

1

2

3

4

5

6 **Evidence for a Compensatory Relationship between Left- and Right-Lateralized Brain
7 Networks**

8 Madeline Peterson ^a, Rodrigo M. Braga ^b, Dorothea L. Floris ^{c, d}, Jared A. Nielsen ^{a, e}

9 ^aDepartment of Psychology, Brigham Young University, Provo, UT, 84602, USA

10 ^bDepartment of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL,
11 60611, USA

12 ^c Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich,
13 Switzerland

14 ^d Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour,
15 Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands

16 ^e Neuroscience Center, Brigham Young University, Provo, UT, 84604, USA

17

18

19 **Author Note**

20 Correspondence concerning this article should be addressed to Jared A. Nielsen,
21 Department of Psychology, 1070 KMBL, Brigham Young University, Provo, UT, 84602, USA.
22 Email: jarednielsen@byu.edu

23

Abstract

24 The two hemispheres of the human brain are functionally asymmetric. At the network
25 level, the language network exhibits left-hemisphere lateralization. While this asymmetry is
26 widely replicated, the extent to which other functional networks demonstrate lateralization
27 remains a subject of investigation. Additionally, it is unknown how the lateralization of one
28 functional network may affect the lateralization of other networks within individuals. We
29 quantified lateralization for each of 17 networks by computing the relative surface area on the
30 left and right cerebral hemispheres. After examining the ecological, convergent, and external
31 validity and test-retest reliability of this surface area-based measure of lateralization, we
32 addressed two hypotheses across multiple datasets (Human Connectome Project = 553, Human
33 Connectome Project-Development = 343, Natural Scenes Dataset = 8). First, we hypothesized
34 that networks associated with language, visuospatial attention, and executive control would show
35 the greatest lateralization. Second, we hypothesized that relationships between lateralized
36 networks would follow a dependent relationship such that greater left-lateralization of a network
37 would be associated with greater right-lateralization of a different network within individuals,
38 and that this pattern would be systematic across individuals. A language network was among the
39 three networks identified as being significantly left-lateralized, and attention and executive
40 control networks were among the five networks identified as being significantly right-lateralized.
41 Next, correlation matrices, an exploratory factor analysis, and confirmatory factor analyses were
42 used to test the second hypothesis and examine the organization of lateralized networks. We
43 found general support for a dependent relationship between highly left- and right-lateralized
44 networks, meaning that across subjects, greater left lateralization of a given network (such as a
45 language network) was linked to greater right lateralization of another network (such as a ventral
46 attention/salience network) and vice versa. These results further our understanding of brain

47 organization at the macro-scale network level in individuals, carrying specific relevance for
48 neurodevelopmental conditions characterized by disruptions in lateralization such as autism and
49 schizophrenia.

50 *Keywords:* Lateralization, asymmetry, brain networks, fMRI, language, attention

51

1 Introduction

52 Observations of the human brain have revealed significant differences in the gross
53 anatomical morphometry between the two hemispheres (for review, see (Toga & Thompson,
54 2003). These structural asymmetries are accompanied by functional asymmetries, most notably
55 for language specialization. Famously, Paul Broca localized language specialization to the left
56 hemisphere subsequent to identifying a lesion in the left inferior frontal gyrus of his patient as
57 being responsible for his eponymous aphasia (Broca, 1861). This contribution launched an
58 emphasis on regions specialized for language, which were later conceptualized as a network
59 consisting of Broca's and Wernicke's areas connected via the arcuate fasciculus (Geschwind,
60 1972).

61 Contemporarily, the language network is regarded as a prototypical example of a
62 lateralized network, with left-hemisphere language lateralization estimated to occur in most
63 (Breier et al., 2000; Stippich et al., 2003) to more than 90% of the general population (Corballis,
64 2003). The canonical language network is a distributed network comprising regions across the
65 frontal, temporal, and parietal lobes, with lines of evidence stemming from a variety of sources
66 including lesion cases (Broca, 1861; Geschwind, 1970; Wernicke, 1874), intraoperative brain
67 stimulation (Penfield & Jasper, 1954), neurodegeneration (e.g., primary progressive aphasia;
68 Mesulam, 2001, 2003; Mesulam et al., 2014, 2015), task-based fMRI (Fedorenko et al., 2010,
69 2011; Fedorenko, McDermott, et al., 2012, 2012; Lipkin et al., 2022; Scott et al., 2017), and
70 functional connectivity (Braga et al., 2020; Hacker et al., 2013; Lee et al., 2012). The typically
71 asymmetric organization of this network in neurotypical individuals continues to be replicated
72 (Elin et al., 2022; Malik-Moraleda et al., 2022; Olulade et al., 2020; Reynolds et al., 2019).

73 While the lateralization of language provides a compelling example, it also prompts
74 broader questions about the origins and implications of cerebral lateralization across other
75 cognitive domains. In attempting to unravel the origins of cerebral lateralization, researchers
76 have explored theoretical perspectives ranging from the genetic and epigenetic (Geschwind &
77 Miller, 2001; McManus, 1985) to interhemispheric conflict (Andrew et al., 1982; Corballis,
78 1991). Yet, these paradigms fall short in explaining the dynamic interactions of interdigitated
79 lateralized and non-lateralized networks. For example, it is unclear how having a highly
80 lateralized network, such as the language network, may influence the lateralization of other
81 networks within individuals. Along the lines of the interhemispheric conflict explanation of
82 lateralization, competition for limited cortical resources during brain maturation may drive
83 lateralization. According to this hypothesis, as different functional networks vie for cortical real
84 estate and resources, they become lateralized. Alternatively, or in tandem with this mechanism,
85 networks may become lateralized in order to optimize their efficiency, preventing interference
86 from competing networks. Under this framework, as one network increases in lateralization to
87 one hemisphere, that network occupies more space within that hemisphere while freeing up
88 cortical territory in the contralateral hemisphere. Presumably, this would allow for a
89 complimentary network to become more lateralized in the contralateral hemisphere. One
90 example of such a scenario may be found in a right-lateralized attention network composed of
91 the temporoparietal junction and ventral frontal areas and which is hypothesized to process
92 visuospatial information, particularly unexpected stimuli (Corbetta & Shulman, 2002). The
93 ventral attention network in particular has been identified as a potential right-lateralized
94 compliment to the left-lateralized language network (Bernard et al., 2020).

95 Other functional networks in both the right and left hemispheres have been examined for
96 evidence of lateralization. Of note, lateralization can be an indicator for specialization, or the
97 dominant hosting of a macroscale functional network and its associated functional properties by
98 one hemisphere over the other (Hervé et al., 2013). One study quantified specialization across
99 seven functional networks and found that specialization was not restricted to a single left- or
100 right-specialized network (Wang et al., 2014). Rather, the right frontoparietal network and right
101 ventral and dorsal attention networks, as well as the left default and frontoparietal networks
102 exhibited specialization as assessed via a functional connectivity-based metric (see Fig. 5; Wang
103 et al., 2014). This pattern was generally replicated in highly sampled individuals, revealing left-
104 lateralized language, default, and frontoparietal networks, as well as right-lateralized salience
105 and frontoparietal networks (Braga et al., 2020). Interestingly, the finding of both left- and right-
106 lateralized frontoparietal networks across both Braga et al. (2020) and Wang et al. (2014)
107 evidences a joint control system in which a subdivision of the frontoparietal control network is
108 coupled with other lateralized networks in either the left or right hemisphere. Beyond this result,
109 research on network lateralization has untapped potential when it comes to understanding the
110 relationships between lateralized networks. This includes associations in laterality between
111 ipsilateral and contralateral lateralized networks and extends to patterns within and across
112 individuals.

113 **1.1 Methods for Examining Hemispheric Asymmetries**

114 In humans, hemispheric specialization has historically been identified using a variety of
115 methods including callosotomy (i.e., split-brain patients; for review, see Gazzaniga, 2000),
116 lateralized brain lesions (Milner, 1971; Rasmussen & Milner, 1977), the unilateral carotid
117 administration of anesthetic (i.e., the Wada test Wada & Rasmussen, 1960), and intraoperative

118 brain stimulation mapping (Penfield & Jasper, 1954). Callosotomy studies have revealed the
119 importance of interhemispheric communication for certain cognitive processes, demonstrating
120 that the left and right hemispheres can operate relatively independently for some functions but
121 require communication for others (Gazzaniga, 2000). Lateralized brain lesion studies,
122 particularly the work of Milner and Rasmussen, have identified specific functions associated
123 with each hemisphere, such as language processing predominantly in the left hemisphere
124 (Milner, 1971; Rasmussen & Milner, 1977). Similarly, the Wada test has shed light on
125 hemispheric dominance for language and memory (Wada & Rasmussen, 1960). Finally, leaning
126 into the localization of specific functions to certain regions within each hemisphere,
127 intraoperative brain stimulation mapping has provided detailed maps of functional areas in the
128 brain (Penfield & Jasper, 1954). Collectively, these classic methods reveal patterns of human
129 brain organization governed by interactions between lateralization and localization.

130 These historical methods are complimented by neuroimaging metrics, many of which are
131 functional connectivity-based. Of particular interest are the intrinsic laterality index (Liu et al.,
132 2009), autonomy index (Wang et al., 2014), hemispheric contrast (Gotts et al., 2013), functional
133 lateralization metric (Nielsen et al., 2013), classification metric (Friedrich et al., 2022), and
134 network variants approach (Perez et al., 2023). Despite the unifying aim of estimating
135 hemispheric specialization or lateralization, each of the listed methods varies in terms of how it
136 approaches structural asymmetries, the addition of covariates such as handedness and gender,
137 and short- and long-range connectivity. However, with the exception of the network variants
138 approach (Perez et al., 2023), each method has been implemented on less than 12 minutes of
139 resting-state fMRI data per participant, a tactic which is increasingly being exchanged for a
140 within-individual “precision” approach.

141 **1.2 A Precision Approach to Lateralization**

142 The precision approach, which emphasizes extensive individual sampling, is being
143 heralded as a well-powered alternative to the large and costly sample sizes required for cross-
144 sectional group and brain-wide association studies (Gratton et al., 2022; Marek et al., 2022). This
145 method of densely sampling individuals can generate precise brain maps (Gordon et al., 2017)
146 as well as the development of optimal workflows for reducing MRI artifacts (Circi et al., 2017).
147 Moreover, when combined with functional localizers, the precision approach offers superior
148 sensitivity, functional resolution, and interpretability (Fedorenko, 2021). As applied to estimating
149 lateralization, repeated sampling can improve measures of individual network parcellations
150 (Braga et al., 2020; Gordon et al., 2017, 2020) including network topology and topography, and
151 functional connectivity (Gordon et al., 2017; Laumann et al., 2015), resulting in more precise
152 lateralization measures.

153 In line with the precision neuroimaging approach and previous efforts to understand brain
154 network organization and lateralization, the present study examines two questions. First, we
155 explore which networks exhibit the greatest hemispheric asymmetries. A recent study involving
156 18 densely-sampled individuals demonstrated that among six networks, the language network
157 displayed the greatest left hemisphere lateralization, while a frontoparietal control network
158 exhibited the greatest right hemisphere lateralization (Braga et al., 2020). However, it remains
159 unclear how these estimates might change in a larger sample with a greater number of examined
160 networks. Building upon the work of Braga et al. (2020), we hypothesized that networks
161 associated with language, visuospatial attention, and executive control would show the greatest
162 hemispheric asymmetries.

163 Second, we investigate how lateralization in one network may influence the lateralization
164 of other networks. We propose the following hypotheses to guide our investigation. The first
165 hypothesis suggests that if an individual possesses a highly lateralized network, other networks
166 for that individual will exhibit increased lateralization in the opposite direction, and that this
167 dependent relationship will be systematic across individuals (the dependent hypothesis). The
168 alternative hypothesis proposes that lateralization will be unrelated between networks across
169 individuals (the independent hypothesis).

170 **2 Methods**

171 2.1 Datasets and Overview

172 Three independent datasets were used for these analyses: The Human Connectome
173 Project (HCP; split into discovery and replication datasets), the Human Connectome Project-
174 Development (HCPD; Somerville et al., 2018), and the Natural Scenes Dataset (NSD; Allen et
175 al., 2022). Each dataset was selected for its relatively high quantity of low-motion data per
176 participant (see Figure 1).

177 *2.1.1 HCP Discovery and Replication*

178 The HCP S1200 release consists of 1206 subjects (1113 with structural MRI scans)
179 collected at 13 different data acquisition sites with informed consent (Van Essen et al., 2013).
180 Additional details regarding HCP scanning protocols are available online
181 (https://humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_A
182 appendix_I.pdf; Uğurbil et al., 2013; Van Essen et al., 2012). With a relatively large quantity of
183 data available per individual, this data is ideally suited for taking a within-individual approach to
184 specialization. Participants underwent four 15-minutes runs of a passive fixation task (resting-
185 state fMRI) during which they were asked to keep their eyes open while viewing a white cross

186 on a dark background and think of nothing in particular while remaining awake (Smith et al.,
187 2013). Exclusion criteria for the HCP S1200 release included removing participants with a mean
188 framewise displacement greater than 0.2 mm and mean DVARS greater than 50, participants
189 missing handedness data, and participants with less than 50% of volumes remaining after motion
190 censoring. This resulted in a subsample of 553 participants, which was split into a discovery and
191 replication dataset using random sampling without replacement. The two datasets were then
192 compared using the R package MatchIt (Ho et al., 2023) on age, mean framewise displacement,
193 sex, handedness, and percentage of volumes remaining following motion censoring. The HCP-
194 Discovery dataset consisted of 276 participants 22-36 years old ($M = 28.48$, $SD = 3.58$) with 167
195 females, while the HCP-Replication dataset consisted of 277 participants 22-36 years old ($M =$
196 28.7, $SD = 3.77$) with 173 females.

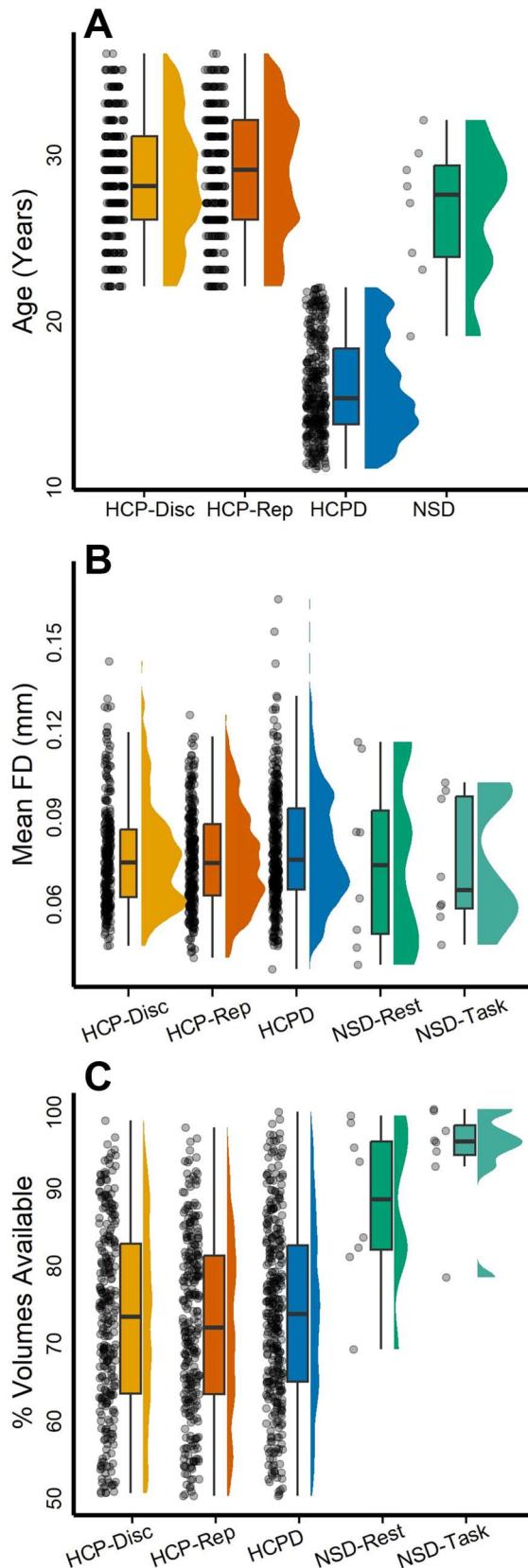
197 **2.1.2 HCPD**

198 With a younger sample and smaller quantity of data per individual, the HCPD dataset
199 was used as an additional replication dataset for primary analyses. Since data collection for the
200 HCPD project is ongoing, cross-sectional data from the latest release were included, and these
201 were composed of 652 healthy participants. All data were obtained with informed assent or
202 consent. As a part of the HCPD protocol, participants underwent four 6.5-minute runs of resting-
203 state fMRI, with an exception for participants 5-7 years old, which had six 3.5-minute runs each
204 (Harms et al., 2018). Participants were instructed to view a small white fixation crosshair on a
205 black background and blink normally. Exclusion criteria for HCPD included removing
206 participants with less than 50% of volumes remaining after motion censoring, participants
207 missing handedness data, and participants with a mean framewise displacement greater than 0.2
208 mm and mean DVARS greater than 50 (see Figure 1). Following the exclusion criteria, the

209 dataset consisted of 343 individuals ages 11-21.92 ($M = 15.93$, $SD = 2.97$) of which 189 were
210 female.

211 **2.1.3 NSD**

212 With a large quantity of resting-state and task fMRI data available per individual, the
213 NSD was included to examine potential task effects on estimating individual network
214 parcellations and specialization. The NSD is composed of eight individuals (two males and six
215 females; age range 19–32 years). All data were obtained with informed written consent
216 according to the University of Minnesota institutional review board. As detailed in Allen et al.
217 (2022), participants averaged two hours of resting state fMRI and 39.5 hours of task-based fMRI.
218 For the resting-state runs, participants were instructed to stay awake and fixate on a white cross
219 placed on a gray background but otherwise rest. During the task-based runs, participants were
220 shown distinct natural scenes taken from the Microsoft Common Objects in Context database
221 (T.-Y. Lin et al., 2014). Images were presented for 3 s with 1-s gaps in between images. Subjects
222 fixated centrally and performed a long-term continuous recognition task on the images.
223 Exclusion criteria for NSD included removing participants with less than 50% of volumes
224 remaining after motion censoring, and participants with a mean framewise displacement greater
225 than 0.2 mm and mean DVARS greater than 50. No subjects were excluded from the analysis;
226 however, following motion correction, a minimum of 12 resting-state fMRI runs (approximately
227 60 minutes) remained. In order to compare resting-state and task data on equal grounds, only the
228 first 12 available resting-state runs and the first 12 available task fMRI runs from each
229 participant were utilized.
230



231 **Figure 1.** Participant age, data quality, and data availability. Panel A depicts participant age across each

232 dataset following the implementation of exclusion criteria. HCP-Discovery participants included 276
233 individuals 22-36 years of age, HCP-Replication participants included 277 individuals 22-36 years of age,
234 HCPD participants included 343 individuals 11-22 years of age, and NSD participants included eight
235 individuals 19-32 years of age. Panel B depicts the mean framewise displacement (FD) across each
236 dataset following the implementation of exclusion criteria. HCP-Discovery mean FD was 0.08 mm ($SD =$
237 0.02 mm), range 0.04-0.14 mm; HCP-Replication mean FD was 0.07 mm ($SD = 0.01$ mm), range 0.04-
238 0.12 mm; HCPD mean FD was 0.08 mm ($SD = 0.02$ mm), range 0.04-0.16 mm; NSD-Rest mean FD was
239 0.07 mm ($SD = 0.03$), range 0.04-0.11 mm; and NSD-Task mean FD was 0.07 mm ($SD = 0.02$ mm),
240 range 0.04-0.1 mm. Panel C depicts the percentage of volumes remaining following motion-correction
241 procedures for each dataset. HCP-Discovery mean percentage of volumes was 72.81% ($SD = 12.12\%$),
242 range 50.38-98.54%; HCP-Replication mean percentage of volumes was 72.09% ($SD = 11.59\%$), range
243 50.04-97.62%; HCPD mean percentage of volumes was 73.6% ($SD = 11.73\%$), range 50.05-99.63%;
244 NSD-Rest mean percentage of volumes was 87.64% ($SD = 10.51\%$), range 68.98-99.14%; and NSD-
245 Task mean percentage of volumes was 94.27% ($SD = 6.92$), range 78.31-100%. Across each panel, a
246 circle represents a single participant.

247

248 **2.2 MRI Acquisition Parameters**

249 ***2.2.1 HCP Discovery and Replication***

250 The HCP dataset was acquired on a custom Siemens 3T Skyra with a 32-channel head
251 coil. T1-weighted images were collected with a 3D MPRAGE sequence with isotropic 0.7 mm
252 voxels (256 sagittal slices, repetition time [TR] = 2400 milliseconds, echo time [TE] = 2.14
253 milliseconds) as detailed in Glasser et al. (2013). Resting-state functional images were collected
254 using 2 mm isotropic voxels (72 sagittal slices, TR = 720 milliseconds, TE = 33 milliseconds,
255 multiband accelerated pulse sequence with multiband factor = 8) as detailed in Glasser et al.
256 (2013, 2016).

257 ***2.2.2 HCPD***

258 The HCPD MRI data were acquired on Siemens 3T Prisma scanners with vendor 32-
259 channel headcoils at four sites: Harvard University, University of California-Los Angeles,
260 University of Minnesota, and Washington University in St. Louis (Harms et al., 2018). Structural
261 T1-weighted scans were acquired with a multi-echo MPRAGE sequence (van der Kouwe et al.,
262 2008) with 0.8 mm isotropic voxels (sagittal FOV = $256 \times 240 \times 166$; matrix size = $320 \times 300 \times$
263 208 slices; slice oversampling = 7.7%; 2-fold in-plane acceleration (GRAPPA); pixel bandwidth
264 = 744 Hz/Px; Tr/TI = 2500/1000, TE = 1.9/3.6/5.4/7.2 ms, flip angle = 8°; water excitation
265 employed for fat suppression; up to 30 TRs allowed for motion-induced reacquisition). T2*-
266 weighted scans were used for resting-state fMRI with 2D multiband gradient-recalled echo echo-
267 planar imaging sequence (MB8, TR/TE = 800/37 ms, flip angle = 52°) and 2.0 mm isotropic
268 voxels covering the whole brain (72 oblique-axial slices). Functional scans were acquired in
269 pairs of two runs with opposite phase encoding polarity (anterior-to-posterior and posterior-to-
270 anterior) so that fMRI data were not biased towards either phase encoding polarity. For all scans,
271 Framewise Integrated Real-time MRI Monitoring (Dosenbach et al., 2017) was implemented to
272 provide motion feedback to participants between fMRI runs.

273 **2.2.3 NSD**

274 The NSD dataset was acquired at the Center for Magnetic Resonance Research at the
275 University of Minnesota (Allen et al., 2022). Anatomical data (such as T1-weighted volumes)
276 were collected using a 3T Siemens Prisma scanner with a standard Siemens 32-channel RF head
277 coil while functional data were collected using a 7T Siemens Magnetom passively shielded
278 scanner and a single-channel-transmit, 32-channel-receive RF head coil. T1-weighted images
279 were acquired with a MPRAGE sequence (0.8-mm bandwidth 220 Hz per pixel, no partial
280 Fourier, in-plane acceleration factor (iPAT) 2, TA = 6.6 min per scan). Functional data were

281 collected using gradient-echo EPI at 1.8-mm isotropic resolution with whole-brain coverage (84
282 axial slices, slice thickness 1.8 mm, slice gap 0 mm, field-of-view 216 mm (FE) \times 216 mm (PE),
283 phase encode direction anterior-to-posterior, matrix size 120 \times 120, TR = 1,600 milliseconds,
284 TE = 22.0 milliseconds, flip angle 62°, echo spacing 0.66 milliseconds, bandwidth 1,736 Hz per
285 pixel, partial Fourier 7/8, iPAT 2, multi-band slice acceleration factor 3). Full protocol printouts
286 for the NSD dataset are available online (https://cvnlab.slate.page/p/NKalgWd_F/Experiments).

287 **2.3 fMRI Preprocessing**

288 Preprocessing took place on raw NIFTI files for the resting-state fMRI and task fMRI
289 runs using a pipeline developed by the Computational Brain Imaging Group (CBIG; Kong et al.,
290 2019; Li et al., 2019; code is available online at
291 https://github.com/ThomasYeoLab/CBIG/tree/c773720ad340dcb1d566b0b8de68b6acdf2ca505/table_projects/preprocessing/CBIG_fMRI_Preproc2016). This CBIG2016 preprocessing pipeline
292 was selected to process the fMRI data in order to more closely follow the processing steps used
293 to implement the multi-session hierarchical Bayesian modeling parcellation method (Kong et al.,
294 2019). As a prerequisite, this pipeline requires FreeSurfer recon-all output from the structural
295 data (FreeSurfer 6.0.1; Dale et al., 1999). The fMRI data are then processed with the following
296 steps: 1) removal of the first four frames and 2) motion correction using rigid body translation
297 and rotation with the FSL package (Jenkinson et al., 2002; Smith et al., 2004). The structural and
298 functional images are then aligned using boundary-based registration (Greve & Fischl, 2009)
299 using the FsFast software package (<http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast>). FD and
300 DVARS were computed using *fsl_motion_outliers* (Smith et al., 2004). Volumes with FD > 0.2
301 mm or DVARS > 50 were tagged as outliers. Uncensored segments of data lasting fewer than 5
302 contiguous volumes were also flagged as outliers (Gordon et al., 2016). BOLD runs with more

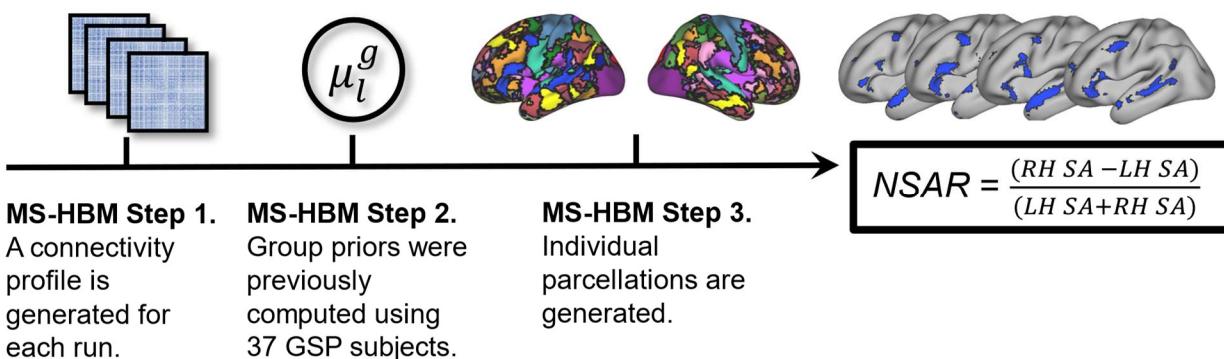
304 than half of the volumes flagged as outliers were removed completely. Next, linear regression
305 using multiple nuisance regressors was applied through a combination of CBIG in-house scripts
306 and the FSL MCFLIRT tool (Jenkinson et al., 2002). Nuisance regressors consisted of global
307 signal, six motion correction parameters, averaged ventricular signal, averaged white matter
308 signal, and their temporal derivatives (totaling 18 regressors). The flagged outlier volumes were
309 ignored during the regression procedure. Following the regression, a bandpass filter ($0.009 \text{ Hz} \leq$
310 $f \leq 0.08 \text{ Hz}$) was applied using CBIG in-house scripts. At this point, the preprocessed fMRI data
311 were projected onto the FreeSurfer fsaverage6 surface space (2 mm vertex spacing) with
312 FreeSurfer's *mri_vol2surf* function. The projected fMRI data were then smoothed using a 6 mm
313 full-width half-maximum kernel through FreeSurfer's *mri_surf2surf* function (Fischl et al.,
314 1999). Surface space was selected for the following analyses in order to best follow the
315 individual parcellation pipeline outlined in Kong et al. (2019), and following evidence that
316 landmark surface-based registration outperforms volume-based registration (Anticevic et al.,
317 2008; Argall et al., 2006; Desai et al., 2005; Van Essen, 2005).

318 **2.4 Individual Network Parcellation**

319 Following preprocessing, network parcellations were computed using a multi-session
320 hierarchical Bayesian modeling (MS-HBM) pipeline. The MS-HBM pipeline is designed to
321 generate parcellations for individuals with multiple sessions of fMRI data (Kong et al., 2019; Li
322 et al., 2019) and is implemented in MATLAB R2018b (MATLAB, 2018). This particular model
323 has been selected because it accounts for intra-individual variation, allowing the model to better
324 generalize to new fMRI data from the same participant. As an overview, this model uses a
325 variational Bayes expectation-maximization algorithm to learn group-level priors from a training
326 dataset and then apply those to estimate individual-specific parcellations (see Figure 2). This

327 model estimates the following parameters: group-level network connectivity profiles, inter-
328 subject functional connectivity variability, intra-subject functional connectivity variability, a
329 spatial smoothness prior, and an inter-subject spatial variability prior. As recommended in the
330 pipeline's GitHub documentation, subjects with a single available run post-preprocessing had
331 that single run split in two and a connectivity profile was generated for each split. A k of 17 was
332 selected for all participants (Yeo et al., 2011). Additionally, it has previously been demonstrated
333 that MS-HBM parameters estimated from one dataset can be effectively applied to another
334 dataset with significant differences in acquisition and preprocessing (Kong et al., 2021). Thus, to
335 generate our model, priors trained on 37 Genomic Superstruct Project (GSP) subjects were
336 utilized (Holmes et al., 2015; Kong et al., 2019). Following the generation of individual
337 parcellations, a Hungarian matching algorithm was used to match the clusters with the Yeo et al.
338 (2011) 17-network group parcellation.

339



340 **Figure 2.** Illustration of the Multi-Session Hierarchical Bayesian Modeling (MS-HBM) individual
341 parcellation pipeline. First, a connectivity profile is generated for each available fMRI run on an individual
342 basis (illustrated here as a functional connectivity matrix). Next, group priors previously estimated (Kong
343 et al., 2019) from 37 Genomic Superstruct Project (GSP) subjects were used. Third, the connectivity
344 profiles from each available run and the group priors (more specifically, the inter-subject functional
345 connectivity variability, intra-subject functional connectivity variability, spatial smoothness, and inter-
346 subject spatial variability) are used to generate network parcellations for each participant. Finally, the

347 network surface area ratio (NSAR) is calculated using the formula shown, where LH SA is the left
348 hemisphere surface area for a given network and RH SA is the right hemisphere surface area for a given
349 network. A negative NSAR value indicates left hemisphere lateralization for a given network while a
350 positive value indicates right hemisphere lateralization.

351

352 **2.5 Network Surface Area Ratio**

353 Following the generation of individual network parcellations, lateralization was estimated
354 using a novel measure: the network surface area ratio (NSAR). In discussing this measure, we
355 opted to use this terminology (lateralization) because it accurately encapsulates the concept of an
356 asymmetrical distribution of functional networks across the cerebral hemispheres, which is
357 central to the following analyses. This measure was calculated within each individual for each of
358 17 networks by first extracting each network label as a region of interest using the Connectome
359 Workbench wb_command functions *metric-label-import* and *gifti-label-to-roi* (Marcus et al.,
360 2013). Next, the left and right hemisphere surface areas for a given network were calculated on a
361 midthickness Conte69 surface in fsaverage6 resolution (Glasser & Essen, 2011) using the
362 wb_command function *metric-stats*. Finally, NSAR was calculated as the difference between
363 normalized left and right hemisphere surface areas for a given network (see Figure 2):

364
$$\text{NSAR} = \frac{RH\ SA - LH\ SA}{RH\ SA + LH\ SA}$$

365 where RH SA represents the right hemisphere surface area of a given network and LH SA
366 represents the left hemisphere surface area of a given network. A scaling factor was not included
367 in the denominator since asymmetry indices including a scaling factor deliver essentially the
368 same findings as those without (Kong et al., 2022).

369 NSAR values range from -1.0 to +1.0, with negative values indicating left hemisphere
370 lateralization for a given network and positive values indicating right hemisphere lateralization.

371 NSAR values closer to zero indicate less lateralization (i.e., hemispheric symmetry). Although
372 this measure of lateralization shares similarities with several previously used asymmetry indices
373 (Binder et al., 1997; Braga et al., 2020; Mahowald & Fedorenko, 2016), its distinct methodology
374 prompts us to specifically test its validity and reliability.

375 **2.6 Establishing the Validity of NSAR**

376 Ecological validity for Language network laterality was first examined since the
377 Language network has previously been established as a highly lateralized network. HCP subjects
378 with all four runs of resting-state data and the minimally preprocessed Story-Math task contrast
379 were selected ($N = 221$). This Story-Math task was used as a proxy for a language task, as has
380 been done previously (Labache et al., 2023; L. Lin et al., 2022; Wang et al., 2023). Participant t -
381 statistic contrast maps were converted to fsaverage6 resolution using wb_command functions
382 *cifti-separate* and *metric-resample*, masked using a language task fMRI atlas (LanA atlas)
383 derived from a large sample ($N = 804$; Lipkin et al., 2022), and then thresholded to the top 10%
384 of vertices. We chose this threshold rather than a fixed t -value in order to account for individual
385 differences in the strength of BOLD signal responses attributable to individual differences
386 arising from trait or state factors (Lipkin et al., 2022). A simple laterality metric was then
387 calculated for each contrast map: the number of right hemisphere vertices minus the number of
388 left hemisphere vertices divided by the sum of the left and right hemisphere vertices. A
389 Spearman rank correlation was then used to compare language task laterality against the NSAR
390 value for the Language network. This and all other statistical analyses took place in R 4.2.0 (R
391 Core Team, 2022).

392 Convergent validity was also examined through a comparison of the NSAR against a
393 measure of specialization: the autonomy index (Wang et al., 2014). The autonomy index

394 approaches specialization from a functional connectivity perspective and is known to reliability
395 estimate specialization across neurotypical and clinical samples (Mueller et al., 2015; Sun et al.,
396 2022; Wang et al., 2014). First, individual functional connectivity matrices were calculated for
397 each resting-state run and then averaged across runs within an individual at the fsaverage6
398 resolution in MATLAB R2018b (MATLAB, 2018). From here the autonomy index was
399 computed as follows: for each seed ROI obtained from a functional connectivity matrix, the
400 degree of within-hemisphere connectivity and cross-hemisphere connectivity were computed by
401 summing the number of vertices correlated to the seed in the ipsilateral hemisphere and in the
402 contralateral hemisphere. These vertex counts are then normalized by the total number of
403 vertices in the corresponding hemisphere, thus accounting for a potential brain size asymmetry
404 between the two hemispheres. Finally, AI is calculated as the difference between normalized
405 within- and cross-hemisphere connectivity as follows:

$$AI = N_i/H_i - N_c/H_c$$

406 where N_i and N_c are the number of vertices correlated to the seed ROI (using a threshold of
407 $|0.25|$) in the ipsilateral hemisphere and contralateral hemisphere, respectively. H_i and H_c are the
408 total number of vertices in the ipsilateral and contralateral hemisphere, respectively. To compute
409 the specialization of each functional network, the AI was averaged within the boundary of each
410 network on an individual basis. Subjects from the HCP dataset with all four runs available ($N =$
411 232) were selected for this analysis of validity and all four runs from each individual were used
412 to compute the autonomy index. A Spearman's rank correlation coefficient was then used to
413 compare the autonomy index and NSAR on three right-lateralized networks (Limbic-B, Visual-
414 B, and Ventral Attention-A) and three left-lateralized networks (Language, Dorsal Attention-A,
415

416 and Control-B) determined *a priori*. In order to correct for multiple comparisons, a Bonferroni-
417 corrected alpha level of 0.008 was used.

418 External validity was next examined through a comparison of NSAR values from
419 significantly lateralized networks against two measures from the Cognition Battery of the
420 National Institutes of Health Toolbox (Gershon et al., 2013): the Oral Reading Recognition Test
421 (ORRT; Gershon et al., 2014) and the Flanker Inhibitory Control and Attention Test (adapted
422 from Rueda et al., 2004). The ORRT was selected as a measure of language and the Flanker as a
423 measure of executive control (inhibitory control, specifically) and visuospatial attention. Among
424 all available cognitive assessments, we selected those that have been shown to engage cognitive
425 domains lateralized to both the right (assessing attention via the Flanker test) and left (evaluating
426 language through the ORRT) hemispheres. Each cognitive measure has been highly validated
427 (Heaton et al., 2014; Ott et al., 2022; Zelazo et al., 2014). To facilitate the comparison of NSAR
428 against these cognitive measures, a Canonical Correlation Analysis (CCA) was implemented
429 using HCP subjects with all four resting-state runs available ($N = 232$). The CCA was chosen for
430 its ability to robustly estimate relationships between sets of variables (Marek et al., 2022), and
431 was conducted using the *cc* function from the CCA package in R (González & Déjean, 2023).
432 CCA feature weights were Haufe-transformed (Haufe et al., 2014) in order to provide a more
433 realistic perspective of feature contributions considering the covariance structure of the data.
434 Haufe-transformations are also known to increase the interpretability and reliability of feature
435 weights (Chen, Ooi, et al., 2022; Chen, Tam, et al., 2022; Tian & Zalesky, 2021)

436 **2.7 Establishing the Reliability of NSAR**

437 Reliability analyses sought to address three questions: 1) How much data is needed to
438 obtain a stable estimate of NSAR, 2) What is the test-retest reliability of NSAR, and 3) Is there a
439 task effect on NSAR estimation?

440 **2.7.1 Stable Estimate Analysis**

441 Given that MRI scanning is costly, rendering it comparatively rare to have highly
442 sampled individuals, it is important to understand how much data is needed to reliably estimate
443 lateralization and assess the credibility of our results. To address this concern, we analyzed HCP
444 participants with all four runs of resting-state data available ($N = 232$). Following preprocessing,
445 the first and third scans from each participant were set aside to compose 30 minutes of
446 independent data. Next, the second and fourth scans were each split into three five-minute
447 segments. Runs were split in MATLAB R2018b (MATLAB, 2018) using native MATLAB
448 functions as well as the FreeSurfer functions *MRIread* and *MRIwrite*. The MS-HBM pipeline
449 was then used to generate individual parcellations from 5, 10, 15, 20, 25, and 30 minutes of data
450 from the segmented scans. The MS-HBM pipeline was also used to generate separate individual
451 parcellations from 30 minutes of independent data. Of note, the reliability of the MS-HBM
452 pipeline has been examined previously (see Kong et al., 2019 Figure 3B and Supplementary
453 Figure S10C). The NSAR was then calculated for each iteration (5, 10, 15, etc. minutes) and the
454 independent 30 minutes of data. An intraclass correlation between the NSAR from each iteration
455 parcellation and the independent 30 minutes parcellation was assessed within each subject.
456 Similarly, an intraclass correlation between the NSAR from each iteration parcellation and the
457 independent 30 minutes parcellation was assessed for each network. For the NSAR and
458 parcellation stable estimate analyses, the standard guidelines from Koo & Li (2016) regarding
459 intraclass correlation values were implemented, with values less than 0.5 indicating poor

460 reliability, values between 0.5 and 0.75 indicating moderate reliability, values between 0.75 and
461 0.9 indicating good reliability, and values greater than 0.9 indicating excellent reliability (based
462 on a 95% confidence interval).

463 **2.7.2 Test-Retest Reliability Analysis**

464 The purpose of the test-retest reliability analysis is to measure the reliability of NSAR in
465 a simpler fashion than the stable estimate analysis. For this analysis, the first two and second two
466 runs from HCP participants with all four runs available were used to generate separate individual
467 parcellations from which NSAR will be calculated. Outliers were fenced on a network basis to an
468 upper limit of the third quartile plus 1.5 multiplied by the interquartile range, and a lower limit of
469 the first quartile minus 1.5 multiplied by the interquartile range. An intraclass correlation
470 coefficient was calculated comparing the NSAR from the first half of the data with the NSAR
471 from the second half for three right-lateralized networks (Limbic-B, Visual-B, and
472 Salience/Ventral Attention-A) and three left-lateralized networks (Language, Dorsal Attention-
473 A, and Control-B) determined *a priori*.

474 **2.7.3 Task Effects Analysis**

475 In the case that a large quantity of data is needed to derive a reliable estimate of
476 lateralization, one might consider including task data in addition to any resting-state data in order
477 to increase the amount of available data per participant. However, in this situation it would be
478 prudent to know if task data provides the same or similar estimates as those from resting-state
479 data. To address this concern, the NSD dataset was selected since it has a large quantity of both
480 resting-state and task-based fMRI data per participant. Following preprocessing, a minimum of
481 12 resting-state runs were available for each participant, so the first 12 available resting-state
482 runs and the first 12 available task runs were utilized (resting-state and task runs were of the

483 same duration). Individual parcellations were then generated based on various combinations of
484 runs within task type: even-numbered runs, odd-numbered runs, the first half of runs, the second
485 half of runs, and two random selections of runs (without replacement). A dice coefficient was
486 then computed to compare parcellation label overlap within task (e.g., between even and odd-
487 numbered resting-state runs) and between tasks (e.g., between odd-numbered runs from resting-
488 state and task runs). This comparison procedure was repeated for the NSAR intraclass correlation
489 coefficient. Due to the non-normal nature of such a small dataset, comparisons between the task
490 and rest parcellation dice coefficients and NSAR intraclass correlations were formally made
491 using paired Wilcoxon Signed Rank tests (R Core Team, 2011; Wilcoxon, 1945).

492 **2.8 Identifying Lateralized Networks**

493 After establishing validity and reliability, we addressed the first hypothesis of
494 determining whether any of the 17 networks exhibited lateralization, and of those, which were
495 the most lateralized. The following analyses were first implemented in the HCP-Discovery
496 dataset and then replicated in the HCP-Replication and HCPD datasets using all data available
497 from each participant. First, to determine whether any networks exhibited lateralization, multiple
498 regressions were implemented for each of the 17 networks. Models consisted of a given
499 network's NSAR value and the covariates of mean-centered age, sex, mean-centered mean
500 framewise displacement, and handedness (measured via the Edinburgh Handedness Inventory;
501 Oldfield, 1971). A network was considered lateralized if the model intercept was significant at
502 the Bonferroni-corrected alpha level of 0.003. Next, to determine which networks were the most
503 lateralized, any networks exhibiting significant lateralization in the previous tests with the same
504 direction of lateralization were compared against each other two at a time in multiple regressions

505 with a binary variable for the two networks and the covariates of mean-centered age, sex, mean-
506 centered mean framewise displacement, and handedness.

507 **2.9 Identifying Network Relationships**

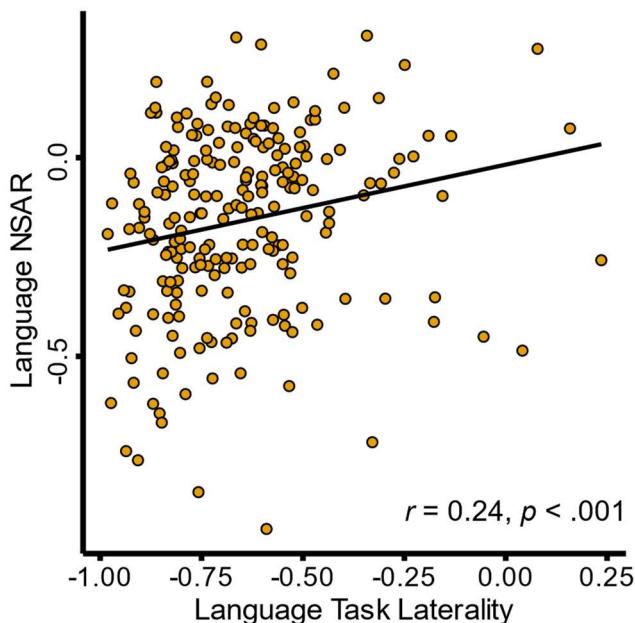
508 To test the second hypothesis regarding how network lateralization is potentially related
509 between networks, a general relationship was first assessed between NSAR values averaged
510 across like-lateralized networks followed by correlation matrices and structural equation
511 modeling. An exploratory factor analysis (EFA) was conducted in the HCP-Discovery dataset
512 followed by separate confirmatory factor analyses (CFAs) in the HCP-Replication, and HCPD
513 datasets using model-adjusted lateralization values from any reliably lateralized networks. For a
514 network to be considered reliably lateralized, it was significantly lateralized across the HCP-
515 Discovery, HCP-Replication, and HCPD datasets. The exploratory factor analysis was chosen for
516 its ability to identify shared relationships between the items in a data-driven manner. The *fa*
517 function from the psych package (Revelle, 2023) was used to conduct an iterated principal
518 factors analysis and subsequent parallel analysis. Criteria for the extraction of factors were: a
519 minimum eigenvalue of one, visual inspection of a scree plot, and a parallel analysis. A four-
520 factor model was hypothesized, similar to Liu et al. (2009), with each factor encompassing
521 vision, internal thought, attention, and language. The factor structure identified in the HCP-
522 Discovery dataset was then implemented in confirmatory factor analyses in the HCP-Replication
523 and HCPD datasets using the *cfa* function from the lavaan package (Rosseel, 2012; Rosseel et
524 al., 2023).

525 **3 Results**

526 **3.1 NSAR as a Valid Measure of Lateralization**

527 The ecological validity of NSAR was examined through comparison against laterality
528 calculated from a language task in a subset of the HCP subjects ($N = 221$). A positive significant
529 relationship between NSAR for the Language network and language task laterality was found
530 (Spearman rank correlation $r = 0.24, p < .001$; see Figure 3).

531



532 **Figure 3.** Language network NSAR and language task laterality. Depicted is a positive relationship
533 between NSAR for the Language network and language task laterality in a subset of the HCP dataset (N
534 = 221). Across each measure of laterality, a negative value denotes left-hemisphere lateralization while a
535 positive value indicates right-hemisphere lateralization.

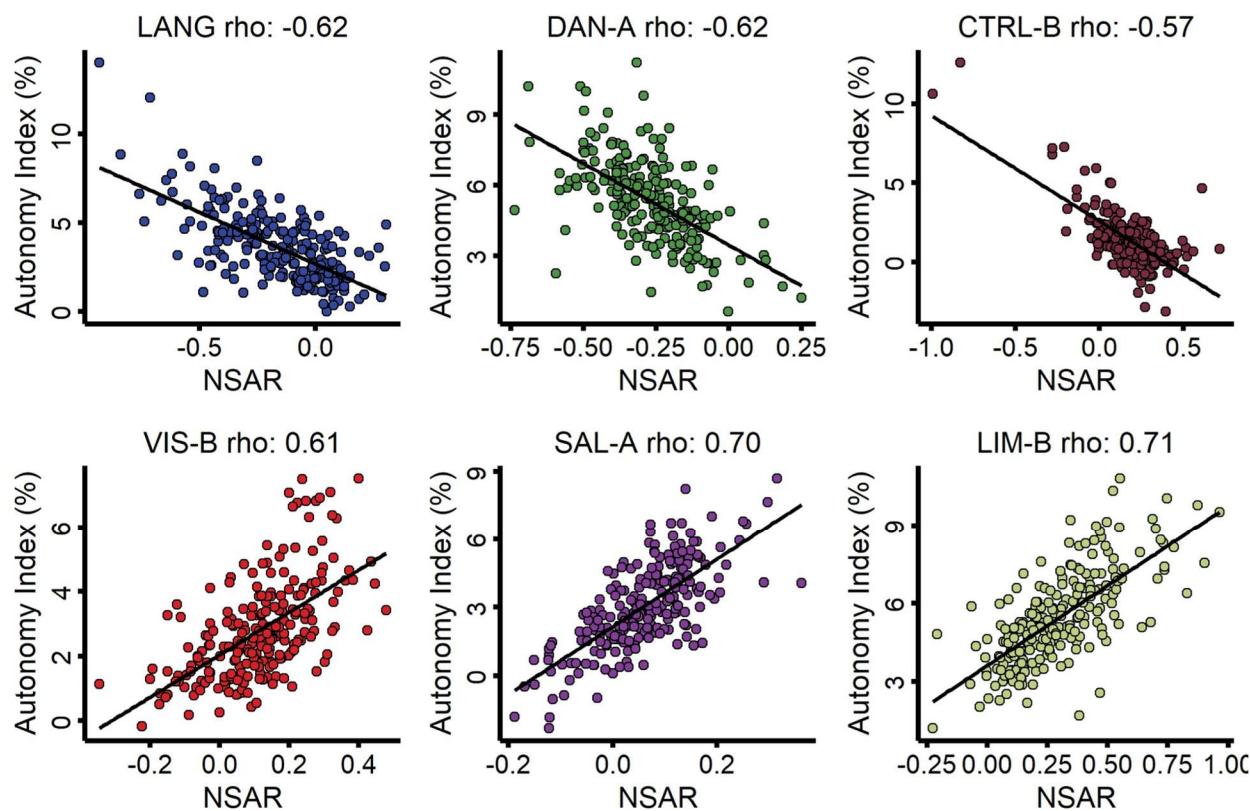
536

537 The convergent validity of NSAR was assessed through comparison with an additional
538 functional measure of specialization (the autonomy index) using the Spearman rank correlation.
539 To facilitate direct comparison with NSAR values, the sign for autonomy index values was
540 reversed. With the selected left-lateralized networks, significant relationships were found
541 between the autonomy index and NSAR for the Language (Spearman rank correlation $r = -0.62$,

542 $p < .001$; see Figure 3 Panel B), Dorsal Attention-A (Spearman rank correlation $r = -0.62, p <$
543 $.001$), and the Control-B (Spearman rank correlation $r = -0.57, p < .001$) networks (see the top
544 row of Figure 4). Significant relationships were also found between the autonomy index and
545 NSAR for the selected right-lateralized networks including the Visual-B (Spearman rank
546 correlation $r = 0.71, p < .001$), Salience/Ventral Attention-A (Spearman rank correlation $r =$
547 $0.61, p < .001$), and Limbic-B (Spearman rank correlation $r = 0.69, p < .001$) networks (see the
548 second row of Figure 4). These findings indicate that NSAR and the autonomy index are
549 measuring similar facets of specialization.

550

Correspondence between NSAR and the Autonomy Index



551 **Figure 4.** Evidence for convergent validity between the autonomy index and NSAR in a subset of HCP
552 dataset. The top row depicts the relationships between the autonomy index and NSAR for three left-
553 lateralized networks (Language, Dorsal Attention-A, and Control-B; Spearman rank correlation $r = -0.57 -$

554 -0.62). The bottom row depicts the relationships between the autonomy index and NSAR for three right-
555 lateralized networks (Visual-B, Ventral Attention-A, and Limbic-B; Spearman rank correlation $r = 0.61 -$
556 0.71). For each scatterplot, the line of best fit was generated using the *lm* function (no covariates) and
557 each circle represents an individual.

558

559 Next, the external validity of NSAR was examined through comparison against two
560 cognitive measures using a CCA: a reading task (ORRT) and an attention/inhibitory control task
561 (the Flanker task). In preparation for the CCA in a subset of HCP participants ($N = 232$; no
562 missing data), linearity and heteroskedasticity of age-, sex-, handedness-, and mean framewise
563 displacement-adjusted NSAR values from eight significantly lateralized networks and the age-
564 and sex-adjusted values from two cognitive measures were evaluated in pairwise plots, which
565 were followed by the Doornik-Hansen multivariate test for normality (*DH.test* function from the
566 mvnTest package; $DH = 164.21, p = 0$; Doornik & Hansen, 2008; Pya et al., 2016). Tests of
567 dimensionality for the CCA indicated that one of the two canonical dimensions was statistically
568 significant at the .05 level. This dimension had a canonical correlation of 0.34 ($F(16, 444) =$
569 0.87, $p = .008$) between the cognitive measures and NSAR values, while the canonical
570 correlation was much lower for the second, nonsignificant dimension at 0.14 ($F(7, 223) = 0.98, p$
571 = .75). Table 1 presents the standardized canonical coefficients for the first dimension across the
572 cognitive measures and eight lateralized networks. Of the cognitive variables, the first canonical
573 dimension was most strongly influenced by language ability (β (standardized canonical
574 coefficient) = -0.99). In terms of lateralized networks, the Visual-B ($\beta = -0.33, r = -0.13$),
575 Language ($\beta = 0.39, r = 0.2$), Dorsal Attention-A ($\beta = -0.54, r = -0.17$), and Control-C ($\beta = 0.48,$
576 $r = 0.13$) networks appeared to contribute the most to the first canonical dimension. Haufe-
577 transformed feature weights indicated that for every one-unit increase in Language network

578 lateralization, the first dimension, representing language ability, increases by 0.13 (see Table 1).
579 These findings suggest that there is a relationship between network lateralization and cognitive
580 abilities, specifically language.

581

582 **Table 1**

583 *Canonical Correlation Analysis Results for Dimension 1 in a Subset of the HCP Dataset (N =*
584 *232)*

	Standardized Canonical Coefficient	Haufe- Transformed Weight	Correlation with Canonical Variate*
Cognitive Variables			
Language (ORRT)	-0.99	-0.45	-0.32
Attention (Flanker)	0.39	2.22	0.07
Lateralized Networks			
Visual-B	-0.33	-0.05	-0.13
Language	0.39	0.13	0.2
Dorsal Attention-A	-0.54	-0.07	-0.17
Salience/Ventral Attention-A	-0.18	-0.03	-0.1
Control-B	0.11	-0.01	-0.02
Control-C	0.48	0.04	0.13
Default-C	0.37	0.05	0.12
Limbic-B	-0.17	-0.03	-0.05

585 *Bolded values were significant at the $p < .05$ level following multiple comparison corrections.

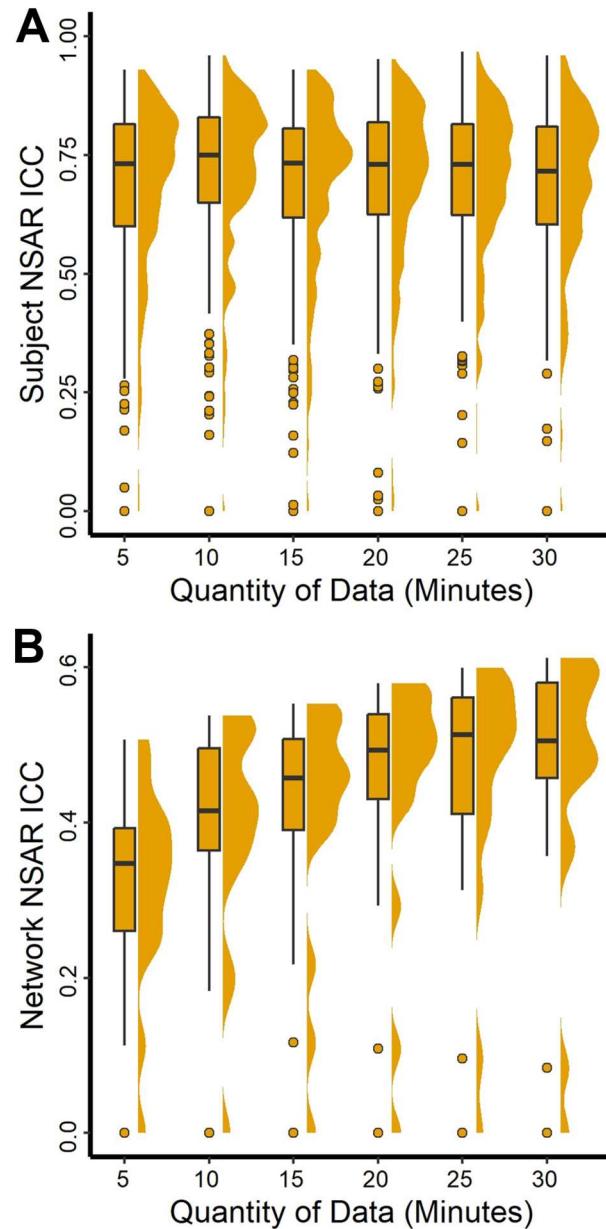
586

587 **3.2 NSAR as a Reliable Measure of Lateralization**

588 **3.2.1 Stable Estimate Analysis**

589 To address the question of how much data is needed in order to obtain a stable estimate
590 of NSAR values, combinations of five-minute increments (5, 10, 15...30 minutes) were
591 compared against 30 independent minutes of data in a subset of HCP subjects. The intraclass
592 correlations indicate that only five minutes of data are needed to obtain moderate to good
593 intraclass correlations for the majority of subjects (see Figure 5 Panel A). Of note, poor and
594 excellent interclass correlations were observed for some subjects. The stable estimate analysis
595 was also approached from a network basis (as opposed to the subject basis presented in Figure 5
596 Panel A). Networks with the lowest intraclass correlations included the Limbic-A and Control-A
597 networks, while networks with the greatest intraclass correlations included Visual-A, Limbic-B,
598 and Default-A (for overall distributions, see Figure 5 Panel B; for specific network intraclass
599 correlation coefficients, see Supplementary Figure S2). Interestingly, not all networks improved
600 in reliability with additional data, including the Limbic-A and Control-A networks. This is likely
601 a reflection of a poor signal-to-noise ratio. For parcellation label overlap estimates, see
602 Supplementary Figure S3.

603



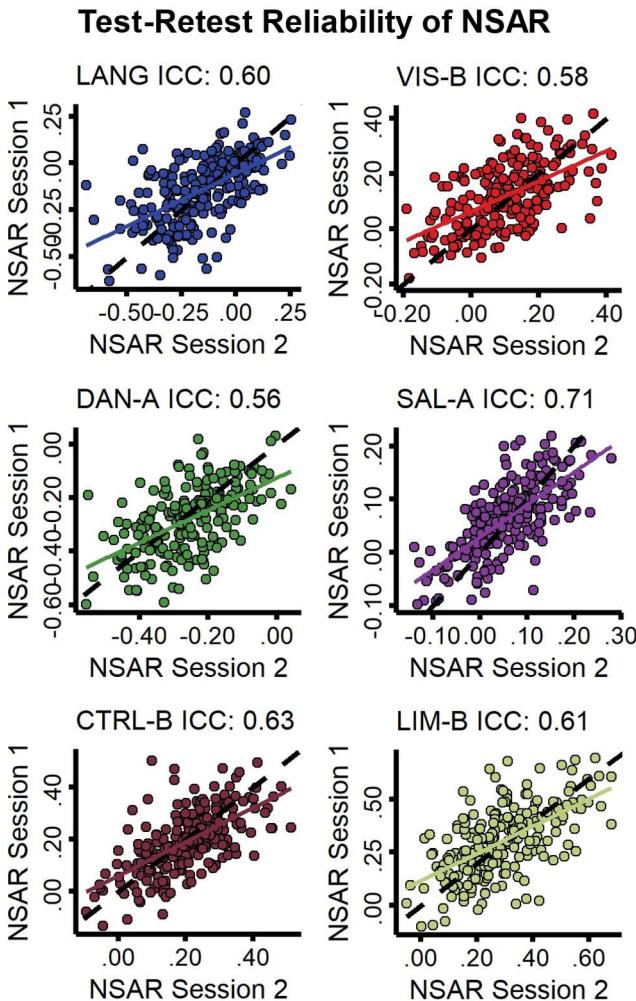
604 **Figure 5.** Evidence for reliable estimates of NSAR in the HCP dataset. Panel A depicts the intraclass
605 correlation coefficient calculated for each subject's 17 NSAR values for each time increment (5, 10, 15 ...
606 30 minutes) and the subject's 17 NSAR values from 30 independent minutes of data. Panel B depicts the
607 intraclass correlation coefficient calculated for each network's mean NSAR value between the 30
608 independent minutes of data and each increment of data. The distribution of intraclass correlation
609 coefficients is shown for the 17 networks. Specific network intraclass correlation coefficients are displayed
610 in Supplementary Figure S2.

611

612 **3.2.2 Test-Retest Reliability Analysis**

613 Using HCP subjects with all four resting-state runs available post-preprocessing ($N =$
614 232), test-retest reliability was assessed for three left-lateralized networks (Language, Dorsal
615 Attention-A, and Control-B) and three right-lateralized networks (Limbic-B, Visual-B, and
616 Salience/Ventral Attention-A) determined *a priori*. For the left-lateralized networks, intraclass
617 correlations were within the moderate range, from 0.56 to 0.63, with the lowest being the Dorsal
618 Attention-A network ($ICC = 0.56, F(231, 231) = 3.6, p < .001, 95\% CI [0.47, 0.64]$; see Figure
619 6). For the right-lateralized networks, intraclass correlations remained in the moderate range,
620 between 0.58 to 0.71, with the Visual-B network exhibiting the lowest reliability ($ICC = 0.58,$
621 $F(231, 231) = 3.7, p < .001, 95\% CI [0.48, 0.66]$).

622



623 **Figure 6.** Test-retest reliability of NSAR values for left- and right-lateralized networks in 232 HCP
624 subjects. Left-lateralized networks (left column) included Language, Dorsal Attention-A, and Control-B.
625 Right-lateralized networks (right column) included Visual-B, Salience/Ventral Attention-A, and Limbic-B. In
626 each plot, a circle represents a subject.

627

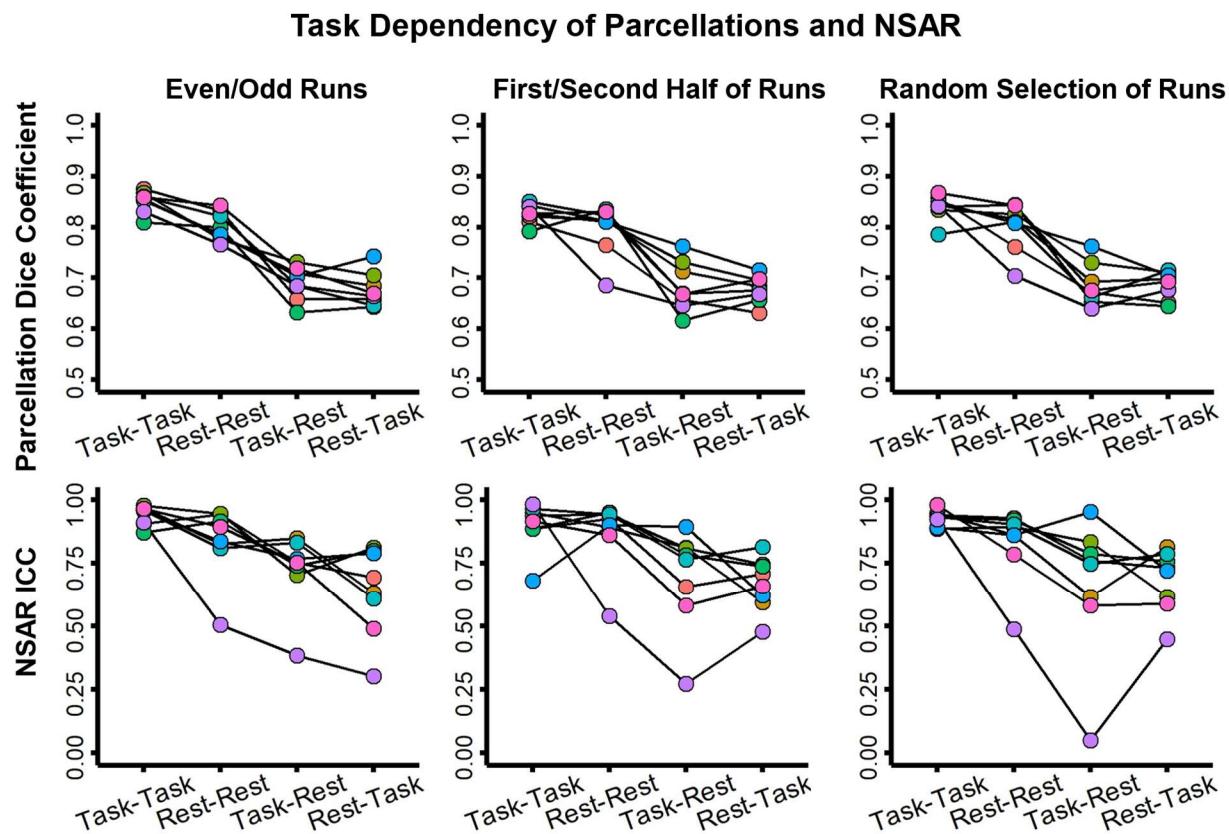
628 **3.2.3 Task Effects on Individual Parcellations and NSAR**

629 Using the NSD dataset ($N = 8$) to compare potential differences between resting-state and
630 task fMRI on individual parcellations and NSAR estimates, we found differences between the
631 within-task comparisons and between task comparisons for both the parcellation dice coefficients
632 and NSAR intraclass correlations (see Figure 7). Wilcoxon signed rank comparisons revealed a

633 difference in within-task (Task-Task and Rest-Rest) dice coefficients for even versus odd
634 numbered runs ($V = 36, p = .008$), but no difference for the first half versus the second half of
635 runs ($V = 29, p = .15$) or the random selection of runs ($V = 31, p = .08$). Regardless of how the
636 data were split, a task effect in dice coefficient was found between within-task (Task-Task) and
637 between-task (Task-Rest) dice coefficients for even versus odd numbered runs ($V = 36, p =$
638 $.008$), the first half versus the second half of runs ($V = 36, p = .008$), and the random selection of
639 runs ($V = 36, p = .008$).

640 Similarly, with the NSAR intraclass coefficients, no significant difference was found for
641 within-task (Task-Task and Rest-Rest) reliability across the even versus odd numbered runs ($V =$
642 $31, p = .08$) and the first half versus the second half of runs ($V = 19, p = .95$), but not for the
643 random selection of runs ($V = 35, p = .02$). However, a significant difference was not found
644 between within-task (Task-Task) and between-task (Task-Rest) intraclass correlation coefficients
645 across the even versus odd numbered runs ($V = 31, p = .08$), the first half versus the second half
646 of runs ($V = 31, p = .08$), but for the random selection of runs ($V = 34, p = .02$).

647



648 **Figure 7.** Task dependency of individual parcellations and NSAR in the NSD dataset. Depicted in the top
649 650 651 652 653 654 655 656 657 658 659

Figure 7. Task dependency of individual parcellations and NSAR in the NSD dataset. Depicted in the top row are the dice coefficients for the individual parcellations between 30-minute increments of resting-state or task fMRI data. Regardless of how the data were split (even- versus odd-numbered runs, the first half versus the second half, or a random selection without replacement), a task effect was found. Depicted in the second row are the NSAR intraclass correlation coefficients computed in individuals across networks. In each plot, circles connected by a line represent an individual.

3.3 Networks with the Greatest Lateralization

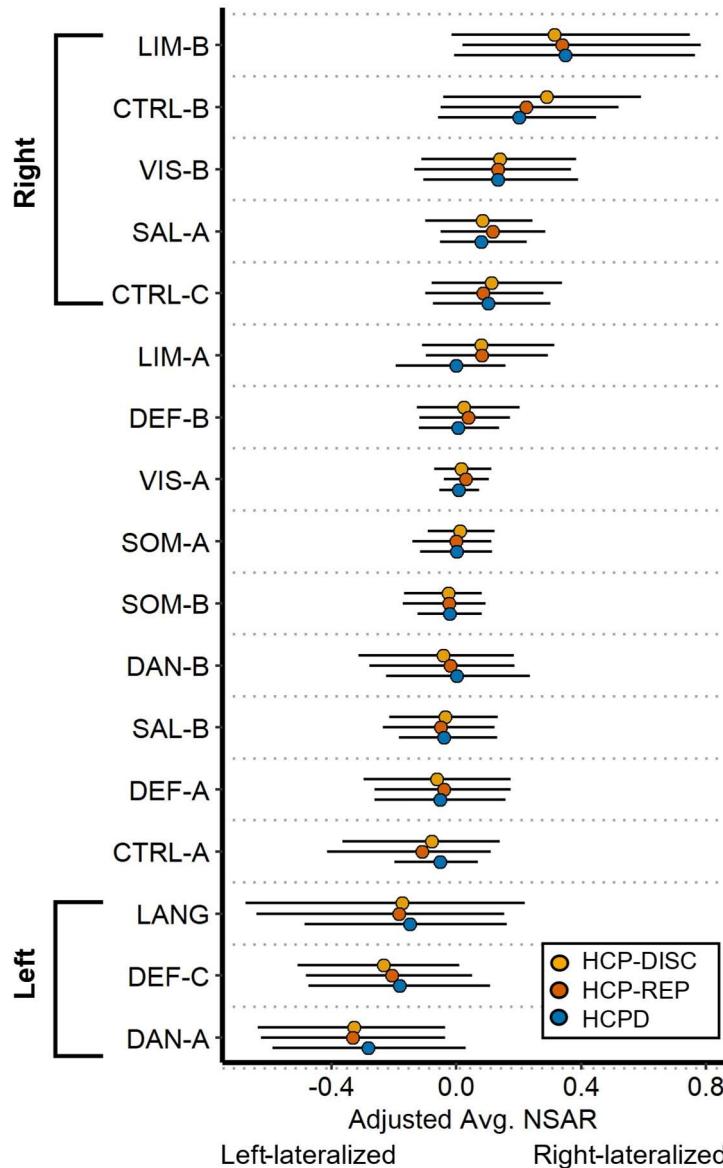
To test the first hypothesis that networks associated with language, visuospatial attention, and executive control would show the greatest hemispheric lateralization, networks were first evaluated for lateralization and then compared against each other. To begin, a series of multiple regressions were used to identify if any of the 17 networks were lateralized, first in the HCP-

660 Discovery dataset and then in the HCP-Replication and HCPD datasets. Networks with
661 significant lateralization ($p < .003$) in the same direction (e.g., right or left lateralization) across
662 all three datasets included nine networks, of which four were left-lateralized (Language, Dorsal
663 Attention-A, Control-A and Default-C) and five were right-lateralized (Visual-B,
664 Salience/Ventral Attention-A, Control-B, Control-C, and Limbic-B; see Supplementary Table
665 1). However, given the very low reliability of the left-lateralized Control-A network (mean ICC =
666 0.12; see Supplementary Figure S2), this network was not considered further. None of the
667 covariates were reliably significant for a given network across all three datasets. See Figure 8 for
668 model-adjusted NSAR values for each of the 17 networks and see Figure 9 for the percentage of
669 surface area occupied by the eight most lateralized networks.

670 Following the identification of eight lateralized networks, a series of multiple regressions
671 were used to compare networks with the same direction of lateralization two at a time in order to
672 identify the networks with the greatest lateralization. Models included a binary network variable
673 and the covariates of mean-centered age, sex, handedness, and mean-centered mean framewise
674 displacement. Of the left-lateralized networks, the Dorsal Attention-A network was the most
675 lateralized compared with the Language and Default-C networks, and this pattern was replicated
676 across the HCP-Discovery, HCP-Replication, and HCPD datasets (see Supplementary Table 2).
677 Of the right-lateralized networks, the Limbic-B network was the most lateralized, followed by
678 the Control-B network, Visual-B and Control-C networks (not significantly different), and the
679 Salience/Ventral Attention-A network. This pattern was replicated across the three datasets as
680 well (see Supplementary Table 3). Contrary to our hypothesis that networks associated with
681 language, visuospatial attention, and executive control would show the greatest lateralization, we

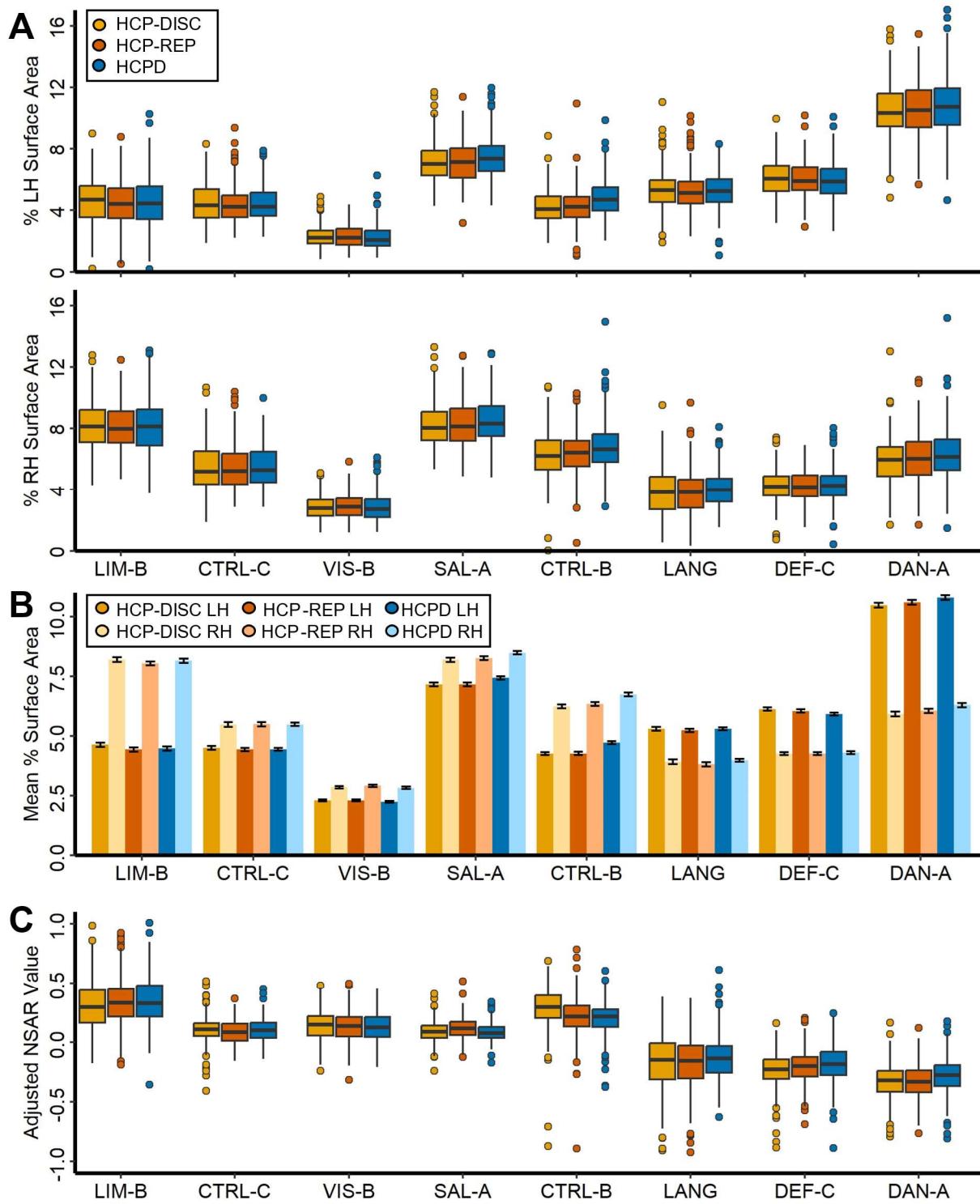
682 identified the Dorsal Attention-A network as the most left-lateralized and the Limbic-B network
683 as the most right-lateralized.

684



685 **Figure 8.** Lateralization for 17 networks across the HCP-Discovery, HCP-Replication, and HCPD
686 datasets. On the y-axis are the 17 networks and on the x-axis are the adjusted NSAR values, with
687 negative values representing left hemisphere lateralization and positive values representing right
688 hemisphere lateralization. Bars represent the 2.5 and 97.5 percentiles. NSAR values were adjusted by
689 regressing out the effects of mean-centered age, mean-centered mean framewise displacement, and sex
690 using the following formula: $NSAR_{adjusted} = NSAR_{raw} - [\beta_1(\text{mean-centered age}_{raw} - \text{mean of mean-}]$

691 centered age_{raw}) + β_2 (mean-centered FD_{raw} – mean of mean-centered FD_{raw}) + β_3 (sex_{raw} – mean sex_{raw}) +
692 β_4 (handedness_{raw} – mean handedness_{raw}]. NSAR adjustment occurred separately for each network
693 within each dataset. Lines represent the standard error. Across the three datasets, eight networks were
694 reliably and significantly lateralized (left-lateralized: Language, Dorsal Attention-A, and Default-C; right-
695 lateralized: Visual-B, Salience/Ventral Attention-A, Control-B, Control-C, and Limbic-B).
696



697 **Figure 9.** Percent surface area for 8 lateralized networks across the HCP-Discovery, HCP-Replication,
698 and HCPD datasets. Depicted in the top of Panel A is the percentage of the surface area occupied by a
699 given lateralized network for the left hemisphere (top panel) and right hemisphere (bottom panel).

700 Depicted in Panel B is the mean percentage of surface area occupied by a lateralized network, with
701 standard error bars. The left and right hemisphere estimates are displayed side-by-side for each dataset.
702 In Panel C, the adjusted NSAR values for each network are shown. In Panels A and C, points represent
703 individual outliers.

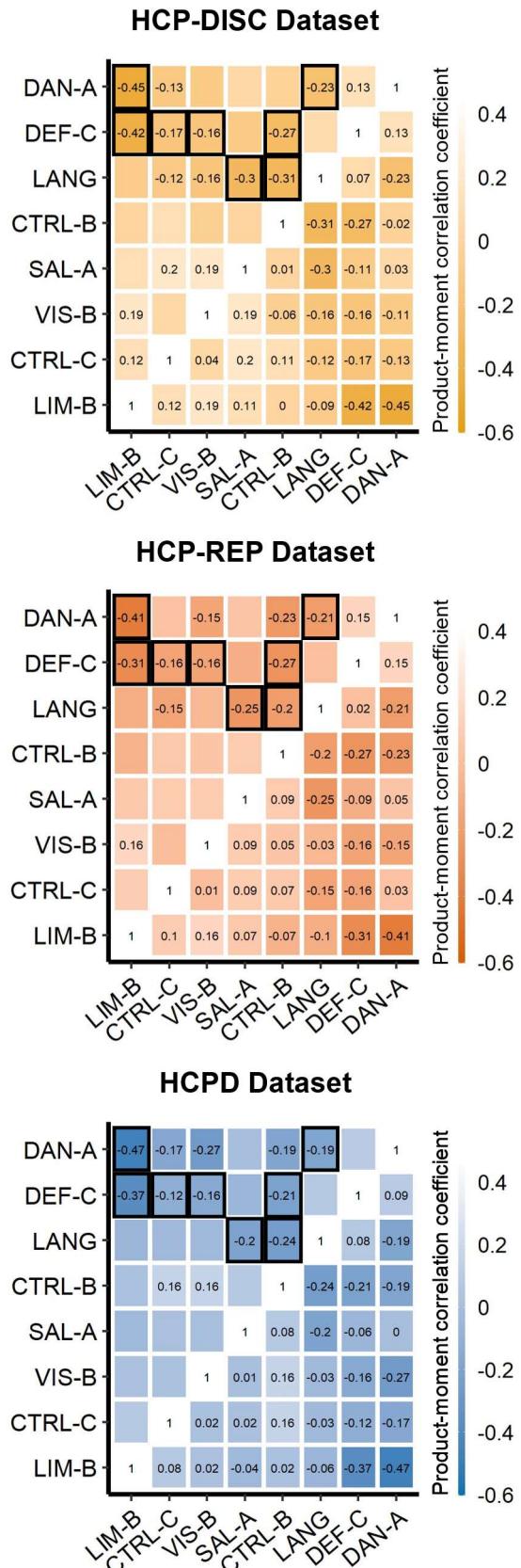
704

705 **3.4 Relationships between Networks' Lateralization**

706 Next, we investigated how lateralization in one network may influence the lateralization
707 of other networks. This second hypothesis was assessed first through general correlations
708 followed by both correlation matrices and structural equation modeling conducted in triplicate
709 across the HCP-Discovery, HCP-Replication, and HCPD datasets. First, model-adjusted NSAR
710 values were averaged across like-lateralized networks before the averaged left-lateralized values
711 (from the Language, Dorsal Attention-A, and Default-C networks) were correlated with the
712 averaged right-lateralized values (from the Visual-B, Salience-Ventral Attention-A, Control-B,
713 Control-C, and Limbic-B networks). A general negative relationship between left-lateralized and
714 right-lateralized networks was found across each dataset (HCP-Discovery: $r(274) = -0.67, p <$
715 $.001$; HCP-Replication: $r(275) = -0.59, p < .001$; HCPD: $r(343) = -0.66, p < .001$). Next,
716 correlation matrices of the model-adjusted NSAR values from the eight lateralized networks
717 evidenced moderate negative relationships between the left- and right-lateralized networks across
718 individuals (see Figure 10). In the HCP-Discovery dataset, negative relationships were found
719 between the Limbic-B and Dorsal Attention-A networks ($r(274) = -0.45, p < .001$, 95% CI [-
720 $0.54, -0.36$]; see Figure 11 Panel A), the Limbic-B and Default-C networks ($r(274) = -0.42, p <$
721 $.001$, 95% CI [- $0.51, -0.31$]; see Figure 11 Panel B), the Default-C and Visual-B networks
722 ($r(274) = -0.16, p = .007$, 95% CI [- $0.28, -0.05$]), the Default-C and Control-B networks ($r(274)$
723 $= -0.27, p < .001$, 95% CI [- $0.38, -0.16$]), the Default-C and Control-C networks ($r(274) = -$

724 0.17, $p = .004$, 95% CI [-0.29, -0.06]), the Control-B and Language networks ($r(274) = -0.31$, $p <$
725 .001, 95% CI [-0.41, -0.19]), and the Language and Salience/Ventral Attention-A networks
726 ($r(274) = -0.3$, $p < .001$, 95% CI [-0.41, -0.19]; see Figure 11 Panel C). Interestingly, a negative
727 relationship was also found between two left-lateralized networks: Dorsal Attention-A and
728 Language ($r(274) = -0.23$, $p < .001$, 95% CI [-0.34, -0.11]). Each negative relationship was
729 replicated across the HCP-Replication and HCPD datasets (see Figure 10). These relationships
730 support the dependent hypothesis, which suggests that having one highly lateralized network
731 corresponds with increased lateralization in other networks within the individual, and that this
732 pattern is systematic across individuals.

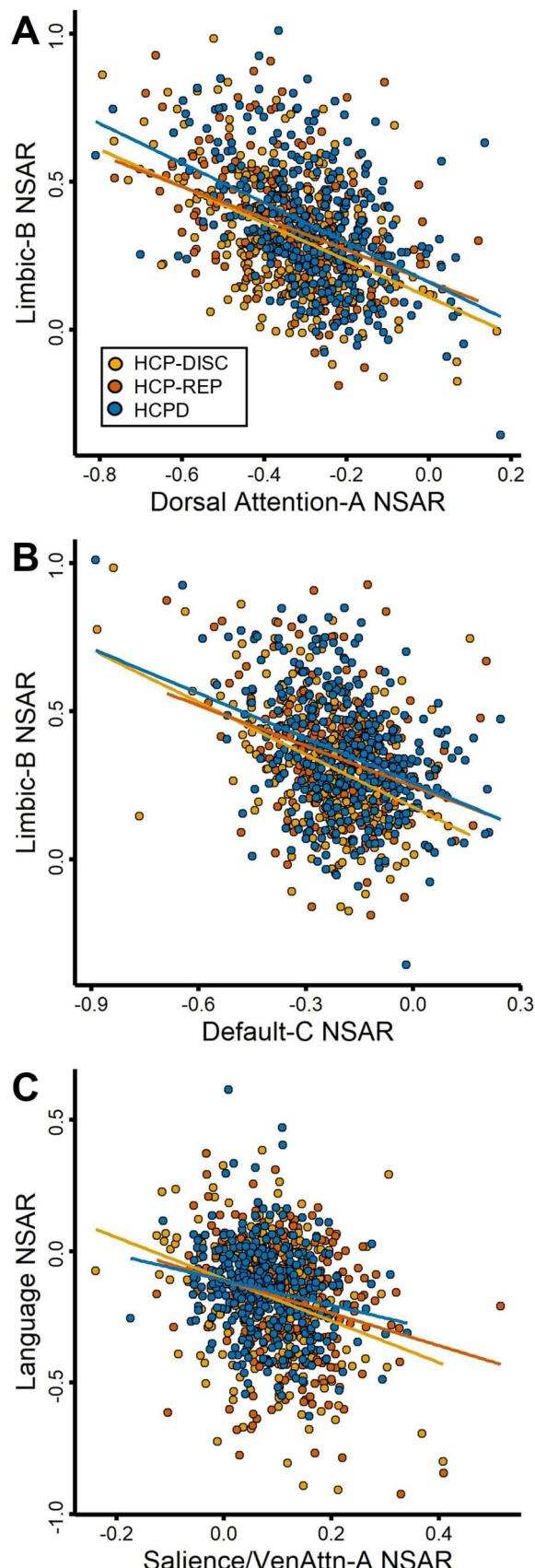
733



734 **Figure 10.** Relationships between lateralized networks across the HCP-Discovery, HCP-Replication, and

735 HCPD datasets. Correlation matrices were created from the model-adjusted NSAR values from the eight
736 lateralized networks (Visual-B, Language, Dorsal Attention-A, Salience/Ventral Attention-A, Control-B,
737 Control-C, Default-C, and Limbic-B), controlling for sex, mean-centered age, mean-centered framewise
738 displacement, and handedness. Correlation values thresholded at $p = .05$ are displayed in the upper
739 triangles, and consistent relationships have been highlighted with black boxes.

740



741 **Figure 11.** Negative correlations between highly left- and right-lateralized networks across the HCP-

742 Discovery, HCP-Replication, and HCPD datasets. Panel A depicts the negative relationship between the
743 Limbic-B and Dorsal Attention-A networks (HCP-Discovery: $r(274) = -0.45$, adjusted $R^2 = 0.2$; HCP-
744 Replication: $r(275) = -0.41$, adjusted $R^2 = 0.16$; HCPD: $r(341) = -0.47$, adjusted $R^2 = 0.22$). Panel B
745 depicts the negative relationship between the right-lateralized Limbic-B and left-lateralized Default-C
746 networks (HCP-Discovery: $r(274) = -0.42$, adjusted $R^2 = 0.17$; HCP-Replication: $r(275) = -0.31$, adjusted
747 $R^2 = 0.09$; HCPD: $r(341) = -0.37$, adjusted $R^2 = 0.14$). Panel C depicts the negative relationship between
748 the right-lateralized Salience/Ventral Attention-A network and left-lateralized Language network (HCP-
749 Discovery: $r(274) = -0.3$, adjusted $R^2 = 0.09$; HCP-Replication: $r(275) = -0.25$, adjusted $R^2 = 0.06$; HCPD:
750 $r(341) = -0.2$, adjusted $R^2 = 0.04$). In each panel, a circle represents a single participant's model-adjusted
751 NSAR value, which was adjusted for mean-centered age, sex, handedness, and mean-centered mean
752 framewise displacement.

753

754 **3.4.1 EFA in the HCP-Discovery Dataset**

755 As an additional method for exploring relationships between lateralized networks, an
756 EFA was implemented in the HCP-Discovery dataset, followed by CFAs in the HCP-
757 Replication, and HCPD datasets. In preparation for the EFA in the HCP-Discovery dataset ($N =$
758 276; no missing data), linearity and heteroskedasticity of adjusted NSAR values from the eight
759 lateralized networks were evaluated in pairwise plots, which were followed by the Doornik-
760 Hansen multivariate test for normality (*DH.test* function from the *mvnTest* package; $DH =$
761 202.89, $p = 0$; Doornik & Hansen, 2008; Pya et al., 2016). The NSAR values were then
762 evaluated for multicollinearity, and no items had Variance Inflation Factor values greater than
763 1.65 (*vif* function from the *psych* package; Revelle, 2023). Additional assumptions testing
764 included Bartlett's test of sphericity and the Kaiser-Meyer-Olkin (KMO) Measure of Sampling
765 Adequacy. For the test of sphericity, we rejected the null hypothesis that there is no correlation

766 among the items ($\chi^2(28) = 293.43, p < .001$). Additionally, the KMO test was .46, revealing that
767 the extracted factors will account for an unacceptable amount of common variance.

768 To examine network relationships, a principal factors analysis in the HCP-Discovery
769 dataset was performed. Using the correlation matrix from eight lateralized networks, two factors
770 were extracted. This first factor had an eigenvalue of 1.38 (explaining 57% of the variance; see
771 Table 2 for factor loadings) and the second factor had an eigenvalue of 1.02 (explaining 43% of
772 the variance). Of note, the left-lateralized networks load negatively onto the first extracted factor
773 while right-lateralized networks load positively, suggesting that this factor encompasses right-
774 hemisphere lateralization, with the opposite in the second extracted factor.

775

776 **Table 2**

777 *Summary of Exploratory Factor Analysis Results for the NSAR Scores Using Iterated Principal
778 Factors in the HCP-Discovery Dataset (N = 276)*

Network	Factor 1 Loadings	Factor 2 Loadings
Limbic-B	0.73	-0.32
Control-C	0.28	0.06
Visual-B	0.29	0.04
Salience/VenAttn-A	0.28	0.26
Control-B	0.22	0.23
Language	-0.38	-0.75
Default-C	-0.51	0.05
Dorsal Attention-A	-0.37	0.48
Eigenvalues	1.38	1.02
Proportion of variance explained	0.57	0.43

779 Note: Factor loadings over .40 appear in bold.

780

781 **3.4.2 CFAs in the HCP-Replication and HCPD Datasets**

782 In preparation for the CFA in the HCP-Replication dataset ($N = 277$; no missing data),
783 linearity and heteroskedasticity of adjusted NSAR values were evaluated in pairwise plots, which
784 were followed by the Doornik-Hansen multivariate test for normality ($DH = 43.29, p < .001$;
785 Doornik & Hansen, 2008; Pya et al., 2016). The NSAR values were then evaluated for
786 multicollinearity, and no items had Variance Inflation Factor values greater than 1.3. Additional
787 assumptions testing included Bartlett's test of sphericity and the Kaiser-Meyer-Olkin (KMO)
788 Measure of Sampling Adequacy. For the test of sphericity, we rejected the null hypothesis that
789 there is no correlation among the items ($\chi^2(6) = 101.53, p < .001$). Additionally, the KMO test
790 was .49, revealing that the extracted factors will account for an unacceptable amount of common
791 variance. This process of evaluating assumptions was also performed in the HCPD dataset ($N =$
792 343; no missing data), starting pairwise plots and the Doornik-Hansen multivariate test for
793 normality ($DH = 44.37, p < .001$). Multicollinearity was then evaluated, and no items had
794 Variance Inflation Factor values greater than 1.49. Additionally, for Bartlett's test of sphericity,
795 we rejected the null hypothesis that there is no correlation among the items ($\chi^2(6) = 164.59, p <$
796 .001). Furthermore, the KMO test was 0.47, revealing that the extracted factors will account for
797 an unacceptable amount of common variance.

798 To examine network relationships and potentially replicate the HCP-Discovery EFA, a
799 confirmatory factor analyses were performed in the HCP-Replication and HCPD datasets using
800 the *cfa* function from the lavaan package (Rosseel, 2012; Rosseel et al., 2023). The structural
801 model consisted of two factors, with Limbic-B and Default-C loaded onto the first factor and
802 Language and Dorsal Attention-A loaded onto the second factor. In the HCP-Replication dataset,
803 the model provided fair fit to the data: $\chi^2(2) = 61.95, p < .001$; confirmatory fit index (CFI) =

804 0.38; root-mean-square error of approximation (RMSEA) = 0.33; standardized root mean square
805 residual (SRMR) = 0.14. Similar results were found in the HCPD dataset, for which the model
806 provided fair fit to the data: $\chi^2(2) = 102.02, p < .001$; CFI = 0.38; RMSEA = 0.38; SRMR = 0.16.

807 Standardized loadings for each network across both CFAs are shown in Table 3.

808

809 **Table 3**

810 *Standardized Loadings for a Two-Factor Confirmatory Factor Analysis Model of NSAR Scores*
811 *in the HCP-Replication (N = 277) and HCPD (N = 343) Datasets*

Network	HCP-Replication		HCPD	
	Factor 1	Factor 2	Factor 1	Factor 2
Limbic-B	-0.3	0	-0.36	0.00
Language	0.00	0.84	0.00	0.91
Default-C	1.03	0.00	1.03	0.00
Dorsal Attention-A	0.00	-0.25	0.00	-0.21

812 Note: Factor loadings over .40 appear in bold.

813

814 **4 Discussion**

815 In this study, we implemented a novel measure of lateralization based on high-resolution
816 individual network parcellations (NSAR). Using NSAR, we identified eight networks that were
817 reliably lateralized across three independent datasets. Furthermore, we examined potential
818 relationships between networks' NSAR values and found evidence supporting a dependent
819 hypothesis of lateralization. These findings shed new light on hemispheric specialization, which
820 has implications for the understanding of brain organization and development (Toga &
821 Thompson, 2003), individual differences (Perez et al., 2023), human-defining cognitive
822 processes (Hartwigsen et al., 2021), and neurodevelopmental conditions (Eyler et al., 2012;
823 Kong et al., 2022). Previously, functional lateralization has been assessed through a variety of

824 approaches dependent on intrinsic connectivity, primarily at the group level. However, recent
825 evidence suggests that group-based approaches can obfuscate the idiosyncratic anatomy of
826 individuals and blur potentially meaningful and clinically useful variability (Gratton et al., 2020;
827 Lynch et al., 2020; Salvo et al., 2021). For example, the language network has high spatial
828 variability across individuals (Braga et al., 2020; Fedorenko, Duncan, et al., 2012), holding
829 ramifications for the accurate assessment of lateralization for this and other variable networks.

830 **4.1 Evidence for the Validity and Reliability of NSAR**

831 In this study, we examined functional lateralization using a novel surface area-based
832 index. This measure was developed methodologically through the examination of ecological,
833 convergent, and external validity, as well as a stable estimate analysis, test-retest reliability, and
834 potential task effects. Notably, language task laterality appears to have a positive relationship
835 with Language network NSAR, suggesting that there is a degree of concordance between this
836 resting-state measure of laterality and a task-based measure of laterality. Furthermore, estimates
837 from this surface area approach to lateralization appear to converge with a different functional
838 connectivity-based method (the autonomy index). This result supports the idea that NSAR is
839 capturing lateralization in a way that is valid while being distinct from the autonomy index in
840 how it is derived. Unlike the autonomy index, the formula for NSAR does not normalize for
841 brain size or deal in the minutiae of individual functional connections. Rather, NSAR is
842 calculated based on a network's surface area. Additionally, potential relationships between
843 network NSAR values and two cognitive measures were investigated in an analysis of external
844 validity. Interestingly, a relationship between the laterality of the Visual-B, Language, Dorsal
845 Attention-A, Control-C, and Default-C networks and language ability was identified. Similarly,
846 others have identified a link between language function and left hemisphere lateralization during

847 language production (Groen et al., 2012), and between the lateralization of functional networks
848 and their associated cognitive abilities (Gotts et al., 2013).

849 Reliability analyses indicated that NSAR is stable within individuals, even after just five
850 minutes of resting-state fMRI data. Interestingly, networks with the greatest reliabilities included
851 the visual and somatomotor networks. This is in keeping with Kong et al. (2019), who found that
852 sensorimotor networks exhibited lower inter-subject functional connectivity variability than
853 association networks. Since NSAR is indirectly based on an individual's functional connectivity
854 profiles, this result is unexpected.

855 In addition to the quantity of data available per participant, we also examined the effect
856 of data type (task versus rest) on NSAR estimates within individuals. While within-task type
857 reliability was high, we found that there was indeed a task effect such that resting-state fMRI and
858 task fMRI did not yield identical parcellations and NSAR estimates within individuals. This
859 finding supports the hypothesis that resting-state fMRI can be thought of as another arbitrary task
860 state (Buckner et al., 2013). Yet, the “task” of resting-state fMRI can result in greater variability
861 in functional connectivity compared with that resulting from task fMRI, perhaps resulting from
862 mind wandering (Elton & Gao, 2015). And when predicting individual traits, task-based models
863 outperform rest-based models, with this difference likely reflecting the “unconstrained nature” of
864 the resting state (Greene et al., 2018). Since NSAR estimates are derived from individual
865 parcellations which are in turn generated from individual functional connectivity profiles, it
866 stands to reason that connectivity differences resulting from task type could trickle down to
867 differences in NSAR estimates.

868 **4.2 The Identification of Eight Reliably Lateralized Networks**

869 Following the methodological development of NSAR, we reliably identified eight
870 lateralized networks across three datasets: Visual-B, Language, Dorsal Attention-A,
871 Salience/Ventral Attention-A, Control-B, Control-C, Default-C, and Limbic-B. While a ninth
872 lateralized network was reliably identified (Control-A), this network was discarded from further
873 analysis due to very poor reliability. Previously, several of these networks have been established
874 as lateralized, particularly those associated with language and visuospatial attention processing.

875 ***4.2.1 The Dorsal Attention-A Network Exhibited the Greatest Left-Lateralization***

876 Previously, left-lateralized networks have included the language, frontoparietal control,
877 and default networks. More specifically, evidence for the lateralization of the language network
878 has been derived from a variety of methods including the Wada test (Desmond et al., 1995;
879 Wada & Rasmussen, 1960), lesion cases (Broca, 1861; Wernicke, 1995), task fMRI (Elin et al.,
880 2022; Fedorenko, Duncan, et al., 2012; Fedorenko et al., 2010, 2011; Fedorenko, McDermott, et
881 al., 2012; Lipkin et al., 2022; Malik-Moraleda et al., 2022; Olulade et al., 2020; Scott et al.,
882 2017; Wilson et al., 2017), and resting-state fMRI (Braga et al., 2020; Labache et al., 2020; Zhu
883 et al., 2014), among others. Using NSAR, we also identified the language network as being
884 strongly left-lateralized. However, unlike a prior comparative study (Braga et al., 2020), which
885 examined lateralization in the language, salience, default, and frontoparietal networks (but not a
886 dorsal attention network), we did not find that the language network was the most left-lateralized
887 network. Instead, we identified the Dorsal Attention-A network as being the most left-lateralized.
888 Unlike the ventral attention network, the dorsal attention network has been previously identified
889 as a bilateral network (Fox et al., 2006; for review see Mengotti et al., 2020). This was the case
890 for the Dorsal Attention-B network, which was not a significantly lateralized network across the
891 three datasets. However, there is evidence for a left-lateralized dorsal attention network across

892 both left- and right-handed individuals, stemming from a within-individual network variants
893 approach (see Figure 7 Panel C of Perez et al., 2023). Additionally, it could be that a finer-
894 grained parcellation deconstructs the dorsal attention network into one bilateral and one
895 lateralized network, similar to previous within-individual work on the default network (Braga &
896 Buckner, 2017; DiNicola et al., 2020).

897 ***4.2.2 Replication of Right-Lateralized Attention, Control, and Limbic Networks***

898 This is not the first study to identify the ventral attention, control, and limbic networks as
899 being lateralized. Abundant evidence exists for the right-lateralization of visuospatial/ventral
900 attention, stemming from task fMRI (Beume et al., 2015; Cai et al., 2013; Jansen et al., 2004;
901 Shulman et al., 2010; Siman-Tov et al., 2007; Umarova et al., 2010; J. Wang et al., 2016; Zago et
902 al., 2016, 2017), resting-state fMRI (Braga et al., 2020; Wang et al., 2014), hemispatial neglect
903 cases (Corbetta & Shulman, 2011), and others (for review, see Mengotti et al., 2020).
904 Interestingly, we identified the Salience/Ventral Attention-A but not the Salience/Ventral
905 Attention-B network as being right-lateralized. Once more, this may be due to the network
906 resolution selected ($k = 17$), which may have split the canonical ventral attention network into a
907 bilateral and a right-lateralized network.

908 While this study successfully replicated right-lateralized control networks (Control-B and
909 Control-C), a left-lateralized control network was not identified. Previously, Wang et al. (2014)
910 found evidence for a dually lateralized frontoparietal control network using the autonomy index.
911 It was suggested that this control network acted as a coupler between the two hemispheres to
912 increase efficiency while simultaneously supporting within-hemisphere processes. This was also
913 evidenced by Spreng et al. (2013), which found that the frontoparietal control network exhibits
914 distinct connectivity patterns with the default and attention networks in response to varying task

915 requirements. Similarly, using a seed-based analysis, Braga et al. (2020) confirmed the presence
916 of both left-lateralized and right-lateralized frontoparietal control networks. Collectively, these
917 results point to control networks differentially executing cognitive processes within the left and
918 right hemispheres.

919 Finally, the most right-lateralized network identified using NSAR was the Limbic-B
920 network, a network that occupies cortical real estate associated with emotion (Olson et al., 2007;
921 Pehrs et al., 2017; Sonkusare et al., 2020). Historically, emotion processing has been identified
922 as being lateralized, perhaps beginning with lesion cases (Gainotti, 2019; Hughlings-Jackson,
923 1878; Luys, 1879). Later work suggested that specific aspects of emotion were lateralized,
924 including the right-lateralization of emotion recognition, the right-lateralization of emotional
925 control and expression, the right-lateralization of negative emotions, and the left-lateralization of
926 positive emotions (Silberman & Weingartner, 1986). Contemporarily, it has been suggested that
927 a hemispheric functional-equivalence hypothesis would better explain emotion neuroimaging
928 results, such that emotion results from networks that are interrelated and may have different
929 patterns of lateralization (for review, see Palomero-Gallagher & Amunts, 2022). This perspective
930 emphasizes the intricate and interconnected nature of emotion-related neural processes,
931 particularly those patterns of lateralization that emerge from inter-network relationships.
932 Interestingly, the Limbic-B network appears to be at the center of our main results regarding
933 lateralization relationships between networks.

934 **4.3 Support for the Dependent Hypothesis of Network Lateralization**

935 Beyond identifying networks with the greatest lateralization, we sought to understand
936 how network lateralization was related between networks. Framing this investigation, a 2019
937 review described relationships between lateralized brain networks in terms of functional

938 complementarity, or the degree of specialization minimizing functional overlap and redundancy
939 for a pair of networks (Vingerhoets, 2019). Borrowing from the author's ecological
940 differentiation metaphor, just as species may specialize and fill different niches, facilitating
941 coexistence among species, brain networks may also operate in a complementary fashion
942 through the use of distinct computational processes and neural locations. Conversely, species
943 (and brain networks) which do not specialize are functionally redundant and face increased
944 competition. Crucially, this dynamic is such that high complementarity characterizes brain
945 networks with low redundancy and competition while low complementarity describes brain
946 networks with high redundancy and competition. To explore this further, we hypothesized that
947 having one highly lateralized network corresponds with increased lateralization in other
948 networks within an individual, and that this pattern of covariation would systematically occur
949 across individuals (the dependent hypothesis). Interestingly, we identified lateralized network
950 relationships exhibiting high and low complementarity occurring systematically across three
951 different datasets.

952 **4.3.1 High Complementarity Network Relationships**

953 Using correlation matrices, we found support for the dependent hypothesis in networks
954 lateralized to contralateral hemispheres and exhibiting high complementarity. A negative
955 relationship was found between the right-lateralized Limbic-B network and the left-lateralized
956 Dorsal Attention-A network. Such a relationship is indicative of covariation, since negative
957 NSAR values indicate left hemisphere lateralization, so greater lateralization of the left-
958 lateralized Dorsal Attention-A network (negative NSAR values) were associated with greater
959 lateralization of the right-lateralized Limbic-B network (positive NSAR values). Similarly, an
960 additional negative relationship was identified between the right-lateralized Limbic-B network

961 and the left-lateralized Default-C network. These relationships were systematic across
962 individuals spanning three datasets, suggesting that there may be a population benefit to this
963 configuration of lateralization. Interestingly, while others have suggested that the relationship
964 between linguistic and spatial processing networks may be characterized by high complementary
965 as well (Vingerhoets, 2019), we did not find evidence for this relationship in the present study.

966 ***4.3.2 Low Complementarity Network Relationships***

967 Beyond the high complementarity relationships, using correlation matrices we also
968 identified a dependent relationship for networks lateralized to the same hemisphere exhibiting
969 low complementarity. Since NSAR is derived based on surface area and the selected network
970 parcellation method has a winner-takes-all approach, all cortical surface area for each individual
971 is accounted for and networks lateralized to the same hemisphere are in competition with one
972 another for cortical real estate. Thus, it is not surprising that two networks lateralized to the same
973 hemisphere might have a negative relationship, such as that between the left-lateralized Dorsal
974 Attention-A and Language networks identified in the present study. This relationship is such that
975 as the lateralization for the Dorsal Attention-A network increases, the lateralization of the
976 Language network decreases within individuals or vice versa, and this pattern was consistent
977 across individuals from three datasets. Remarkably, two other examples of this low
978 complementarity relationship have previously been identified and both involve language or
979 linguistic processing. First, one group found evidence for the “co-lateralization” of language and
980 praxis networks on both the individual and group levels (Vingerhoets et al., 2013). A similar “co-
981 lateralization” relationship was identified for language and arithmetic regions (Pinel & Dehaene,
982 2010). In the latter study, it was suggested that “co-lateralization” might hint at the
983 developmental effects of learning linguistic symbols on the organization of the arithmetic

984 network. An additional hypothesis for this type of complementary relationship suggests that
985 networks composed of overlapping nodes in the same hemisphere may be so similar that sharing
986 proximate space is biologically less costly than the generation of a separate redundant network in
987 the opposite hemisphere (Vingerhoets, 2019).

988 ***4.3.3 Further Evidence of the Dependent Hypothesis***

989 Additional support for the dependent hypothesis was found with the EFA and CFA
990 structures across the three datasets. While we did not replicate the four-factor model from Liu et
991 al. (2009), we did extract two factors for the HCP-Discovery dataset, which were then fitted in
992 the HCP-Replication and HCPD datasets. Across these factor analyses, significant positive and
993 negative loadings were found within each factor structure, suggesting that left- and right-
994 lateralized networks work within a system level higher than the network.

995 ***4.3.4 Characteristics of Lateralized Brain Network Organization***

996 Together, the present evidence accumulated from the correlation matrices and EFA and
997 CFA structures point to three overlapping features of organization for lateralized networks:
998 complementarity, plasticity, and hierarchy. Beyond identifying which networks are lateralized,
999 the present study evidences a configuration in which there are trade-offs in redundancy and
1000 competition. Rather than operating in isolation, lateralized networks appear to function in a
1001 larger system where their organization is interdependent. Given the zero-sum nature of a surface
1002 area-based approach, one might argue that this interconnectedness is an artifact. However,
1003 evidence from prior task fMRI lateralization research is in support of interconnectedness (Pinel
1004 & Dehaene, 2010; Vingerhoets et al., 2013). Similarly, the presented results demonstrating that
1005 network lateralization strength is related between networks suggests a degree of plasticity and
1006 adaptability in the brain's functional organization. This potential developmental influence was

1007 hinted at with the “co-lateralization” of language and arithmetic; however, longitudinal models
1008 are needed to verify this speculation. Lastly, the present results describe a hierarchy of lateralized
1009 brain networks. This is most clearly demonstrated with the EFA and CFA structures, which were
1010 composed of both positive and negative factor loadings suggesting that these lateralized
1011 networks are not isolated but rather part of a larger system. This hierarchical organization of
1012 lateralized networks implies a mosaic of interaction and dependency within the broader brain
1013 architecture.

1014 **4.4 Limitations and Future Directions**

1015 One limitation to this work is that while functional connectivity may be constrained in
1016 part by anatomical connectivity, it is not necessarily dictated by anatomical connectivity. Several
1017 pieces of evidence point to this conclusion: functional connectivity is modulated by task (Shirer
1018 et al., 2012), recent experience (Lewis et al., 2009), caffeine (Laumann et al., 2015), and
1019 sleepiness (Tagliazucchi & Laufs, 2014); and is dynamic within a person over time (Hutchison et
1020 al., 2013). Furthermore, underlying brain geometry models of spontaneous neural activity appear
1021 to be more accurate and parsimonious than those derived from anatomical connectivity (Pang et
1022 al., 2023). Hence, NSAR as a connectivity and surface area-based measure is more reflective of
1023 functional rather than anatomical lateralization. As a result, future studies might benefit from
1024 exploring the Coutanche et al. (2023) method, which employs a surface-fingerprinting technique
1025 and multivariate laterality index for computing functional lateralization, offering a potentially
1026 complementary approach to NSAR in assessing functional lateralization.

1027 In this study, individual parcellations were generated using the Kong et al. (2019) MS-
1028 HBM algorithm. However, improved versions of this algorithm have since been published (Kong
1029 et al., 2021; Yan et al., 2023), which account for parcel distributions, spatial contiguity, local

1030 gradients, and homotopy (or the lack thereof in Schaefer parcels). Thus, future investigations
1031 using NSAR might consider implementing an updated individual parcellation algorithm.
1032 Moreover, it would be valuable for future studies to explore lateralization in developmental and
1033 clinical populations to address questions regarding the developmental timeline of network
1034 lateralization and the potential disruptions in network lateralization observed in specific
1035 neurodevelopmental conditions such as autism or schizophrenia.

1036 **5 Conclusions**

1037 The present study investigated hemispheric asymmetries in the human brain, focusing on
1038 17 functional networks. This was accomplished by implementing a surface area-based metric of
1039 lateralization, for which validity and reliability were examined. Following methodological
1040 development, we addressed two main questions: (1) which networks exhibit the greatest
1041 hemispheric asymmetries, and (2) how does lateralization in one network relate to the
1042 lateralization of other networks? We found that the Language, Dorsal Attention-A, and Default-
1043 C networks were significantly left-lateralized while the Visual-B, Salience/Ventral Attention-A,
1044 Control-B, Control-C, and Limbic-B networks were significantly right-lateralized. Additionally,
1045 using correlation matrices and EFA and CFA models to understand how lateralization is related
1046 between networks, we found general support for a dependent relationship between left- and
1047 right-lateralized networks. Within individuals, greater left-lateralization in a particular network
1048 (such as the Dorsal Attention-A or Default-C networks) was associated with greater right-
1049 lateralization in a particular network (such as the Limbic-B network). This pattern of
1050 lateralization appears to occur systematically across individuals, suggesting that lateralization
1051 follows a covariation paradigm. Further work is needed to understand how these findings may
1052 differ in developmental and clinical populations.

1053

6 Acknowledgements

1054

Data were provided in part by the Human Connectome Project, WU-Minn Consortium

1055

(principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the

1056

16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by

1057

the McDonnell Center for Systems Neuroscience at Washington University. HCPD data reported

1058

in this publication was supported by the National Institute of Mental Health of the National

1059

Institutes of Health under Award Number U01MH109589 and by funds provided by the

1060

McDonnell Center for Systems Neuroscience at Washington University in St. Louis. The HCP-

1061

Development 2.0 Release data used in this report came from DOI: 10.15154/1520708. Collection

1062

of the NSD dataset was supported by NSF IIS-1822683 and NSF IIS-1822929. Furthermore, we

1063

acknowledge the support of the Office of Research Computing at Brigham Young University.

1064

We are also grateful to Ru Kong for her assistance implementing the individual parcellation

1065

pipeline.

1066

7 Data and Code Availability

1067

With the exception of the HCPD dataset, the data reported on in the present study can be

1068

accessed publicly online (HCP: <https://db.humanconnectome.org/>; NSD:

1069

<http://naturalscenesdataset.org/>). The HCPD dataset is hosted through the NIMH Data Archive

1070

(NDA), through which access can be requested. Preprocessing and individual parcellation

1071

pipeline code are available through the CBIG repository on GitHub at

1072

<https://github.com/ThomasYeoLab/CBIG>. Scripts used to implement the processing pipelines

1073

and perform statistical analyses are available on GitHub at <https://github.com/Nielsen-Brain-and->

1074

Behavior-Lab/NSAR2023.

1075

8 Declaration of Competing Interests

1076 The authors have no known conflict of interest to disclose.

1077 **9 Author Contributions/CRediT Statement**

1078 Madeline Peterson: Conceptualization, Methodology, Software, Validation, Formal
1079 analysis, Investigation, Data curation, Writing – original draft, Writing – review & editing,
1080 Visualization, and Project administration. Rodrigo M. Braga: Conceptualization, Writing –
1081 review & editing. Dorothea L. Floris: Writing – review & editing. Jared A. Nielsen:
1082 Conceptualization, Methodology, Writing — review and editing, Supervision, and Project
1083 administration.

1084 **10 Funding**

1085 This work was supported in part by National Institute of Mental Health grant R00
1086 MH117226 (to R.M.B.) and an Alzheimer's Disease Core Center grant (P30 AG013854;
1087 R.M.B.). DLF was supported by funding from the European Union's Horizon 2020 research and
1088 innovation programme under the Marie Skłodowska-Curie grant agreement No 101025785.

1089

1090 **11 References**

1091 Allen, E. J., St-Yves, G., Wu, Y., Breedlove, J. L., Prince, J. S., Dowdle, L. T., Nau, M., Caron,
1092 B., Pestilli, F., Charest, I., Hutchinson, J. B., Naselaris, T., & Kay, K. (2022). A massive
1093 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence. *Nature
1094 Neuroscience*, 25(1), Art. 1. <https://doi.org/10.1038/s41593-021-00962-x>

1095 Andrew, R., Mench, J., & Rainey, C. (1982). Right-left asymmetry of response to visual stimuli
1096 in the domestic chick. *Analysis of Visual Behaviour*, 197–209.

1097 Anticevic, A., Dierker, D. L., Gillespie, S. K., Repovs, G., Csernansky, J. G., Van Essen, D. C.,
1098 & Barch, D. M. (2008). Comparing surface-based and volume-based analyses of
1099 functional neuroimaging data in patients with schizophrenia. *NeuroImage*, 41(3), 835–
1100 848. <https://doi.org/10.1016/j.neuroimage.2008.02.052>

1101 Argall, B. D., Saad, Z. S., & Beauchamp, M. S. (2006). Simplified intersubject averaging on the
1102 cortical surface using SUMA. *Human Brain Mapping*, 27(1), 14–27.

1103 Bernard, F., Lemee, J.-M., Mazerand, E., Leiber, L.-M., Menei, P., & Ter Minassian, A. (2020).
1104 The ventral attention network: The mirror of the language network in the right brain
1105 hemisphere. *Journal of Anatomy*, 237(4), 632–642. <https://doi.org/10.1111/joa.13223>

1106 Beume, L.-A., Kaller, C. P., Hoeren, M., Klöppel, S., Kuemmerer, D., Glauche, V., Köstering,
1107 L., Mader, I., Rijntjes, M., Weiller, C., & Umarova, R. (2015). Processing of bilateral
1108 versus unilateral conditions: Evidence for the functional contribution of the ventral
1109 attention network. *Cortex*, 66, 91–102. <https://doi.org/10.1016/j.cortex.2015.02.018>

1110 Binder, J. R., Frost, J. A., Hammeke, T. A., Cox, R. W., Rao, S. M., & Prieto, T. (1997). Human
1111 brain language areas identified by functional magnetic resonance imaging. *Journal of
1112 Neuroscience*, 17(1), 353–362.

1113 Braga, R. M., & Buckner, R. L. (2017). Parallel interdigitated distributed networks within the
1114 individual estimated by intrinsic functional connectivity. *Neuron*, 95(2), 457-471.e5.
1115 <https://doi.org/10.1016/j.neuron.2017.06.038>

1116 Braga, R. M., DiNicola, L. M., Becker, H. C., & Buckner, R. L. (2020). Situating the left-
1117 lateralized language network in the broader organization of multiple specialized large-
1118 scale distributed networks. *Journal of Neurophysiology*, 124(5), Art. 5.
1119 <https://doi.org/10.1152/jn.00753.2019>

1120 Breier, J. I., Simos, P. G., Zouridakis, G., & Papanicolaou, A. C. (2000). Lateralization of
1121 activity associated with language function using magnetoencephalography: A reliability
1122 study. *Journal of Clinical Neurophysiology*, 17(5), 503–510.

1123 Broca, P. (1861). Remarques sur le siège de la faculté du langage articulé, suivies d'une
1124 observation d'aphémie (perte de la parole). *Bulletin et Memoires de La Societe
1125 Anatomique de Paris*, 6, 330–357.

1126 Buckner, R. L., Krienen, F. M., & Yeo, B. T. T. (2013). Opportunities and limitations of intrinsic
1127 functional connectivity MRI. *Nature Neuroscience*, 16(7), Art. 7.
1128 <https://doi.org/10.1038/nn.3423>

1129 Cai, Q., Van der Haegen, L., & Brysbaert, M. (2013). Complementary hemispheric
1130 specialization for language production and visuospatial attention. *Proceedings of the
1131 National Academy of Sciences*, 110(4), E322–E330.
1132 <https://doi.org/10.1073/pnas.1212956110>

1133 Chen, J., Ooi, L. Q. R., Li, J., Asplund, C. L., Eickhoff, S. B., Bzdok, D., Holmes, A., & Yeo, B.
1134 (2022). There is no fundamental trade-off between prediction accuracy and feature
1135 importance reliability. *BioRxiv*.

1136 Chen, J., Tam, A., Kebets, V., Orban, C., Ooi, L. Q. R., Asplund, C. L., Marek, S., Dosenbach,
1137 N. U. F., Eickhoff, S. B., Bzdok, D., Holmes, A. J., & Yeo, B. T. T. (2022). Shared and
1138 unique brain network features predict cognitive, personality, and mental health scores in
1139 the ABCD study. *Nature Communications*, 13(1), Art. 1. <https://doi.org/10.1038/s41467-022-29766-8>

1141 Ceric, R., Wolf, D. H., Power, J. D., Roalf, D. R., Baum, G. L., Ruparel, K., Shinohara, R. T.,
1142 Elliott, M. A., Eickhoff, S. B., Davatzikos, C., & others. (2017). Benchmarking of
1143 participant-level confound regression strategies for the control of motion artifact in
1144 studies of functional connectivity. *Neuroimage*, 154, 174–187.

1145 Corballis, M. C. (1991). *The lopsided ape: Evolution of the generative mind*. (pp. vii, 366).
1146 Oxford University Press.

1147 Corballis, M. C. (2003). From mouth to hand: Gesture, speech, and the evolution of right-
1148 handedness. *Behavioral and Brain Sciences*, 26(2), 199–208.
1149 <https://doi.org/10.1017/S0140525X03000062>

1150 Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in
1151 the brain. *Nature Reviews Neuroscience*, 3(3), 201–215.

1152 Corbetta, M., & Shulman, G. L. (2011). Spatial Neglect and Attention Networks. *Annual Review
1153 of Neuroscience*, 34(1), 569–599. <https://doi.org/10.1146/annurev-neuro-061010-113731>

1154 Coutanche, M. N., Sauter, J., Akpan, E., Buckser, R., Vincent, A., & Caulfield, M. K. (2023).
1155 Novel approaches to functional lateralization: Assessing information in activity patterns
1156 across hemispheres and more accurately identifying structural homologues.
1157 *Neuropsychologia*, 190, 108684. <https://doi.org/10.1016/j.neuropsychologia.2023.108684>

1158 Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation
1159 and surface reconstruction. *NeuroImage*, 9(2), 179–194.
1160 <https://doi.org/10.1006/nimg.1998.0395>

1161 Desai, R., Liebenthal, E., Possing, E. T., Waldron, E., & Binder, J. R. (2005). Volumetric vs.
1162 surface-based alignment for localization of auditory cortex activation. *NeuroImage*,
1163 26(4), 1019–1029. <https://doi.org/10.1016/j.neuroimage.2005.03.024>

1164 Desmond, J. E., Sum, J. M., Wagner, A. D., Demb, J. B., Shear, P. K., Glover, G. H., Gabrieli, J.,
1165 & Morrell, M. (1995). Functional MRI measurement of language lateralization in Wada-
1166 tested patients. *Brain*, 118(6), 1411–1419.

1167 DiNicola, L. M., Braga, R. M., & Buckner, R. L. (2020). Parallel distributed networks dissociate
1168 episodic and social functions within the individual. *Journal of Neurophysiology*, 123(3),
1169 Art. 3. <https://doi.org/10.1152/jn.00529.2019>

1170 Doornik, J. A., & Hansen, H. (2008). An omnibus test for univariate and multivariate normality.
1171 *Oxford Bulletin of Economics and Statistics*, 70, 927–939.

1172 Dosenbach, N. U. F., Koller, J. M., Earl, E. A., Miranda-Dominguez, O., Klein, R. L., Van, A.
1173 N., Snyder, A. Z., Nagel, B. J., Nigg, J. T., Nguyen, A. L., Wesevich, V., Greene, D. J.,
1174 & Fair, D. A. (2017). Real-time motion analytics during brain MRI improve data quality
1175 and reduce costs. *NeuroImage*, 161, 80–93.
1176 <https://doi.org/10.1016/j.neuroimage.2017.08.025>

1177 Elin, K., Malyutina, S., Bronov, O., Stupina, E., Marinets, A., Zhuravleva, A., & Dragoy, O.
1178 (2022). A new functional magnetic resonance imaging localizer for preoperative
1179 language mapping using a sentence completion task: Validity, choice of baseline

1180 condition, and test-retest reliability. *Frontiers in Human Neuroscience*, 16, 791577.

1181 <https://doi.org/10.3389/fnhum.2022.791577>

1182 Elton, A., & Gao, W. (2015). Task-related modulation of functional connectivity variability and

1183 its behavioral correlations. *Human Brain Mapping*, 36(8), 3260–3272.

1184 Eyler, L. T., Pierce, K., & Courchesne, E. (2012). A failure of left temporal cortex to specialize

1185 for language is an early emerging and fundamental property of autism. *Brain*, 135(3),

1186 949–960.

1187 Fedorenko, E. (2021). The early origins and the growing popularity of the individual-subject

1188 analytic approach in human neuroscience. *Current Opinion in Behavioral Sciences*, 40,

1189 105–112. <https://doi.org/10.1016/j.cobeha.2021.02.023>

1190 Fedorenko, E., Behr, M. K., & Kanwisher, N. (2011). Functional specificity for high-level

1191 linguistic processing in the human brain. *Proceedings of the National Academy of*

1192 *Sciences*, 108(39), 16428–16433. <https://doi.org/10.1073/pnas.1112937108>

1193 Fedorenko, E., Duncan, J., & Kanwisher, N. (2012). Language-selective and domain-general

1194 regions lie side by side within Broca's area. *Current Biology*, 22(21), 2059–2062.

1195 <https://doi.org/10.1016/j.cub.2012.09.011>

1196 Fedorenko, E., Hsieh, P.-J., Nieto-Castañón, A., Whitfield-Gabrieli, S., & Kanwisher, N. (2010).

1197 New method for fMRI investigations of language: Defining ROIs functionally in

1198 individual subjects. *Journal of Neurophysiology*, 104(2), 1177–1194.

1199 <https://doi.org/10.1152/jn.00032.2010>

1200 Fedorenko, E., McDermott, J. H., Norman-Haignere, S., & Kanwisher, N. (2012). Sensitivity to

1201 musical structure in the human brain. *Journal of Neurophysiology*, 108(12), 3289–3300.

1202 <https://doi.org/10.1152/jn.00209.2012>

1203 Fischl, B., Sereno, M. I., Tootell, R. B. H., & Dale, A. M. (1999). High-resolution intersubject
1204 averaging and a coordinate system for the cortical surface. *Human Brain Mapping*, 8(4),
1205 272–284. [https://doi.org/10.1002/\(SICI\)1097-0193\(1999\)8:4<272::AID-HBM10>3.0.CO;2-4](https://doi.org/10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4)

1206

1207 Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2006). Spontaneous
1208 neuronal activity distinguishes human dorsal and ventral attention systems. *Proceedings
1209 of the National Academy of Sciences*, 103(26), 10046–10051.
1210 <https://doi.org/10.1073/pnas.0604187103>

1211 Friedrich, P., Patil, K. R., Mochalski, L. N., Li, X., Camilleri, J. A., Kröll, J.-P., Wiersch, L.,
1212 Eickhoff, S. B., & Weis, S. (2022). Is it left or is it right? A classification approach for
1213 investigating hemispheric differences in low and high dimensionality. *Brain Structure
1214 and Function*, 227(2), 425–440. <https://doi.org/10.1007/s00429-021-02418-1>

1215 Gainotti, G. (2019). A historical review of investigations on laterality of emotions in the human
1216 brain. *Journal of the History of the Neurosciences*, 28(1), 23–41.
1217 <https://doi.org/10.1080/0964704X.2018.1524683>

1218 Gazzaniga, M. S. (2000). Cerebral specialization and interhemispheric communication: Does the
1219 corpus callosum enable the human condition? *Brain*, 123(7), 1293–1326.
1220 <https://doi.org/10.1093/brain/123.7.1293>

1221 Gershon, R. C., Cook, K. F., Mungas, D., Manly, J. J., Slotkin, J., Beaumont, J. L., & Weintraub,
1222 S. (2014). Language measures of the NIH Toolbox Cognition Battery. *Journal of the
1223 International Neuropsychological Society : JINS*, 20(6), 642–651.
1224 <https://doi.org/10.1017/S1355617714000411>

1225 Gershon, R. C., Wagster, M. V., Hendrie, H. C., Fox, N. A., Cook, K. F., & Nowinski, C. J.

1226 (2013). NIH Toolbox for assessment of neurological and behavioral function. *Neurology*,

1227 80(11 Supplement 3), S2–S6. <https://doi.org/10.1212/WNL.0b013e3182872e5f>

1228 Geschwind, D. H., & Miller, B. L. (2001). Molecular approaches to cerebral laterality:

1229 Development and neurodegeneration. *American Journal of Medical Genetics*, 101(4),

1230 370–381.

1231 Geschwind, N. (1970). The organization of language and the brain: Language disorders after

1232 brain damage help in elucidating the neural basis of verbal behavior. *Science*, 170(3961),

1233 940–944.

1234 Geschwind, N. (1972). Language and the brain. *Scientific American*, 226(4), 76–83.

1235 Glasser, M. F., & Essen, D. C. V. (2011). Mapping human cortical areas in vivo based on Myelin

1236 content as revealed by T1- and T2-weighted MRI. *Journal of Neuroscience*, 31(32),

1237 11597–11616. <https://doi.org/10.1523/JNEUROSCI.2180-11.2011>

1238 Glasser, M. F., Smith, S. M., Marcus, D. S., Andersson, J. L. R., Auerbach, E. J., Behrens, T. E.

1239 J., Coalson, T. S., Harms, M. P., Jenkinson, M., Moeller, S., Robinson, E. C.,

1240 Sotropoulos, S. N., Xu, J., Yacoub, E., Ugurbil, K., & Van Essen, D. C. (2016). The

1241 Human Connectome Project's neuroimaging approach. *Nature Neuroscience*, 19(9), Art.

1242 9. <https://doi.org/10.1038/nn.4361>

1243 Glasser, M. F., Sotropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L.,

1244 Xu, J., Jbabdi, S., Webster, M., Polimeni, J. R., Van Essen, D. C., & Jenkinson, M.

1245 (2013). The minimal preprocessing pipelines for the Human Connectome Project.

1246 *NeuroImage*, 80, 105–124. <https://doi.org/10.1016/j.neuroimage.2013.04.127>

1247 González, I., & Déjean, S. (2023). *CCA: Canonical Correlation Analysis* (1.2.2). <https://cran.r-project.org/web/packages/CCA/index.html>

1248

1249 Gordon, E. M., Laumann, T. O., Adeyemo, B., Huckins, J. F., Kelley, W. M., & Petersen, S. E.

1250 (2016). Generation and evaluation of a cortical area parcellation from resting-state

1251 correlations. *Cerebral Cortex*, 26(1), 288–303. <https://doi.org/10.1093/cercor/bhu239>

1252 Gordon, E. M., Laumann, T. O., Gilmore, A. W., Newbold, D. J., Greene, D. J., Berg, J. J.,

1253 Ortega, M., Hoyt-Drazen, C., Gratton, C., Sun, H., Hampton, J. M., Coalson, R. S.,

1254 Nguyen, A. L., McDermott, K. B., Shimony, J. S., Snyder, A. Z., Schlaggar, B. L.,

1255 Petersen, S. E., Nelson, S. M., & Dosenbach, N. U. F. (2017). Precision functional

1256 mapping of individual human brains. *Neuron*, 95(4), Art. 4.

1257 <https://doi.org/10.1016/j.neuron.2017.07.011>

1258 Gordon, E. M., Laumann, T. O., Marek, S., Raut, R. V., Gratton, C., Newbold, D. J., Greene, D.

1259 J., Coalson, R. S., Snyder, A. Z., Schlaggar, B. L., Petersen, S. E., Dosenbach, N. U. F.,

1260 & Nelson, S. M. (2020). Default-mode network streams for coupling to language and

1261 control systems. *Proceedings of the National Academy of Sciences*, 117(29), 17308–

1262 17319. <https://doi.org/10.1073/pnas.2005238117>

1263 Gotts, S. J., Jo, H. J., Wallace, G. L., Saad, Z. S., Cox, R. W., & Martin, A. (2013). Two distinct

1264 forms of functional lateralization in the human brain. *Proceedings of the National*

1265 *Academy of Sciences*, 110(36), E3435–E3444.

1266 Gratton, C., Kraus, B. T., Greene, D. J., Gordon, E. M., Laumann, T. O., Nelson, S. M.,

1267 Dosenbach, N. U. F., & Petersen, S. E. (2020). Defining individual-specific functional

1268 neuroanatomy for precision psychiatry. *Biological Psychiatry*, 88(1), 28–39.

1269 <https://doi.org/10.1016/j.biopsych.2019.10.026>

1270 Gratton, C., Nelson, S. M., & Gordon, E. M. (2022). Brain-behavior correlations: Two paths
1271 toward reliability. *Neuron*, 110(9), 1446–1449.
1272 <https://doi.org/10.1016/j.neuron.2022.04.018>

1273 Greene, A. S., Gao, S., Scheinost, D., & Constable, R. T. (2018). Task-induced brain state
1274 manipulation improves prediction of individual traits. *Nature Communications*, 9(1), Art.
1275 1. <https://doi.org/10.1038/s41467-018-04920-3>

1276 Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary-
1277 based registration. *NeuroImage*, 48(1), 63–72.
1278 <https://doi.org/10.1016/j.neuroimage.2009.06.060>

1279 Groen, M. A., Whitehouse, A. J. O., Badcock, N. A., & Bishop, D. V. M. (2012). Does cerebral
1280 lateralization develop? A study using functional transcranial Doppler ultrasound
1281 assessing lateralization for language production and visuospatial memory. *Brain and*
1282 *Behavior*, 2(3), 256–269. <https://doi.org/10.1002/brb3.56>

1283 Hacker, C. D., Laumann, T. O., Szrama, N. P., Baldassarre, A., Snyder, A. Z., Leuthardt, E. C.,
1284 & Corbetta, M. (2013). Resting state network estimation in individual subjects.
1285 *NeuroImage*, 82, 616–633. <https://doi.org/10.1016/j.neuroimage.2013.05.108>

1286 Harms, M. P., Somerville, L. H., Ances, B. M., Andersson, J., Barch, D. M., Bastiani, M.,
1287 Bookheimer, S. Y., Brown, T. B., Buckner, R. L., Burgess, G. C., Coalson, T. S.,
1288 Chappell, M. A., Dapretto, M., Douaud, G., Fischl, B., Glasser, M. F., Greve, D. N.,
1289 Hodge, C., Jamison, K. W., ... Yacoub, E. (2018). Extending the Human Connectome
1290 Project across ages: Imaging protocols for the Lifespan Development and Aging projects.
1291 *NeuroImage*, 183, 972–984. <https://doi.org/10.1016/j.neuroimage.2018.09.060>

1292 Hartwigsen, G., Bengio, Y., & Bzdok, D. (2021). How does hemispheric specialization
1293 contribute to human-defining cognition? *Neuron*, 109(13), 2075–2090.
1294 <https://doi.org/10.1016/j.neuron.2021.04.024>

1295 Haufe, S., Meinecke, F., Görzen, K., Dähne, S., Haynes, J.-D., Blankertz, B., & Bießmann, F.
1296 (2014). On the interpretation of weight vectors of linear models in multivariate
1297 neuroimaging. *NeuroImage*, 87, 96–110.
1298 <https://doi.org/10.1016/j.neuroimage.2013.10.067>

1299 Heaton, R. K., Akshoomoff, N., Tulsky, D., Mungas, D., Weintraub, S., Dikmen, S., Beaumont,
1300 J., Casaletto, K. B., Conway, K., Slotkin, J., & Gershon, R. (2014). Reliability and
1301 validity of composite scores from the NIH Toolbox Cognition Battery in adults. *Journal
1302 of the International Neuropsychological Society : JINS*, 20(6), 588–598.
1303 <https://doi.org/10.1017/S1355617714000241>

1304 Hervé, P.-Y., Zago, L., Petit, L., Mazoyer, B., & Tzourio-Mazoyer, N. (2013). Revisiting human
1305 hemispheric specialization with neuroimaging. *Trends in Cognitive Sciences*, 17(2), 69–
1306 80. <https://doi.org/10.1016/j.tics.2012.12.004>

1307 Ho, D., Imai, K., King, G., Stuart, E., Whitworth, A., & Greifer, N. (2023). *MatchIt:
1308 Nonparametric Preprocessing for Parametric Causal Inference* (4.5.4). <https://cran.r-project.org/web/packages/MatchIt/index.html>

1310 Holmes, A. J., Hollinshead, M. O., O’Keefe, T. M., Petrov, V. I., Fariello, G. R., Wald, L. L.,
1311 Fischl, B., Rosen, B. R., Mair, R. W., Roffman, J. L., Smoller, J. W., & Buckner, R. L.
1312 (2015). Brain Genomics Superstruct Project initial data release with structural, functional,
1313 and behavioral measures. *Scientific Data*, 2(1), Art. 1.
1314 <https://doi.org/10.1038/sdata.2015.31>

1315 Hughlings-Jackson, J. (1878). On affections of speech from disease of the brain. *Brain*, 1(3),
1316 304–330.

1317 Hutchison, R. M., Womelsdorf, T., Gati, J. S., Everling, S., & Menon, R. S. (2013). Resting-state
1318 networks show dynamic functional connectivity in awake humans and anesthetized
1319 macaques. *Human Brain Mapping*, 34(9), 2154–2177. <https://doi.org/10.1002/hbm.22058>

1320 Jansen, A., Flöel, A., Deppe, M., van Randenborgh, J., Dräger, B., Kanowski, M., & Knecht, S.
1321 (2004). Determining the hemispheric dominance of spatial attention: A comparison
1322 between fTCD and fMRI. *Human Brain Mapping*, 23(3), 168–180.
1323 <https://doi.org/10.1002/hbm.20055>

1324 Jenkinson, M., Bannister, P., Brady, M., & Smith, S. M. (2002). Improved optimization for the
1325 robust and accurate linear registration and motion correction of brain images.
1326 *NeuroImage*, 17(2), 825–841. <https://doi.org/10.1006/nimg.2002.1132>

1327 Kong, R., Li, J., Orban, C., Sabuncu, M. R., Liu, H., Schaefer, A., Sun, N., Zuo, X.-N., Holmes,
1328 A. J., Eickhoff, S. B., & Yeo, B. T. T. (2019). Spatial topography of individual-specific
1329 cortical networks predicts human cognition, personality, and emotion. *Cerebral Cortex*,
1330 29(6), Art. 6. <https://doi.org/10.1093/cercor/bhy123>

1331 Kong, R., Yang, Q., Gordon, E., Xue, A., Yan, X., Orban, C., Zuo, X.-N., Spreng, N., Ge, T.,
1332 Holmes, A., Eickhoff, S., & Yeo, B. T. T. (2021). Individual-specific areal-level
1333 parcellations improve functional connectivity prediction of behavior. *Cerebral Cortex*,
1334 31(10), 4477–4500. <https://doi.org/10.1093/cercor/bhab101>

1335 Kong, X.-Z., Postema, M. C., Guadalupe, T., de Kovel, C., Boedhoe, P. S. W., Hoogman, M.,
1336 Mathias, S. R., van Rooij, D., Schijven, D., Glahn, D. C., Medland, S. E., Jahanshad, N.,
1337 Thomopoulos, S. I., Turner, J. A., Buitelaar, J., van Erp, T. G. M., Franke, B., Fisher, S.

1338 E., van den Heuvel, O. A., ... Francks, C. (2022). Mapping brain asymmetry in health
1339 and disease through the ENIGMA consortium. *Human Brain Mapping*, 43(1), 167–181.
1340 <https://doi.org/10.1002/hbm.25033>

1341 Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation
1342 coefficients for reliability research. *Journal of Chiropractic Medicine*, 15(2), 155–163.
1343 <https://doi.org/10.1016/j.jcm.2016.02.012>

1344 Labache, L., Ge, T., Yeo, B. T., & Holmes, A. J. (2023). Language network lateralization is
1345 reflected throughout the macroscale functional organization of cortex. *Nature
1346 Communications*, 14(1), 3405.

1347 Labache, L., Mazoyer, B., Joliot, M., Crivello, F., Hesling, I., & Tzourio-Mazoyer, N. (2020).
1348 Typical and atypical language brain organization based on intrinsic connectivity and
1349 multitask functional asymmetries. *eLife*, 9, e58722. <https://doi.org/10.7554/eLife.58722>

1350 Laumann, T. O., Gordon, E. M., Adeyemo, B., Snyder, A. Z., Joo, S. J., Chen, M.-Y., Gilmore,
1351 A. W., McDermott, K. B., Nelson, S. M., Dosenbach, N. U. F., Schlaggar, B. L.,
1352 Mumford, J. A., Poldrack, R. A., & Petersen, S. E. (2015). Functional system and areal
1353 organization of a highly sampled individual human brain. *Neuron*, 87(3), 657–670.
1354 <https://doi.org/10.1016/j.neuron.2015.06.037>

1355 Lee, M. H., Hacker, C. D., Snyder, A. Z., Corbetta, M., Zhang, D., Leuthardt, E. C., & Shimony,
1356 J. S. (2012). Clustering of Resting State Networks. *PLOS ONE*, 7(7), e40370.
1357 <https://doi.org/10.1371/journal.pone.0040370>

1358 Lewis, C. M., Baldassarre, A., Committeri, G., Romani, G. L., & Corbetta, M. (2009). Learning
1359 sculpts the spontaneous activity of the resting human brain. *Proceedings of the National
1360 Academy of Sciences*, 106(41), 17558–17563. <https://doi.org/10.1073/pnas.0902455106>

1361 Li, J., Kong, R., Liégeois, R., Orban, C., Tan, Y., Sun, N., Holmes, A. J., Sabuncu, M. R., Ge, T.,
1362 & Yeo, B. T. T. (2019). Global signal regression strengthens association between resting-
1363 state functional connectivity and behavior. *NeuroImage*, 196, 126–141.
1364 <https://doi.org/10.1016/j.neuroimage.2019.04.016>

1365 Lin, L., Chang, D., Song, D., Li, Y., & Wang, Z. (2022). Lower resting brain entropy is
1366 associated with stronger task activation and deactivation. *NeuroImage*, 249, 118875.

1367 Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C.
1368 L. (2014). Microsoft COCO: Common Objects in Context. In D. Fleet, T. Pajdla, B.
1369 Schiele, & T. Tuytelaars (Eds.), *Computer Vision – ECCV 2014* (pp. 740–755). Springer
1370 International Publishing. https://doi.org/10.1007/978-3-319-10602-1_48

1371 Lipkin, B., Tuckute, G., Affourtit, J., Small, H., Mineroff, Z., Kean, H., Jouravlev, O.,
1372 Rakocevic, L., Pritchett, B., Siegelman, M., Hoeflin, C., Pongos, A., Blank, I. A., Struhal,
1373 M. K., Ivanova, A., Shannon, S., Sathe, A., Hoffmann, M., Nieto-Castañón, A., &
1374 Fedorenko, E. (2022). *LanA (Language Atlas): A probabilistic atlas for the language*
1375 *network based on fMRI data from >800 individuals* (p. 2022.03.06.483177). bioRxiv.
1376 <https://doi.org/10.1101/2022.03.06.483177>

1377 Liu, H., Stufflebeam, S. M., Sepulcre, J., Hedden, T., & Buckner, R. L. (2009). Evidence from
1378 intrinsic activity that asymmetry of the human brain is controlled by multiple factors.
1379 *Proceedings of the National Academy of Sciences*, 106(48), 20499–20503.

1380 Luys, J. (1879). *Etude sur le dédoublement des opérations cérébrales et sur le rôle isolé de*
1381 *chaque hémisphère dans les phénomènes de la pathologie mentale*.

1382 Lynch, C. J., Power, J. D., Scult, M. A., Dubin, M., Gunning, F. M., & Liston, C. (2020). Rapid
1383 precision functional mapping of individuals using multi-echo fMRI. *Cell Reports*, 33(12),
1384 108540. <https://doi.org/10.1016/j.celrep.2020.108540>

1385 Mahowald, K., & Fedorenko, E. (2016). Reliable individual-level neural markers of high-level
1386 language processing: A necessary precursor for relating neural variability to behavioral
1387 and genetic variability. *NeuroImage*, 139, 74–93.
1388 <https://doi.org/10.1016/j.neuroimage.2016.05.073>

1389 Malik-Moraleda, S., Ayyash, D., Gallée, J., Affourtit, J., Hoffmann, M., Mineroff, Z., ... &
1390 Fedorenko, E. (2022). An investigation across 45 languages and 12 language families
1391 reveals a universal language network. *Nature Neuroscience*, 25(8), 1014-1019.
1392 <https://doi.org/10.1038/s41593-022-01114-5>

1393 Marcus, D. S., Harms, M. P., Snyder, A. Z., Jenkinson, M., Wilson, J. A., Glasser, M. F., Barch,
1394 D. M., Archie, K. A., Burgess, G. C., Ramaratnam, M., Hodge, M., Horton, W., Herrick,
1395 R., Olsen, T., McKay, M., House, M., Hileman, M., Reid, E., Harwell, J., ... Van Essen,
1396 D. C. (2013). Human Connectome Project informatics: Quality control, database services,
1397 and data visualization. *NeuroImage*, 80, 202–219.
1398 <https://doi.org/10.1016/j.neuroimage.2013.05.077>

1399 Marek, S., Tervo-Clemmens, B., Calabro, F. J., Montez, D. F., Kay, B. P., Hatoum, A. S.,
1400 Donohue, M. R., Foran, W., Miller, R. L., Hendrickson, T. J., Malone, S. M., Kandala,
1401 S., Feczko, E., Miranda-Dominguez, O., Graham, A. M., Earl, E. A., Perrone, A. J.,
1402 Cordova, M., Doyle, O., ... Dosenbach, N. U. F. (2022). Reproducible brain-wide
1403 association studies require thousands of individuals. *Nature*, 603(7902), Art. 7902.
1404 <https://doi.org/10.1038/s41586-022-04492-9>

1405 MATLAB. (2018). *9.5.0.944444 (R2018b)*. The MathWorks Inc.

1406 McManus, I. (1985). Handedness, language dominance and aphasia: A genetic model *Psychol.*
1407 *Med. Monogr. Suppl*, 8.

1408 Mengotti, P., Käsbauer, A.-S., Fink, G. R., & Vossel, S. (2020). Lateralization, functional
1409 specialization, and dysfunction of attentional networks. *Cortex*, 132, 206–222.
1410 <https://doi.org/10.1016/j.cortex.2020.08.022>

1411 Mesulam, M.-M. (2001). Primary progressive aphasia. *Annals of Neurology*, 49(4), 425–432.

1412 Mesulam, M.-M. (2003). Primary progressive aphasia—A language-based dementia. *New
1413 England Journal of Medicine*, 349(16), 1535–1542.

1414 Mesulam, M.-M., Rogalski, E. J., Wieneke, C., Hurley, R. S., Geula, C., Bigio, E. H., Thompson,
1415 C. K., & Weintraub, S. (2014). Primary progressive aphasia and the evolving neurology
1416 of the language network. *Nature Reviews Neurology*, 10(10), 554–569.

1417 Mesulam, M.-M., Thompson, C. K., Weintraub, S., & Rogalski, E. J. (2015). The Wernicke
1418 conundrum and the anatomy of language comprehension in primary progressive aphasia.
1419 *Brain*, 138(8), 2423–2437. <https://doi.org/10.1093/brain/awv154>

1420 Milner, B. (1971). Interhemispheric differences in the localization of psychological processes in
1421 man. *British Medical Bulletin*, 27, 272–277.

1422 Mueller, S., Wang, D., Pan, R., Holt, D. J., & Liu, H. (2015). Abnormalities in hemispheric
1423 specialization of caudate nucleus connectivity in schizophrenia. *JAMA Psychiatry*, 72(6),
1424 552–560. <https://doi.org/10.1001/jamapsychiatry.2014.3176>

1425 Nielsen, J. A., Zielinski, B. A., Ferguson, M. A., Lainhart, J. E., & Anderson, J. S. (2013). An
1426 evaluation of the left-brain vs. Right-brain hypothesis with resting state functional

1427 connectivity magnetic resonance imaging. *PLoS ONE*, 8(8), Art. 8.

1428 <https://doi.org/10.1371/journal.pone.0071275>

1429 Oldfield, R. (1971). Edinburgh handedness inventory. *Journal of Abnormal Psychology*.

1430 Olson, I. R., Plotzker, A., & Ezzyat, Y. (2007). The Enigmatic temporal pole: A review of
1431 findings on social and emotional processing. *Brain*, 130(7), 1718–1731.

1432 <https://doi.org/10.1093/brain/awm052>

1433 Olulade, O. A., Seydell-Greenwald, A., Chambers, C. E., Turkeltaub, P. E., Dromerick, A. W.,
1434 Berl, M. M., Gaillard, W. D., & Newport, E. L. (2020). The neural basis of language
1435 development: Changes in lateralization over age. *Proceedings of the National Academy of
1436 Sciences*, 117(38), 23477–23483. <https://doi.org/10.1073/pnas.1905590117>

1437 Ott, L. R., Schantell, M., Willett, M. P., Johnson, H. J., Eastman, J. A., Okelberry, H. J., Wilson,
1438 T. W., Taylor, B. K., & May, P. E. (2022). Construct validity of the NIH toolbox
1439 cognitive domains: A comparison with conventional neuropsychological assessments.
1440 *Neuropsychology*, 36(5), 468–481. <https://doi.org/10.1037/neu0000813>

1441 Palomero-Gallagher, N., & Amunts, K. (2022). A short review on emotion processing: A
1442 lateralized network of neuronal networks. *Brain Structure and Function*, 227(2), 673–
1443 684. <https://doi.org/10.1007/s00429-021-02331-7>

1444 Pang, J. C., Aquino, K. M., Oldehinkel, M., Robinson, P. A., Fulcher, B. D., Breakspear, M., &
1445 Fornito, A. (2023). Geometric constraints on human brain function. *Nature*, 1–9.
1446 <https://doi.org/10.1038/s41586-023-06098-1>

1447 Pehrs, C., Zaki, J., Schlochtermeier, L. H., Jacobs, A. M., Kuchinke, L., & Koelsch, S. (2017).
1448 The temporal pole top-down modulates the ventral visual stream during social cognition.
1449 *Cerebral Cortex*, 27(1), 777–792. <https://doi.org/10.1093/cercor/bhv226>

1450 Penfield, W., & Jasper, H. (1954). *Epilepsy and the functional anatomy of the human brain*.

1451 Perez, D. C., Dworetzky, A., Braga, R. M., Beeman, M., & Gratton, C. (2023). Hemispheric
1452 asymmetries of individual differences in functional connectivity. *Journal of Cognitive
1453 Neuroscience*, 35(2), 200–225. https://doi.org/10.1162/jocn_a_01945

1454 Pinel, P., & Dehaene, S. (2010). Beyond hemispheric dominance: Brain regions underlying the
1455 joint lateralization of language and arithmetic to the left hemisphere. *Journal of Cognitive
1456 Neuroscience*, 22(1), 48–66.

1457 Pya, N., Voinov, V., Makarov, R., & Voinov, Y. (2016). *mvnTest: Goodness of Fit Tests for
1458 Multivariate Normality* (1.1-0). [https://cran.r-
1459 project.org/web/packages/mvnTest/index.html](https://cran.r-project.org/web/packages/mvnTest/index.html)

1460 R Core Team. (2011). *Wilcoxon rank sum and signed rank tests*. R Documentation.[Online].
1461 Available: <http://stat.ethz.ch/R-manual/R....>

1462 R Core Team. (2022). *R: A Language and Environment for Statistical Computing*. R Foundation
1463 for Statistical Computing. <https://www.R-project.org/>

1464 Rasmussen, T., & Milner, B. (1977). The role of early left-brain injury in determining
1465 lateralization of cerebral speech functions. *Annals of the New York Academy of Sciences*,
1466 299, 355–369.

1467 Revelle, W. (2023). *psych: Procedures for Psychological, Psychometric, and Personality
1468 Research* (2.3.3). <https://cran.r-project.org/web/packages/psych/index.html>

1469 Reynolds, J. E., Long, X., Grohs, M. N., Dewey, D., & Lebel, C. (2019). Structural and
1470 functional asymmetry of the language network emerge in early childhood. *Developmental
1471 Cognitive Neuroscience*, 39, 100682. <https://doi.org/10.1016/j.dcn.2019.100682>

1472 Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. *Journal of Statistical*
1473 *Software*, 48, 1–36. <https://doi.org/10.18637/jss.v048.i02>

1474 Rosseel, Y., Jorgensen, T. D., Rockwood, N., Oberski, D., Byrnes, J., Vanbrabant, L., Savalei,
1475 V., Merkle, E., Hallquist, M., Rhemtulla, M., Katsikatsou, M., Barendse, M., Scharf, F.,
1476 & Du, H. (2023). *lavaan: Latent Variable Analysis* (0.6-16). <https://cran.r-project.org/web/packages/lavaan/index.html>

1477

1478 Rueda, M. R., Fan, J., McCandliss, B. D., Halparin, J. D., Gruber, D. B., Lercari, L. P., &
1479 Posner, M. I. (2004). Development of attentional networks in childhood.
1480 *Neuropsychologia*, 42(8), 1029–1040.
1481 <https://doi.org/10.1016/j.neuropsychologia.2003.12.012>

1482 Salvo, J. J., Holubecki, A. M., & Braga, R. M. (2021). Correspondence between functional
1483 connectivity and task-related activity patterns within the individual. *Current Opinion in*
1484 *Behavioral Sciences*, 40, 178–188. <https://doi.org/10.1016/j.cobeha.2021.05.003>

1485 Scott, T. L., Gallée, J., & Fedorenko, E. (2017). A new fun and robust version of an fMRI
1486 localizer for the frontotemporal language system. *Cognitive Neuroscience*, 8(3), 167–176.
1487 <https://doi.org/10.1080/17588928.2016.1201466>

1488 Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V., & Greicius, M. D. (2012). Decoding
1489 subject-driven cognitive states with whole-brain connectivity patterns. *Cerebral Cortex*,
1490 22(1), 158–165.

1491 Shulman, G. L., Pope, D. L., Astafiev, S. V., McAvoy, M. P., Snyder, A. Z., & Corbetta, M.
1492 (2010). Right hemisphere dominance during spatial selective attention and target
1493 detection occurs outside the dorsal frontoparietal network. *Journal of Neuroscience*,
1494 30(10), 3640–3651.

1495 Silberman, E. K., & Weingartner, H. (1986). Hemispheric lateralization of functions related to
1496 emotion. *Brain and Cognition*, 5(3), 322–353. [https://doi.org/10.1016/0278-2626\(86\)90035-7](https://doi.org/10.1016/0278-2626(86)90035-7)

1497

1498 Siman-Tov, T., Mendelsohn, A., Schonberg, T., Avidan, G., Podlipsky, I., Pessoa, L., Gadoth,
1499 N., Ungerleider, L. G., & Handler, T. (2007). Bihemispheric leftward bias in a
1500 visuospatial attention-related network. *Journal of Neuroscience*, 27(42), 11271–11278.
1501 <https://doi.org/10.1523/JNEUROSCI.0599-07.2007>

1502 Smith, S. M., Beckmann, C. F., Andersson, J., Auerbach, E. J., Bijsterbosch, J., Douaud, G.,
1503 Duff, E., Feinberg, D. A., Griffanti, L., Harms, M. P., Kelly, M., Laumann, T., Miller, K.
1504 L., Moeller, S., Petersen, S., Power, J., Salimi-Khorshidi, G., Snyder, A. Z., Vu, A. T., ...
1505 Glasser, M. F. (2013). Resting-state fMRI in the Human Connectome Project.
1506 *NeuroImage*, 80, 144–168. <https://doi.org/10.1016/j.neuroimage.2013.05.039>

1507 Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-
1508 Berg, H., Bannister, P. R., De Luca, M., Drobniak, I., Flitney, D. E., Niazy, R. K.,
1509 Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J. M., & Matthews, P. M.
1510 (2004). Advances in functional and structural MR image analysis and implementation as
1511 FSL. *NeuroImage*, 23, S208–S219. <https://doi.org/10.1016/j.neuroimage.2004.07.051>

1512 Somerville, L. H., Bookheimer, S. Y., Buckner, R. L., Burgess, G. C., Curtiss, S. W., Dapretto,
1513 M., Elam, J. S., Gaffrey, M. S., Harms, M. P., Hodge, C., Kandala, S., Kastman, E. K.,
1514 Nichols, T. E., Schlaggar, B. L., Smith, S. M., Thomas, K. M., Yacoub, E., Van Essen, D.
1515 C., & Barch, D. M. (2018). The Lifespan Human Connectome Project in Development: A
1516 large-scale study of brain connectivity development in 5–21 year olds. *NeuroImage*, 183,
1517 456–468. <https://doi.org/10.1016/j.neuroimage.2018.08.050>

1518 Sonkusare, S., Nguyen, V. T., Moran, R., van der Meer, J., Ren, Y., Koussis, N., Dionisio, S.,
1519 Breakspear, M., & Guo, C. (2020). Intracranial-EEG evidence for medial temporal pole
1520 driving amygdala activity induced by multi-modal emotional stimuli. *Cortex*, 130, 32–48.
1521 <https://doi.org/10.1016/j.cortex.2020.05.018>

1522 Spreng, R. N., Sepulcre, J., Turner, G. R., Stevens, W. D., & Schacter, D. L. (2013). Intrinsic
1523 architecture underlying the relations among the default, dorsal attention, and
1524 frontoparietal control networks of the human brain. *Journal of Cognitive Neuroscience*,
1525 25(1), 74–86. https://doi.org/10.1162/jocn_a_00281

1526 Stippich, C., Mohammed, J., Kress, B., Hähnel, S., Günther, J., Konrad, F., & Sartor, K. (2003).
1527 Robust localization and lateralization of human language function: An optimized clinical
1528 functional magnetic resonance imaging protocol. *Neuroscience Letters*, 346(1), 109–113.
1529 [https://doi.org/10.1016/S0304-3940\(03\)00561-5](https://doi.org/10.1016/S0304-3940(03)00561-5)

1530 Sun, J., Gao, X., Hua, Q., Du, R., Liu, P., Liu, T., Yang, J., Qiu, B., Ji, G.-J., Hu, P., & Wang, K.
1531 (2022). Brain functional specialization and cooperation in Parkinson's disease. *Brain*
1532 *Imaging and Behavior*, 16(2), 565–573. <https://doi.org/10.1007/s11682-021-00526-4>

1533 Tagliazucchi, E., & Laufs, H. (2014). Decoding wakefulness levels from typical fMRI resting-
1534 state data reveals reliable drifts between wakefulness and sleep. *Neuron*, 82(3), 695–708.
1535 <https://doi.org/10.1016/j.neuron.2014.03.020>

1536 Tian, Y., & Zalesky, A. (2021). Machine learning prediction of cognition from functional
1537 connectivity: Are feature weights reliable? *NeuroImage*, 245, 118648.
1538 <https://doi.org/10.1016/j.neuroimage.2021.118648>

1539 Toga, A. W., & Thompson, P. M. (2003). Mapping brain asymmetry. *Nature Reviews*
1540 *Neuroscience*, 4(1), Art. 1. <https://doi.org/10.1038/nrn1009>

1541 Uğurbil, K., Xu, J., Auerbach, E. J., Moeller, S., Vu, A. T., Duarte-Carvajalino, J. M., Lenglet,
1542 C., Wu, X., Schmitter, S., Van de Moortele, P. F., Strupp, J., Sapiro, G., De Martino, F.,
1543 Wang, D., Harel, N., Garwood, M., Chen, L., Feinberg, D. A., Smith, S. M., ... Yacoub,
1544 E. (2013). Pushing spatial and temporal resolution for functional and diffusion MRI in
1545 the Human Connectome Project. *NeuroImage*, 80, 80–104.
1546 <https://doi.org/10.1016/j.neuroimage.2013.05.012>

1547 Umarova, R. M., Saur, D., Schnell, S., Kaller, C. P., Vry, M.-S., Glauche, V., Rijntjes, M.,
1548 Hennig, J., Kiselev, V., & Weiller, C. (2010). Structural connectivity for visuospatial
1549 attention: Significance of ventral pathways. *Cerebral Cortex*, 20(1), 121–129.
1550 <https://doi.org/10.1093/cercor/bhp086>

1551 van der Kouwe, A. J. W., Benner, T., Salat, D. H., & Fischl, B. (2008). Brain morphometry with
1552 multiecho MPRAGE. *NeuroImage*, 40(2), 559–569.
1553 <https://doi.org/10.1016/j.neuroimage.2007.12.025>

1554 Van Essen, D. C. (2005). A Population-Average, Landmark- and Surface-based (PALS) atlas of
1555 human cerebral cortex. *NeuroImage*, 28(3), 635–662.
1556 <https://doi.org/10.1016/j.neuroimage.2005.06.058>

1557 Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E. J., Yacoub, E., & Ugurbil, K.
1558 (2013). The WU-Minn Human Connectome Project: An overview. *NeuroImage*, 80, 62–
1559 79. <https://doi.org/10.1016/j.neuroimage.2013.05.041>

1560 Van Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T. E. J., Bucholz, R., Chang,
1561 A., Chen, L., Corbetta, M., Curtiss, S. W., Della Penna, S., Feinberg, D., Glasser, M. F.,
1562 Harel, N., Heath, A. C., Larson-Prior, L., Marcus, D., Michalareas, G., Moeller, S., ...

1563 Yacoub, E. (2012). The Human Connectome Project: A data acquisition perspective.

1564 *NeuroImage*, 62(4), 2222–2231. <https://doi.org/10.1016/j.neuroimage.2012.02.018>

1565 Vingerhoets, G. (2019). Phenotypes in hemispheric functional segregation? Perspectives and

1566 challenges. *Physics of Life Reviews*, 30, 1–18. <https://doi.org/10.1016/j.plrev.2019.06.002>

1567 Vingerhoets, G., Alderweireldt, A.-S., Vandemaele, P., Cai, Q., Van der Haegen, L., Brysbaert,

1568 M., & Achten, E. (2013). Praxis and language are linked: Evidence from co-lateralization

1569 in individuals with atypical language dominance. *Cortex*, 49(1), 172–183.

1570 <https://doi.org/10.1016/j.cortex.2011.11.003>

1571 Wada, J., & Rasmussen, T. (1960). Intracarotid injection of sodium amytal for the lateralization

1572 of cerebral speech dominance: Experimental and clinical observations. *Journal of*

1573 *Neurosurgery*, 17(2), 266–282.

1574 Wang, D., Buckner, R. L., & Liu, H. (2014). Functional specialization in the human brain

1575 estimated by intrinsic hemispheric interaction. *Journal of Neuroscience*, 34(37), Art. 37.

1576 <https://doi.org/10.1523/JNEUROSCI.0787-14.2014>

1577 Wang, J., Tian, Y., Wang, M., Cao, L., Wu, H., Zhang, Y., Wang, K., & Jiang, T. (2016). A

1578 lateralized top-down network for visuospatial attention and neglect. *Brain Imaging and*

1579 *Behavior*, 10(4), 1029–1037. <https://doi.org/10.1007/s11682-015-9460-y>

1580 Wang, X., Krieger-Redwood, K., Zhang, M., Cui, Z., Wang, X., Karapanagiotidis, T., Du, Y.,

1581 Leech, R., Bernhardt, B. C., Margulies, D. S., & others. (2023). Physical distance to

1582 sensory-motor landmarks predicts language function. *Cerebral Cortex*, 33(8), 4305–

1583 4318.

1584 Wernicke, C. (1874). *Der aphasische symptomencomplex...*

1585 Wernicke, K. (1995). The aphasia symptom-complex: A psychological study on an anatomical
1586 basis (1875). *Reader in the History of Aphasia: From (Franz Gall To)*, 4, 69–89.

1587 Wilcoxon, F. (1945). Individual comparisons by ranking methods. *Biometrics Bulletin*, 1(6), 80–
1588 83. <https://doi.org/10.2307/3001968>

1589 Wilson, S. M., Bautista, A., Yen, M., Lauderdale, S., & Eriksson, D. K. (2017). Validity and
1590 reliability of four language mapping paradigms. *NeuroImage: Clinical*, 16, 399–408.
1591 <https://doi.org/10.1016/j.nicl.2016.03.015>

1592 Yan, X., Kong, R., Xue, A., Yang, Q., Orban, C., An, L., Holmes, A. J., Qian, X., Chen, J., Zuo,
1593 X.-N., Zhou, J. H., Fortier, M. V., Tan, A. P., Gluckman, P., Chong, Y. S., Meaney, M.
1594 J., Bzdok, D., Eickhoff, S. B., & Yeo, B. T. T. (2023). Homotopic local-global
1595 parcellation of the human cerebral cortex from resting-state functional connectivity.
1596 *NeuroImage*, 273, 120010. <https://doi.org/10.1016/j.neuroimage.2023.120010>

1597 Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M.,
1598 Roffman, J. L., Smoller, J. W., Zöllei, L., Polimeni, J. R., Fischl, B., Liu, H., & Buckner,
1599 R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic
1600 functional connectivity. *Journal of Neurophysiology*, 106(3), 1125–1165.
1601 <https://doi.org/10.1152/jn.00338.2011>

1602 Zago, L., Petit, L., Jobard, G., Hay, J., Mazoyer, B., Tzourio-Mazoyer, N., Karnath, H.-O., &
1603 Mellet, E. (2017). Pseudoneglect in line bisection judgement is associated with a
1604 modulation of right hemispheric spatial attention dominance in right-handers.
1605 *Neuropsychologia*, 94, 75–83. <https://doi.org/10.1016/j.neuropsychologia.2016.11.024>

1606 Zago, L., Petit, L., Mellet, E., Jobard, G., Crivello, F., Joliot, M., Mazoyer, B., & Tzourio-
1607 Mazoyer, N. (2016). The association between hemispheric specialization for language

1608 production and for spatial attention depends on left-hand preference strength.

1609 *Neuropsychologia*, 93, 394–406. <https://doi.org/10.1016/j.neuropsychologia.2015.11.018>

1610 Zelazo, P. D., Anderson, J. E., Richler, J., Wallner-Allen, K., Beaumont, J. L., Conway, K. P.,

1611 Gershon, R., & Weintraub, S. (2014). NIH Toolbox Cognition Battery (CB): Validation

1612 of executive function measures in adults. *Journal of the International*

1613 *Neuropsychological Society*, 20(6), 620–629.

1614 <https://doi.org/10.1017/S1355617714000472>

1615 Zhu, L., Fan, Y., Zou, Q., Wang, J., Gao, J.-H., & Niu, Z. (2014). Temporal reliability and

1616 lateralization of the resting-state language network. *PLOS ONE*, 9(1), e85880.

1617 <https://doi.org/10.1371/journal.pone.0085880>