of GI over GIII in avian cells at elevated temperatures [50]. However,
243 mechanism behind that advantage still needs to be investigated making NS2B/NS3 a promising
244 region to monitor virus evolution and genotype displacement.

245 **JEV GI and GIII NS2B(H)/NS3(pro) proteases exhibits identical cleavage patterns for**
246 **proteolytic processing of JEV polyprotein**

247 Studies have demonstrated that JEV protease activity mainly depends on association between
248 NS3 and its co-factor NS2B, and that this two component NS2B-NS3 proteases expressed in
249 *E.coli* are folded correctly with effective proteolytic activity [28, 42]. Therefore in our previous
250 study we selected the prokaryotic cell model of *E. coli* to identify cleavage sites proteolytically
251 processed by two component JEV GIII-SH15 proteases [51]. GI-SH7, which exhibits different
252 3D protein conformations (Fig.7B) and eight critical substitutions (Figure 1C) in the protease
253 region compared to GIII-SH15 was engineered to a dual protein prokaryotic expression
254 plasmid pETDuet-1 (Fig. 2A) to observe and compare the cleavage pattern of artificial GFP
255 substrate containing cleavage site from GI-SH7 (Figure 2). Artificial GFP substrate, when
256 expressed alone in *E. coli*, did not show any cleavage by *E. coli* proteases. When recombinant
257 viral Ns2B(H)-NS3(pro) was co-expressed with all artificial substrates individually, a 21kDa
258 band corresponding to N-terminal part of cleaved substrate was seen (Fig. 2B). The identified
259 cleavage sites were validated by co-expression of all artificial substrates sites with
260 inactivated/dead viral NS2B(H)-NS3(pro) which was generated by substitution of Serine at
261 position 135 located in catalytic trait of NS3 with alanine (Fig. 2C). Cleavage of artificial GFP
262 substrates was determined by western blot using antibodies specific to GFP and expression of
263 viral proteases were determined by anti-NS3. Here our results demonstrated that GI-SH7 was
264 able to cleave the sites at internal C, NS2A/NS2B, NS2B/NS3, and NS3/NS4A junctions and

265 exhibited the same cleavage pattern as previously reported for SH-GIII [51] , suggesting that
266 viral protease substitution and protein conformation do not interfere with selection of cleavage
267 sites for proteolytic processing and possibly play no role in genotype displacement.

268 **Preparation of recombinant NS2B(H)-NS3(pro) proteases**

269 Studies have demonstrated that JEV protease activity mainly depends on association between
270 NS3 and its co-factor NS2B, and that this two component NS2B-NS3 protease expressed in *E.*
271 *coli* is folded correctly with effective proteolytic activity [28, 42]. To analyze and compare the
272 proteolytic processing activities of GI-SH7 and GIII-SH15 NS2B/NS3 proteases, the active
273 and inactivated NS2B(H)-NS3(pro) proteases were structured and engineered into P-TrcHisA
274 vector for expression in *E.coli* (Fig. 3A). SDS-PAGE and western immunoblotting of purified
275 proteins was performed with antibodies specific to polyhistidine and JEV-NS3. SDS-PAGE
276 revealed presence of three bands. The intact band of viral NS2B(H)-NS3(pro) proteases was
277 seen at 36kDa. Whereas the autocleavage bands of NS3(pro) and NS2B(H) [42] were observed
278 at 21kD and 10 kDa respectively for each active SH7 and SH15 proteases (Fig. 3B). However,
279 only the intact NS2B(H)-NS3(pro) at 36Kda was seen for inactivated/dead NS2B/NS3
280 proteases of both strains (Fig. 3B), confirming its inactivity. The SDS-PAGE blots were
281 quantified using imgaeJ software to determine self-cleavage percentage of NS2B-NS3
282 proteases of both strains. SH7 was self-cleaved with a percentage 89.9% of and SH15 with a
283 percentage of 97.5%. The purified NS2B(H)-NS3(pro) proteases were further confirmed by
284 western blot with antibodies specific to His-tag and NS3, repetitively. Distinct differences in
285 intact anti-His and anti-NS3 expression was also seen between both strains (Fig. 3C). Overall,
286 these observations suggest that GIII-SH15 shows high autocleavage rate of enzymatically
287 active NS2B(H)-NS3(pro) proteases compared to GI-SH7. However, no autocleavage was seen
288 for the dead/inactivated viral proteases of both strains.

289 **Analysis of proteolytic processing activities of GI and GIII NS2B(H)-NS3(pro) proteases
290 using fluorogenic model**

291 Enzymatic activity of GI-SH7 and GIII-SH15 recombinant NS2B(H)-NS3(pro) proteases was
292 examined, and compared by fluorescence obtained after hydrolysis of fluorogenic peptide
293 substrates containing the sequence identical to dibasic cleavage sites of NS2A/NS2B and
294 NS2B/NS3 from JEV polyprotein [42, 52] .

295 The assays conducted to compare proteolytic activities of active and inactivated
296 proteases using the fluorogenic peptide containing cleavage site sequence from JEV NS2B-

297 NS3 revealed that all four groups of proteases did not display differences in kinetic
298 data/florescence at zero minutes indicating the non-hydrolysis of the suspectable cleavage site
299 on specific time point. However, after a twenty minute interval a statistically significant
300 difference was seen between GI-SH7 and GIII-SH15 (Fig. 4A). The GI-SH7 and GIII-SH15
301 also exhibited statistical differences from their respective dead proteases, indicating cleavage
302 of fluorogenic substrate by active proteases of both strains. The kinetic values/fluorescence
303 data kept increasing with passage of time and the values became constant at 480 minutes.
304 Significant differences were observed in all time points between GI-SH7 and GIII-SH15 from
305 forty minutes onwards. The dead proteases fluorescence data remained constant without any
306 increase after zero minutes throughout the experiment (Fig. 4A).

307 The experiments were repeated using synthetic fluorogenic peptides from cleavage sites
308 of JEV NS2A/NS2B. All the four group of proteases did not display any difference in kinetic
309 data at zero minutes. At forty minutes a statically significant difference was seen between GI-
310 SH7 and GIII-SH15 (Fig. 4B). The GI-SH7 and GIII-SH15 proteases also exhibited statistically
311 significant differences from their respective dead/inactive proteases. These kinetic values kept
312 increasing and became constant at 480 minutes. The dead proteases fluorescence data remained
313 constant without any increase throughout experiment indicating non-hydrolysis of fluorogenic
314 substrate by dead proteases (Fig. 4B).

315 Collectively, these findings revealed that proteases from GIII-SH15 possess high
316 proteolytic processing activities compared to GI-SH7 and the artificial fluorogenic peptide
317 containing cleavage sites from NS2B/NS3 are more efficiently cleaved by JEV proteases
318 compared to site NS2A/NS2B.

319 **Proteolytic Processing activities of GI and GIII NS2B(H)-NS3(pro) proteases at elevated 320 temperatures**

321 The higher thermal stability at elevated temperatures for GI could be a causative factor related
322 to enhancement of viral replication of GI viruses. Previously, NS2B/NS3 mutations in JEV
323 were found to enhance infectivity of GI over GIII in amplifying host cells at elevated
324 temperatures [31]. To access the influence of viral thermal stability on viral NS2B/NS3
325 protease proteolytic activities the experiment was repeated using elevated temperatures of
326 41°C with fluorogenic substrate NS2B/NS3. All viral proteases did not display any hydrolysis
327 of fluorogenic peptide at zero minutes. From twenty minutes onwards a statistically significant
328 difference was seen between GI-SH7 and GIII-SH15 activities (Fig. 4). These kinetic values

329 kept increasing variably (maintaining the significant difference between both genotypes) and
330 become constant at 400 minutes onwards, whilst dead protease fluorescence data remained
331 constant without any increase throughout experiment (Fig. 5). These results were similar to
332 experiments performed at 37 °C (Fig. 4) and indicated that elevated temperatures do not
333 influence proteolytic processing activities of viral proteases.

334 **Hydrophilic domain of NS2B determines the difference in NS2B(H)-NS3(pro) protease
335 activities between GI and GIII**

336 As synthetic fluorogenic peptide harbouring cleavage sites from NS2B/NS3 was cleaved more
337 efficiently by JEV proteases so it was selected to determine whether hydrophilic amino acid
338 variations in the protease domain in viral proteases are involved in increased proteolytic
339 processing or hydrolysis of fluorogenic peptides of GIII-SH15 over GI-SH7. Recombinant
340 proteases were generated by exchanging proteins encoding hydrophilic domain from NS2B
341 and protease domain from NS3 of respective strains GI-SH7 and GIII-SH15 strains resulting
342 in GI/NS2B(H)-GIII/NS3(pro) and GIII/NS2B(H)-GI/NS3(pro) (Fig. 6A). Exchanging the
343 hydrophilic domain of GI NS2B to GIII in GI protease (GIII/NS2B(H)-GI/NS3(pro))
344 significantly increased its proteolytic processing activities as compared with the parental GI
345 NS2B(H)-NS3(pro) protease (Fig. 6B). The activity of GIII/NS2B(H)-GI/NS3(pro) became
346 almost similar to that of GIII NS2B(H)-NS3(pro) with no significant difference among them
347 (Fig. 6C).

348 After exchanging the hydrophilic domain of GIII NS2B to GI in GIII proteases
349 (GI/NS2B(H)-GIII/NS3(pro)), a significant decrease in the activity of GI/NS2B(H)-
350 GIII/NS3(pro) protease was observed compared to the parental GIII NS2B(H)-NS3(pro)
351 protease (Fig. 6D). The levels of GI/NS2B(H)-GIII/NS3(pro) protease activity were similar to
352 those of GI NS2B(H)-NS3(pro) protease during 20-120 min, but significantly lower than those
353 of GI NS2B(H)-NS3(pro) protease from 160 min (Fig. 6E). Collectively, these results
354 demonstrate that the hydrophilic domain of NS2B determined the difference in NS2B(H)-
355 NS3(pro) protease activities between GI and GIII, suggesting that the mutations in the
356 hydrophilic domain of NS2B may be responsible for the difference in NS2B(H)-NS3(pro)
357 protease activities between GI and GIII.

358 **Contribution of NS2B-D55E variation in hydrophilic domain of NS2B to the difference
359 in NS2B(H)-NS3(pro) protease activities between GI and GIII**

360 The hydrophilic domain of NS2B is responsible for differences in proteolytic processing
361 activities between GI and GIII NS2B(H)-NS3(pro) proteases. This specific domain possesses
362 two variations at position 55 (NS2B-D55E) and 65 (NS2B-E65D) in the NS2B protein (Fig.
363 1C). Data obtained after alignment of fifty represented strains of GI and GIII revealed that both
364 mutations have conservation rate of 90%-100% [49]. To determine the contribution of NS2B-
365 D55E to differential proteolytic processing activities between GI and GIII NS2B(H)-NS3(pro)
366 proteases, we replaced aspartic acid (D) at position 55 of GI NS2B(H)-NS3(pro) protease with
367 glutamic acid (E) to generate a mutant protease of GI NS2B(H)/D55E-NS3(pro) and
368 substituted aspartic acid (D) for glutamic acid (E) at position 55 of GIII NS2B(H)-NS3(pro)
369 protease to generate a mutant protease of GIII NS2B(H)/E55D-NS3(pro) (Fig. 7A).
370 Substitution of NS2B-D55E variation resulted in a conformational change of NS2B(H), as
371 compared with its respective parent (Fig. 7B). The mutants of GI NS2B(H)/D55E-NS3(pro)
372 and GIII NS2B(H)/E55D-NS3(pro) were prepared, and their proteolytic processing activities
373 compared with their parental GI NS2B(H)-NS3(pro) and GIII NS2B(H)-NS3(pro) proteases.
374 Exchanging the amino acid residue at 55 in GI NS2B(H) from aspartic acid to glutamic acid
375 significantly increased the proteolytic processing activities of GI NS2B(H)/D55E-NS3(pro), as
376 compared to its parental GI NS2B(H)-NS3(pro) protease (Fig. 7C). However, the levels of GI
377 NS2B(H)/D55E-NS3(pro) proteas activities remained lesser than those of GIII NS2B(H)-
378 NS3(pro) protease (Fig. 7D). These results indicate that substitution of NS2B-D55E
379 contributed to the increased proteolytic processing of GI NS2B(H)/D55E-NS3(pro) over its
380 parental GI NS2B(H)-NS3(pro). When the amino acid at position 55 in GIII NS2B(H) was
381 exchanged from glutamic acid to aspartic acid, the levels of GIII NS2B(H)/E55D-NS3(pro)
382 protease activities significantly decreased, as compared to its parental GIII NS2B(H)-NS3(pro)
383 protease (Fig. 7E), but remained higher than those of GI NS2B(H)-NS3(pro) protease (Fig.
384 7F). Collectively, these results demonstrated that the NS2B-D55E variation in hydrophilic
385 domain of NS2B contributed to the difference in NS2B(H)-NS3(pro) protease activities
386 between GI and GIII.

387 **Contribution of NS2B-E65D variation in hydrophilic domain of NS2B to the difference
388 in NS2B(H)-NS3(pro) protease activities between GI and GIII**

389 To determine the contribution of NS2B-E65D variation in hydrophilic domain of NS2B to the
390 difference in NS2B(H)-NS3(pro) protease activities between GI and GIII, we replaced
391 glutamic acid (E) at position 65 of GI NS2B(H)-NS3(pro) protease with aspartic acid (D) to
392 generate a mutant protease of GI NS2B(H)/E65D-NS3(pro) and substituted glutamic acid (E)

393 for aspartic acid (D) at position 65 of GIII NS2B(H)-NS3(pro) protease to generate a mutant
394 protease of GIII NS2B(H)/D65E-NS3(pro) (Fig. 8A). Substitution of NS2B-E65D variation
395 resulted in a conformational change of NS2B(H), as compared with its respective parent (Fig.
396 8B). The mutants of GI NS2B(H)/E65D-NS3(pro) and GIII NS2B(H)/D65E-NS3(pro) were
397 prepared, and their proteolytic processing activities were compared with their parental GI
398 NS2B(H)-NS3(pro) and GIII NS2B(H)-NS3(pro) proteases. Exchanging the amino acid
399 residue at 65 in GI NS2B(H) from glutamic acid to aspartic acid significantly increased the
400 proteolytic processing activities of GI NS2B(H)/E65D-NS3(pro), as compared to its parental
401 GI NS2B(H)-NS3(pro) protease (Fig. 8C). However, the levels of GI NS2B(H)/E65D-
402 NS3(pro) proteas activities remained lesser than those of GIII NS2B(H)-NS3(pro) protease
403 (Fig. 8D). These results indicated that co-substitution of NS2B-E65D contributed to the
404 increased proteolytic processing of GI NS2B(H)/E65D-NS3(pro) over its parental GI
405 NS2B(H)-NS3(pro). When the amino acid residue at position 65 in GIII NS2B(H) was
406 exchanged from aspartic acid to glutamic acid, the levels of GIII NS2B(H)/D65E-NS3(pro)
407 protease activities significantly decreased, as compared to its parental GIII NS2B(H)-NS3(pro)
408 protease (Fig. 8E), but remained higher than those of GI NS2B(H)-NS3(pro) protease (Fig.
409 8F). Collectively, these results demonstrated that the NS2B-E65D variation in hydrophilic
410 domain of NS2B contributed to the difference in NS2B(H)-NS3(pro) protease activities
411 between GI and GIII.

412 **Co-contribution of NS2B-D55E and NS2B-E65D variations in hydrophilic domain of
413 NS2B to the difference in NS2B(H)-NS3(pro) protease activities between GI and GIII**

414 Variation in the hydrophilic domain of both NS2B-D55E and NS2B-E65D contributed
415 individually to the difference in NS2B(H)-NS3(pro) protease activities between GI and GIII.
416 The amino acid residues at position 55 and 65 of NS2B were simultaneously exchanged
417 between GI and GIII NS2B(H)-NS3(pro) proteases to generate the co-substitution mutants of
418 GI NS2B(H)/D55E/E65D-NS3(pro) and GIII NS2B(H)/E55D/D65E-NS3(pro) (Fig. 9A). Co-
419 substitution of NS2B-D55E and NS2B-E65D resulted in a conformational change of NS2B(H),
420 as compared with its respective parent (Fig. 9B). Analysis of the proteolytic processing activity
421 indicated that co-substitution of NS2B-D55E and NS2B-E65D significantly increased the
422 levels of proteolytic processing activity of GI NS2B(H)/D55E/E65D-NS3(pro), as compared
423 to those of its parental GI NS2B(H)-NS3(pro) (Fig. 9C), the levels increased by co-substitution
424 were similar to those of GIII NS2B(H)-NS3(pro) (Fig. 9D). Together these results indicated
425 that co-substitution of NS2B-D55E and NS2B-E65D contributed collectively to the increased

426 proteolytic processing of GI NS2B(H)/D55E/E65D-NS3(pro) over its parental GI NS2B(H)-
427 NS3(pro). On another hand, the co-substitution of NS2B-E55D and NS2B-D65E altered the
428 proteolytic processing activity of GIII NS2B(H)-NS3(pro). The levels of proteolytic processing
429 activity of GIII NS2B(H)/E55D/D65E-NS3(pro) were significantly lower than those of its
430 parental GIII NS2B(H)-NS3(pro) (Fig. 9E) as well as relatively lower than those of GI
431 NS2B(H)-NS3(pro) (Fig. 9F). Overall, these data suggested that NS2B-D55E and NS2B-E65D
432 variations in hydrophilic domain of NS2B co-contributed to the difference in NS2B(H)-
433 NS3(pro) protease activities between GI and GIII.

434 Discussion

435 Emerging JEV GI virus has gradually displaced JEV GIII virus as a dominant virus genotype
436 isolated from stillborn piglets, *Culex tritaeniorhynchus* and human cases since 1990s. The
437 mechanism behind this genotype replacement still remains unclear. In this study we have
438 identified the contribution of JEV NS2B(H)-NS3(pro) proteases determinants which are
439 corelated with enhanced proteolytic processing activities of GIII proteases using fluorogenic
440 peptide substrate model.

441 JEV polyprotein is cleaved to generate functional proteins by complex combination of host and
442 viral proteases. The cleavage is predicted to occur at junctions between C/prM, prM/E, E/NS1,
443 NS1/NS2A, NS2B/NS3, NS3/NS4A, NS4A/NS4B, NS4B/NS5 and sites of internal C, NS4A
444 and NS3 [1, 2]. Studies have demonstrated that JEV protease activity mainly depends on
445 association between NS3 and its co-factor NS2B, and that this two component NS2B-NS3
446 proteases expressed in *E.coli* are folded correctly with effective proteolytic activity. [28, 42].

447 We found that GI-SH7 exhibits different 3D protein conformations (Figure 7B) and eight
448 critical conserved substitutions (Figure 1C) in NS2B(H)-NS3(pro) protease region than GIII-
449 SH15. Data obtained after alignment of fifty represented strains of GI and GIII revealed that
450 two mutations in NS2B hydrophilic domain have a conservation rate of 90%-100%, Whereas
451 four mutations in NS3 proteases are conserved with rate of 90-100 % and two with conservation
452 rate of 50- 89% [49]. Some previous observations have suggested that differences in the
453 conformational space between NS2B-NS3 proteases of different flaviviruses might lead to the
454 differences in substrate recognition and affinity, [52-55] [56, 57]. To analyze and compare the
455 cleavage pattern of GI-SH7 with GIII-SH15 NS2B/NS3 proteases, the active and inactivated
456 GI-SH7 and GIII-Sh15 [44] NS2B(H)-NS3(pro) proteases were structured and engineered into
457 PET-Duet 1 vector for expression in *E.coli* and cleavage pattern was assessed by western blot

458 using respective antibodies (Figure 2). Our results demonstrated that GI-SH7 proteases were
459 able to cleave the sites at internal C, NS2A/NS2B, NS2B/NS3, and NS3/NS4A junctions and
460 exhibited the same cleavage pattern as previously found for SH-GIII proteases [51], suggesting
461 that viral protease substitution and differential protein conformation do not interfere with
462 selection of cleavage sites for proteolytic processing and possibly play no role in genotype
463 displacement in this specific side. The identical cleavage patterns of both genotypes comprising
464 critical mutations were supported by previous studies demonstrating that substrate recognizing
465 sequence is highly conserved among all flaviviruses and contains two basic residues in P2 and
466 P1 followed by a small unbranched amino acid in P1' [58, 59].

467 To analyze and compare the proteolytic processing activities of GI-SH7 and GIII-SH15
468 NS2B/NS3 proteases, the active and inactivated NS2B(H)-NS3(pro) proteases were structured
469 and engineered into P-TrcHisA vector for expression in *E.coli* (Fig. 3A). SDS-PAGE of
470 purified proteins revealed presence of three bands at different sizes indicating autocleavage and
471 only the intact NS2B(H)-NS3(pro) proteases band for inactivated/dead NS2B/NS3 proteases
472 confirming its inactivity. Quantification of blots revealed that SH7 was self-cleaved with a
473 percentage 89.9% of and SH15 with a percentage of 97.5%. Obvious differences in intact anti-
474 His and anti-NS3 expression was also seen between both strains (Fig. 3C). These results
475 suggested that GIII-SH15 shows high autocleavage rate of enzymatically active NS2B(H)-
476 NS3(pro) proteases as compared to GI-SH7. The autocleavage abilities of various flaviviruses
477 proteases have also been reported in previous studies [42, 43, 56].

478 Enzymatic activity of GI-SH7 and GIII-SH15 recombinant NS2B(H)-NS3(pro) proteases was
479 examined and compared by fluorescence obtained after hydrolysis of fluorogenic peptide
480 substrates containing the sequence identical to dibasic cleavage sites of NS2A/NS2B and
481 NS2B/NS3 from JEV polyprotein. Data revealed that proteases from GIII-SH15 possess high
482 proteolytic processing activities when compared to GI-SH7 and the artificial fluorogenic
483 peptide containing cleavage site from NS2B/NS3 (Fig 4A) are more efficiently cleaved by JEV
484 proteases as compared to site NS2A/NS2B (Fig 4B). The higher thermal stability at elevated
485 temperatures for GI could be a causative factor related to enhancement of viral replication of
486 GI viruses. Previously, NS2B/NS3 mutations in Japanese encephalitis virus were found to
487 enhance infectivity of GI over GIII in amplifying host cells at elevated temperatures [31]. To
488 access the influence of viral thermal stability on viral NS2B/NS3 proteases proteolytic
489 activities the experiment was repeated using elevated temperatures of 41°C with fluorogenic
490 substrate NS2B/NS3. The trends were identical to experiments performed at 37°C (Fig. 5) and

491 indicated that elevated temperatures don't influence proteolytic processing activities of viral
492 proteases. And GIII-SH15 possess high proteolytic activities than GI-SH7 at normal and
493 elevated temperatures.

494 In order to determine whether amino acid variations of hydrophilic or protease domain in viral
495 proteases are responsible and involved in increased proteolytic processing of GIII-SH15. The
496 recombinant proteases were generated by exchanging proteins encoding hydrophilic domain
497 from NS2B and protease domain from NS3 of respective strains GI-SH7 and GIII-SH15 strains
498 resulting in GI/NS2B(H)-GIII/NS3(pro) and GIII/NS2B(H)-GI/NS3(pro) (Fig. 6A).
499 Exchanging the hydrophilic domain of GI NS2B to GIII in GI protease (GIII/NS2B(H)-
500 GI/NS3(pro)) significantly increased its proteolytic processing activities, as compared with its
501 parental GI protease (Fig. 6B). The activity of recombinant proteases GIII/NS2B(H)-
502 GI/NS3(pro) became almost similar to that of GIII proteases with non-significant difference
503 among them (Fig. 6C). On the other hand, after exchanging the hydrophilic domain of GIII
504 NS2B to GI in GIII proteases (GI/NS2B(H)-GIII/NS3(pro)), a significant decrease in its
505 activity was observed, compared to its parental GIII proteases (Fig. 6D). However, the levels
506 of GI/NS2B(H)-GIII/NS3(pro) protease activity became significantly lower than those of GI
507 protease (Fig. 6E). Collectively, these results demonstrated that the hydrophilic domain of
508 NS2B determined the difference in NS2B(H)-NS3(pro) protease activities between GI and
509 GIII, suggesting that the mutations in the hydrophilic domain of NS2B may be responsible for
510 the difference in NS2B(H)-NS3(pro) protease activities between GI and GIII. This specific
511 domain possesses two conserved variations at position 55 (NS2B-D55E) and 65 (NS2B-E65D)
512 in NS2B protein (Fig. 1C) [49]. To determine the contribution of NS2B-D55E to differential
513 proteolytic processing activities between GI and GIII, we replaced aspartic acid (D) at position
514 55 of GI proteases protease with glutamic acid (E) to generate a mutant protease of GI
515 NS2B(H)/D55E-NS3(pro) and substituted aspartic acid (D) for glutamic acid (E) at position 55
516 of GIII proteases to generate a mutant protease of GIII NS2B(H)/E55D-NS3(pro) (Fig. 7A).
517 NS2B-D55E and NS2B-E55D variation resulted in a conformational change of NS2B(H), as
518 compared with their respective parent strains (Fig. 7B). Exchanging the amino acid residue at
519 55 in GI NS2B(H) significantly increased the proteolytic processing activities of GI
520 NS2B(H)/D55E-NS3(pro), as compared to its parental GI protease (Fig. 7C). However, the
521 levels of GI NS2B(H)/D55E-NS3(pro) proteases activities remained lesser than those of GIII
522 (Fig. 7D) indicating contribution of NS2B-D55E to increase proteolytic processing. When the
523 amino acid at position 55 in GIII NS2B(H) was exchanged from glutamic acid to aspartic acid,

524 the levels of GIII NS2B(H)/E55D-NS3(pro) protease activities significantly decreased, as
525 compared to its parental GIII protease (Fig. 7E) but remained higher than those of GI protease
526 (Fig. 7F). Collectively, these results demonstrated that the NS2B-D55E variation in hydrophilic
527 domain of NS2B contributes to the difference in NS2B(H)-NS3(pro) protease activities
528 between GI and GIII. To determine the contribution of NS2B-E65D variation to differential
529 proteolytic processing activities between GI and GIII we replaced glutamic acid (E) at position
530 65 of GI protease with aspartic acid (D) to generate a mutant protease of GI NS2B(H)/E65D-
531 NS3(pro) and substituted glutamic acid (E) for aspartic acid (D) at position 65 of GIII proteases
532 to generate a mutant protease of GIII NS2B(H)/D65E-NS3(pro) (Fig. 8A). Substitution of
533 NS2B-E65D NS2B-D65E variations resulted in a conformational change of NS2B(H), as
534 compared with their respective parent strains (Fig. 8B). Exchanging the amino acid residue at
535 65 in GI NS2B(H) significantly increased the proteolytic processing activities of GI
536 NS2B(H)/E65D-NS3(pro), as compared to its parental GI protease (Fig. 8C). However, the
537 levels of GI NS2B(H)/E65D-NS3(pro) proteas activities remained lesser than those of GIII
538 protease (Fig. 8D) indicating contribution of NS2B-D55E to increase proteolytic processing.
539 When the amino acid residue at position 65 in GIII NS2B(H) was exchanged, the levels of GIII
540 NS2B(H)/D65E-NS3(pro) protease activities significantly decreased, as compared to its
541 parental GIII proteases (Fig. 8E), but remained higher than those of GI proteases (Fig.
542 8F). These results demonstrated that the NS2B-E65D variation in hydrophilic domain of NS2B
543 contributed to the difference in NS2B(H)-NS3(pro) protease activities between GI and GIII.
544 Collectively, these finding indicated that both conserved mutations at position 55 and 65 in
545 hydrophilic domain of NS2B contributes individually and together in increased proteolytic
546 processing activities of GIII proteases over GI in fluorogenic peptide model. These results are
547 braced by previous finding which demonstrates that NS3 protease activity critically depend or
548 controlled by a small NS2B cofactor protein [60, 61] and that the presence of small activating
549 protein or Co-factor is prerequisite for optimal catalytical activity of flavivirus proteases with
550 natural polyprotein substrates[62, 63]. These two mutations may possibly involve in replication
551 advantage of GI over GIII and can provide new insights into molecular basis of JEV genotype
552 shift.

553 Conclusion

554 In conclusion, this study uncovers critical insights into the phenomena of Japanese Encephalitis
555 Virus genotype shifts by identifying and analyzing the specific mutations within the viral
556 NS2B/NS3 proteases. Through *in vitro* analysis, we have revealed genetic determinants in

557 Hydrophilic domain of NS2B/NS3 proteases which may play a pivotal role in genotype shifts
558 and viral replication. Importantly, our research revealed significant differences in protease
559 activities between JEV GI and GIII linked to these mutations, underscoring their functional
560 importance. However, it is crucial to acknowledge that while our study provides essential
561 groundwork, further investigations of observed variations in NS2B/NS3 protease activities
562 using *in vivo* models are important. Exploring these mutations in different animal models or
563 mosquito vectors will provide a deeper understanding of their biological implication and
564 contribute vital data for understanding viral replication, pathogenesis, and development of
565 targeted therapies. This research marks significant enhancement in understanding of JEV
566 genotype shift, emphasizing the need for continued research attempts, enhancing our capacity
567 to combat the varied and dynamic nature of Japanese encephalitis virus and related flaviviruses.

568 **Funding**

569 The study was supported by the National Natural Science Foundation of China (No. 32273096)
570 awarded to Z.M. The Shanghai Municipal Science and Technology Major Project (No.
571 ZD2021CY001) awarded to Z.M. The Project of Shanghai Science and Technology
572 Commission (No. 22N41900400) awarded to Z.M. The National Key Research and
573 Development Program of China (No. 2022 YFD 1800100) awarded to Y.Q and The project of
574 Cooperation on Animal Biosecurity Prevention and Control in Lancang and Mekong Countries
575 (No. 125161035) awarded to J.W. JLR was supported by NIH grant R01AI12820.

576 **Data Availability**

577 Relevant data is included within the manuscript.

578 **Conflict of Interest**

579 The authors declare no conflict of interest.

580

581 **References:**

- 582 1. Brecher, M.; Li, Z.; Liu, B.; Zhang, J.; Koetzner, C. A.; Alifarag, A.; Jones, S. A.; Lin, Q.; Kramer,
583 L. D.; Li, H., A conformational switch high-throughput screening assay and allosteric inhibition
584 of the flavivirus NS2B-NS3 protease. *PLoS pathogens* **2017**, *13*, (5), e1006411.
- 585 2. Rice, C. M.; Lenes, E. M.; Eddy, S. R.; Shin, S. J.; Sheets, R. L.; Strauss, J. H., Nucleotide
586 sequence of yellow fever virus: implications for flavivirus gene expression and evolution.
587 *Science (New York, N.Y.)* **1985**, *229*, (4715), 726-33.
- 588 3. Wahaab, A.; Mustafa, B. E.; Hameed, M.; Stevenson, N. J.; Anwar, M. N.; Liu, K.; Wei, J.; Qiu,
589 Y.; Ma, Z., Potential Role of Flavivirus NS2B-NS3 Proteases in Viral Pathogenesis and Anti-
590 flavivirus Drug Discovery Employing Animal Cells and Models: A Review. *Viruses* **2021**, *14*, (1).

591 4. Mackenzie, J.; Barrett, A.; Deubel, V., The Japanese encephalitis serological group of
592 flaviviruses: a brief introduction to the group. In *Japanese encephalitis and West Nile viruses*,
593 Springer: 2002; pp 1-10.

594 5. Solomon, T.; Vaughn, D., Pathogenesis and clinical features of Japanese encephalitis and West
595 Nile virus infections. In *Japanese encephalitis and West Nile viruses*, Springer: 2002; pp 171-
596 194.

597 6. Johari, J.; Kianmehr, A.; Mustafa, M. R.; Abubakar, S.; Zandi, K., Antiviral activity of baicalein
598 and quercetin against the Japanese encephalitis virus. *International journal of molecular
599 sciences* **2012**, 13, (12), 16785-95.

600 7. Campbell, G. L.; Hills, S. L.; Fischer, M.; Jacobson, J. A.; Hoke, C. H.; Hombach, J. M.; Marfin, A.
601 A.; Solomon, T.; Tsai, T. F.; Tsu, V. D.; Ginsburg, A. S., Estimated global incidence of Japanese
602 encephalitis: a systematic review. *Bulletin of the World Health Organization* **2011**, 89, (10),
603 766-74, 774a-774e.

604 8. Sarkar, A.; Taraphdar, D.; Mukhopadhyay, S. K.; Chakrabarti, S.; Chatterjee, S., Molecular
605 evidence for the occurrence of Japanese encephalitis virus genotype I and III infection
606 associated with acute encephalitis in patients of West Bengal, India, 2010. *Virol J* **2012**, 9, 271.

607 9. Huang, J. H.; Lin, T. H.; Teng, H. J.; Su, C. L.; Tsai, K. H.; Lu, L. C.; Lin, C.; Yang, C. F.; Chang, S. F.;
608 Liao, T. L.; Yu, S. K.; Cheng, C. H.; Chang, M. C.; Hu, H. C.; Shu, P. Y., Molecular epidemiology of
609 Japanese encephalitis virus, Taiwan. *Emerging infectious diseases* **2010**, 16, (5), 876-8.

610 10. Nitatpattana, N.; Dubot-Pérès, A.; Gouilh, M. A.; Souris, M.; Barbazan, P.; Yoksan, S.; de
611 Lamballerie, X.; Gonzalez, J. P., Change in Japanese encephalitis virus distribution, Thailand.
612 *Emerging infectious diseases* **2008**, 14, (11), 1762-5.

613 11. Pan, X. L.; Liu, H.; Wang, H. Y.; Fu, S. H.; Liu, H. Z.; Zhang, H. L.; Li, M. H.; Gao, X. Y.; Wang, J. L.;
614 Sun, X. H.; Lu, X. J.; Zhai, Y. G.; Meng, W. S.; He, Y.; Wang, H. Q.; Han, N.; Wei, B.; Wu, Y. G.;
615 Feng, Y.; Yang, D. J.; Wang, L. H.; Tang, Q.; Xia, G.; Kurane, I.; Rayner, S.; Liang, G. D., Emergence
616 of genotype I of Japanese encephalitis virus as the dominant genotype in Asia. *Journal of
617 virology* **2011**, 85, (19), 9847-53.

618 12. MA, S.-P.; YOSHIDA, Y.; MAKINO, Y.; TADANO, M.; ONO, T.; OGAWA, M., SHORT REPORT: A
619 MAJOR GENOTYPE OF JAPANESE ENCEPHALITIS VIRUS CURRENTLY CIRCULATING IN JAPAN.
620 *The American Journal of Tropical Medicine and Hygiene* **2003**, 69, (2), 151-154.

621 13. Nga, P. T.; Parquet, M. D. C.; Cuong, V. D.; Ma, S. P.; Hasebe, F.; Inoue, S.; Makino, Y.; Takagi,
622 M.; Nam, V. S.; Morita, K., Shift in Japanese encephalitis virus (JEV) genotype circulating in
623 northern Vietnam: implications for frequent introductions of JEV from Southeast Asia to East
624 Asia. *The Journal of general virology* **2004**, 85, (Pt 6), 1625-1631.

625 14. Hameed, M.; Wahaab, A.; Shan, T.; Wang, X.; Khan, S.; Di, D.; Xiqian, L.; Zhang, J.-J.; Anwar, M.
626 N.; Nawaz, M.; Li, B.; Liu, K.; Shao, D.; Qiu, Y.; Wei, J.; Ma, Z., A Metagenomic Analysis of
627 Mosquito Virome Collected From Different Animal Farms at Yunnan–Myanmar Border of
628 China. *Frontiers in Microbiology* **2021**, 11, (3601).

629 15. Schuh, A. J.; Ward, M. J.; Brown, A. J.; Barrett, A. D., Phylogeography of Japanese encephalitis
630 virus: genotype is associated with climate. *PLoS neglected tropical diseases* **2013**, 7, (8), e2411.

631 16. Do, L. P.; Bui, T. M.; Phan, N. T., Mechanism of Japanese encephalitis virus genotypes
632 replacement based on human, porcine and mosquito-originated cell lines model. *Asian Pacific
633 journal of tropical medicine* **2016**, 9, (4), 333-336.

634 17. Schuh, A. J.; Ward, M. J.; Leigh Brown, A. J.; Barrett, A. D., Dynamics of the emergence and
635 establishment of a newly dominant genotype of Japanese encephalitis virus throughout Asia.
636 *Journal of virology* **2014**, 88, (8), 4522-32.

637 18. Nemeth, N.; Bosco-Lauth, A.; Oesterle, P.; Kohler, D.; Bowen, R., North American birds as
638 potential amplifying hosts of Japanese encephalitis virus. *Am J Trop Med Hyg* **2012**, 87, (4),
639 760-7.

640 19. Hameed, M.; Wahaab, A.; Nawaz, M.; Khan, S.; Nazir, J.; Liu, K.; Wei, J.; Ma, Z., Potential Role
641 of Birds in Japanese Encephalitis Virus Zoonotic Transmission and Genotype Shift. *Viruses*
642 **2021**, 13, (3).

643 20. Xiao, C.; Li, C.; Di, D.; Cappelle, J.; Liu, L.; Wang, X.; Pang, L.; Xu, J.; Liu, K.; Li, B.; Shao, D.; Qiu,
644 Y.; Ren, W.; Widén, F.; Chevalier, V.; Wei, J.; Wu, X.; Ma, Z., Differential replication efficiencies
645 between Japanese encephalitis virus genotype I and III in avian cultured cells and young
646 domestic ducklings. *PLoS neglected tropical diseases* **2018**, 12, (12), e0007046.

647 21. Hameed, M.; Liu, K.; Anwar, M. N.; Wahaab, A.; Safdar, A.; Di, D.; Boruah, P.; Xu, J.; Wang, X.;
648 Li, B.; Zhu, H.; Nawaz, M.; Shao, D.; Qiu, Y.; Wei, J.; Ma, Z., The emerged genotype I of Japanese
649 encephalitis virus shows an infectivity similar to genotype III in *Culex pipiens* mosquitoes from
650 China. *PLoS neglected tropical diseases* **2019**, 13, (9), e0007716.

651 22. Han, N.; Adams, J.; Chen, P.; Guo, Z. Y.; Zhong, X. F.; Fang, W.; Li, N.; Wen, L.; Tao, X. Y.; Yuan,
652 Z. M.; Rayner, S., Comparison of genotypes I and III in Japanese encephalitis virus reveals
653 distinct differences in their genetic and host diversity. *Journal of virology* **2014**, 88, (19),
654 11469-79.

655 23. Huang, Q.; Chen, A. S.; Li, Q.; Kang, C., Expression, purification, and initial structural
656 characterization of nonstructural protein 2B, an integral membrane protein of Dengue-2 virus,
657 in detergent micelles. *Protein expression and purification* **2011**, 80, (2), 169-75.

658 24. Chambers, T. J.; Grakoui, A.; Rice, C. M., Processing of the yellow fever virus nonstructural
659 polyprotein: a catalytically active NS3 proteinase domain and NS2B are required for cleavages
660 at dibasic sites. *Journal of virology* **1991**, 65, (11), 6042-50.

661 25. Aleshin, A. E.; Shiryaev, S. A.; Strongin, A. Y.; Liddington, R. C., Structural evidence for
662 regulation and specificity of flaviviral proteases and evolution of the Flaviviridae fold. *Protein
663 science : a publication of the Protein Society* **2007**, 16, (5), 795-806.

664 26. Erbel, P.; Schiering, N.; D'Arcy, A.; Renatus, M.; Kroemer, M.; Lim, S. P.; Yin, Z.; Keller, T. H.;
665 Vasudevan, S. G.; Hommel, U., Structural basis for the activation of flaviviral NS3 proteases
666 from dengue and West Nile virus. *Nature structural & molecular biology* **2006**, 13, (4), 372-3.

667 27. Hill, M. E.; Kumar, A.; Wells, J. A.; Hobman, T. C.; Julien, O.; Hardy, J. A., The Unique Cofactor
668 Region of Zika Virus NS2B-NS3 Protease Facilitates Cleavage of Key Host Proteins. *ACS
669 Chemical Biology* **2018**, 13, (9), 2398-2405.

670 28. Brand, C.; Bisailon, M.; Geiss, B. J., Organization of the Flavivirus RNA replicase complex. *Wiley
671 interdisciplinary reviews. RNA* **2017**, 8, (6).

672 29. Kim, S. B.; Umezawa, Y.; Kanno, K. A.; Tao, H., An Integrated-Molecule-Format Multicolor
673 Probe for Monitoring Multiple Activities of a Bioactive Small Molecule. *ACS Chemical Biology*
674 **2008**, 3, (6), 359-372.

675 30. Azad, T.; Tashakor, A.; Hosseinkhani, S., Split-luciferase complementary assay: applications,
676 recent developments, and future perspectives. *Analytical and bioanalytical chemistry* **2014**,
677 406, (23), 5541-60.

678 31. Fan, Y. C.; Liang, J. J.; Chen, J. M.; Lin, J. W.; Chen, Y. Y.; Su, K. H.; Lin, C. C.; Tu, W. C.; Chiou,
679 M. T.; Ou, S. C.; Chang, G. J.; Lin, Y. L.; Chiou, S. S., NS2B/NS3 mutations enhance the infectivity
680 of genotype I Japanese encephalitis virus in amplifying hosts. *PLoS pathogens* **2019**, 15, (8),
681 e1007992.

682 32. Kao, Y. T.; Lai, M. M. C.; Yu, C. Y., How Dengue Virus Circumvents Innate Immunity. *Front
683 Immunol* **2018**, 9, 2860.

684 33. Liang, J. J.; Liao, C. L.; Liao, J. T.; Lee, Y. L.; Lin, Y. L., A Japanese encephalitis virus vaccine
685 candidate strain is attenuated by decreasing its interferon antagonistic ability. *Vaccine* **2009**,
686 27, (21), 2746-54.

687 34. Ding, Q.; Gaska, J. M.; Douam, F.; Wei, L.; Kim, D.; Balev, M.; Heller, B.; Ploss, A., Species-
688 specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3
689 protease. *Proceedings of the National Academy of Sciences of the United States of America*
690 **2018**, 115, (27), E6310-e6318.

691 35. Wang, Z. Y.; Zhen, Z. D.; Fan, D. Y.; Qin, C. F.; Han, D. S.; Zhou, H. N.; Wang, P. G.; An, J., Axl
692 Deficiency Promotes the Neuroinvasion of Japanese Encephalitis Virus by Enhancing IL-1 α
693 Production from Pyroptotic Macrophages. *Journal of virology* **2020**, 94, (17).

694 36. Xie, S.; Liang, Z.; Yang, X.; Pan, J.; Yu, D.; Li, T.; Cao, R., Japanese Encephalitis Virus NS2B-3
695 Protein Complex Promotes Cell Apoptosis and Viral Particle Release by Down-Regulating the
696 Expression of AXL. *Virologica Sinica* **2021**.

697 37. Xiao, C.; Wang, X.; Cui, G.; Pang, L.; Xu, J.; Li, C.; Zhang, J.; Liu, K.; Li, B.; Shao, D.; Qiu, Y.; Wei,
698 J.; Ma, Z., Possible pathogenicity of Japanese encephalitis virus in newly hatched domestic
699 ducklings. *Veterinary microbiology* **2018**, 227, 8-11.

700 38. Hameed, M.; Liu, K.; Anwar, M. N.; Wahaab, A.; Safdar, A.; Di, D.; Boruah, P.; Xu, J.; Wang, X.;
701 Li, B.; Zhu, H.; Nawaz, M.; Shao, D.; Qiu, Y.; Wei, J.; Ma, Z., The emerged genotype I of Japanese
702 encephalitis virus shows an infectivity similar to genotype III in Culex pipiens mosquitoes from
703 China. *PLoS neglected tropical diseases* **2019**, 13, (9), e0007716.

704 39. Deng, X.; Shi, Z.; Li, S.; Wang, X.; Qiu, Y.; Shao, D.; Wei, J.; Tong, G.; Ma, Z., Characterization of
705 nonstructural protein 3 of a neurovirulent Japanese encephalitis virus strain isolated from a
706 pig. *Virol J* **2011**, 8, 209.

707 40. Li, X.; Qiu, Y.; Shen, Y.; Ding, C.; Liu, P.; Zhou, J.; Ma, Z., Splicing together different regions of a
708 gene by modified polymerase chain reaction-based site-directed mutagenesis. *Analytical
709 biochemistry* **2008**, 373, (2), 398-400.

710 41. Yusof, R.; Clum, S.; Wetzel, M.; Murthy, H. M. K.; Padmanabhan, R., Purified NS2B/NS3 Serine
711 Protease of Dengue Virus Type 2 Exhibits Cofactor NS2B Dependence for Cleavage of
712 Substrates with Dibasic Amino Acids *in Vitro**. *Journal of Biological Chemistry* **2000**, 275, (14), 9963-9969.

713 42. Junaid, M.; Chalayut, C.; Sehgelmeble Torrejon, A.; Angsuthanasombat, C.; Shutava, I.; Lapins,
714 M.; Wikberg, J. E.; Katzenmeier, G., Enzymatic analysis of recombinant Japanese encephalitis
715 virus NS2B(H)-NS3pro protease with fluorogenic model peptide substrates. *PloS one* **2012**, 7,
716 (5), e36872.

717 43. Bera, A. K.; Kuhn, R. J.; Smith, J. L., Functional characterization of cis and trans activity of the
718 Flavivirus NS2B-NS3 protease. *The Journal of biological chemistry* **2007**, 282, (17), 12883-92.

719 44. Wahaab, A.; Liu, K.; Hameed, M.; Anwar, M. N.; Kang, L.; Li, C.; Ma, X.; Wajid, A.; Yang, Y.;
720 Khan, U. H.; Wei, J.; Li, B.; Shao, D.; Qiu, Y.; Ma, Z., Identification of Cleavage Sites
721 Proteolytically Processed by NS2B-NS3 Protease in Polyprotein of Japanese Encephalitis Virus.
722 *Pathogens (Basel, Switzerland)* **2021**, 10, (2).

723 45. Zhu, Z.; Shi, Z.; Yan, W.; Wei, J.; Shao, D.; Deng, X.; Wang, S.; Li, B.; Tong, G.; Ma, Z.,
724 Nonstructural protein 1 of influenza A virus interacts with human guanylate-binding protein 1
725 to antagonize antiviral activity. *PloS one* **2013**, 8, (2), e55920.

726 46. Liu, Y.; Kati, W.; Chen, C. M.; Tripathi, R.; Molla, A.; Kohlbrenner, W., Use of a fluorescence
727 plate reader for measuring kinetic parameters with inner filter effect correction. *Analytical
728 biochemistry* **1999**, 267, (2), 331-5.

729 47. Phoo, W. W.; Li, Y.; Zhang, Z.; Lee, M. Y.; Loh, Y. R.; Tan, Y. B.; Ng, E. Y.; Lescar, J.; Kang, C.; Luo,
730 D., Structure of the NS2B-NS3 protease from Zika virus after self-cleavage. *Nature
731 communications* **2016**, 7, (1), 13410.

732 48. Bera, A. K.; Kuhn, R. J.; Smith, J. L., Functional Characterization of *cis* and
733 *trans* Activity of the Flavivirus NS2B-NS3 Protease *^{sup}. *Journal of
734 Biological Chemistry* **2007**, 282, (17), 12883-12892.

735 49. Li, C.; Di, D.; Huang, H.; Wang, X.; Xia, Q.; Ma, X.; Liu, K.; Li, B.; Shao, D.; Qiu, Y.; Li, Z.; Wei, J.;
736 Ma, Z., NS5-V372A and NS5-H386Y variations are responsible for differences in interferon α/β
737 induction and co-contribute to the replication advantage of Japanese encephalitis virus
738 genotype I over genotype III in ducklings. *PLoS pathogens* **2020**, 16, (9), e1008773.

739 50. Fan, Y.-C.; Liang, J.-J.; Chen, J.-M.; Lin, J.-W.; Chen, Y.-Y.; Su, K.-H.; Lin, C.-C.; Tu, W.-C.; Chiou,
740 M.-T.; Ou, S.-C.; Chang, G.-J. J.; Lin, Y.-L.; Chiou, S.-S., NS2B/NS3 mutations enhance the

741

742 infectivity of genotype I Japanese encephalitis virus in amplifying hosts. *PLoS pathogens* **2019**,
743 15, (8), e1007992.

744 51. Wahaab, A.; Liu, K.; Hameed, M.; Anwar, M. N.; Kang, L.; Li, C.; Ma, X.; Wajid, A.; Yang, Y.;
745 Khan, U. H.; Wei, J.; Li, B.; Shao, D.; Qiu, Y.; Ma, Z., Identification of Cleavage Sites
746 Proteolytically Processed by NS2B-NS3 Protease in Polyprotein of Japanese Encephalitis Virus.
747 *Pathogens (Basel, Switzerland)* **2021**, 10, (2), 102.

748 52. Niyomrattanakit, P.; Winoyanuwattikun, P.; Chanprapaph, S.; Angsuthanasombat, C.; Panyim,
749 S.; Katzenmeier, G., Identification of residues in the dengue virus type 2 NS2B cofactor that
750 are critical for NS3 protease activation. *Journal of virology* **2004**, 78, (24), 13708-16.

751 53. Chambers, T. J.; Droll, D. A.; Tang, Y.; Liang, Y.; Ganesh, V. K.; Murthy, K. H. M.; Nickells, M.,
752 Yellow fever virus NS2B-NS3 protease: characterization of charged-to-alanine mutant and
753 revertant viruses and analysis of polyprotein-cleavage activities. *The Journal of general
754 virology* **2005**, 86, (Pt 5), 1403-1413.

755 54. Droll, D. A.; Krishna Murthy, H. M.; Chambers, T. J., Yellow fever virus NS2B-NS3 protease:
756 charged-to-alanine mutagenesis and deletion analysis define regions important for protease
757 complex formation and function. *Virology* **2000**, 275, (2), 335-47.

758 55. Wu, C. F.; Wang, S. H.; Sun, C. M.; Hu, S. T.; Syu, W. J., Activation of dengue protease
759 autocleavage at the NS2B-NS3 junction by recombinant NS3 and GST-NS2B fusion proteins.
760 *Journal of virological methods* **2003**, 114, (1), 45-54.

761 56. Lin, C.-W.; Huang, H.-D.; Shiu, S.-Y.; Chen, W.-J.; Tsai, M.-H.; Huang, S.-H.; Wan, L.; Lin, Y.-J.,
762 Functional determinants of NS2B for activation of Japanese encephalitis virus NS3 protease.
763 *Virus Research* **2007**, 127, (1), 88-94.

764 57. Jan, L. R.; Yang, C. S.; Trent, D. W.; Falgout, B.; Lai, C. J., Processing of Japanese encephalitis
765 virus non-structural proteins: NS2B-NS3 complex and heterologous proteases. *The Journal of
766 general virology* **1995**, 76 (Pt 3), 573-80.

767 58. Niyomrattanakit, P.; Yahorava, S.; Mutule, I.; Mutulis, F.; Petrovska, R.; Prusis, P.; Katzenmeier,
768 G.; Wikberg, J. E., Probing the substrate specificity of the dengue virus type 2 NS3 serine
769 protease by using internally quenched fluorescent peptides. *The Biochemical journal* **2006**,
770 397, (1), 203-11.

771 59. Chappell, K. J.; Stoermer, M. J.; Fairlie, D. P.; Young, P. R., Insights to substrate binding and
772 processing by West Nile Virus NS3 protease through combined modeling, protease
773 mutagenesis, and kinetic studies. *The Journal of biological chemistry* **2006**, 281, (50), 38448-
774 58.

775 60. Leung, D.; Schroder, K.; White, H.; Fang, N. X.; Stoermer, M. J.; Abbenante, G.; Martin, J. L.;
776 Young, P. R.; Fairlie, D. P., Activity of recombinant dengue 2 virus NS3 protease in the presence
777 of a truncated NS2B co-factor, small peptide substrates, and inhibitors. *The Journal of
778 biological chemistry* **2001**, 276, (49), 45762-71.

779 61. Yusof, R.; Clum, S.; Wetzel, M.; Murthy, H. M.; Padmanabhan, R., Purified NS2B/NS3 serine
780 protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates
781 with dibasic amino acids in vitro. *The Journal of biological chemistry* **2000**, 275, (14), 9963-9.

782 62. Bartenschlager, R.; Lohmann, V.; Wilkinson, T.; Koch, J. O., Complex formation between the
783 NS3 serine-type proteinase of the hepatitis C virus and NS4A and its importance for
784 polyprotein maturation. *Journal of virology* **1995**, 69, (12), 7519-7528.

785 63. Chambers, T. J.; Grakoui, A.; Rice, C. M., Processing of the yellow fever virus nonstructural
786 polyprotein: a catalytically active NS3 proteinase domain and NS2B are required for cleavages
787 at dibasic sites. *Journal of virology* **1991**, 65, (11), 6042-6050.

788

789

790

791 **Figures**

792 **Figure 1: Japanese Encephalitis Virus two component NS2B(H)/NS3(pro) proteases and cleavage**
793 **sites predicted to be proteolytically processed by them. A)** Schematic diagram of JEV polyprotein
794 with the predicted cleavage sites. Black arrowheads indicate the predicted cleavage sites and blue arrow
795 heads represent the sites previously reported to be cleaved by JEV genotype III proteases (Wahaab et
796 al 2021). **(B)** Sequence alignment of the predicted cleavage sites for JEV genotype I and III. Arrowheads
797 indicates the predicted cleavage sites. **C)** Sequence alignment of two component JEV
798 NS2B(H)/NS3(pro) proteases for JEV Genotype I (SH7) and Genotype III (SH15) showed eight amino
799 acid substitutions between them which are shaded in blue. Homologous amino acids are shaded in red
800 color .

801

802 **Figure 2. Detection of cleavage sites by JEV Genotype I NS2B(H)-NS3(pro) protease n *E. coli*. A)**
803 Schematic representation of recombinant plasmids **B)** *E. coli* cells were transformed with recombinant
804 plasmid dually expressing and artificial GFP substrate or with recombinant plasmid expressing artificial
805 GFP substrate alone. Cleavage of the artificial GFP substrate in *E. coli* was examined by western blot
806 with antibodies specific to GFP. Expression of intact (non-cleaved) NS2B(H)-NS3(pro) protease was
807 detected with antibodies specific to NS3. **C)** Identified cleavage sites were validated by transforming
808 of *E. coli* cells with recombinant plasmid dually expressing active NS2B(H)-NS3(pro) protease and
809 artificial GFP substrate (GFP-substrate+NS2B(H)-NS3(pro)), or inactive NS2B(H)-NS3(pro) protease
810 and artificial GFP substrate (GFP-substrate+NS2B(H)-NS3(pro)-dead), or with recombinant plasmid
811 expressing artificial GFP substrate alone. Cleavage of artificial GFP substrates in *E. coli* was examined
812 by western blot with antibodies specific to GFP. Expression of intact (non-cleaved) NS2B(H)-NS3(pro)
813 protease was detected with antibodies specific to NS3.

814

815 **Figure 3: Cloning, expression, and purification of active and dead recombinant NS2B(H)-**
816 **NS3(pro) proteases A)** Schematic representation of recombinant plasmids. **B)** SDS-PAGE for active
817 and dead proteases NS2B(H)-NS3pro of GI and GIII. The Bands were quantified by imageJ software
818 to determine the self cleavage percentage. **C)** Western Blot for active and dead NS2B(H)-NS3 of GI
819 and GIII was performed using His tag , JEV NS3 and GADBH antibodies.

820

821 **Figure 4: Active and dead JEV NS2B(H)-NS3(pro) catalyzed substrate hydrolysis rates. A)** The
822 graph shows reaction velocities/enzyme activities difference of active and dead JEV genotype I and III
823 NS2B(H)-NS3(pro) proteases for hydrolysis of Pyr-RTKR-AMC ,a substrate site gotten from JEV
824 cleavage site NS2B-NS3. **B)** The graph represents reaction velocities/enzyme activities difference of
825 JEV genotype I and III active and dead NS2B(H)-NS3(pro) proteases for hydrolysis of Dabcyl-
826 PNKKRGWPAT-(Edans)G ,a substrate cleavage site gotten from JEV NS2A-NS2B.

827

828 **Figure 5: Active and dead JEV NS2B(H)-NS3(pro) catalyzed substrate hydrolysis rates at**
829 **elevated temperatures. A)** The graph represents reaction velocities difference of JEV genotype I and
830 III active and dead NS2B(H)-NS3(pro) proteases for hydrolysis of A)Pyr-RTKR-AMC and **B)** Dabcyl-
831 PNKKRGWPAT-(Edans)G, substrate sites gotten from JEV NS2B-NS3 and JEV NS2A/NS2B at
832 elevated temperatures i.e 41C.

833

834 **Figure 6: Role of NS2B Hydrophilic domain in differential hydrolysis rates/proteolytic processing**
835 **activities A)** Schematic representation of reversed JEV GI-SH7 i.e GIII NS2B(H)-GI NS3(pro) with
836 exchanged hydrophilic domain from GIII-SH15 and reversed JEV GIII-SH15 i.e GI NS2B(H)/GIII
837 NS3(pro) with exchanged hydrophilic domains from GI-SH7. **(B and C)**The graphs represents and
838 compares reaction velocities/enzyme activities difference of JEV genotype GI-SH7 **(B)** and GIII-SH15
839 **(C)**with reversed JEV GI-SH7 i.e GIII NS2B(H)-GI NS3(pro) for hydrolysis of Pyr-RTKR-AMC ,a
840 substrate site gotten from JEV NS2B-NS3. **(D and E)** The graphs represents and compares reaction
841 velocities/enzyme activities difference of JEV genotype GIII-SH15 **(D)** and GI-SH7 **(E)** with reversed
842 JEV GIII-SH15 i.e GI NS2B(H)-GIII NS3(pro) for hydrolysis of Pyr-RTKR-AMC ,a substrate site
843 gotten from JEV NS2B-NS3 .

844

845 **Figure 7: Contribution of variation 55 in hydrophilic domain of NS2B to proteolytic activities of**
846 **NS2B(H)-NS3(pro). A)** Schematic diagram of reversed JEV GI-SH7 i.e GI NS2B(H)/D55E-NS3(pro)
847 and reversed JEV GIII-SH15 i.e GIII NS2B(H)/E55D-NS3(pro) with exchanged NS2B-55 variations
848 from their respective parent NS2B(H)-NS3(pro) proteases. **B)** The graph represents and compares 3D
849 structural conformations of reversed JEV GI-SH7 i.e GI-SH7 i.e GI NS2B(H)/D55E-NS3(pro) and
850 reversed JEV GIII-SH15 i.e GIII NS2B(H)/E55D-NS3(pro) with their respective parent GI-SH7 and
851 GIII-SH15 NS2B(H)-NS3(pro) proteases. Variation NS2B(H)55 is highlighted in red. **C and D)** The
852 graphs represents and compares reaction velocities/enzyme activities difference of JEV genotype GI-
853 SH7 **(C)** and GIII-SH15 NS2B(H)-NS3(pro) proteases **(D)** with reversed JEV GI-SH7 i.e GI
854 NS2B(H)/D55E-NS3(pro) for hydrolysis of Pyr-RTKR-AMC ,a substrate site gotten from JEV NS2B-
855 NS3. **E and F)** The graphs represents and compares reaction velocities/enzyme activities difference of
856 JEV genotype GI-SH7 **(F)** and GIII-SH15 **(E)** NS2B(H)-NS3(pro) proteases with reversed JEV GIII-
857 SH15 i.e GIII NS2B(H)/E55D-NS3(pro) for hydrolysis of Pyr-RTKR-AMC ,a substrate site gotten from
858 JEV NS2B-NS3

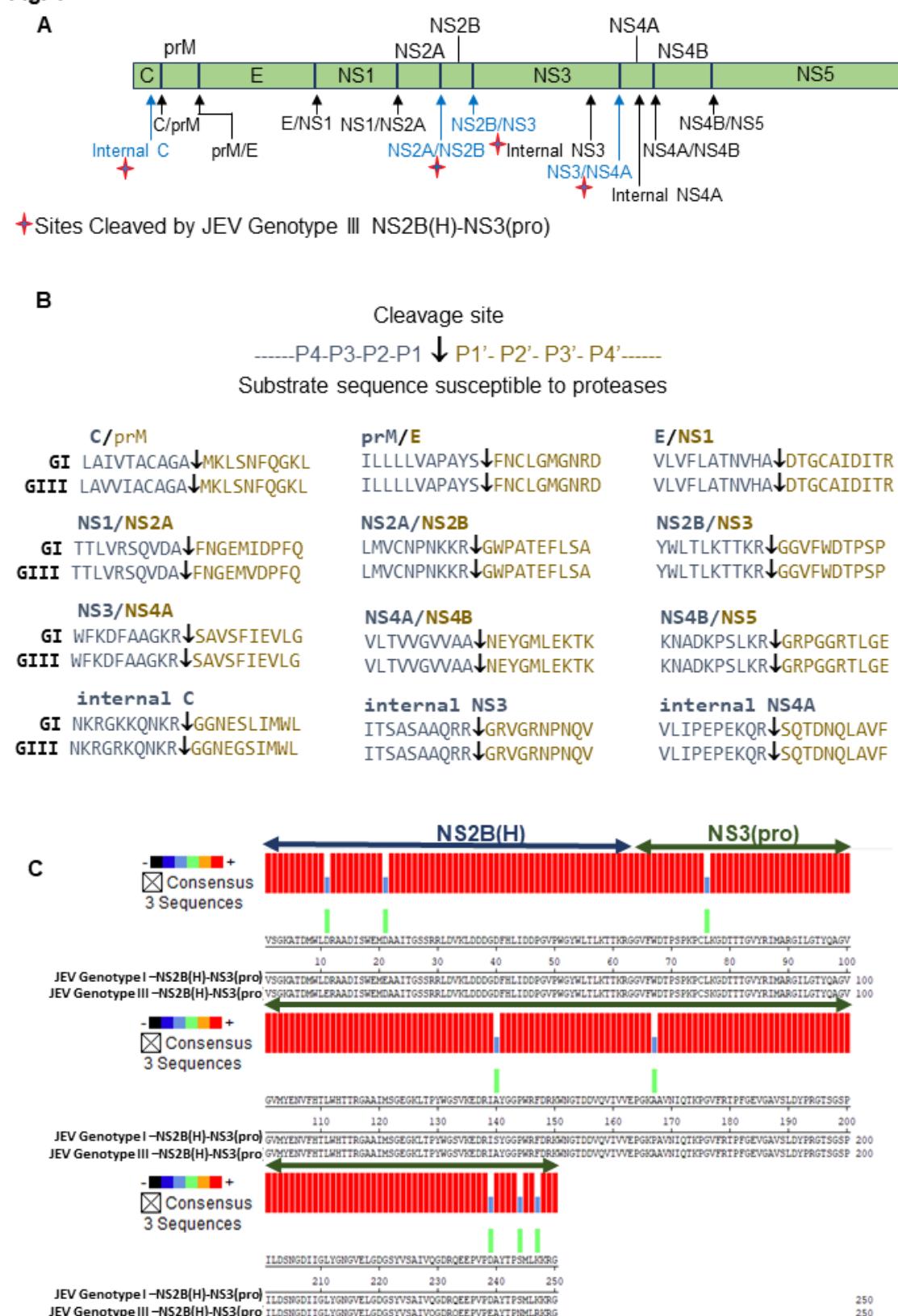
859

860 **Figure 8: Contribution of variation 65 in hydrophilic domain of NS2B to proteolytic activities of**
861 **NS2B(H)-NS3(pro). A)**. Schematic diagram of reversed JEV GI-SH7 i.e GI NS2B(H)/ E65D-NS3(pro)
862 and reversed JEV GIII-SH15 i.e GIII NS2B(H)/D65E-NS3(pro) with exchanged NS2B-65 variations
863 from their respective parent NS2B(H)-NS3(pro) proteases. **B)** The graph represents and compares 3D
864 structural conformations of reversed JEV GI-SH7 i.e GI NS2B(H)/ E65D-NS3(pro) and reversed JEV
865 GIII-SH15 i.e GIII NS2B(H)/D65E-NS3(pro) with their respective parent GI-SH7 and GIII-SH15
866 NS2B(H)-NS3(pro) proteases. Variation NS2B(H)65 is highlighted in yellow. **C and D)** The graphs
867 represents and compares reaction velocities/enzyme activities difference of JEV genotype GI-SH7 (**C**)
868 and GIII-SH15 NS2B(H)-NS3(pro) proteases (**D**) with reversed JEV GI-SH7 i.e GI NS2B(H)/ E65D-
869 NS3(pro) for hydrolysis of Pyr-RTKR-AMC ,a substrate site gotten from JEV NS2B-NS3. **E and F)**
870 The graphs represents and compares reaction velocities/enzyme activities difference of JEV genotype
871 GI-SH7 (**F**) and GIII-SH15 (**E**) NS2B(H)-NS3(pro) proteases with reversed JEV GIII-SH15 i.e GIII
872 NS2B(H)/D65E-NS3(pro) for hydrolysis of Pyr-RTKR-AMC ,a substrate site gotten from JEV NS2B-
873 NS3.

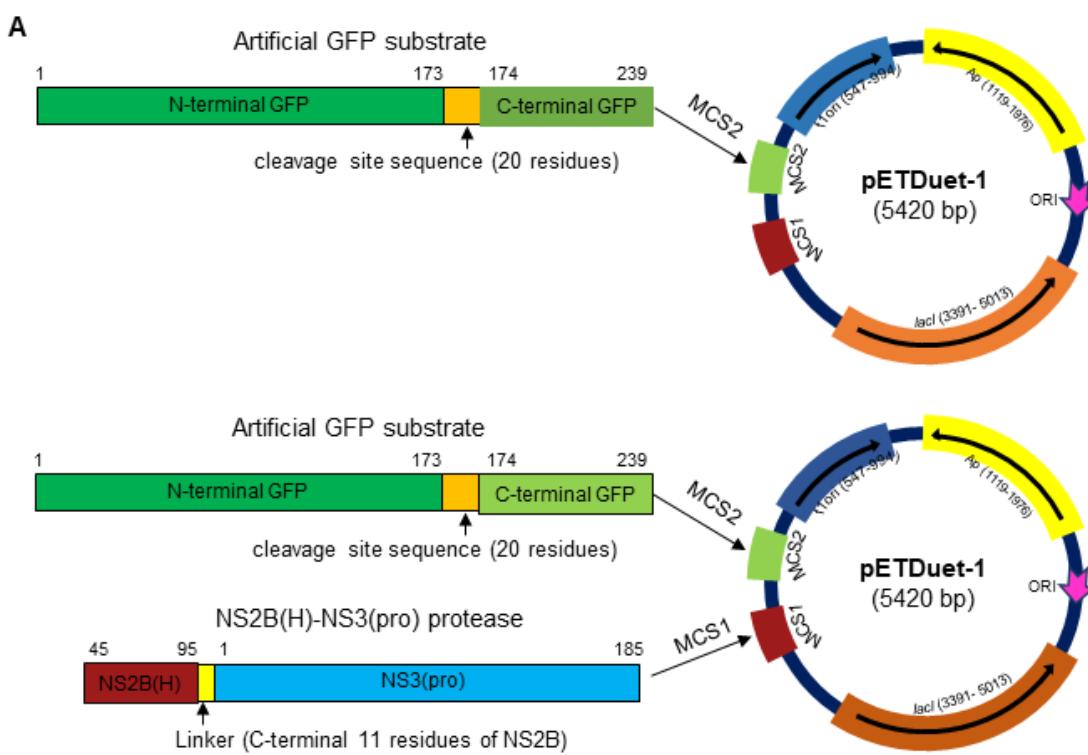
874

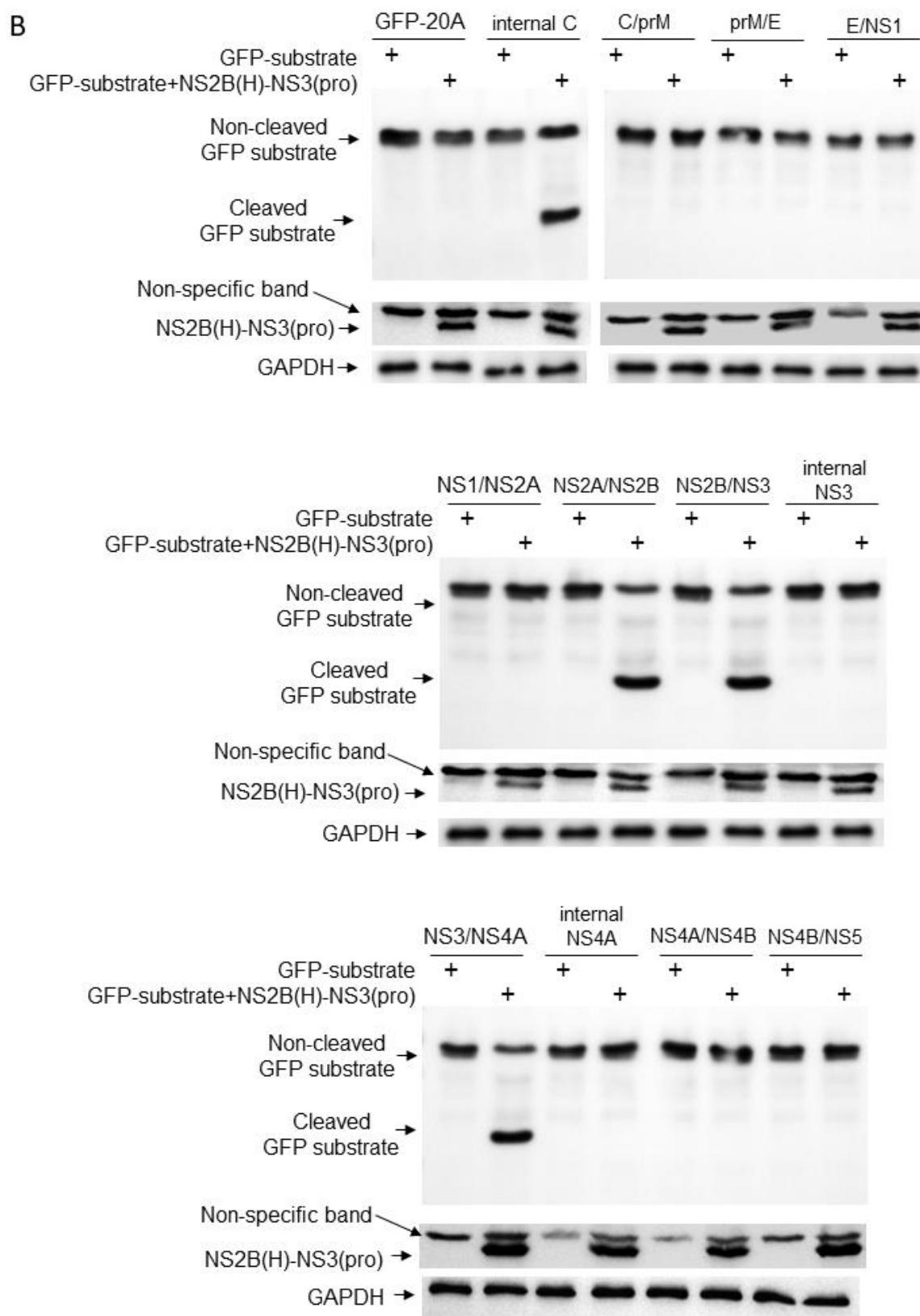
875 **Figure 9: Co-contribution of NS2B-D55E and NS2B-E65D variations in hydrophilic domain of**
876 **NS2B to proteolytic activities of NS2B(H)-NS3(pro) . A)**. Schematic diagram of reversed JEV GI-
877 SH7 i.e GI NS2B(H)/D55E/E65D-NS3(pro) and reversed JEV GIII-SH15 i.e GIII
878 NS2B(H)/E55D/D65E-NS3(pro) with exchanged NS2B-D55E and NS2B-E65D variations from their
879 respective parent NS2B(H)-NS3(pro) proteases. **B)** The graph represents and compares 3D structural
880 conformations of reversed JEV GI-SH7 i.e GI NS2B(H)/D55E/E65D-NS3(pro) and reversed JEV GIII-
881 SH15 i.e GIII NS2B(H)/E55D/D65E-NS3(pro) with their respective parent GI-SH7 and GIII-SH15
882 NS2B(H)-NS3(pro) proteases. Variation NS2B(H)55 and NS2B(H) 65 are highlighted in red and
883 yellow respectively. **C and D)** The graphs represents and compares reaction velocities/enzyme
884 activities difference of JEV genotype GI-SH7 (**C**) and GIII-SH15 NS2B(H)-NS3(pro) proteases (**D**)
885 with reversed JEV GI-SH7 i.e GI NS2B(H)/D55E/E65D-NS3(pro) for hydrolysis of Pyr-RTKR-AMC
886 ,a substrate site gotten from JEV NS2B-NS3 **E and F)** The graphs represents and compares reaction
887 velocities/enzyme activities difference of JEV genotype GI-SH7 (**F**) and GIII-SH15 (**E**) NS2B(H)-
888 NS3(pro) proteases with reversed JEV GIII-SH15 i.e GIII NS2B(H)/E55D/D65E-NS3(pro) for
889 hydrolysis of Pyr-RTKR-AMC ,a substrate site gotten from JEV NS2B-NS3.

890


891

892


893


894

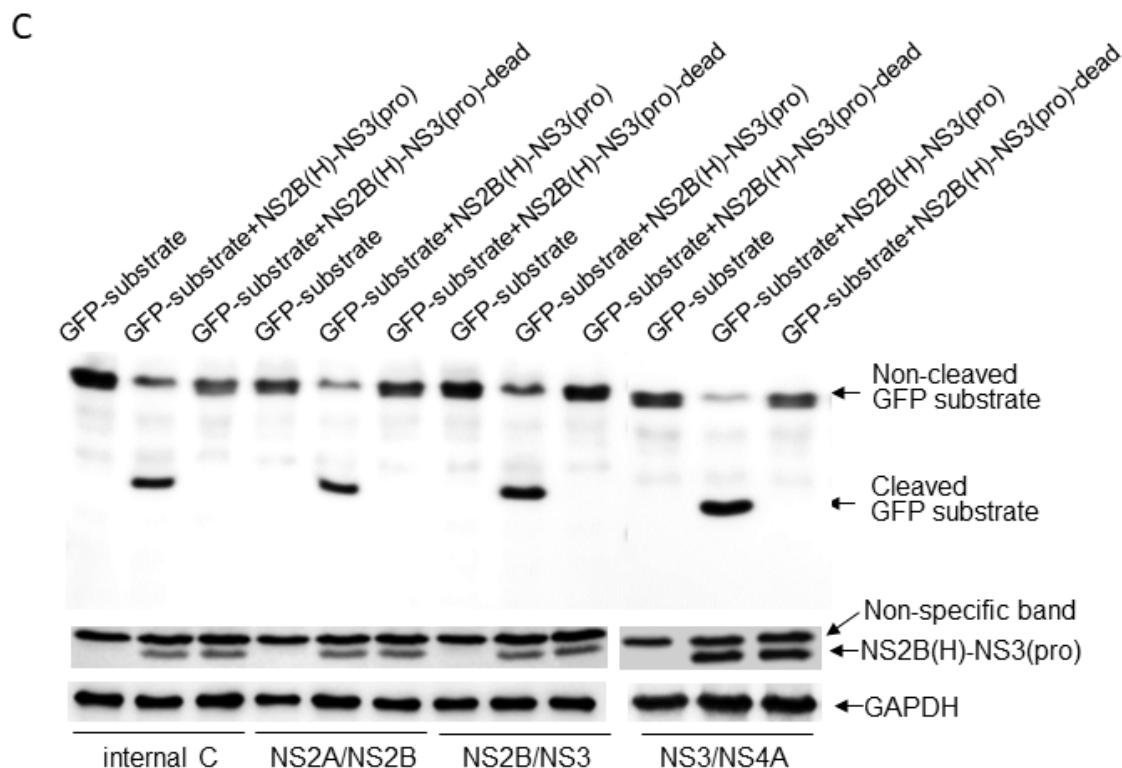

Fig. 1

Fig. 2

901

902

903

904

905

906

907

908

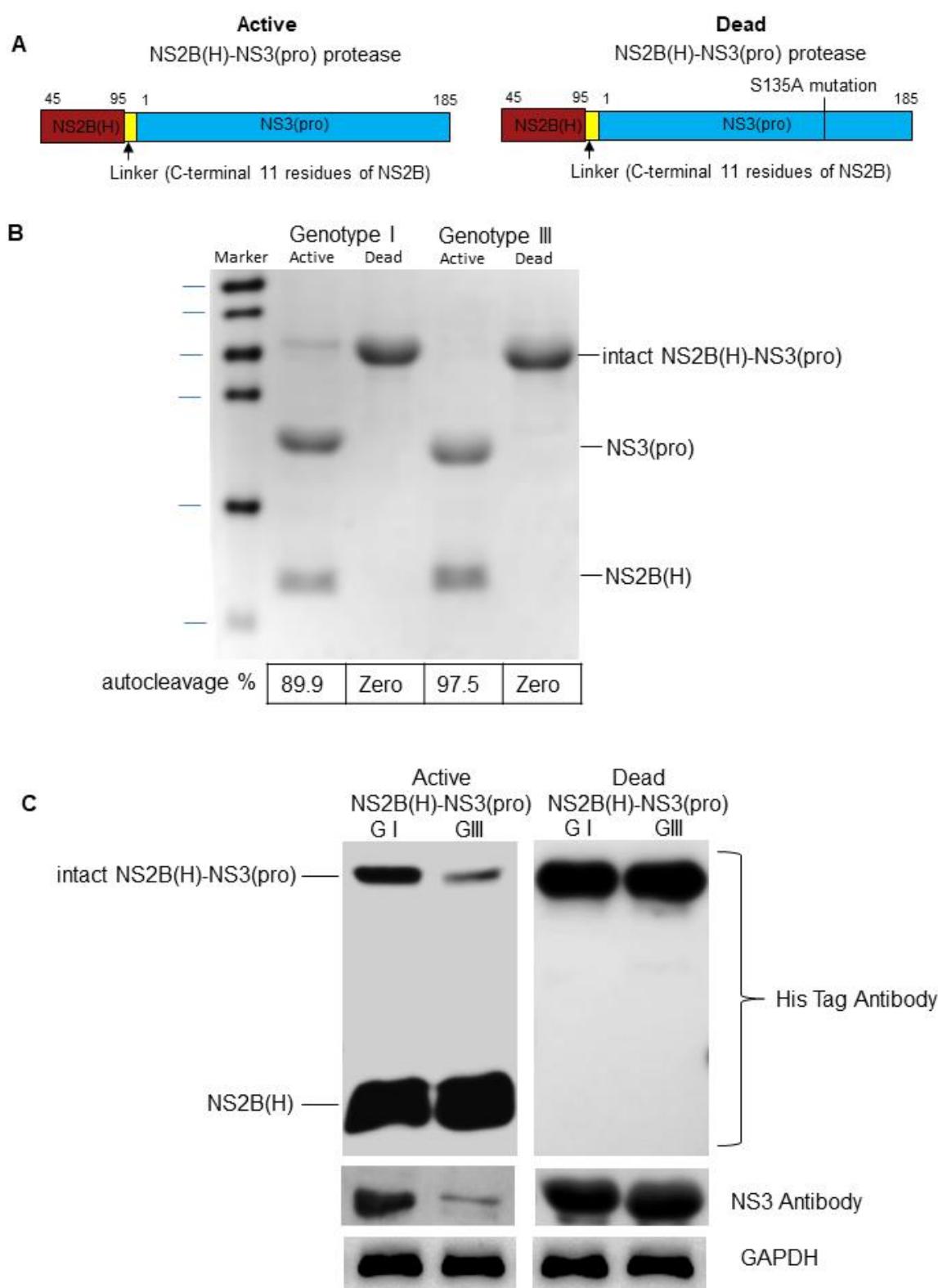
909

910

911

912

913

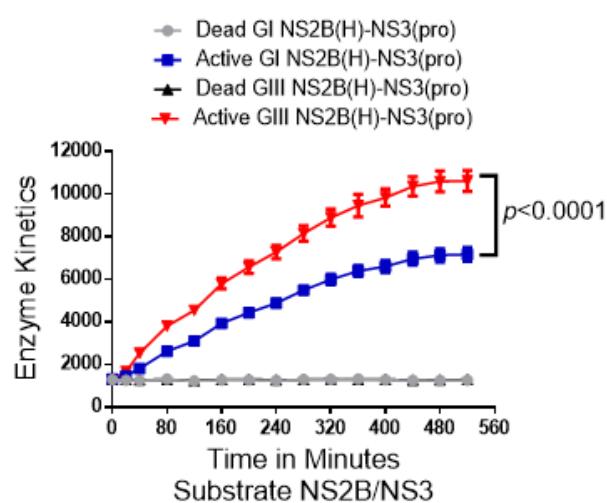

914

915

916

917

Fig. 3


918

919

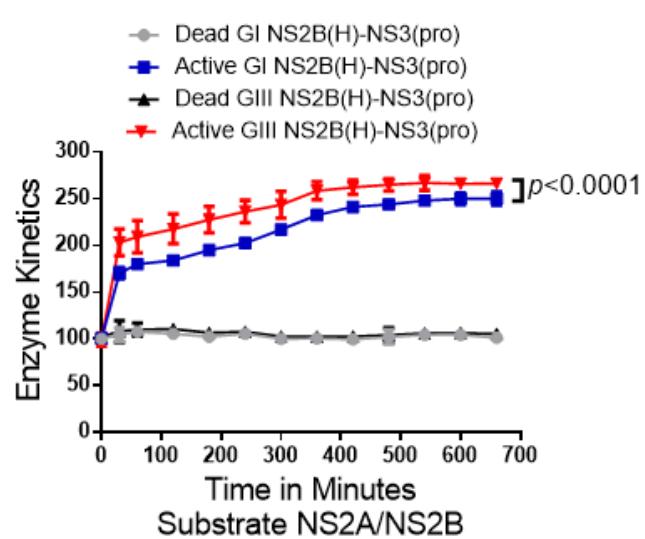
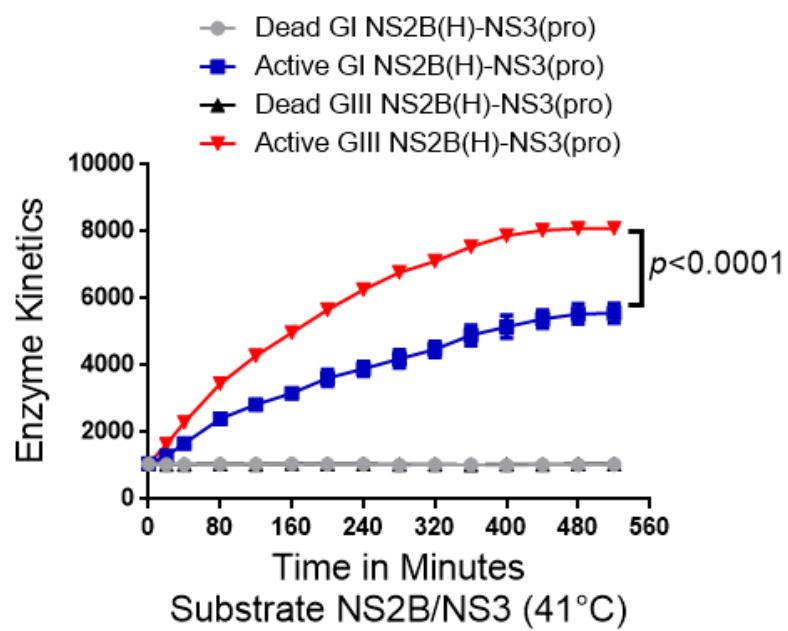

920

Fig. 4

A

B

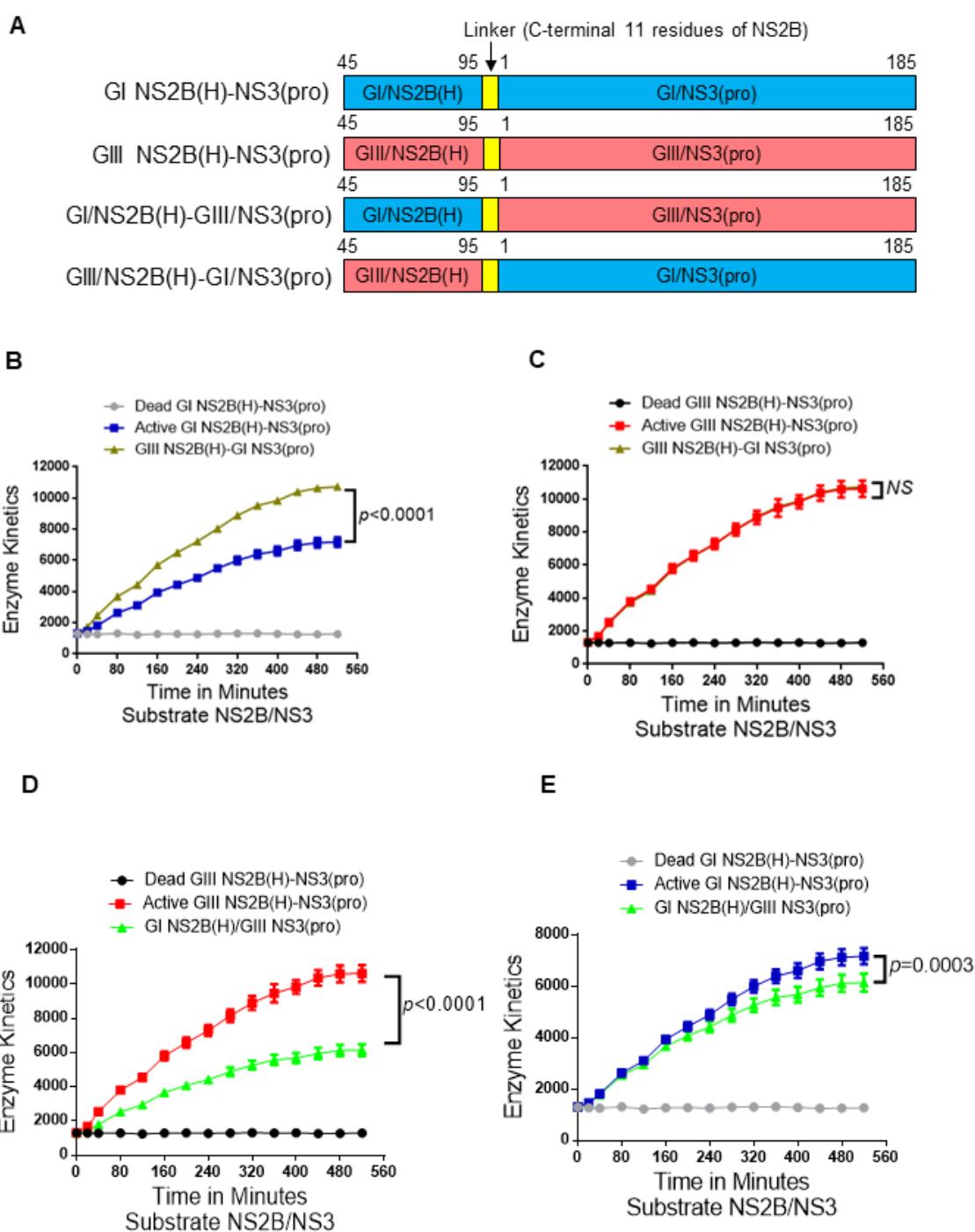


921

922

923

Fig. 5

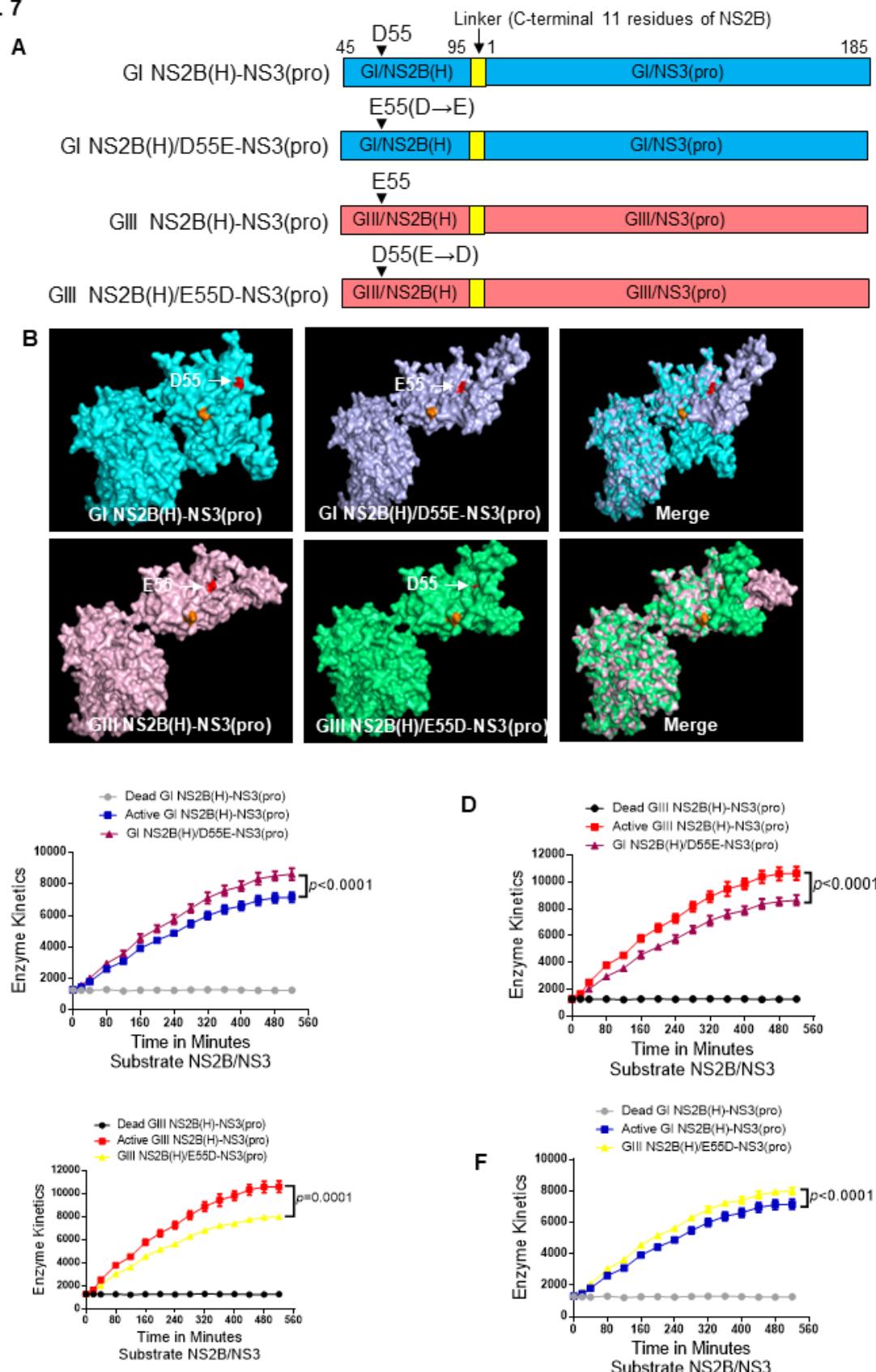


924

925

926

Fig. 6

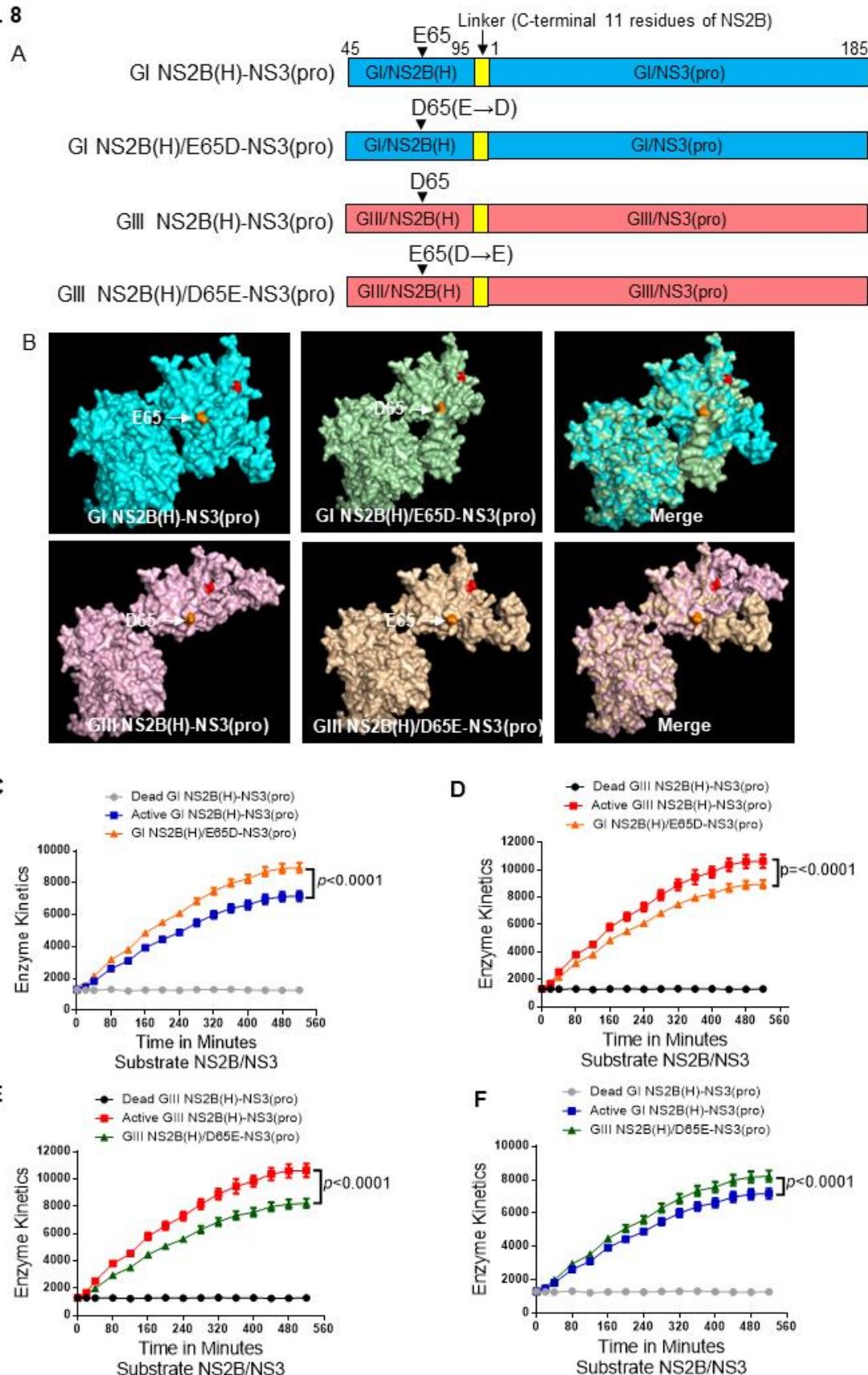


927

928

929

Fig. 7

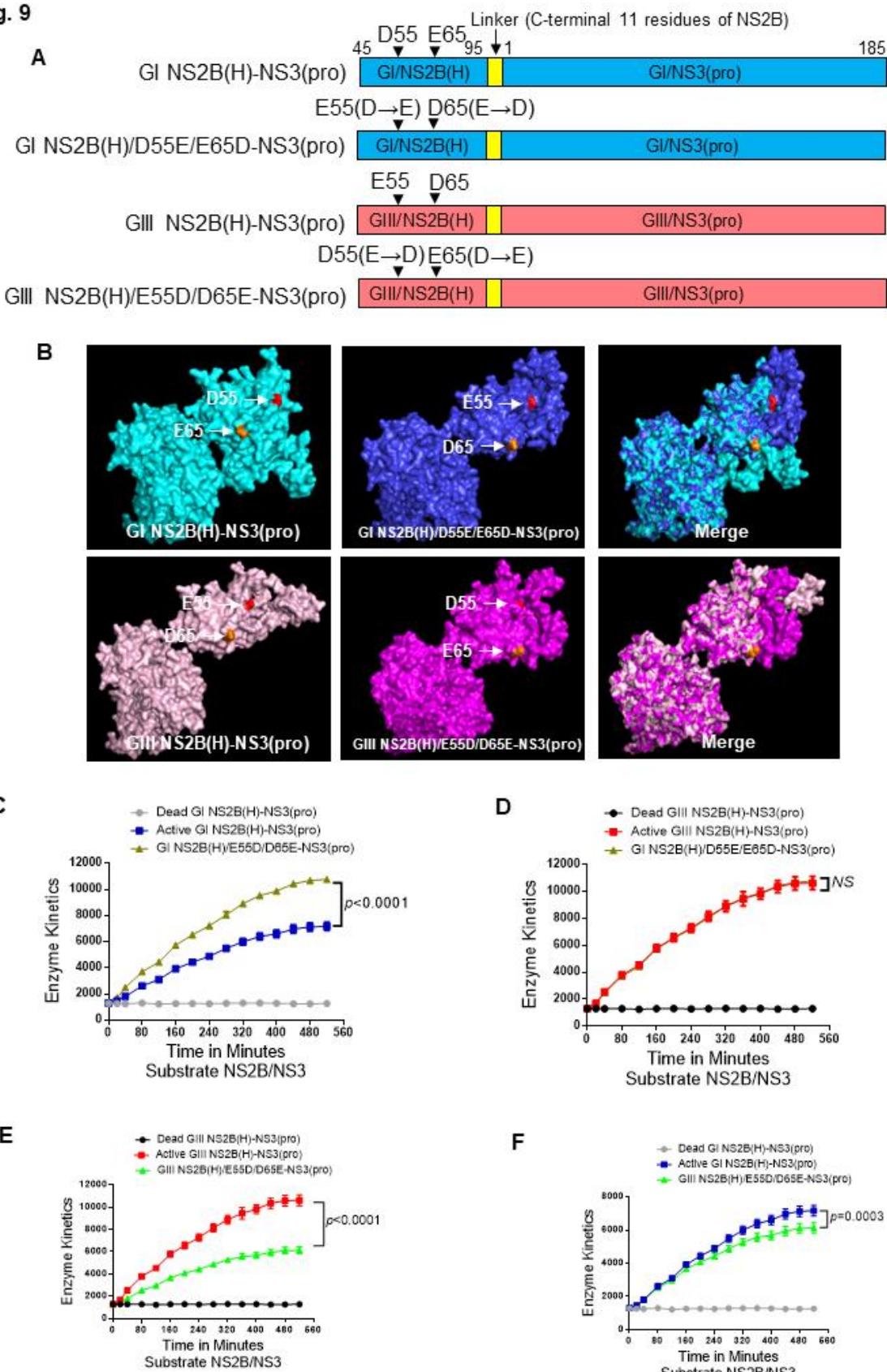


930

931

932

Fig. 8



933

934

935

Fig. 9

