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2

Abstract

The two hemispheres of the human brain are functionally asymmetric. At the network
level, the language network exhibits left-hemisphere lateralization. While this asymmetry is
widely replicated, the extent to which other functional networks demonstrate lateralization
remains a subject of investigation. Additionally, it is unknown how the lateralization of one
functional network may affect the lateralization of other networks within individuals. We
quantified lateralization for each of 17 networks by computing the relative surface area on the
left and right cerebral hemispheres. After examining the ecological, convergent, and external
validity and test-retest reliability of this surface area-based measure of lateralization, we
addressed two hypotheses across multiple datasets (Human Connectome Project = 553, Human
Connectome Project-Development = 343, Natural Scenes Dataset = 8). First, we hypothesized
that networks associated with language, visuospatial attention, and executive control would show
the greatest lateralization. Second, we hypothesized that relationships between lateralized
networks would follow a dependent relationship such that greater left-lateralization of a network
would be associated with greater right-lateralization of a different network within individuals,
and that this pattern would be systematic across individuals. A language network was among the
three networks identified as being significantly left-lateralized, and attention and executive
control networks were among the five networks identified as being significantly right-lateralized.
Next, correlation matrices, an exploratory factor analysis, and confirmatory factor analyses were
used to test the second hypothesis and examine the organization of lateralized networks. We
found general support for a dependent relationship between highly left- and right-lateralized
networks, meaning that across subjects, greater left lateralization of a given network (such as a
language network) was linked to greater right lateralization of another network (such as a ventral

attention/salience network) and vice versa. These results further our understanding of brain
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organization at the macro-scale network level in individuals, carrying specific relevance for
neurodevelopmental conditions characterized by disruptions in lateralization such as autism and
schizophrenia.

Keywords: Lateralization, asymmetry, brain networks, fMRI, language, attention
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1 Introduction

Observations of the human brain have revealed significant differences in the gross
anatomical morphometry between the two hemispheres (for review, see (Toga & Thompson,
2003). These structural asymmetries are accompanied by functional asymmetries, most notably
for language specialization. Famously, Paul Broca localized language specialization to the left
hemisphere subsequent to identifying a lesion in the left inferior frontal gyrus of his patient as
being responsible for his eponymous aphasia (Broca, 1861). This contribution launched an
emphasis on regions specialized for language, which were later conceptualized as a network
consisting of Broca’s and Wernicke’s areas connected via the arcuate fasciculus (Geschwind,
1972).

Contemporarily, the language network is regarded as a prototypical example of a
lateralized network, with left-hemisphere language lateralization estimated to occur in most
(Breier et al., 2000; Stippich et al., 2003) to more than 90% of the general population (Corballis,
2003). The canonical language network is a distributed network comprising regions across the
frontal, temporal, and parietal lobes, with lines of evidence stemming from a variety of sources
including lesion cases (Broca, 1861; Geschwind, 1970; Wernicke, 1874), intraoperative brain
stimulation (Penfield & Jasper, 1954), neurodegeneration (e.g., primary progressive aphasia;
Mesulam, 2001, 2003; Mesulam et al., 2014, 2015), task-based fMRI (Fedorenko et al., 2010,
2011; Fedorenko, McDermott, et al., 2012, 2012; Lipkin et al., 2022; Scott et al., 2017), and
functional connectivity (Braga et al., 2020; Hacker et al., 2013; Lee et al., 2012). The typically
asymmetric organization of this network in neurotypical individuals continues to be replicated

(Elin et al., 2022; Malik-Moraleda et al., 2022; Olulade et al., 2020; Reynolds et al., 2019).
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While the lateralization of language provides a compelling example, it also prompts
broader questions about the origins and implications of cerebral lateralization across other
cognitive domains. In attempting to unravel the origins of cerebral lateralization, researchers
have explored theoretical perspectives ranging from the genetic and epigenetic (Geschwind &
Miller, 2001; McManus, 1985) to interhemispheric conflict (Andrew et al., 1982; Corballis,
1991). Yet, these paradigms fall short in explaining the dynamic interactions of interdigitated
lateralized and non-lateralized networks. For example, it is unclear how having a highly
lateralized network, such as the language network, may influence the lateralization of other
networks within individuals. Along the lines of the interhemispheric conflict explanation of

lateralization, competition for limited cortical resources during brain maturation may drive

lateralization. According to this hypothesis, as different functional networks vie for cortical real

estate and resources, they become lateralized. Alternatively, or in tandem with this mechanism,

networks may become lateralized in order to optimize their efficiency, preventing interference
from competing networks. Under this framework, as one network increases in lateralization to
one hemisphere, that network occupies more space within that hemisphere while freeing up
cortical territory in the contralateral hemisphere. Presumably, this would allow for a
complimentary network to become more lateralized in the contralateral hemisphere. One
example of such a scenario may be found in a right-lateralized attention network composed of
the temporoparietal junction and ventral frontal areas and which is hypothesized to process
visuospatial information, particularly unexpected stimuli (Corbetta & Shulman, 2002). The
ventral attention network in particular has been identified as a potential right-lateralized

compliment to the left-lateralized language network (Bernard et al., 2020).
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6
95 Other functional networks in both the right and left hemispheres have been examined for
96  evidence of lateralization. Of note, lateralization can be an indicator for specialization, or the
97  dominant hosting of a macroscale functional network and its associated functional properties by
98  one hemisphere over the other (Hervé et al., 2013). One study quantified specialization across
99  seven functional networks and found that specialization was not restricted to a single left- or
100  right-specialized network (Wang et al., 2014). Rather, the right frontoparietal network and right
101  ventral and dorsal attention networks, as well as the left default and frontoparietal networks
102  exhibited specialization as assessed via a functional connectivity-based metric (see Fig. 5; Wang
103 etal., 2014). This pattern was generally replicated in highly sampled individuals, revealing left-
104 lateralized language, default, and frontoparietal networks, as well as right-lateralized salience
105  and frontoparietal networks (Braga et al., 2020). Interestingly, the finding of both left- and right-
106 lateralized frontoparietal networks across both Braga et al. (2020) and Wang et al. (2014)
107  evidences a joint control system in which a subdivision of the frontoparietal control network is
108  coupled with other lateralized networks in either the left or right hemisphere. Beyond this result,
109  research on network lateralization has untapped potential when it comes to understanding the
110  relationships between lateralized networks. This includes associations in laterality between
111  ipsilateral and contralateral lateralized networks and extends to patterns within and across
112 individuals.
113 1.1 Methods for Examining Hemispheric Asymmetries
114 In humans, hemispheric specialization has historically been identified using a variety of
115  methods including callosotomy (i.e., split-brain patients; for review, see Gazzaniga, 2000),
116 lateralized brain lesions (Milner, 1971; Rasmussen & Milner, 1977), the unilateral carotid

117  administration of anesthetic (i.e., the Wada test Wada & Rasmussen, 1960), and intraoperative
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7
118  brain stimulation mapping (Penfield & Jasper, 1954). Callosotomy studies have revealed the
119  importance of interhemispheric communication for certain cognitive processes, demonstrating
120  that the left and right hemispheres can operate relatively independently for some functions but
121  require communication for others (Gazzaniga, 2000). Lateralized brain lesion studies,
122 particularly the work of Milner and Rasmussen, have identified specific functions associated
123 with each hemisphere, such as language processing predominantly in the left hemisphere
124 (Milner, 1971; Rasmussen & Milner, 1977). Similarly, the Wada test has shed light on
125  hemispheric dominance for language and memory (Wada & Rasmussen, 1960). Finally, leaning
126  into the localization of specific functions to certain regions within each hemisphere,
127  intraoperative brain stimulation mapping has provided detailed maps of functional areas in the
128  brain (Penfield & Jasper, 1954). Collectively, these classic methods reveal patterns of human
129  brain organization governed by interactions between lateralization and localization.
130 These historical methods are complimented by neuroimaging metrics, many of which are
131  functional connectivity-based. Of particular interest are the intrinsic laterality index (Liu et al.,
132 2009), autonomy index (Wang et al., 2014), hemispheric contrast (Gotts et al., 2013), functional
133 lateralization metric (Nielsen et al., 2013), classification metric (Friedrich et al., 2022), and
134  network variants approach (Perez et al., 2023). Despite the unifying aim of estimating
135  hemispheric specialization or lateralization, each of the listed methods varies in terms of how it
136  approaches structural asymmetries, the addition of covariates such as handedness and gender,
137  and short- and long-range connectivity. However, with the exception of the network variants
138  approach (Perez et al., 2023), each method has been implemented on less than 12 minutes of
139  resting-state fMRI data per participant, a tactic which is increasingly being exchanged for a

140  within-individual “precision” approach.
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8
141 1.2 A Precision Approach to Lateralization
142 The precision approach, which emphasizes extensive individual sampling, is being
143 heralded as a well-powered alternative to the large and costly sample sizes required for cross-
144  sectional group and brain-wide association studies (Gratton et al., 2022; Marek et al., 2022). This
145  method of densely sampling individuals can generate precise brain maps (Gordon et al., 2017)
146  as well as the development of optimal workflows for reducing MRI artifacts (Ciric et al., 2017).
147  Moreover, when combined with functional localizers, the precision approach offers superior
148  sensitivity, functional resolution, and interpretability (Fedorenko, 2021). As applied to estimating
149 lateralization, repeated sampling can improve measures of individual network parcellations
150  (Braga et al., 2020; Gordon et al., 2017, 2020) including network topology and topography, and
151  functional connectivity (Gordon et al., 2017; Laumann et al., 2015), resulting in more precise
152  lateralization measures.
153 In line with the precision neuroimaging approach and previous efforts to understand brain
154  network organization and lateralization, the present study examines two questions. First, we
155  explore which networks exhibit the greatest hemispheric asymmetries. A recent study involving
156 18 densely-sampled individuals demonstrated that among six networks, the language network
157  displayed the greatest left hemisphere lateralization, while a frontoparietal control network
158  exhibited the greatest right hemisphere lateralization (Braga et al., 2020). However, it remains
159  unclear how these estimates might change in a larger sample with a greater number of examined
160  networks. Building upon the work of Braga et al. (2020), we hypothesized that networks
161  associated with language, visuospatial attention, and executive control would show the greatest

162  hemispheric asymmetries.
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163 Second, we investigate how lateralization in one network may influence the lateralization
164  of other networks. We propose the following hypotheses to guide our investigation. The first
165  hypothesis suggests that if an individual possesses a highly lateralized network, other networks
166  for that individual will exhibit increased lateralization in the opposite direction, and that this
167  dependent relationship will be systematic across individuals (the dependent hypothesis). The
168  alternative hypothesis proposes that lateralization will be unrelated between networks across
169  individuals (the independent hypothesis).
170 2 Methods
171 2.1 Datasets and Overview
172 Three independent datasets were used for these analyses: The Human Connectome
173 Project (HCP; split into discovery and replication datasets), the Human Connectome Project-
174  Development (HCPD; Somerville et al., 2018), and the Natural Scenes Dataset (NSD; Allen et
175 al., 2022). Each dataset was selected for its relatively high quantity of low-motion data per
176  participant (see Figure 1).
177  2.1.1 HCP Discovery and Replication
178 The HCP S1200 release consists of 1206 subjects (1113 with structural MRI scans)
179  collected at 13 different data acquisition sites with informed consent (Van Essen et al., 2013).
180  Additional details regarding HCP scanning protocols are available online
181  (https://humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200 Release A
182  ppendix_ L.pdf; Ugurbil et al., 2013; Van Essen et al., 2012). With a relatively large quantity of
183  data available per individual, this data is ideally suited for taking a within-individual approach to
184  specialization. Participants underwent four 15-minutes runs of a passive fixation task (resting-

185  state fMRI) during which they were asked to keep their eyes open while viewing a white cross
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186  on a dark background and think of nothing in particular while remaining awake (Smith et al.,
187  2013). Exclusion criteria for the HCP S1200 release included removing participants with a mean
188  framewise displacement greater than 0.2 mm and mean DVARS greater than 50, participants
189  missing handedness data, and participants with less than 50% of volumes remaining after motion
190  censoring. This resulted in a subsample of 553 participants, which was split into a discovery and
191  replication dataset using random sampling without replacement. The two datasets were then
192 compared using the R package Matchlt (Ho et al., 2023) on age, mean framewise displacement,
193  sex, handedness, and percentage of volumes remaining following motion censoring. The HCP-
194  Discovery dataset consisted of 276 participants 22-36 years old (M = 28.48, SD = 3.58) with 167
195  females, while the HCP-Replication dataset consisted of 277 participants 22-36 years old (M =
196  28.7,SD =3.77) with 173 females.
197 2.1.2 HCPD
198 With a younger sample and smaller quantity of data per individual, the HCPD dataset
199  was used as an additional replication dataset for primary analyses. Since data collection for the
200  HCPD project is ongoing, cross-sectional data from the latest release were included, and these
201  were composed of 652 healthy participants. All data were obtained with informed assent or
202  consent. As a part of the HCPD protocol, participants underwent four 6.5-minute runs of resting-
203  state fMRI, with an exception for participants 5-7 years old, which had six 3.5-minute runs each
204  (Harms et al., 2018). Participants were instructed to view a small white fixation crosshair on a
205  black background and blink normally. Exclusion criteria for HCPD included removing
206  participants with less than 50% of volumes remaining after motion censoring, participants
207  missing handedness data, and participants with a mean framewise displacement greater than 0.2

208 mm and mean DVARS greater than 50 (see Figure 1). Following the exclusion criteria, the
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209  dataset consisted of 343 individuals ages 11-21.92 (M = 15.93, SD = 2.97) of which 189 were
210  female.

211 2.1.3 NSD

212 With a large quantity of resting-state and task fMRI data available per individual, the
213 NSD was included to examine potential task effects on estimating individual network

214  parcellations and specialization. The NSD is composed of eight individuals (two males and six
215  females; age range 19-32 years). All data were obtained with informed written consent

216  according to the University of Minnesota institutional review board. As detailed in Allen et al.
217  (2022), participants averaged two hours of resting state fMRI and 39.5 hours of task-based fMRI.
218  For the resting-state runs, participants were instructed to stay awake and fixate on a white cross
219  placed on a gray background but otherwise rest. During the task-based runs, participants were
220  shown distinct natural scenes taken from the Microsoft Common Objects in Context database
221  (T.-Y.Linetal., 2014). Images were presented for 3 s with 1-s gaps in between images. Subjects
222 fixated centrally and performed a long-term continuous recognition task on the images.

223 Exclusion criteria for NSD included removing participants with less than 50% of volumes

224 remaining after motion censoring, and participants with a mean framewise displacement greater
225  than 0.2 mm and mean DVARS greater than 50. No subjects were excluded from the analysis;
226  however, following motion correction, a minimum of 12 resting-state fMRI runs (approximately
227 60 minutes) remained. In order to compare resting-state and task data on equal grounds, only the
228  first 12 available resting-state runs and the first 12 available task fMRI runs from each

229  participant were utilized.

230
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231  Figure 1. Participant age, data quality, and data availability. Panel A depicts participant age across each


https://doi.org/10.1101/2023.12.08.570817
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.08.570817; this version posted December 9, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

13

232 dataset following the implementation of exclusion criteria. HCP-Discovery participants included 276

233 individuals 22-36 years of age, HCP-Replication participants included 277 individuals 22-36 years of age,
234  HCPD participants included 343 individuals 11-22 years of age, and NSD participants included eight

235 individuals 19-32 years of age. Panel B depicts the mean framewise displacement (FD) across each

236  dataset following the implementation of exclusion criteria. HCP-Discovery mean FD was 0.08 mm (SD =
237 0.02 mm), range 0.04-0.14 mm; HCP-Replication mean FD was 0.07 mm (SD = 0.01 mm), range 0.04-
238  0.12 mm; HCPD mean FD was 0.08 mm (SD = 0.02 mm), range 0.04-0.16 mm; NSD-Rest mean FD was
239  0.07 mm (SD = 0.03), range 0.04-0.11 mm; and NSD-Task mean FD was 0.07 mm (SD = 0.02 mm),
240 range 0.04-0.1 mm. Panel C depicts the percentage of volumes remaining following motion-correction
241 procedures for each dataset. HCP-Discovery mean percentage of volumes was 72.81% (SD = 12.12%),
242 range 50.38-98.54%; HCP-Replication mean percentage of volumes was 72.09% (SD = 11.59%), range
243  50.04-97.62%; HCPD mean percentage of volumes was 73.6% (SD = 11.73%), range 50.05-99.63%;
244  NSD-Rest mean percentage of volumes was 87.64% (SD = 10.51%), range 68.98-99.14%; and NSD-
245  Task mean percentage of volumes was 94.27% (SD = 6.92), range 78.31-100%. Across each panel, a
246  circle represents a single participant.

247

248 2.2 MRI Acquisition Parameters

249  2.2.1 HCP Discovery and Replication

250 The HCP dataset was acquired on a custom Siemens 3T Skyra with a 32-channel head
251  coil. T1-weighted images were collected with a 3D MPRAGE sequence with isotropic 0.7 mm
252 voxels (256 sagittal slices, repetition time [TR] = 2400 milliseconds, echo time [TE] =2.14

253  milliseconds) as detailed in Glasser et al. (2013). Resting-state functional images were collected
254  using 2 mm isotropic voxels (72 sagittal slices, TR = 720 milliseconds, TE = 33 milliseconds,
255  multiband accelerated pulse sequence with multiband factor = 8) as detailed in Glasser et al.
256 (2013, 2016).

257 2.2.2 HCPD
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258 The HCPD MRI data were acquired on Siemens 3T Prisma scanners with vendor 32-
259  channel headcoils at four sites: Harvard University, University of California-Los Angeles,
260  University of Minnesota, and Washington University in St. Louis (Harms et al., 2018). Structural
261  TIl-weighted scans were acquired with a multi-echo MPRAGE sequence (van der Kouwe et al.,
262 2008) with 0.8 mm isotropic voxels (sagittal FOV = 256 x 240 x 166; matrix size = 320 x 300 x
263 208 slices; slice oversampling = 7.7%; 2-fold in-plane acceleration (GRAPPA); pixel bandwidth
264 =744 Hz/Px; Tr/TI =2500/1000, TE = 1.9/3.6/5.4/7.2 ms, flip angle = 8°; water excitation
265  employed for fat suppression; up to 30 TRs allowed for motion-induced reacquisition). T2*-
266  weighted scans were used for resting-state fMRI with 2D multiband gradient-recalled echo echo-
267  planar imaging sequence (MB8, TR/TE = 800/37 ms, flip angle = 52°) and 2.0 mm isotropic
268  voxels covering the whole brain (72 oblique-axial slices). Functional scans were acquired in
269  pairs of two runs with opposite phase encoding polarity (anterior-to-posterior and posterior-to-
270  anterior) so that fMRI data were not biased towards either phase encoding polarity. For all scans,
271  Framewise Integrated Real-time MRI Monitoring (Dosenbach et al., 2017) was implemented to
272  provide motion feedback to participants between fMRI runs.
273 2.2.3 NSD
274 The NSD dataset was acquired at the Center for Magnetic Resonance Research at the
275  University of Minnesota (Allen et al., 2022). Anatomical data (such as T1-weighted volumes)
276  were collected using a 3T Siemens Prisma scanner with a standard Siemens 32-channel RF head
277  coil while functional data were collected using a 7T Siemens Magnetom passively shielded
278  scanner and a single-channel-transmit, 32-channel-receive RF head coil. T1-weighted images
279  were acquired with a MPRAGE sequence (0.8-mm bandwidth 220 Hz per pixel, no partial

280  Fourier, in-plane acceleration factor (iPAT) 2, TA = 6.6 min per scan). Functional data were
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281  collected using gradient-echo EPI at 1.8-mm isotropic resolution with whole-brain coverage (84
282  axial slices, slice thickness 1.8 mm, slice gap 0 mm, field-of-view 216 mm (FE) X 216 mm (PE),
283  phase encode direction anterior-to-posterior, matrix size 120 X 120, TR = 1,600 milliseconds,
284  TE =22.0 milliseconds, flip angle 62°, echo spacing 0.66 milliseconds, bandwidth 1,736 Hz per
285  pixel, partial Fourier 7/8, iPAT 2, multi-band slice acceleration factor 3). Full protocol printouts
286  for the NSD dataset are available online (https://cvnlab.slite.page/p/NKalgWd F/Experiments).
287 2.3 fMRI Preprocessing
288 Preprocessing took place on raw NIFTI files for the resting-state fMRI and task fMRI
289  runs using a pipeline developed by the Computational Brain Imaging Group (CBIG; Kong et al.,
290 2019; Lietal., 2019; code is available online at
291  https://github.com/ThomasYeoLab/CBIG/tree/c773720ad340dcb1d566b0b8de68bbacdf2cas505/s
292  table projects/preprocessing/CBIG_fMRI Preproc2016). This CBIG2016 preprocessing pipeline
293  was selected to process the fMRI data in order to more closely follow the processing steps used
294  to implement the multi-session hierarchical Bayesian modeling parcellation method (Kong et al.,
295  2019). As a prerequisite, this pipeline requires FreeSurfer recon-all output from the structural
296  data (FreeSurfer 6.0.1; Dale et al., 1999). The fMRI data are then processed with the following
297  steps: 1) removal of the first four frames and 2) motion correction using rigid body translation
298  and rotation with the FSL package (Jenkinson et al., 2002; Smith et al., 2004). The structural and
299  functional images are then aligned using boundary-based registration (Greve & Fischl, 2009)
300 using the FsFast software package (http://surfer.nmr.mgh.harvard.edu/fswiki/FsFast). FD and
301 DVARS were computed using fs/_motion_outliers (Smith et al., 2004). Volumes with FD > 0.2
302  mm or DVARS > 50 were tagged as outliers. Uncensored segments of data lasting fewer than 5

303  contiguous volumes were also flagged as outliers (Gordon et al., 2016). BOLD runs with more
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304  than half of the volumes flagged as outliers were removed completely. Next, linear regression
305  using multiple nuisance regressors was applied through a combination of CBIG in-house scripts
306 and the FSL MCFLIRT tool (Jenkinson et al., 2002). Nuisance regressors consisted of global
307  signal, six motion correction parameters, averaged ventricular signal, averaged white matter
308  signal, and their temporal derivatives (totaling 18 regressors). The flagged outlier volumes were
309  ignored during the regression procedure. Following the regression, a bandpass filter (0.009 Hz <
310 £<0.08 Hz) was applied using CBIG in-house scripts. At this point, the preprocessed fMRI data
311  were projected onto the FreeSurfer fsaverage6 surface space (2 mm vertex spacing) with
312 FreeSurfer’s mri_vol2surf function. The projected fMRI data were then smoothed using a 6 mm
313  full-width half-maximum kernel through FreeSurfer’s mri_ surf2surf function (Fischl et al.,
314 1999). Surface space was selected for the following analyses in order to best follow the
315  individual parcellation pipeline outlined in Kong et al. (2019), and following evidence that
316  landmark surface-based registration outperforms volume-based registration (Anticevic et al.,
317  2008; Argall et al., 2006; Desai et al., 2005; Van Essen, 2005).
318 2.4 Individual Network Parcellation
319 Following preprocessing, network parcellations were computed using a multi-session
320  hierarchical Bayesian modeling (MS-HBM) pipeline. The MS-HBM pipeline is designed to
321  generate parcellations for individuals with multiple sessions of fMRI data (Kong et al., 2019; Li
322 etal., 2019) and is implemented in MATLAB R2018b (MATLAB, 2018). This particular model
323 has been selected because it accounts for intra-individual variation, allowing the model to better
324  generalize to new fMRI data from the same participant. As an overview, this model uses a
325  wvariational Bayes expectation-maximization algorithm to learn group-level priors from a training

326  dataset and then apply those to estimate individual-specific parcellations (see Figure 2). This
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327  model estimates the following parameters: group-level network connectivity profiles, inter-
328  subject functional connectivity variability, intra-subject functional connectivity variability, a
329  spatial smoothness prior, and an inter-subject spatial variability prior. As recommended in the
330 pipeline’s GitHub documentation, subjects with a single available run post-preprocessing had
331 that single run split in two and a connectivity profile was generated for each split. A k of 17 was
332 selected for all participants (Yeo et al., 2011). Additionally, it has previously been demonstrated
333 that MS-HBM parameters estimated from one dataset can be effectively applied to another
334  dataset with significant differences in acquisition and preprocessing (Kong et al., 2021). Thus, to
335  generate our model, priors trained on 37 Genomic Superstruct Project (GSP) subjects were
336  utilized (Holmes et al., 2015; Kong et al., 2019). Following the generation of individual
337  parcellations, a Hungarian matching algorithm was used to match the clusters with the Yeo et al.
338  (2011) 17-network group parcellation.

339

> NSAR = (RH SA —LH SA)
MS-HBM Step 1. MS-HBM Step 2. MS-HBM Step 3. (LH SA+RH SA)
A connectivity Group priors were Individual
profile is previously parcellations are
generated for computed using generated.
each run. 37 GSP subjects.

340  Figure 2. lllustration of the Multi-Session Hierarchical Bayesian Modeling (MS-HBM) individual

341 parcellation pipeline. First, a connectivity profile is generated for each available fMRI run on an individual
342 basis (illustrated here as a functional connectivity matrix). Next, group priors previously estimated (Kong
343  etal., 2019) from 37 Genomic Superstruct Project (GSP) subjects were used. Third, the connectivity
344 profiles from each available run and the group priors (more specifically, the inter-subject functional

345 connectivity variability, intra-subject functional connectivity variability, spatial smoothness, and inter-

346 subject spatial variability) are used to generate network parcellations for each participant. Finally, the
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347 network surface area ratio (NSAR) is calculated using the formula shown, where LH SA is the left
348 hemisphere surface area for a given network and RH SA is the right hemisphere surface area for a given
349  network. A negative NSAR value indicates left hemisphere lateralization for a given network while a

350 positive value indicates right hemisphere lateralization.

351

352 2.5 Network Surface Area Ratio

353 Following the generation of individual network parcellations, lateralization was estimated
354  using a novel measure: the network surface area ratio (NSAR). In discussing this measure, we
355  opted to use this terminology (lateralization) because it accurately encapsulates the concept of an
356  asymmetrical distribution of functional networks across the cerebral hemispheres, which is

357  central to the following analyses. This measure was calculated within each individual for each of
358 17 networks by first extracting each network label as a region of interest using the Connectome
359  Workbench wb_command functions metric-label-import and gifti-label-to-roi (Marcus et al.,
360  2013). Next, the left and right hemisphere surface areas for a given network were calculated on a
361  midthickness Conte69 surface in fsaverage6 resolution (Glasser & Essen, 2011) using the

362 wb_command function metric-stats. Finally, NSAR was calculated as the difference between

363  normalized left and right hemisphere surface areas for a given network (see Figure 2):

RH SA—LH SA
LH SA+ RH SA

364 NSAR =

365  where RH SA represents the right hemisphere surface area of a given network and LH SA

366  represents the left hemisphere surface area of a given network. A scaling factor was not included
367 in the denominator since asymmetry indices including a scaling factor deliver essentially the

368  same findings as those without (Kong et al., 2022).

369 NSAR values range from -1.0 to +1.0, with negative values indicating left hemisphere

370  lateralization for a given network and positive values indicating right hemisphere lateralization.
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371  NSAR values closer to zero indicate less lateralization (i.e., hemispheric symmetry). Although
372  this measure of lateralization shares similarities with several previously used asymmetry indices
373  (Binder et al., 1997; Braga et al., 2020; Mahowald & Fedorenko, 2016), its distinct methodology
374  prompts us to specifically test its validity and reliability.
375 2.6 Establishing the Validity of NSAR
376 Ecological validity for Language network laterality was first examined since the
377  Language network has previously been established as a highly lateralized network. HCP subjects
378  with all four runs of resting-state data and the minimally preprocessed Story-Math task contrast
379  were selected (N =221). This Story-Math task was used as a proxy for a language task, as has
380  been done previously (Labache et al., 2023; L. Lin et al., 2022; Wang et al., 2023). Participant z-
381  statistic contrast maps were converted to fsaverage6 resolution using wb_command functions
382  cifti-separate and metric-resample, masked using a language task fMRI atlas (LanA atlas)
383  derived from a large sample (N = 804; Lipkin et al., 2022), and then thresholded to the top 10%
384  of vertices. We chose this threshold rather than a fixed #-value in order to account for individual
385  differences in the strength of BOLD signal responses attributable to individual differences
386  arising from trait or state factors (Lipkin et al., 2022). A simple laterality metric was then
387  calculated for each contrast map: the number of right hemisphere vertices minus the number of
388  left hemisphere vertices divided by the sum of the left and right hemisphere vertices. A
389  Spearman rank correlation was then used to compare language task laterality against the NSAR
390  value for the Language network. This and all other statistical analyses took place in R 4.2.0 (R
391  Core Team, 2022).
392 Convergent validity was also examined through a comparison of the NSAR against a

393  measure of specialization: the autonomy index (Wang et al., 2014). The autonomy index
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394  approaches specialization from a functional connectivity perspective and is known to reliability
395  estimate specialization across neurotypical and clinical samples (Mueller et al., 2015; Sun et al.,
396  2022; Wang et al., 2014). First, individual functional connectivity matrices were calculated for
397  each resting-state run and then averaged across runs within an individual at the fsaverage6
398  resolution in MATLAB R2018b (MATLAB, 2018). From here the autonomy index was
399  computed as follows: for each seed ROI obtained from a functional connectivity matrix, the
400  degree of within-hemisphere connectivity and cross-hemisphere connectivity were computed by
401  summing the number of vertices correlated to the seed in the ipsilateral hemisphere and in the
402  contralateral hemisphere. These vertex counts are then normalized by the total number of
403  wvertices in the corresponding hemisphere, thus accounting for a potential brain size asymmetry
404  between the two hemispheres. Finally, Al is calculated as the difference between normalized
405  within- and cross-hemisphere connectivity as follows:
406 Al = N/Hi— No/H.
407  where N;and N, are the number of vertices correlated to the seed ROI (using a threshold of
408  ]0.25]) in the ipsilateral hemisphere and contralateral hemisphere, respectively. H; and H. are the
409  total number of vertices in the ipsilateral and contralateral hemisphere, respectively. To compute
410 the specialization of each functional network, the Al was averaged within the boundary of each
411  network on an individual basis. Subjects from the HCP dataset with all four runs available (N =
412 232) were selected for this analysis of validity and all four runs from each individual were used
413  to compute the autonomy index. A Spearman’s rank correlation coefficient was then used to
414  compare the autonomy index and NSAR on three right-lateralized networks (Limbic-B, Visual-

415 B, and Ventral Attention-A) and three left-lateralized networks (Language, Dorsal Attention-A,
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416  and Control-B) determined a priori. In order to correct for multiple comparisons, a Bonferroni-
417  corrected alpha level of 0.008 was used.
418 External validity was next examined through a comparison of NSAR values from
419  significantly lateralized networks against two measures from the Cognition Battery of the
420  National Institutes of Health Toolbox (Gershon et al., 2013): the Oral Reading Recognition Test
421  (ORRT; Gershon et al., 2014) and the Flanker Inhibitory Control and Attention Test (adapted
422  from Rueda et al., 2004). The ORRT was selected as a measure of language and the Flanker as a
423  measure of executive control (inhibitory control, specifically) and visuospatial attention. Among
424  all available cognitive assessments, we selected those that have be shown to engage cognitive
425  domains lateralized to both the right (assessing attention via the Flanker test) and left (evaluating
426  language through the ORRT) hemispheres. Each cognitive measure has been highly validated
427  (Heaton et al., 2014; Ott et al., 2022; Zelazo et al., 2014). To facilitate the comparison of NSAR
428  against these cognitive measures, a Canonical Correlation Analysis (CCA) was implemented
429  using HCP subjects with all four resting-state runs available (N =232). The CCA was chosen for
430 its ability to robustly estimate relationships between sets of variables (Marek et al., 2022), and
431  was conducted using the cc function from the CCA package in R (Gonzalez & Déjean, 2023).
432  CCA feature weights were Haufe-transformed (Haufe et al., 2014) in order to provide a more
433  realistic perspective of feature contributions considering the covariance structure of the data.
434  Haufe-transformations are also known to increase the interpretability and reliability of feature
435  weights (Chen, Ooi, et al., 2022; Chen, Tam, et al., 2022; Tian & Zalesky, 2021)

436 2.7 Establishing the Reliability of NSAR
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437 Reliability analyses sought to address three questions: 1) How much data is needed to
438  obtain a stable estimate of NSAR, 2) What is the test-retest reliability of NSAR, and 3) Is there a
439  task effect on NSAR estimation?
440  2.7.1 Stable Estimate Analysis
441 Given that MRI scanning is costly, rendering it comparatively rare to have highly
442  sampled individuals, it is important to understand how much data is needed to reliably estimate
443  lateralization and assess the credibility of our results. To address this concern, we analyzed HCP
444  participants with all four runs of resting-state data available (N = 232). Following preprocessing,
445  the first and third scans from each participant were set aside to compose 30 minutes of
446  independent data. Next, the second and fourth scans were each split into three five-minute
447  segments. Runs were split in MATLAB R2018b (MATLAB, 2018) using native MATLAB
448  functions as well as the FreeSurfer functions MRIread and MRIwrite. The MS-HBM pipeline
449  was then used to generate individual parcellations from 5, 10, 15, 20, 25, and 30 minutes of data
450  from the segmented scans. The MS-HBM pipeline was also used to generate separate individual
451  parcellations from 30 minutes of independent data. Of note, the reliability of the MS-HBM
452  pipeline has been examined previously (see Kong et al., 2019 Figure 3B and Supplementary
453  Figure S10C). The NSAR was then calculated for each iteration (5, 10, 15, etc. minutes) and the
454  independent 30 minutes of data. An intraclass correlation between the NSAR from each iteration
455  parcellation and the independent 30 minutes parcellation was assessed within each subject.
456  Similarly, an intraclass correlation between the NSAR from each iteration parcellation and the
457  independent 30 minutes parcellation was assessed for each network. For the NSAR and
458  parcellation stable estimate analyses, the standard guidelines from Koo & Li (2016) regarding

459  intraclass correlation values were implemented, with values less than 0.5 indicating poor
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460  reliability, values between 0.5 and 0.75 indicating moderate reliability, values between 0.75 and
461 0.9 indicating good reliability, and values greater than 0.9 indicating excellent reliability (based
462  on a 95% confidence interval).
463  2.7.2 Test-Retest Reliability Analysis
464 The purpose of the test-retest reliability analysis is to measure the reliability of NSAR in
465  asimpler fashion than the stable estimate analysis. For this analysis, the first two and second two
466  runs from HCP participants with all four runs available were used to generate separate individual
467  parcellations from which NSAR will be calculated. Outliers were fenced on a network basis to an
468  upper limit of the third quartile plus 1.5 multiplied by the interquartile range, and a lower limit of
469 the first quartile minus 1.5 multiplied by the interquartile range. An intraclass correlation
470  coefficient was calculated comparing the NSAR from the first half of the data with the NSAR
471  from the second half for three right-lateralized networks (Limbic-B, Visual-B, and
472  Salience/Ventral Attention-A) and three left-lateralized networks (Language, Dorsal Attention-
473 A, and Control-B) determined a priori.
474  2.7.3 Task Effects Analysis
475 In the case that a large quantity of data is needed to derive a reliable estimate of
476 lateralization, one might consider including task data in addition to any resting-state data in order
477  to increase the amount of available data per participant. However, in this situation it would be
478  prudent to know if task data provides the same or similar estimates as those from resting-state
479  data. To address this concern, the NSD dataset was selected since it has a large quantity of both
480  resting-state and task-based fMRI data per participant. Following preprocessing, a minimum of
481 12 resting-state runs were available for each participant, so the first 12 available resting-state

482  runs and the first 12 available task runs were utilized (resting-state and task runs were of the
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483  same duration). Individual parcellations were then generated based on various combinations of
484  runs within task type: even-numbered runs, odd-numbered runs, the first half of runs, the second
485  half of runs, and two random selections of runs (without replacement). A dice coefficient was
486  then computed to compare parcellation label overlap within task (e.g., between even and odd-
487  numbered resting-state runs) and between tasks (e.g., between odd-numbered runs from resting-
488  state and task runs). This comparison procedure was repeated for the NSAR intraclass correlation
489  coefficient. Due to the non-normal nature of such a small dataset, comparisons between the task
490  and rest parcellation dice coefficients and NSAR intraclass correlations were formally made
491  using paired Wilcoxon Signed Rank tests (R Core Team, 2011; Wilcoxon, 1945).
492 2.8 Identifying Lateralized Networks
493 After establishing validity and reliability, we addressed the first hypothesis of
494  determining whether any of the 17 networks exhibited lateralization, and of those, which were
495  the most lateralized. The following analyses were first implemented in the HCP-Discovery
496  dataset and then replicated in the HCP-Replication and HCPD datasets using all data available
497  from each participant. First, to determine whether any networks exhibited lateralization, multiple
498  regressions were implemented for each of the 17 networks. Models consisted of a given
499  network’s NSAR value and the covariates of mean-centered age, sex, mean-centered mean
500 framewise displacement, and handedness (measured via the Edinburgh Handedness Inventory;
501  Oldfield, 1971). A network was considered lateralized if the model intercept was significant at
502  the Bonferroni-corrected alpha level of 0.003. Next, to determine which networks were the most
503 lateralized, any networks exhibiting significant lateralization in the previous tests with the same

504  direction of lateralization were compared against each other two at a time in multiple regressions
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505  with a binary variable for the two networks and the covariates of mean-centered age, sex, mean-
506  centered mean framewise displacement, and handedness.
507 2.9 Identifying Network Relationships
508 To test the second hypothesis regarding how network lateralization is potentially related
509  between networks, a general relationship was first assessed between NSAR values averaged
510 across like-lateralized networks followed by correlation matrices and structural equation
511  modeling. An exploratory factor analysis (EFA) was conducted in the HCP-Discovery dataset
512 followed by separate confirmatory factor analyses (CFAs) in the HCP-Replication, and HCPD
513  datasets using model-adjusted lateralization values from any reliably lateralized networks. For a
514  network to be considered reliably lateralized, it was significantly lateralized across the HCP-
515  Discovery, HCP-Replication, and HCPD datasets. The exploratory factor analysis was chosen for
516 its ability to identify shared relationships between the items in a data-driven manner. The fa
517  function from the psych package (Revelle, 2023) was used to conduct an iterated principal
518  factors analysis and subsequent parallel analysis. Criteria for the extraction of factors were: a
519  minimum eigenvalue of one, visual inspection of a scree plot, and a parallel analysis. A four-
520  factor model was hypothesized, similar to Liu et al. (2009), with each factor encompassing
521  vision, internal thought, attention, and language. The factor structure identified in the HCP-
522 Discovery dataset was then implemented in confirmatory factor analyses in the HCP-Replication
523  and HCPD datasets using the cfa function from the lavaan package (Rosseel, 2012; Rosseel et
524 al, 2023).
525 3 Results

526 3.1 NSAR as a Valid Measure of Lateralization
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The ecological validity of NSAR was examined through comparison against laterality
calculated from a language task in a subset of the HCP subjects (N = 221). A positive significant
relationship between NSAR for the Language network and language task laterality was found

(Spearman rank correlation » = 0.24, p <.001; see Figure 3).
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Figure 3. Language network NSAR and language task laterality. Depicted is a positive relationship
between NSAR for the Language network and language task laterality in a subset of the HCP dataset (N
= 221). Across each measure of laterality, a negative value denotes left-hemisphere lateralization while a

positive value indicates right-hemisphere lateralization.

The convergent validity of NSAR was assessed through comparison with an additional
functional measure of specialization (the autonomy index) using the Spearman rank correlation.
To facilitate direct comparison with NSAR values, the sign for autonomy index values was
reversed. With the selected left-lateralized networks, significant relationships were found

between the autonomy index and NSAR for the Language (Spearman rank correlation » = -0.62,
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542  p <.001; see Figure 3 Panel B), Dorsal Attention-A (Spearman rank correlation » =-0.62, p <
543  .001), and the Control-B (Spearman rank correlation » =-0.57, p <.001) networks (see the top
544  row of Figure 4). Significant relationships were also found between the autonomy index and
545  NSAR for the selected right-lateralized networks including the Visual-B (Spearman rank
546  correlation »=0.71, p <.001), Salience/Ventral Attention-A (Spearman rank correlation » =
547  0.61, p <.001), and Limbic-B (Spearman rank correlation » = 0.69, p <.001) networks (see the
548  second row of Figure 4). These findings indicate that NSAR and the autonomy index are
549  measuring similar facets of specialization.

550

Correspondence between NSAR and the Autonomy Index
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551 Figure 4. Evidence for convergent validity between the autonomy index and NSAR in a subset of HCP

552 dataset. The top row depicts the relationships between the autonomy index and NSAR for three left-

553 lateralized networks (Language, Dorsal Attention-A, and Control-B; Spearman rank correlation r = -0.57 -
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554 -0.62). The bottom row depicts the relationships between the autonomy index and NSAR for three right-
555 lateralized networks (Visual-B, Ventral Attention-A, and Limbic-B; Spearman rank correlation r= 0.61 -
556 0.71). For each scatterplot, the line of best fit was generated using the /m function (no covariates) and

557  each circle represents an individual.

558

559 Next, the external validity of NSAR was examined through comparison against two

560  cognitive measures using a CCA: a reading task (ORRT) and an attention/inhibitory control task
561  (the Flanker task). In preparation for the CCA in a subset of HCP participants (N = 232; no

562  missing data), linearity and heteroskedasticity of age-, sex-, handedness-, and mean framewise
563  displacement-adjusted NSAR values from eight significantly lateralized networks and the age-
564  and sex-adjusted values from two cognitive measures were evaluated in pairwise plots, which
565  were followed by the Doornik-Hansen multivariate test for normality (DH.test function from the
566  mvnTest package; DH = 164.21, p = 0; Doornik & Hansen, 2008; Pya et al., 2016). Tests of

567  dimensionality for the CCA indicated that one of the two canonical dimensions was statistically
568  significant at the .05 level. This dimension had a canonical correlation of 0.34 (F(16, 444) =

569  0.87, p =.008) between the cognitive measures and NSAR values, while the canonical

570  correlation was much lower for the second, nonsignificant dimension at 0.14 (F(7, 223)=0.98, p
571  =.75). Table 1 presents the standardized canonical coefficients for the first dimension across the
572  cognitive measures and eight lateralized networks. Of the cognitive variables, the first canonical
573  dimension was most strongly influenced by language ability (B (standardized canonical

574  coefficient) = -0.99). In terms of lateralized networks, the Visual-B (f =-0.33, » =-0.13),

575  Language (B =0.39, r=0.2), Dorsal Attention-A ( =-0.54, » =-0.17), and Control-C (§ = 0.48,
576  r=0.13) networks appeared to contribute the most to the first canonical dimension. Haufe-

577  transformed feature weights indicated that for every one-unit increase in Language network
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578 lateralization, the first dimension, representing language ability, increases by 0.13 (see Table 1).
579  These findings suggest that there is a relationship between network lateralization and cognitive
580 abilities, specifically language.
581
582  Table1l

583 Canonical Correlation Analysis Results for Dimension lin a Subset of the HCP Dataset (N =
584  232)

Standardized Haufe- Correlation with
Canonical Transformed Canonical Variate”
Coefficient Weight
Cognitive Variables
Language (ORRT) -0.99 -0.45 -0.32
Attention (Flanker) 0.39 2.22 0.07
Lateralized Networks
Visual-B -0.33 -0.05 -0.13
Language 0.39 0.13 0.2
Dorsal Attention-A -0.54 -0.07 -0.17
Salience/Ventral -0.18 -0.03 -0.1
Attention-A
Control-B 0.11 -0.01 -0.02
Control-C 0.48 0.04 0.13
Default-C 0.37 0.05 0.12
Limbic-B -0.17 -0.03 -0.05

585  "Bolded values were significant at the p < .05 level following multiple comparison corrections.
586
587 3.2 NSAR as a Reliable Measure of Lateralization

588  3.2.1 Stable Estimate Analysis
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589 To address the question of how much data is needed in order to obtain a stable estimate
590 of NSAR values, combinations of five-minute increments (5, 10, 15...30 minutes) were
591  compared against 30 independent minutes of data in a subset of HCP subjects. The intraclass
592  correlations indicate that only five minutes of data are needed to obtain moderate to good
593  intraclass correlations for the majority of subjects (see Figure 5 Panel A). Of note, poor and
594  excellent interclass correlations were observed for some subjects. The stable estimate analysis
595  was also approached from a network basis (as opposed to the subject basis presented in Figure 5
596  Panel A). Networks with the lowest intraclass correlations included the Limbic-A and Control-A
597  networks, while networks with the greatest intraclass correlations included Visual-A, Limbic-B,
598 and Default-A (for overall distributions, see Figure 5 Panel B; for specific network intraclass
599  correlation coefficients, see Supplementary Figure S2). Interestingly, not all networks improved
600 in reliability with additional data, including the Limbic-A and Control-A networks. This is likely
601  areflection of a poor signal-to-noise ratio. For parcellation label overlap estimates, see
602  Supplementary Figure S3.

603
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604 Figure 5. Evidence for reliable estimates of NSAR in the HCP dataset. Panel A depicts the intraclass

605 correlation coefficient calculated for each subject's 17 NSAR values for each time increment (5, 10, 15 ...
606 30 minutes) and the subject’s 17 NSAR values from 30 independent minutes of data. Panel B depicts the
607 intraclass correlation coefficient calculated for each network’s mean NSAR value between the 30

608 independent minutes of data and each increment of data. The distribution of intraclass correlation

609  coefficients is shown for the 17 networks. Specific network intraclass correlation coefficients are displayed

610  in Supplementary Figure S2.

611
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612  3.2.2 Test-Retest Reliability Analysis

613 Using HCP subjects with all four resting-state runs available post-preprocessing (N =
614  232), test-retest reliability was assessed for three left-lateralized networks (Language, Dorsal
615  Attention-A, and Control-B) and three right-lateralized networks (Limbic-B, Visual-B, and

616  Salience/Ventral Attention-A) determined a priori. For the left-lateralized networks, intraclass
617  correlations were within the moderate range, from 0.56 to 0.63, with the lowest being the Dorsal
618  Attention-A network (ICC =0.56, F(231, 231) =3.6, p <.001, 95% CI [0.47, 0.64]; see Figure
619  6). For the right-lateralized networks, intraclass correlations remained in the moderate range,
620  between 0.58 to 0.71, with the Visual-B network exhibiting the lowest reliability (ICC = 0.58,
621  F(231,231)=3.7, p <.001, 95% CI [0.48, 0.66]).

622
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623  Figure 6. Test-retest reliability of NSAR values for left- and right-lateralized networks in 232 HCP
624  subjects. Left-lateralized networks (left column) included Language, Dorsal Attention-A, and Control-B.
625 Right-lateralized networks (right column) included Visual-B, Salience/Ventral Attention-A, and Limbic-B. In

626  each plot, a circle represents a subject.
627

628  3.2.3 Task Effects on Individual Parcellations and NSAR

629 Using the NSD dataset (N = 8) to compare potential differences between resting-state and
630  task fMRI on individual parcellations and NSAR estimates, we found differences between the
631  within-task comparisons and between task comparisons for both the parcellation dice coefficients

632 and NSAR intraclass correlations (see Figure 7). Wilcoxon signed rank comparisons revealed a
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633  difference in within-task (Task-Task and Rest-Rest) dice coefficients for even versus odd
634  numbered runs (V= 36, p =.008), but no difference for the first half versus the second half of
635 runs (V'=29, p=.15) or the random selection of runs (V= 31, p =.08). Regardless of how the
636  data were split, a task effect in dice coefficient was found between within-task (Task-Task) and
637  between-task (Task-Rest) dice coefficients for even versus odd numbered runs (V' =36, p =
638  .008), the first half versus the second half of runs (V' =36, p = .008), and the random selection of
639  runs (V'=36, p=.008).
640 Similarly, with the NSAR intraclass coefficients, no significant difference was found for
641  within-task (Task-Task and Rest-Rest) reliability across the even versus odd numbered runs (V' =
642 31, p =.08) and the first half versus the second half of runs (V"= 19, p = .95), but not for the
643  random selection of runs (V' = 35, p = .02). However, a significant difference was not found
644  between within-task (Task-Task) and between-task (Task-Rest) intraclass correlation coefficients
645  across the even versus odd numbered runs (V= 31, p = .08), the first half versus the second half

646  of runs (V'=131, p =.08), but for the random selection of runs (V' = 34, p =.02).
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Figure 7. Task dependency of individual parcellations and NSAR in the NSD dataset. Depicted in the top
row are the dice coefficients for the individual parcellations between 30-minute increments of resting-state
or task fMRI data. Regardless of how the data were split (even- versus odd-numbered runs, the first half
versus the second half, or a random selection without replacement), a task effect was found. Depicted in
the second row are the NSAR intraclass correlation coefficients computed in individuals across networks.

In each plot, circles connected by a line represent an individual.

3.3 Networks with the Greatest Lateralization

To test the first hypothesis that networks associated with language, visuospatial attention,
and executive control would show the greatest hemispheric lateralization, networks were first
evaluated for lateralization and then compared against each other. To begin, a series of multiple

regressions were used to identify if any of the 17 networks were lateralized, first in the HCP-
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660  Discovery dataset and then in the HCP-Replication and HCPD datasets. Networks with
661  significant lateralization (p <.003) in the same direction (e.g., right or left lateralization) across
662 all three datasets included nine networks, of which four were left-lateralized (Language, Dorsal
663  Attention-A, Control-A and Default-C) and five were right-lateralized (Visual-B,
664  Salience/Ventral Attention-A, Control-B, Control-C, and Limbic-B; see Supplementary Table
665 1).However, given the very low reliability of the left-lateralized Control-A network (mean ICC =
666  0.12; see Supplementary Figure S2), this network was not considered further. None of the
667  covariates were reliably significant for a given network across all three datasets. See Figure 8 for
668  model-adjusted NSAR values for each of the 17 networks and see Figure 9 for the percentage of
669  surface area occupied by the eight most lateralized networks.
670 Following the identification of eight lateralized networks, a series of multiple regressions
671  were used to compare networks with the same direction of lateralization two at a time in order to
672  identify the networks with the greatest lateralization. Models included a binary network variable
673  and the covariates of mean-centered age, sex, handedness, and mean-centered mean framewise
674  displacement. Of the left-lateralized networks, the Dorsal Attention-A network was the most
675 lateralized compared with the Language and Default-C networks, and this pattern was replicated
676  across the HCP-Discovery, HCP-Replication, and HCPD datasets (see Supplementary Table 2).
677  Of the right-lateralized networks, the Limbic-B network was the most lateralized, followed by
678  the Control-B network, Visual-B and Control-C networks (not significantly different), and the
679  Salience/Ventral Attention-A network. This pattern was replicated across the three datasets as
680  well (see Supplementary Table 3). Contrary to our hypothesis that networks associated with

681  language, visuospatial attention, and executive control would show the greatest lateralization, we
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1dentified the Dorsal Attention-A network as the most left-lateralized and the Limbic-B network

as the most right-lateralized.

Right

Left

Figure 8. Lateralization for 17 networks across the HCP-Discovery, HCP-Replication, and HCPD
datasets. On the y-axis are the 17 networks and on the x-axis are the adjusted NSAR values, with
negative values representing left hemisphere lateralization and positive values representing right

hemisphere lateralization. Bars represent the 2.5 and 97.5 percentiles. NSAR values were adjusted by
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regressing out the effects of mean-centered age, mean-centered mean framewise displacement, and sex

using the following formula: NSARadjusted = NSARraw — [31(mean-centered ageraw — mean of mean-
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centered ageraw) + B2(mean-centered FDraw — mean of mean-centered FDraw) + B3(S€Xraw — Mean seXraw) +
Ba(handednessraw — mean handednessraw)]. NSAR adjustment occurred separately for each network
within each dataset. Lines represent the standard error. Across the three datasets, eight networks were
reliably and significantly lateralized (left-lateralized: Language, Dorsal Attention-A, and Default-C; right-

lateralized: Visual-B, Salience/Ventral Attention-A, Control-B, Control-C, and Limbic-B).
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697 Figure 9. Percent surface area for 8 lateralized networks across the HCP-Discovery, HCP-Replication,
698 and HCPD datasets. Depicted in the top of Panel A is the percentage of the surface area occupied by a

699  given lateralized network for the left hemisphere (top panel) and right hemisphere (bottom panel).
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700 Depicted in Panel B is the mean percentage of surface area occupied by a lateralized network, with
701 standard error bars. The left and right hemisphere estimates are displayed side-by-side for each dataset.
702  In Panel C, the adjusted NSAR values for each network are shown. In Panels A and C, points represent

703 individual outliers.

704

705 3.4 Relationships between Networks’ Lateralization

706 Next, we investigated how lateralization in one network may influence the lateralization
707  of other networks. This second hypothesis was assessed first through general correlations

708  followed by both correlation matrices and structural equation modeling conducted in triplicate
709  across the HCP-Discovery, HCP-Replication, and HCPD datasets. First, model-adjusted NSAR
710  values were averaged across like-lateralized networks before the averaged left-lateralized values
711  (from the Language, Dorsal Attention-A, and Default-C networks) were correlated with the

712 averaged right-lateralized values (from the Visual-B, Salience-Ventral Attention-A, Control-B,
713 Control-C, and Limbic-B networks). A general negative relationship between left-lateralized and
714  right-lateralized networks was found across each dataset (HCP-Discovery: n(274) =-0.67, p <
715 .001; HCP-Replication: #(275) =-0.59, p <.001; HCPD: r(343) = -0.66, p <.001). Next,

716  correlation matrices of the model-adjusted NSAR values from the eight lateralized networks

717  evidenced moderate negative relationships between the left- and right-lateralized networks across
718  individuals (see Figure 10). In the HCP-Discovery dataset, negative relationships were found
719  between the Limbic-B and Dorsal Attention-A networks (#(274) = -0.45, p <.001, 95% CI [-
720  0.54, -0.36]; see Figure 11 Panel A), the Limbic-B and Default-C networks (7(274) =-0.42, p <
721  .001,95% CI[-0.51, -0.31]; see Figure 11 Panel B), the Default-C and Visual-B networks

722 (r(274) =-0.16, p = .007, 95% CI [-0.28, -0.05]), the Default-C and Control-B networks (7(274)

723 =-0.27,p <.001, 95% CI [-0.38, -0.16]), the Default-C and Control-C networks (7(274) = -
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0.17, p =.004, 95% CI [-0.29, -0.06]), the Control-B and Language networks (#(274) =-0.31, p <
.001, 95% CI [-0.41, -0.19]), and the Language and Salience/Ventral Attention-A networks
(r(274) =-0.3, p <.001, 95% CI [-0.41, -0.19]; see Figure 11 Panel C). Interestingly, a negative
relationship was also found between two left-lateralized networks: Dorsal Attention-A and
Language (1(274) =-0.23, p <.001, 95% CI [-0.34, -0.11]). Each negative relationship was
replicated across the HCP-Replication and HCPD datasets (see Figure 10). These relationships
support the dependent hypothesis, which suggests that having one highly lateralized network
corresponds with increased lateralization in other networks within the individual, and that this

pattern is systematic across individuals.
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734 Figure 10. Relationships between lateralized networks across the HCP-Discovery, HCP-Replication, and
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735 HCPD datasets. Correlation matrices were created from the model-adjusted NSAR values from the eight
736 lateralized networks (Visual-B, Language, Dorsal Attention-A, Salience/Ventral Attention-A, Control-B,
737 Control-C, Default-C, and Limbic-B), controlling for sex, mean-centered age, mean-centered framewise
738 displacement, and handedness. Correlation values thresholded at p = .05 are displayed in the upper
739  triangles, and consistent relationships have been highlighted with black boxes.

740
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741 Figure 11. Negative correlations between highly left- and right-lateralized networks across the HCP-
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742 Discovery, HCP-Replication, and HCPD datasets. Panel A depicts the negative relationship between the
743 Limbic-B and Dorsal Attention-A networks (HCP-Discovery: r(274) = -0.45, adjusted R? = 0.2; HCP-

744  Replication: r(275) = -0.41, adjusted R? = 0.16; HCPD: r(341) = -0.47, adjusted R2 = 0.22). Panel B

745  depicts the negative relationship between the right-lateralized Limbic-B and left-lateralized Default-C
746  networks (HCP-Discovery: r(274) = -0.42, adjusted R? = 0.17; HCP-Replication: r(275) = -0.31, adjusted
747 R? =0.09; HCPD: r(341) = -0.37, adjusted R? = 0.14). Panel C depicts the negative relationship between
748 the right-lateralized Salience/Ventral Attention-A network and left-lateralized Language network (HCP-
749  Discovery: r(274) = -0.3, adjusted R? = 0.09; HCP-Replication: r(275) = -0.25, adjusted R? = 0.06; HCPD:
750 r(341) = -0.2, adjusted R? = 0.04). In each panel, a circle represents a single participant's model-adjusted
751 NSAR value, which was adjusted for mean-centered age, sex, handedness, and mean-centered mean
752  framewise displacement.

753

754 3.4.1 EFA in the HCP-Discovery Dataset

755 As an additional method for exploring relationships between lateralized networks, an
756  EFA was implemented in the HCP-Discovery dataset, followed by CFAs in the HCP-

757  Replication, and HCPD datasets. In preparation for the EFA in the HCP-Discovery dataset (N =
758  276; no missing data), linearity and heteroskedasticity of adjusted NSAR values from the eight
759  lateralized networks were evaluated in pairwise plots, which were followed by the Doornik-
760  Hansen multivariate test for normality (DH.test function from the mvnTest package; DH =

761  202.89, p = 0; Doornik & Hansen, 2008; Pya et al., 2016). The NSAR values were then

762  evaluated for multicollinearity, and no items had Variance Inflation Factor values greater than
763 1.65 (vif function from the psych package; Revelle, 2023). Additional assumptions testing

764  included Bartlett’s test of sphericity and the Kaiser-Meyer-Olkin (KMO) Measure of Sampling

765  Adequacy. For the test of sphericity, we rejected the null hypothesis that there is no correlation
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766  among the items (x*(28) = 293.43, p <.001). Additionally, the KMO test was .46, revealing that
767  the extracted factors will account for an unacceptable amount of common variance.

768 To examine network relationships, a principal factors analysis in the HCP-Discovery
769  dataset was performed. Using the correlation matrix from eight lateralized networks, two factors
770  were extracted. This first factor had an eigenvalue of 1.38 (explaining 57% of the variance; see
771  Table 2 for factor loadings) and the second factor had an eigenvalue of 1.02 (explaining 43% of
772  the variance). Of note, the left-lateralized networks load negatively onto the first extracted factor
773  while right-lateralized networks load positively, suggesting that this factor encompasses right-
774  hemisphere lateralization, with the opposite in the second extracted factor.

775

776  Table 2

777  Summary of Exploratory Factor Analysis Results for the NSAR Scores Using Iterated Principal
778  Factors in the HCP-Discovery Dataset (N = 276)

Network Factor 1 Loadings Factor 2 Loadings
Limbic-B 0.73 -0.32
Control-C 0.28 0.06
Visual-B 0.29 0.04
Salience/VenAttn-A 0.28 0.26
Control-B 0.22 0.23
Language -0.38 -0.75
Default-C -0.51 0.05
Dorsal Attention-A -0.37 0.48
Eigenvalues 1.38 1.02
Proportion of variance 0.57 0.43
explained

779  Note: Factor loadings over .40 appear in bold.
780
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781  3.4.2 CFAs in the HCP-Replication and HCPD Datasets

782 In preparation for the CFA in the HCP-Replication dataset (N = 277; no missing data),
783  linearity and heteroskedasticity of adjusted NSAR values were evaluated in pairwise plots, which
784  were followed by the Doornik-Hansen multivariate test for normality (DH = 43.29, p <.001;
785  Doornik & Hansen, 2008; Pya et al., 2016). The NSAR values were then evaluated for

786  multicollinearity, and no items had Variance Inflation Factor values greater than 1.3. Additional
787  assumptions testing included Bartlett’s test of sphericity and the Kaiser-Meyer-Olkin (KMO)
788  Measure of Sampling Adequacy. For the test of sphericity, we rejected the null hypothesis that
789  there is no correlation among the items (x*(6) = 101.53, p <.001). Additionally, the KMO test
790  was .49, revealing that the extracted factors will account for an unacceptable amount of common
791  variance. This process of evaluating assumptions was also performed in the HCPD dataset (N =
792  343; no missing data), starting pairwise plots and the Doornik-Hansen multivariate test for

793  normality (DH =44.37, p <.001 ). Multicollinearity was then evaluated, and no items had

794  Variance Inflation Factor values greater than 1.49. Additionally, for Bartlett’s test of sphericity,
795  we rejected the null hypothesis that there is no correlation among the items (%2(6) = 164.59, p <
796  .001). Furthermore, the KMO test was 0.47, revealing that the extracted factors will account for
797  an unacceptable amount of common variance.

798 To examine network relationships and potentially replicate the HCP-Discovery EFA, a
799  confirmatory factor analyses were performed in the HCP-Replication and HCPD datasets using
800 the cfa function from the lavaan package (Rosseel, 2012; Rosseel et al., 2023). The structural
801  model consisted of two factors, with Limbic-B and Default-C loaded onto the first factor and
802  Language and Dorsal Attention-A loaded onto the second factor. In the HCP-Replication dataset,

803  the model provided fair fit to the data: ¥*(2) = 61.95, p <.001; confirmatory fit index (CFI) =
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804  0.38; root-mean-square error of approximation (RMSEA) = 0.33; standardized root mean square
805  residual (SRMR) = 0.14. Similar results were found in the HCPD dataset, for which the model
806  provided fair fit to the data: ¥*(2) = 102.02, p <.001; CFI = 0.38; RMSEA = 0.38; SRMR = 0.16.

807  Standardized loadings for each network across both CFAs are shown in Table 3.

808
809 Table3

810  Standardized Loadings for a Two-Factor Confirmatory Factor Analysis Model of NSAR Scores
811  in the HCP-Replication (N = 277) and HCPD (N = 343) Datasets

HCP-Replication HCPD
Network Factor 1 Factor 2 Factor 1 Factor 2
Limbic-B -0.3 0 -0.36 0.00
Language 0.00 0.84 0.00 0.91
Default-C 1.03 0.00 1.03 0.00
Dorsal Attention-A 0.00 -0.25 0.00 -0.21

812  Note: Factor loadings over .40 appear in bold.

813
814 4 Discussion
815 In this study, we implemented a novel measure of lateralization based on high-resolution

816  individual network parcellations (NSAR). Using NSAR, we identified eight networks that were
817  reliably lateralized across three independent datasets. Furthermore, we examined potential

818  relationships between networks’ NSAR values and found evidence supporting a dependent

819  hypothesis of lateralization. These findings shed new light on hemispheric specialization, which
820  has implications for the understanding of brain organization and development (Toga &

821  Thompson, 2003), individual differences (Perez et al., 2023), human-defining cognitive

822  processes (Hartwigsen et al., 2021), and neurodevelopmental conditions (Eyler et al., 2012;

823  Kong et al., 2022). Previously, functional lateralization has been assessed through a variety of
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824  approaches dependent on intrinsic connectivity, primarily at the group level. However, recent
825  evidence suggests that group-based approaches can obfuscate the idiosyncratic anatomy of
826  individuals and blur potentially meaningful and clinically useful variability (Gratton et al., 2020;
827  Lynch et al., 2020; Salvo et al., 2021). For example, the language network has high spatial
828  variability across individuals (Braga et al., 2020; Fedorenko, Duncan, et al., 2012), holding
829  ramifications for the accurate assessment of lateralization for this and other variable networks.
830 4.1 Evidence for the Validity and Reliability of NSAR
831 In this study, we examined functional lateralization using a novel surface area-based
832  index. This measure was developed methodologically through the examination of ecological,
833  convergent, and external validity, as well as a stable estimate analysis, test-retest reliability, and
834  potential task effects. Notably, language task laterality appears to have a positive relationship
835  with Language network NSAR, suggesting that there is a degree of concordance between this
836  resting-state measure of laterality and a task-based measure of laterality. Furthermore, estimates
837  from this surface area approach to lateralization appear to converge with a different functional
838  connectivity-based method (the autonomy index). This result supports the idea that NSAR 1is
839  capturing lateralization in a way that is valid while being distinct from the autonomy index in
840  how it is derived. Unlike the autonomy index, the formula for NSAR does not normalize for
841  brain size or deal in the minutiae of individual functional connections. Rather, NSAR is
842  calculated based on a network’s surface area. Additionally, potential relationships between
843  network NSAR values and two cognitive measures were investigated in an analysis of external
844  validity. Interestingly, a relationship between the laterality of the Visual-B, Language, Dorsal
845  Attention-A, Control-C, and Default-C networks and language ability was identified. Similarly,

846  others have identified a link between language function and left hemisphere lateralization during
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847  language production (Groen et al., 2012), and between the lateralization of functional networks
848 and their associated cognitive abilities (Gotts et al., 2013).
849 Reliability analyses indicated that NSAR is stable within individuals, even after just five
850  minutes of resting-state fMRI data. Interestingly, networks with the greatest reliabilities included
851  the visual and somatomotor networks. This is in keeping with Kong et al. (2019), who found that
852  sensorimotor networks exhibited lower inter-subject functional connectivity variability than
853  association networks. Since NSAR is indirectly based on an individual’s functional connectivity
854  profiles, this result is unexpected.
855 In addition to the quantity of data available per participant, we also examined the effect
856  of data type (task versus rest) on NSAR estimates within individuals. While within-task type
857  reliability was high, we found that there was indeed a task effect such that resting-state fMRI and
858  task fMRI did not yield identical parcellations and NSAR estimates within individuals. This
859  finding supports the hypothesis that resting-state fMRI can be thought of as another arbitrary task
860  state (Buckner et al., 2013). Yet, the “task™ of resting-state fMRI can result in greater variability
861  in functional connectivity compared with that resulting from task fMRI, perhaps resulting from
862  mind wandering (Elton & Gao, 2015). And when predicting individual traits, task-based models
863  outperform rest-based models, with this difference likely reflecting the “unconstrained nature” of
864  the resting state (Greene et al., 2018). Since NSAR estimates are derived from individual
865  parcellations which are in turn generated from individual functional connectivity profiles, it
866  stands to reason that connectivity differences resulting from task type could trickle down to
867  differences in NSAR estimates.

868 4.2 The Identification of Eight Reliably Lateralized Networks
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869 Following the methodological development of NSAR, we reliably identified eight
870 lateralized networks across three datasets: Visual-B, Language, Dorsal Attention-A,
871  Salience/Ventral Attention-A, Control-B, Control-C, Default-C, and Limbic-B. While a ninth
872  lateralized network was reliably identified (Control-A), this network was discarded from further
873  analysis due to very poor reliability. Previously, several of these networks have been established
874 as lateralized, particularly those associated with language and visuospatial attention processing.
875  4.2.1 The Dorsal Attention-A Network Exhibited the Greatest Left-Lateralization
876 Previously, left-lateralized networks have included the language, frontoparietal control,
877  and default networks. More specifically, evidence for the lateralization of the language network
878  has been derived from a variety of methods including the Wada test (Desmond et al., 1995;
879  Wada & Rasmussen, 1960), lesion cases (Broca, 1861; Wernicke, 1995), task fMRI (Elin et al.,
880  2022; Fedorenko, Duncan, et al., 2012; Fedorenko et al., 2010, 2011; Fedorenko, McDermott, et
881 al., 2012; Lipkin et al., 2022; Malik-Moraleda et al., 2022; Olulade et al., 2020; Scott et al.,
882  2017; Wilson et al., 2017), and resting-state fMRI (Braga et al., 2020; Labache et al., 2020; Zhu
883  etal., 2014), among others. Using NSAR, we also identified the language network as being
884  strongly left-lateralized. However, unlike a prior comparative study (Braga et al., 2020), which
885  examined lateralization in the language, salience, default, and frontoparietal networks (but not a
886  dorsal attention network), we did not find that the language network was the most left-lateralized
887  network. Instead, we identified the Dorsal Attention-A network as being the most left-lateralized.
888  Unlike the ventral attention network, the dorsal attention network has been previously identified
889  as a bilateral network (Fox et al., 2006; for review see Mengotti et al., 2020). This was the case
890  for the Dorsal Attention-B network, which was not a significantly lateralized network across the

891 three datasets. However, there is evidence for a left-lateralized dorsal attention network across
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892  both left- and right-handed individuals, stemming from a within-individual network variants
893  approach (see Figure 7 Panel C of Perez et al., 2023). Additionally, it could be that a finer-
894  grained parcellation deconstructs the dorsal attention network into one bilateral and one
895 lateralized network, similar to previous within-individual work on the default network (Braga &
896  Buckner, 2017; DiNicola et al., 2020).
897  4.2.2 Replication of Right-Lateralized Attention, Control, and Limbic Networks
898 This is not the first study to identify the ventral attention, control, and limbic networks as
899  being lateralized. Abundant evidence exists for the right-lateralization of visuospatial/ventral
900 attention, stemming from task fMRI (Beume et al., 2015; Cai et al., 2013; Jansen et al., 2004;
901  Shulman et al., 2010; Siman-Tov et al., 2007; Umarova et al., 2010; J. Wang et al., 2016; Zago et
902 al., 2016, 2017), resting-state fMRI (Braga et al., 2020; Wang et al., 2014), hemispatial neglect
903  cases (Corbetta & Shulman, 2011), and others (for review, see Mengotti et al., 2020).
904 Interestingly, we identified the Salience/Ventral Attention-A but not the Salience/Ventral
905  Attention-B network as being right-lateralized. Once more, this may be due to the network
906  resolution selected (k= 17), which may have split the canonical ventral attention network into a
907  Dbilateral and a right-lateralized network.
908 While this study successfully replicated right-lateralized control networks (Control-B and
909  Control-C), a left-lateralized control network was not identified. Previously, Wang et al. (2014)
910 found evidence for a dually lateralized frontoparietal control network using the autonomy index.
911 It was suggested that this control network acted as a coupler between the two hemispheres to
912  increase efficiency while simultaneously supporting within-hemisphere processes. This was also
913  evidenced by Spreng et al. (2013), which found that the frontoparietal control network exhibits

914  distinct connectivity patterns with the default and attention networks in response to varying task
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915 requirements. Similarly, using a seed-based analysis, Braga et al. (2020) confirmed the presence
916  of both left-lateralized and right-lateralized frontoparietal control networks. Collectively, these
917  results point to control networks differentially executing cognitive processes within the left and
918  right hemispheres.
919 Finally, the most right-lateralized network identified using NSAR was the Limbic-B
920  network, a network that occupies cortical real estate associated with emotion (Olson et al., 2007;
921  Pehrsetal., 2017; Sonkusare et al., 2020). Historically, emotion processing has been identified
922  as being lateralized, perhaps beginning with lesion cases (Gainotti, 2019; Hughlings-Jackson,
923  1878; Luys, 1879). Later work suggested that specific aspects of emotion were lateralized,
924  including the right-lateralization of emotion recognition, the right-lateralization of emotional
925  control and expression, the right-lateralization of negative emotions, and the left-lateralization of
926  positive emotions (Silberman & Weingartner, 1986). Contemporarily, it has been suggested that
927  ahemispheric functional-equivalence hypothesis would better explain emotion neuroimaging
928  results, such that emotion results from networks that are interrelated and may have different
929  patterns of lateralization (for review, see Palomero-Gallagher & Amunts, 2022). This perspective
930 emphasizes the intricate and interconnected nature of emotion-related neural processes,
931  particularly those patterns of lateralization that emerge from inter-network relationships.
932 Interestingly, the Limbic-B network appears to be at the center of our main results regarding
933 lateralization relationships between networks.
934 4.3 Support for the Dependent Hypothesis of Network Lateralization
935 Beyond identifying networks with the greatest lateralization, we sought to understand
936  how network lateralization was related between networks. Framing this investigation, a 2019

937  review described relationships between lateralized brain networks in terms of functional
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938  complementarity, or the degree of specialization minimizing functional overlap and redundancy
939  for a pair of networks (Vingerhoets, 2019). Borrowing from the author’s ecological
940  differentiation metaphor, just as species may specialize and fill different niches, facilitating
941  coexistence among species, brain networks may also operate in a complementary fashion
942  through the use of distinct computational processes and neural locations. Conversely, species
943  (and brain networks) which do not specialize are functionally redundant and face increased
944  competition. Crucially, this dynamic is such that high complementarity characterizes brain
945  networks with low redundancy and competition while low complementarity describes brain
946  networks with high redundancy and competition. To explore this further, we hypothesized that
947  having one highly lateralized network corresponds with increased lateralization in other
948  networks within an individual, and that this pattern of covariation would systematically occur
949  across individuals (the dependent hypothesis). Interestingly, we identified lateralized network
950 relationships exhibiting high and low complementarity occurring systematically across three
951  different datasets.
952 4.3.1 High Complementarity Network Relationships
953 Using correlation matrices, we found support for the dependent hypothesis in networks
954  lateralized to contralateral hemispheres and exhibiting high complementarity. A negative
955  relationship was found between the right-lateralized Limbic-B network and the left-lateralized
956  Dorsal Attention-A network. Such a relationship is indicative of covariation, since negative
957  NSAR values indicate left hemisphere lateralization, so greater lateralization of the left-
958 lateralized Dorsal Attention-A network (negative NSAR values) were associated with greater
959 lateralization of the right-lateralized Limbic-B network (positive NSAR values). Similarly, an

960 additional negative relationship was identified between the right-lateralized Limbic-B network
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961  and the left-lateralized Default-C network. These relationships were systematic across
962 individuals spanning three datasets, suggesting that there may be a population benefit to this
963  configuration of lateralization. Interestingly, while others have suggested that the relationship
964  between linguistic and spatial processing networks may be characterized by high complementary
965 as well (Vingerhoets, 2019), we did not find evidence for this relationship in the present study.
966  4.3.2 Low Complementarity Network Relationships
967 Beyond the high complementarity relationships, using correlation matrices we also
968 identified a dependent relationship for networks lateralized to the same hemisphere exhibiting
969  low complementarity. Since NSAR is derived based on surface area and the selected network
970  parcellation method has a winner-takes-all approach, all cortical surface area for each individual
971  1is accounted for and networks lateralized to the same hemisphere are in competition with one
972  another for cortical real estate. Thus, it is not surprising that two networks lateralized to the same
973  hemisphere might have a negative relationship, such as that between the left-lateralized Dorsal
974  Attention-A and Language networks identified in the present study. This relationship is such that
975 as the lateralization for the Dorsal Attention-A network increases, the lateralization of the
976  Language network decreases within individuals or vice versa, and this pattern was consistent
977  across individuals from three datasets. Remarkably, two other examples of this low
978  complementarity relationship have previously been identified and both involve language or
979  linguistic processing. First, one group found evidence for the “co-lateralization” of language and
980  praxis networks on both the individual and group levels (Vingerhoets et al., 2013). A similar “co-
981 lateralization” relationship was identified for language and arithmetic regions (Pinel & Dehaene,
982  2010). In the latter study, it was suggested that “co-lateralization” might hint at the

983  developmental effects of learning linguistic symbols on the organization of the arithmetic
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984  network. An additional hypothesis for this type of complementary relationship suggests that
985  networks composed of overlapping nodes in the same hemisphere may be so similar that sharing
986  proximate space is biologically less costly than the generation of a separate redundant network in
987  the opposite hemisphere (Vingerhoets, 2019).
988  4.3.3 Further Evidence of the Dependent Hypothesis
989 Additional support for the dependent hypothesis was found with the EFA and CFA
990  structures across the three datasets. While we did not replicate the four-factor model from Liu et
991 al. (2009), we did extract two factors for the HCP-Discovery dataset, which were then fitted in
992  the HCP-Replication and HCPD datasets. Across these factor analyses, significant positive and
993  negative loadings were found within each factor structure, suggesting that left- and right-
994 lateralized networks work within a system level higher than the network.
995  4.3.4 Characteristics of Lateralized Brain Network Organization
996 Together, the present evidence accumulated from the correlation matrices and EFA and
997  CFA structures point to three overlapping features of organization for lateralized networks:
998  complementarity, plasticity, and hierarchy. Beyond identifying which networks are lateralized,
999  the present study evidences a configuration in which there are trade-offs in redundancy and
1000  competition. Rather than operating in isolation, lateralized networks appear to function in a
1001  larger system where their organization is interdependent. Given the zero-sum nature of a surface
1002  area-based approach, one might argue that this interconnectedness is an artifact. However,
1003  evidence from prior task fMRI lateralization research is in support of interconnectedness (Pinel
1004 & Dehaene, 2010; Vingerhoets et al., 2013). Similarly, the presented results demonstrating that
1005  network lateralization strength is related between networks suggests a degree of plasticity and

1006  adaptability in the brain’s functional organization. This potential developmental influence was


https://doi.org/10.1101/2023.12.08.570817
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.08.570817; this version posted December 9, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

57
1007  hinted at with the “co-lateralization” of language and arithmetic; however, longitudinal models
1008 are needed to verify this speculation. Lastly, the present results describe a hierarchy of lateralized
1009  brain networks. This is most clearly demonstrated with the EFA and CFA structures, which were
1010  composed of both positive and negative factor loadings suggesting that these lateralized
1011  networks are not isolated but rather part of a larger system. This hierarchical organization of
1012 lateralized networks implies a mosaic of interaction and dependency within the broader brain
1013 architecture.
1014 4.4 Limitations and Future Directions
1015 One limitation to this work is that while functional connectivity may be constrained in
1016  part by anatomical connectivity, it is not necessarily dictated by anatomical connectivity. Several
1017  pieces of evidence point to this conclusion: functional connectivity is modulated by task (Shirer
1018  etal., 2012), recent experience (Lewis et al., 2009), caffeine (Laumann et al., 2015), and
1019  sleepiness (Tagliazucchi & Laufs, 2014); and is dynamic within a person over time (Hutchison et
1020  al., 2013). Furthermore, underlying brain geometry models of spontaneous neural activity appear
1021  to be more accurate and parsimonious than those derived from anatomical connectivity (Pang et
1022 al., 2023). Hence, NSAR as a connectivity and surface area-based measure is more reflective of
1023 functional rather than anatomical lateralization. As a result, future studies might benefit from
1024  exploring the Coutanche et al. (2023) method, which employs a surface-fingerprinting technique
1025  and multivariate laterality index for computing functional lateralization, offering a potentially
1026  complementary approach to NSAR in assessing functional lateralization.
1027 In this study, individual parcellations were generated using the Kong et al. (2019) MS-
1028  HBM algorithm. However, improved versions of this algorithm have since been published (Kong

1029  etal., 2021; Yan et al., 2023), which account for parcel distributions, spatial contiguity, local
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1030  gradients, and homotopy (or the lack thereof in Schaefer parcels). Thus, future investigations
1031  using NSAR might consider implementing an updated individual parcellation algorithm.
1032  Moreover, it would be valuable for future studies to explore lateralization in developmental and
1033 clinical populations to address questions regarding the developmental timeline of network
1034  lateralization and the potential disruptions in network lateralization observed in specific
1035  neurodevelopmental conditions such as autism or schizophrenia.
1036 5 Conclusions
1037 The present study investigated hemispheric asymmetries in the human brain, focusing on
1038 17 functional networks. This was accomplished by implementing a surface area-based metric of
1039 lateralization, for which validity and reliability were examined. Following methodological
1040  development, we addressed two main questions: (1) which networks exhibit the greatest
1041  hemispheric asymmetries, and (2) how does lateralization in one network relate to the
1042  lateralization of other networks? We found that the Language, Dorsal Attention-A, and Default-
1043  C networks were significantly left-lateralized while the Visual-B, Salience/Ventral Attention-A,
1044  Control-B, Control-C, and Limbic-B networks were significantly right-lateralized. Additionally,
1045  using correlation matrices and EFA and CFA models to understand how lateralization is related
1046  between networks, we found general support for a dependent relationship between left- and
1047  right-lateralized networks. Within individuals, greater left-lateralization in a particular network
1048  (such as the Dorsal Attention-A or Default-C networks) was associated with greater right-
1049 lateralization in a particular network (such as the Limbic-B network). This pattern of
1050 lateralization appears to occur systematically across individuals, suggesting that lateralization
1051  follows a covariation paradigm. Further work is needed to understand how these findings may

1052  differ in developmental and clinical populations.
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