

Syn- μ CT for butterfly eyes

Synchrotron-source micro-x-ray computed tomography for examining butterfly eyes

Dawn Paukner^{1,2,4}, Gregg A. Wildenberg^{1,2}, Griffin S. Badalamente^{1,3}, Peter B. Littlewood⁴,

Marcus R. Kronforst⁶, Stephanie E. Palmer^{4,5}, Narayanan Kasthuri^{1,2}

1. University of Chicago, Department of Neurobiology; 2. Argonne National Laboratory; 3.

University of Cambridge, Department of Zoology; 4. University of Chicago, Department of

Physics; 5. University of Chicago, Department of Organismal Biology and Anatomy; 6.

University of Chicago, Department of Ecology and Evolution

University of Chicago: 5801 S Ellis Ave, Chicago, IL 60637

Argonne National Laboratory: 9700 S Cass Ave, Lemont, IL 60439

University of Cambridge: The Old Schools, Trinity Ln, Cambridge CB2 1TN, UK

Corresponding Author

Dawn Paukner

dpaukner@uchicago.edu

947-51 E. 58th St., AB 401

Chicago, IL 60637

1 **Abstract**

2

3 1. Comparative anatomy is an important tool for investigating evolutionary
4 relationships amongst species, but the lack of scalable imaging tools and
5 stains for rapidly mapping the microscale anatomies of related species
6 poses a major impediment to using comparative anatomy approaches for
7 identifying evolutionary adaptations.

8

9 2. We describe a method using synchrotron source micro-x-ray computed
10 tomography (syn- μ XCT) combined with machine learning algorithms for
11 high-throughput imaging of Lepidoptera (*i.e.*, butterfly and moth) eyes. Our
12 pipeline allows for imaging at rates of ~ 15 min/mm³ at 600 nm³ resolution.
13 Image contrast is generated using standard electron microscopy labeling
14 approaches (e.g., osmium tetroxide) that unbiasedly labels all cellular
15 membranes in a species independent manner thus removing any barrier to
16 imaging any species of interest.

17

18

19

20

21

22

3. To demonstrate the power of the method, we analyzed the 3D
morphologies of butterfly crystalline cones, a part of the visual system
associated with acuity and sensitivity and found significant variation within
six butterfly individuals. Despite this variation, a classic measure of
optimization, the ratio of interommatidial angle to resolving power of
ommatidia, largely agrees with early work on eye geometry across
species.

23 4. We show that this method can successfully be used to determine
24 compound eye organization and crystalline cone morphology. Our novel
25 pipeline provides for fast, scalable visualization and analysis of eye
26 anatomies that can be applied to any arthropod species, enabling new
27 questions about evolutionary adaptations of compound eyes and beyond.

28

29 **Introduction**

30 There is a rich history of using insects to understand behavioral and anatomical
31 diversity (Chown & Terblanche, 2006; Price et al., 2011). Insects represent the
32 largest group in the animal kingdom and their absolute numbers are also
33 matched by their diversity in phenotypes, behavior, and anatomy (Stork, 2017).
34 Classically, morphological variation that could be observed by the naked eye
35 provided the necessary evidence for fundamental theories in evolution including
36 natural selection, speciation, mimicry, and mate preference (Darwin, 1859;
37 Poulton, 1909; Butler, 1963), to name a few. More recently, the revolution in
38 genetics and genomics has allowed for identifying genetic variation that drives
39 variation in these observable traits (Dobzhansky, 1982; Kronforst et al., 2006;
40 Baxter et al. 2010). However, microscopic studies have lagged behind, largely
41 due to a lack of experimental tools to rapidly visualize and analyze fine structural
42 detail over large volumes and algorithmic tools to analyze the resulting large
43 image data sets with minimal human effort. While there has been a recent push
44 to test different techniques for studying morphology, most methods do not

45 provide a satisfactory balance between higher resolution and lower
46 computational power (Friedrich et al., 2014; Wipfler et al., 2016).

47

48 Electron microscopy (EM) can provide the requisite resolution but is typically
49 limited to scanned EM, (SEM) which visualizes external morphologies (Schwarz
50 et al., 2011; Hao et al., 2023). A full 3D EM reconstruction using serial block face
51 SEM, focused ion beam SEM, or transmission EM remains time- and
52 computation- intensive. We, and others, have recently shown that the sample
53 preparation for EM using osmium tetroxide, which is species independent,
54 provides excellent contrast in X-ray tomography microscopes (Johnson et al,
55 2006; Ribi et al, 2008; Dyer et al, 2017; Van den Boogert et al, 2018). Using X-
56 ray tomography, large volumes of brains (even entire mouse brains) can be
57 imaged in 3D at submicron resolution quickly (imaging rates of 0.067 mm³/min)
58 (Foxley et al, 2021). Here we demonstrate a pipeline for synchrotron source X-
59 ray computed tomography (syn- μ CT) performed at the Advanced Photon Source
60 (APS) at Argonne National Laboratory (ANL) for high throughput 3D imaging of
61 the brains and intact eyes of a variety of butterflies.

62

63 1. We achieve 600nm³ voxel resolution and imaging rates of 0.067 mm³/min,
64 e.g., ~one insect brain every ~45 minutes.

65 2. We developed a novel embedding method that allows for automatically
66 imaging multiple species eyes in a single imaging run to enable high-
67 throughput imaging.

68 3. We developed a machine vision pipeline to extract the relevant
69 morphological features from X-ray datasets and used these
70 reconstructions to better understand microscopic variability in the
71 morphology of cells in the light path across species.

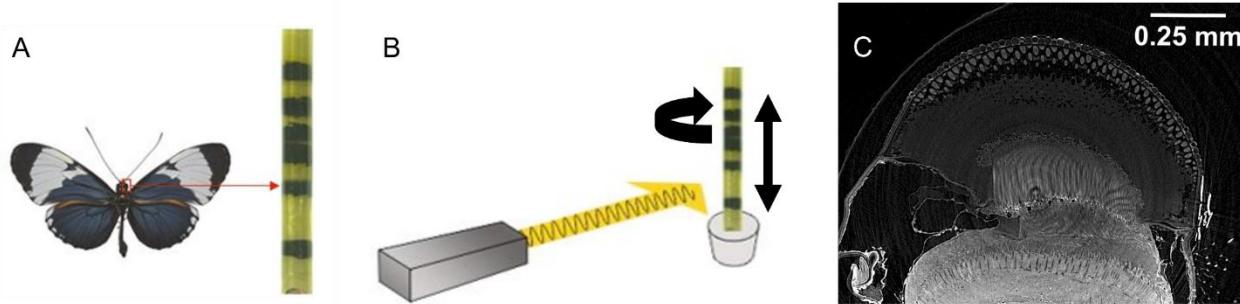
72 4. Specifically, we analyze these new data sets in the context of pioneering
73 work in Hymenoptera species (e.g., bees and parasitic wasps) that
74 determined an optimal ratio of interommatidial angle to resolving power
75 (Barlow, 1952). This ratio of interommatidial angle to resolving power is
76 hereafter referred to as the “Barlow ratio” and is dimensionless as both
77 angle and resolving power are in degrees. We extend this work by showing
78 the Barlow ratio of the ommatidia in butterfly species falls near the
79 theoretical optimum. By leveraging the full 3D datasets, we, however, find
80 significant variation *across an individual eye*.

81 5. Finally, we use an amalgamation of individual crystalline cone
82 measurements across individual eyes to generate a representative 3D
83 crystalline cone for each sample within and across species. Generating the
84 morphology of these cones allows for the mapping of light as it travels
85 through this structure to the rhabdom. We observe cone shapes that vary
86 both across the eye of an individual and between individuals (Fig. 5). This

87 technique allows for the dissection of these effects at fine detail across the
88 eye and could support studies of cone optics and variation in and between
89 species.

90

91 **Materials and Methods**


92 Samples from seven animals across six species of butterflies (*Heliconius cydno*,
93 *Strymon melinus*, *Calycopis cecrops*, *Polygonia interrogationis*, *Polites peckius*,
94 and two *Pieris rapae*) were prepared for electron microscopy (Hua et al., 2015)
95 and assembled in plastic pillars vertically to stabilize the samples for imaging
96 (Fig. 1A), and large sections of eyes were imaged at the Advanced Photon
97 Source (APS) at Argonne National Laboratory using syn- μ CT) using an
98 automated z-axis tiling approach for unassisted imaging of multiple insect eyes
99 (Fig. 1B). The resulting X-ray data sets, with a total volume of 14.3 mm³ and an
100 isotropic resolution of ~0.6 microns resolved fine structure in the eye across all
101 species, most notably the crystalline cones (Fig. 1C, Fig. SI1). We next
102 developed our analysis pipeline by focusing on the crystalline cones due to its
103 notable variability across species upon visual inspection.

104

105 We used an analysis pipeline to extract the relevant features from the X-ray
106 datasets. For example, Fig 2A shows the segmentation output of ilastik (Berg et
107 al., 2019), a free open-source software for image classification and
108 segmentation. The output from ilastik gave us clusters of points corresponding to

109 each crystalline cone, which we analyzed in Matlab (The Mathworks, Natick, MA)
110 and Python (Van Rossum & Drake, 2009) (Fig. 2B, Fig. SI1).

111

112
113 Figure 1. X-ray analysis pipeline showing A) diagram of insect eyes stacked in a
114 vertical column, B) a diagram of the sample rotating and moving vertically in the
115 X-ray beam, and C) a raw X-ray image. Butterfly in A) is from (Gallice, 2012).

116

117 Sample preparation

118 Insect samples were either collected in the wild in Chicago, IL (*Pieris rapae*,
119 *Polites peckius*, and *Polygonia interrogationis*), collected from our breeding
120 colonies at The University of Chicago (*Heliconius cydno*), or provided by Erica
121 Westerman (University of Arkansas) (*Strymon melinus* and *Calycopis cecrops*).

122 For dissections, insects were anesthetized by placing them at 4°C for ~10
123 minutes. Insects were then submerged in ice cold Phosphate Buffered Saline
124 (PBS) and dissected in PBS under a stereomicroscope to remove the cuticle
125 outer layer and expose the brain. Brains with eyes intact were then cut from the
126 body and submerged in fixative solution consisting of 0.1M Sodium Cacodylate

127 buffer, pH 7.4, 2% paraformaldehyde, and 2.5% glutaraldehyde. Brains were
128 incubated in fixative for ~24hrs, gently rocking at 4°C. The next day, brains with
129 eyes were prepared using electron microscopy protocols as previously described
130 (Hua et al, 2015). Briefly, brains were washed extensively in cacodylate buffer at
131 room temperature and stained sequentially with 2% osmium tetroxide (EMS) in
132 cacodylate buffer, 2.5% potassium ferrocyanide (Sigma-Aldrich),
133 thiocarbohydrazide, unbuffered 2% osmium tetroxide, 1% uranyl acetate, and
134 0.66% Aspartic acid buffered Lead (II) Nitrate with extensive rinses between
135 each step with the exception of potassium ferrocyanide. The samples were then
136 dehydrated in ethanol and propylene oxide and infiltrated with 812 Epon resin
137 (EMS, Mixture: 49% Embed 812, 28% DDSA, 21% NMA, and 2.0% DMP 30).
138 Samples were cured in custom cylindrical molds to stack multiple brains into one
139 sample and to remove any edges to the resin that may affect X-ray imaging. The
140 resin-infiltrated tissue was cured at 60°C for 3 days.

141

142 μX-ray computed tomography

143 The syn-μCT data were acquired as previously described (Foxley et al, 2021).
144 Briefly, we used the 32-ID beamline at the Advanced Photon Source, Argonne
145 National Laboratory. The setup consists of a 1.8 cm-period undulator operated at
146 a low deflection parameter value of $K = 0.26$. This yields a single quasi-
147 monochromatic peak of energy 25 keV without the losses incurred by use of a

148 crystal monochromator. For a sample 68 m from the undulator, this produces a
149 photon fluence rate of about 1.8×10^7 photons $s^{-1} \mu m^{-2}$.

150 The x-rays were imaged using a 10 μm thick thin-film LuAG:Ce scintillator
151 producing visible-light images then magnified using a 10X Mitutoyo long working
152 distance microscope objective onto a 1920x1200 pixel CMOS camera (Point
153 Gray GS3-U3-51S5M-C). The effective object space pixel size was 600 nm
154 isotropic. The thickness of the thin-film scintillator matched the depth of focus of
155 the objective lens, achieving a spatial resolution equivalent to the resolving
156 power of the lens (1.3 μm for a NA of 0.21). Since the camera field of view was
157 substantially smaller than the sample, a mosaic strategy was employed (Vescovi
158 et al., 2018).

159 The sample was mounted on an air-bearing rotary stage (PI-Micos UPR-160
160 AIR) with motorized x/y translation stages located underneath and x/y piezo
161 stages on top. Typical exposure time for a single projection image at one mosaic
162 grid point and one rotation angle was 30 ms. 360° rotation angles were used at
163 each grid point. The sample was translated through a 6 \times 18 tomographic grid.

164

165 Data Analysis

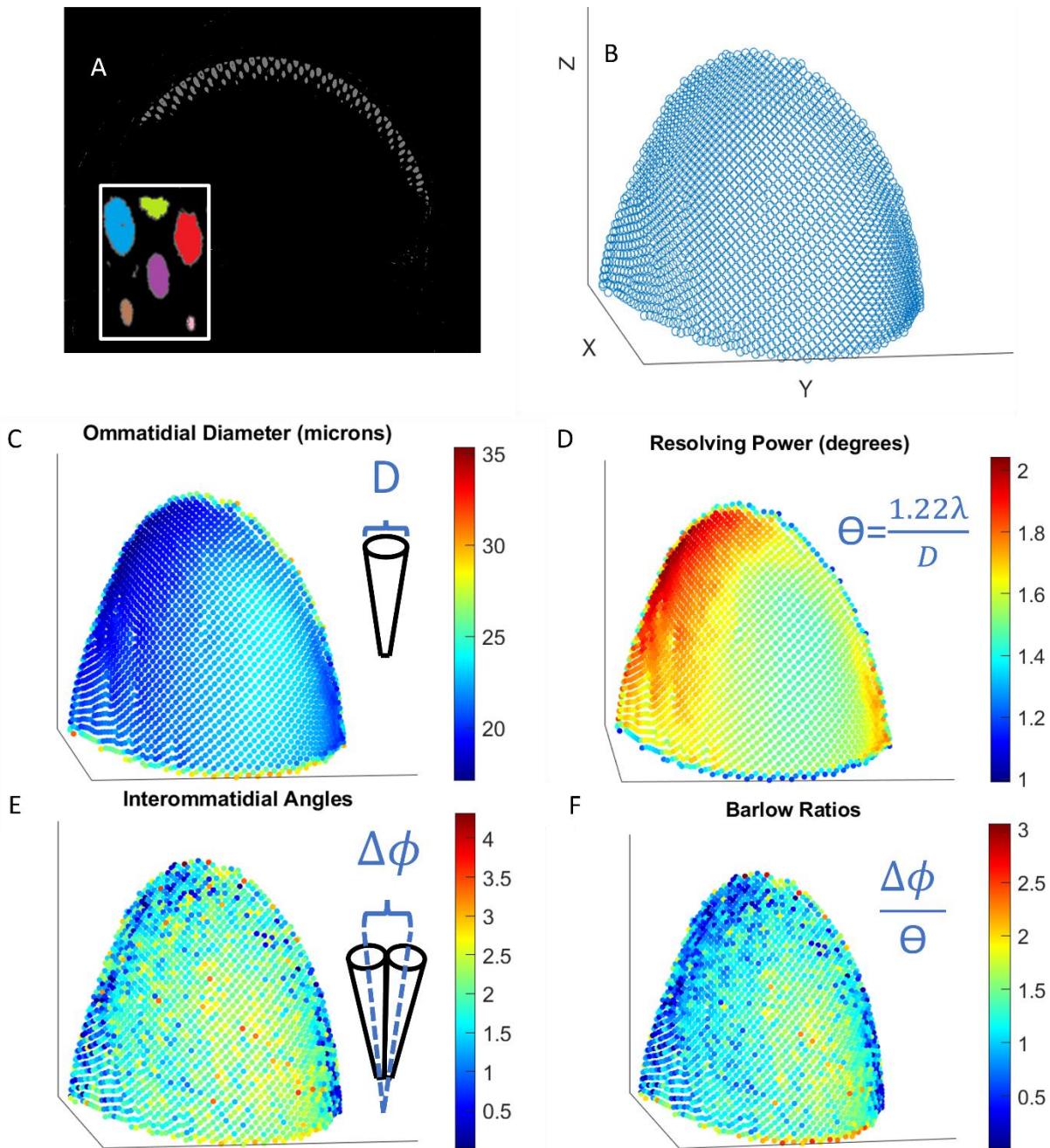
166 Crystalline cones from the raw x-ray datasets were segmented using the
167 software ilastik and code based off cc3d (Silversmith, 2021). This generated sets

168 of voxels corresponding to each of the crystalline cones. Outliers in the set of
169 points that were not part of the cones were deleted manually.

170 We defined the center of each crystalline cone as its center of mass. Then we
171 estimated the local radius of the eye by fitting a sphere to clusters of 60 points
172 corresponding to the crystalline cone centers. We chose 60 points because this
173 encompasses a hexagonal array surrounding a single point extending 4
174 ommatidia out in all directions. Vectors from the center of the sphere to the
175 center of each cone were calculated. Once we have defined the 'center' of the
176 eye from the local curvature we can then use the vectors from that putative
177 center to the centers of the cones to define an ommatidial angle. The angles
178 between a cone's vector and its six nearest neighbors' vectors were averaged,
179 and this was used as the (local) interommatidial angle ($\Delta\phi$). The average
180 distance to the six nearest neighbors was used as the diameter of the
181 ommatidium (D). Since the center of each cone lies below the surface of each
182 eye facet, this systematically underestimates the value of D by potentially a
183 significant fraction of the cone length times $\Delta\phi$ (measured in radians). This
184 systematic error is then of order 2 microns or less, which is considerably smaller
185 than both the mean and the variance of D (Table SI1). Resolving power was
186 calculated by $\theta=1.22*\lambda/D$ where λ is the wavelength of light. For our analysis,
187 $\lambda=500$ nm, as it corresponds to broad peaks in both the typical sunlight spectrum
188 and photoreceptor sensitivity in many insects. This is also the λ that Barlow used

189 for his calculations. The ratio $\Delta\phi/\theta$, aka the Barlow ratio, was also calculated.
190 Extreme outliers were cut off when we noted corresponding defects in the x-ray
191 images or where the values seemed biologically implausible (e.g.,
192 interommatidial angles greater than 90 degrees). These outliers occurred almost
193 exclusively at the edges of the eyes. Cone shapes were determined by centering
194 and overlaying all cones within a single eye, and keeping the collection of shared
195 points, points with at least 25% overlap, across all cones. This was done to
196 reduce noise in the segmentation of individual cones. The number of cones
197 overlayed per eye varied from about 600 to 3000. There appeared to be some
198 variation in cones across the eye, but the biggest deviations from the average
199 seemed to come from the cones at the outer edges of the eye. Then, the
200 boundary of the cone was calculated from this set of overlapping points using the
201 “boundary” function on Matlab. We used the Pearson correlation coefficient to
202 determine the relationship between wingspan and cone length as well as
203 wingspan and cone ratio. We also calculated the aspect ratio and cone ratio for
204 each individual cone.

205


206 **Results**

207

208 In order to understand whether ommatidial diameter, interommatidial angles,
209 resolving power, and Barlow ratios changed within individuals, we first looked at

210 how these different parameters varied across the surface of a single eye. When
211 creating these maps, we found that ommatidial diameter (as well as resolving
212 power) appeared to vary gradually from areas with larger diameters up to 35.3
213 microns to those with smaller diameters down to 17.1 microns (Fig 2C, D). In
214 contrast, the changes in interommatidial angle and Barlow ratio across the eye
215 were not as smooth, with transitions from higher to lower acuity areas being less
216 clear by visual inspection (Fig 2E, F).

217

218

219 **Figure 2.** A) Segmented out crystalline cones with the inlay showing that cones
220 are labeled as separate objects. B) Centers of crystalline cones plotted in Matlab
221 where the rest of our analysis took place. C-F) show scatter plots showing how
222 C) ommatidial diameter, D) resolving power, E) interommatidial angle, and F)

223 Barlow ratios change across the eye. The portion of the eye shown here is from

224 *Polites peckius*. Each point represents one ommatidium.

225

226

227 Next, we asked how these parameters varied across different individuals by

228 reporting the statistics of the distributions for these variables for each individual.

229 The average median ommatidial diameter across all individuals was 24.5

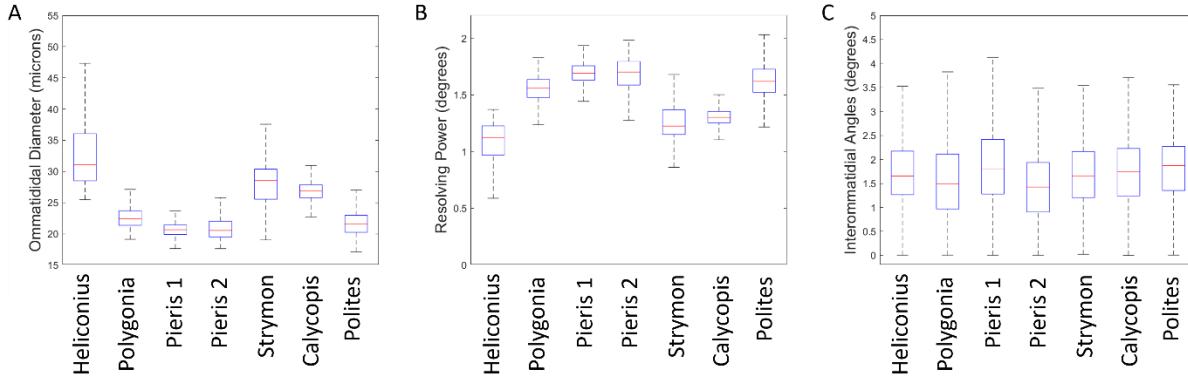
230 microns, ranging from 20.54 to 31.09 microns, with an average interquartile

231 range of 3.36 (Fig 3A). Resolving powers had an average median value of 1.46

232 degrees, ranging from 1.12 to 1.70 degrees, with an average interquartile range

233 of 0.18 (Fig 3B). The median interommatidial angle measured across all species

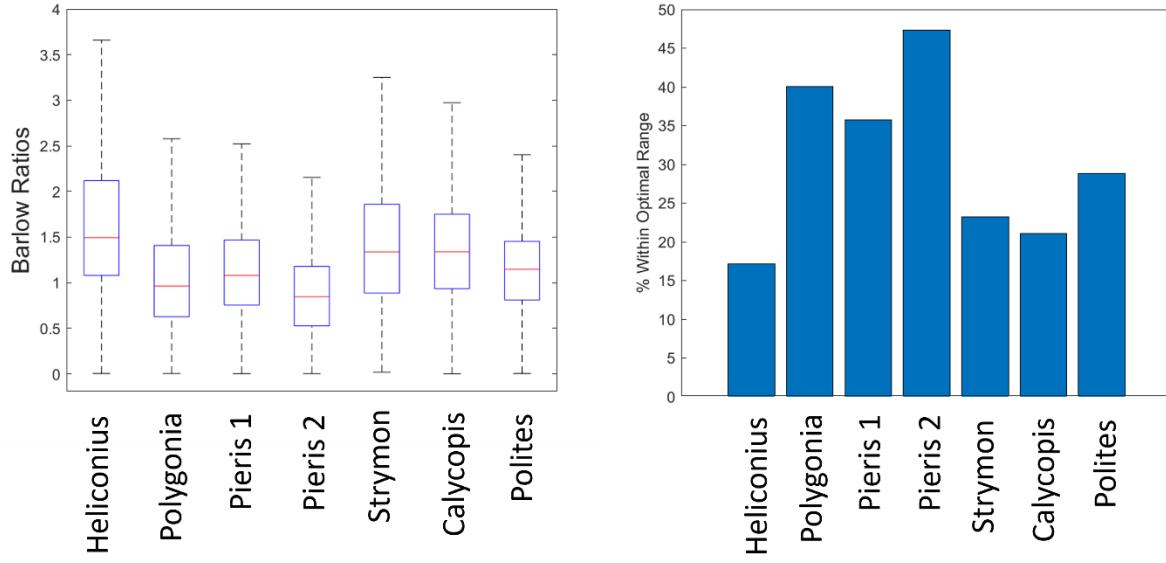
234 ranged from 1.42 to 1.87 degrees, with an average of 1.66 degrees and an


235 average interquartile range of 1.01 degrees (Fig 3B). Medians for the Barlow

236 ratio ranged from 0.846 to 1.49 with two individuals having medians within the

237 optimal range. The average median Barlow ratio was 1.17 with an average

238 interquartile range of 0.80 (Fig 4A).


239

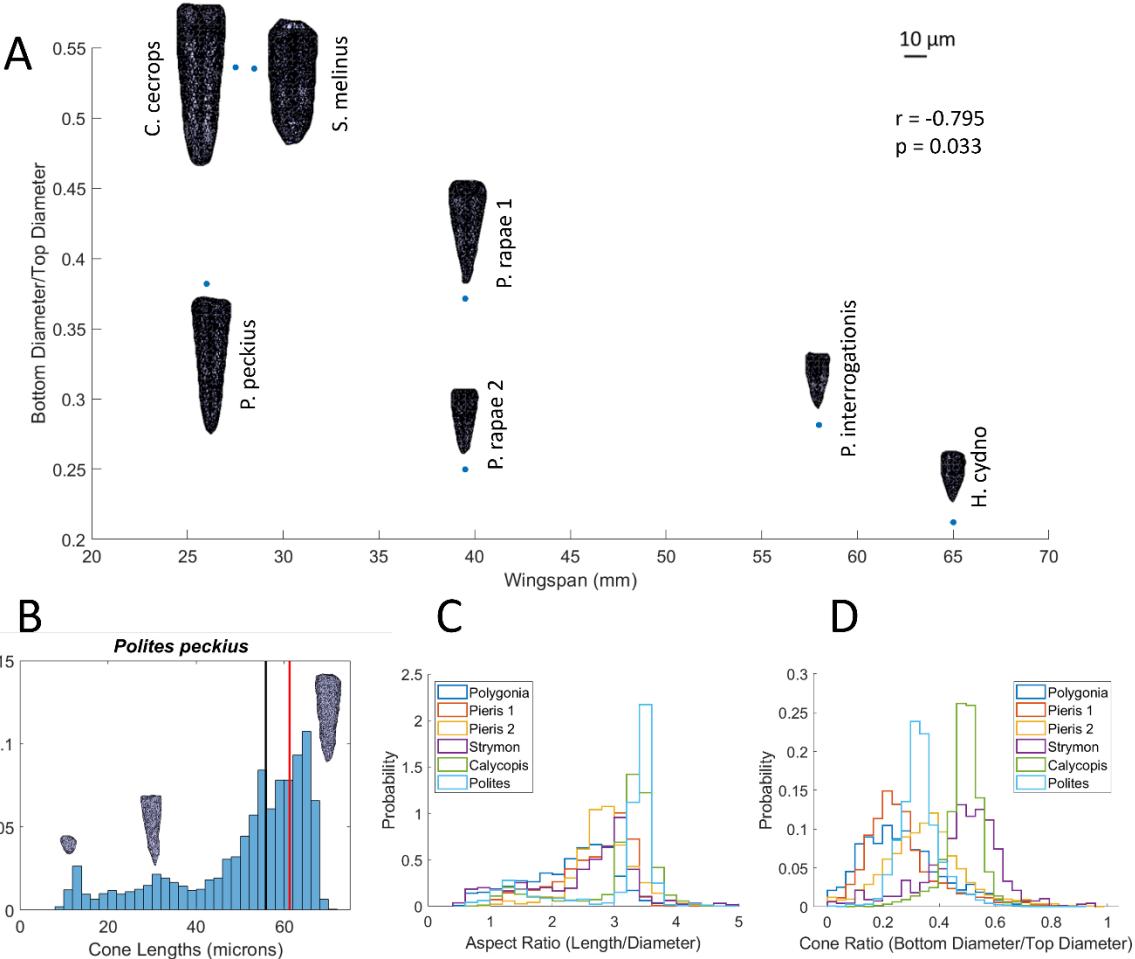
240

241 **Figure 3.** Plots showing the median (red line) A) ommatidial diameter in microns,
242 B) resolving powers, C) and interommatidial angles in degrees for the seven
243 individuals. Boxes show interquartile range and whiskers show the lower and
244 upper quartiles (Outliers are shown in Fig. SI2 for clarity of presentation).

245

246

247 **Figure 4.** A) Boxplot showing the median (red line) Barlow ratio for the seven
248 individuals. Boxes show interquartile range and whiskers show the lower and


249 upper quartiles (Outliers are shown in Fig. SI2). B) Bar plot showing the
250 percentage of each portion of eye with a Barlow ratio that fell between 0.4 and 1.

251

252

253 Because our method provided great enough resolution to clearly distinguish
254 whole crystalline cones, we decided to look at the micron scale morphology of
255 this structure, which guides the light focused by the cornea and lens to the
256 ommatidia. When looking at the size and shape of this structure, we found
257 variation across individuals that would need to be disentangled from variation
258 across the eye with larger datasets. For instance, the average “typical” cone
259 length across species (Fig. 5) was 44.4 microns, but ranged from 22.2 microns to
260 72.0 microns, and some cones had a defined point at the bottom while others
261 were more rounded. In order to quantify how tapered a cone was, we took the
262 ratio of the cone diameter at 10% of the length from the bottom and the
263 maximum diameter at the top and found the mean of this ratio was 0.3669. The
264 most tapered cone had a ratio of 0.2121, while the least tapered cone was less
265 than half as tapered with a ratio of 0.5362. When analyzing morphological data, it
266 is important to consider scaling relationships in the data (Jablonski et al, 1996).
267 In our data, when examining allometric relationships, we found that there was a
268 negative correlation between the wingspan of a species and the typical cone
269 length ($r(7)=-0.8881$, $p=0.0076$) as well as a negative correlation between
270 wingspan and cone ratio ($r(7)=-0.7949$, $p=0.0326$). Besides looking at the typical

271 crystalline cones, we also looked at the shapes of all the cones across each eye.
272 Changes in different parameters such as the length (Fig 5B), aspect ratio (Fig
273 5C), and cone ratio (Fig 5D) could be seen across the eyes of all individuals.
274

275
276 **Figure 5.** A) Cone shapes from all 7 individuals plotted by the length of the cone
277 and the ratio of the diameter of the cone 10% from the bottom and the maximum
278 width of the cone at the top. Scale bar shows 10 microns. Black line denotes the
279 median cone length, while the red line shows the cone length of the typical cone.
280 B) Histogram showing the cone lengths across the eye of *Polites peckius* with

281 example cones from the 3 different peaks in the distribution. C) Histograms
282 showing the aspect ratios and D) cone ratios of each individual (excluding
283 Heliconius as there were issues with individual cone segmentation in this
284 dataset).

285

286

287 **Discussion**

288 Our method provides a new way to study insect morphology, especially the
289 individual components of the eye, using a higher contrast staining method, higher
290 resolution syn- μ CT, and a novel analysis pipeline. With the method, an entire eye
291 can be surveyed for microscopic features like ommatidial diameters, angles, and
292 cone morphologies. Previous methods measuring microscopic features have
293 either imaged smaller volumes at higher resolution (e.g. Hao et al., 2023) or
294 larger volumes at lower resolution (e.g. Currea et al., 2023). Using our approach,
295 we were able to analyze seven insects of six different butterfly species to show
296 that the Barlow ratio of the ommatidia falls in or near the theoretical optimum, but
297 notable portions of the eye have Barlow ratios greater than this optimum. This
298 suggests that portions of the visual scene are undersampled. In previous work
299 that has shown a similar kind of spatial undersampling in insect eyes, it has been
300 suggested that this is due to motion blur from the animal moving about its
301 environment (Land, 1997). This indicates that theoretical models must also
302 account for the angular velocity of the organism or objects in its visual

303 environment and other processing that happens later in the visual system to
304 optimize an insect's vision. Additional research is needed to assess how different
305 luminance may change the Barlow ratio and if the theoretical models that
306 account for light levels, as described by Snyder et al (1977), are correct.

307

308 Limitations

309 There are several limitations to this study. One issue is that our imaging often did
310 not cover the entire eye. While this is not ideal, we were still able to analyze large
311 enough portions of the eyes to capture the variability across eyes. This study is
312 complementary to previous work that allows sampling of different parts of the
313 eye. However, there is a future planned upgrade to the APS synchrotron that will
314 enable imaging of entire eyes and nervous systems of insects (Argonne National
315 Laboratory, n.d.).

316

317 Another limitation in study is that sample preparation for electron microscopy is
318 well known to change the native structures of brain tissue (Zhang et al., 2017).
319 However, most of these artifacts involve changes in the volume of the
320 extracellular space (Van Harreveld & Steiner, 1970; Pallotto et al., 2015). We
321 analyzed crystalline cones, which are composed of concentrated, hydrophobic
322 proteins in closely related moths and likely less susceptible to dehydration-based
323 distortions (Schlamp, 1989). We designed an analysis pipeline robust to small
324 changes in orientation, thereby preserving local curvature and diameters.

325 Finally, we see smooth variation across individual eyes, which gives us
326 confidence that the differences observed are not simply noise from artifacts.

327

328 Comparison to prior work

329 Previous analyses of ommatidial diameter and interommatidial angles were done
330 using light microscopy (and more recently fluorescence microscopy) and
331 analyzed manually (Horridge, 1978; Rutowski & Warrant, 2002;
332 Baumgartner, 1928; del Portillo, 1936; Rigossi et al 2021), and therefore would
333 take a much longer time to collect data on the same volume of eye. Previous
334 methods for calculating interommatidial angles include observing how many
335 ommatidia pseudopupils crossed while rotating the eye a certain angle, using the
336 optomotor response, and manually measuring histological sections (Horridge,
337 1978; Rutowski & Warrant, 2002; Gotz, 1965; Baumgartner, 1928; del Portillo,
338 1936; Rigossi et al., 2021). All of these methods are subject to human error, but
339 our method provides an automated way to calculate both the interommatidial
340 angle and the ommatidial diameter.

341

342 Several newer methods have been proposed for measuring interommatidial
343 angles and other eye parameters. One such method involves staining
344 photoreceptors with fluorescent dyes to measure interommatidial angles using
345 the pseudopupil in insects with dark eyes (Rigossi et al., 2021). One advantage
346 of this fluorescence method is that it can be done using live animals and avoids

347 any distortion that may occur during sample preparation. However, this is the
348 only parameter that can be measured with this technique and cannot reveal the
349 morphology of internal structures.

350

351 The μ CT method has recently been used to measure angles and other eye
352 parameters in bees (Taylor et al, 2019) and ommatidial diameters in other
353 compound eyes (Curea et al., 2023), but our method using the 32-ID beamline
354 achieves \sim 18x or \sim 170x greater resolution respectively, and imaging speeds of
355 \sim 1 mm³/30min. This enhanced resolution combined with our novel embedding
356 method allows for greater automated throughput. Furthermore, conventional lab-
357 based μ CT imaging that can achieve comparable spatial resolution (Alba-
358 Tercedor et al., 2021) have worse contrast resolution than syn- μ CT (Goyens et
359 al., 2018). Additionally, our staining method provides even greater contrast and
360 allows us to better see crystalline cones, whereas previous μ CT reconstructions
361 were unable to capture this structure. We found large variation in the sizes and
362 shapes of the typical crystalline cones across individuals and especially species.
363 Using our 3D models of these cones, further research can be done to explore
364 how light passes through these structures and impinges on the rhabdom.

365

366 The Barlow Ratio, Variation, and Motion Blur

367 There was considerable variation in all measurements across individual eyes. All
368 the species had average Barlow ratios near the theoretical optimum, but large

369 portions of each eye had ratios that were greater than expected, meaning the
370 interommatidial angle was greater than the resolving power, suggesting the
371 visual scene is undersampled. Undersampling of the visual scene has been
372 observed in other insects. In previous studies that have measured a similar ratio,
373 the acceptance angle to the interommatidial angle, in other diurnal insects also
374 found that the visual scene was undersampled (Land 1997). One reason insect
375 vision might be undersampled is to account for motion blur. For example,
376 according to a paper from Snyder et al, the fly *Musca* would have a Barlow ratio
377 of 2.13, which is greater than both Barlow's optimum and the optimum calculated
378 by Snyder et al (1977). However, this value did approach a value that Snyder et
379 al. deemed more reasonable once angular velocity of the insect was accounted
380 for. Finally, Snyder et al. also looked at how different light levels would affect the
381 theoretical optimum for $p=D^*\Delta\phi=0.61*(\Delta\phi/\theta)$. They theorized that in lower light
382 conditions, the optimal p would be larger. Further research must be done to
383 examine crepuscular and nocturnal Lepidoptera to determine if this is indeed the
384 case.

385
386 Finally, we determined the morphology of a typical crystalline cone for each
387 species. We found considerable variation in height and width within and across
388 individuals, which could be due to scaling with total body size or cone density
389 within the eye. Previous analyses have identified that the point-like end of the
390 crystalline cone corresponds with the focal point of the lens, allowing the most

391 efficient transfer of photons into a single rhabdom (Schwarz et al., 2011). For
392 species adapted to low light, the hypothesis is instead that cones are larger and
393 more bulbous with the focal point well inside the cone, which is believed to confer
394 an advantage for greater light collection by transmission through a ‘clear zone’ to
395 multiple rhabdoms (Warrant, 2017). Since the crystalline cone’s function is to
396 funnel light onto the rhabdom, further studies could potentially determine how
397 cone optics vary across the eye and between species. Measurements of body
398 size that incorporate forewing length are correlated with larger eye sizes
399 (Seymour et al., 2015), and longer cones correspond to smaller wingspans,
400 suggesting smaller Lepidoptera have flatter lenses as they have a longer focal
401 length. Syn- μ CT also clearly shows the shape of the lens, so our method would
402 be useful in testing this hypothesis. Future work will explore these differences
403 more fully, by modeling the wave optics of light passing through lenses and
404 cones with these different shapes.

405

406

407 **Conflict of Interest Statement**

408 We have no conflicts of interest to disclose.

409

410 **Author Contributions**

411 Gregg A. Wildenberg, Narayanan Kasthuri, Stephanie E. Palmer, and Dawn

412 Paukner conceived the ideas and designed methodology; Gregg Wildenberg

413 collected the data; Dawn Paukner and Griffin S. Badalamente created the
414 analysis pipeline and analyzed the data; Dawn Paukner and Narayanan Kasthuri
415 led the writing of the manuscript. Dawn Paukner, Gregg A. Wildenberg, Peter B.
416 Littlewood, Marcus R. Kronforst, Stephanie E. Palmer, and Narayanan Kasthuri
417 contributed to the interpretation of the results. All authors contributed critically to
418 the drafts and gave final approval for publication.

419

420 **Data Availability**

421 Raw X-ray datasets will be made available on BossDB. Code will be made
422 available on github.com/dpaukner.

423

424 **References**

425 Alba-Tercedor, J., Hunter, W.B. & Alba-Alejandre, I. Using micro-computed tomography
426 to reveal the anatomy of adult *Diaphorina citri* Kuwayama (Insecta: Hemiptera, Liviidae)
427 and how it pierces and feeds within a citrus leaf. *Sci Rep* 11, 1358 (2021).

428 <https://doi.org/10.1038/s41598-020-80404-z>

429

430 Argonne National Laboratory. (n.d.). APS Upgrade. <https://www.aps.anl.gov/APS->
431 Upgrade

432

433 Barlow, H. B. (1952). The Size of Ommatidia in Apposition Eyes. *The Journal of*
434 *Experimental Biology*, 25(4), 667–674.

435

436 Baumgärtner, H. (1928). Der formensinn und die sehschärfe der bienen. *Zeitschrift für*
437 *vergleichende Physiologie*, 7(1), 56-143.

438

439 Baxter, S. W., Nadeau, N. J., Maroja, L. S., Wilkinson, P., Counterman, B. A., Dawson,
440 A., ... & Jiggins, C. D. (2010). Genomic hotspots for adaptation: the population genetics
441 of Müllerian mimicry in the *Heliconius melpomene* clade. *PLoS genetics*, 6(2),
442 e1000794.

443

444 Berg, S., Kutra, D., Kroeger, T. et al. ilastik: interactive machine learning for (bio)image
445 analysis. *Nat Methods* 16, 1226–1232 (2019). <https://doi.org/10.1038/s41592-019-0582-9>

447

448 Butler, P. M. (1963). Tooth morphology and primate evolution. *Dental anthropology*, 1-13.

449

450 Chown, S. L., & Terblanche, J. S. (2006). Physiological diversity in insects: ecological
451 and evolutionary contexts. *Advances in insect physiology*, 33, 50-152.

452

453 Currea, J. P., Sondhi, Y., Kawahara, A. Y., & Theobald, J. (2023). Measuring compound
454 eye optics with microscope and microCT images. *Communications Biology*, 6(1), 246.

455

456 Darwin, C. (1859). *The Origin of Species by Means of Natural Selection, Or, The*
457 *Preservation of Favoured Races in the Struggle for Life*. Books, Incorporated, Pub..

458

459 del Portillo, J. (1936). Beziehungen zwischen den Öffnungswinkeln der Ommatidien,
460 Krümmung und Gestalt der Insektenaugen und ihrer funktionellen Aufgabe. *Zeitschrift
461 für vergleichende Physiologie*, 23(1), 100-145.

462

463 Dobzhansky, T. (1982). *Genetics and the Origin of Species* (No. 11). Columbia
464 university press.

465

466 Dyer, E. L., Gray Roncal, W., Prasad, J. A., Fernandes, H. L., Gürsoy, D., De Andrade,
467 V., Fezzaa, K., Xiao, X., Vogelstein, J. T., Jacobsen, C., Körding, K. P., & Kasthuri, N.
468 (2017). Quantifying Mesoscale Neuroanatomy Using X-Ray Microtomography. *eNeuro*,
469 4(5), ENEURO.0195-17.2017. <https://doi.org/10.1523/ENEURO.0195-17.2017>

470

471 Foxley, S., Sampathkumar, V., De Andrade, V., Trinkle, S., Sorokina, A.,
472 Norwood, K., La Riviere, P., & Kasthuri, N. (2021). Multi-modal imaging of a
473 single mouse brain over five orders of magnitude of resolution. *NeuroImage*, 238,
474 118250. <https://doi.org/10.1016/j.neuroimage.2021.118250>

475

476 Friedrich, F., Matsumura, Y., Pohl, H., Bai, M., Hörnschemeyer, T., & Beutel, R.
477 G. (2014). Insect morphology in the age of phylogenomics: innovative techniques
478 and its future role in systematics. *Entomological Science*, 17(1), 1-24.

479

480 Gallice, G (2012). *Heliconius cydno galanthus* [Photograph].

481 <https://www.flickr.com/photos/dejeuxx/6626128815/in/photostream>.

482

483 Götz, K.G. Die optischen Übertragungseigenschaften der Komplexaugen von Drosophila.

484 *Kybernetik* 2, 215–221 (1965). <https://doi.org/10.1007/BF00306417>

485

486 Goyens, J., Vasilopoulou-Kampitsi, M., Claes, R., Sijbers, J. and Mancini, L.

487 (2018), Enhanced contrast in X-ray microtomographic images of the

488 membranous labyrinth using different X-ray sources and scanning modes. *J.*

489 *Anat.*, 233: 770-782. <https://doi.org/10.1111/joa.12885>

490

491 Hao, Y., Wang, Q., Wen, C., & Wen, J. (2023). Comparison of Fine Structure of

492 the Compound Eyes in Eucryptorrhynchus scrobiculatus and Eucryptorrhynchus

493 brandti Adults. *Insects*, 14(8), 699. <https://doi.org/10.3390/insects14080699>

494

495 Horridge G. A. (1978). The separation of visual axes in apposition compound eyes.

496 *Philosophical transactions of the Royal Society of London. Series B, Biological sciences*,

497 285(1003), 1–59. <https://doi.org/10.1098/rstb.1978.0093>

498

499 Hua, Y., Laserstein, P., & Helmstaedter, M. (2015). Large-volume en-bloc staining for

500 electron microscopy-based connectomics. *Nature communications*, 6, 7923.

501 <https://doi.org/10.1038/ncomms8923>

502

503 Jablonski, D., Erwin, D. H., & Lipps, J. H. (1996). Body size and macroevolution.

504 Evolutionary paleobiology. University of Chicago Press, Chicago, 256-289.

505

506 Johnson, J. T., Hansen, M. S., Wu, I., Healy, L. J., Johnson, C. R., Jones, G. M., ... & Keller,

507 C. (2006). Virtual histology of transgenic mouse embryos for high-throughput

508 phenotyping. *PLoS Genetics*, 2(4), e61.

509

510 Kronforst, M. R., Young, L. G., Kapan, D. D., McNeely, C., O'Neill, R. J., & Gilbert, L. E.

511 (2006). Linkage of butterfly mate preference and wing color preference cue at the

512 genomic location of wingless. *Proceedings of the National Academy of Sciences*,

513 103(17), 6575-6580.

514

515 Land M. F. (1997). Visual acuity in insects. *Annual review of entomology*, 42, 147–177.

516 <https://doi.org/10.1146/annurev.ento.42.1.147>

517

518 MATLAB. (2021). *version 9.10.0.1669831 (R2021a) Update 2*. Natick, Massachusetts:

519 The MathWorks Inc.

520

521 Namiki, S., & Kanzaki, R. (2018). Morphology of visual projection neurons

522 supplying premotor area in the brain of the silkworm *Bombyx mori*. *Cell and tissue*

523 *research*, 374(3), 497–515. <https://doi.org/10.1007/s00441-018-2892-0>

524

525 Pallotto, M., Watkins, P. V., Fubara, B., Singer, J. H., & Briggman, K. L. (2015).

526 Extracellular space preservation aids the connectomic analysis of neural circuits.

527 *Elife*, 4, e08206.

528

529 Poulton, E. B. (1909). Mimicry in the butterflies of North America. *Annals of the*
530 *entomological Society of America*, 2(4), 203-242.

531

532 Price, P. W., Denno, R. F., Eubanks, M. D., Finke, D. L., & Kaplan, I. (2011).

533 Insect ecology: behavior, populations and communities. Cambridge University
534 Press.

535

536 Ribi, W., Senden, T. J., Sakellariou, A., Limaye, A., & Zhang, S. (2008). Imaging
537 honey bee brain anatomy with micro-X-ray-computed tomography. *Journal of*
538 *neuroscience methods*, 171(1), 93-97.

539

540 Rigosi, E., Warrant, E. J., & O'Carroll, D. C. (2021). A new, fluorescence-based method for
541 visualizing the pseudopupil and assessing optical acuity in the dark compound eyes of
542 honeybees and other insects. *Scientific reports*, 11(1), 21267.

543 <https://doi.org/10.1038/s41598-021-00407-2>

544

545 Rutowski, R.L., Warrant, E.J. Visual field structure in the Empress Leilia, *Asterocampa*
546 *leilia* (Lepidoptera, Nymphalidae): dimensions and regional variation in acuity. *J Comp*
547 *Physiol A* 188, 1–12 (2002). <https://doi.org/10.1007/s00359-001-0273-7>

548

549 Schlamp, Cassandra Lee, "Composition, Structure And Development Of The Crystalline
550 Cone Of The Superposition Compound Eye" (1989). *Digitized Theses*. 1851.
551 <https://ir.lib.uwo.ca/digitizedtheses/1851>

552

553 Schwarz, S., Narendra, A., & Zeil, J. (2011). The properties of the visual system in the
554 Australian desert ant *Melophorus bagoti*. *Arthropod structure & development*, 40(2),
555 128–134. <https://doi.org/10.1016/j.asd.2010.10.003>

556

557 Seymoure, B. M., Mcmillan, W. O., & Rutowski, R. (2015). Peripheral eye dimensions in
558 Longwing (*Heliconius*) butterflies vary with body size and sex but not light environment
559 nor mimicry ring. *J Res Lepid*, 48, 83-92.

560

561 Silversmith, W. (2021). cc3d: Connected components on multilabel 3D & 2D images.
562 (Version 3.2.1) [Computer software].
563 <https://doi.org/https://zenodo.org/record/5535251>

564

565 Snyder, A.W., Stavenga, D.G. & Laughlin, S.B. Spatial information capacity of compound
566 eyes. *J. Comp. Physiol.* 116, 183–207 (1977). <https://doi.org/10.1007/BF00605402>

567

568 Stork N. E. (2018). How Many Species of Insects and Other Terrestrial
569 Arthropods Are There on Earth?. *Annual review of entomology*, 63, 31–45.
570 <https://doi.org/10.1146/annurev-ento-020117-043348>

571

572 Taylor, G. J., Tichit, P., Schmidt, M. D., Bodey, A. J., Rau, C., & Baird, E. (2019).
573 Bumblebee visual allometry results in locally improved resolution and globally
574 improved sensitivity. *eLife*, 8, e40613. <https://doi.org/10.7554/eLife.40613>

575

576 Van de Kamp, T., Rolo, T.O.D & Baumbach, T. (2014). Scanning the past–
577 synchrotron X-ray microtomography of fossil wasps in amber. *Entomologie
578 heute*, 26, 151-160.

579

580 Van den Boogert, T., Van Hoof, M., Handschuh, S., Glueckert, R., Guinand, N.,
581 Guyot, J. P., ... & Van de Berg, R. (2018). Optimization of 3D-visualization of
582 micro-anatomical structures of the human inner ear in osmium tetroxide contrast
583 enhanced micro-CT scans. *Frontiers in Neuroanatomy*, 12, 41.

584

585 Van Harreveld, A., & Steiner, J. (1970). Extracellular space in frozen and ethanol
586 substituted central nervous tissue. *The Anatomical Record*, 166(1), 117-129.

587

588 Van Rossum, G., & Drake, F. L. (2009). Python 3 Reference Manual. Scotts Valley, CA:
589 CreateSpace.

590

591 Vescovi, R., Du, M., Andrade, V. D., Scullin, W., Gürsoy, D., & Jacobsen, C. (2018).
592 Tomosaic: efficient acquisition and reconstruction of teravoxel tomography data using
593 limited-size synchrotron X-ray beams. *Journal of synchrotron radiation*, 25(5), 1478-
594 1489.

595

596 Warrant E. J. (2017). The remarkable visual capacities of nocturnal insects:
597 vision at the limits with small eyes and tiny brains. *Philosophical transactions of
598 the Royal Society of London. Series B, Biological sciences*, 372(1717), 20160063.

599 <https://doi.org/10.1098/rstb.2016.0063>

600

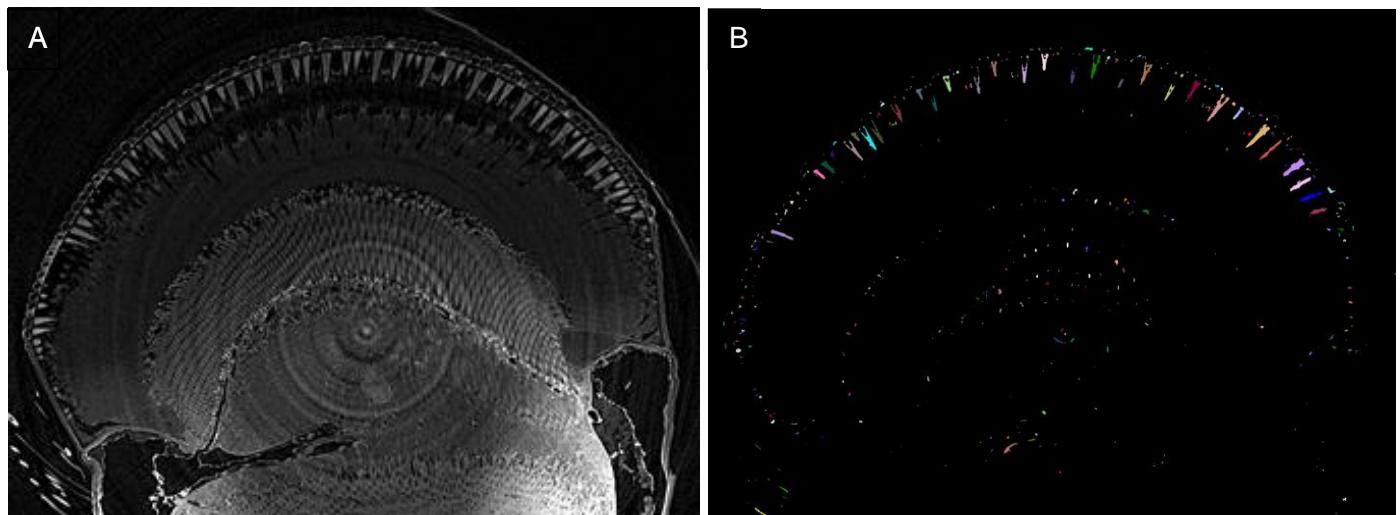
601 Wipfler, B., Pohl, H., Yavorskaya, M. I., & Beutel, R. G. (2016). A review of methods for
602 analysing insect structures—the role of morphology in the age of phylogenomics.
603 Current opinion in insect science, 18, 60-68.

604

605 Zhang, Y., Huang, T., Jorgens, D. M., Nickerson, A., Lin, L. J., Pelz, J., Gray, J. W.,
606 López, C. S., & Nan, X. (2017). Quantitating morphological changes in biological
607 samples during scanning electron microscopy sample preparation with
608 correlative super-resolution microscopy. *PLoS one*, 12(5), e0176839.

609 <https://doi.org/10.1371/journal.pone.0176839>

610

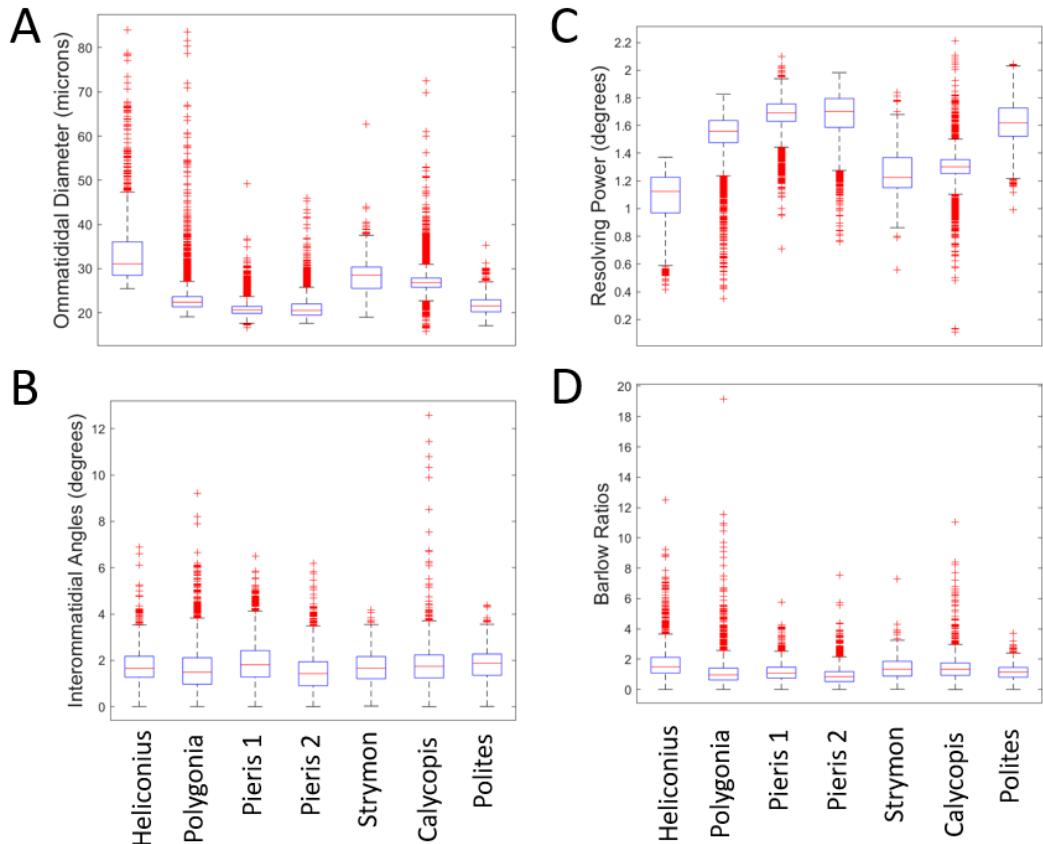

611

612

613

614

615 **Supplementary Figures**



616 **Figure SI1.** A) Gif moving through the raw x-ray stack of the *Polites peckius* eye. B) Gif
617 moving through a stack of the *Polites peckius* eye after segmentation of crystalline cones.

618

	<i>H.c. galanthus</i>	<i>P. interrogationis</i>	<i>P. rapae</i> 1	<i>P. rapae</i> 2	<i>S. melinus</i>	<i>C. cecrops</i>	<i>P. peckius</i>
Estimated Error	0.684722884	0.725894193	1.511149047	0.743897027	1.628931642	2.230212656	1.924340469
Mean D	33.75005873	23.74537682	21.03077	21.18907642	28.52390497	27.39373852	21.6664377
Variance of D	60.89412798	30.30223407	4.000139676	6.904767902	16.57940237	16.12510145	4.460714212

620 **Table SI1.** Shows the estimated error, mean, and variance of ommatidial diameters for
621 each individual.

622

623 **Figure SI2.** Boxplots showing A) ommatidial diameters, B) interommatidial angles, C)
624 resolving powers, and D) Barlow ratios. Red lines show medians, boxes show interquartile
625 ranges, and whiskers show the lower and upper quartiles. Red plus signs denote outliers.