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Abstract 23 

The two hemispheres of the human brain are functionally asymmetric. At the network 24 

level, the language network exhibits left-hemisphere lateralization. While this asymmetry is 25 

widely replicated, the extent to which other functional networks demonstrate lateralization 26 

remains a subject of investigation. Additionally, it is unknown how the lateralization of one 27 

functional network may affect the lateralization of other networks within individuals. We 28 

quantified lateralization for each of 17 networks by computing the relative surface area on the 29 

left and right cerebral hemispheres. After examining the ecological, convergent, and external 30 

validity and test-retest reliability of this surface area-based measure of lateralization, we 31 

addressed two hypotheses across multiple datasets (Human Connectome Project = 553, Human 32 

Connectome Project-Development = 343, Natural Scenes Dataset = 8). First, we hypothesized 33 

that networks associated with language, visuospatial attention, and executive control would show 34 

the greatest lateralization. Second, we hypothesized that relationships between lateralized 35 

networks would follow a dependent relationship such that greater left-lateralization of a network 36 

would be associated with greater right-lateralization of a different network within individuals, 37 

and that this pattern would be systematic across individuals. A language network was among the 38 

three networks identified as being significantly left-lateralized, and attention and executive 39 

control networks were among the five networks identified as being significantly right-lateralized. 40 

Next, correlation matrices, an exploratory factor analysis, and confirmatory factor analyses were 41 

used to test the second hypothesis and examine the organization of lateralized networks. We 42 

found general support for a dependent relationship between highly left- and right-lateralized 43 

networks, meaning that across subjects, greater left lateralization of a given network (such as a 44 

language network) was linked to greater right lateralization of another network (such as a ventral 45 

attention/salience network) and vice versa. These results further our understanding of brain 46 
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organization at the macro-scale network level in individuals, carrying specific relevance for 47 

neurodevelopmental conditions characterized by disruptions in lateralization such as autism and 48 

schizophrenia. 49 

Keywords: Lateralization, asymmetry, brain networks, fMRI, language, attention 50 
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1 Introduction 51 

Observations of the human brain have revealed significant differences in the gross 52 

anatomical morphometry between the two hemispheres (for review, see (Toga & Thompson, 53 

2003). These structural asymmetries are accompanied by functional asymmetries, most notably 54 

for language specialization. Famously, Paul Broca localized language specialization to the left 55 

hemisphere subsequent to identifying a lesion in the left inferior frontal gyrus of his patient as 56 

being responsible for his eponymous aphasia (Broca, 1861). This contribution launched an 57 

emphasis on regions specialized for language, which were later conceptualized as a network 58 

consisting of Broca’s and Wernicke’s areas connected via the arcuate fasciculus (Geschwind, 59 

1972).  60 

Contemporarily, the language network is regarded as a prototypical example of a 61 

lateralized network, with left-hemisphere language lateralization estimated to occur in most 62 

(Breier et al., 2000; Stippich et al., 2003) to more than 90% of the general population (Corballis, 63 

2003). The canonical language network is a distributed network comprising regions across the 64 

frontal, temporal, and parietal lobes, with lines of evidence stemming from a variety of sources 65 

including lesion cases (Broca, 1861; Geschwind, 1970; Wernicke, 1874), intraoperative brain 66 

stimulation (Penfield & Jasper, 1954), neurodegeneration (e.g., primary progressive aphasia; 67 

Mesulam, 2001, 2003; Mesulam et al., 2014, 2015), task-based fMRI (Fedorenko et al., 2010, 68 

2011; Fedorenko, McDermott, et al., 2012, 2012; Lipkin et al., 2022; Scott et al., 2017), and 69 

functional connectivity (Braga et al., 2020; Hacker et al., 2013; Lee et al., 2012). The typically 70 

asymmetric organization of this network in neurotypical individuals continues to be replicated 71 

(Elin et al., 2022; Malik-Moraleda et al., 2022; Olulade et al., 2020; Reynolds et al., 2019). 72 
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While the lateralization of language provides a compelling example, it also prompts 73 

broader questions about the origins and implications of cerebral lateralization across other 74 

cognitive domains. In attempting to unravel the origins of cerebral lateralization, researchers 75 

have explored theoretical perspectives ranging from the genetic and epigenetic (Geschwind & 76 

Miller, 2001; McManus, 1985) to interhemispheric conflict (Andrew et al., 1982; Corballis, 77 

1991). Yet, these paradigms fall short in explaining the dynamic interactions of interdigitated 78 

lateralized and non-lateralized networks. For example, it is unclear how having a highly 79 

lateralized network, such as the language network, may influence the lateralization of other 80 

networks within individuals. Along the lines of the interhemispheric conflict explanation of 81 

lateralization, competition for limited cortical resources during brain maturation may drive 82 

lateralization. According to this hypothesis, as different functional networks vie for cortical real 83 

estate and resources, they become lateralized. Alternatively, or in tandem with this mechanism, 84 

networks may become lateralized in order to optimize their efficiency, preventing interference 85 

from competing networks. Under this framework, as one network increases in lateralization to 86 

one hemisphere, that network occupies more space within that hemisphere while freeing up 87 

cortical territory in the contralateral hemisphere. Presumably, this would allow for a 88 

complimentary network to become more lateralized in the contralateral hemisphere. One 89 

example of such a scenario may be found in a right-lateralized attention network composed of 90 

the temporoparietal junction and ventral frontal areas and which is hypothesized to process 91 

visuospatial information, particularly unexpected stimuli (Corbetta & Shulman, 2002). The 92 

ventral attention network in particular has been identified as a potential right-lateralized 93 

compliment to the left-lateralized language network (Bernard et al., 2020).      94 
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Other functional networks in both the right and left hemispheres have been examined for 95 

evidence of lateralization. Of note, lateralization can be an indicator for specialization, or the 96 

dominant hosting of a macroscale functional network and its associated functional properties by 97 

one hemisphere over the other (Hervé et al., 2013). One study quantified specialization across 98 

seven functional networks and found that specialization was not restricted to a single left- or 99 

right-specialized network (Wang et al., 2014). Rather, the right frontoparietal network and right 100 

ventral and dorsal attention networks, as well as the left default and frontoparietal networks 101 

exhibited specialization as assessed via a functional connectivity-based metric (see Fig. 5; Wang 102 

et al., 2014). This pattern was generally replicated in highly sampled individuals, revealing left-103 

lateralized language, default, and frontoparietal networks, as well as right-lateralized salience 104 

and frontoparietal networks (Braga et al., 2020). Interestingly, the finding of both left- and right-105 

lateralized frontoparietal networks across both Braga et al. (2020) and Wang et al. (2014) 106 

evidences a joint control system in which a subdivision of the frontoparietal control network is 107 

coupled with other lateralized networks in either the left or right hemisphere. Beyond this result, 108 

research on network lateralization has untapped potential when it comes to understanding the 109 

relationships between lateralized networks. This includes associations in laterality between 110 

ipsilateral and contralateral lateralized networks and extends to patterns within and across 111 

individuals.  112 

1.1 Methods for Examining Hemispheric Asymmetries 113 

In humans, hemispheric specialization has historically been identified using a variety of 114 

methods including callosotomy (i.e., split-brain patients; for review, see Gazzaniga, 2000), 115 

lateralized brain lesions (Milner, 1971; Rasmussen & Milner, 1977), the unilateral carotid 116 

administration of anesthetic (i.e., the Wada test Wada & Rasmussen, 1960), and intraoperative 117 
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brain stimulation mapping (Penfield & Jasper, 1954). Callosotomy studies have revealed the 118 

importance of interhemispheric communication for certain cognitive processes, demonstrating 119 

that the left and right hemispheres can operate relatively independently for some functions but 120 

require communication for others (Gazzaniga, 2000). Lateralized brain lesion studies, 121 

particularly the work of Milner and Rasmussen, have identified specific functions associated 122 

with each hemisphere, such as language processing predominantly in the left hemisphere 123 

(Milner, 1971; Rasmussen & Milner, 1977). Similarly, the Wada test has shed light on 124 

hemispheric dominance for language and memory (Wada & Rasmussen, 1960). Finally, leaning 125 

into the localization of specific functions to certain regions within each hemisphere, 126 

intraoperative brain stimulation mapping has provided detailed maps of functional areas in the 127 

brain (Penfield & Jasper, 1954). Collectively, these classic methods reveal patterns of human 128 

brain organization governed by interactions between lateralization and localization.     129 

These historical methods are complimented by neuroimaging metrics, many of which are 130 

functional connectivity-based. Of particular interest are the intrinsic laterality index (Liu et al., 131 

2009), autonomy index (Wang et al., 2014), hemispheric contrast (Gotts et al., 2013), functional 132 

lateralization metric (Nielsen et al., 2013), classification metric (Friedrich et al., 2022), and 133 

network variants approach (Perez et al., 2023). Despite the unifying aim of estimating 134 

hemispheric specialization or lateralization, each of the listed methods varies in terms of how it 135 

approaches structural asymmetries, the addition of covariates such as handedness and gender, 136 

and short- and long-range connectivity. However, with the exception of the network variants 137 

approach (Perez et al., 2023), each method has been implemented on less than 12 minutes of 138 

resting-state fMRI data per participant, a tactic which is increasingly being exchanged for a 139 

within-individual “precision” approach. 140 
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1.2 A Precision Approach to Lateralization 141 

 The precision approach, which emphasizes extensive individual sampling, is being 142 

heralded as a well-powered alternative to the large and costly sample sizes required for cross-143 

sectional group and brain-wide association studies (Gratton et al., 2022; Marek et al., 2022). This 144 

method of densely sampling individuals can generate precise brain maps (Gordon et al., 2017)  145 

as well as the development of optimal workflows for reducing MRI artifacts (Ciric et al., 2017). 146 

Moreover, when combined with functional localizers, the precision approach offers superior 147 

sensitivity, functional resolution, and interpretability (Fedorenko, 2021). As applied to estimating 148 

lateralization, repeated sampling can improve measures of individual network parcellations 149 

(Braga et al., 2020; Gordon et al., 2017, 2020) including network topology and topography, and 150 

functional connectivity (Gordon et al., 2017; Laumann et al., 2015), resulting in more precise 151 

lateralization measures.  152 

 In line with the precision neuroimaging approach and previous efforts to understand brain 153 

network organization and lateralization, the present study examines two questions. First, we 154 

explore which networks exhibit the greatest hemispheric asymmetries. A recent study involving 155 

18 densely-sampled individuals demonstrated that among six networks, the language network 156 

displayed the greatest left hemisphere lateralization, while a frontoparietal control network 157 

exhibited the greatest right hemisphere lateralization (Braga et al., 2020). However, it remains 158 

unclear how these estimates might change in a larger sample with a greater number of examined 159 

networks. Building upon the work of Braga et al. (2020), we hypothesized that networks 160 

associated with language, visuospatial attention, and executive control would show the greatest 161 

hemispheric asymmetries. 162 
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Second, we investigate how lateralization in one network may influence the lateralization 163 

of other networks. We propose the following hypotheses to guide our investigation. The first 164 

hypothesis suggests that if an individual possesses a highly lateralized network, other networks 165 

for that individual will exhibit increased lateralization in the opposite direction, and that this 166 

dependent relationship will be systematic across individuals (the dependent hypothesis). The 167 

alternative hypothesis proposes that lateralization will be unrelated between networks across 168 

individuals (the independent hypothesis).  169 

2 Methods 170 

2.1 Datasets and Overview 171 

 Three independent datasets were used for these analyses: The Human Connectome 172 

Project (HCP; split into discovery and replication datasets), the Human Connectome Project-173 

Development (HCPD; Somerville et al., 2018),  and the Natural Scenes Dataset (NSD; Allen et 174 

al., 2022). Each dataset was selected for its relatively high quantity of low-motion data per 175 

participant (see Figure 1). 176 

2.1.1 HCP Discovery and Replication 177 

 The HCP S1200 release consists of 1206 subjects (1113 with structural MRI scans) 178 

collected at 13 different data acquisition sites with informed consent (Van Essen et al., 2013). 179 

Additional details regarding HCP scanning protocols are available online 180 

(https://humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_A181 

ppendix_I.pdf; Uğurbil et al., 2013; Van Essen et al., 2012). With a relatively large quantity of 182 

data available per individual, this data is ideally suited for taking a within-individual approach to 183 

specialization. Participants underwent four 15-minutes runs of a passive fixation task (resting-184 

state fMRI) during which they were asked to keep their eyes open while viewing a white cross 185 
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on a dark background and think of nothing in particular while remaining awake (Smith et al., 186 

2013). Exclusion criteria for the HCP S1200 release included removing participants with a mean 187 

framewise displacement greater than 0.2 mm and mean DVARS greater than 50, participants 188 

missing handedness data, and participants with less than 50% of volumes remaining after motion 189 

censoring. This resulted in a subsample of 553 participants, which was split into a discovery and 190 

replication dataset using random sampling without replacement. The two datasets were then 191 

compared using the R package MatchIt (Ho et al., 2023) on age, mean framewise displacement, 192 

sex, handedness, and percentage of volumes remaining following motion censoring. The HCP-193 

Discovery dataset consisted of 276 participants 22-36 years old (M = 28.48, SD = 3.58) with 167 194 

females, while the HCP-Replication dataset consisted of 277 participants 22-36 years old (M = 195 

28.7, SD = 3.77) with 173 females.  196 

2.1.2 HCPD 197 

With a younger sample and smaller quantity of data per individual, the HCPD dataset 198 

was used as an additional replication dataset for primary analyses. Since data collection for the 199 

HCPD project is ongoing, cross-sectional data from the latest release were included, and these 200 

were composed of 652 healthy participants. All data were obtained with informed assent or 201 

consent. As a part of the HCPD protocol, participants underwent four 6.5-minute runs of resting-202 

state fMRI, with an exception for participants 5-7 years old, which had six 3.5-minute runs each 203 

(Harms et al., 2018). Participants were instructed to view a small white fixation crosshair on a 204 

black background and blink normally. Exclusion criteria for HCPD included removing 205 

participants with less than 50% of volumes remaining after motion censoring, participants 206 

missing handedness data, and participants with a mean framewise displacement greater than 0.2 207 

mm and mean DVARS greater than 50 (see Figure 1). Following the exclusion criteria, the 208 
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dataset consisted of 343 individuals ages 11-21.92 (M = 15.93, SD = 2.97) of which 189 were 209 

female. 210 

2.1.3 NSD 211 

With a large quantity of resting-state and task fMRI data available per individual, the 212 

NSD was included to examine potential task effects on estimating individual network 213 

parcellations and specialization. The NSD is composed of eight individuals (two males and six 214 

females; age range 19–32 years). All data were obtained with informed written consent 215 

according to the University of Minnesota institutional review board. As detailed in Allen et al. 216 

(2022), participants averaged two hours of resting state fMRI and 39.5 hours of task-based fMRI. 217 

For the resting-state runs, participants were instructed to stay awake and fixate on a white cross 218 

placed on a gray background but otherwise rest. During the task-based runs, participants were 219 

shown distinct natural scenes taken from the Microsoft Common Objects in Context database 220 

(T.-Y. Lin et al., 2014). Images were presented for 3 s with 1-s gaps in between images. Subjects 221 

fixated centrally and performed a long-term continuous recognition task on the images. 222 

Exclusion criteria for NSD included removing participants with less than 50% of volumes 223 

remaining after motion censoring, and participants with a mean framewise displacement greater 224 

than 0.2 mm and mean DVARS greater than 50. No subjects were excluded from the analysis; 225 

however, following motion correction, a minimum of 12 resting-state fMRI runs (approximately 226 

60 minutes) remained. In order to compare resting-state and task data on equal grounds, only the 227 

first 12 available resting-state runs and the first 12 available task fMRI runs from each 228 

participant were utilized. 229 

 230 
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Figure 1. Participant age, data quality, and data availability. Panel A depicts participant age across each 231 
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dataset following the implementation of exclusion criteria. HCP-Discovery participants included 276 232 

individuals 22-36 years of age, HCP-Replication participants included 277 individuals 22-36 years of age, 233 

HCPD participants included 343 individuals 11-22 years of age, and NSD participants included eight 234 

individuals 19-32 years of age. Panel B depicts the mean framewise displacement (FD) across each 235 

dataset following the implementation of exclusion criteria. HCP-Discovery mean FD was 0.08 mm (SD = 236 

0.02 mm), range 0.04-0.14 mm; HCP-Replication mean FD was 0.07 mm (SD = 0.01 mm), range 0.04-237 

0.12 mm; HCPD mean FD was 0.08 mm (SD = 0.02 mm), range 0.04-0.16 mm; NSD-Rest mean FD was 238 

0.07 mm (SD = 0.03), range 0.04-0.11 mm; and NSD-Task mean FD was 0.07 mm (SD = 0.02 mm), 239 

range 0.04-0.1 mm. Panel C depicts the percentage of volumes remaining following motion-correction 240 

procedures for each dataset. HCP-Discovery mean percentage of volumes was 72.81% (SD = 12.12%), 241 

range 50.38-98.54%; HCP-Replication mean percentage of volumes was 72.09% (SD = 11.59%), range 242 

50.04-97.62%; HCPD mean percentage of volumes was 73.6% (SD = 11.73%), range 50.05-99.63%; 243 

NSD-Rest mean percentage of volumes was 87.64% (SD = 10.51%), range 68.98-99.14%; and NSD-244 

Task mean percentage of volumes was 94.27% (SD = 6.92), range 78.31-100%. Across each panel, a 245 

circle represents a single participant. 246 

 247 

2.2 MRI Acquisition Parameters 248 

2.2.1 HCP Discovery and Replication 249 

The HCP dataset was acquired on a custom Siemens 3T Skyra with a 32-channel head 250 

coil. T1-weighted images were collected with a 3D MPRAGE sequence with isotropic 0.7 mm 251 

voxels (256 sagittal slices, repetition time [TR] = 2400 milliseconds, echo time [TE] = 2.14 252 

milliseconds) as detailed in Glasser et al. (2013). Resting-state functional images were collected 253 

using 2 mm isotropic voxels (72 sagittal slices, TR = 720 milliseconds, TE = 33 milliseconds, 254 

multiband accelerated pulse sequence with multiband factor = 8) as detailed in Glasser et al. 255 

(2013, 2016). 256 

2.2.2 HCPD 257 
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The HCPD MRI data were acquired on Siemens 3T Prisma scanners with vendor 32-258 

channel headcoils at four sites: Harvard University, University of California-Los Angeles, 259 

University of Minnesota, and Washington University in St. Louis (Harms et al., 2018). Structural 260 

T1-weighted scans were acquired with a multi-echo MPRAGE sequence (van der Kouwe et al., 261 

2008) with 0.8 mm isotropic voxels (sagittal FOV = 256 × 240 × 166; matrix size = 320 × 300 × 262 

208 slices; slice oversampling = 7.7%; 2-fold in-plane acceleration (GRAPPA); pixel bandwidth 263 

= 744 Hz/Px; Tr/TI = 2500/1000, TE = 1.9/3.6/5.4/7.2 ms, flip angle = 8°; water excitation 264 

employed for fat suppression; up to 30 TRs allowed for motion-induced reacquisition). T2*-265 

weighted scans were used for resting-state fMRI with 2D multiband gradient-recalled echo echo-266 

planar imaging sequence (MB8, TR/TE = 800/37 ms, flip angle = 52°) and 2.0 mm isotropic 267 

voxels covering the whole brain (72 oblique-axial slices). Functional scans were acquired in 268 

pairs of two runs with opposite phase encoding polarity (anterior-to-posterior and posterior-to-269 

anterior) so that fMRI data were not biased towards either phase encoding polarity. For all scans, 270 

Framewise Integrated Real-time MRI Monitoring (Dosenbach et al., 2017) was implemented to 271 

provide motion feedback to participants between fMRI runs. 272 

2.2.3 NSD 273 

The NSD dataset was acquired at the Center for Magnetic Resonance Research at the 274 

University of Minnesota (Allen et al., 2022). Anatomical data (such as T1-weighted volumes) 275 

were collected using a 3T Siemens Prisma scanner with a standard Siemens 32-channel RF head 276 

coil while functional data were collected using a 7T Siemens Magnetom passively shielded 277 

scanner and a single-channel-transmit, 32-channel-receive RF head coil. T1-weighted images 278 

were acquired with a MPRAGE sequence (0.8-mm bandwidth 220 Hz per pixel, no partial 279 

Fourier, in-plane acceleration factor (iPAT) 2, TA = 6.6 min per scan). Functional data were 280 
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collected using gradient-echo EPI at 1.8-mm isotropic resolution with whole-brain coverage (84 281 

axial slices, slice thickness 1.8 mm, slice gap 0 mm, field-of-view 216 mm (FE) × 216 mm (PE), 282 

phase encode direction anterior-to-posterior, matrix size 120 × 120, TR = 1,600 milliseconds, 283 

TE = 22.0 milliseconds, flip angle 62°, echo spacing 0.66 milliseconds, bandwidth 1,736 Hz per 284 

pixel, partial Fourier 7/8, iPAT 2, multi-band slice acceleration factor 3). Full protocol printouts 285 

for the NSD dataset are available online (https://cvnlab.slite.page/p/NKalgWd__F/Experiments).  286 

2.3 fMRI Preprocessing 287 

Preprocessing took place on raw NIFTI files for the resting-state fMRI and task fMRI 288 

runs using a pipeline developed by the Computational Brain Imaging Group (CBIG; Kong et al., 289 

2019; Li et al., 2019; code is available online at 290 

https://github.com/ThomasYeoLab/CBIG/tree/c773720ad340dcb1d566b0b8de68b6acdf2ca505/s291 

table_projects/preprocessing/CBIG_fMRI_Preproc2016). This CBIG2016 preprocessing pipeline 292 

was selected to process the fMRI data in order to more closely follow the processing steps used 293 

to implement the multi-session hierarchical Bayesian modeling parcellation method (Kong et al., 294 

2019). As a prerequisite, this pipeline requires FreeSurfer recon-all output from the structural 295 

data (FreeSurfer 6.0.1; Dale et al., 1999). The fMRI data are then processed with the following 296 

steps: 1) removal of the first four frames and 2) motion correction using rigid body translation 297 

and rotation with the FSL package (Jenkinson et al., 2002; Smith et al., 2004). The structural and 298 

functional images are then aligned using boundary-based registration (Greve & Fischl, 2009) 299 

using the FsFast software package (http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast). FD and 300 

DVARS were computed using fsl_motion_outliers (Smith et al., 2004). Volumes with FD > 0.2 301 

mm or DVARS > 50 were tagged as outliers. Uncensored segments of data lasting fewer than 5 302 

contiguous volumes were also flagged as outliers (Gordon et al., 2016). BOLD runs with more 303 
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than half of the volumes flagged as outliers were removed completely. Next, linear regression 304 

using multiple nuisance regressors was applied through a combination of CBIG in-house scripts 305 

and the FSL MCFLIRT tool (Jenkinson et al., 2002). Nuisance regressors consisted of global 306 

signal, six motion correction parameters, averaged ventricular signal, averaged white matter 307 

signal, and their temporal derivatives (totaling 18 regressors). The flagged outlier volumes were 308 

ignored during the regression procedure. Following the regression, a bandpass filter (0.009 Hz ≤ 309 

f ≤ 0.08 Hz) was applied using CBIG in-house scripts. At this point, the preprocessed fMRI data 310 

were projected onto the FreeSurfer fsaverage6 surface space (2 mm vertex spacing) with 311 

FreeSurfer’s mri_vol2surf function. The projected fMRI data were then smoothed using a 6 mm 312 

full-width half-maximum kernel through FreeSurfer’s mri_surf2surf function (Fischl et al., 313 

1999). Surface space was selected for the following analyses in order to best follow the 314 

individual parcellation pipeline outlined in Kong et al. (2019), and following evidence that 315 

landmark surface-based registration outperforms volume-based registration (Anticevic et al., 316 

2008; Argall et al., 2006; Desai et al., 2005; Van Essen, 2005). 317 

2.4 Individual Network Parcellation 318 

 Following preprocessing, network parcellations were computed using a multi-session 319 

hierarchical Bayesian modeling (MS-HBM) pipeline. The MS-HBM pipeline is designed to 320 

generate parcellations for individuals with multiple sessions of fMRI data (Kong et al., 2019; Li 321 

et al., 2019) and is implemented in MATLAB R2018b (MATLAB, 2018). This particular model 322 

has been selected because it accounts for intra-individual variation, allowing the model to better 323 

generalize to new fMRI data from the same participant. As an overview, this model uses a 324 

variational Bayes expectation-maximization algorithm to learn group-level priors from a training 325 

dataset and then apply those to estimate individual-specific parcellations (see Figure 2). This 326 
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model estimates the following parameters: group-level network connectivity profiles, inter-327 

subject functional connectivity variability, intra-subject functional connectivity variability, a 328 

spatial smoothness prior, and an inter-subject spatial variability prior. As recommended in the 329 

pipeline’s GitHub documentation, subjects with a single available run post-preprocessing had 330 

that single run split in two and a connectivity profile was generated for each split. A k of 17 was 331 

selected for all participants (Yeo et al., 2011). Additionally, it has previously been demonstrated 332 

that MS-HBM parameters estimated from one dataset can be effectively applied to another 333 

dataset with significant differences in acquisition and preprocessing (Kong et al., 2021). Thus, to 334 

generate our model, priors trained on 37 Genomic Superstruct Project (GSP) subjects were 335 

utilized (Holmes et al., 2015; Kong et al., 2019). Following the generation of individual 336 

parcellations, a Hungarian matching algorithm was used to match the clusters with the Yeo et al. 337 

(2011) 17-network group parcellation. 338 

 339 

Figure 2. Illustration of the Multi-Session Hierarchical Bayesian Modeling (MS-HBM) individual 340 

parcellation pipeline. First, a connectivity profile is generated for each available fMRI run on an individual 341 

basis (illustrated here as a functional connectivity matrix). Next, group priors previously estimated (Kong 342 

et al., 2019) from 37 Genomic Superstruct Project (GSP) subjects were used. Third, the connectivity 343 

profiles from each available run and the group priors (more specifically, the inter-subject functional 344 

connectivity variability, intra-subject functional connectivity variability, spatial smoothness, and inter-345 

subject spatial variability) are used to generate network parcellations for each participant. Finally, the 346 
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network surface area ratio (NSAR) is calculated using the formula shown, where LH SA is the left 347 

hemisphere surface area for a given network and RH SA is the right hemisphere surface area for a given 348 

network. A negative NSAR value indicates left hemisphere lateralization for a given network while a 349 

positive value indicates right hemisphere lateralization. 350 

 351 

2.5 Network Surface Area Ratio 352 

Following the generation of individual network parcellations, lateralization was estimated 353 

using a novel measure: the network surface area ratio (NSAR). In discussing this measure, we 354 

opted to use this terminology (lateralization) because it accurately encapsulates the concept of an 355 

asymmetrical distribution of functional networks across the cerebral hemispheres, which is 356 

central to the following analyses. This measure was calculated within each individual for each of 357 

17 networks by first extracting each network label as a region of interest using the Connectome 358 

Workbench wb_command functions metric-label-import and gifti-label-to-roi (Marcus et al., 359 

2013). Next, the left and right hemisphere surface areas for a given network were calculated on a 360 

midthickness Conte69 surface in fsaverage6 resolution (Glasser & Essen, 2011) using the 361 

wb_command function metric-stats. Finally, NSAR was calculated as the difference between 362 

normalized left and right hemisphere surface areas for a given network (see Figure 2):  363 

NSAR =  
ோு ௌ஺ ି ௅ு ௌ஺

௅ு ௌ஺ ା ோு ௌ஺
 364 

where RH SA represents the right hemisphere surface area of a given network and LH SA 365 

represents the left hemisphere surface area of a given network. A scaling factor was not included 366 

in the denominator since asymmetry indices including a scaling factor deliver essentially the 367 

same findings as those without (Kong et al., 2022).  368 

NSAR values range from -1.0 to +1.0, with negative values indicating left hemisphere 369 

lateralization for a given network and positive values indicating right hemisphere lateralization. 370 
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NSAR values closer to zero indicate less lateralization (i.e., hemispheric symmetry). Although 371 

this measure of lateralization shares similarities with several previously used asymmetry indices 372 

(Binder et al., 1997; Braga et al., 2020; Mahowald & Fedorenko, 2016), its distinct methodology 373 

prompts us to specifically test its validity and reliability.   374 

2.6 Establishing the Validity of NSAR 375 

 Ecological validity for Language network laterality was first examined since the 376 

Language network has previously been established as a highly lateralized network. HCP subjects 377 

with all four runs of resting-state data and the minimally preprocessed Story-Math task contrast 378 

were selected (N = 221). This Story-Math task was used as a proxy for a language task, as has 379 

been done previously (Labache et al., 2023; L. Lin et al., 2022; Wang et al., 2023). Participant t-380 

statistic contrast maps were converted to fsaverage6 resolution using wb_command functions 381 

cifti-separate and metric-resample, masked using a language task fMRI atlas (LanA atlas) 382 

derived from a large sample (N = 804; Lipkin et al., 2022), and then thresholded to the top 10% 383 

of vertices. We chose this threshold rather than a fixed t-value in order to account for individual 384 

differences in the strength of BOLD signal responses attributable to individual differences 385 

arising from trait or state factors (Lipkin et al., 2022). A simple laterality metric was then 386 

calculated for each contrast map: the number of right hemisphere vertices minus the number of 387 

left hemisphere vertices divided by the sum of the left and right hemisphere vertices. A 388 

Spearman rank correlation was then used to compare language task laterality against the NSAR 389 

value for the Language network. This and all other statistical analyses took place in R 4.2.0 (R 390 

Core Team, 2022). 391 

 Convergent validity was also examined through a comparison of the NSAR against a 392 

measure of specialization: the autonomy index (Wang et al., 2014). The autonomy index 393 
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approaches specialization from a functional connectivity perspective and is known to reliability 394 

estimate specialization across neurotypical and clinical samples (Mueller et al., 2015; Sun et al., 395 

2022; Wang et al., 2014). First, individual functional connectivity matrices were calculated for 396 

each resting-state run and then averaged across runs within an individual at the fsaverage6 397 

resolution in MATLAB R2018b (MATLAB, 2018). From here the autonomy index was 398 

computed as follows: for each seed ROI obtained from a functional connectivity matrix, the 399 

degree of within-hemisphere connectivity and cross-hemisphere connectivity were computed by 400 

summing the number of vertices correlated to the seed in the ipsilateral hemisphere and in the 401 

contralateral hemisphere. These vertex counts are then normalized by the total number of 402 

vertices in the corresponding hemisphere, thus accounting for a potential brain size asymmetry 403 

between the two hemispheres. Finally, AI is calculated as the difference between normalized 404 

within- and cross-hemisphere connectivity as follows: 405 

AI = Ni/Hi – Nc/Hc 406 

where Ni and Nc are the number of vertices correlated to the seed ROI (using a threshold of 407 

|0.25|) in the ipsilateral hemisphere and contralateral hemisphere, respectively. Hi and Hc are the 408 

total number of vertices in the ipsilateral and contralateral hemisphere, respectively. To compute 409 

the specialization of each functional network, the AI was averaged within the boundary of each 410 

network on an individual basis. Subjects from the HCP dataset with all four runs available (N = 411 

232) were selected for this analysis of validity and all four runs from each individual were used 412 

to compute the autonomy index. A Spearman’s rank correlation coefficient was then used to 413 

compare the autonomy index and NSAR on three right-lateralized networks (Limbic-B, Visual-414 

B, and Ventral Attention-A) and three left-lateralized networks (Language, Dorsal Attention-A, 415 
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and Control-B) determined a priori. In order to correct for multiple comparisons, a Bonferroni-416 

corrected alpha level of 0.008 was used.   417 

External validity was next examined through a comparison of NSAR values from 418 

significantly lateralized networks against two measures from the Cognition Battery of the 419 

National Institutes of Health Toolbox (Gershon et al., 2013): the Oral Reading Recognition Test 420 

(ORRT; Gershon et al., 2014) and the Flanker Inhibitory Control and Attention Test (adapted 421 

from Rueda et al., 2004). The ORRT was selected as a measure of language and the Flanker as a 422 

measure of executive control (inhibitory control, specifically) and visuospatial attention. Among 423 

all available cognitive assessments, we selected those that have be shown to engage cognitive 424 

domains lateralized to both the right (assessing attention via the Flanker test) and left (evaluating 425 

language through the ORRT) hemispheres. Each cognitive measure has been highly validated 426 

(Heaton et al., 2014; Ott et al., 2022; Zelazo et al., 2014). To facilitate the comparison of NSAR 427 

against these cognitive measures, a Canonical Correlation Analysis (CCA) was implemented 428 

using HCP subjects with all four resting-state runs available (N = 232). The CCA was chosen for 429 

its ability to robustly estimate relationships between sets of variables (Marek et al., 2022), and 430 

was conducted using the cc function from the CCA package in R (González & Déjean, 2023). 431 

CCA feature weights were Haufe-transformed (Haufe et al., 2014) in order to provide a more 432 

realistic perspective of feature contributions considering the covariance structure of the data. 433 

Haufe-transformations are also known to increase the interpretability and reliability of feature 434 

weights (Chen, Ooi, et al., 2022; Chen, Tam, et al., 2022; Tian & Zalesky, 2021) 435 

2.7 Establishing the Reliability of NSAR 436 
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  Reliability analyses sought to address three questions: 1) How much data is needed to 437 

obtain a stable estimate of NSAR, 2) What is the test-retest reliability of NSAR, and 3) Is there a 438 

task effect on NSAR estimation? 439 

2.7.1 Stable Estimate Analysis 440 

 Given that MRI scanning is costly, rendering it comparatively rare to have highly 441 

sampled individuals, it is important to understand how much data is needed to reliably estimate 442 

lateralization and assess the credibility of our results. To address this concern, we analyzed HCP 443 

participants with all four runs of resting-state data available (N = 232). Following preprocessing, 444 

the first and third scans from each participant were set aside to compose 30 minutes of 445 

independent data. Next, the second and fourth scans were each split into three five-minute 446 

segments. Runs were split in MATLAB R2018b (MATLAB, 2018) using native MATLAB 447 

functions as well as the FreeSurfer functions MRIread and MRIwrite. The MS-HBM pipeline 448 

was then used to generate individual parcellations from 5, 10, 15, 20, 25, and 30 minutes of data 449 

from the segmented scans. The MS-HBM pipeline was also used to generate separate individual 450 

parcellations from 30 minutes of independent data. Of note, the reliability of the MS-HBM 451 

pipeline has been examined previously (see Kong et al., 2019 Figure 3B and Supplementary 452 

Figure S10C). The NSAR was then calculated for each iteration (5, 10, 15, etc. minutes) and the 453 

independent 30 minutes of data. An intraclass correlation between the NSAR from each iteration 454 

parcellation and the independent 30 minutes parcellation was assessed within each subject. 455 

Similarly, an intraclass correlation between the NSAR from each iteration parcellation and the 456 

independent 30 minutes parcellation was assessed for each network. For the NSAR and 457 

parcellation stable estimate analyses, the standard guidelines from Koo & Li (2016) regarding 458 

intraclass correlation values were implemented, with values less than 0.5 indicating poor 459 
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reliability, values between 0.5 and 0.75 indicating moderate reliability, values between 0.75 and 460 

0.9 indicating good reliability, and values greater than 0.9 indicating excellent reliability (based 461 

on a 95% confidence interval). 462 

2.7.2 Test-Retest Reliability Analysis 463 

 The purpose of the test-retest reliability analysis is to measure the reliability of NSAR in 464 

a simpler fashion than the stable estimate analysis. For this analysis, the first two and second two 465 

runs from HCP participants with all four runs available were used to generate separate individual 466 

parcellations from which NSAR will be calculated. Outliers were fenced on a network basis to an 467 

upper limit of the third quartile plus 1.5 multiplied by the interquartile range, and a lower limit of 468 

the first quartile minus 1.5 multiplied by the interquartile range. An intraclass correlation 469 

coefficient was calculated comparing the NSAR from the first half of the data with the NSAR 470 

from the second half for three right-lateralized networks (Limbic-B, Visual-B, and 471 

Salience/Ventral Attention-A) and three left-lateralized networks (Language, Dorsal Attention-472 

A, and Control-B) determined a priori. 473 

2.7.3 Task Effects Analysis 474 

 In the case that a large quantity of data is needed to derive a reliable estimate of 475 

lateralization, one might consider including task data in addition to any resting-state data in order 476 

to increase the amount of available data per participant. However, in this situation it would be 477 

prudent to know if task data provides the same or similar estimates as those from resting-state 478 

data. To address this concern, the NSD dataset was selected since it has a large quantity of both 479 

resting-state and task-based fMRI data per participant. Following preprocessing, a minimum of 480 

12 resting-state runs were available for each participant, so the first 12 available resting-state 481 

runs and the first 12 available task runs were utilized (resting-state and task runs were of the 482 
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same duration). Individual parcellations were then generated based on various combinations of 483 

runs within task type: even-numbered runs, odd-numbered runs, the first half of runs, the second 484 

half of runs, and two random selections of runs (without replacement). A dice coefficient was 485 

then computed to compare parcellation label overlap within task (e.g., between even and odd-486 

numbered resting-state runs) and between tasks (e.g., between odd-numbered runs from resting-487 

state and task runs). This comparison procedure was repeated for the NSAR intraclass correlation 488 

coefficient. Due to the non-normal nature of such a small dataset, comparisons between the task 489 

and rest parcellation dice coefficients and NSAR intraclass correlations were formally made 490 

using paired Wilcoxon Signed Rank tests (R Core Team, 2011; Wilcoxon, 1945). 491 

2.8 Identifying Lateralized Networks 492 

 After establishing validity and reliability, we addressed the first hypothesis of 493 

determining whether any of the 17 networks exhibited lateralization, and of those, which were 494 

the most lateralized. The following analyses were first implemented in the HCP-Discovery 495 

dataset and then replicated in the HCP-Replication and HCPD datasets using all data available 496 

from each participant. First, to determine whether any networks exhibited lateralization, multiple 497 

regressions were implemented for each of the 17 networks. Models consisted of a given 498 

network’s NSAR value and the covariates of mean-centered age, sex, mean-centered mean 499 

framewise displacement, and handedness (measured via the Edinburgh Handedness Inventory; 500 

Oldfield, 1971). A network was considered lateralized if the model intercept was significant at 501 

the Bonferroni-corrected alpha level of 0.003. Next, to determine which networks were the most 502 

lateralized, any networks exhibiting significant lateralization in the previous tests with the same 503 

direction of lateralization were compared against each other two at a time in multiple regressions 504 
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with a binary variable for the two networks and the covariates of mean-centered age, sex, mean-505 

centered mean framewise displacement, and handedness.  506 

2.9 Identifying Network Relationships  507 

To test the second hypothesis regarding how network lateralization is potentially related 508 

between networks, a general relationship was first assessed between NSAR values averaged 509 

across like-lateralized networks followed by correlation matrices and structural equation 510 

modeling. An exploratory factor analysis (EFA) was conducted in the HCP-Discovery dataset 511 

followed by separate confirmatory factor analyses (CFAs) in the HCP-Replication, and HCPD 512 

datasets using model-adjusted lateralization values from any reliably lateralized networks. For a 513 

network to be considered reliably lateralized, it was significantly lateralized across the HCP-514 

Discovery, HCP-Replication, and HCPD datasets. The exploratory factor analysis was chosen for 515 

its ability to identify shared relationships between the items in a data-driven manner. The fa 516 

function from the psych package (Revelle, 2023) was used to conduct an iterated principal 517 

factors analysis and subsequent parallel analysis. Criteria for the extraction of factors were: a 518 

minimum eigenvalue of one, visual inspection of a scree plot, and a parallel analysis. A four-519 

factor model was hypothesized, similar to Liu et al. (2009), with each factor encompassing 520 

vision, internal thought, attention, and language. The factor structure identified in the HCP-521 

Discovery dataset was then implemented in confirmatory factor analyses in the HCP-Replication 522 

and HCPD datasets using the cfa function from the lavaan package (Rosseel, 2012; Rosseel et 523 

al., 2023). 524 

3 Results 525 

3.1 NSAR as a Valid Measure of Lateralization 526 
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 The ecological validity of NSAR was examined through comparison against laterality 527 

calculated from a language task in a subset of the HCP subjects (N = 221). A positive significant 528 

relationship between NSAR for the Language network and language task laterality was found 529 

(Spearman rank correlation r = 0.24, p < .001; see Figure 3).  530 

 531 

Figure 3. Language network NSAR and language task laterality. Depicted is a positive relationship 532 

between NSAR for the Language network and language task laterality in a subset of the HCP dataset (N 533 

= 221). Across each measure of laterality, a negative value denotes left-hemisphere lateralization while a 534 

positive value indicates right-hemisphere lateralization.  535 

 536 

 The convergent validity of NSAR was assessed through comparison with an additional 537 

functional measure of specialization (the autonomy index) using the Spearman rank correlation. 538 

To facilitate direct comparison with NSAR values, the sign for autonomy index values was 539 

reversed. With the selected left-lateralized networks, significant relationships were found 540 

between the autonomy index and NSAR for the Language (Spearman rank correlation r = -0.62, 541 
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p < .001; see Figure 3 Panel B), Dorsal Attention-A (Spearman rank correlation r = -0.62, p < 542 

.001), and the Control-B (Spearman rank correlation r = -0.57, p < .001) networks (see the top 543 

row of Figure 4). Significant relationships were also found between the autonomy index and 544 

NSAR for the selected right-lateralized networks including the Visual-B (Spearman rank 545 

correlation r = 0.71, p < .001), Salience/Ventral Attention-A (Spearman rank correlation r = 546 

0.61, p < .001), and Limbic-B (Spearman rank correlation r = 0.69, p < .001) networks (see the 547 

second row of Figure 4). These findings indicate that NSAR and the autonomy index are 548 

measuring similar facets of specialization. 549 

 550 

Figure 4. Evidence for convergent validity between the autonomy index and NSAR in a subset of HCP 551 

dataset. The top row depicts the relationships between the autonomy index and NSAR for three left-552 

lateralized networks (Language, Dorsal Attention-A, and Control-B; Spearman rank correlation r = -0.57 -  553 
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-0.62). The bottom row depicts the relationships between the autonomy index and NSAR for three right-554 

lateralized networks (Visual-B, Ventral Attention-A, and Limbic-B; Spearman rank correlation r = 0.61 - 555 

0.71). For each scatterplot, the line of best fit was generated using the lm function (no covariates) and 556 

each circle represents an individual.  557 

 558 

 Next, the external validity of NSAR was examined through comparison against two 559 

cognitive measures using a CCA: a reading task (ORRT) and an attention/inhibitory control task 560 

(the Flanker task). In preparation for the CCA in a subset of HCP participants (N = 232; no 561 

missing data), linearity and heteroskedasticity of age-, sex-, handedness-, and mean framewise 562 

displacement-adjusted NSAR values from eight significantly lateralized networks and the age- 563 

and sex-adjusted values from two cognitive measures were evaluated in pairwise plots, which 564 

were followed by the Doornik-Hansen multivariate test for normality (DH.test function from the 565 

mvnTest package; DH = 164.21, p = 0; Doornik & Hansen, 2008; Pya et al., 2016). Tests of 566 

dimensionality for the CCA indicated that one of the two canonical dimensions was statistically 567 

significant at the .05 level. This dimension had a canonical correlation of 0.34 (F(16, 444) = 568 

0.87, p = .008) between the cognitive measures and NSAR values, while the canonical 569 

correlation was much lower for the second, nonsignificant dimension at 0.14 (F(7, 223) = 0.98, p 570 

= .75). Table 1 presents the standardized canonical coefficients for the first dimension across the 571 

cognitive measures and eight lateralized networks. Of the cognitive variables, the first canonical 572 

dimension was most strongly influenced by language ability (β (standardized canonical 573 

coefficient) = -0.99). In terms of lateralized networks, the Visual-B (β = -0.33, r = -0.13), 574 

Language (β  = 0.39, r = 0.2), Dorsal Attention-A (β = -0.54, r = -0.17), and Control-C (β = 0.48, 575 

r = 0.13) networks appeared to contribute the most to the first canonical dimension. Haufe-576 

transformed feature weights indicated that for every one-unit increase in Language network 577 
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lateralization, the first dimension, representing language ability, increases by 0.13 (see Table 1). 578 

These findings suggest that there is a relationship between network lateralization and cognitive 579 

abilities, specifically language.  580 

 581 

Table 1  582 

Canonical Correlation Analysis Results for Dimension 1in a Subset of the HCP Dataset (N = 583 
232) 584 

 
Standardized 
Canonical 
Coefficient 

Haufe-
Transformed 
Weight 

Correlation with 
Canonical Variate* 

Cognitive Variables    

          Language (ORRT) -0.99 -0.45 -0.32 

          Attention (Flanker) 0.39 2.22 0.07 

Lateralized Networks    

          Visual-B -0.33 -0.05 -0.13 

          Language 0.39 0.13 0.2 

          Dorsal Attention-A -0.54 -0.07 -0.17 

          Salience/Ventral 
               Attention-A 

-0.18 -0.03 -0.1 

          Control-B 0.11 -0.01 -0.02 

          Control-C 0.48 0.04 0.13 

          Default-C 0.37 0.05 0.12 

          Limbic-B -0.17 -0.03 -0.05 

*Bolded values were significant at the p < .05 level following multiple comparison corrections. 585 

 586 

3.2 NSAR as a Reliable Measure of Lateralization 587 

3.2.1 Stable Estimate Analysis 588 
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 To address the question of how much data is needed in order to obtain a stable estimate 589 

of NSAR values, combinations of five-minute increments (5, 10, 15…30 minutes) were 590 

compared against 30 independent minutes of data in a subset of HCP subjects. The intraclass 591 

correlations indicate that only five minutes of data are needed to obtain moderate to good 592 

intraclass correlations for the majority of subjects (see Figure 5 Panel A). Of note, poor and 593 

excellent interclass correlations were observed for some subjects. The stable estimate analysis 594 

was also approached from a network basis (as opposed to the subject basis presented in Figure 5 595 

Panel A). Networks with the lowest intraclass correlations included the Limbic-A and Control-A 596 

networks, while networks with the greatest intraclass correlations included Visual-A, Limbic-B, 597 

and Default-A (for overall distributions, see Figure 5 Panel B; for specific network intraclass 598 

correlation coefficients, see Supplementary Figure S2). Interestingly, not all networks improved 599 

in reliability with additional data, including the Limbic-A and Control-A networks. This is likely 600 

a reflection of a poor signal-to-noise ratio. For parcellation label overlap estimates, see 601 

Supplementary Figure S3. 602 

 603 
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Figure 5. Evidence for reliable estimates of NSAR in the HCP dataset. Panel A depicts the intraclass 604 

correlation coefficient calculated for each subject’s 17 NSAR values for each time increment (5, 10, 15 … 605 

30 minutes) and the subject’s 17 NSAR values from 30 independent minutes of data. Panel B depicts the 606 

intraclass correlation coefficient calculated for each network’s mean NSAR value between the 30 607 

independent minutes of data and each increment of data. The distribution of intraclass correlation 608 

coefficients is shown for the 17 networks. Specific network intraclass correlation coefficients are displayed 609 

in Supplementary Figure S2. 610 

 611 
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3.2.2 Test-Retest Reliability Analysis 612 

Using HCP subjects with all four resting-state runs available post-preprocessing (N = 613 

232), test-retest reliability was assessed for three left-lateralized networks (Language, Dorsal 614 

Attention-A, and Control-B) and three right-lateralized networks (Limbic-B, Visual-B, and 615 

Salience/Ventral Attention-A) determined a priori. For the left-lateralized networks, intraclass 616 

correlations were within the moderate range, from 0.56 to 0.63, with the lowest being the Dorsal 617 

Attention-A network (ICC = 0.56, F(231, 231) = 3.6, p < .001, 95% CI [0.47, 0.64]; see Figure 618 

6). For the right-lateralized networks, intraclass correlations remained in the moderate range, 619 

between 0.58 to 0.71, with the Visual-B network exhibiting the lowest reliability (ICC = 0.58, 620 

F(231, 231) = 3.7, p < .001, 95% CI [0.48, 0.66]).  621 

 622 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.08.570817doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.08.570817
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 
 

 

Figure 6. Test-retest reliability of NSAR values for left- and right-lateralized networks in 232 HCP 623 

subjects. Left-lateralized networks (left column) included Language, Dorsal Attention-A, and Control-B. 624 

Right-lateralized networks (right column) included Visual-B, Salience/Ventral Attention-A, and Limbic-B. In 625 

each plot, a circle represents a subject. 626 

 627 

3.2.3 Task Effects on Individual Parcellations and NSAR 628 

 Using the NSD dataset (N = 8) to compare potential differences between resting-state and 629 

task fMRI on individual parcellations and NSAR estimates, we found differences between the 630 

within-task comparisons and between task comparisons for both the parcellation dice coefficients 631 

and NSAR intraclass correlations (see Figure 7). Wilcoxon signed rank comparisons revealed a 632 
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difference in within-task (Task-Task and Rest-Rest) dice coefficients for even versus odd 633 

numbered runs (V = 36, p = .008), but no difference for the first half versus the second half of 634 

runs (V = 29, p = .15) or the random selection of runs (V = 31, p = .08). Regardless of how the 635 

data were split, a task effect in dice coefficient was found between within-task (Task-Task) and 636 

between-task (Task-Rest) dice coefficients for even versus odd numbered runs (V = 36, p = 637 

.008), the first half versus the second half of runs (V = 36, p = .008), and the random selection of 638 

runs (V = 36, p = .008).  639 

Similarly, with the NSAR intraclass coefficients, no significant difference was found for 640 

within-task (Task-Task and Rest-Rest) reliability across the even versus odd numbered runs (V = 641 

31, p = .08) and the first half versus the second half of runs (V = 19, p = .95), but not for the 642 

random selection of runs (V = 35, p = .02). However, a significant difference was not found 643 

between within-task (Task-Task) and between-task (Task-Rest) intraclass correlation coefficients 644 

across the even versus odd numbered runs (V = 31, p = .08), the first half versus the second half 645 

of runs (V = 31, p = .08), but for the random selection of runs (V = 34, p = .02).  646 
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 647 

Figure 7. Task dependency of individual parcellations and NSAR in the NSD dataset. Depicted in the top 648 

row are the dice coefficients for the individual parcellations between 30-minute increments of resting-state 649 

or task fMRI data. Regardless of how the data were split (even- versus odd-numbered runs, the first half 650 

versus the second half, or a random selection without replacement), a task effect was found. Depicted in 651 

the second row are the NSAR intraclass correlation coefficients computed in individuals across networks. 652 

In each plot, circles connected by a line represent an individual.  653 

 654 

3.3 Networks with the Greatest Lateralization 655 

 To test the first hypothesis that networks associated with language, visuospatial attention, 656 

and executive control would show the greatest hemispheric lateralization, networks were first 657 

evaluated for lateralization and then compared against each other. To begin, a series of multiple 658 

regressions were used to identify if any of the 17 networks were lateralized, first in the HCP-659 
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Discovery dataset and then in the HCP-Replication and HCPD datasets. Networks with 660 

significant lateralization (p < .003) in the same direction (e.g., right or left lateralization) across 661 

all three datasets included nine networks, of which four were left-lateralized (Language, Dorsal 662 

Attention-A, Control-A and Default-C) and five were right-lateralized (Visual-B, 663 

Salience/Ventral Attention-A, Control-B, Control-C, and Limbic-B; see Supplementary Table 664 

1).However, given the very low reliability of the left-lateralized Control-A network (mean ICC = 665 

0.12; see Supplementary Figure S2), this network was not considered further. None of the 666 

covariates were reliably significant for a given network across all three datasets. See Figure 8 for 667 

model-adjusted NSAR values for each of the 17 networks and see Figure 9 for the percentage of 668 

surface area occupied by the eight most lateralized networks.   669 

 Following the identification of eight lateralized networks, a series of multiple regressions 670 

were used to compare networks with the same direction of lateralization two at a time in order to 671 

identify the networks with the greatest lateralization. Models included a binary network variable 672 

and the covariates of mean-centered age, sex, handedness, and mean-centered mean framewise 673 

displacement. Of the left-lateralized networks, the Dorsal Attention-A network was the most 674 

lateralized compared with the Language and Default-C networks, and this pattern was replicated 675 

across the HCP-Discovery, HCP-Replication, and HCPD datasets (see Supplementary Table 2). 676 

Of the right-lateralized networks, the Limbic-B network was the most lateralized, followed by 677 

the Control-B network, Visual-B and Control-C networks (not significantly different), and the 678 

Salience/Ventral Attention-A network. This pattern was replicated across the three datasets as 679 

well (see Supplementary Table 3). Contrary to our hypothesis that networks associated with 680 

language, visuospatial attention, and executive control would show the greatest lateralization, we 681 
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identified the Dorsal Attention-A network as the most left-lateralized and the Limbic-B network 682 

as the most right-lateralized. 683 

 684 

Figure 8. Lateralization for 17 networks across the HCP-Discovery, HCP-Replication, and HCPD 685 

datasets. On the y-axis are the 17 networks and on the x-axis are the adjusted NSAR values, with 686 

negative values representing left hemisphere lateralization and positive values representing right 687 

hemisphere lateralization. Bars represent the 2.5 and 97.5 percentiles. NSAR values were adjusted by 688 

regressing out the effects of mean-centered age, mean-centered mean framewise displacement, and sex 689 

using the following formula: NSARadjusted = NSARraw — [β1(mean-centered ageraw – mean of mean-690 
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centered ageraw) + β2(mean-centered FDraw – mean of mean-centered FDraw) + β3(sexraw – mean sexraw) + 691 

β4(handednessraw – mean handednessraw)]. NSAR adjustment occurred separately for each network 692 

within each dataset. Lines represent the standard error. Across the three datasets, eight networks were 693 

reliably and significantly lateralized (left-lateralized: Language, Dorsal Attention-A, and Default-C; right-694 

lateralized: Visual-B, Salience/Ventral Attention-A, Control-B, Control-C, and Limbic-B). 695 

 696 
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Figure 9. Percent surface area for 8 lateralized networks across the HCP-Discovery, HCP-Replication, 697 

and HCPD datasets. Depicted in the top of Panel A is the percentage of the surface area occupied by a 698 

given lateralized network for the left hemisphere (top panel) and right hemisphere (bottom panel). 699 
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Depicted in Panel B is the mean percentage of surface area occupied by a lateralized network, with 700 

standard error bars. The left and right hemisphere estimates are displayed side-by-side for each dataset. 701 

In Panel C, the adjusted NSAR values for each network are shown. In Panels A and C, points represent 702 

individual outliers. 703 

 704 

3.4 Relationships between Networks’ Lateralization 705 

 Next, we investigated how lateralization in one network may influence the lateralization 706 

of other networks. This second hypothesis was assessed first through general correlations 707 

followed by both correlation matrices and structural equation modeling conducted in triplicate 708 

across the HCP-Discovery, HCP-Replication, and HCPD datasets. First, model-adjusted NSAR 709 

values were averaged across like-lateralized networks before the averaged left-lateralized values 710 

(from the Language, Dorsal Attention-A, and Default-C networks) were correlated with the 711 

averaged right-lateralized values (from the Visual-B, Salience-Ventral Attention-A, Control-B, 712 

Control-C, and Limbic-B networks). A general negative relationship between left-lateralized and 713 

right-lateralized networks was found across each dataset (HCP-Discovery: r(274) = -0.67, p < 714 

.001; HCP-Replication: r(275) = -0.59, p < .001; HCPD: r(343) = -0.66, p < .001). Next, 715 

correlation matrices of the model-adjusted NSAR values from the eight lateralized networks 716 

evidenced moderate negative relationships between the left- and right-lateralized networks across 717 

individuals (see Figure 10). In the HCP-Discovery dataset, negative relationships were found 718 

between the Limbic-B and Dorsal Attention-A networks (r(274) = -0.45, p < .001, 95% CI [-719 

0.54, -0.36]; see Figure 11 Panel A), the Limbic-B and Default-C networks (r(274) = -0.42, p < 720 

.001 , 95% CI [-0.51, -0.31]; see Figure 11 Panel B), the Default-C and Visual-B networks 721 

(r(274) = -0.16, p = .007, 95% CI [-0.28, -0.05]), the Default-C and Control-B networks (r(274) 722 

= -0.27, p  < . 001, 95% CI [-0.38, -0.16]), the Default-C and Control-C networks (r(274) = -723 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.08.570817doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.08.570817
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 
 

 

0.17, p = .004, 95% CI [-0.29, -0.06]), the Control-B and Language networks (r(274) = -0.31, p < 724 

.001, 95% CI [-0.41, -0.19]), and the Language and Salience/Ventral Attention-A networks 725 

(r(274) = -0.3, p < .001, 95% CI [-0.41, -0.19]; see Figure 11 Panel C). Interestingly, a negative 726 

relationship was also found between two left-lateralized networks: Dorsal Attention-A and 727 

Language (r(274) = -0.23, p < .001, 95% CI [-0.34, -0.11]). Each negative relationship was 728 

replicated across the HCP-Replication and HCPD datasets (see Figure 10). These relationships 729 

support the dependent hypothesis, which suggests that having one highly lateralized network 730 

corresponds with increased lateralization in other networks within the individual, and that this 731 

pattern is systematic across individuals. 732 

 733 
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Figure 10. Relationships between lateralized networks across the HCP-Discovery, HCP-Replication, and 734 
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HCPD datasets. Correlation matrices were created from the model-adjusted NSAR values from the eight 735 

lateralized networks (Visual-B, Language, Dorsal Attention-A, Salience/Ventral Attention-A, Control-B, 736 

Control-C, Default-C, and Limbic-B), controlling for sex, mean-centered age, mean-centered framewise 737 

displacement, and handedness. Correlation values thresholded at p = .05 are displayed in the upper 738 

triangles, and consistent relationships have been highlighted with black boxes. 739 

 740 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2023. ; https://doi.org/10.1101/2023.12.08.570817doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.08.570817
http://creativecommons.org/licenses/by-nc-nd/4.0/


44 
 

 

Figure 11. Negative correlations between highly left- and right-lateralized networks across the HCP-741 
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Discovery, HCP-Replication, and HCPD datasets. Panel A depicts the negative relationship between the 742 

Limbic-B and Dorsal Attention-A networks (HCP-Discovery: r(274) = -0.45, adjusted R2 = 0.2; HCP-743 

Replication: r(275) = -0.41, adjusted R2 = 0.16; HCPD: r(341) = -0.47, adjusted R2 = 0.22). Panel B 744 

depicts the negative relationship between the right-lateralized Limbic-B and left-lateralized Default-C 745 

networks (HCP-Discovery: r(274) = -0.42, adjusted R2 = 0.17; HCP-Replication: r(275) = -0.31, adjusted 746 

R2 = 0.09; HCPD: r(341) = -0.37, adjusted R2 = 0.14). Panel C depicts the negative relationship between 747 

the right-lateralized Salience/Ventral Attention-A network and left-lateralized Language network (HCP-748 

Discovery: r(274) = -0.3, adjusted R2 = 0.09; HCP-Replication: r(275) = -0.25, adjusted R2 = 0.06; HCPD: 749 

r(341) = -0.2, adjusted R2 = 0.04). In each panel, a circle represents a single participant’s model-adjusted 750 

NSAR value, which was adjusted for mean-centered age, sex, handedness, and mean-centered mean 751 

framewise displacement.  752 

 753 

3.4.1 EFA in the HCP-Discovery Dataset 754 

 As an additional method for exploring relationships between lateralized networks, an 755 

EFA was implemented in the HCP-Discovery dataset, followed by CFAs in the  HCP-756 

Replication, and HCPD datasets. In preparation for the EFA in the HCP-Discovery dataset (N = 757 

276; no missing data), linearity and heteroskedasticity of adjusted NSAR values from the eight 758 

lateralized networks were evaluated in pairwise plots, which were followed by the Doornik-759 

Hansen multivariate test for normality (DH.test function from the mvnTest package; DH = 760 

202.89, p = 0; Doornik & Hansen, 2008; Pya et al., 2016). The NSAR values were then 761 

evaluated for multicollinearity, and no items had Variance Inflation Factor values greater than 762 

1.65 (vif function from the psych package; Revelle, 2023). Additional assumptions testing 763 

included Bartlett’s test of sphericity and the Kaiser-Meyer-Olkin (KMO) Measure of Sampling 764 

Adequacy. For the test of sphericity, we rejected the null hypothesis that there is no correlation 765 
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among the items (χ2(28) = 293.43, p < .001). Additionally, the KMO test was .46, revealing that 766 

the extracted factors will account for an unacceptable amount of common variance.  767 

To examine network relationships, a principal factors analysis in the HCP-Discovery 768 

dataset was performed. Using the correlation matrix from eight lateralized networks, two factors 769 

were extracted. This first factor had an eigenvalue of 1.38 (explaining 57% of the variance; see 770 

Table 2 for factor loadings) and the second factor had an eigenvalue of 1.02 (explaining 43% of 771 

the variance). Of note, the left-lateralized networks load negatively onto the first extracted factor 772 

while right-lateralized networks load positively, suggesting that this factor encompasses right-773 

hemisphere lateralization, with the opposite in the second extracted factor.  774 

 775 

Table 2  776 

Summary of Exploratory Factor Analysis Results for the NSAR Scores Using Iterated Principal 777 
Factors in the HCP-Discovery Dataset (N = 276) 778 

Network Factor 1 Loadings Factor 2 Loadings 

Limbic-B 0.73 -0.32 

Control-C 0.28 0.06 

Visual-B 0.29 0.04 

Salience/VenAttn-A 0.28 0.26 

Control-B 0.22 0.23 

Language -0.38 -0.75 

Default-C -0.51 0.05 

Dorsal Attention-A -0.37 0.48 

Eigenvalues 1.38 1.02 

Proportion of variance 
explained 

0.57 0.43 

Note: Factor loadings over .40 appear in bold. 779 

 780 
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3.4.2 CFAs in the HCP-Replication and HCPD Datasets 781 

 In preparation for the CFA in the HCP-Replication dataset (N = 277; no missing data), 782 

linearity and heteroskedasticity of adjusted NSAR values were evaluated in pairwise plots, which 783 

were followed by the Doornik-Hansen multivariate test for normality (DH = 43.29, p < .001; 784 

Doornik & Hansen, 2008; Pya et al., 2016). The NSAR values were then evaluated for 785 

multicollinearity, and no items had Variance Inflation Factor values greater than 1.3. Additional 786 

assumptions testing included Bartlett’s test of sphericity and the Kaiser-Meyer-Olkin (KMO) 787 

Measure of Sampling Adequacy. For the test of sphericity, we rejected the null hypothesis that 788 

there is no correlation among the items (χ2(6) = 101.53, p < .001). Additionally, the KMO test 789 

was .49, revealing that the extracted factors will account for an unacceptable amount of common 790 

variance. This process of evaluating assumptions was also performed in the HCPD dataset (N = 791 

343; no missing data), starting pairwise plots and the Doornik-Hansen multivariate test for 792 

normality (DH = 44.37, p < .001 ). Multicollinearity was then evaluated, and no items had 793 

Variance Inflation Factor values greater than 1.49. Additionally, for Bartlett’s test of sphericity, 794 

we rejected the null hypothesis that there is no correlation among the items (χ2(6) = 164.59, p < 795 

.001). Furthermore, the KMO test was 0.47, revealing that the extracted factors will account for 796 

an unacceptable amount of common variance.  797 

To examine network relationships and potentially replicate the HCP-Discovery EFA, a 798 

confirmatory factor analyses were performed in the HCP-Replication and HCPD datasets using 799 

the cfa function from the lavaan package (Rosseel, 2012; Rosseel et al., 2023). The structural 800 

model consisted of two factors, with Limbic-B and Default-C loaded onto the first factor and 801 

Language and Dorsal Attention-A loaded onto the second factor. In the HCP-Replication dataset, 802 

the model provided fair fit to the data: χ2(2) = 61.95, p < .001; confirmatory fit index (CFI) = 803 
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0.38; root-mean-square error of approximation (RMSEA) = 0.33; standardized root mean square 804 

residual (SRMR) = 0.14. Similar results were found in the HCPD dataset, for which the model 805 

provided fair fit to the data: χ2(2) = 102.02, p < .001; CFI = 0.38; RMSEA = 0.38; SRMR = 0.16. 806 

Standardized loadings for each network across both CFAs are shown in Table 3.  807 

 808 

Table 3  809 

Standardized Loadings for a Two-Factor Confirmatory Factor Analysis Model of NSAR Scores 810 
in the HCP-Replication (N = 277) and HCPD (N = 343) Datasets 811 

 HCP-Replication HCPD 

Network Factor 1  Factor 2 Factor 1 Factor 2 

Limbic-B -0.3 0 -0.36 0.00 

Language 0.00 0.84 0.00 0.91 

Default-C 1.03 0.00 1.03 0.00 

Dorsal Attention-A 0.00 -0.25 0.00 -0.21 

Note: Factor loadings over .40 appear in bold. 812 

 813 

4 Discussion 814 

 In this study, we implemented a novel measure of lateralization based on high-resolution 815 

individual network parcellations (NSAR). Using NSAR, we identified eight networks that were 816 

reliably lateralized across three independent datasets. Furthermore, we examined potential 817 

relationships between networks’ NSAR values and found evidence supporting a dependent 818 

hypothesis of lateralization. These findings shed new light on hemispheric specialization, which 819 

has implications for the understanding of brain organization and development (Toga & 820 

Thompson, 2003), individual differences (Perez et al., 2023), human-defining cognitive 821 

processes (Hartwigsen et al., 2021), and neurodevelopmental conditions (Eyler et al., 2012; 822 

Kong et al., 2022). Previously, functional lateralization has been assessed through a variety of 823 
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approaches dependent on intrinsic connectivity, primarily at the group level. However, recent 824 

evidence suggests that group-based approaches can obfuscate the idiosyncratic anatomy of 825 

individuals and blur potentially meaningful and clinically useful variability (Gratton et al., 2020; 826 

Lynch et al., 2020; Salvo et al., 2021). For example, the language network has high spatial 827 

variability across individuals (Braga et al., 2020; Fedorenko, Duncan, et al., 2012), holding 828 

ramifications for the accurate assessment of lateralization for this and other variable networks.  829 

4.1 Evidence for the Validity and Reliability of NSAR 830 

In this study, we examined functional lateralization using a novel surface area-based 831 

index. This measure was developed methodologically through the examination of ecological, 832 

convergent, and external validity, as well as a stable estimate analysis, test-retest reliability, and 833 

potential task effects. Notably, language task laterality appears to have a positive relationship 834 

with Language network NSAR, suggesting that there is a degree of concordance between this 835 

resting-state measure of laterality and a task-based measure of laterality. Furthermore, estimates 836 

from this surface area approach to lateralization appear to converge with a different functional 837 

connectivity-based method (the autonomy index). This result supports the idea that NSAR is 838 

capturing lateralization in a way that is valid while being distinct from the autonomy index in 839 

how it is derived. Unlike the autonomy index, the formula for NSAR does not normalize for 840 

brain size or deal in the minutiae of individual functional connections. Rather, NSAR is 841 

calculated based on a network’s surface area. Additionally, potential relationships between 842 

network NSAR values and two cognitive measures were investigated in an analysis of external 843 

validity. Interestingly, a relationship between the laterality of the Visual-B, Language, Dorsal 844 

Attention-A, Control-C, and Default-C networks and language ability was identified. Similarly, 845 

others have identified a link between language function and left hemisphere lateralization during 846 
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language production (Groen et al., 2012), and between the lateralization of functional networks 847 

and their associated cognitive abilities (Gotts et al., 2013). 848 

Reliability analyses indicated that NSAR is stable within individuals, even after just five 849 

minutes of resting-state fMRI data. Interestingly, networks with the greatest reliabilities included 850 

the visual and somatomotor networks. This is in keeping with Kong et al. (2019), who found that 851 

sensorimotor networks exhibited lower inter-subject functional connectivity variability than 852 

association networks. Since NSAR is indirectly based on an individual’s functional connectivity 853 

profiles, this result is unexpected.  854 

In addition to the quantity of data available per participant, we also examined the effect 855 

of data type (task versus rest) on NSAR estimates within individuals. While within-task type 856 

reliability was high, we found that there was indeed a task effect such that resting-state fMRI and 857 

task fMRI did not yield identical parcellations and NSAR estimates within individuals. This 858 

finding supports the hypothesis that resting-state fMRI can be thought of as another arbitrary task 859 

state (Buckner et al., 2013). Yet, the “task” of resting-state fMRI can result in greater variability 860 

in functional connectivity compared with that resulting from task fMRI, perhaps resulting from 861 

mind wandering (Elton & Gao, 2015). And when predicting individual traits, task-based models 862 

outperform rest-based models, with this difference likely reflecting the “unconstrained nature” of 863 

the resting state (Greene et al., 2018). Since NSAR estimates are derived from individual 864 

parcellations which are in turn generated from individual functional connectivity profiles, it 865 

stands to reason that connectivity differences resulting from task type could trickle down to 866 

differences in NSAR estimates. 867 

4.2 The Identification of Eight Reliably Lateralized Networks 868 
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Following the methodological development of NSAR, we reliably identified eight 869 

lateralized networks across three datasets: Visual-B, Language, Dorsal Attention-A, 870 

Salience/Ventral Attention-A, Control-B, Control-C, Default-C, and Limbic-B. While a ninth 871 

lateralized network was reliably identified (Control-A), this network was discarded from further 872 

analysis due to very poor reliability. Previously, several of these networks have been established 873 

as lateralized, particularly those associated with language and visuospatial attention processing.  874 

4.2.1 The Dorsal Attention-A Network Exhibited the Greatest Left-Lateralization 875 

Previously, left-lateralized networks have included the language, frontoparietal control, 876 

and default networks. More specifically, evidence for the lateralization of the language network 877 

has been derived from a variety of methods including the Wada test (Desmond et al., 1995; 878 

Wada & Rasmussen, 1960), lesion cases (Broca, 1861; Wernicke, 1995), task fMRI (Elin et al., 879 

2022; Fedorenko, Duncan, et al., 2012; Fedorenko et al., 2010, 2011; Fedorenko, McDermott, et 880 

al., 2012; Lipkin et al., 2022; Malik-Moraleda et al., 2022; Olulade et al., 2020; Scott et al., 881 

2017; Wilson et al., 2017), and resting-state fMRI (Braga et al., 2020; Labache et al., 2020; Zhu 882 

et al., 2014), among others. Using NSAR, we also identified the language network as being 883 

strongly left-lateralized. However, unlike a prior comparative study (Braga et al., 2020), which 884 

examined lateralization in the language, salience, default, and frontoparietal networks (but not a 885 

dorsal attention network), we did not find that the language network was the most left-lateralized 886 

network. Instead, we identified the Dorsal Attention-A network as being the most left-lateralized. 887 

Unlike the ventral attention network, the dorsal attention network has been previously identified 888 

as a bilateral network (Fox et al., 2006; for review see Mengotti et al., 2020). This was the case 889 

for the Dorsal Attention-B network, which was not a significantly lateralized network across the 890 

three datasets. However, there is evidence for a left-lateralized dorsal attention network across 891 
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both left- and right-handed individuals, stemming from a within-individual network variants 892 

approach (see Figure 7 Panel C of Perez et al., 2023). Additionally, it could be that a finer-893 

grained parcellation deconstructs the dorsal attention network into one bilateral and one 894 

lateralized network, similar to previous within-individual work on the default network (Braga & 895 

Buckner, 2017; DiNicola et al., 2020).  896 

4.2.2 Replication of Right-Lateralized Attention, Control, and Limbic Networks  897 

 This is not the first study to identify the ventral attention, control, and limbic networks as 898 

being lateralized. Abundant evidence exists for the right-lateralization of visuospatial/ventral 899 

attention, stemming from task fMRI (Beume et al., 2015; Cai et al., 2013; Jansen et al., 2004; 900 

Shulman et al., 2010; Siman-Tov et al., 2007; Umarova et al., 2010; J. Wang et al., 2016; Zago et 901 

al., 2016, 2017), resting-state fMRI (Braga et al., 2020; Wang et al., 2014), hemispatial neglect 902 

cases (Corbetta & Shulman, 2011), and others (for review, see Mengotti et al., 2020). 903 

Interestingly, we identified the Salience/Ventral Attention-A but not the Salience/Ventral 904 

Attention-B network as being right-lateralized. Once more, this may be due to the network 905 

resolution selected (k = 17), which may have split the canonical ventral attention network into a 906 

bilateral and a right-lateralized network.  907 

 While this study successfully replicated right-lateralized control networks (Control-B and 908 

Control-C), a left-lateralized control network was not identified. Previously, Wang et al. (2014) 909 

found evidence for a dually lateralized frontoparietal control network using the autonomy index. 910 

It was suggested that this control network acted as a coupler between the two hemispheres to 911 

increase efficiency while simultaneously supporting within-hemisphere processes. This was also 912 

evidenced by Spreng et al. (2013), which found that the frontoparietal control network exhibits 913 

distinct connectivity patterns with the default and attention networks in response to varying task 914 
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requirements. Similarly, using a seed-based analysis, Braga et al. (2020) confirmed the presence 915 

of both left-lateralized and right-lateralized frontoparietal control networks. Collectively, these 916 

results point to control networks differentially executing cognitive processes within the left and 917 

right hemispheres. 918 

 Finally, the most right-lateralized network identified using NSAR was the Limbic-B 919 

network, a network that occupies cortical real estate associated with emotion (Olson et al., 2007; 920 

Pehrs et al., 2017; Sonkusare et al., 2020). Historically, emotion processing has been identified 921 

as being lateralized, perhaps beginning with lesion cases (Gainotti, 2019; Hughlings-Jackson, 922 

1878; Luys, 1879). Later work suggested that specific aspects of emotion were lateralized, 923 

including the right-lateralization of emotion recognition, the right-lateralization of emotional 924 

control and expression, the right-lateralization of negative emotions, and the left-lateralization of 925 

positive emotions (Silberman & Weingartner, 1986). Contemporarily, it has been suggested that 926 

a hemispheric functional-equivalence hypothesis would better explain emotion neuroimaging 927 

results, such that emotion results from networks that are interrelated and may have different 928 

patterns of lateralization (for review, see Palomero-Gallagher & Amunts, 2022). This perspective 929 

emphasizes the intricate and interconnected nature of emotion-related neural processes, 930 

particularly those patterns of lateralization that emerge from inter-network relationships. 931 

Interestingly, the Limbic-B network appears to be at the center of our main results regarding 932 

lateralization relationships between networks. 933 

4.3 Support for the Dependent Hypothesis of Network Lateralization 934 

 Beyond identifying networks with the greatest lateralization, we sought to understand 935 

how network lateralization was related between networks. Framing this investigation, a 2019 936 

review described relationships between lateralized brain networks in terms of functional 937 
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complementarity, or the degree of specialization minimizing functional overlap and redundancy 938 

for a pair of networks (Vingerhoets, 2019). Borrowing from the author’s ecological 939 

differentiation metaphor, just as species may specialize and fill different niches, facilitating 940 

coexistence among species, brain networks may also operate in a complementary fashion 941 

through the use of distinct computational processes and neural locations. Conversely, species 942 

(and brain networks) which do not specialize are functionally redundant and face increased 943 

competition. Crucially, this dynamic is such that high complementarity characterizes brain 944 

networks with low redundancy and competition while low complementarity describes brain 945 

networks with high redundancy and competition. To explore this further, we hypothesized that 946 

having one highly lateralized network corresponds with increased lateralization in other 947 

networks within an individual, and that this pattern of covariation would systematically occur 948 

across individuals (the dependent hypothesis). Interestingly, we identified lateralized network 949 

relationships exhibiting high and low complementarity occurring systematically across three 950 

different datasets.  951 

4.3.1 High Complementarity Network Relationships 952 

 Using correlation matrices, we found support for the dependent hypothesis in networks 953 

lateralized to contralateral hemispheres and exhibiting high complementarity. A negative 954 

relationship was found between the right-lateralized Limbic-B network and the left-lateralized 955 

Dorsal Attention-A network. Such a relationship is indicative of covariation, since negative 956 

NSAR values indicate left hemisphere lateralization, so greater lateralization of the left-957 

lateralized Dorsal Attention-A network (negative NSAR values) were associated with greater 958 

lateralization of the right-lateralized Limbic-B network (positive NSAR values). Similarly, an 959 

additional negative relationship was identified between the right-lateralized Limbic-B network 960 
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and the left-lateralized Default-C network. These relationships were systematic across 961 

individuals spanning three datasets, suggesting that there may be a population benefit to this 962 

configuration of lateralization. Interestingly, while others have suggested that the relationship 963 

between linguistic and spatial processing networks may be characterized by high complementary 964 

as well (Vingerhoets, 2019), we did not find evidence for this relationship in the present study. 965 

4.3.2 Low Complementarity Network Relationships 966 

  Beyond the high complementarity relationships, using correlation matrices we also 967 

identified a dependent relationship for networks lateralized to the same hemisphere exhibiting 968 

low complementarity. Since NSAR is derived based on surface area and the selected network 969 

parcellation method has a winner-takes-all approach, all cortical surface area for each individual 970 

is accounted for and networks lateralized to the same hemisphere are in competition with one 971 

another for cortical real estate. Thus, it is not surprising that two networks lateralized to the same 972 

hemisphere might have a negative relationship, such as that between the left-lateralized Dorsal 973 

Attention-A and Language networks identified in the present study. This relationship is such that 974 

as the lateralization for the Dorsal Attention-A network increases, the lateralization of the 975 

Language network decreases within individuals or vice versa, and this pattern was consistent 976 

across individuals from three datasets. Remarkably, two other examples of this low 977 

complementarity relationship have previously been identified and both involve language or 978 

linguistic processing. First, one group found evidence for the “co-lateralization” of language and 979 

praxis networks on both the individual and group levels (Vingerhoets et al., 2013). A similar “co-980 

lateralization” relationship was identified for language and arithmetic regions (Pinel & Dehaene, 981 

2010). In the latter study, it was suggested that “co-lateralization” might hint at the 982 

developmental effects of learning linguistic symbols on the organization of the arithmetic 983 
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network. An additional hypothesis for this type of complementary relationship suggests that 984 

networks composed of overlapping nodes in the same hemisphere may be so similar that sharing 985 

proximate space is biologically less costly than the generation of a separate redundant network in 986 

the opposite hemisphere (Vingerhoets, 2019).  987 

4.3.3 Further Evidence of the Dependent Hypothesis 988 

Additional support for the dependent hypothesis was found with the EFA and CFA 989 

structures across the three datasets. While we did not replicate the four-factor model from Liu et 990 

al. (2009), we did extract two factors for the HCP-Discovery dataset, which were then fitted in 991 

the HCP-Replication and HCPD datasets. Across these factor analyses, significant positive and 992 

negative loadings were found within each factor structure, suggesting that left- and right-993 

lateralized networks work within a system level higher than the network. 994 

4.3.4 Characteristics of Lateralized Brain Network Organization  995 

 Together, the present evidence accumulated from the correlation matrices and EFA and 996 

CFA structures point to three overlapping features of organization for lateralized networks: 997 

complementarity, plasticity, and hierarchy. Beyond identifying which networks are lateralized, 998 

the present study evidences a configuration in which there are trade-offs in redundancy and 999 

competition. Rather than operating in isolation, lateralized networks appear to function in a 1000 

larger system where their organization is interdependent. Given the zero-sum nature of a surface 1001 

area-based approach, one might argue that this interconnectedness is an artifact. However, 1002 

evidence from prior task fMRI lateralization research is in support of interconnectedness (Pinel 1003 

& Dehaene, 2010; Vingerhoets et al., 2013). Similarly, the presented results demonstrating that 1004 

network lateralization strength is related between networks suggests a degree of plasticity and 1005 

adaptability in the brain’s functional organization. This potential developmental influence was 1006 
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hinted at with the “co-lateralization” of language and arithmetic; however, longitudinal models 1007 

are needed to verify this speculation. Lastly, the present results describe a hierarchy of lateralized 1008 

brain networks. This is most clearly demonstrated with the EFA and CFA structures, which were 1009 

composed of both positive and negative factor loadings suggesting that these lateralized 1010 

networks are not isolated but rather part of a larger system. This hierarchical organization of 1011 

lateralized networks implies a mosaic of interaction and dependency within the broader brain 1012 

architecture.  1013 

4.4 Limitations and Future Directions 1014 

 One limitation to this work is that while functional connectivity may be constrained in 1015 

part by anatomical connectivity, it is not necessarily dictated by anatomical connectivity. Several 1016 

pieces of evidence point to this conclusion: functional connectivity is modulated by task (Shirer 1017 

et al., 2012), recent experience (Lewis et al., 2009), caffeine (Laumann et al., 2015), and 1018 

sleepiness (Tagliazucchi & Laufs, 2014); and is dynamic within a person over time (Hutchison et 1019 

al., 2013). Furthermore, underlying brain geometry models of spontaneous neural activity appear 1020 

to be more accurate and parsimonious than those derived from anatomical connectivity (Pang et 1021 

al., 2023). Hence, NSAR as a connectivity and surface area-based measure is more reflective of 1022 

functional rather than anatomical lateralization. As a result, future studies might benefit from 1023 

exploring the Coutanche et al. (2023) method, which employs a surface-fingerprinting technique 1024 

and multivariate laterality index for computing functional lateralization, offering a potentially 1025 

complementary approach to NSAR in assessing functional lateralization. 1026 

In this study, individual parcellations were generated using the Kong et al. (2019) MS-1027 

HBM algorithm. However, improved versions of this algorithm have since been published (Kong 1028 

et al., 2021; Yan et al., 2023), which account for parcel distributions, spatial contiguity, local 1029 
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gradients, and homotopy (or the lack thereof in Schaefer parcels). Thus, future investigations 1030 

using NSAR might consider implementing an updated individual parcellation algorithm. 1031 

Moreover, it would be valuable for future studies to explore lateralization in developmental and 1032 

clinical populations to address questions regarding the developmental timeline of network 1033 

lateralization and the potential disruptions in network lateralization observed in specific 1034 

neurodevelopmental conditions such as autism or schizophrenia. 1035 

5 Conclusions 1036 

 The present study investigated hemispheric asymmetries in the human brain, focusing on 1037 

17 functional networks. This was accomplished by implementing a surface area-based metric of 1038 

lateralization, for which validity and reliability were examined. Following methodological 1039 

development, we addressed two main questions: (1) which networks exhibit the greatest 1040 

hemispheric asymmetries, and (2) how does lateralization in one network relate to the 1041 

lateralization of other networks? We found that the Language, Dorsal Attention-A, and Default-1042 

C networks were significantly left-lateralized while the Visual-B, Salience/Ventral Attention-A, 1043 

Control-B, Control-C, and Limbic-B networks were significantly right-lateralized. Additionally, 1044 

using correlation matrices and EFA and CFA models to understand how lateralization is related 1045 

between networks, we found general support for a dependent relationship between left- and 1046 

right-lateralized networks. Within individuals, greater left-lateralization in a particular network 1047 

(such as the Dorsal Attention-A or Default-C networks) was associated with greater right-1048 

lateralization in a particular network (such as the Limbic-B network). This pattern of 1049 

lateralization appears to occur systematically across individuals, suggesting that lateralization 1050 

follows a covariation paradigm. Further work is needed to understand how these findings may 1051 

differ in developmental and clinical populations. 1052 
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