

1 **Human monoclonal antibodies reveal subdominant gonococcal and meningococcal cross-
2 protective antigens**

3

4 Marco Troisi^{1,11}, Monica Fabbrini^{2,11}, Samuele Stazzoni^{1,11}, Viola Viviani², Filippo Carboni²,
5 Valentina Abbiento¹, Lucia Eleonora Fontana², Sara Tomei², Martina Audagnotto², Laura Santini²,
6 Angela Spagnuolo², Giada Antonelli¹, Ida Paciello¹, Fabiola Vacca¹, Dario Cardamone^{1,3}, Eleonora
7 Marini¹, Pardis Mokhtary¹, Francesca Finetti⁴, Fabiola Giusti², Margherita Bodini², Giulia Torricelli²,
8 Chiara Limongi², Mariangela Del Vecchio², Sara Favaron^{2,5}, Simona Tavarini², Chiara Sammicheli²,
9 Alessandro Rossi², Andrea Paola Mandelli², Pietro Fortini⁶, Carla Caffarelli⁶, Stefano Gonnelli⁶,
10 Ranuccio Nuti⁶, Cosima T. Baldari⁴, Claudia Sala¹, Aldo Tagliabue^{7,†}, Silvana Savino², Brunella
11 Brunelli², Nathalie Norais², Elisabetta Frigimelica², Monia Bardelli², Mariagrazia Pizza^{2,8},
12 Immaculada Margarit², Isabel Delany², Oretta Finco^{2,*}, Emanuele Andreano^{1,*}, Rino Rappuoli^{9,10,*}

13

14 ¹Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy

15 ²GSK, Siena, Italy

16 ³University of Turin, Turin, Italy

17 ⁴Department of Life Sciences, University of Siena, Siena, Italy

18 ⁵Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Milano, Italy

19 ⁶Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy

20 ⁷Institute Biomedical Technologies, National Research Council, Segrate, Milan, Italy

21 ⁸Imperial college London, South Kensington campus, London, United Kingdom

22 ⁹Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy

23 ¹⁰Fondazione Biotecnopolo di Siena, Siena, Italy

24 ¹¹These authors contributed equally

25 [†]Current affiliation: Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences,

26 Shenzhen, China

27 *Correspondence: oretta.x.finco@gsk.com, e.andreano@toscanalifesciences.org and

28 rino.rappuoli@biotecnopolis.it

29 **ABSTRACT**

30 Gonococcus (Gc), a bacterium resistant to most antibiotics causing more than 80 million cases of
31 gonorrhea annually, is a WHO high priority pathogen. Recently, vaccine development prospects
32 were boosted by reports that licensed meningococcus serogroup B (MenB) vaccines provided
33 partial protection against Gc infection. To determine antigens responsible for cross-protection,
34 memory B cells from 4CMenB vaccinated volunteers were single-cell sorted to identify antibodies
35 that kill Gc in a bactericidal assay. Nine different antibodies, all deriving from the IGHV4-34
36 germline carrying unusually long HCDR3s, recognized the PorB protein, four recognized the
37 lipooligosaccharide (LOS), and four unknown antigens. One of the PorB antibodies, tested in vivo,
38 provided protection from Gc infection. The identification of PorB and LOS as key antigens of
39 gonococcal and meningococcal immunity provides a mechanistic explanation of the cross-
40 protection observed in the clinic and shows that isolating human monoclonal antibodies from
41 vaccinees can be instrumental for bacterial antigen discovery.

42 INTRODUCTION

43 *Neisseria gonorrhoeae* (Gonococcus; Gc), the causative agent of gonorrhea, has been a persistent
44 public health problem for centuries (Hill et al., 2016). Today, gonorrhea is the second most
45 common sexually transmitted disease, causing 710,000 infections yearly in the United States and
46 more than 80 million cases globally (St Cyr et al., 2020; Unemo et al., 2021). Gonococcal infection
47 can lead to pelvic inflammatory disease, infertility, and ectopic pregnancies (Lenz and Dillard,
48 2018). Moreover, the impact of gonorrhea on human health is amplified by its role in increasing
49 both transmission and susceptibility to the human immunodeficiency virus 1 (HIV-1) (Jarvis and
50 Chang, 2012). Since the 1940s the disease has been treated with antibiotics, however, over time
51 the bacterium has acquired resistance to sulphonamides, penicillins, fluoroquinolones and today it
52 is only susceptible to third generation cephalosporins (Unemo and Shafer, 2014). The recent
53 isolation of strains resistant even to cephalosporins (Mlynarczyk-Bonikowska et al., 2020; Unemo
54 and Shafer, 2014) raised the alarm of the World Health Organization (WHO) that, concerned about
55 the bacterium becoming untreatable, concluded that the development of new antimicrobials and Gc
56 vaccines is imperative (Goire et al., 2014; Unemo et al., 2021; Unemo and Shafer, 2014). The
57 search for vaccines against Gc has been largely unsuccessful for many decades (Russell et al.,
58 2019). Although in 1978 a human challenge trial demonstrated protection against infection using a
59 pilus purified from the challenge strain as a vaccine, a large-scale phase 3 trial involving 3,250
60 volunteers failed to show any efficacy, most likely because of the large antigenic variability of the
61 antigen used in this vaccine (Boslego et al., 1991; Gottlieb et al., 2020; Greenberg, 1975; Maurakis
62 and Cornelissen, 2022; Russell et al., 2019; Tramont, 1989). After decades of failures in
63 developing gonococcal vaccines, the recent observation of partial efficacy against Gc infection of
64 *Neisseria meningitidis* serogroup B (MenB) Outer Membrane Vesicle (OMV)-based vaccines has
65 revived the hopes for gonococcal vaccine research (Paynter et al., 2019; Semchenko et al., 2019).
66 Briefly, a retrospective case-control study conducted in New Zealand following mass vaccination
67 campaign with an OMV based MenB vaccine (MeNZB) (Paynter et al., 2019) and three
68 observational studies conducted in the U.S. and Australia (Abara et al., 2022; Bruxvoort et al.,
69 2023; Wang et al., 2022) reported 30-46% protection against Gc infection and confirmed

70 observations that had been made in the past in Canada (Longtin et al., 2017), Cuba (Ochoa-Azze,
71 2018) and Norway (Whelan et al., 2016). These observations provided proof of concept that a Gc
72 vaccine is feasible and suggested that MenB OMV-based vaccines contained antigens that might
73 induce a cross-reactive immunity against Gc. The hypothesis is supported by the fact that MenB
74 and Gc share between 80 and 90% of genome identity (Tinsley and Nassif, 1996) and their
75 lipooligosaccharide (LOS) antigens share partial similarity (Mandrell et al., 1988). Since the PorA
76 immunodominant protective antigen of the meningococcal OMV vaccine is not expressed by Gc
77 (Unemo et al., 2005), it has been hypothesized that other MenB subdominant antigens might be
78 responsible for the observed cross-protection (Semchenko et al., 2019). A comparative genomic
79 analysis on approximately 1,000 Gc isolates collected in the U.S. and MenB reference strains
80 allowed the identification of 57 Outer Membrane Proteins (OMPs) with high homology between the
81 two *Neisseria* species (Marjuki et al., 2019). Approximately 42% of common OMPs have been
82 identified in the OMV component of the 4CMenB vaccine licensed against MenB (Ferrari et al.,
83 2006; Holst et al., 2013; Tani et al., 2014; Vipond et al., 2006). These included BamA, NspA, MtrE
84 and MetQ, exhibiting between 91% and 100% amino acid sequence similarity, and PorB, RmpM,
85 PilQ, OpcA, FetA, Omp85 (BamA) and LbpA, which were shown to be consistently present in
86 different OMV lots of the 4CMenB vaccine (Tani et al., 2014). In addition, the 4CMenB vaccine
87 contained also the NHBA protein which is moderately homologous between the two *Neisseria*
88 species (Marjuki 2019). To understand which MenB antigens could contribute to the cross-
89 protection observed against Gc, we immunized healthy volunteers with the 4CMenB vaccine,
90 collected their peripheral blood cells (PBMCs), single cell sorted the memory B cells (MBCs) and
91 selected the B cells producing monoclonal antibodies (mAbs) recognizing the meningococcal OMV
92 and killing gonococcus *in vitro* (Fig. 1). This approach allowed the identification of PorB and LOS
93 as key antigens for cross-protection against gonococcus and meningococcus and provided a
94 paradigm that could be used for antigen discovery for other antibiotic resistant bacteria.

95 **RESULTS**

96 **Identification of bactericidal mAbs (b-mAbs) against Gc**

97 To isolate MBCs specific for MenB OMVs contained in the 4CMenB formulation, 3 volunteers were
98 vaccinated with the 4CMenB vaccine and their PBMCs were collected 28 days after receiving the
99 booster dose (**Fig. S1A**). PBMCs were stained with antibodies for CD19, CD27, IgD, IgM and
100 MenB OMVs labelled with Alexa488, with the aim to identify class-switched memory B cells
101 (MBCs; CD19⁺CD27⁺IgD⁺IgM⁺) OMV-binders. The gating strategy applied to perform the single cell
102 sorting is described in **Fig. S1B**. Using this approach 3,080 OMV⁺ MBCs were sorted and
103 incubated for 2 weeks to allow natural production of immunoglobulins as previously described
104 (Andreano et al., 2021). The percentage of class-switched MBCs detected in the three donors was
105 23.2, 16.9 and 43.1% for subjects 7, 8 and 9, respectively, and the percentage of OMV⁺ MBCs
106 ranged from 2.6 to 12.6% (**Fig. S1C**). To identify OMV⁺ MBCs that could cross-bind Gc, we
107 performed a whole bacterial cell enzyme-linked immunosorbent assay (ELISA) with the Gc strains
108 FA1090 and F62 (Hobbs et al., 2011), and the recently described low-passaged clinical isolate
109 BG27 (Manca et al., 2023). This latter strain expresses the same PorB.1B variant of FA1090 and
110 presents a polyphosphate (polyP) pseudo-capsule that has been shown to confer high serum
111 resistance. From the 3,080 OMV⁺ MBCs sorted, a panel of 390 (12.7%) antibodies recognized at
112 least one of the tested Gc strains in ELISA (**Fig. 2A**). The variable regions of the mAbs heavy (VH)
113 and light (VL) chains were cloned into appropriate vectors for mAb expression as previously
114 described (Andreano et al., 2021). All 390 Gc-binding mAbs were expressed in small scale (1 mL)
115 through transcriptionally active polymerase chain reaction (TAP) and screened by resazurin-based
116 high-throughput antibody bactericidal assay (R-ABA) (Stazzoni et al., 2023). For this assay, mAbs
117 were incubated with Gc strains in presence of baby rabbit complement (10-20%) and bacterial
118 viability was measured through the use of resazurin. To maximize the sensitivity of the bactericidal
119 assay, the antibodies were initially engineered using a fragment crystallizable (Fc) region carrying
120 the RGY mutations (E345R, E430G, S440Y) which promote antibody hexamerization and enhance
121 C1q deposition on the bacterial surface (de Jong et al., 2016; McIntosh et al., 2015). Among the
122 390 tested mAbs, 36 (9.2%) were found to be bactericidal against FA1090 (**Fig. 2B**). However,

123 while the RGY antibody scaffold is useful for screening, it cannot be used clinically because of non-
124 specific antibody hexamerization and complement binding in solution even in the absence of the
125 target antigen (de Jong et al., 2016). Therefore, the subsequent work was performed using a
126 scaffold carrying only the G (E430G) mutation, known as HexaBody (de Jong et al., 2016). This
127 scaffold still enables improved complement deposition compared to natural IgG1, while preventing
128 target-independent hexamerization and C1q binding in solution. In addition, the HexaBody scaffold
129 is currently being used in different trials supporting its selection for clinical development (De Goeij
130 et al., 2019; Oostindie et al., 2020). Seventeen out of 36 (47.2%) b-mAbs expressed as HexaBody
131 retained their bactericidal activity against strain FA1090 with potency values (50% inhibitory
132 concentration; IC₅₀) ranging from 0.05 to ~150 µg/mL (**Fig. 2C and S2**).
133

134 **Antigen identification and functional mAb characterization on Gc and MenB strains**

135 To identify the antigens recognized by the selected mAbs, we performed immunoblot assays using
136 MenB lysed OMVs or purified LOS. In addition, we used microarrays containing 12 recombinant
137 MenB proteins and 26 recombinant *E. coli* Generalized Modules for Membrane Antigens (GMMAs)
138 expressing MenB OMPs (Viviani et al., 2023). Four of the total 17 b-mAbs (01B05, 03N18, 04E05
139 and 02G11) recognized purified MenB LOS by immunoblot (**Fig. 3A**). Seven b-mAbs tested by
140 immunoblotting on MenB OMVs recognized a band co-migrating with the Porin B (PorB) protein
141 (**Fig. 3B**). The signal of band intensity for these mAbs ranged from high (01J23, 01K12 and
142 03M18) to weak (01H12, 02C05, 02K03 and 04L22) (**Fig. 3B**). The recognition of PorB by all 7
143 mAbs, including the weakly reactive ones, was confirmed through protein microarray analysis and
144 binding to purified recombinant MenB PorB and *E. coli* GMMAs expressing MenB PorB (**Fig. 3C**).
145 Moreover, two additional anti-PorB antibodies (01C05 and 02G22) were identified through binding
146 of PorB on the microarray (**Fig. 3C**). Therefore, our results revealed that a total of 9 (53.0%) b-
147 mAbs targeted the PorB antigen and 4 (23.5%) recognized LOS. For the remaining 4 (23.5%) b-
148 mAbs (01L10, 01I20, 02E13 and 05G16) we were unable to identify the target antigen neither by
149 Western blotting nor by protein microarray. To confirm the bactericidal activity of selected identified
150 b-mAbs, antibodies were tested against the Gc strain FA1090 through classical serum bactericidal

151 assay (**Fig. 3D, left panel**). All antibodies were able to kill Gc FA1090 (**Fig. 3D, left panel, Table**
152 **S1**). The 17 mAbs killing the FA1090 strain were evaluated for phagocytic activity through the
153 visual opsonophagocytosis assay (vOPA). This approach is based on high-content image analysis
154 to count the number of bacteria internalized by macrophage-like THP-1 cells in the presence of b-
155 mAbs (**Fig. 3D, middle panel**). With the exception of anti-PorB mAb 04L22, all antibodies tested
156 showed opsonophagocytic activity, and 4 anti-PorB antibodies, 01J23, 01K12, 01C05 and 02G22,
157 were found to be the most potent in promoting bacterial internalization by THP-1 macrophage-like
158 cells. Finally, we evaluated through microarray analysis the ability of our Gc b-mAbs to cross-react
159 with additional eighteen low-passaged BG clinical strains (**Fig. S3**). Overall, broad cross-reactivity
160 was shown by all b-mAbs with the exception of 02C05 (anti-PorB), 01L10 (unknown target), 03M18
161 (anti-PorB) and 02E13 (unknown target) which recognized 4, 3, 0 and 0 BG strains respectively.
162 Distinct binding profiles were observed between anti-LOS and anti-PorB b-mAbs (**Fig. S3**). In fact,
163 anti-LOS were the only antibodies able to bind both BG1 and BG11. Conversely, almost all anti-
164 PorB b-mAbs were able to bind BG10, BG19, BG21, BG23, BG24 and BG29 which were not
165 bound by anti-LOS antibodies. Antibodies targeting unknown antigens showed lower cross-
166 reactivity to BG strains, with the exception of 05G16 which presented a binding profile similar to
167 anti-PorB b-mAbs (**Fig. S3**). Since Gc b-mAbs isolated in this study were elicited by the MenB
168 4CMenB vaccine, we also evaluated the bactericidal activity of 17 antibodies against a panel of ten
169 strains representative of the genetic diversity of MenB (**Fig. 3D, right panel**). The panel includes
170 the strains used to produce the Norwegian and Cuban MenB OMV-based vaccines (H44-76 and
171 CU385), the reference strains for NadA and NHBA 4CMenB antigens (5/99, NGH38) (Donnelly et
172 al., 2010), the New Zealand epidemic strain (NZ98/254) from which the 4CMenB detergent-
173 extracted OMVs are derived, and the MC58 strain from which the sequence of fHbp contained in
174 the 4CMenB vaccine was derived (Pizza et al., 2000). M01-240364 was selected as a PorB 2
175 expressing strain to evaluate the impact of different PorB alleles on functional activity. Moreover,
176 the MenB strains M01-240355 (Snape et al., 2013), M07576 (Viviani et al., 2023) and ARG3191
177 (*Neisseria* isolates database ID: 51591) were selected because they were mismatched for NHBA,
178 NadA, fHbp and PorA P1.7-2,4 variants present in the 4CMenB vaccine. In **Table S2** the

179 genotyping of the 10 MenB strains selected for the bactericidal analysis of antibodies is reported.
180 Our results showed that Gc b-mAbs were highly bactericidal against most MenB strains. Anti-LOS
181 antibodies were able to kill all MenB strains with the exception of NGH38 and ARG3191 (**Fig. 3D,**
182 **right panel; Table S1 and 2**). Three of these mAbs (01B05, 03N18, 04E05) were more potent
183 than the fourth (02G11) (**Fig.3D, right panel; Table S1**). Anti-PorB b-mAbs also showed broad
184 functionality against MenB strains. Interestingly, while only one anti-LOS exhibited low activity
185 against ARG3191, anti-PorB antibodies were extremely functional against this strain (**Fig. 3D,**
186 **right panel; Table S1**). Conversely, anti-PorB antibodies showed poor or no activity against MenB
187 strains carrying a PorB class different from the NZ98/254 strain, namely 5/99, NGH38 and M01-
188 240364 (**Fig. 3D, right panel; Table S1**). Antibodies targeting unknown antigens showed the
189 lowest breadth of reactivity against MenB strains and their killing profile was similar to anti-PorB b-
190 mAbs.

191

192 ***IGHV4-34 is predominantly used by anti-PorB bactericidal antibodies***

193 We subsequently investigated the genetic characteristics of the b-mAbs. All the genetic features of
194 the 17 b-mAbs are summarized in **Table S3**. Surprisingly, all 9 anti-PorB b-mAbs used the
195 immunoglobulin heavy variable chain (IGHV) 4-34 germline rearranged with the immunoglobulin
196 heavy joining chain (IGHJ) 3-1 (3/9; 33.3%), IGHJ4-1 (3/9; 33.3%) or IGHJ6-1 (3/9; 33.3%). These
197 heavy chains paired with different light chains, most frequently with IGKV3-20 (7/9; 77.8%) (**Fig.**
198 **S4A**). The b-mAbs targeting unknown antigens also preferentially used the IGHV4-34 germline
199 (3/4; 75.0%) paired exclusively with the IGKV3-20 which accommodated different J genes (**Fig.**
200 **S4A**). Interestingly, while most of anti-PorB b-mAbs carry the IGHV4-34 paired with IGKV3-20,
201 only two clonal families with two members each were identified (clone ID 6 and 8) (**Table S3**). The
202 remaining anti-PorB antibodies were orphan sequences (i.e. do not belong to clonal families)
203 highlighting the diversity of this class of antibodies. Anti-LOS used mainly the IGHV2-5; IGHJ4-1
204 (3/4; 75.0%) paired with different light chains (**Fig. S4A**). In addition, 3/4 (75%) anti-LOS b-mAbs
205 derived from the same clonal family (clone ID 1). The low number of anti-LOS b-mAbs and their
206 high clonality means that limited heterogeneity was observed in those recovered in this study. Our

207 analyses revealed that anti-LOS and anti-PorB mAbs use preferentially different heavy and light
208 chain gene rearrangements (**Fig. S4A**). In addition, we evaluated the V gene mutation frequency,
209 heavy chain complementary determining region 3 (HCDR3) amino acidic length, frequency of
210 positively charged and hydrophobic amino acids in the HCDR3. Our analyses showed that anti-
211 LOS b-mAbs had almost 3-fold higher V gene mutation frequencies compared to antibodies
212 targeting PorB or unknown antigens (**Fig. S4B**). Furthermore, anti-PorB and antibodies targeting
213 unknown antigens showed longer HCDR3 (23 – 28 amino acids, compared to 13-15 for anti-LOS
214 b-mAbs), and a higher frequency of positively charged residues compared to anti-LOS b-mAbs
215 (**Fig. S4C-D**). Finally, no major differences in the frequency of hydrophobic amino acids in the
216 HCDR3s were observed among the three groups of antibodies (**Fig. S4E**).
217

218 **Immuno-staining of the gonococcal bacterial surface**

219 Following functional and genetic characterization of our panel of 17 Gc b-mAbs, we investigated
220 their binding pattern on the surface of Gc FA1090 (**Fig. 4**). Specifically, three different assays were
221 performed: flow cytometry, to evaluate the percentage of bound bacteria in the whole population,
222 immunofluorescence and immunogold, to profile the binding pattern of each antibody on the
223 surface of single bacteria. Flow cytometry data showed that the majority of anti-LOS antibodies
224 (3/4; 75%) bound 88-92% of FA1090 bacterial population (**Fig. 4A, left panel**). Only the 02G11
225 antibody showed a lower ability to bind Gc. Antibodies showing strong recognition by flow
226 cytometry also had a very strong signal in immunofluorescence (**Fig. 4A, middle panel**). In
227 addition, immunofluorescence and immunogold analyses revealed that all anti-LOS b-mAbs bind
228 homogenously the entire surface of Gc (**Fig. 4A, middle and right panels; Fig. S5A**). Anti-PorB
229 antibodies showed two different modalities of binding. Flow cytometry data revealed that 6 out of 9
230 b-mAbs (66.7%) were able to bind over 70% of bacteria while the remaining 3 bound less than
231 56% of the Gc population (**Fig. 4B, left panel**). A similar pattern was also observed by confocal
232 and electron microscopy (**Fig. 4B, middle panel**). Indeed, almost all antibodies (8/9; 88.9%) bound
233 homogenously the whole surface of the bacterium, while the remaining antibody (01H12) bound
234 discontinuously the surface of Gc, showing higher binding intensity on specific spots of the

235 bacterium (**Fig. 4B, middle and right panels; Fig. S5B**). Antibodies targeting unknown antigens
236 all showed binding to over 67% of the bacterial population by flow cytometry (**Fig. 4C, left panel**)
237 and also showed two different modalities of binding by immunofluorescence and immunogold
238 analyses, similar to what was observed for anti-PorB antibodies. Indeed, two b-mAbs (01I20 and
239 01L10) bound homogeneously the whole surface of Gc while the remaining two antibodies showed
240 a discontinuous pattern and displayed high-intensity binding only to discrete spots on the Gc
241 surface (**Fig. 4C, middle and right panels; Fig. S5C**).

242

243 **Epitope characterization of anti-LOS mAbs**

244 Neisserial LOS consists of lipid A anchored into the outer membrane, and an oligosaccharide core
245 composed of two 3-deoxy-D-manno-2-octulosonic acid (KDO) and two heptose residues (Hep1
246 and Hep2 residues) from which three oligosaccharide chains (α , β , γ) containing glucose (Glc),
247 galactose (Gal), glucosamine (GlcNAc) and galactosamine (GalNAc) can extend (Jennings et al.,
248 1999) (**Fig. 5**). While the γ chain is constitutively expressed in both *Neisseria* species, glycan
249 extensions of the α -chain from Hep1 and the β -chain from Hep2 are controlled by a series of phase
250 variable LOS glycosyltransferase (*Igt*) genes (Jennings et al., 1999) resulting in variable length of
251 sugar chains between and within strains. Phase variable *IgtA*, *IgtC* and *IgtD* encode glycosyl
252 transferases involved in the elongation of the LOS α -chain, while *IgtG* mediates LOS β -chain
253 extension. LOS variation in MenB leads to 12 immunotypes (L1-L12) (Mubaiwa et al., 2017) all
254 carrying an α -chain of variable length (from 2 to 4 sugars) and only two of them (L2, L5) bearing a
255 β -chain with one glucose. The NZ98/254 MenB strain from which 4CMenB OMV component is
256 prepared belongs to L1 and L3,7,9 immunotypes (Findlow et al., 2007). Although there is no LOS
257 typing scheme defined for Gc, all strains contain an α -chain that can be composed of 2, 3, 4 or 5
258 sugars, while the β -chain, composed of a lactose, can be present or absent. To shed light on the
259 specificity of the anti-LOS b-mAbs discovered here, we utilized a library of 8 LOS mutants derived
260 from the MS11 4/3/1 strain, in which the 4 variable *Igt* genes were genetically fixed “ON” or “OFF”
261 (Chakraborti et al., 2016). Each of these strains mainly expresses one of the Gc LOS structures,
262 which facilitated the identification of epitopes recognized by the b-mAbs binding to the bacterial

263 surface (**Fig. 5; Fig. S6A**) (Chakraborti et al., 2016). Specifically, the MS11 mutant strains
264 presented 8 different LOS structures, 4 carrying both α - and β -chains (2HexG+, 3HexG+, 4HexG+
265 and 5HexG+) and 4 carrying only the α -chain (2HexG-, 3HexG-, 4HexG- and 5HexG-), where G+
266 and G- refer to mutants in which the status of *lgtG* is fixed “ON” or “OFF” respectively, while the
267 designation 2Hex, 3Hex, 4Hex and 5Hex refers to mutants expressing 2, 3, 4 and 5 sugars
268 respectively in the α -chain. LOS structures 2HexG-, 3HexG- and 4HexG- are known to be shared
269 between Gc and MenB (Mubaiwa et al., 2017). Immunoblotting analysis on the LOS MS11 mutants
270 revealed that all anti-LOS b-mAbs bound to the 2HexG-, 3HexG-, 4HexG- and 5HexG- structures,
271 while the presence of the β -chain impaired bacterial recognition (**Fig. 5; Fig. S6A**). The data
272 indicate that the minimal structure required for these antibodies to bind the LOS was the 2HexG-,
273 characterized by a single α -chain composed of two hexoses and by the absence of the β -chain. To
274 validate the obtained immunoblot data, the 4 anti-LOS b-mAbs were tested for binding on a
275 microarray containing the 4CMenB OMV present in the vaccine, and additional OMVs from 13
276 MenB strains known to carry different LOS structures (**Fig. S6B; Table S2**) (McLeod Griffiss et al.,
277 2000; O'Connor et al., 2008). Microarray data showed that anti-LOS b-mAbs were able to bind
278 83.3% of MenB strains with absent or phase OFF *lgtG* gene, while they were not able to recognize
279 the MenB strains with *lgtG* gene ON (**Fig. S6B; Table S2**).
280

281 **Epitope characterization of anti-PorB b-mAbs**

282 PorB is a voltage-gated pore found in the outer membrane as a homotrimeric B-barrel. Each PorB
283 monomer of 32 to 35 kDa is composed of 16 transmembrane-spanning regions and 8 extracellular
284 loops (Chen and Seifert, 2013). The MenB (NZ98/254) and Gc (FA1090) PorB regions recognized
285 by 01K12, the anti-PorB b-mAb showing the highest functional activity against Gc, were
286 investigated by Hydrogen/Deuterium exchange Mass Spectrometry (HDX-MS) and by *in silico*
287 Molecular Docking. 4CmenB and Gc detergent-extracted OMVs were labeled with deuterium in the
288 presence or absence of 01K12 and the level of H/D exchange was monitored on 107 and 78 PorB
289 peptides respectively covering more than 98% of the MenB and Gc protein sequences. Upon
290 binding of the b-mAb to 4CmenB OMVs, reduction in deuterium incorporation was observed on 21

291 overlapping peptides, which defined an epitope involving loop 5 (V186-H194), loop 6 (D215-L235)
292 and loop 7 (S255-L261) (**Fig. 6A; Fig. S7**). Interestingly, Gc PorB showed a different mode of
293 binding, with reduction of deuterium incorporation in loop 1 (T21-S26), loop 3 (N94-A106 and I119-
294 Y132), loop 4 (S143-Y161), loop 5 (F180-T196) and loops 6-7 (Y235-D284) (**Fig. 6B**). *In silico*
295 docking analysis was performed considering the 01K12 b-mAb and MenB PorB, and Gc PorB
296 respectively. In particular, for antibody structural prediction the DeepAb, an artificial intelligence
297 (AI) algorithm specific for antibody modeling that provides a highly confident estimation of the
298 CDR3 region was used, while the paratope region was predicted with Paragraph (Chinery et al.,
299 2023) on the generated models. Additionally, AlphaFold2 (Jumper et al., 2021) was adopted to
300 predict the NZ98/254 MenB PorB and FA1090 Gc PorB structures (**Fig. 6C-D**). By comparing
301 MenB PorB and Gc PorB 3D models a significant difference was observed in the length and
302 structural features of Loop 5, that appeared short and disordered in MenB PorB and instead 13
303 residues longer and well-structured in Gc PorB (**Fig. 6E**). In Gc PorB, loop 5 belonging to one
304 monomer was oriented towards the adjacent monomer influencing the conformation of the overall
305 epitope region, while this was not observed for MenB PorB. On the basis of these observations,
306 docking epitope definition was confined to the monomer for MenB PorB and to the trimer of Gc
307 PorB. Conformational structural analysis on 5 models obtained for Gc PorB mainly revealed 5
308 different orientations for loop 5 with a Root Mean Square Deviation (RMSD) of 8 Å (**Fig. S8A**;
309 orientation 1-5 in **Table S4**) while for 5 MenB PorB models only three 3 possible orientations for
310 loops 5-8 with an RMSD of 4 Å (**Fig. S8B**; orientation 1-3 in **Table S5**). These ensembles of PorB
311 orientations were used as a starting point for docking analysis. The docking results showed good
312 agreement with HDX-MS data. Indeed, binding analysis on the lowest energy docking pose for
313 MenB PorB/01K12 (-42,57 Haddock Unit, table S2) and Gc PorB/01K12 (-49,324 Haddock Unit-
314 Table S3) revealed the same loop binding pattern observed experimentally (**Fig. 6**).
315

316 **Protection in a low genital tract mouse model of infection**

317 An *in vivo* lower genital tract (LGT) mouse model of infection of female BALB/c mice was applied to
318 assess the protective efficacy of 01K12 against the Gc strain FA1090 (**Fig. 7A**). 01K12 was

319 selected as it showed the highest bactericidal potency against Gc and broad recognition of clinical
320 Gc strains and MenB strains, suggesting resistance to multiple mutations on the PorB antigen (**Fig.**
321 **3D and Fig. S3**). To allow colonization of the mice by the challenge gonococcal strain mice were
322 treated with estradiol and antibiotic prior to infection. The efficacy of mAb 01K12 was assessed by
323 daily intravaginal administration throughout the course of the experiment. For this study, 42 mice
324 were divided into three groups (14 animals each). The first group was composed by animals
325 treated with 0.5 µg/day 01K12 for one week. The second and third groups were the Placebo and
326 HexaBody isotype control groups, which received a saline solution and an anti-respiratory syncytial
327 virus (RSV) antibody at the concentration of 0.5 µg/day for one week (**Fig. 7A**). Animals were
328 challenged with 2×10^6 colony forming units (CFU) of Gc delivered intravaginally 2 hours post-
329 antibody and saline solution administration. Subsequently, vaginal swabs and CFU counts were
330 performed daily throughout the seven days of the study. The percentage of infected mice and
331 bacterial burden, measured as area under the curve of Gc CFU over time, were used to evaluate
332 the efficacy of the mAb. Mice treated with 01K12 exhibited a significantly faster clearance rate
333 compared to the saline ($p=0.0235$) and isotype ($p=0.0222$) groups. In addition, our results showed
334 that only 36% of mice receiving 01K12 were colonized on day 7 compared to 71% and 78% of
335 mice receiving saline or HexaBody isotype control, respectively (**Fig. 7B**). Finally, significantly
336 decreased bacterial burdens in the group receiving 01K12 were observed compared to the saline
337 and HexaBody isotype control groups (**Fig. 7C**).

338 **DISCUSSION**

339 Gc is one of the bacterial pathogens which is resistant to most antibiotics and for which no
340 alternative medical tools such as vaccines or monoclonal antibodies are currently available. In this
341 work, we were prompted by recent reports showing that the licensed 4CmenB vaccine induced
342 protection against Gc to investigate the nature of the immune responses resulting from 4CmenB
343 vaccination and to clone and identify MBCs from vaccinees which produced antibodies able to kill
344 Gc. Surprisingly, the antibodies identified recognized only PorB protein and LOS among the many
345 antigens shared by Gc and MenB. These antigens were already known to elicit bactericidal activity
346 but are not considered as priority antigens in MenB or Gc vaccines. The OMV component used in
347 the licensed MenB vaccine had been included in the vaccine largely because they carry the
348 immunodominant PorA antigen which, despite being antigenically variable, induces strong
349 bactericidal response against homologous strains of MenB, but is not present in Gc (Humphries et
350 al., 2006; Sacchi et al., 1998; Tondella et al., 2000). PorB, instead, is the most abundant antigen
351 on the gonococcal surface, it is densely present on the bacterial surface and is readily accessible
352 as a target of adaptive immunity. However, PorB has been studied more for its immune evasion
353 properties than as a vaccine antigen (Jones et al., 2023). Indeed, PorB is known to bind C4BP and
354 factor H and to contribute to the serum resistance of Gc (Ram et al., 2001) and has other
355 immunomodulatory properties. Monoclonal antibodies obtained by immunizing mice with
356 gonococcal strains had been shown to be bactericidal and opsonic in the presence of complement
357 and able to protect epithelial cells against Gc invasion (Heckels et al., 1987; Joiner et al., 1985),
358 however the 70% amino acid sequence similarity between PorB of MenB and Gc suggested a
359 limited cross-protective role against gonococcus. Surprisingly, we demonstrated that MenB PorB
360 was able to elicit cross-functional antibodies against Gc. Indeed, this is the first study reporting the
361 isolation from humans of Gc bactericidal anti-PorB antibodies from subjects immunized with MenB
362 OMVs. More importantly, the most potent PorB antibody has been demonstrated to be sufficient for
363 protection against urovaginal challenge of gonococcus in the mouse model. This has been shown
364 before for the 2C7 LOS antibody, isolated after immunization of mice (Gulati et al., 2019a). The
365 anti PorB antibodies identified show a great variability in PorB recognition as assessed by

366 immunoblot and immunofluorescence. This can probably be explained by the fact that PorB
367 requires RmpM and other proteins to be stabilized at the outer membrane (Jansen et al., 2000;
368 Marzoa et al., 2010) and that several of the epitopes identified may recognize conformations
369 stabilized by these interactions. Another important vaccine target is represented by LOS. On a
370 molar basis, LOS is the most abundant gonococcal outer membrane molecule and plays a key role
371 in many facets of pathogenesis (Ram et al., 2018). Regarding the similarity of LOS between the
372 two *Neisseria* species, it is known that MenB and Gc share common LOS structures that could
373 elicit cross-reactive antibodies. Shared LOS structures carry an α -chain of variable length, while
374 lack the β -chain (Mubaiwa et al., 2017; Ram et al., 2018). In particular, the NZ98/254 strain
375 predominantly expresses the L1 and L3,7,9 structure shared with Gc bearing an α -chain with 3 and
376 4 sugars respectively. We found that anti-LOS b-mAbs elicited by MenB OMVs were able to
377 recognize Gc strains carrying LOS structures with α -chain of variable lengths (2 to 5 sugars), likely
378 through binding to the 2Hex- structure as common minimal epitope therein. Importantly the LOS b-
379 mAbs can recognize the Lacto-N-neotetraose (LNnT) epitope (also referred as L3,7,9) (Tsai and
380 Civin, 1991) which is essential for LOS-mediated adherence and invasion and, upon sialylation,
381 promotes Gc serum resistance. Those LOS structures are complementary to the ones recognized
382 by the 2C7 mAb, the anti-gonococcal immunotherapeutic previously identified by the Sanjay Ram
383 group, which binds structures containing a β -chain (Yamasaki et al., 1999). The fact that antibodies
384 to LOS (2C7) and PorB (01K12) are protective against gonococcal infection in the urovaginal
385 niche, confirms that humoral responses may be sufficient for protection against gonorrhea. It is
386 also interesting that both of these antigens are key molecular interactors in immune evasion
387 against complement, binding complement down-regulators such as factor H and C4BP suggesting
388 that counteracting mechanisms of immune evasion may be essential in immune interventions
389 against gonococcus. The identification of LOS and PorB as antigens inducing cross-functional
390 antibodies paves the way for the development of vaccines and therapeutics against Gc and sheds
391 light on the broad protection conferred by OMVs contained in the 4CMenB vaccine against Gc and
392 MenB which extends beyond what had been predicted with known antigens (Marjuki et al., 2019;
393 Martinón-Torres et al., 2021). Finally, our study shows that isolating human mAbs from vaccinated

394 or infected people, a practice which has become very popular for viral infections during the Covid-
395 19 pandemic, can be a useful strategy also to identify key protective antigens among the hundreds
396 of potential targets present in bacteria. The rapid identification of the key protective antigens can
397 be very useful to develop vaccines and therapeutics to address antimicrobial resistance, which is
398 one of the most important medical challenges of our times.

399 **Limitations of the study**

400 A limitation of this study is that *in vitro* neutralization and *in vivo* protection in the gonococcus LGT1
401 mouse model of infection cannot be fully predictive of the behavior of the same antibody in humans
402 and therefore the real benefit of described antibodies can only be assessed in clinical studies.

403 **Acknowledgments**

404 This work was funded by the European Research Council (ERC) advanced grant agreement no.
405 787552 (vAMRes). The authors thank Alfredo Pezzicoli for supporting confocal microscopy
406 acquisition, Erica Borgogni and Elisa Faenzi for binding analysis, Giacomo Vezzani and Chiara
407 Nocciolini for b-mAb expression, Sara Marchi for b-mAb purification, Silvia Guidotti for sequencing,
408 Silvia Principato for contributing to MenB immunotyping, Marco Tortoli, Stefania Torricelli and
409 Paolo Perfetti for assistance during *in vivo* studies, Nicola Pacchiani for supporting the analysis of
410 antibody repertoire, Alessandro Muzzi and Alessandro Brozzi for genome assembly, Alessia
411 Biolchi and Michela Brazzoli for manuscript revision. For kindly providing meningococcal serogroup
412 B strains, the authors are grateful to: Xin Wang and Henju Marjuki and Jarad Schiffer (CDC,
413 Centers for Disease Control and Prevention, Atlanta, GA, USA); Richard Moxon (University of
414 Oxford, Oxford, United Kingdom); Diana R. Martin (Institute of Environmental Science and
415 Research, Porirua, New Zealand); Ray Borrow (Health Security Agency, Manchester, United
416 Kingdom); Dominique A. Caugant (NIPH, Norwegian Institute of Public Health, Oslo, Norway) and
417 Adriana Efron (Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”,
418 Buenos Aires, Argentina) on behalf of the Argentinian National Laboratories Network (NLR). The
419 BG (Bristol group) strains were kindly provided by Dr. Darryl Hill at the University of Bristol, United
420 Kingdom.

421

422 **Author contributions**

423 O.F., E.A. and R.R. conceived the study. P.F., C.C., S.G. and R.N. enrolled 4CMenB vaccinees in
424 the study. E.A., I.P., M.T., S. Tavarini. and C. Sammicheli performed PBMC isolation and single
425 cell sorting. S. Stazzoni, M.T., V.A. and G.A. performed B cell binding and bactericidal screening.
426 S. Stazzoni., M.T., V.A., G.A., E.M., P.M., M.D.V., G.T. and C.L. retrieved antibody sequences,
427 expressed and purified recombinant antibodies. E.A. and A.R. performed B cell repertoire
428 analyses. F.C. performed immunoblot on MenB and Gc LOS. V.V. performed microarray analyses.
429 S. Tomei and L.S. performed classical SBA on GC and MenB strains. L.E.F. and S.F. performed
430 HDX-MS experiments. F.V., D.C. and C. Sala produced and analyzed visual opsonophagocytosis

431 data. V.A., E.M. and P.M. performed immunoblot on MenB dOMVs. F.F. and C.T.B. performed
432 immunofluorescence assays. F.G. performed immunogold staining. M. Bodini. analyzed MenB
433 strains. M.A. performed docking analysis on MenB and Gc PorB. A.S. performed *in vivo*
434 experiments. S. Stazzoni, M.F., M.T., V.V., F.C., L.E.F., M.A., L.S., B.B., I.M., I.D., O.F., E.A. and
435 R.R. wrote the manuscript. All authors undertook the final revision of the manuscript. M.F., M.
436 Bardelli, I.M., I.D., O.F., E.A. and R.R. coordinated the project.

437

438 **Declaration of interests**

439 M.F., V.V., F.C., S.T., L.S., L.E.F., A.S., M.A., F.G., M. Bodini, G.T., C.L., M.D.V., S. Tavarini. and
440 C. Sammicheli, S. Savino, B.B., N.N., E.F., M. Bardelli, I.M., I.D., O.F. are employees of the GSK
441 group of companies. S.F. is a PhD student at Politecnico di Milano and participates in a post
442 graduate studentship program at GSK. Authors M.F., S.S., B.B., N.N., E.F., M. Bardelli, I.M., I.D.,
443 O.F., M.P. and R.R. hold shares in the GSK group of companies and declare no other financial and
444 non-financial relationships and activities. Remaining authors have no competing interests to
445 declare.

446 **FIGURE LEGENDS**

447 **Fig. 1. Workflow for Gc bactericidal mAbs identification and characterization.** The overall
448 scheme shows four different steps to identify and characterize bactericidal mAbs. **(A)** The first
449 steps consist in the enrolment of 4CMenB vaccinees (n=3) from which blood was collected and
450 PBMCs isolated. 4CMenB OMVs⁺ memory B cells were single cell sorted (n=3,080) and after 2
451 weeks of incubation B cell supernatant were screened for their binding specificity against different
452 Gc strains. Once identified, Gc binding mAbs (n=390) were recombinantly expressed in RGY and
453 G (HexaBody) scaffolds to evaluate their bactericidal activity to Gc. **(B)** The second step starts with
454 the characterization of identified functional mAbs in the HexaBody scaffold (n=17). Firstly,
455 antibodies were tested to identify their cognate antigen. Next, mAbs were evaluated for their ability
456 to kill different Gc and MenB strains, and for their binding profiles. Finally, the heavy and light chain
457 sequences of mAbs were recovered and repertoire analysis performed. **(C)** Selected anti-PorB and
458 all anti-LOS mAbs were further characterized to identify their targeted epitope. **(D)** In addition, the
459 most promising anti-PorB mAb was tested *in vivo* to evaluate its efficacy in preventing Gc infection.
460

461 **Fig. 2. Identification of Gc bactericidal mAbs.** **(A)** The graphs show 4CMenB OMV⁺ mAbs
462 binding activity against Gc strains FA1090, F62 and BG27. The threshold of positivity was set as
463 two times the value of the blank (dotted line). The dark blue and gray dots represent binding and
464 non-binding mAbs respectively. The number and percentage of mAbs tested per donor are
465 denoted on each graph. **(B)** Dot charts show the bactericidal activity of Gc-binding mAbs
466 recombinantly expressed in the RGY scaffold. The threshold of positivity was set as 10% signal
467 reduction from medium value (dotted lines). The dark red and dark blue dots represent bactericidal
468 and not-bactericidal mAbs respectively. The number and percentage of mAbs tested per donor are
469 denoted on each graph. **(C)** The heatmap shows the bactericidal activity against Gc FA1090 strain
470 of mAbs expressed in the G (HexaBody) scaffold. Dark red and white boxes represent bactericidal
471 and non-bactericidal mAbs respectively.

472

473 **Fig. 3. Antigen identification and functional characterization of bactericidal mAbs. (A-B)**

474 From left to right, immunoblot analysis of anti-LOS (**A**) and anti-PorB mAbs (**B**) on purified
475 meningococcal LOS and on OMVs, respectively. (**C**) The heatmap shows the binding signal
476 intensity of Gc b-mAbs to meningococcal recombinant PorB antigen and to *E. coli* GMMA
477 expressing MenB PorB. (**D**) The heatmap shows on the left the bactericidal activity of b-mAbs
478 against Gc FA1090 strain. The middle panel shows the opsonophagocytic activity of b-mAbs
479 against FA1090. The right panel shows the bactericidal activity of b-mAbs against 10 MenB strains.

480

481 **Fig. 4. b-mAb binding profiles to Gc FA1090. (A-C)** Graphs from left to right show flow
482 cytometry histograms, mean fluorescence intensity (MFI) with representative images acquired by
483 confocal microscopy, and images acquired by electron microscopy (immunogold) for anti-LOS (**A**),
484 anti-PorB (**B**) and mAbs targeting unknown antigens (**C**), respectively. For flow cytometry
485 analyses, red, yellow, green, and grey histograms represent negative control, anti-LOS, anti-PorB
486 and mAbs targeting unknown antigens respectively. Immunofluorescence images were acquired
487 with 60X magnification and scale bar reports 1 μ m. Representative electron micrographs of
488 immunogold labeling of anti-PorB, anti-LOS and mAbs targeting unknown antigens binding to Gc
489 FA1090, showing their location as indicated by 12 nm gold particles (black dots). Scale bar for
490 immunogold labeling reports 1 μ m.

491

492 **Fig. 5. Characterization of the anti-LOS mAbs on Gc MS11 LOS mutants.** The graph shows
493 the positive (+) and negative (-) binding of the 17 Gc b-mAbs to the purified LOS structures of 8
494 MS11 mutants.

495

496 **Fig 6. Epitope characterization on trimeric MenB and Gc PorB. (A-B)** MS epitope mapping of
497 b-mAb 01K12 on MenB PorB (**A**) and Gc PorB (**B**). Differences in deuterium uptake (Y-axis) of
498 PorB in absence and presence of b-mAb 01K12 for the 107 (**A**) and 78 (**B**) identified peptides
499 during time course from 15 sec to 100 min. Individual peptides are arranged along the X-axis
500 starting from the N-terminus to the C-terminus of the protein. Positive value in Y-axis indicate

501 protection in deuterium incorporation in presence of b-mAb. Dotted lines indicate the 98% CI. (C-D)
502 Molecular docking results of b-mAb 01K12 on MenB PorB (C) and Gc PorB (D). The
503 Antigen/Antibody contact probability distribution was calculated on the lowest PorB/01K12 energy
504 cluster. On the Y-axis is reported the contact density distribution and on the X-axis the residues
505 number relative to PorB. Plots are colored according to the loops in contact with PorB: loop 1 (red),
506 3 (yellow), 4 (light blue), 5 (green), 6 (purple), and 7 (dark blue). Graphical representation of the
507 relative loop position with respect to the β -barrel region. (E) Sequence alignment of MenB
508 (NZ98/254) and Gc (FA1090) PorB. PorB loops are identified by bold residues. Colored loops were
509 identified as relevant in MenB and Gc PorB HDX-MS epitope mapping.

510

511 **Fig. 7. Prophylactic efficacy of 01K12 in a mouse LGT model of Gc infection.** (A) Schematic
512 representation and timelines of therapeutic studies performed in SOPF-BALB/c mice to assess the
513 protective efficacy of 01K12. Mice were initially treated with streptomycin (ST), vancomycin (VAN)
514 and trimethoprim (TRM) and then challenged intravaginally (ivag) with Gc FA1090 on day 0 (D0).
515 Average bacterial burden was measured daily in vaginal secretions after infectious challenge on
516 D1. (B) Time to bacterial clearance is shown using Kaplan-Meier curves, which display the
517 percentage of each group with detectable vaginal CFU, measured daily after infectious challenge
518 on D1. (C) Overall bacterial titer in each animal was assessed using the area under the curve
519 (AUC) analysis, calculated from the distribution of the CFUs over time. AUC values for each group
520 were compared using the Mann Whitney U test. Significances are shown as \square $p < 0.05$ and $\square\Box$ $p <$
521 0.01.

522 **SUPPLEMENTARY FIGURE LEGENDS**

523 **Fig. S1. Gating strategy used for single cell sorting of MBCs.** (A) Schematic representation of
524 cohort and strategy to isolate 4CMenB OMV⁺ MBCs. (B) Starting from top left to the right panel,
525 the gating strategy shows: CD19⁺ B cells; CD19⁺CD27⁺IgD⁻; CD19⁺CD27⁺IgD⁺IgM⁻;
526 CD19⁺CD27⁺IgD⁺IgM⁺OMV⁺ B cells. (C) Table shows the overall B cell subset frequencies and
527 number of sorted cells.

528

529 **Fig. S2. Bactericidal activity of HexaBody mAbs by R-ABA against Gc FA1090 strain.** mAbs
530 are sorted by color. Anti-LOS mAbs are displayed as yellow dots, anti-PorB mAbs as green dots,
531 mAbs recognizing unknown antigens as grey dots and an unrelated mAb (negative control) as
532 black dots. Potency evaluation (IC_{50}) was assessed by R-ABA against FA1090 (ATCC) strain.
533 Error bars display the standard deviation over two replicates.

534

535 **Figure S3. Binding reactivity of b-mAbs to OMVs derived from different Gc clinical isolates.**
536 The heatmap shows the binding reactivity of b-mAbs to OMVs derived from 17 low-passaged Gc
537 clinical strains.

538

539 **Fig. S4. Genetic analysis of bactericidal mAbs.** (A) Numbers indicate IGHV and IGKV/LV
540 matches among mAbs. The two most common combinations are IGHV4-34 pairing with IGKV3-20
541 for anti-PorB and unknown mAbs, while anti-LOS mAbs showed preferential IGHV2-5 pairing with
542 IGKV2-5. (B) V gene mutation is indicated by violin plots as percentage of mutation with respect to
543 the reference germline sequences. (C-E) Violin plots indicate the HCDR3 length (aa) (C), HCDR3
544 positive charged aa (D) and HCDR3 hydrophobic aa (E).

545

546 **Fig. S5. Immunoprofiling of mAbs.** (A-C) Immunofluorescence and immunogold images
547 obtained for anti-LOS (A), anti-PorB (B) and unknown (C) mAbs. Confocal fluorescent images
548 were acquired with 60X magnification and scale bar reports 1 μ m. Immunogold labeling of mAbs

549 showing their location as indicated by 12 nm gold particles (black dots). Scale bar for immunogold
550 labeling reports 1 μ m.

551

552 **Fig. S6. Binding profile of anti-LOS b-mAbs to LOS of Gc MS11 mutant strains and to OMVs**
553 **derived from a panel of MenB strains.** (A) Immunoblots showing the binding of the 4 Gc b-mAbs
554 to the purified LOS structures of 8 MS11 mutants. (B) The heatmap shows the binding of 4 b-mAbs
555 to 14 MenB strains. Gray, light blue, aquamarine and dark aquamarine identify non-binding, low-,
556 medium- and high-binding, mAbs respectively.

557

558 **Fig. S7. MenB and Gc dOMV-Embedded PorB epitope recognized by b-mAb-01K12. (A-B)**
559 HDX-MS epitope mapping of b-mAb 01K12 on MenB (A) and Gc (B) dOMV-embedded PorB The
560 H-D exchange was monitored on 107 (A) and 78 (B) peptides, covering more than 98% of the
561 protein sequence. No significant differences in deuterium uptake between unbound and bound
562 states were observed for peptides represented by grey bars, while significant differences were
563 observed for those represented by light blue bars for MenB (A) and light-yellow bars (B) for Gc.

564

565 **Fig. S8. RMSD between PorB AF2 modeled orientations. (A) Gc-PorB.** The RMSD has been
566 calculated considering all the five models generated by AF2. The representative model has been
567 colored-coded by RMSD showing high deviation in the region relative to loop 5. The RMSD range
568 underlines conformational changes that could impair the monomer-monomer interface. (B) Men-
569 PorB. The Root Mean Square Deviation (RMSD) has been calculated considering all the five
570 models generated by AF2. The representative model has been colored-coded by RMSD showing
571 high deviation in the region relative to loops 5, 6, 7, and 8. The RMSD range underlines
572 conformational changes that do not involve the monomer-monomer interface.

573 **SUPPLEMENTARY TABLES**

574 **Table S1. Functional activity of 17 identified b-mAbs on Gc and MenB strains.**

		Gc FA1090		MenB strains – Bactericidal activity IC ₅₀ (µg/ml)									
Antigen recognized	mAb ID	Bactericidal activity (IC ₅₀ µg/ml)	vOPA (%)	NZ98/254	CU385	H44/76	MC58	5/99	NGH38	M07576	ARG3191	M01-240355	M01-240364
LOS	01B05	2.03	50	0.98	0.24	0.24	0.12	0.24	NB	0.06	NB	7.81	0.98
	03N18	4.00	40	0.49	0.24	0.24	0.06	0.49	NB	0.02	31.25	15.63	0.24
	04E05	47.50	30	3.9	0.98	1.95	0.24	0.24	NB	0.03	NB	62.5	1.95
	02G11	65.00	40	15.6	15.63	15.63	7.8	15.63	15.63	0.06	NB	NB	31.25
PorB	01H12	65.00	60	14	NB	125	62.5	NB	NB	112.5	0.12	NB	NB
PorB	02C05	65.00	60	NB	NB	NB	NB	NB	NB	0.12	0.06	NB	NB
PorB	02K03	40.30	37	7.8	62.5	125	NB	NB	NB	0.01	0.02	NB	NB
PorB	01J23	1.95	80	31.25	62.5	7.81	1.95	NB	NB	0.06	0.03	125	NB
PorB	01K12	0.002	80	3.9	15.63	0.49	0.24	NB	NB	0.02	0.01	1.95	125
PorB	03M18	1.95	50	62.5	62.5	15.63	3.91	NB	NB	0.06	0.03	NB	NB
PorB	04L22	0.004	0	0.98	3.91	0.49	0.49	NB	62.5	0.03	0.01	3.91	NB
PorB	01C05	0.006	80	7.8	7.81	0.49	0.49	NB	NB	0.02	0.01	0.98	NB
PorB	02G22	0.004	80	31.25	31.25	0.98	0.49	NB	NB	0.12	0.01	NB	NB
Unknown	01L10	65.00	40	31.25	62.5	125	NB	NB	NB	15.62	31.25	NB	NB
Unknown	01I20	1.00	70	31.25	15.63	0.49	0.98	125	NB	0.98	0.01	125	NB
Unknown	02E13	15.60	50	NB	31.25	NB	NB	NB	NB	1.9	NB	NB	NB
Unknown	05G16	125.00	30	62.5	31.25	15.63	31.25	NB	NB	31.25	0.03	NB	NB

575

576 **NB=** Not bactericidal

577 **Table S2. Summary of MenB strains used in the classical bactericidal assay and microarray.**

MenB strain	Clonal complex	Sequence type	Typing	PorB class	PorB molecular typing (NEISp2020)	<i>IgtG</i> gene presence/phase
NZ98/254	ST-41/44	42	B:4:P1.7-2,4	3	1	no
CU385	ST-32	33	B:4:P1.15	3	39	Yes/OFF
H44/76	ST-32	32	B:15:P1.7,16	3	11	Yes/OFF
MC58	ST-32	74	B:15:P1.7,16-2	3	11	Yes/OFF
5/99	ST-8	1349	B:2b:P1.5,2	2	23	Yes/OFF
NGH38	singlet	36	B:-:P1.3	2	19	Yes/ON
M07576	ST-35	35	B:NA:P1.22-1,14	3	64	no
ARG3191	singlet	12825	B:NA:P1.21,16-36	3	51	Yes/ON
M01-240355	ST-213	213	B:1:P1.22,14	3	229	no
M01-240364	ST-11	11	B:2a:P1.5,2	2	2	Yes/OFF
M12898	ST-35	35	B:NA:P1.5-2,2	3	64	no
M08389	ST-162	162	B:NA:P1.22,14	NA	NA	Yes/OFF
M18711	ST-35	35	B:NA:P1.22-1,14	3	64	no
M09929	ST-35	3592	B:NA:P1.12-1,16	3	1	no
M08129	ST-41/44	44	B:NA:P1.7,1	3	(NEIS2020: 1463)	no
M07463	ST-41/44	2851	B:NA:P1.7,16-3	3	64	no
M13547	ST-41/44	136	B:NA:P1.7,16-3	3	(NEIS2020: 49)	no
M14569	ST-35	35	B:NA:P1.22-1,14	3	(NEIS2020: 266)	no
LNP24651	ST-32	32	B:NA:P1.6,16-26	3	64	Yes/OFF
M13520	ST-41/44	43	B:NA:P1.19,15-1	3	41	no
ARG3222	ST-865	3327	B:NA:P1.21,16-36	3	(NEIS2020: 1405)	Yes/OFF
ARG3753	ST-865	3327	B:NA:P1.21,16-36	3	51	Yes/ON

578

579 **NA=** Not applicable

580 **Table 3. Genetic characteristics of identified b-mAbs**

Antigen	mAb ID	Clone ID	VH-JH usage	VH Mutation Freq (%)	HCDR3 Length (aa)	VL-JL usage	VL Mutation Freq (%)	LCDR3 Length (aa)
LOS	01B05	1	IGHV2-5; IGHJ4-1	12.29	15	IGKV1-9; IGKJ4-1	9.19	9
LOS	03N18	1	IGHV2-5; IGHJ4-1	24.22	15	IGKV1-9; IGKJ4-1	6.99	9
LOS	04E05	1	IGHV2-5; IGHJ4-1	22.05	15	IGKV1-5; IGKJ4-1	30.26	9
LOS	02G11	2	IGHV1-2; IGHJ3-1	25.84	13	IGLV10-54; IGLJ3-1	19.16	11
<hr/>								
PorB	01H12	3	IGHV4-34; IGHJ4-1	2.37	24	IGKV1-39; IGKJ4-1	28.04	9
PorB	02C05	4	IGHV4-34; IGHJ4-1	8.14	28	IGKV3-20; IGKJ1-1	5.42	9
PorB	02K03	5	IGHV4-34; IGHJ4-1	4.41	22	IGLV2-8; IGLJ2-1	3.57	10
PorB	01J23	6	IGHV4-34; IGHJ6-1	8.14	22	IGKV3-20; IGKJ1-1	3.97	9
PorB	01K12	7	IGHV4-34; IGHJ6-1	8.47	23	IGKV3-20; IGKJ2-1	6.14	9
PorB	03M18	6	IGHV4-34; IGHJ6-1	8.47	22	IGKV3-20; IGKJ1-1	3.61	9
PorB	04L22	8	IGHV4-34; IGHJ3-1	7.80	26	IGKV3-20; IGKJ1-1	3.97	9
PorB	01C05	8	IGHV4-34; IGHJ3-1	8.81	26	IGKV3-20; IGKJ1-1	5.05	9
PorB	02G22	9	IGHV4-34; IGHJ3-1	9.15	23	IGKV3-20; IGKJ2-1	2.89	9
<hr/>								
Unknown	01L10	10	IGHV4-39; IGHJ3-1	30.56	28	IGKV3-20; IGKJ3-1	6.50	10
Unknown	01I20	11	IGHV4-34; IGHJ3-1	8.47	25	IGKV3-20; IGKJ1-1	2.53	9
Unknown	02E13	12	IGHV4-34; IGHJ6-1	8.47	28	IGKV3-20; IGKJ4-1	3.61	9
Unknown	05G16	13	IGHV4-34; IGHJ4-1	7.46	23	IGKV3-20; IGKJ1-1	3.61	9

581

582 **Table S4. Docking energy of 01K12/Gc FA1090 PorB complex.** The docking energy reported
583 for the lowest pose obtained for each Gc FA1090 PorB orientation.

mAb ID	Orient-1	Orient-2	Orient-3	Orient-4
01K12	-33.06396	-47.7516	-49.3324	-39.50308

584

585 **Table S5. Docking energy of 01K12/MenB NZ98/254 PorB complex.** The docking energy
586 reported for the lowest pose obtained for each MenB NZ98/254 PorB orientation.

mAb ID	Orient-1	Orient-2	Orient-3
01K12	-37.66491	-42.57284	-14.90061

587

588 **RESOURCE AVAILABILITY**

589 **Lead Contacts**

590 Further information and requests for resources and reagents should be directed to and will be
591 fulfilled by the Lead Contacts, Oretta Finco (oretta.x.finco@gsk.com), Emanuele Andreano
592 (e.andreano@toscanalifesciences.org) and Rino Rappuoli (rino.rappuoli@biotecnopolis.it).

593

594 **Materials Availability**

595 Reasonable amounts of antibodies will be made available by the Lead Contacts upon request
596 under a Material Transfer Agreement (MTA) for non-commercial usage.

597

598 **EXPERIMENTAL MODELS AND SUBJECT DETAILS**

599 **Human samples ethics statement**

600 Azienda Ospedaliera Universitaria Senese, Siena (IT) provided samples from 4CMenB vaccinees
601 donors, who gave their written consent. The study was approved by the local Ethics Committee
602 (AOU Senese, Parere nr. 13946_2018) and conducted according to good clinical practice in
603 accordance with the declaration of Helsinki (European Council 2001, US Code of Federal
604 Regulations, ICH 1997). Human complement source used in the study was obtained according to
605 Good Clinical Practice in accordance with the declaration of Helsinki. Patients have given their
606 written consent for the use of samples of study MENB REC 2ND GEN-074 (V72_92). The study
607 was approved by the Western Institutional Review Board (WIRB).

608

609 **Animal model ethics statement**

610 Animal husbandry and experimental procedures were ethically reviewed and carried out in
611 accordance with European Directive 2010/63/EU, Italian Decree 26/2014 and GSK Vaccines'
612 Policy on the Care, Welfare and Treatment of Animals, and were approved by the Italian Ministry of
613 Health (authorization 386/2021-PR). Upon arrival, animals were randomly distributed in different
614 experimental groups in individually ventilated cages (IVC, Sealsafe Plus GM500 by Tecniplast).
615 The acclimation lasted for a period of 5 days. At the end of the acclimation period, each animal

616 was identified by an individual tattoo. All animals had ad libitum access to GMP-grade food
617 (Mucedola 4RF25 TOP CERTIFICATE) and bottled, filtered, tap water. Certified, irradiated
618 cellulose bags containing Mucedola SCOBIS UNO bedding, and carboard tunnels (ANTRUM) or
619 plexiglass mouse house were provided within the cages. A few food pellets in the cage were also
620 used as enrichment for forging and additional gnawing. Cage and bedding changes were
621 performed once every week in according to protocol requirements. Air supplied in IVC will be 100
622 % fresh air filtered by EPA filter by the IVC system, with 60-75 air changes per h. The animal room
623 conditions were as follows: temperature 21°C (+/- 3°C), relative humidity 50% (range 30-70%) and
624 12h/12h light/dark cycle. Pressure, temperature and relative humidity were recorded continuously
625 by room probes, while the IVC system recorded individual motors' performance. The light cycle
626 setting was ensured by a qualified, alarmed system.

627 **MATERIALS AND METHODS**

628 **4CMenB OMVs labelling with Alexa488**

629 4CMenB OMVs were fluorescently labelled targeting lysine residues with Alexa Fluor 488 (Alexa
630 Fluor 488 carboxylic acid, succinimidyl ester, Invitrogen, A20000). OMVs were concentrated to 20
631 mg/ml in PBS 1x pH 7.2, following addition of AF488 dye in a 1:20 w/w ratio. After 18 h at room
632 temperature (RT) in the dark with stirring, samples were purified through ultrafiltration with Amicon
633 Ultra-4 100K using PBS 1x pH 7.2 for 30 washes. Labelled OMVs were characterized by SE-HPLC
634 (TSK gel 6000PW column). Fluorescence intensities were measured at 490/525 nm Ex/Em, where
635 an increased signal intensity was observed confirming the successful labelling, while absence of
636 unconjugated dye was also verified. OMVs content was estimated through the Lowry method
637 following manufacturing instructions (Pierce Modified Lowry Protein Assay Kit, Thermo).

638

639 **Single cell sorting of 4CMenB OMVs⁺ Memory B cells from vaccinees**

640 Peripheral blood mononuclear cells isolation (PBMCs) and Single-cell Sorting were performed as
641 previously described (Andreano et al., 2021; Huang et al., 2013). Briefly, PBMCs were isolated
642 from heparin-treated whole blood by density gradient centrifugation (Ficoll-Paque PREMIUM,
643 Sigma-Aldrich) and stained at RT for 20 min with Live/Dead Fixable Aqua Dead Cell Stain Kit
644 (Invitrogen; ThermoFisher; cat#L34957) diluted 1:500. After incubation, cells were washed in
645 Dulbecco's modification of PBS (PBSB) and incubated with 20% of normal rabbit serum (Life
646 Technologies) for 20 min at 4°C. PBMCs were then washed with PBSB and stained with
647 4CMenB OMVs labelled with Alexa488. Following 30 min of incubation at 4°C, cells were
648 incubated with CD19 BV421 (BD, cat#562440), IgM PerCP-Cy5.5 (BD; cat#561285), CD27 PE
649 (BD; cat#340425), IgDAlexa Fluor 700 (BD; cat#561302), CD3 PE-Cy7 (BioLegend; cat#300420),
650 CD14 PE-Cy7 (BioLegend; cat#301814) and CD56 PE-Cy7 (BioLegend; cat#318318) at 4°C.
651 After incubation, stained PBMCs were single-cell-sorted using a BD FACS Aria Fusion (BD
652 Biosciences) in 384-well plates previously coated with 3T3-msCD40L feeder cells. Then, 4CMenB
653 OMVs⁺ Memory B cells sorted were incubated for 10-14 days with IL-2 and IL-21 as previously
654 described (Andreano et al., 2021; Huang et al., 2013).

655

656 **Whole-bacterial cell enzyme-linked immunosorbent assay (ELISA)**

657 Bacteria were grown until mid-log phase as described and centrifuged at 4,500 x g for 5 min.
658 Bacteria were resuspended in the same volume with PBS and seeded onto 384-well plates in a
659 final volume of 20 μ L. Incubation at 37°C, 5% CO₂ for 30 min followed. Bacteria were fixed with
660 0.5% formaldehyde at RT for 30 min and then wells were washed twice with a washer dispenser
661 (BioTek EL406, Agilent Technologies, US) with PBS, Tween20 0.05%, 150 μ L/well/wash. Wells
662 were washed and saturation step followed using PBS, BSA 1% in 50 μ L to avoid unspecific binding
663 and plates were incubated at 37°C for 1 h. After incubation, wells were washed, and primary
664 antibodies contained into the TAP-supernatants were added in a 1:5 ratio in PBS, BSA 1%,
665 Tween20 0.05% in 25 μ L/well final volume and incubated for 1 h at 37°C without CO₂. Wells were
666 washed and 25 μ L/well of alkaline phosphatase-conjugated goat anti-human IgG (Sigma-Aldrich,
667 US) and IgA (Southern Biotech) were used as secondary antibodies. After 1h, a final wash
668 followed and then pNPP (p-nitrophenyl phosphate) (Sigma-Aldrich) was used as substrate to
669 detect the binding of the mAbs. The final reaction was measured by using the Varioskan Lux
670 Reader (Thermo Fisher Scientific, US) at a wavelength of 405 nm. Samples were considered as
671 positive if OD at 405 nm (OD₄₀₅) was three times the blank.

672

673 **Single cell RT-PCR and Ig gene amplification**

674 From the original 384-well sorting plate, 5 μ L of cell lysate was used to perform RT-PCR and two
675 round of PCRs as previously described (Andreano et al., 2021). Total RNA from single cells was
676 reverse transcribed in 25 μ L of reaction volume composed by 1 μ L of random hexamer primers (50
677 ng/mL), 1 μ L of dNTP-Mix (10 mM), 2 μ L 0.1 M DTT, 40 U/mL RNase OUT, MgCl₂ (25 mM), 5x FS
678 buffer and Superscript IV reverse transcriptase (Invitrogen). Final volume was reached by adding
679 nuclease-free water (DEPC). Reverse transcription (RT) reaction was performed at 42°C/10 min,
680 25°C/10 min, 50°C/ 60 min and 94°C/5 min. Heavy (VH) and light (VL) chain amplicons were
681 obtained via two rounds of PCRs. All PCR reactions were performed in nuclease-free water in a
682 total volume of 25 μ L well. Briefly, 4 μ L of cDNA were used for the first round of PCR (PCR I). PCR

683 I master mix contained 10 mM of VH and 10 mM VL primer-mix, 10mM dNTP mix, 0.125 μ L of
684 Kapa Long Range Polymerase (Sigma), 1.5 μ L MgCl₂ and 5 μ L of 5x Kapa Long Range Buffer.
685 PCR I reaction was performed at 95°C/3 min, 5 cycles at 95°C/30 sec, 57°C/30 sec, 72°C/ 30 sec
686 and 30 cycles at 95°C/30 sec, 60°C/30 sec, 72°C/30 sec and a final extension of 72°C/2 min. All
687 nested PCR reactions (PCR II) were performed using 3,5 μ L of unpurified PCR I product using the
688 same cycling conditions. PCR II products were then purified by Millipore MultiScreen PCR 96 plate
689 according to the manufacturer's instructions. Samples were eluted in 30 μ L nuclease-free water
690 into 96-well plates and quantified by Qubit Fluorometric Quantitation assay (Invitrogen).

691

692 **Cloning of variable region genes and recombinant antibody expression in transcriptionally
693 active PCR fragments**

694 Vector digestions were carried out with the respective restriction enzymes AgeI, SalI and XbaI as
695 previously described by Tiller and colleagues. Briefly, 75 ng of IgH, Ig λ and IgK purified PCR II
696 products were ligated by using the Gibson Assembly NEB into 25 ng of respective human IgG1,
697 IgK and Ig λ expression vectors. The reaction was performed in 5 μ L total volume. The ligation
698 product was 10-fold diluted in nuclease-free water and used as the template for transcriptionally
699 active PCR (TAP) reaction which allowed the direct use of linear DNA fragments for *in vitro*
700 expression. The entire process consists of one PCR amplification step using primers that include
701 functional promoter (human CMV) and terminator sequences (SV40) of the expression vectors
702 onto the PCR II products. TAP reaction was performed in a total volume of 25 μ L using 0.12 μ L of
703 Q5 polymerase (NEB), 5 μ L of GC Enhancer (NEB), 5 μ L of 5X buffer, 10 mM dNTPs, 0.125 μ L of
704 forward/reverse primers and 3 μ L of ligation product. TAP reaction was performed by using the
705 following cycling conditions: 98°C/2 min, 35 cycles 98°C/10 sec, 61°C/20 sec, 72°C/1 min and
706 72°C/5 min as final extension step. TAP products were purified under the same PCR II conditions,
707 quantified by Qubit Fluorometric Quantitation assay (Invitrogen) and used for transient transfection
708 in Expi293F cell line (Thermo Fisher Scientific) according to the manufacturer's instructions.

709

710 **Gc and MenB strains**

711 FA1090 and F62 Gc strains were purchased from American Type Culture Collection (ATCC). The
712 authors are grateful to Dr. Darryl Hill of the University of Bristol (United Kingdom) for providing BG
713 strains and to Dr. Sanjay Ram (University of Massachusetts, USA) for providing Gc MS11 LOS *lgt*
714 mutants (Ram et al., 2018). The MS11 LOS *lgt* mutant strains were created in the background of
715 Gc MS11 4/3/1, a variant of MS11 VD300 with an isopropyl-D-thiogalactopyranoside (IPTG)–
716 inducible *pilE* that controls pilus expression. In these mutant strains the expression of the four
717 phase-variable *lgt* genes (*lgtG*, *lgtA*, *lgtC* and *lgtD*) was genetically fixed either ON or OFF (or
718 deleted). For kindly providing meningococcal serogroup B strains, the authors are grateful to: Xin
719 Wang, Henju Marjuki Xin Wang and Jarad Schiffer (CDC, Centers for Disease Control and
720 Prevention, Atlanta, GA, USA) for M07576, M12898, M08389, M18711, M09929, M08129,
721 M07463, M13547, M14569 and M13520; M-K. Taha (Institut Pasteur, Paris) for LNP24651 strain,
722 Richard Moxon (University of Oxford, Oxford, United Kingdom) for MC58; Diana R. Martin (Institute
723 of Environmental Science and Research, Porirua, New Zealand) for NZ98/254; Ray Borrow (Health
724 Security Agency, Manchester, United Kingdom) for M01-240355 and M01-240364; Dominique A.
725 Caugant (NIPH, Norwegian Institute of Public Health, Oslo, Norway) for H44/76, NGH38, CU385
726 and 5/99; Adriana Efron (Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G.
727 Malbrán”, Buenos Aires, Argentina) on behalf of the Argentinian National Laboratories Network
728 (NLR) for ARG3191, ARG322 and ARG3753. For kindly providing Gc low passage clinical isolates
729 the authors are grateful to Darryl Hill (University of Bristol).

730

731 **Bacterial genome sequencing**

732 For clinical isolates reported in Table S2, Neisserial genomic DNA was extracted from cell
733 suspensions of overnight culture plates using the GenElute Bacterial Genomic DNA Kit (Sigma).
734 Genomic libraries were generated using Illumina Nextera DNA Flex Library Prep according to the
735 manufacturer's instructions and sequenced on Illumina MiSeq 2×250bp paired end platform. The
736 read sequences from all the samples above were assembled using Spades, version 3.13, with
737 default parameters. The resultant assemblies, in addition to public genomes downloaded from the
738 PubMLST website were uploaded to the internal Neisseria PubMLST database that was used for

739 the typing of our loci of interest. LOS beta chain presence or absence was inferred from the
740 genetic information about *lgtG* locus. BLAST of *lgtG* sequence from MC58 and 1'000 flanking
741 nucleotides were used to identify *lgtG* locus, if present. Then the *lgtG* sequence extracted was
742 translated in order to understand whether the sequence could lead to a functional protein product
743 or not. In case of absence of the *lgtG* locus or short protein translation, the LOS beta chain was
744 predicted to be absent, in case of presence of a full length *lgtG* enzyme, compatible with a
745 functional protein product, the LOS beta chain was predicted to be present.

746

747 **Bacterial growth**

748 Fresh cultures of different Gc strains were prepared from frozen stocks by streaking onto
749 gonococcal agar (GCA) consisting of agar base supplemented with 1% v/v IsoVitaleX (BD
750 Biosciences, Franklin Lakes, NJ, USA). On the following day, bacteria were grown in gonococcal
751 (GC) liquid medium at 37°C starting from OD₆₀₀ 0.1 until mid-log phase cultures, i.e., OD₆₀₀ 0.5

752

753 **mAb screening by Resazurin-based Antibody Bactericidal Assay (R-ABA)**

754 The initial bactericidal screening on Gc was preformed through R-ABA as previously described¹⁹.
755 Briefly, baby rabbit complement (BRC) (Cedarlane) was used as a source of complement in R-ABA
756 assays. BRC was diluted to 10% v/v for FA1090 and F62 strains, while 20% v/v was used for
757 BG27 strain. BRC was heat-inactivated (hiBRC) at 56°C for 30 min before use, as a complement
758 inactivated control. Bacteria were grown to mid-log phase and resuspended in PBSB as detailed
759 above. Reactions were performed by incubating bacteria with TAP supernatants in PBSB, 2% FBS
760 and 0.1% glucose and in the presence of 10% v/v of BRC round bottom 96-well plates. hiBRC
761 control adjusted to a final volume of 50 mL in PBSB, 2% FBS and 0.1% glucose was used.
762 Reactions were incubated for 2 h at 37°C, 5% CO₂. Then, 10 µL of 0.025% resazurin solution in
763 sterile distilled water were added to each well. The reactions were then further incubated for 2 h at
764 37°C, 5% CO₂. At the end of the incubation, fluorescence signals were measured by a Varioskan
765 LUX multimode microplate reader (Thermo Fisher, Waltham, MA, USA) using 560 nm for excitation
766 and 590 nm for emission. After the measurement, the assay plate was kept at 37°C ON to allow

767 complete conversion of resazurin to resorufin in the wells containing live bacteria. On the following
768 day, the plate was observed by eye and pictures were taken.

769

770 **Flask expression and purification of mAbs**

771 Expi293F cells were transiently transfected with plasmids carrying the antibody heavy chain and
772 the light chains with a 1:2 ratio, respectively. The transfections last for six days at 37°C with 8%
773 CO₂ in shaking conditions at 125 rpm according to the manufacturer's protocol (Thermo Fisher
774 Scientific, US). ExpiFectamine 293 transfection enhancers 1 and 2 were added 16 to 18 h post-
775 transfection to boost cell viability and protein expression. Cell cultures were harvested six days
776 after transfection. Supernatants collected were then pooled and clarified by centrifugation (4,500 x
777 g, 15 min, 4°C) followed by filtration through a 0.22 mm filter. Protein A chromatography (HiTrap
778 Protein A HP, Cytiva) was used for antibody capture from cell culture supernatant and purification.
779 The supernatants, diluted 1:1 with buffer A (50 mM NaH₂PO₄, 300 mM NaCl, pH 8.0) were loaded
780 onto the equilibrated protein A column with buffer A. After column washing with 10 bed volumes of
781 buffer A, bound antibodies were eluted with buffer B (0,1 M citric acid, 300 mM NaCl, pH 3,6). The
782 eluted antibodies were neutralized with 10% of the final volume per fraction of 1 M Tris-HCl buffer,
783 pH 9. The fractions of interest identified by following the chromatographic profile (absorbance at
784 214 nm), were pooled and then buffer exchanged with O/N dialysis at 4°C against PBS buffer
785 (≥100x the volume of the antibody solution). Monomeric state of purified mAbs was checked by
786 analytical gel filtration (SE-UPLC) with the Superdex 200 Increase 5/150 GL (Cytiva) column by
787 using PBS as running buffer (flow rate 0,4 ml/min) and by following absorbance at 215 nm. MAbs
788 with a purity degree less than 85% were subjected to an additional chromatographic step using a
789 preparative Superdex 200 column (GE) in PBS buffer in order to remove aggregates or
790 degradations. Then additional analytical SEC were performed to assess the final level of purity of
791 purified mAbs. After a sterile filtration with 0,22 µm filter, the concentration of final batch was
792 determined by absorption at 280 nm by using a NanoDrop 8000 spectrophotometer (Thermo
793 Scientific). Final mAb samples were also analyzed by SDS-Page gel in order to compare migration
794 of reduced/denatured and not reduced/not denatured samples using the NuPage gel system

795 (Invitrogen) with MES as running buffer. Gels were stained with ProBlue safe stain (Giotto
796 Biotech). The mAbs were then stored at -80°C.

797

798 **LOS extraction from 4CMenB OMVs**

799 LOS was extracted using a general method based on the Westphal hot phenol extraction process
800 to purify whole LOS from 4CMenB OMVs samples (Westphal, 1965). Briefly, OMVs were stirred at
801 65°C until the temperature equilibrated. An equal volume of 90% (w/v) phenol which had been
802 preheated to 65°C was added and thoroughly mixed for 30 min. The resulting mixture was rapidly
803 cooled by stirring for 30 min in an ice-water bath. The phenol mixture was then centrifuged at 4°C
804 at 4,000 x g for 10 min. A sharp interface occurred between the aqueous, phenol, and interface
805 layers. The aqueous and phenol layers were removed by aspiration. The aqueous layer containing
806 the lipopolysaccharide was retained while the phenol layer was discarded. Cold ethanol
807 precipitation was performed 3-4 times on the aqueous phase and the final pellet was suspended in
808 distilled water. The sample was then mixed with a solution of Proteinase K-Agarose from
809 *Tritirachium album* (Sigma) and incubated for 16 h at RT with stirring. The sample mixture was
810 then centrifuged at 15,000 x g for 10 min and supernatant containing LOS was collected and
811 separated from the agarose pellet. The LOS sample was finally purified through ultrafiltration with
812 Amicon Ultra-4 10K.

813

814 **LOS quantification**

815 The content of LOS extracted or present in the OMV samples was determined by the quantification
816 of the reactive carbonyl groups of the saccharide moiety, generated after acid hydrolysis to remove
817 the Lipid A and derivatized with semicarbazide (SCA), by high-performance liquid
818 chromatography-size exclusion chromatography (SE-HPLC) analysis. The SCA reaction coupled
819 with SE-HPLC analysis has been already reported in literature (Micoli et al., 2014). In the first step,
820 samples (extracted LOS or OMV) were treated with acetic acid (1% final concentration) and
821 hydrolyzed for 2 h at 100°C to remove the Lipid A. After the hydrolysis, each sample was dried in a
822 SpeedVac system to remove the acetic acid, and then dissolved with MilliQ water. Samples were

823 centrifuged for 10 min at 15,000 x g to separate pellet (Lipid A) and supernatant (OS). To obtain
824 UV detectable samples, the supernatants were derivatized with semicarbazide (SCA). A stock SCA
825 solution was prepared dissolving 100 mg of SCA hydrochloride and 90.5 mg of sodium acetate in
826 10 mL of MilliQ water. Equal volumes of sample and SCA solution were transferred into clean vials
827 (i.e., 100 μ L sample + 100 μ L SCA solution) and incubated in a pre-heated water bath at 50°C for
828 50 min. Samples were chilled at 2-8°C for 15 min and then filtered in HPLC vials. The KDO content
829 of the GMMA samples is quantified based on a calibration curve prepared with standard KDO
830 ammonium salt solution. The LOS content is expressed in nmol/mL of KDO, which matches the
831 nmol/mL of OS.

832

833 **Immunoblot analysis of mAbs on extracted LOS**

834 Extracted LOS was loaded on SDS-PAGE gel at 0.008 nmol/well. OMV samples were normalized
835 by LOS quantity obtained from semicarbazide derivatization/SE-HPLC method. Samples were run
836 on a 16% Tris-glycine SDS-PAGE gel using a Tris-glycine 1x buffer. The ladder consisted of the
837 following proteins: Bradykinin (1,060 Da), Insulin Chain B (3,496 Da), Aprotinin (6,500 Da), α -
838 Lactalbumin (14,200 Da), Myoglobin (17,000 Da) and Triosephosphate Isomerase (26,600 Da).
839 Bands were transferred to nitrocellulose membranes (The iBlot Kit ThermoFisher) and membranes
840 were blocked with PBS 1x + BSA 3% + Tween20 0.05% for 1 h at RT. mAb concentration was
841 normalize to 1 μ g/mL in PBS 1x + Tween20 0.05% and incubated for 1 h at RT. Signals were
842 visualized with anti-human IgG alkaline phosphatase (Sigma, diluted 1:2,000 in PBS 1x + Tween20
843 0.05%) incubated for 30 min at RT, followed by AP Conjugate Substrate kit (Biorad) for 5 min at
844 RT.

845

846 **Immunoblot on 4CMenB OMVs**

847 This mixture was run on an SDS-PAGE gel (NuPAGE 4-12% Bis-Tris Gel) in MES Buffer 1X
848 (NuPAGE MES SDS Running Buffer). Samples were transferred on a nitrocellulose membrane
849 (iBlot 2 NC, Thermo Fisher) using an Invitrogen iBlot 2 Gel Transfer Device. After transfer, the
850 membrane was blocked with 5% non-fat dry milk in 20 mM TBS, 0.05% tween-20. After blocking,

851 the membrane was incubated with 2 ug/ml of antibody of interest in 5% milk in 20 mM TBS, 0.05%
852 tween-20 ON at 4 °C. The membrane was then washed 3 times with 20 mM TBS, 0.05% Tween 20
853 (five min per wash) and then incubated with the secondary antibody (secondary antibody anti-
854 human Fab 1:100,000) in 5% milk in 20 mM TBS, 0.05% tween-20 for 1 h at 4 °C. After 3 washes
855 in 20 mM TBS, 0.05% Tween-20, the membrane was developed using Thermo Scientific™
856 Pierce™ ECL Western Blotting Substrate and imaged using the Invitrogen iBright Imaging system
857 with the chemiluminescence detection method.

858

859 **OMV preparation**

860 To produce OMVs, Gc and MenB strains were plated on GC +1% Isovitallex or GC agar plates,
861 respectively. Plates were incubated ON at 37°C in 5% CO₂. The following day, MenB colonies
862 were inoculated in 10 mL of Mueller-Hinton Broth (OD of 0.05) and allowed to grow with shaking
863 until OD of 1.0-1.5 at 37°C. Then 10 mL were put in 50 mL of prewarmed slightly modified
864 MCDMI medium and incubated at 37°C in 5% CO₂. OD₆₀₀ was constantly monitored, and the
865 growth was stopped when OD₆₀₀ remained stable for 1 h and 30 min. Gc colonies were instead
866 inoculated in 5 ml of GC +1% Isovitallex and the growth was followed for 28 h in 24 deep-well plate
867 at 37°C 350 rpm. Bacteria cultures were collected and discarded by centrifugation for 60 min at
868 4,000-8,000 x g and the supernatants were subjected to high-speed centrifugation at 11,9000 x g
869 for 2-3 h at 4°C (Beckman Coulter Optima Ultracentrifuge). The pellets containing the OMVs were
870 washed with PBS, ultracentrifuged again, as above described, and finally resuspended in PBS.
871 OMV total protein content was quantified through the Lowry assay (DC Protein Assay, BioRad)
872 following manufacturer's instructions.

873

874 **Protein array design, generation, validation and hybridization**

875 Monoclonal Abs were tested over two separate protein microarrays previously generated (Viviani
876 et al., 2023). Specifically, the recombinant protein microarray, encompassed 12 recombinant
877 proteins and the three recombinant meningococcal antigens of the 4CMenB vaccine (NHBA-
878 GNA1030; GNA2091-fHbp and NadA) spotted at 0.5 mg/mL in 40% glycerol, while the vesicles

879 protein chip containing 26 recombinant *E. coli* GMMA_s, two GMMA_s empty and OMVs from
880 NZ98/254. The latter array was expanded with 14 different meningococcal OMV (0.5 mg/mL in
881 20% glycerol) and 18 different gonococcal OMVs (0.25 mg/mL in 20% glycerol). Controls
882 consisted of 8 serial two-fold dilutions of human IgG (from 0.5 mg/mL to 0.004 mg/mL in 40%
883 glycerol), unrelated proteins (0.5 mg/mL in 40% glycerol) and PBS + 40% glycerol spots. Each
884 sample was spotted randomly in replicates per array onto ultra-thin nitrocellulose coated glass
885 slides (FAST slides; Maine Manufacturing). Printing was performed with the ink-jet spotter
886 Marathon Argus (Arrayjet) (200 pl each spot) in a cabinet with controlled temperature and humidity
887 (18 °C and 50–55%, respectively). To ensure efficient and reproducible protein immobilization a
888 preliminary array validation was carried out with anti-FLAG antibodies (Sigma-Aldrich, cat# F7425)
889 1:5000 and mouse anti-His₆ tag polyclonal antibodies (Thermo Fisher, cat# 37-2900) 1:1,000,
890 followed by detection with an AlexaFluor 647-conjugated anti-rabbit or anti-mouse IgG secondary
891 antibody (Jackson ImmunoResearch, cat# 111-605-046, cat# 115-605-174) -1:800. Preliminary
892 experiments with mAbs showed that 0.5 µg/mL corresponded to the best signal to noise ratio. For
893 mAbs hybridization experiments, nonspecific binding was minimized by preincubating the slides
894 with a blocking solution (BlockIt, ArrayIt) for 1 h. mAbs were then diluted to 0.5 µg/mL in BlockIt
895 buffer and overlaid for 1 h at RT prior to undergo two washes with Tween 0.1% in PBS (TPBS).
896 AlexaFluor 647-conjugated anti-human IgG secondary antibody (Jackson ImmunoResearch, cat#
897 115-605-174) diluted 1:800 was incubated 1 h, before proceeding with slide scanning.
898 Fluorescence images were obtained using InnoScan 710 AL (Innopsys) and the images were
899 generated with Mapix software at 10 µm/pixel resolution. ImaGene 9.0 software (Biodiscovery
900 Inc.) was used to calculate spot fluorescence intensities while the microarray data analysis step
901 was carried out with an *in-house* developed R script. For each protein the Mean Fluorescence
902 Intensity (MFI) of replicates was obtained after the subtraction of local background values
903 surrounding each spot. MFI were greater than 6,000, corresponding to the MFI of control protein
904 spots after detection with fluorescent-labelled antibodies, plus ten times the standard deviation,
905 were considered positive. MFI scores were ranked in four categories: (1) high reactivity;

906 MFI \geq 30,000; (2) medium reactivity; 15,000 \leq MFI $>$ 30,000; (3) low reactivity;
907 6,000 \leq MFI $>$ 15,000; (4) no reactivity; MFI $<$ 6,000.

908

909 **Killing-based Serum Bactericidal Assay (SBA) on FA1090 Gc strain**

910 Functional characterization of b-mAbs was performed by classical serum bactericidal assay (SBA)
911 against FA1090 strain. Human serum obtained from volunteer donors with no detectable intrinsic
912 bactericidal activity was used as source of complement. Bacteria were grown at 37°C in GC
913 liquid medium supplemented with 1% Isovitallex until mid-exponential phase (OD₆₀₀ 0.5). FA1090
914 growth was also supplemented with 1 µg/mL of CMP-NANA (Cytidine-5'-MonoPhospho-N-Acetyl
915 NeurAminic acid sodium salt). Then, bacteria were diluted in DPBS, with 0.1% glucose and 1%
916 BSA to a working dilution of 10x10³ CFU/mL. Subsequently, bacteria were two-fold diluted and
917 incubated with 10% human complement and mAbs for 1h at 37°C. After the incubation, 100 µL of
918 GC medium plus 0.5% of Bacto Agar, was added to the reaction mixture and incubated O/N at
919 37°C with 5% CO₂. The day after, the plate well images were automatically acquired with a high
920 throughput image analysis system and the Colony Forming Units (CFUs) were automatically
921 counted for each well by an internal customized colony counting software. Bactericidal titer was
922 defined as 50% decrease in CFU number compared to the reaction mixture without antibody.

923

924 **Killing- based Serum Bactericidal Assay (SBA) on MenB strains**

925 Bactericidal activity of mAbs to MenB strains was carried out through classical SBA in the
926 presence of 25% baby rabbit complement (Cedarlane). The reaction was performed in 96-well
927 plate. From the glycerol stock, bacteria were seeded and grown O/N on chocolate agar plate at 37
928 °C in 5% CO₂. The day after 10-15 colonies were inoculated in Müller-Hinton broth containing
929 0.25% glucose to reach an OD₆₀₀ of 0.05 to 0.06. Bacteria were then incubated at 37 °C shaking
930 until OD₆₀₀ 0.25 (\approx 10⁹ colony forming units CFU/ml). Bacteria were diluted 30,000-fold in DPBS,
931 1% (w/v) BSA, 0.1% glucose (w/v) and added to a reaction mix with a two-fold serial dilution of
932 monoclonal antibody and baby rabbit complement. The plate was incubated for 1 h on shaking at
933 37 °C in 5% CO₂. After 1 h incubation 100µL of melted TSB + 0.7% agar medium was added in

934 each well allowing for the solidification. Then a second layer of 50 μ L of melted agar medium was
935 added in each well until the solidification. Plate was then incubated O/N at 37°C. The day after, the
936 plate well images were automatically acquired and the bactericidal titer was calculated as for Gc
937 strains, above indicated.

938

939 **Binding characterization by flow cytometry**

940 All FACS experiments were carried out in the same conditions. After reaching OD₆₀₀ 0.5, bacteria
941 were centrifuged at 4,500 x g, 5 min and then resuspended and diluted in PBSB, 1% BSA to OD₆₀₀
942 0.2. 50 mL of bacterial suspension were seeded onto 96-well round bottom TC-treated microplates
943 (Corning, US). Bacterial suspensions were centrifuge as described and resuspended in a mix with
944 PBSB, 1% BSA and primary antibodies at 10 mg/mL in 50 mL. An incubation step of 1 h followed,
945 at 37°C, 5% CO₂. Bacterial suspensions were centrifuge and resuspended in a mix of PBSB, 1%
946 BSA and a goat anti-Human IgG secondary antibody, labeled with Alexa Fluor 488 (Thermo Fisher
947 Scientific, US) in 50 mL. Bacterial suspensions were centrifuge (4,500 x g, 5 min) and fixed with
948 0.5% formaldehyde at RT for 30 min. After fixation, bacterial suspensions were centrifuge (4,500 x
949 g, 5 min) and re-suspended in PBS in a final volume of 50 mL. The samples were read using BD
950 FACS Canto II flow cytometer. 10,000 counts were acquired for each sample. The analysis was
951 carried out using FlowJo (software version 10).

952

953 **Immunofluorescence analyses on FA1090 Gc strain**

954 Bacteria were grown and re-suspended in PBSB to reach OD₆₀₀ 0.2. 50 mL of diluted bacterial
955 suspensions were seeded onto a 96-well glass-bottom plates (Cell imaging plate, Eppendorf) and
956 incubated for 30 min at 37°C, 5% CO₂ to allow for bacteria adhesion. After incubation, bacteria
957 were fixed for 30 min at RT with 0.5% formaldehyde. After two washing steps, 50 mL of PBSB, 1%
958 BSA were added, and the plate was incubated for 1 h at 37°C. After saturation, a mixture
959 containing PBSB, 1% BSA and primary antibodies (10 mg/mL) in 50 ml was added. Samples were
960 incubated for 1 h at 37°C. A washing step with 100 mL of PBS followed the incubation. A goat anti-
961 Human IgG secondary antibody labelled with Alexa Fluor 488 was added (Thermo Fisher

962 Scientific). The plates were incubated for 30 min at 37°C. Following two washing steps as
963 described, 4',6-diamidino-2-phenylindole (DAPI) was prepared at 0.1 mg/mL in PBSB a final
964 volume of 50 mL/well. Bacterial pellet was resuspended and incubated for 30 min at 4°. Z-stack
965 images were acquired with a spinning disk super-resolution microscope (CSU-W1-SoRA Nikon)
966 with a 60X oil objective (numerical aperture 1.49) and a Photometrics BSI sCMOS camera using
967 the same settings. 3D Deconvolution (Blind method, 20 iterations) and denoise were applied to
968 high-resolution images. 3D reconstructions were obtained using Fiji software (version 2.1.0). Total
969 fluorescence intensity was quantified using Fiji from the sum intensity projection of the confocal z-
970 stack images after segmentation using Otsu thresholding (Otsu, 1979).

971

972 **Immunogold analyses of FA1090 Gc strain**

973 FA1090 strain was grown as already described until OD₆₀₀ 0.5. After growth, 2.5 mL of bacterial
974 suspension were fixed with 4% formaldehyde for 10 min, RT in a final volume of 5 mL. Then,
975 samples were centrifuged at 3,000 x g for 7-10 min 25°C and resuspended in 5 mL of DPBS.
976 Subsequently, 5 µL of fixed bacterial suspension were adsorbed to 300-mesh nickel grids and
977 blocked in a mixture of PBS 1% BSA and mAbs (diluted 1:500 in PBS) for 1 h. Grids were washed
978 several times with PBS and incubated with 12-nm gold-labeled anti-human secondary antibody
979 (Jackson ImmunoResearch, diluted 1:40 in PBS) for 1 h. After several washes with distilled water,
980 grids were air-dried. Images were acquired using a 120kV TEM FEI Tecnai G2 spirit microscope
981 along with the Tvips TemCam.

982

983 **Visual opsonophagocytosis assay (vOPA)**

984 THP-1 cells were seeded and differentiated into 96 well plates. After 5 days of differentiation, cells
985 were infected with FA1090::sfGFP strain. Bacteria were grown until mid-logarithmic phase and pre-
986 incubated with mAbs supernatants diluted 1:5 in RPMI media. After 30 min of pre-incubation, mAbs
987 and bacteria mix were added onto dTHP-1. To synchronize the infection, the 96 well plates were
988 centrifuged for 1 min at 200 x g. After 1h of infection, each well was fixed with 2% PFA for 15 min,
989 blocked with 1% (w/v) BSA. Extracellular FA1090::sfGFP was stained with the primary antibody

990 2C7, at final concentration of 3 mg/ml for 1h at RT. Subsequently, a secondary antibody goat anti-
991 Human IgG Alexa Fluor 568 (Thermo Fisher, A-21090) was added using a dilution factor of 1:2000
992 and incubated 30 min at RT. CellMask™ Deep Red stain (Invitrogen) was used to stain the
993 membrane, providing a mean to delineate the cell boundary and DAPI to stain the nucleus. Images
994 were automatically collected with microscope Opera Phenix High-Content Screening System
995 (PerkinElmer) using an objective magnification of 40x, acquiring 16 fields of view and 13 z-stacks
996 each per well. THP-1 cell detection was performed on DAPI (nuclei) and CellMask (cell
997 membrane). While bacteria were segmented by colocalizing DAPI and GFP. Overlapping bacteria
998 with CellMask were considered as internalized ones, and cells were considered as infected. The
999 image analysis pipeline was performed using Harmony Software. The read-out (phagocytic activity)
1000 was determined on the total number of internalized bacteria / total number of infected cells.

1001

1002 **HDX-MS on MenB and Gc PorB**

1003 Epitope mapping of PorB antigen, embedded on deoxycholate extracted MenB and Gc OMVs with
1004 b-mAb 01K12, was performed by Hydrogen Deuterium eXchange associated to Mass
1005 Spectrometry (HDX-MS), comparing the amount of deuterium incorporated by PorB peptides in
1006 presence and absence of antibody. PorB amount in the dOMV was estimated to be 40 % of the
1007 total protein content as previously reported (Tani et al., 2014). The antigen alone (60pmol of
1008 OMVs-embedded PorB) or antibody/antigen mixture (OMVs-embedded PorB/mAb 1/2 molar ratio)
1009 were incubated for 30 minutes at 25°C. The labelling procedure was carried out in an ice bath and
1010 was initiated by adding deuterated PBS buffer (pD of 7.3), reaching a deuterium excess of more
1011 than 90% over five time points ranging from 15 seconds to 100 min (15 s, 1 min, 5 min, 30 min,
1012 100 min) (Malito et al., 2013). Samples were quenched and delipidated by TCA precipitation and
1013 acetone washes as previously reported (Donnarumma et al., 2018). Experimental replicates for
1014 statistical analysis were prepared for both unbound and bound states for the 15sec D2O exposure.
1015 Samples were injected into a NanoAcuity UPLC with HDx technology (Waters Corporation,
1016 Milford, USA), digested on-line with a homemade pepsin column and the mass spectra of peptic
1017 fragments, desalted, and separated by reverse-phase ultraperformance liquid chromatography

1018 (RP-UPLC), were acquired in resolution mode (*m/z* 200–1200) on a SynaptG2Si mass
1019 spectrometer with a standard electrospray ionization source. Peptides were identified by
1020 MS^E analysis. Data were processed using Protein Lynx Global Server 3.0 and DynamX 3.0
1021 software (Waters) was used to select peptides for the analysis. Only the peptic peptides present in
1022 at least four out of six repeated digestions of the unlabeled proteins, presenting at least 0.2
1023 identified fragments per amino acid residues, were selected for the HDX-MS analysis. For
1024 statistical analysis three labeling reaction experiments of the antigen alone and in complex with the
1025 mAb were performed for the 15 seconds D₂O exposure time point.

1026 Analysis was performed by calculating a confidence interval (CI) based on the standard deviation
1027 (SD) in deuterium uptake at the time point performed in triplicates. For each state, the SDs were
1028 calculated using the root-mean-square as shown in following equation:

$$1029 SD_{state} = \sqrt{\frac{\sum (SD_i^2)}{N}} \quad (1)$$

1030 where *N* is the total amount of peptides measured in replicate. The pooled SD, for the two states,
1031 was calculated using the Equation (2):

1032

$$1033 SD_{pool} = \sqrt{SD_{state\ A}^2 + SD_{state\ B}^2} \quad (2)$$

1034

1035 The pooled SD was utilized to identify the 98% CI through the equation (3):

$$1036 CI = \bar{x} \pm 6.965 \cdot \frac{SD_{pool}}{\sqrt{n}} \quad (3)$$

1037 Where \bar{x} is the assumed zero-centered average difference in deuterium uptake ($\bar{x}=0$), 6.965 is
1038 the t-value corresponding to a two-tailed distribution with two degrees of freedom, and *n* is the
1039 analyzed sample size (set to 3 since the experiment was performed in triplicates).

1040

1041 ***In silico* docking of Gc PorB/01K12 and MenB PorB/01K12**

1042 The *in silico* docking experiments were conducted on the trimeric structural organization of MenB
1043 PorB (NZ98 strain) and Gc PorB (FA1090 strain) with version 2.4 of the HADDOCK software (van
1044 Zundert et al., 2016). The sequence alignment between the selected PorB strains and the publicly
1045 available PorB structures showed poor similarity. Therefore, molecular modeling was performed
1046 with a state-of-the-art approach namely AlphaFold 2 to provide a starting point for the docking
1047 analysis (Jumper et al., 2021). A total of five models for each strain, namely orient 1-5, were
1048 obtained and used for further investigation. Interestingly, the predicted Local Difference Test
1049 (pLDDT) ranged from approximately 70 in the loop regions, to 98 in the beta-barrel portion of the
1050 protein, highlighting (i) high model accuracy, and (ii) variability in the loop conformations. Loops 5-8
1051 in MenB PorB and loops 4-7 in Gc PorB showed higher flexibility compared to the other modeled
1052 loops. Similarly, the variable region of the 01K12 antibody was modeled with DeepAb (Ruffolo et
1053 al., 2022), an artificial intelligence approach that provides a highly confident estimation of the
1054 CDR3. The epitope was identified in both strains with a total of eight regions: 39-46 (loop1), 81-95
1055 (loop2), 113-143 (loop3), 164-176 (loop4), 197-210 (loop5), 234-249 (loop6), 270-284 (loop7) and
1056 309-319 (loop8). The paratope region of the selected mAbs was identified with Paragraph (Chinery
1057 et al., 2023) and defined in HADDOCK as “active”, while the epitope regions on PorB as “passive”,
1058 meaning the paratope region needs to contact at least one of the PorB residues and there is no
1059 penalty if it does not contact all of them, allowing the mAb to freely explore the binding loops. All
1060 three docking iterations, it0, it1, and water, generated 5000, 400, and 400 poses, respectively,
1061 using the default values and scoring function. Clustering was performed based on backbone
1062 RMSD with a distance cut-off of 5 Å on the latest 200 generated poses. Finally, the lowest score
1063 was used to select the “best cluster” as the most antigen/antibody interaction representative.

1064

1065 **Mouse infection studies**

1066 Specific and Opportunistic Pathogen Free (6–8-week-old) female SOPF-BALB/c mice (The
1067 Charles River Laboratories, France) in the diestrus or anestrus stages of the estrous cycle
1068 received 21-day slow-release 17-β estradiol pellet (Innovative Research of America) implanted
1069 subcutaneously to induce susceptibility to gonococcal colonization. Antibiotics were also

1070 administered to suppress the overgrowth of commensal flora that occurs under estradiol treatment
1071 (Jerse, 1999). Vancomycin (4mg/mL; Sigma) and Streptomycin sulfate (24mg/ml; Sigma) were
1072 administered via intraperitoneal injection by the following dosing regimen: a single injection of 0.25
1073 ml on day -2 and 0.15 ml given twice daily from day -1 to day +1. Trimethoprim (0.4 g/L; Sigma)
1074 was provided in the drinking water through day + 1 and both trimethoprim (0.4 g/L) and
1075 streptomycin sulfate (5g/L) were provided in the drinking water from day +2 through the remainder
1076 of the study period. Two days after pellet implantation, mice were inoculated intravaginally with 20
1077 μ l of FA1090 strain harvested from ON growth on GC agar plates supplemented with 1% v/v
1078 IsoVitaleX (BD Biosciences, Franklin Lakes, NJ, USA) and suspended in PBS ($OD_{600}=0.1$) at a
1079 dose that establishes infection in 80-100% of mice (around 2×10^6 CFU/mouse). Following
1080 inoculation, the vaginal mucosae of test mice were cultured each day by gently inserting a Dacron
1081 swab (PurFybr, Inc., Munster, Ind.) into the vagina. Gc FA1090 strain, used for the *in vivo* efficacy
1082 study, is a serum resistant PorB.1B, streptomycin resistant (SmR) strain originally isolated from a
1083 female with disseminated gonococcal infection (DGI) (Cohen and Cannon, 1999). The efficacy of
1084 mAb 01K12 was examined by daily intravaginal administration throughout the course of the
1085 experiment. To test mAb 01K12 specificity, additional groups of mice received intravaginally an
1086 unrelated a-RSV mAb (non-specific control) and saline (vehicle control). Saline and monoclonal
1087 antibodies treatment began 2 h prior to the challenge and were performed 1 h after vaginal
1088 sampling in the following days (Gulati et al., 2019b). Both a-RSV and 01K12 mAbs were injected at
1089 dosage of 0.5 μ g since in previous studies a non-specific effect of anti-RSV mAb injected
1090 intravaginally in higher amounts (10 and 1 μ g) was observed. As described above, gonococcal
1091 CFUs were enumerated by vaginal swabbing performed up to 7 days post challenge. Daily
1092 bacterial burdens were measured by first ringing vaginal swabs in 100 μ L of saline and then plating
1093 serial 10-fold dilutions onto supplemented GC agar with VCNT (vancomycin, colistin, nystatin and
1094 trimethoprim sulfate; Becton Dickinson) and 100 μ g/ml of streptomycin sulfate (Sigma). The limit of
1095 detection was 10 CFU per swab eluted in 100 μ L saline. Analyses of the data are described below.
1096 Clearance of infection was defined by 3 or more consecutive days of negative cultures. Daily
1097 vaginal swabs were also cultured on Heart infusion agar (HIA; BD) agar plates to isolate

1098 facultatively anaerobic commensal bacteria. Incubation conditions for *N. gonorrhoeae* and for
1099 commensal bacteria were at 37°C in a humid atmosphere containing 5% CO₂.

1100 **REFERENCES**

1101 Abara, W.E., Bernstein, K.T., Lewis, F.M.T., Schillinger, J.A., Feemster, K., Pathela, P., Hariri, S.,
1102 Islam, A., Eberhart, M., Cheng, I., *et al.* (2022). Effectiveness of a serogroup B outer membrane
1103 vesicle meningococcal vaccine against gonorrhoea: a retrospective observational study. *The Lancet Infectious Diseases* 22, 1021-1029.

1104 Andreano, E., Nicastri, E., Paciello, I., Pileri, P., Manganaro, N., Piccini, G., Manenti, A., Pantano, E., Kabanova, A., Troisi, M., *et al.* (2021). Extremely potent human monoclonal antibodies from
1105 COVID-19 convalescent patients. *Cell* 184, 1821-1835.e1816.

1106 Boslego, J.W., Tramont, E.C., Chung, R.C., McChesney, D.G., Ciak, J., Sadoff, J.C., Piziak, M.V.,
1107 Brown, J.D., Brinton, C.C., Jr., Wood, S.W., *et al.* (1991). Efficacy trial of a parenteral gonococcal
1108 pilus vaccine in men. *Vaccine* 9, 154-162.

1109 Bruxvoort, K.J., Lewnard, J.A., Chen, L.H., Tseng, H.F., Chang, J., Veltman, J., Marrazzo, J., and
1110 Qian, L. (2023). Prevention of *Neisseria gonorrhoeae* With Meningococcal B Vaccine: A Matched
1111 Cohort Study in Southern California. *Clinical infectious diseases : an official publication of the
1112 Infectious Diseases Society of America* 76, e1341-e1349.

1113 Chakraborti, S., Lewis, L.A., Cox, A.D., St Michael, F., Li, J., Rice, P.A., and Ram, S. (2016).
1114 Phase-Variable Heptose I Glycan Extensions Modulate Efficacy of 2C7 Vaccine Antibody Directed
1115 against *Neisseria gonorrhoeae* Lipooligosaccharide. *Journal of immunology (Baltimore, Md : 1950)*
1116 196, 4576-4586.

1117 Chen, A., and Seifert, H.S. (2013). Structure-function studies of the *Neisseria gonorrhoeae* major
1118 outer membrane porin. *Infection and immunity* 81, 4383-4391.

1119 Chinery, L., Wahome, N., Moal, I., and Deane, C.M. (2023). Paragraph-antibody paratope
1120 prediction using graph neural networks with minimal feature vectors. *Bioinformatics (Oxford, England)* 39.

1121 Cohen, M.S., and Cannon, J.G. (1999). Human experimentation with *Neisseria gonorrhoeae*:
1122 progress and goals. *The Journal of infectious diseases* 179 Suppl 2, S375-379.

1123 De Goeij, B.E., Janmaat, M.L., Andringa, G., Kil, L., Van Kessel, B., Frerichs, K.A., Lingnau, A.,
1124 Freidig, A., Mutis, T., Sasser, A.K., *et al.* (2019). Hexabody-CD38, a Novel CD38 Antibody with a

1128 Hexamerization Enhancing Mutation, Demonstrates Enhanced Complement-Dependent
1129 Cytotoxicity and Shows Potent Anti-Tumor Activity in Preclinical Models of Hematological
1130 Malignancies. *Blood* **134**, 3106-3106.

1131 de Jong, R.N., Beurskens, F.J., Verploegen, S., Strumane, K., van Kampen, M.D., Voorhorst, M.,
1132 Horstman, W., Engelberts, P.J., Oostindie, S.C., Wang, G., *et al.* (2016). A Novel Platform for the
1133 Potentiation of Therapeutic Antibodies Based on Antigen-Dependent Formation of IgG Hexamers
1134 at the Cell Surface. *PLoS biology* **14**, e1002344.

1135 Donnarumma, D., Maestri, C., Giammarinaro, P.I., Capriotti, L., Bartolini, E., Veggi, D., Petracca,
1136 R., Scarselli, M., and Norais, N. (2018). Native State Organization of Outer Membrane Porins
1137 Unraveled by HDx-MS. *Journal of proteome research* **17**, 1794-1800.

1138 Donnelly, J., Medini, D., Boccadifluoco, G., Biolchi, A., Ward, J., Frasch, C., Moxon, E.R., Stella,
1139 M., Comanducci, M., Bambini, S., *et al.* (2010). Qualitative and quantitative assessment of
1140 meningococcal antigens to evaluate the potential strain coverage of protein-based vaccines.
1141 *Proceedings of the National Academy of Sciences of the United States of America* **107**, 19490-
1142 19495.

1143 Ferrari, G., Garaguso, I., Adu-Bobie, J., Doro, F., Taddei, A.R., Biolchi, A., Brunelli, B., Giuliani,
1144 M.M., Pizza, M., Norais, N., *et al.* (2006). Outer membrane vesicles from group B *Neisseria*
1145 meningitidis delta gna33 mutant: proteomic and immunological comparison with detergent-derived
1146 outer membrane vesicles. *Proteomics* **6**, 1856-1866.

1147 Findlow, J., Holland, A., Andrews, N., Weynants, V., Sotolongo, F., Balmer, P., Poolman, J., and
1148 Borrow, R. (2007). Comparison of phenotypically indistinguishable but geographically distinct
1149 *Neisseria meningitidis* Group B isolates in a serum bactericidal antibody assay. *Clinical and*
1150 *vaccine immunology : CVI* **14**, 1451-1457.

1151 Goire, N., Lahra, M.M., Chen, M., Donovan, B., Fairley, C.K., Guy, R., Kaldor, J., Regan, D., Ward,
1152 J., Nissen, M.D., *et al.* (2014). Molecular approaches to enhance surveillance of gonococcal
1153 antimicrobial resistance. *Nature reviews Microbiology* **12**, 223-229.

1154 Gottlieb, S.L., Ndowa, F., Hook, E.W., 3rd, Deal, C., Bachmann, L., Abu-Raddad, L., Chen, X.S.,
1155 Jerse, A., Low, N., MacLennan, C.A., *et al.* (2020). Gonococcal vaccines: Public health value and

1156 preferred product characteristics; report of a WHO global stakeholder consultation, January 2019.

1157 Vaccine 38, 4362-4373.

1158 Greenberg, L. (1975). Field trials of a gonococcal vaccine. The Journal of reproductive medicine

1159 14, 34-36.

1160 Gulati, S., Beurskens, F.J., de Kreuk, B.-J., Roza, M., Zheng, B., DeOliveira, R.B., Shaughnessy,

1161 J., Nowak, N.A., Taylor, R.P., Botto, M., *et al.* (2019a). Complement alone drives efficacy of a

1162 chimeric antigenococcal monoclonal antibody. PLoS biology 17, e3000323.

1163 Gulati, S., Pennington, M.W., Czerwinski, A., Carter, D., Zheng, B., Nowak, N.A., DeOliveira, R.B.,

1164 Shaughnessy, J., Reed, G.W., Ram, S., *et al.* (2019b). Preclinical Efficacy of a Lipooligosaccharide

1165 Peptide Mimic Candidate Gonococcal Vaccine. mBio 10.

1166 Heckels, J.E., Virji, M., Zak, K., and Fletcher, J.N. (1987). Immunobiology of gonococcal outer

1167 membrane protein I. Antonie van Leeuwenhoek 53, 461-464.

1168 Hill, S.A., Masters, T.L., and Wachter, J. (2016). Gonorrhea - an evolving disease of the new

1169 millennium. Microbial cell (Graz, Austria) 3, 371-389.

1170 Hobbs, M.M., Sparling, P.F., Cohen, M.S., Shafer, W.M., Deal, C.D., and Jerse, A.E. (2011).

1171 Experimental Gonococcal Infection in Male Volunteers: Cumulative Experience with Neisseria

1172 gonorrhoeae Strains FA1090 and MS11mkC. Frontiers in microbiology 2, 123.

1173 Holst, J., Oster, P., Arnold, R., Tatley, M.V., Næss, L.M., Aaberge, I.S., Galloway, Y., McNicholas,

1174 A., O'Hallahan, J., Rosenqvist, E., *et al.* (2013). Vaccines against meningococcal serogroup B

1175 disease containing outer membrane vesicles (OMV): lessons from past programs and implications

1176 for the future. Human vaccines & immunotherapeutics 9, 1241-1253.

1177 Huang, J., Doria-Rose, N.A., Longo, N.S., Laub, L., Lin, C.L., Turk, E., Kang, B.H., Migueles, S.A.,

1178 Bailer, R.T., Mascola, J.R., *et al.* (2013). Isolation of human monoclonal antibodies from peripheral

1179 blood B cells. Nature protocols 8, 1907-1915.

1180 Humphries, H.E., Williams, J.N., Blackstone, R., Jolley, K.A., Yuen, H.M., Christodoulides, M., and

1181 Heckels, J.E. (2006). Multivalent liposome-based vaccines containing different serosubtypes of

1182 PorA protein induce cross-protective bactericidal immune responses against Neisseria

1183 meningitidis. Vaccine 24, 36-44.

1184 Jansen, C., Kuipers, B., van der Biezen, J., de Cock, H., van der Ley, P., and Tommassen, J.
1185 (2000). Immunogenicity of in vitro folded outer membrane protein PorA of *Neisseria meningitidis*.
1186 FEMS immunology and medical microbiology 27, 227-233.
1187 Jarvis, G.A., and Chang, T.L. (2012). Modulation of HIV transmission by *Neisseria gonorrhoeae*:
1188 molecular and immunological aspects. Current HIV research 10, 211-217.
1189 Jennings, M.P., Srikhanta, Y.N., Moxon, E.R., Kramer, M., Poolman, J.T., Kuipers, B., and van der
1190 Ley, P. (1999). The genetic basis of the phase variation repertoire of lipopolysaccharide
1191 immunotypes in *Neisseria meningitidis*. Microbiology (Reading, England) 145 (Pt 11), 3013-3021.
1192 Jerse, A.E. (1999). Experimental gonococcal genital tract infection and opacity protein expression
1193 in estradiol-treated mice. Infection and immunity 67, 5699-5708.
1194 Joiner, K.A., Warren, K.A., Tam, M., and Frank, M.M. (1985). Monoclonal antibodies directed
1195 against gonococcal protein I vary in bactericidal activity. Journal of immunology (Baltimore, Md :
1196 1950) 134, 3411-3419.
1197 Jones, R.A., Jerse, A.E., and Tang, C.M. (2023). Gonococcal PorB: a multifaceted modulator of
1198 host immune responses. Trends in microbiology.
1199 Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K.,
1200 Bates, R., Žídek, A., Potapenko, A., *et al.* (2021). Highly accurate protein structure prediction with
1201 AlphaFold. Nature 596, 583-589.
1202 Lenz, J.D., and Dillard, J.P. (2018). Pathogenesis of *Neisseria gonorrhoeae* and the Host Defense
1203 in Ascending Infections of Human Fallopian Tube. Frontiers in immunology 9, 2710.
1204 Longtin, J., Dion, R., Simard, M., Betala Belinga, J.F., Longtin, Y., Lefebvre, B., Labb  , A.C.,
1205 Deceuninck, G., and De Wals, P. (2017). Possible Impact of Wide-scale Vaccination Against
1206 Serogroup B *Neisseria Meningitidis* on Gonorrhea Incidence Rates in One Region of Quebec,
1207 Canada (Open Forum Infect Dis. 2017 Oct 4;4(Suppl 1):S734-5. doi: 10.1093/ofid/ofx180.002.
1208 eCollection 2017 Fall.).
1209 Malito, E., Faleri, A., Lo Surdo, P., Veggi, D., Maruggi, G., Grassi, E., Cartocci, E., Bertoldi, I.,
1210 Genovese, A., Santini, L., *et al.* (2013). Defining a protective epitope on factor H binding protein, a

1211 key meningococcal virulence factor and vaccine antigen. *Proceedings of the National Academy of*
1212 *Sciences of the United States of America* **110**, 3304-3309.

1213 Manca, B., Buffi, G., Magri, G., Del Vecchio, M., Taddei, A.R., Pezzicoli, A., and Giuliani, M.
1214 (2023). Functional characterization of the gonococcal polyphosphate pseudo-capsule. *PLoS*
1215 *pathogens* **19**, e1011400.

1216 Mandrell, R.E., Griffiss, J.M., and Macher, B.A. (1988). Lipooligosaccharides (LOS) of *Neisseria*
1217 *gonorrhoeae* and *Neisseria meningitidis* have components that are immunochemically similar to
1218 precursors of human blood group antigens. Carbohydrate sequence specificity of the mouse
1219 monoclonal antibodies that recognize crossreacting antigens on LOS and human erythrocytes. *The*
1220 *Journal of experimental medicine* **168**, 107-126.

1221 Marjuki, H., Topaz, N., Joseph, S.J., Gernert, K.M., Kersh, E.N., and Wang, X. (2019). Genetic
1222 Similarity of Gonococcal Homologs to Meningococcal Outer Membrane Proteins of Serogroup B
1223 Vaccine. *mBio* **10**.

1224 Martinón-Torres, F., Banzhoff, A., Azzari, C., De Wals, P., Marlow, R., Marshall, H., Pizza, M.,
1225 Rappuoli, R., and Bekkat-Berkani, R. (2021). Recent advances in meningococcal B disease
1226 prevention: real-world evidence from 4CMenB vaccination. *Journal of Infection* **83**, 17-26.

1227 Marzoa, J., Sánchez, S., Ferreirós, C.M., and Criado, M.T. (2010). Identification of *Neisseria*
1228 *meningitidis* outer membrane vesicle complexes using 2-D high resolution clear native/SDS-PAGE.
1229 *Journal of proteome research* **9**, 611-619.

1230 Maurakis, S.A., and Cornelissen, C.N. (2022). Recent Progress Towards a Gonococcal Vaccine.
1231 *Frontiers in cellular and infection microbiology* **12**, 881392.

1232 McIntosh, E.D., Bröker, M., Wassil, J., Welsch, J.A., and Borrow, R. (2015). Serum bactericidal
1233 antibody assays - The role of complement in infection and immunity. *Vaccine* **33**, 4414-4421.

1234 McLeod Griffiss, J., Brandt, B.L., Saunders, N.B., and Zollinger, W. (2000). Structural relationships
1235 and sialylation among meningococcal L1, L8, and L3,7 lipooligosaccharide serotypes. *The Journal*
1236 *of biological chemistry* **275**, 9716-9724.

1237 Micoli, F., Ravenscroft, N., Cescutti, P., Stefanetti, G., Londero, S., Rondini, S., and Maclennan,
1238 C.A. (2014). Structural analysis of O-polysaccharide chains extracted from different *Salmonella*
1239 *Typhimurium* strains. *Carbohydrate research* 385, 1-8.

1240 Mlynarczyk-Bonikowska, B., Majewska, A., Malejczyk, M., Mlynarczyk, G., and Majewski, S.
1241 (2020). Multiresistant *Neisseria gonorrhoeae*: a new threat in second decade of the XXI century.
1242 *Medical microbiology and immunology* 209, 95-108.

1243 Mubaiwa, T.D., Semchenko, E.A., Hartley-Tassell, L.E., Day, C.J., Jennings, M.P., and Seib, K.L.
1244 (2017). The sweet side of the pathogenic *Neisseria*: the role of glycan interactions in colonisation
1245 and disease. *Pathogens and disease* 75.

1246 O'Connor, E.T., Swanson, K.V., Cheng, H., Fluss, K., Griffiss, J.M., and Stein, D.C. (2008).
1247 Structural requirements for monoclonal antibody 2-1-L8 recognition of neisserial
1248 lipooligosaccharides. *Hybridoma* (2005) 27, 71-79.

1249 Ochoa-Azze, R.F. (2018). Cross-protection induced by VA-MENGOC-BC® vaccine. *Human*
1250 *vaccines & immunotherapeutics* 14, 1064-1068.

1251 Oostindie, S.C., van der Horst, H.J., Kil, L.P., Strumane, K., Overdijk, M.B., van den Brink, E.N.,
1252 van den Brakel, J.H.N., Rademaker, H.J., van Kessel, B., van den Noort, J., *et al.* (2020).
1253 DuoHexaBody-CD37(®), a novel biparatopic CD37 antibody with enhanced Fc-mediated
1254 hexamerization as a potential therapy for B-cell malignancies. *Blood cancer journal* 10, 30.

1255 Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. *IEEE Transactions on*
1256 *Systems, Man, and Cybernetics* 9, 62-66.

1257 Paynter, J., Goodyear-Smith, F., Morgan, J., Saxton, P., Black, S., and Petousis-Harris, H. (2019).
1258 Effectiveness of a Group B Outer Membrane Vesicle Meningococcal Vaccine in Preventing
1259 Hospitalization from Gonorrhea in New Zealand: A Retrospective Cohort Study. *Vaccines* 7.

1260 Pizza, M., Scarlato, V., Massignani, V., Giuliani, M.M., Aricò, B., Comanducci, M., Jennings, G.T.,
1261 Baldi, L., Bartolini, E., Capecchi, B., *et al.* (2000). Identification of vaccine candidates against
1262 serogroup B meningococcus by whole-genome sequencing. *Science (New York, NY)* 287, 1816-
1263 1820.

1264 Ram, S., Cullinane, M., Blom, A.M., Gulati, S., McQuillen, D.P., Monks, B.G., O'Connell, C.,
1265 Boden, R., Elkins, C., Pangburn, M.K., *et al.* (2001). Binding of C4b-binding protein to porin: a
1266 molecular mechanism of serum resistance of *Neisseria gonorrhoeae*. The Journal of experimental
1267 medicine 193, 281-295.

1268 Ram, S., Gulati, S., Lewis, L.A., Chakraborti, S., Zheng, B., DeOliveira, R.B., Reed, G.W., Cox,
1269 A.D., Li, J., St Michael, F., *et al.* (2018). A Novel Sialylation Site on *Neisseria gonorrhoeae*
1270 Lipooligosaccharide Links Heptose II Lactose Expression with Pathogenicity. Infection and
1271 immunity 86.

1272 Ruffolo, J.A., Sulam, J., and Gray, J.J. (2022). Antibody structure prediction using interpretable
1273 deep learning. Patterns 3, 100406.

1274 Russell, M.W., Jerse, A.E., and Gray-Owen, S.D. (2019). Progress Toward a Gonococcal Vaccine:
1275 The Way Forward. Frontiers in immunology 10, 2417.

1276 Sacchi, C.T., Lemos, A.P.S., Brandt, M.E., Whitney, A.M., Melles, C.E.A., Solari, C.A., Frasch,
1277 C.E., and Mayer, L.W. (1998). Proposed Standardization of *Neisseria meningitidis* PorA Variable-
1278 Region Typing Nomenclature. 5, 845-855.

1279 Semchenko, E.A., Tan, A., Borrow, R., and Seib, K.L. (2019). The Serogroup B Meningococcal
1280 Vaccine Bexsero Elicits Antibodies to *Neisseria gonorrhoeae*. Clinical infectious diseases : an
1281 official publication of the Infectious Diseases Society of America 69, 1101-1111.

1282 Snape, M.D., Saroey, P., John, T.M., Robinson, H., Kelly, S., Gossger, N., Yu, L.M., Wang, H.,
1283 Toneatto, D., Dull, P.M., *et al.* (2013). Persistence of bactericidal antibodies following early infant
1284 vaccination with a serogroup B meningococcal vaccine and immunogenicity of a preschool booster
1285 dose. CMAJ : Canadian Medical Association journal = journal de l'Association medicale
1286 canadienne 185, E715-724.

1287 St Cyr, S., Barbee, L., Workowski, K.A., Bachmann, L.H., Pham, C., Schlanger, K., Torrone, E.,
1288 Weinstock, H., Kersh, E.N., and Thorpe, P. (2020). Update to CDC's Treatment Guidelines for
1289 Gonococcal Infection, 2020. MMWR Morbidity and mortality weekly report 69, 1911-1916.

1290 Stazzoni, S., Troisi, M., Abbiento, V., Sala, C., Andreano, E., and Rappuoli, R. (2023). High-
1291 throughput bactericidal assays for monoclonal antibody screening against antimicrobial resistant
1292 *Neisseria gonorrhoeae*. *Frontiers in microbiology* 14, 1243427.

1293 Tani, C., Stella, M., Donnarumma, D., Biagini, M., Parente, P., Vadi, A., Magagnoli, C., Costantino,
1294 P., Rigat, F., and Norais, N. (2014). Quantification by LC-MS(E) of outer membrane vesicle
1295 proteins of the Bexsero® vaccine. *Vaccine* 32, 1273-1279.

1296 Tinsley, C.R., and Nassif, X. (1996). Analysis of the genetic differences between *Neisseria*
1297 *meningitidis* and *Neisseria gonorrhoeae*: two closely related bacteria expressing two different
1298 pathogenicities. *Proceedings of the National Academy of Sciences of the United States of America*
1299 93, 11109-11114.

1300 Tondella, M.L.C., Popovic, T., Rosenstein, N.E., Lake, D.B., Carlone, G.M., Mayer, L.W., and
1301 Perkins, B.A. (2000). Distribution of *Neisseria meningitidis* Serogroup B Serosubtypes and
1302 Serotypes Circulating in the United States. 38, 3323-3328.

1303 Tramont, E.C. (1989). Gonococcal vaccines. *Clinical microbiology reviews* 2 Suppl, S74-77.

1304 Tsai, C.M., and Civin, C.I. (1991). Eight lipooligosaccharides of *Neisseria meningitidis* react with a
1305 monoclonal antibody which binds lacto-N-neotetraose (Gal beta 1-4GlcNAc beta 1-3Gal beta 1-
1306 4Glc). *Infection and immunity* 59, 3604-3609.

1307 Unemo, M., Lahra, M.M., Escher, M., Eremin, S., Cole, M.J., Galarza, P., Ndowa, F., Martin, I.,
1308 Dillon, J.R., Galas, M., et al. (2021). WHO global antimicrobial resistance surveillance for *Neisseria*
1309 *gonorrhoeae* 2017-18: a retrospective observational study. *The Lancet Microbe* 2, e627-e636.

1310 Unemo, M., Norlén, O., and Fredlund, H. (2005). The *porA* pseudogene of *Neisseria gonorrhoeae*--
1311 low level of genetic polymorphism and a few, mainly identical, inactivating mutations. *APMIS : acta*
1312 *pathologica, microbiologica, et immunologica Scandinavica* 113, 410-419.

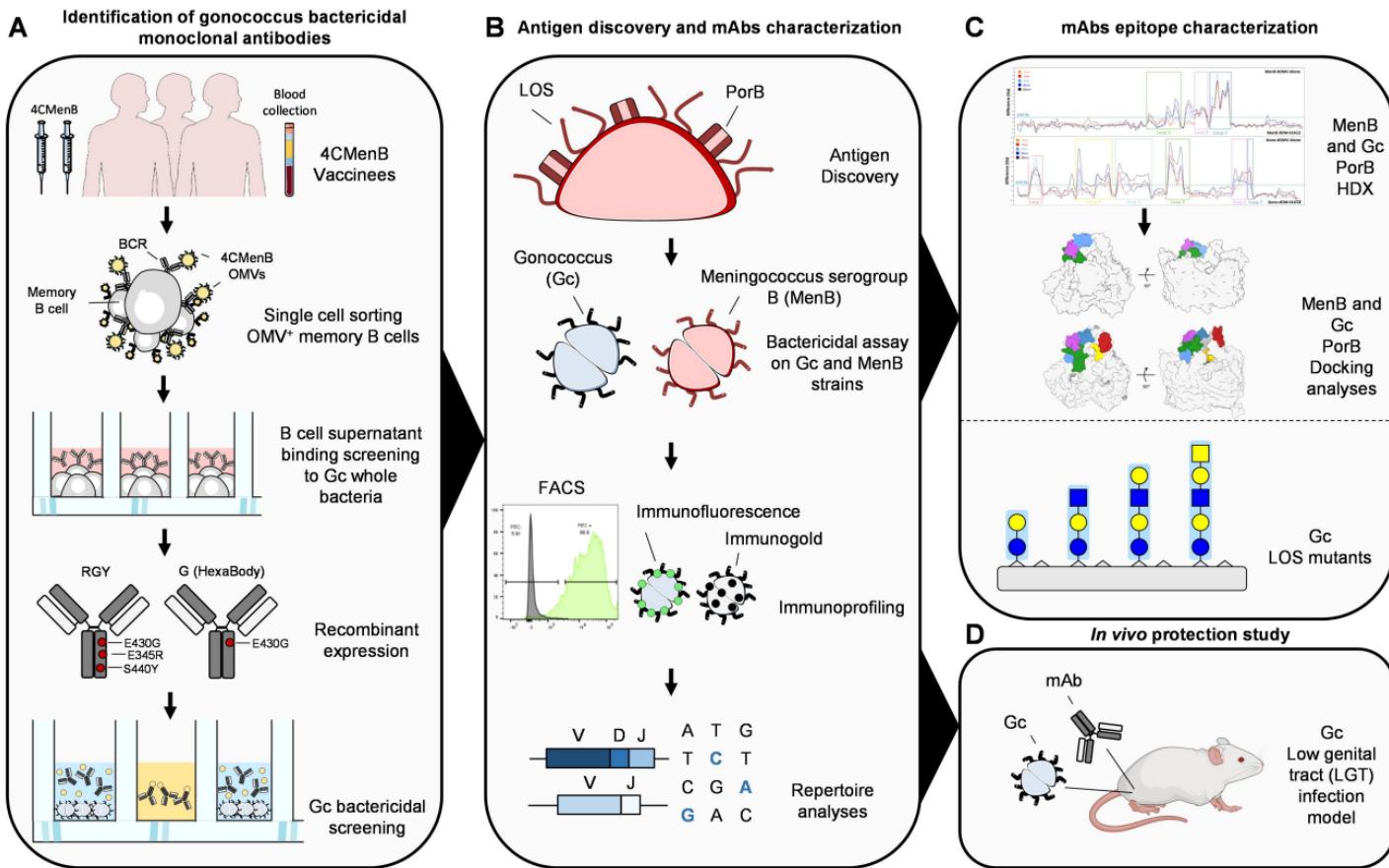
1313 Unemo, M., and Shafer, W.M. (2014). Antimicrobial resistance in *Neisseria gonorrhoeae* in the
1314 21st century: past, evolution, and future. *Clinical microbiology reviews* 27, 587-613.

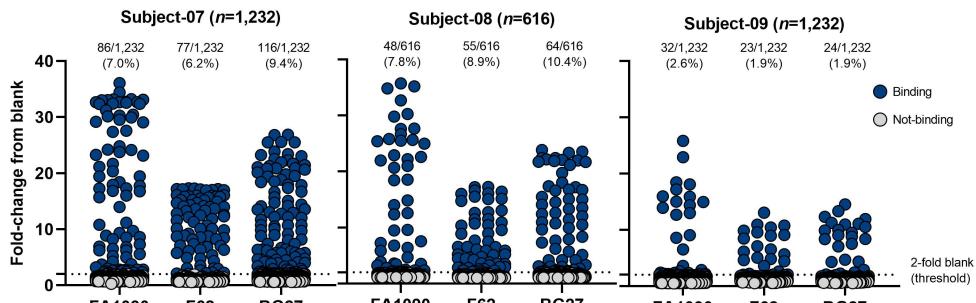
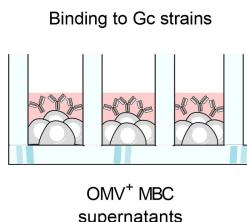
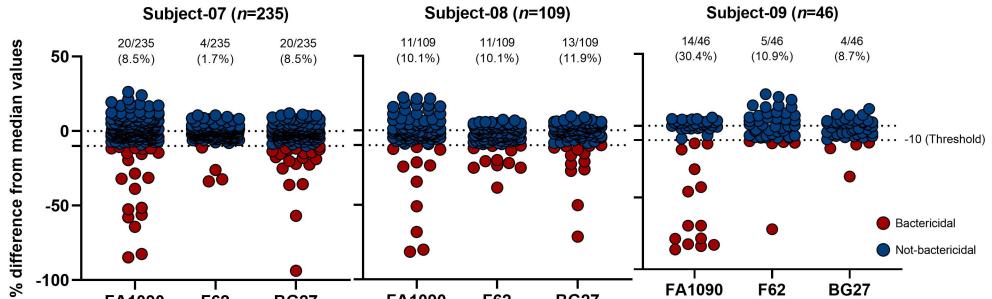
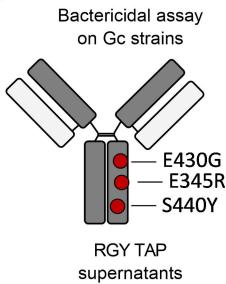
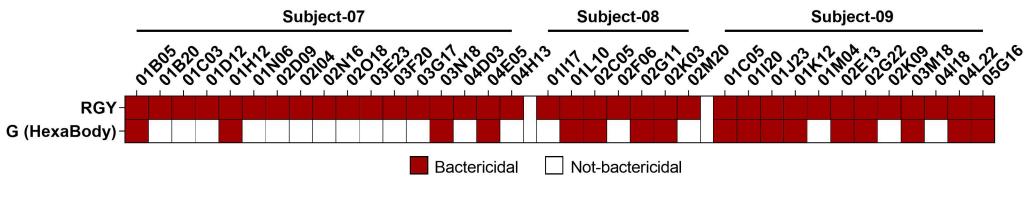
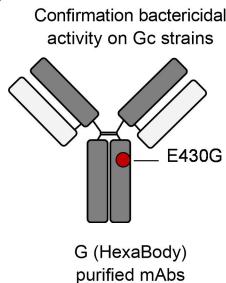
1315 van Zundert, G.C.P., Rodrigues, J., Trellet, M., Schmitz, C., Kastritis, P.L., Karaca, E., Melquiond,
1316 A.S.J., van Dijk, M., de Vries, S.J., and Bonvin, A. (2016). The HADDOCK2.2 Web Server: User-

1317 Friendly Integrative Modeling of Biomolecular Complexes. *Journal of molecular biology* 428, 720-
1318 725.

1319 Vipond, C., Suker, J., Jones, C., Tang, C., Feavers, I.M., and Wheeler, J.X. (2006). Proteomic
1320 analysis of a meningococcal outer membrane vesicle vaccine prepared from the group B strain
1321 NZ98/254. *Proteomics* 6, 3400-3413.

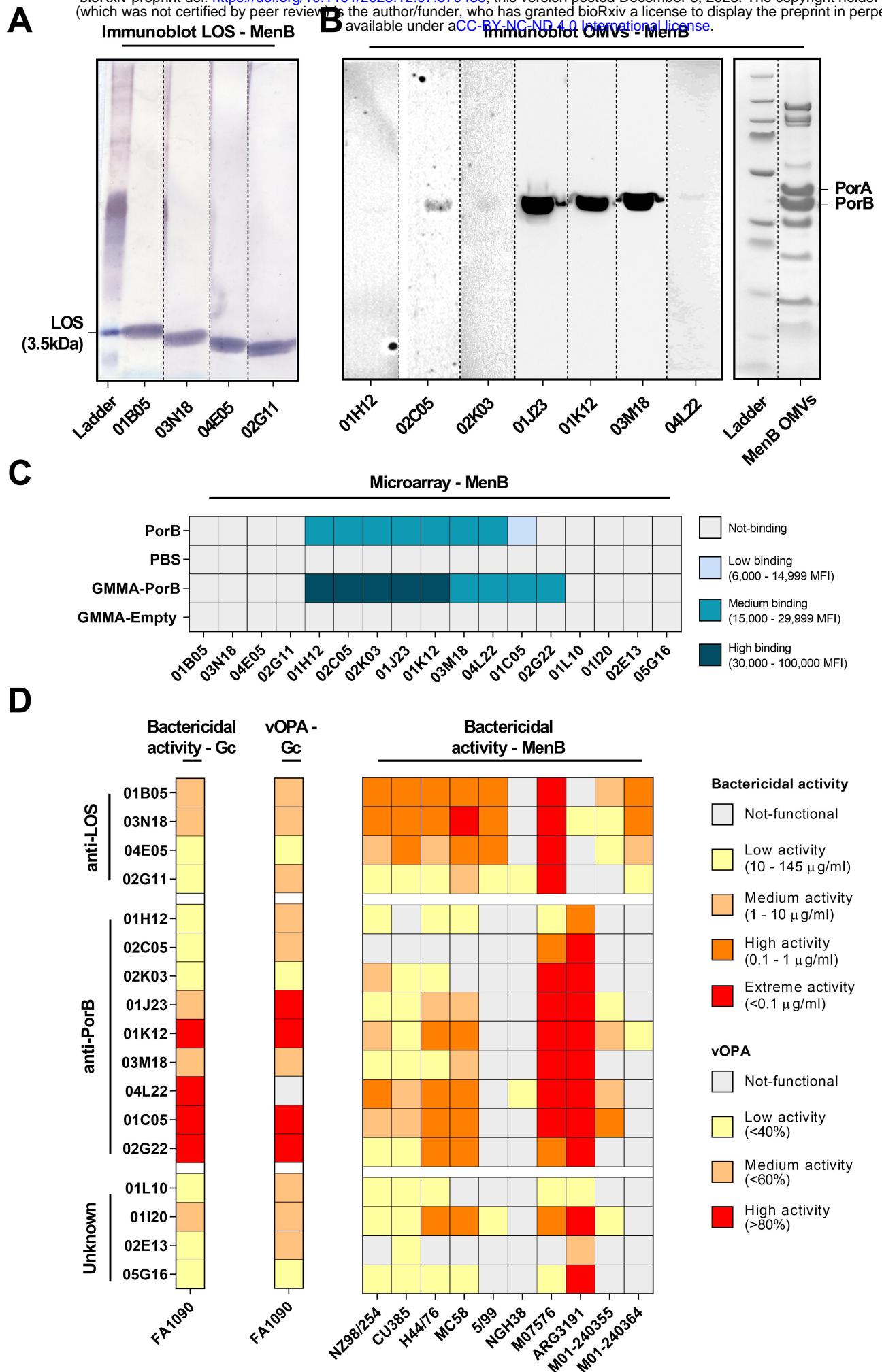
1322 Viviani, V., Fantoni, A., Tomei, S., Marchi, S., Luzzi, E., Bodini, M., Muzzi, A., Giuliani, M.M.,
1323 Maione, D., Derrick, J.P., *et al.* (2023). OpcA and PorB are novel bactericidal antigens of the
1324 4CMenB vaccine in mice and humans. *npj Vaccines* 8, 54.


1325 Wang, B., Giles, L., Andraweera, P., McMillan, M., Almond, S., Beazley, R., Mitchell, J., Lally, N.,
1326 Ahoure, M., Denehy, E., *et al.* (2022). Effectiveness and impact of the 4CMenB vaccine against
1327 invasive serogroup B meningococcal disease and gonorrhoea in an infant, child, and adolescent
1328 programme: an observational cohort and case-control study. *The Lancet Infectious Diseases* 22,
1329 1011-1020.







1330 Westphal, O.a.J., K. (1965). Bacterial Lipopolysaccharides Extraction with Phenol-Water and
1331 Further Applications of the Procedure. *Methods in Carbohydrate Chemistry* 5, 83-91.

1332 Whelan, J., Kløvstad, H., Haugen, I.L., Holle, M.R., and Storsaeter, J. (2016). Ecologic Study of
1333 Meningococcal B Vaccine and *Neisseria gonorrhoeae* Infection, Norway. *Emerging infectious
1334 diseases* 22, 1137-1139.

1335 Yamasaki, R., Koshino, H., Kurono, S., Nishinaka, Y., McQuillen, D.P., Kume, A., Gulati, S., and
1336 Rice, P.A. (1999). Structural and immunochemical characterization of a *Neisseria gonorrhoeae*
1337 epitope defined by a monoclonal antibody 2C7; the antibody recognizes a conserved epitope on
1338 specific lipo-oligosaccharides in spite of the presence of human carbohydrate epitopes. *The
1339 Journal of biological chemistry* 274, 36550-36558.


Figure 1

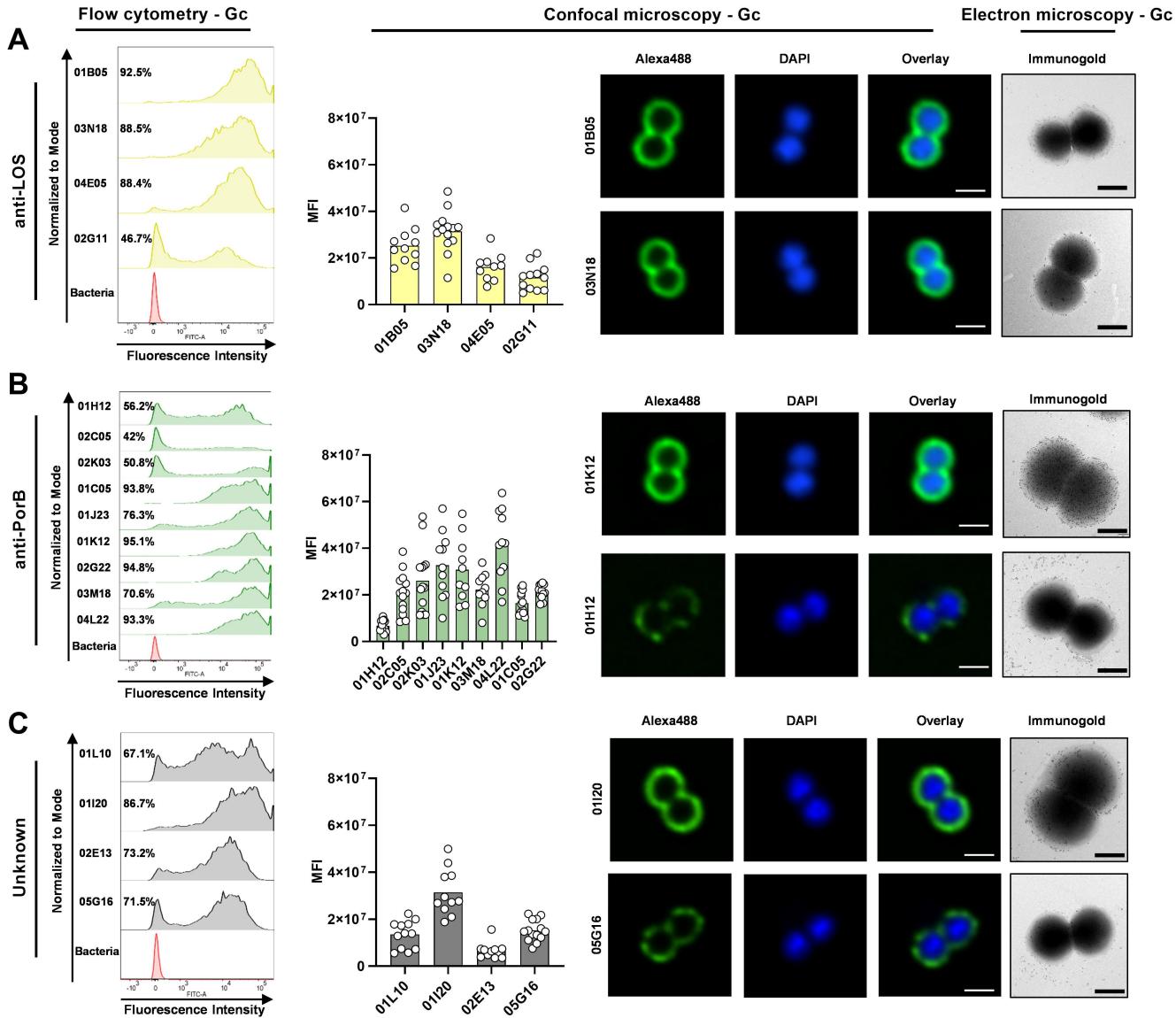
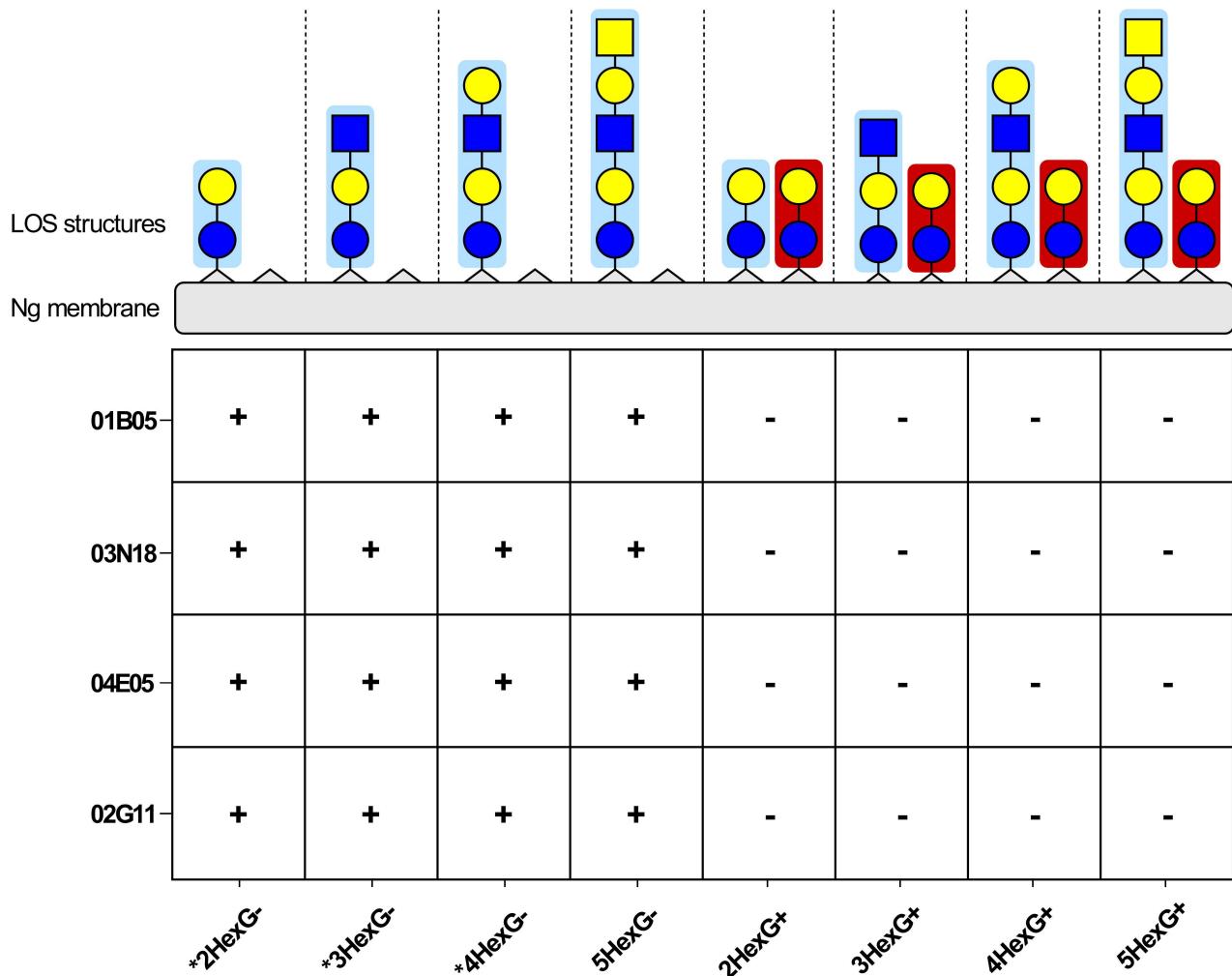


Figure 2**A****B****C**


Figure 3

bioRxiv preprint doi: <https://doi.org/10.1101/2023.12.07.570438>; this version posted December 8, 2023. The copyright holder for (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure 4

Figure 5

Legend (Yellow circle) Gal (Yellow square) GalNAc (Blue circle) Glc (Blue square) GlcNAc (Light blue rectangle) α -chain (Red rectangle) β -chain

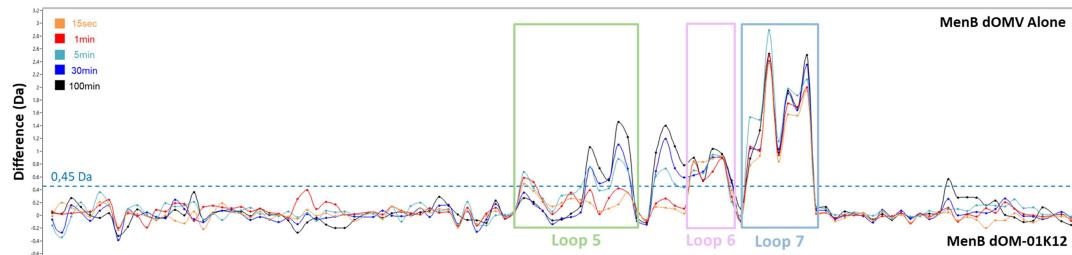
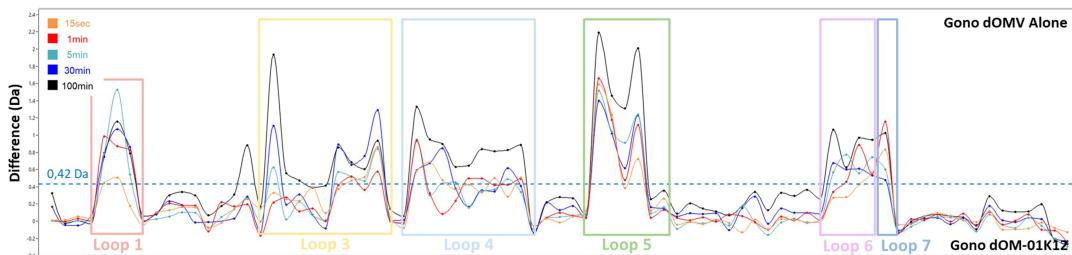
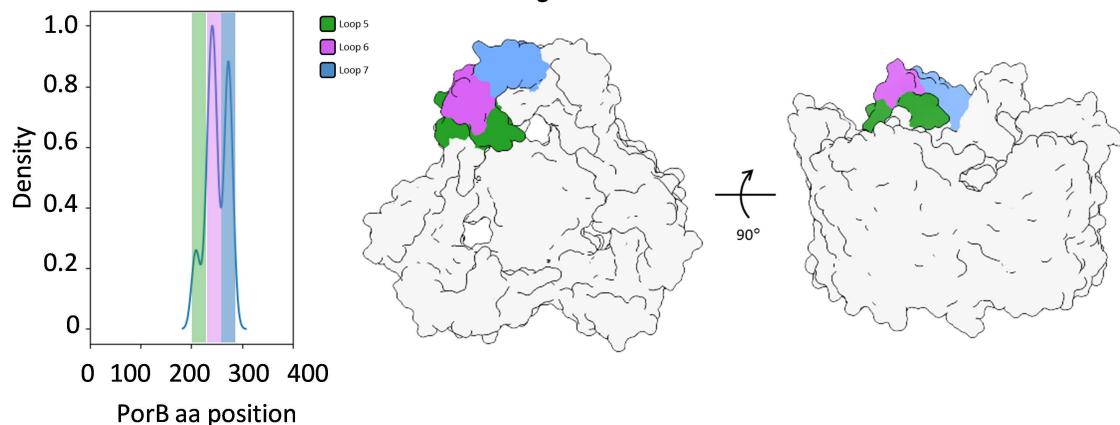

*LOS structures shared between Gc and MenB

Figure 6

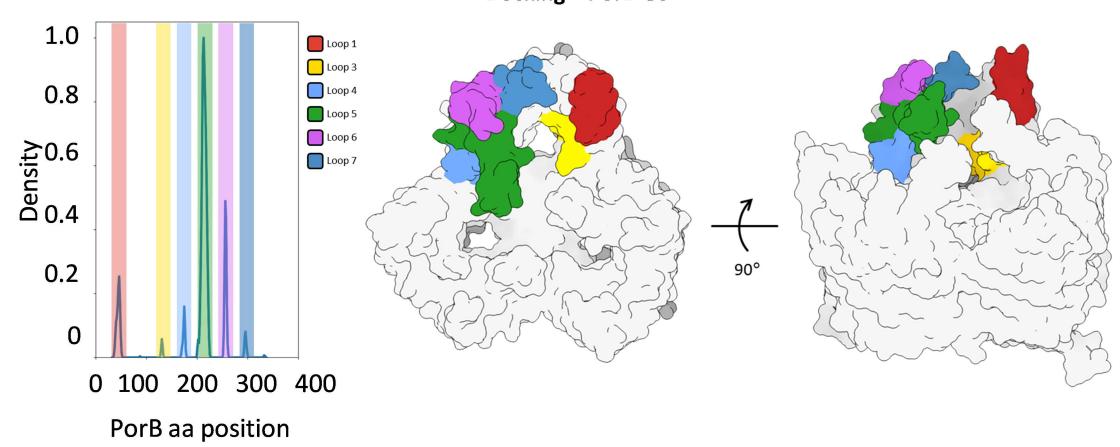
bioRxiv preprint doi: <https://doi.org/10.1101/2023.12.07.570438>; this version posted December 8, 2023. The copyright holder for (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


A

HDX-MS – PorB MenB


B

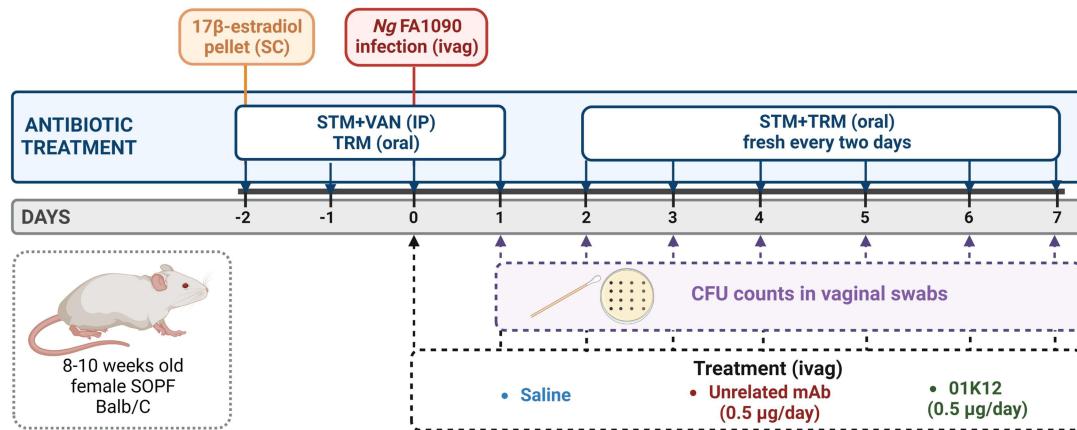
HDX-MS – PorB Gc


C

Docking – PorB MenB

D

Docking – PorB Gc



E

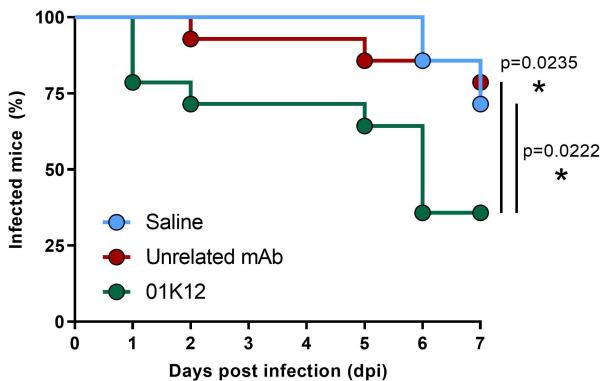
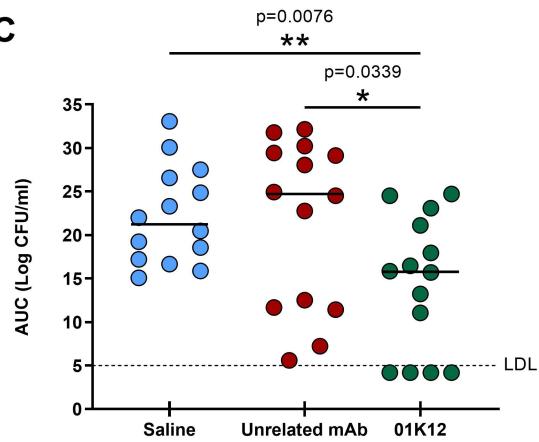
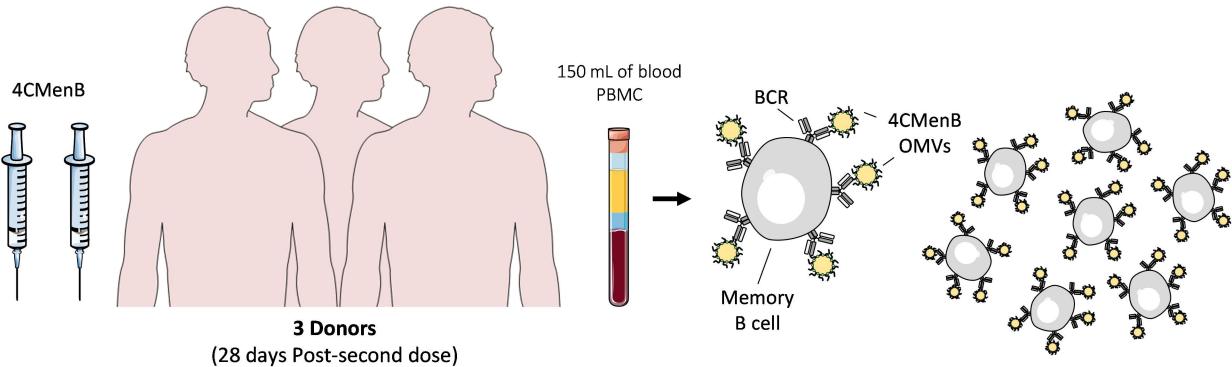

NZ98/254	1 DVTLYGTIKAGVETSR SVEHNGGQVVSV E	TGTGIVDLGSKIGFKGQEDLGNGLKAIWQVEK	KASIA GTDSGWGNRQ	SFIGLKGG	84
FA1090	1 DVTLYGAIKAGVQTYS SVEHTDGKVSKV E	TGSEIADFGSKIGFKGQEDLGNGLKAVWQLEG	GASVAGT NTGWNKQ	SFVGLKGG	84
NZ98/254	85 FGKLRLVGR I NSV LKD TG-DINPWS D SKS- -- DYLGVNKIAEPEAR	LISVRYDSPEFAGLGSVQYA A LNDNAGRHN S E	SYHAGFNY	164	
FA1090	85 FGT T IRAGSL I NSPLKNT G ANVNAWE S CKP T GNV L E I SG M ARE R H	LSVRYDSPEFAGFSGSVQYA A PK D NSGS-N C E	SYHVGLNY	167	
NZ98/254	165 KNGGFFVQYGGAY K R H Q D V	-----D-D V K I E K Y Q I H R L V G Y D N A L H S V A V Q Q D A K I	VED -- NYS HNSQTEVAA	233	
FA1090	168 QNSGFFAQYAG L F R Y G E T K K I E D G Q T Y S I P S L F V E K I	QV H R L V G Y D N A L H S V A V Q Q D A K I Y G A M S G N S	HNSQTEVAA	251	
NZ98/254	234 T L A Y R F G N V T P R V S Y A H G F K G S F D D A L S N D	YDQVVVGA E YDFSKRTS A LV S A GL Q E G R E N K F	V F S T A G G V L R K F	311	
FA1090	252 T A A Y R F G N V T P R V S Y A H G F K G T V D S A N H D N T	YDQVVVGA E YDFSKRTS A LV S A GL Q E G R A D K H I V S T A S A V V L R K F	329		

Figure 7


A

B



C

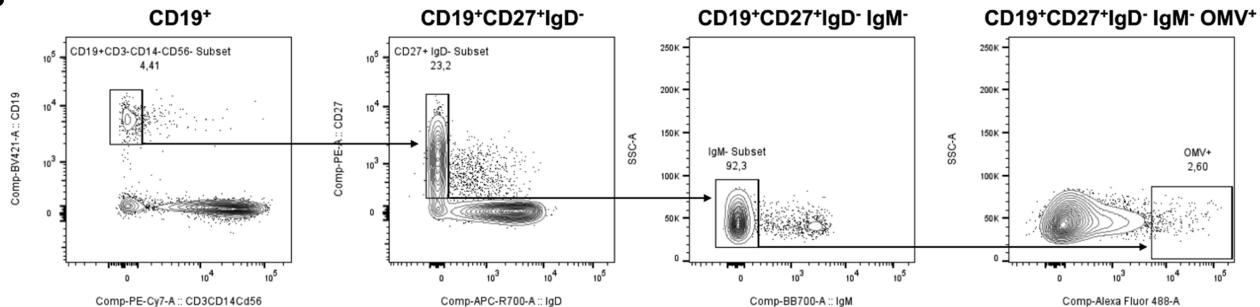
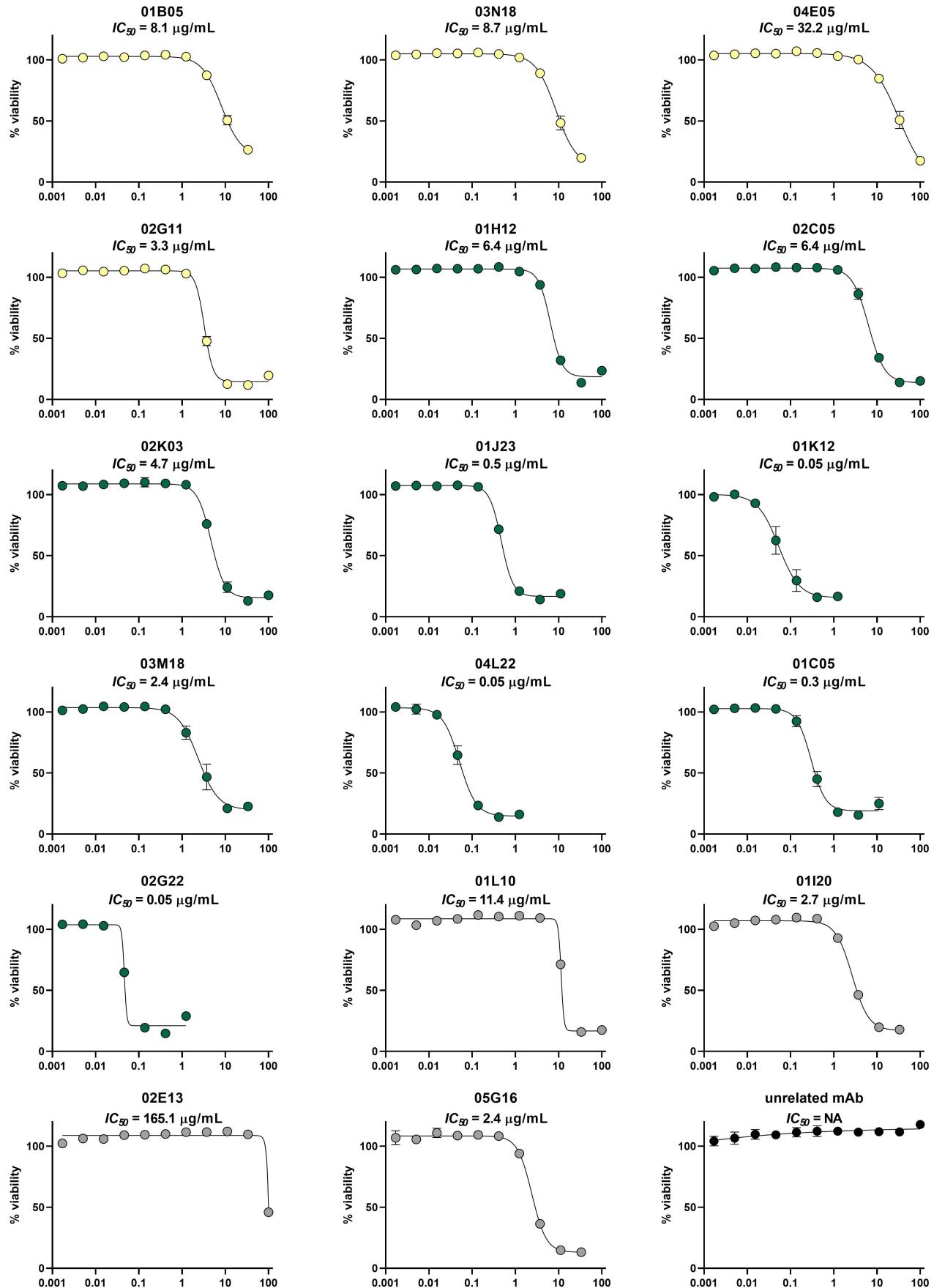
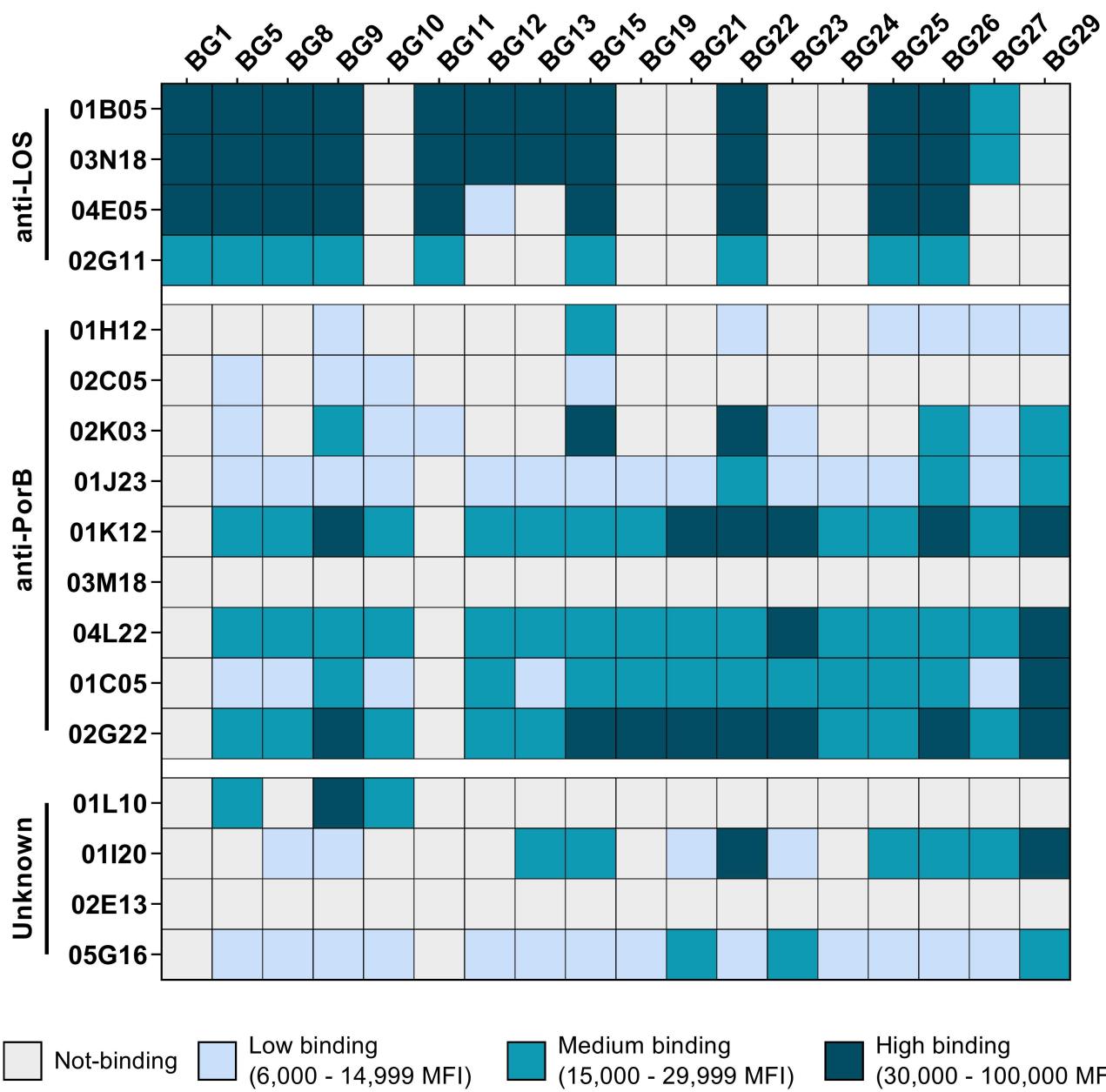


Figure S1

A


B


C

Subject ID	CD19 ⁺ Subset (%)	CD19 ⁺ CD27 ⁺ IgD ⁻ Subset (%)	CD19 ⁺ CD27 ⁺ IgD ⁻ IgM ⁻ Subset (%)	CD19 ⁺ CD27 ⁺ IgD ⁻ IgM ⁺ OMV ⁺ Subset (%)	Sorted cells
vAMRes_07	4.41	23.2	92.3	2.60	1,232
vAMRes_08	2.82	16.9	91.6	3.26	616
vAMRes_09	5.71	43.1	94.5	12.6	1,232

Figure S2

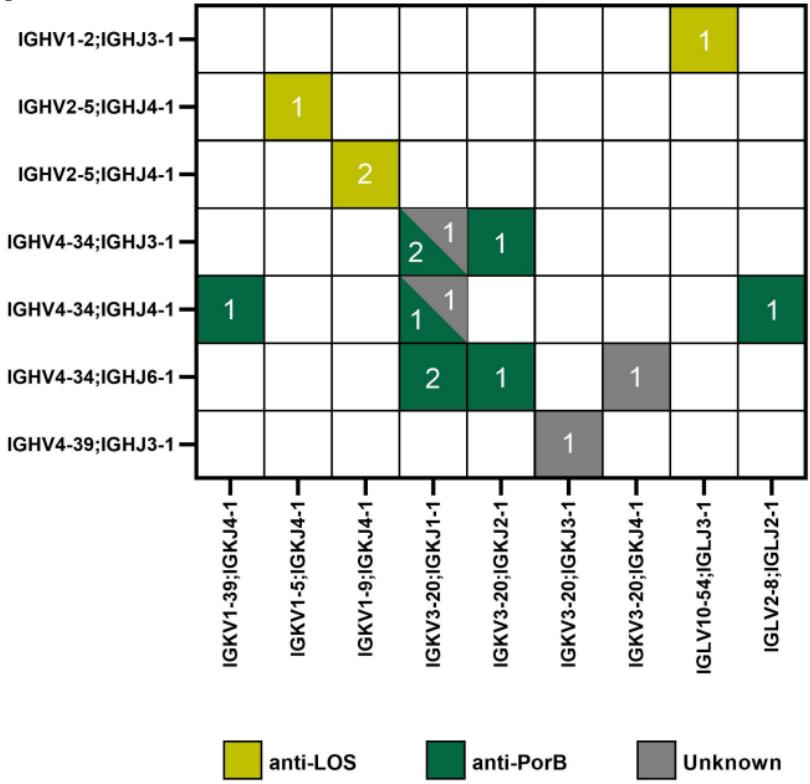


Figure S3

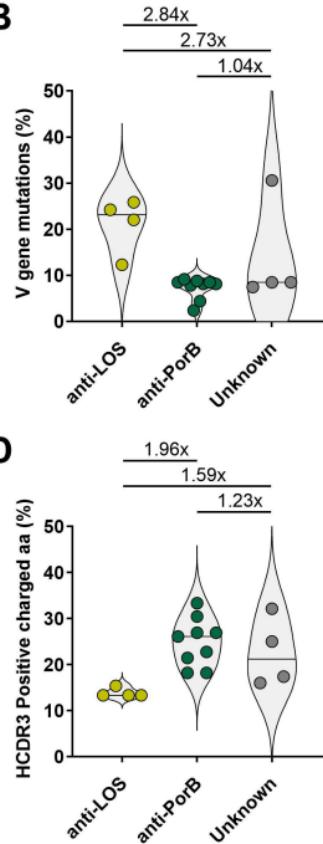
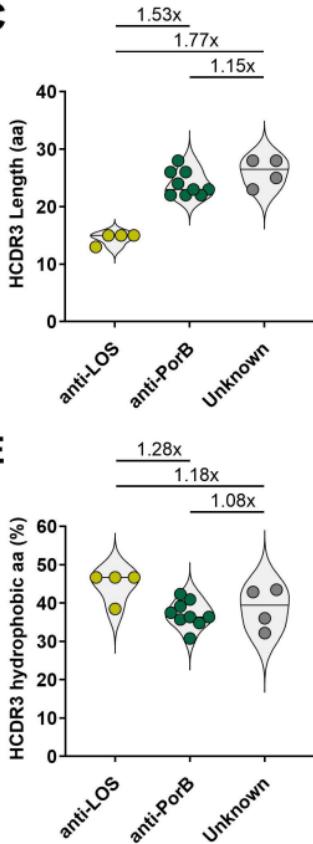
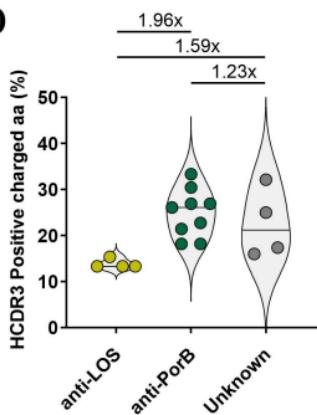
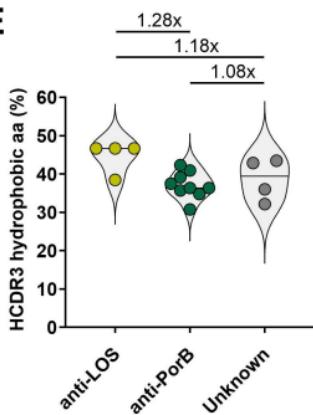
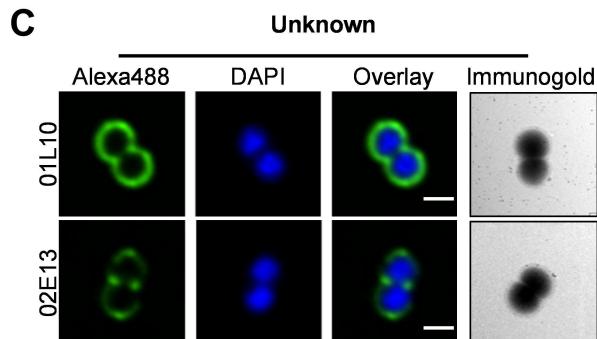
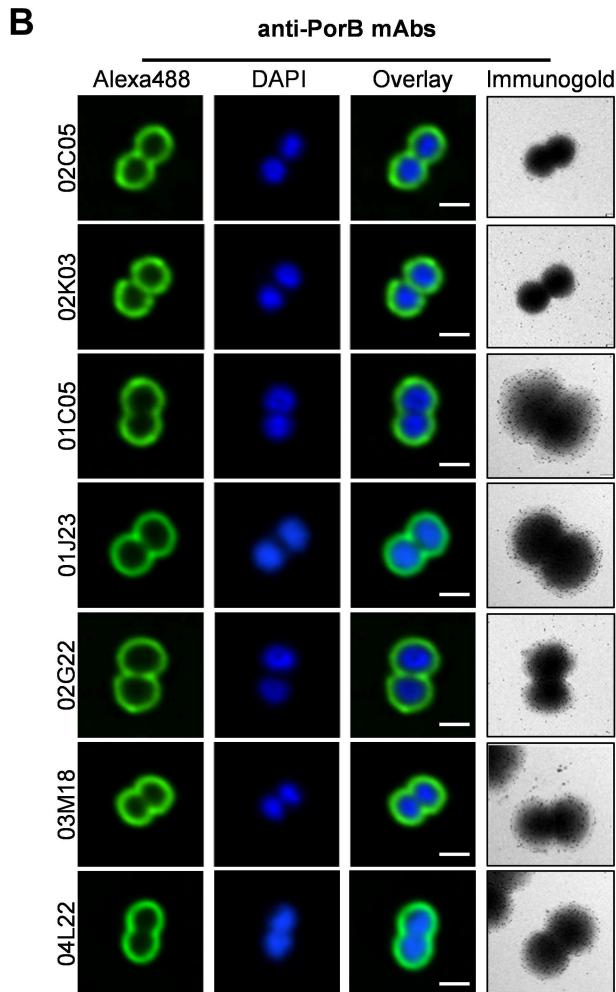
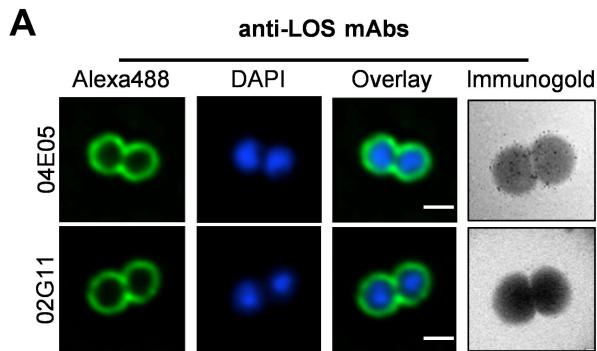


Figure S4


A


B


C




D

E

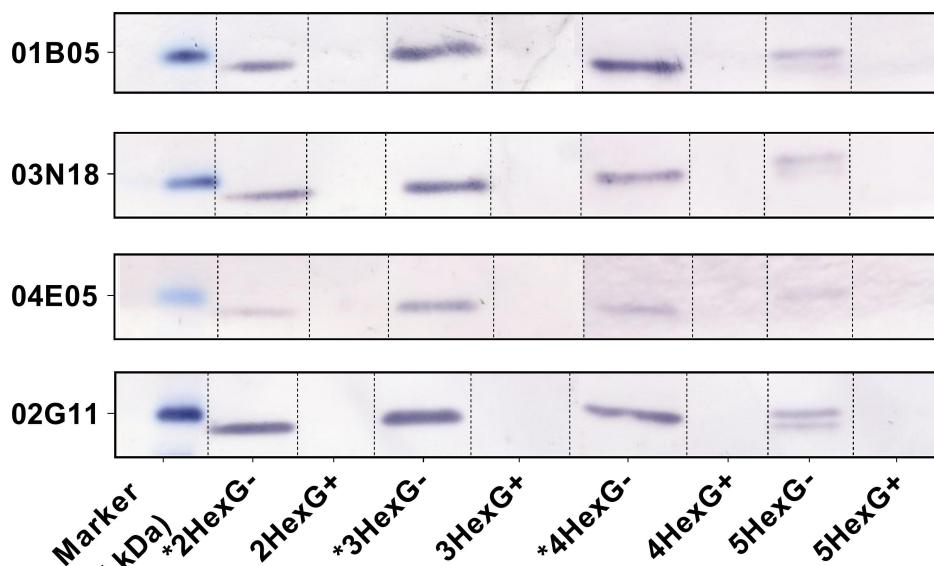


Figure S5

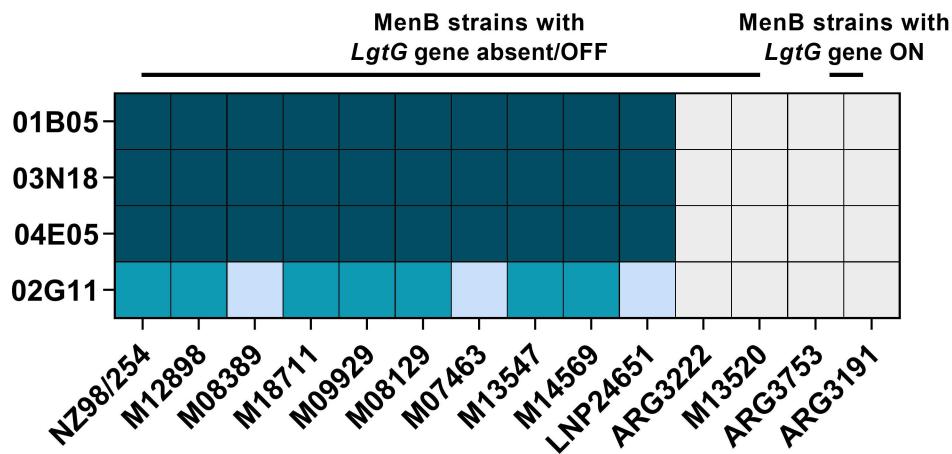
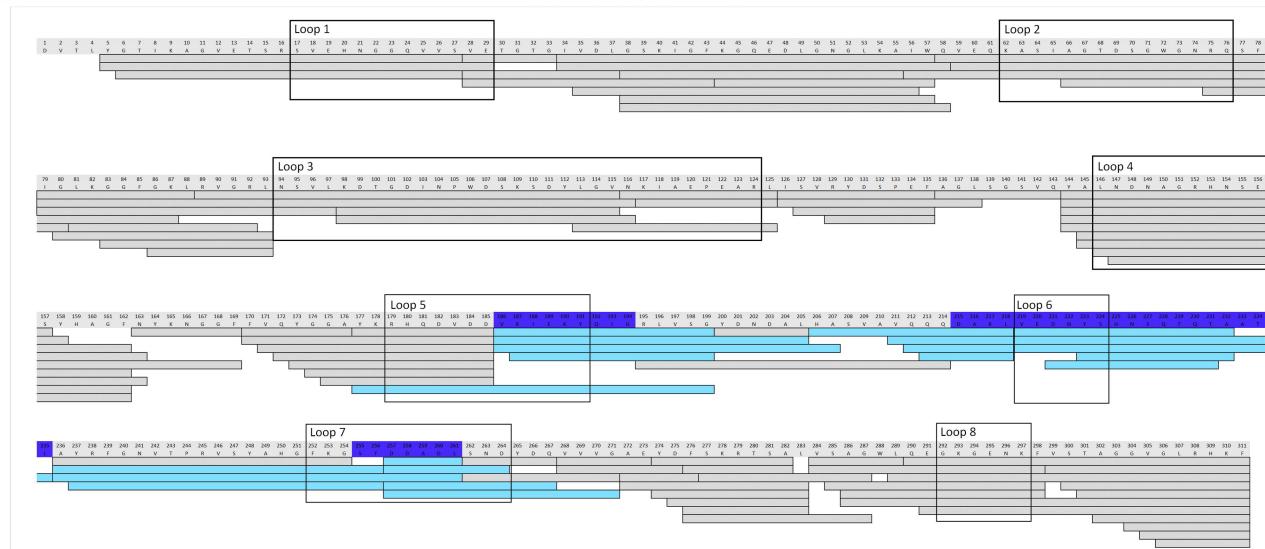


Figure S6

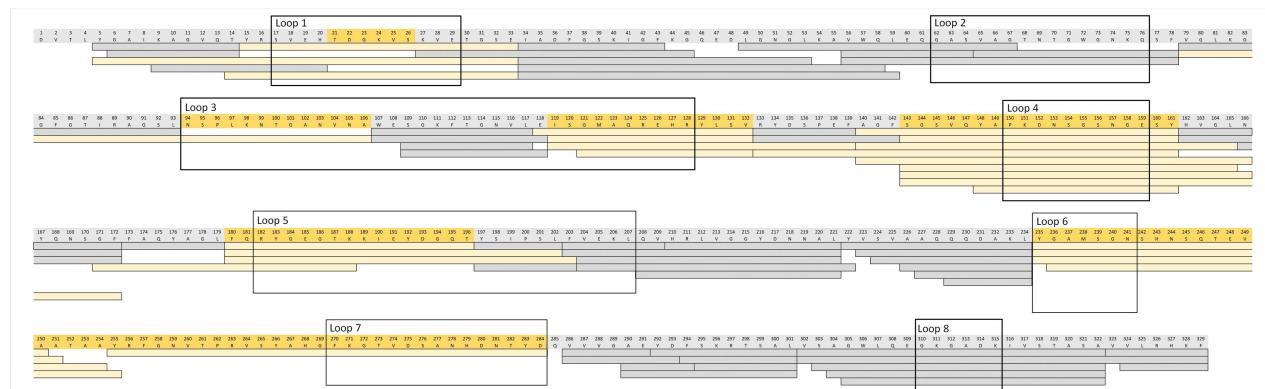
A

B

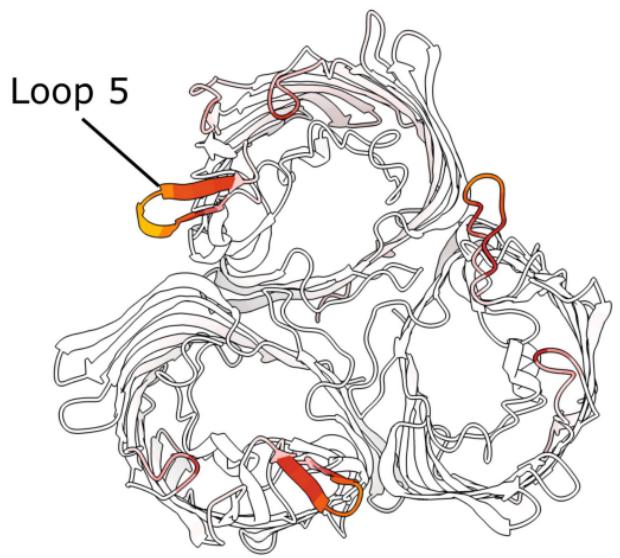


Not-binding Low binding (6,000 - 14,999 MFI) Medium binding (15,000 - 29,999 MFI) High binding (30,000 - 100,000 MFI)

Figure S7


A

MenB dOMV PorB


B

Gc dOMV PorB

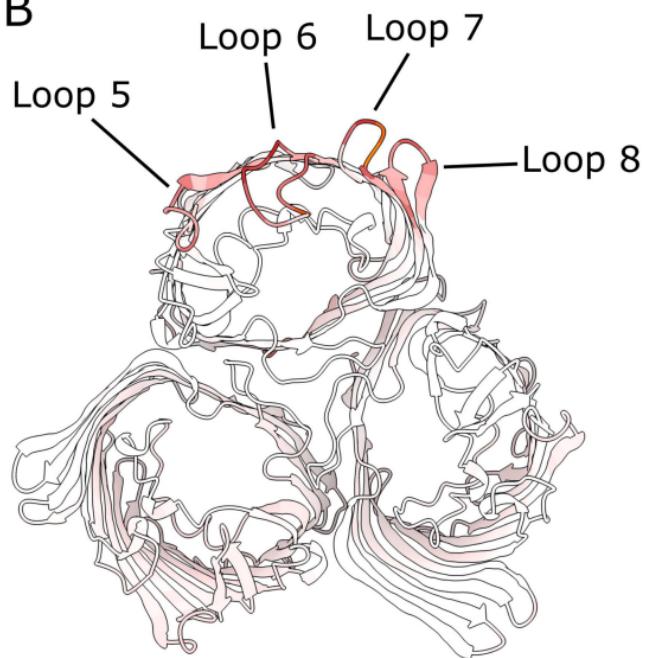


Figure S8

A

B

0 RMSD (\AA) 8

0 RMSD (\AA) 6