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Essentials 

• Platelet function is directed by the expression of specialised surface markers 

• Circulating platelet sub-populations are incompletely characterised 

• Multi-parameter spectral flow cytometry allows robust and comprehensive 

phenotyping of platelets 

• Coupling multi-parameter spectral flow cytometry with machine learning offers a 

powerful method to determine platelet sub-populations  
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Abstract 

Background: Platelets are crucial for thrombosis and haemostasis, with their function 

driven by the expression of specialised surface markers. The concept of distinct 

circulating sub-populations of platelets has emerged in recent years, but their exact 

nature remains debatable. We reasoned that a more comprehensive characterisation of 

surface marker changes at rest and upon activation would be valuable in determining this.  

Objective: To use a full spectrum flow cytometry-based panel, together with parameters 

of physical properties, to describe surface marker changes in healthy platelets at rest and 

on activation, and to observe how these responses differ according to platelet age. 

Methods: A 14-marker flow cytometry panel was developed and applied to vehicle- or 

agonist-stimulated platelet-rich plasma samples obtained from healthy volunteers, or to 

platelets sorted according to SYTO-13 staining intensity as an indicator of platelet age. 

Data were analysed using both user-led and independent approaches incorporating novel 

machine learning-based algorithms. 

Results: The assay detected changes in marker expression in healthy platelets, at rest 

and on agonist activation, that are consistent with the literature. Machine learning 

identified stimulated populations of platelets with high accuracy (>80%). Similarly, 

differentiation between young and old platelet populations achieved 76% accuracy, 

primarily weighted by FSC-A, CD41, SSC-A, GPVI, CD61, and CD42b expression 

patterns.  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2023. ; https://doi.org/10.1101/2023.12.08.570628doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.08.570628
http://creativecommons.org/licenses/by-nd/4.0/


  Page 4 

Conclusions: Our findings provide a novel assay to phenotype platelets coupled with a 

robust bioinformatics and machine learning workflow for deep analysis of the data. This 

could be valuable in characterising platelets in disease. (240 words) 

 

 

Key words: computational biology; flow cytometry; hemostasis; thrombosis, machine 

learning 
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Introduction 

Haemostasis is a carefully orchestrated process in which platelets are primary players. 

These metabolically-active cell fragments circulate for approximately 7-10 days in healthy 

individuals before being degraded by the spleen or liver[1–3]. Platelet function is mediated 

through the expression of specialised surface markers, with resting and activated 

platelets showing different expression profiles consistent with response heterogeneity in 

thrombus formation[4,5]. These variations in surface marker expression are thought to be 

conferred during production from megakaryocytes, activation history, and ageing in the 

circulation[6,7], and may describe dynamically discrete and specialised platelet sub-

populations[8,9]. 

As platelets age in the circulation, they lose messenger ribonucleic acids (mRNA) 

remaining from their progenitor megakaryocytes[10–12]. Platelets have minimal capacity 

to make new mRNA, and thus these residual mRNAs can be used as a surrogate 

measure for age[13–15]. Newly-formed or ‘young’ platelets (also termed reticulated 

platelets or the immature platelet fraction) have the highest levels of mRNA, while ‘old’ 

platelets have the lowest[14,16,17]. Young platelets are hyper-reactive and have an 

elevated thrombotic potential[18–20]. This is apparent in several pathological states, such 

as diabetes mellitus[21] and major trauma[18], in which there are relative increases in 

young platelets resulting from altered platelet turnover and lifespan associated with 

increased incidences of thromboembolic events[22–25] and decreased efficacy of anti-

platelet therapies[26–29].  
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Flow cytometry with the inclusion of fluorescently-tagged antibodies is frequently used to 

investigate platelet protein expression and function as it requires only small volumes of 

blood and a relatively low number of platelets, making it ideal for analysis of clinical 

samples. However, the number of parameters that can be measured concurrently using 

this method is limited by overlap of fluorescent emission spectra, resulting in antibody 

panels that typically determine, at most, three to four markers in any one sample [30,31]. 

Spectral flow cytometry is a next-generation technique that allows the simultaneous 

measurement and discrimination of multiple fluorophores by evaluation of full emission 

spectral signatures. Accounting for steric hindrance, this platform can therefore be used 

for analysis of 10-15 markers on platelets. Previous work from Blair et al.[8] has used 

mass cytometry to develop a panel to study platelet function, but spectral flow cytometry 

offers several considerable advantages including cost of reagents, availability of 

equipment, and simplicity of technique. With this in mind, we developed a 14-marker 

spectral flow cytometry panel based upon the panel of Blair et al. (noting in this report 

that Blair et al. have subsequently published reports utilizing spectral flow 

cytometry[30,32]). In our studies we subjected our data to a powerful computational 

analytical approach employing machine learning to explore the potential existence of 

platelet sub-populations in the human circulation with a particular focus on young and old 

platelets.  
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Materials and Methods 

Ethical statement: human studies 

All studies were conducted according to the principles of the Declaration of Helsinki and 

were approved by St. Thomas’ Hospital Research Ethics Committee (Ref.: 07/Q0702/24). 

Healthy volunteers were aged 18-40, screened prior to entering the study (non-smokers; 

had not taken non-steroidal anti-inflammatory drugs <10 days prior to donating blood; no 

health problems contraindicating study involvement) and gave written informed consent. 

 

Collection of blood and preparation of platelet-rich plasma 

Blood was drawn from volunteers by venepuncture into trisodium citrate vacutainers 

(3.2%; BD Biosciences), and platelet-rich plasma (PRP) was isolated as previously 

published[24]. 

 

Flow cytometric measurement of activation markers 

PRP was diluted 1:40 with 2mM Ca2+-buffered, filtered PBS, and added to a 96-well plate 

with wells containing vehicle (phosphate-buffered saline, PBS) or agonist: 0.3-30μM 

adenosine diphosphate (ADP; Labmedics); 0.3-30μM thrombin-receptor activating 

peptide 6 (TRAP-6; Cambridge Biosciences); 0.3-30μM U46619 (Enzo Life Sciences); 3-

100μM protease-activated receptor 4 agonist (PAR-4; Cambridge Biosciences); 0.03-

3μM collagen-related peptide (CRP-XL; University of Cambridge). In initial experiments, 

an antibody mix comprising anti-CD42b-BV421 (1:70; clone HIP1; BioLegend), PAC-1-

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2023. ; https://doi.org/10.1101/2023.12.08.570628doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.08.570628
http://creativecommons.org/licenses/by-nd/4.0/


  Page 8 

FITC (1:10; BD Biosciences), and anti-CD62P-APC (1:100; clone AK4; BioLegend) was 

added to each well. In later experiments, an antibody master mix (Supplementary table 

1) and staining buffer (Brilliant Stain Buffer, BD Biosciences) were used. The plate was 

then mixed (200rpm; 37°C) for 20 minutes in the dark (BioShake iQ, Quantifoil 

Instruments GmbH). Samples were fixed with 1% formalin and run on the Cytek Aurora 

5-laser flow cytometer (Cytek Biosciences). Platelets were gated on SSC-A/CD42b-A, 

and 10,000 CD42b+ events were collected. 

 

Flow cytometric sorting of young and old platelets 

Adapting our previously published approach[33], PRP was stained with SYTO-13 (750nM; 

Thermo-Fisher Scientific) prior to sorting. 10 million platelets per condition were sorted 

using a BD FACS Aria IIIu Fusion Cell Sorter (70μM nozzle, 70Ps, ≤10,000 events/second; 

BD Biosciences) with the top 20% SYTO-13 fluorescence being taken as ‘young’ and the 

bottom 30% SYTO-13 as ‘old’. Platelets were pelleted in the presence of prostacyclin 

(Epoprostanol; 2μmol/L; Tocris Biosciences) at x1000g for 10 minutes and re-suspended 

in calcium chloride (CaCl2; 2mmol/L; Sigma-Aldrich) -buffered MTH buffer. Panel markers 

were then measured as described above using the Cytek Aurora. 

 

Statistical, bioinformatics, and machine learning analysis 

Data were collected using SpectroFlo v2 (Cytek Biosciences) software, analysed using 

NoVo Express 1.3.0 (ACEA Biosciences Inc.), FlowJo v10 (TreeStar Inc.), and GraphPad 

Prism 9 (GraphPad Software Inc.) software. Data are expressed as median fluorescence 
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intensity (MFI) ±SEM, and analysed with a one-/two-way ANOVA or mixed-effects 

analysis followed by multiple comparison post-hoc tests, as appropriate. Correlations 

were assessed by non-linear regression. Statistical significance was assumed for p <0.05. 

Bioinformatic analysis was performed using R version 4.2 or later. Data were loaded into 

an RStudio (2022.02.2) environment using a loading function from the flowCore (v2.10.0 

or later) package[34,35]. Data loading checks for quality control purposes were performed 

by checking the correlations between MFIs of all parameters in the loaded data and 

FlowJo v10-analysed data. Data were further analysed using the Spectre package[36] 

and associated functions. Namely, the data was transformed using the logicle 

transformation and then dimensionality reduction was performed using principal 

component analysis (PCA) followed by t-distributed stochastic neighbour embedding 

(tSNE: an unsupervised, non-linear dimensionality reduction technique for visualising 

high-dimensional data in a two- or three-dimensional space). Individual platelets are 

represented as single points and grouped together based on their degree of similarity of 

expression patterns of all 14-16 parameters. tSNE also identifies heterogeneity in platelet 

responses, allowing the identification of sub-populations of platelets. FlowSOM, a self-

organising map clustering algorithm, was used for cluster generation, which automatically 

determines the optimal number of clusters for the dataset. 

Using the Caret v6.0-93 (Classification And REgression Training) R package[37], we 

developed a machine learning model to predict whether platelets were treated with 

vehicle or agonist. Platelet data were loaded and processed as already detailed, with 

10,000 platelets per healthy donor per treatment being loaded, unless otherwise stated. 

Balanced in number for each condition, from 16 donors, a Random Forest model was 
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given a training dataset made up of 80% of the total data to learn from. The remaining 

20% of the total data was used for preliminary validation. The remaining 5 donors were 

used as an “unseen” validation data set to test the model. A feature importance 

comparison was then run to determine which markers were most important in the 

classification. The model was trained using a 10-fold cross-validation using 3 repeats. 

This means that the training data is first randomly shuffled and split into 10 “folds”, then, 

in turn, each fold is excluded from the training data whilst the remaining 9 folds are used 

to train a model; the excluded fold is used to assess the accuracy of the trained model. 

This process was then repeated a total of 3 times; each time the data was shuffled 

randomly, producing new folds. The metric used to assess the quality of the model was 

the Receiver Operating Characteristic (ROC); overall accuracy was also reported. 

Using the Caret v6.0-93 (Classification And REgression Training) R package[37] we 

developed Random Forest machine learning models to predict whether platelets were 

young or old in the presence of vehicle or individual agonists. Platelet data were loaded 

and processed as already detailed, with 9,000 platelets per young and per old sample 

from each donor being loaded, outlier events/platelets were removed, and the 

measurements for PAC-1 excluded. In total there were 8 donors, each with a young and 

old sample. 6 of the 8 donors were used to create a training and preliminary validation 

dataset; 80% of the data from the 6 donors was used for training whilst 20% was used for 

preliminary validation to assess the accuracy of the model. Data from the remaining 2 

donors was kept aside to use as an “unseen” validation dataset. As previously, a feature 

importance comparison was then run to determine which markers were most important in 
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the classification. The model was trained using a 10-fold cross-validation using 3 repeats, 

and ROC used to assess the quality of the model, as already detailed. 

 

Results 

Assay capable of detecting significant changes in marker expression on activation 

in healthy platelets 

To select optimum concentrations of agonists for use in subsequent experiments, flow 

cytometry was used to assess changes in PAC-1 binding and CD62P expression in 

response to increasing concentrations of TRAP-6, PAR-4, CRP-XL, ADP, and U46619 

(Supplementary figure 1). The following concentrations were selected for their ability to 

induce a robust response: 10µM TRAP-6, 100µM PAR-4, 3µM CRP-XL, 30µM ADP, and 

10µM U46619. 

The chosen concentrations of agonists were then tested using the extended phenotyping 

panel of markers as well as forward scatter (FSC-A) and side scatter (SSC-A). All agonists 

tested caused significant increases in the expression of CD62P, PAC-1, CD63, CD107a, 

CD61, CD29, and CD9, and decreases in CD42b; none of the agonists caused any 

changes in CLEC-2 (Figure 1). TRAP-6 was the only agonist to decrease CD31 

(4336±233 vs. 3973±223, p=0.03), and CRP-XL was the only agonist to decrease GPVI 

(5735±512 vs. 4030±600, p=0.006). CD42a expression was decreased by all agonists 

except CRP-XL.  
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High-dimensionality analysis allows visualisation and in-depth interrogation of 

marker changes in response to activation 

Unsupervised dimensionality reduction and visualisation of the entire data sets using 

tSNE revealed the same shifts in receptor patterns. Namely, agonist stimulation caused 

visible increases in the expression of PAC-1, CD62P, CD63, CD107a, CD61, and CD9, 

decreases in CD42b, CD42a, GPVI, CLEC-2, and CD31; CD29 remained unchanged 

(Figure 2). The same visualisation approach also confirmed that the detected marker 

expression patterns were shared across donors and not driven by donor or batch effect 

(Supplementary figure 2). Auto-clustering analysis produced 5 clusters in vehicle-treated 

platelets and between 9 and 11 clusters in agonist-treated platelets. Each formed cluster 

was not dominated by individual donors but rather reflected the gradation in difference of 

expression (Supplementary figure 3). However, hierarchical dendrograms within the 

clustering indicated that interlinked relationships between the expression of each marker 

differed by agonist stimulation (Supplementary figure 3). 

 

Machine learning reveals most the important markers in distinguishing effects of 

agonists 

Machine learning (ML) was used to further analyse the data at the single platelet level in 

an unbiased fashion. Following training, the accuracy of differentiation of vehicle-treated 

from agonist-treated platelets was determined. Accuracy rates for unseen datasets were 

highest for TRAP-6, PAR-4, and CRP of 0.92, 0.91, and 0.88, respectively. Comparatively, 
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rates for ADP and U46619 were 0.80 and 0.77, respectively (Table 1), with the greatest 

fall between the training and unseen sets also occurring with these agonists.  

Rankings of distinguishing markers within each prediction model was examined with 

those with a weighting of greater than 20 considered important (Figure 3). For 

identification of TRAP-6-, PAR-4-, and CRP-XL-stimulated platelets, CD62P was 

considered the most important, followed by PAC-1, CD42b, and CD107a (Figure 3A). 

Identification of ADP-treated platelets was based predominantly on the expression 

patterns of PAC-1, CD62P, and CD42b (Figure 3B-D). This was similar to platelets 

activated with U46619, for which CD62P, CD42b, and PAC-1 were highest (Figure 3E). 

 

CD41/CD61, FSC-A, SSC-A, GPVI, CLEC-2, and CD61 are the primary markers used 

by machine learning to differentiate between young and old platelets 

Next, we undertook phenotypic analysis of young and old platelets, as determined by 

SYTO-13 RNA staining, following vehicle or agonist stimulation. We first analysed the 

data on a traditional by-population basis by looking at raw MFI values and changes in MFI 

(Supplementary figure 4), before applying machine learning. Predictive capability within 

each training set ranged from 0.86 to 0.90, however decreased in the unseen datasets to 

range from 0.74 to 0.78 (Table 2).  

Markers rated greater than an importance of 20 within vehicle-treated platelets identified 

FSC-A, CD41, SSC-A, GPVI, and CD61 as most important (Figure 4). FSC-A, SSC-A, 

and CD41 were the top three discriminators for all agonists tested, with CD61, CD42b, 
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and GPVI being also seen at above 20 in all. CLEC-2 was seen in TRAP-6, and CD61 in 

CRP-XL. 

Finally, we applied the markers rated greater than an importance of 20 from our separated 

young and old platelet populations to the mixed healthy platelet data presented previously. 

This analysis indicated an increased probability of young platelets being present in 

clusters with higher markers of activation, both in control conditions (i.e. vehicle-treated) 

and following exposure to platelet agonists (Figure 5).  

 

Discussion 

The levels of individual platelet surface receptors, basally and following activation, have 

been well-characterised. However, improvements in flow cytometry and mass cytometry 

technology now permit much larger antibody panels for simultaneous measurement of 

receptors on individual platelets. Through greater immunophenotyping of platelets in 

health and in disease it is increasingly possible to address the question of whether, and 

what, platelet sub-populations exist. Here we report a 16-parameter phenotypic approach 

utilising spectral flow cytometry with computational analysis, including machine learning, 

to phenotype platelets.  

Our selection of surface proteins was based on the phenotypic panel used by Blair et al.[8] 

for mass cytometry. First, we set out to measure the effect of different activation pathways 

of platelet activation on the expression of surface markers. A spectral cytometry-based 

approach, compared to mass cytometry in terms of antibody costs, machine running costs 

and processing time, permits an expansion in experimental conditions that can be 
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performed in each run. Across the range of agonists we tested there were significant 

increases in PAC-1, CD62P, CD63, CD107a, CD61, and CD29 expression, decreases in 

CD42b expression, and no changes in CLEC-2 expression. These patterns of surface 

protein changes are consistent with the current understanding of the field and echo those 

presented by Blair et al.[8] and Hindle et al.[38]. This initial analysis relies on median 

fluorescence scores derived from measurements of 10,000 platelets per subject, and 

comparative variation determined across all 21 donors. Dimensionality reduction (tSNE) 

and clustering provides for greater analytical weight for each individual platelet across all 

replicates. It also allows for the visualisation of the contribution of each individual subject 

to the interpreted expression patterns[39]. This approach validated that these observed 

patterns are shared across donors, confirming these effects were driven by functional 

responses and not by potential batch variation.  

Unlike previous reports[38], based on P-selectin expression and PAC-1-binding, k-means 

clustering silhouette analysis within our dataset did not support the presence of 4 (or more) 

distinct sub-populations. We did observe that across all agonists, on activation the cluster 

of platelets that had the largest drop in CD42a/b were not the same cluster of platelets 

that had the highest increase in classic activation markers (CD62P/PAC-1). This implies 

that platelets are potentially pre-destined to an activation-induced consequence, namely 

predominantly ‘shedding’ or ‘degranulation’ sub-populations. However, further 

characterisation of these potential sub-populations would be required to determine their 

composition pre-activation.  

We next turned to machine learning to construct unbiased algorithms to uncover potential 

classifications at an individual platelet level and to compare predictive capacities between 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2023. ; https://doi.org/10.1101/2023.12.08.570628doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.08.570628
http://creativecommons.org/licenses/by-nd/4.0/


  Page 16 

vehicle- and agonist-treated datasets. Consistent with platelet biology and our traditional 

user-led population analysis, CD62P expression and PAC-1 binding were consistently 

identified with agonist stimulation, as was loss of CD42b expression. Interestingly, the 

weighted importance of CD107a, lysosomal-associated membrane protein 1 (LAMP-1), 

was only high for PAR-1 activation using TRAP-6. Using the computed weightings, 

machine learning correctly identified over 89% of platelets within the training data set. 

When applied to an unseen data set, correct identification was predictably lower but 

maintained greater than 77% accuracy, rising to 91-92% for PAR-stimulated platelets. 

The difference in predictive capabilities is likely due to U46619 and ADP being 

comparatively weaker secondary agonists and therefore producing a less uniform pattern 

of response[40–43]. 

We next applied the same machine learning approach to differentiate between young and 

old platelets within mRNA stain-based, flow-sorted platelet samples which were 

subsequently vehicle- or agonist-stimulated. Strikingly, there is remarkable consistency 

in the highly-weighted parameters across the unstimulated and stimulated samples with 

FSC-A, CD41, SSC-A, GPVI, CD61, and CD42b featuring prominently.  

A significant change in CD41 with platelet age is consistent with previous work from our 

group looking at the proteomics and transcriptomics of young and old platelets[33], and 

from others looking at their thrombotic potential[19]. Similarly, an association between 

GPVI levels and young platelets have been recently reported by Veninga et al.[44] in 

human platelets and by us using a temporal labelling approach in mice[12]. 

Interestingly, FSC-A, which is considered an approximate indicator of size in flow 

cytometry, is also highly important in our machine learning algorithm when distinguishing 
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between young and old platelets. One point of contention concerning the field of platelet 

ageing is whether platelet size changes with age. Although there is some evidence linking 

mean platelet volume to thrombotic risk[45,46], there is also contradictory data suggesting 

that the two variables are independent of one another[12,47,48]. The hypothesis that 

young platelets are larger was originally proposed in the 1960s[49,50], however by the 

mid-1980s several studies were published reporting no correlation between platelet age 

and size[48]. Regardless, a caveat of using SYTO-13 dye as a surrogate marker of 

platelet age is that larger platelets may have more mRNA, and subsequently take up more 

dye and appear brighter, skewing sorting and subsequent analysis[51]. However, 

previous work from our group using a similar mRNA dye noted variations in 

megakaryocyte-derived mRNAs such that young and old platelets would have to vary 32-

64-fold in size for such a relationship to hold.[33] Similarly, it is also notable that SSC-A, 

generally taken as an indicator of internal complexity (i.e. granularity) of a cell, is a highly 

important discriminator of young versus old platelets. This finding is directly in line with 

our observations that platelets lose approximately 50% of their total protein content and 

mitochondria as they age in the circulation[33]. Similarly, in turn this parameter may also 

reflect the potential density of a platelet, a measure that studies have suggested is an 

accurate indicator of platelet age[52–54].  

For unseen samples, machine learning-based identification of young and old platelets 

was 76% accurate in vehicle control samples. This accuracy was maintained in platelets 

treated with PAR-4 or U46619 but decreased to 67% in platelets treated with ADP. 

Notably, identification of ADP-stimulated platelets was primarily determined by 4 

parameters, whilst for all other conditions 6-7 parameters were used, indicating that 
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perhaps the composition of this panel could be altered for improved accuracy. Conversely, 

predictive accuracy was higher in samples treated with TRAP-6 or CRP-XL, at 83% and 

84%, respectively. In addition, CD62P was more highly-weighted as an additional 

discriminatory parameter in these samples, which reflects the well-described greater 

thrombotic potential of young platelets and their higher CD62P degranulation[12,55]. 

Finally, we applied our machine learning-based identification of young and old platelets 

back to our healthy platelet populations. This analysis demonstrated that young platelets, 

as defined by machine learning in each condition, were consistently associated with 

platelet clusters carrying higher levels of activation markers, in accordance with our earlier 

reports[12,33]. This suggests that machine learning algorithms employing FSC-A and 

SSC-A, in addition to surface markers, can be used to further discriminate platelet sub-

populations in healthy individuals based on circulatory age.  

In conclusion, we present a 16-parameter, flow cytometry-based assay coupled to 

powerful bioinformatic approaches to undertake unparalleled, deep phenotyping of 

platelets and their functionality. The incorporation of machine learning into this workflow 

provides impartial analysis and predictive capability at a by-platelet and by-individual level. 

We posit that this approach combining surface and physical markers will be highly 

valuable in phenotyping platelet sub-populations and studying platelet populations in 

disease or pathological states. 

  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2023. ; https://doi.org/10.1101/2023.12.08.570628doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.08.570628
http://creativecommons.org/licenses/by-nd/4.0/


  Page 19 

Funding information 

Funding for this project was provided by the British Heart Foundation (RG/19/8/34500) 

and the Faculty of Medicine and Dentistry, Queen Mary University of London. 

Acknowledgements 

The authors acknowledge the support of the Flow Cytometry Core Facilities at the Blizard 

Institute. We also thank Prof. Andrew Frelinger and Dr. Benjamin Spurgeon for their 

valuable advice. 

Authorship contributions 

AV and PCA designed the research, performed the assays, collected data, analysed and 

interpreted data, performed statistical analysis, and wrote the manuscript. JB and HEA 

designed the research, analysed and interpreted data, performed statistical analysis, and 

revised the manuscript. JB performed bioinformatic analyses. CAM and TDW designed 

the research, analysed and interpreted data, and revised the manuscript. 

Disclosure of conflicts of interest 

The authors declare no conflicts of interest.  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2023. ; https://doi.org/10.1101/2023.12.08.570628doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.08.570628
http://creativecommons.org/licenses/by-nd/4.0/


  Page 20 

1  Leeksma CHW, Cohen JA. Determination of the Life of Human Blood Platelets using 
Labelled Diisopropylfluorophosphonate. Nature; 1955; 175: 552–3. 

3  Lebois M, Josefsson EC. Regulation of platelet lifespan by apoptosis. Platelets; 
2016; 27: 497–504. 

3  Quach ME, Chen W, Li R. Mechanisms of platelet clearance and translation to 
improve platelet storage. Blood 2018; 131: 1512–21.  

4  Rivera J, Lozano ML, Navarro-Núñez L, Vicente V. Platelet receptors and signaling 
in the dynamics of thrombus formation. Haematologica 2009; 94: 700–11.  

5  Gibbins JM. Platelet adhesion signalling and the regulation of thrombus formation. 
Journal of Cell Science 2004; 117: 3415–25.  

6  Baaten CCFMJ, ten Cate H, van der Meijden PEJ, Heemskerk JWM. Platelet 
populations and priming in hematological diseases. Blood Reviews 2017; 31: 389–
99.  

7  den Dekker E, van Abel M, van der Vuurst H, van Eys GJJM, Akkerman J-WN, 
Heemskerk JWM. Cell-to-cell variability in the differentiation program of human 
megakaryocytes. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 
2003; 1643: 85–94.  

8  Blair TA, Michelson AD, Frelinger AL. Mass Cytometry Reveals Distinct Platelet 
Subtypes in Healthy Subjects and Novel Alterations in Surface Glycoproteins in 
Glanzmann Thrombasthenia. Sci Rep 2018; 8: 10300. 

9  Södergren AL, Ramström S. Platelet subpopulations remain despite strong dual 
agonist stimulation and can be characterised using a novel six-colour flow cytometry 
protocol. Sci Rep 2018; 8: 1441. 

10  Machlus KR, Italiano JE Jr. The incredible journey: From megakaryocyte 
development to platelet formation. Journal of Cell Biology 2013; 201: 785–96.  

11  Cecchetti L, Tolley ND, Michetti N, Bury L, Weyrich AS, Gresele P. Megakaryocytes 
differentially sort mRNAs for matrix metalloproteinases and their inhibitors into 
platelets: a mechanism for regulating synthetic events. Blood 2011; 118: 1903–11.  

12  Armstrong PC, Allan HE, Kirkby NS, Gutmann C, Joshi A, Crescente M, Mitchell JA, 
Mayr M, Warner TD. Temporal in vivo platelet labeling in mice reveals age-
dependent receptor expression and conservation of specific mRNAs. Blood 
Advances 2022; 6: 6028–38.  

13  Kienast J, Schmitz G. Flow cytometric analysis of thiazole orange uptake by 
platelets: a diagnostic aid in the evaluation of thrombocytopenic disorders. Blood 
1990; 75: 116–21.  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2023. ; https://doi.org/10.1101/2023.12.08.570628doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.08.570628
http://creativecommons.org/licenses/by-nd/4.0/


  Page 21 

14  Hoffmann JJML. Reticulated platelets: analytical aspects and clinical utility. Clinical 
Chemistry and Laboratory Medicine (CCLM) 2014; 52: 1107–17. 

15  Imperiali CE, Arbiol-Roca A, Sanchez-Navarro L, Dastis-Arias M, Lopez-Delgado 
JC, Cortes-Bosch A, Sancho-Cerro A, Dot-Bach D. Reference interval for immature 
platelet fraction on Sysmex XN haematology analyser in adult population. Biochem 
Med 2018; 28: 0–0. 

16  Angénieux C, Maître B, Eckly A, Lanza F, Gachet C, Salle H de la. Time-Dependent 
Decay of mRNA and Ribosomal RNA during Platelet Aging and Its Correlation with 
Translation Activity. PLOS ONE 2016; 11: e0148064. 

17  Allan HE, Vadgama A, Armstrong PC, Warner TD. What can we learn from 
senescent platelets, their transcriptomes and proteomes? Platelets 34: 2200838.  

18  Thompson CB. Selective consumption of large platelets during massive bleeding. Br 
Med J 1985; 291: 95–6. 

19  McBane RD, Gonzalez C, Hodge DO, Wysokinski WE. Propensity for young 
reticulated platelet recruitment into arterial thrombi. J Thromb Thrombolysis 2014; 
37: 148–54.  

20  Allan HE, Vadgama A, Armstrong PC, Warner TD. Platelet ageing: A review. 
Thrombosis Research 2023; 231: 214–22.  

21  Kakouros N, Rade JJ, Kourliouros A, Resar JR. Platelet Function in Patients with 
Diabetes Mellitus: From a Theoretical to a Practical Perspective. International 
Journal of Endocrinology 2011; 2011: e742719. 

22  Cesari F, Marcucci R, Gori AM, Caporale R, Fanelli A, Casola G, Balzi D, Barchielli 
A, Valente S, Giglioli C, Gensini GF, Abbate R. Reticulated platelets predict 
cardiovascular death in acute coronary syndrome patients. Insights from the AMI-
Florence 2 Study. Thromb Haemost 2013; 109: 846–53.  

23  Ibrahim H, Schutt RC, Hannawi B, DeLao T, Barker CM, Kleiman NS. Association of 
Immature Platelets With Adverse Cardiovascular Outcomes. Journal of the 
American College of Cardiology 2014; 64: 2122–9.  

24  Schofield H, Rossetto A, Armstrong P, Allan H, Warner T, Brohi K, Vulliamy P. 
Immature platelet dynamics are associated with clinical outcomes after major 
trauma. Journal of Thrombosis and Haemostasis 2023; in press. 

25  Bongiovanni D, Schreiner N, Gosetti R, Mayer K, Angiolillo DJ, Sibbing D, 
Holdenrieder S, Anetsberger A, von Scheidt M, Schunkert H, Laugwitz K-L, Schüpke 
S, Kastrati A, Fegers-Wustrow I, Bernlochner I. Immature Platelet Fraction Predicts 
Adverse Events in Patients With Acute Coronary Syndrome: the ISAR-REACT 5 
Reticulated Platelet Substudy. Arterioscler Thromb Vasc Biol 2023; 43: e83–93.  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2023. ; https://doi.org/10.1101/2023.12.08.570628doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.08.570628
http://creativecommons.org/licenses/by-nd/4.0/


  Page 22 

26  Armstrong PC, Hoefer T, Knowles RB, Tucker AT, Hayman MA, Ferreira PM, Chan 
MV, Warner TD. Newly Formed Reticulated Platelets Undermine 
Pharmacokinetically Short-Lived Antiplatelet Therapies. Arteriosclerosis, 
Thrombosis, and Vascular Biology 2017; 37: 949–56. 

27  Guthikonda S, Alviar CL, Vaduganathan M, Arikan M, Tellez A, DeLao T, Granada 
JF, Dong J-F, Kleiman NS, Lev EI. Role of Reticulated Platelets and Platelet Size 
Heterogeneity on Platelet Activity After Dual Antiplatelet Therapy With Aspirin and 
Clopidogrel in Patients With Stable Coronary Artery Disease. Journal of the 
American College of Cardiology 2008; 52: 743–9.  

28  Bernlochner I, Goedel A, Plischke C, Schüpke S, Haller B, Schulz C, Mayer K, 
Morath T, Braun S, Schunkert H, Siess W, Kastrati A, Laugwitz K-L. Impact of 
immature platelets on platelet response to ticagrelor and prasugrel in patients with 
acute coronary syndrome. Eur Heart J 2015; 36: 3202–10.  

29  Perl L, Lerman-Shivek H, Rechavia E, Vaduganathan M, Leshem-Lev D, Zemer-
Wassercug N, Dadush O, Codner P, Bental T, Battler A, Kornowski R, Lev EI. 
Response to prasugrel and levels of circulating reticulated platelets in patients with 
ST-segment elevation myocardial infarction. J Am Coll Cardiol 2014; 63: 513–7.  

30  Frelinger AL, Spurgeon BEJ. Clinical Cytometry for Platelets and Platelet Disorders. 
Clinics in Laboratory Medicine 2023; 43: 445–54.  

31  Njemini R, Onyema OO, Renmans W, Bautmans I, De Waele M, Mets T. 
Shortcomings in the Application of Multicolour Flow Cytometry in Lymphocyte 
Subsets Enumeration. Scandinavian Journal of Immunology 2014; 79: 75–89.  

32  Spurgeon BEJ, Frelinger III AL. Platelet Phenotyping by Full Spectrum Flow 
Cytometry. Current Protocols 2023; 3: e687.  

33  Allan HE, Hayman MA, Marcone S, Chan MV, Edin ML, Maffucci T, Joshi A, Menke 
L, Crescente M, Mayr M, Zeldin DC, Armstrong PC, Warner TD. Proteome and 
functional decline as platelets age in the circulation. Journal of Thrombosis and 
Haemostasis 2021; 19: 3095–112.  

34  Dai Y, Xu A, Li J, Wu L, Yu S, Chen J, Zhao W, Sun XJ, Huang J. CytoTree: an 
R/Bioconductor package for analysis and visualization of flow and mass cytometry 
data. BMC Bioinformatics 2021; 22: 1–20. 

35  Ellis B, Haal P, Hahne F, Meur NL, Gopalakrishnan N, Spidlen J, Jiang M, Finak G, 
Granjeaud S. flowCore: flowCore: Basic structures for flow cytometry data. 
Bioconductor version: Release (3.18); 2023.  

36  Ashhurst TM, Marsh-Wakefield F, Putri GH, Spiteri AG, Shinko D, Read MN, Smith 
AL, King NJC. Integration, exploration, and analysis of high-dimensional single-cell 
cytometry data using Spectre. Cytometry Part A 2022; 101: 237–53.  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2023. ; https://doi.org/10.1101/2023.12.08.570628doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.08.570628
http://creativecommons.org/licenses/by-nd/4.0/


  Page 23 

37  Kuhn M. Building Predictive Models in R Using the caret Package. Journal of 
Statistical Software 2008; 28: 1–26.  

38  Hindle MS, Spurgeon BEJ, Cheah LT, Webb BA, Naseem KM. Multidimensional 
flow cytometry reveals novel platelet subpopulations in response to prostacyclin. 
Journal of Thrombosis and Haemostasis 2021; 19: 1800–12.  

39  Spurgeon BEJ, Michelson AD, Frelinger AL. Platelet mass cytometry: Optimization 
of sample, reagent, and analysis parameters. Cytometry A 2021; 99: 170–9.  

40  Bednar B, Condra C, Gould RJ, Connolly TM. Platelet aggregation monitored in a 96 
well microplate reader is useful for evaluation of platelet agonists and antagonists. 
Thrombosis Research 1995; 77: 453–63.  

41  Nakahata N. Thromboxane A2: Physiology/pathophysiology, cellular signal 
transduction and pharmacology. Pharmacology & Therapeutics 2008; 118: 18–35.  

42  Armstrong PCJ, Truss NJ, Ali FY, Dhanji AA, Vojnovic I, Zain ZNM, Bishop-bailey D, 
Paul-clark MJ, Tucker AT, Mitchell JA, Warner TD. Aspirin and the in vitro linear 
relationship between thromboxane A2-mediated platelet aggregation and platelet 
production of thromboxane A2. Journal of Thrombosis and Haemostasis 2008; 6: 
1933–43.  

43  Li Z, Zhang G, Le Breton GC, Gao X, Malik AB, Du X. Two Waves of Platelet 
Secretion Induced by Thromboxane A2 Receptor and a Critical Role for 
Phosphoinositide 3-Kinases*. Journal of Biological Chemistry 2003; 278: 30725–31.  

44  Veninga A, Handtke S, Aurich K, Tullemans BME, Brouns SLN, Schwarz SL, 
Heubel-Moenen FCJI, Greinacher A, Heemskerk JWM, van der Meijden PEJ, Thiele 
T. GPVI expression is linked to platelet size, age, and reactivity. Blood Advances 
2022; 6: 4162–73.  

45  Brækkan SK, Mathiesen EB, NjøLstad I, Wilsgaard T, StøRmer J, Hansen JB. Mean 
platelet volume is a risk factor for venous thromboembolism: the Tromsø Study, 
Tromsø, Norway. Journal of thrombosis and haemostasis 2010; 8: 157–62. 

46  Thattaliyath B, Cykowski M, Jagadeeswaran P. Young thrombocytes initiate the 
formation of arterial thrombi in zebrafish. Blood 2005; 106: 118–24.  

47  Thompson CB, Love DG, Quinn PG, Valeri CR. Platelet size does not correlate with 
platelet age. Blood 1983; 62: 487–94. 

48  Thompson CB, Jakubowski JA, Quinn PG, Deykin D, Valeri CR. Platelet size and 
age determine platelet function independently. Blood 1984; 63: 1372–5. 

49  Karpatkin S. Heterogeneity of human platelets. I. Metabolic and kinetic evidence 
suggestive of young and old platelets. The Journal of clinical investigation 1969; 48: 
1073–82. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2023. ; https://doi.org/10.1101/2023.12.08.570628doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.08.570628
http://creativecommons.org/licenses/by-nd/4.0/


  Page 24 

50  Karpatkin S. Heterogeneity of human platelets. II. Functional evidence suggestive of 
young and old platelets. The Journal of clinical investigation 1969; 48: 1083–7.  

51  Joutsi-Korhonen L, Sainio S, Riikonen S, Javela K, Teramo K, Kekomäki R. 
Detection of reticulated platelets: estimating the degree of fluorescence of platelets 
stained with thiazole orange. European journal of haematology 2000; 65: 66–71. 

52  Mezzano D, Hwang K, Catalano P, Aster RH. Evidence that platelet buoyant 
density, but not size, correlates with platelet age in man. Am J Hematol 1981; 11: 
61–76.  

53  van Oost BA, Timmermans AP, Sixma JJ. Evidence that platelet density depends on 
the alpha-granule content in platelets. Blood 1984; 63: 482–5.  

54  Corash L, Shafer B, Perlow M. Heterogeneity of human whole blood platelet 
subpopulations. II. Use of a subhuman primate model to analyze the relationship 
between density and platelet age. Blood 1978; 52: 726–34.  

55  Peng J, Friese P, Heilmann E, George JN, Burstein SA, Dale GL. Aged Platelets 
Have an Impaired Response to Thrombin as Quantitated by P-Selectin Expression. 
Blood 1994; 83: 161–6.  

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2023. ; https://doi.org/10.1101/2023.12.08.570628doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.08.570628
http://creativecommons.org/licenses/by-nd/4.0/


  Page 25 

Tables 

Table 1: Predictive efficacy of machine learning of stimulated platelets. 

 ADP TRAP-6 U46619 PAR-4 CRP-XL 
Training set 

accuracy 0.92 0.94 0.89 0.95 0.95 

Unseen set 
accuracy 0.80 0.90 0.78 0.87 0.89 

 

 

Table 2: Predictive efficacy of machine learning of young and older platelets. 

 Vehicle TRAP-6 PAR-4 CRP-XL ADP U46619 
Training set 

accuracy 0.86 0.87 0.86 0.86 0.90 0.86 

Unseen set 
accuracy 0.76 0.78 0.77 0.76 0.76 0.74 
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Figure legends 
Figure 1: Changes in individual surface marker expression in resting and activated 
platelets expressed as (A) raw MFI ±SEM, (B) a heatmap based on MFI values, and (C) 
a heatmap based on MFI log fold-changes. Data were analysed using a one-way ANOVA 
with a Dunnett test to correct for multiple comparisons (n=20-21). 

Figure 2: High dimensionality analysis of platelet sub-populations at rest and in agonist-
activated platelets. Colour intensity correlates with marker expression (low=blue, 
high=red). Data were analysed using tSNE (n=20-21). 

Figure 3: Markers used by machine learning algorithm to distinguish between vehicle- 
and (A) ADP-treated, (B) TRAP-6-treated, (C) U46619-treated, (D) PAR-4-treated, and (E) 
CRP-XL-treated platelets, listed in order of importance (most important=red, least 
important=white; n=20-21). 

Figure 4: Markers used by machine learning algorithm to differentiate between (A) 
vehicle-, (B) ADP-, (C) TRAP-6-, (D) U46619-, (E) PAR-4-, and (F) CRP-XL-treated 
“young” and “old” platelets, listed in order of importance (most important=red, least 
important=white; n=8). 

Figure 5: Application of distinguishing markers for young and old platelets weighted by 
machine learning at above importance 20 to platelet sub-populations using a clustering 
model (n=20-21 for all) in (A) resting/vehicle-treated, (B) ADP-treated, (C) TRAP-6-
treated, (D) U46619-treated, (E) PAR-4-treated, and (F) CRP-XL-treated platelets. Data 
presented as clustered tSNE population division (left panel), violin plot of density of each 
cluster (middle panel), and heatmap breakdown of relative marker expression in each 
cluster (low=white, high=purple; right panel).  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 3 cont. 
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Figure 4 
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Figure 4 cont. 
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Figure 5 
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Figure 5 cont. 
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Supplemental Data  

Supplemental figure 1: Concentration-response curves of platelet activation in response 
to (A) TRAP-6 (0.1-10 µM), (B) PAR-4 (3-100 µM), (C) CRP-XL (0.03-3 µg/ml), (D) ADP 
(0.3-30 µM), and (E) U46619 (0.1-10 µM) measured by PAC-1 binding and CD62P 
exposure. Agonist concentrations chosen for subsequent assays highlighted within red 
boxes. Data are shown as MFI ±SEM or % positive ±SEM (n=3-4) and analysed using 
non-linear regression. 

Supplemental figure 2: Composite tSNE of all donor platelets (n=20-21) for (A) vehicle, 
(B) ADP, (C) TRAP-6, (D) U46619, (E) PAR-4, and (F) CRP-XL. 

Supplemental figure 3: High dimensionality analysis of platelet sub-populations using a 
clustering model in (A) resting/vehicle-treated, (B) ADP-treated, (C) TRAP-6-treated, (D) 
U46619-treated, (E) PAR-4-treated, and (F) CRP-XL-treated platelets. Data presented as 
clustered tSNE population division (left panel), corresponding donors making up each 
cluster (middle panel), and heatmap breakdown of fold-change in marker expression in 
each cluster (low=white, high=purple; right; right panel; n=20-21). 

Supplemental figure 4: Changes in surface marker expression in “young” and “old” 
resting and activated platelets expressed as raw MFI (left) and change in MFI (right). Data 
are shown as MFI ±SEM (n=8) and analysed using 2-way ANOVA or mixed-effects 
analysis with Tukey’s multiple comparisons test. 
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Supplemental table 1: Details of panel antibodies. 

 

Marker Alias 
 
Role Fluorophore Clone Dilution 

factor 
Laser 
(Channel) 

Supplier 
(Catalogue 
number) 

CD107a LAMP-1 Lysosome 
degranulation PE H4A3 1:200 Yellow/Green 

(YG1) 
BioLegend 
(328608) 

CD29 GPIIa  Adhesion 
integrin BUV737 MAR4 1:200 Ultraviolet 

(UV14) 

BD 
Biosciences 
(748618) 

CD31 PECAM-1  
α-granule protein; 
platelet-endothelial 

cell interaction 
BV785 WM59 1:200 Violet (V15) BioLegend 

(303148) 

CD36 GPIV  
α-granule protein; 

Scavenger 
receptor 

BV605 CB38/NL
07 1:70 Violet (V10) 

BD 
Biosciences 
(563518) 

CD41 GPIIb,  
 

Fibrinogen binding 
integrin 

APC-Cy7 HIP8 1:100 Red (R7) BioLegend 
(303716) 

CD61 GPIIIa,  BUV395 RUU-
PL7F12 1:70 Ultraviolet 

(UV2) 

BD 
Biosciences 
(745717) 

CD42a GPIX  

 
 

Adhesion integrin; 
binds vWF 

eFluor 450 GR-P 1:30 Violet (V3) 

Thermo 
Fisher 
Scientific 
(48-0428-42) 

CD42b GPIbα  BV650 HIP1 1:30 Violet (V11) BioLegend 
(303926) 

CD62P P-selectin  
α-granule protein; 

platelet-
endothelial/ 

leukocyte binding 
BB700 AK-4 1:100 Blue (B9) 

BD 
Biosciences 
(566565) 

CD63 LAMP-3 

 
δ-granules, 

lysosomes marker PE-Cy7 H5C6 1:70 Yellow/Green 
(YG9) 

Thermo 
Fisher 
Scientific 
(25-0639-42) 

CD9 TSPAN29 
Tetraspanin; 

modulate collagen 
response/ 
GPIIb/IIIa 

BV510 M-L13 1:70 Violet (V7) 
BD 
Biosciences 
(563640) 

CLEC-2 CLEC-1b  Thromboinflammat
ory receptor BV711 219133 1:70 Violet (V13) 

BD 
Biosciences 
(748142) 

GPVI   
Collagen receptor AF647 HY101 1:200 Red (R2) 

BD 
Biosciences 
(564701) 

PAC-1  
 

Binds activated 
confirmation of 

receptor GPIIb/IIIa 
integrin 

FITC PAC-1 1:10 Blue (B2) 
BD 
Biosciences 
(340507) 
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Supplemental figure 1 
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Supplemental figure 2 
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Supplemental figure 3 

  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2023. ; https://doi.org/10.1101/2023.12.08.570628doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.08.570628
http://creativecommons.org/licenses/by-nd/4.0/


  Page 40 

Supplemental figure 3 cont. 
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Supplemental figure 4 
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Supplemental figure 4 cont. 
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