

Improving the suppressive power of homing gene drive by co-targeting a distant-site female fertility gene

Nicky R. Faber^{✉,a}, Xuejiao Xu^{✉,b}, Jingheng Chen^b, Shibo Hou^b, Jie Du^b, Bart A. Pannebakker^{b,a}, Bas J. Zwaan^{b,a}, Joost van den Heuvel^{b,a}, and Jackson Champer^b

[✉]These authors contributed equally to this work and may list themselves as first author when referencing this manuscript

^aLaboratory of Genetics, Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands

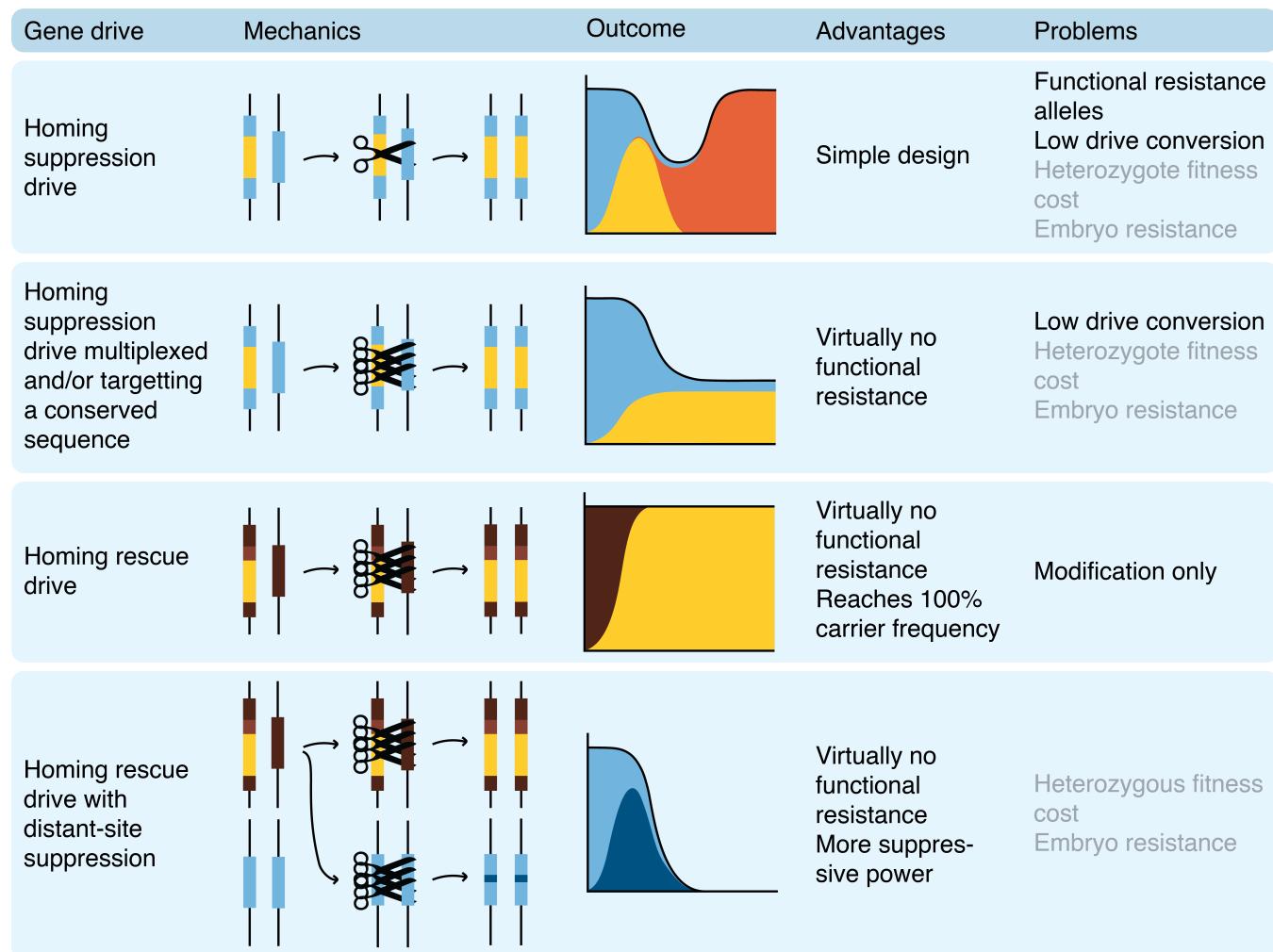
^bCenter for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing 100871, China

Abstract

Gene drive technology has the potential to address major biological challenges, including the management of disease vectors, invasive species, and agricultural pests. After releasing individuals carrying the gene drive in the target population, suppression gene drives are designed to spread at a rapid rate and carry a recessive fitness cost, thus bringing about a decline in population size or even complete suppression. Well-studied homing suppression drives have been shown to be highly efficient in *Anopheles* mosquitoes and were successful in eliminating large cage populations. However, for other organisms, including *Aedes* mosquitoes, homing gene drives are so far too inefficient to achieve complete population suppression, mainly due to lower rates of drive conversion, which is the rate at which wild type alleles are converted into drive alleles. Low drive conversion is also a major issue in vertebrates, as indicated by experiments in mice. To tackle this issue, we propose a novel gene drive design that has two targets: a homing site where the drive is located and drive conversion takes place (with rescue for an essential gene), and a distant site for providing the fitness cost for population suppression (preferably a female fertility gene, for which no rescue is provided). We modeled this design and found that the two-target system allows suppression to occur over a much wider range of drive conversion efficiency. Specifically, in the new design, the suppressive power depends mostly on total gRNA cutting efficiency instead of just drive conversion efficiency, which is advantageous because cut rates are often substantially higher than drive conversion rates. We constructed a proof of concept in *Drosophila melanogaster* and show that both components of the gene drive function successfully. However, embryo drive activity from maternally deposited Cas9 as well as fitness costs for female drive heterozygotes both remain significant challenges for two-target and standard suppression drives. Overall, our improved gene drive design eases the development of strong homing suppression gene drives for many species where drive conversion is less efficient.

Gene drive | Genetic load | Modelling | *Drosophila melanogaster* | Homing drive | Population suppression

Correspondence: nfaber@outlook.com (NRF), jchamper@pku.edu.cn (JC)


Introduction

Gene drive technology has the potential to address major biological challenges, including the management of disease vectors, invasive species, and agricultural pests(1–5). A gene

drive is a genetic element that skews its own inheritance ratio to over 50% in the offspring of heterozygote parents(6). Synthetic gene drives can be designed for population modification, for example to immunise a population of mosquitoes against malaria parasites(7), or for population suppression, for example to eliminate a population of mosquitoes(8) or invasive pests(9, 10). Released in the target population, suppression gene drives are designed to spread at a rapid rate and carry a recessive fitness cost, thus causing a decline in population size or even complete elimination(8, 11, 12). Suppression gene drives have benefits over conventional methods of control because they are species-specific (and thus more ecologically friendly), as well as potentially more efficient and more humane in the case of vertebrates, though there are challenges regarding localisation and containment for some drive types(13).

There are many different types of gene drive and what distinguishes them the most is how they handle the trade-off between efficiency of spread and confinement(2, 5, 6). The most efficient and well-studied type of suppression drive is the CRISPR-Cas9-based homing drive. In drive heterozygotes, the gene drive copies itself to the homologous chromosome in the germline through a process called "homing" or "drive conversion". The gene drive incurs a recessive fitness cost by being located inside a haplosufficient female fertility gene, so drive homozygous females are sterile. Ideally, the female infertility is completely recessive, so there are no fitness costs for drive heterozygotes. As the frequency of the gene drive increases, more sterile female offspring are created, thus imposing a genetic load on the population(14). If the frequency of sterile females in the population is sufficiently high, the population size will decline(2, 9).

Although homing gene drives are very promising in theory, *in vivo* tests in several organisms have revealed practical challenges, so complete population suppression is not yet attainable in most species (see Figure 1)(9, 13, 15–20). Homing suppression gene drives face two major challenges, the first being formation of functional resistance alleles(16, 20–22). A typical gene drive is active in the germline, and the primary way in which Cas9 cuts will be repaired is through homology-directed repair(23). In this pathway, the cell uses the drive chromosome as a template, copying its sequence to

Figure 1. Overview of several homing gene drive designs, their advantages, and major challenges they face. In the outcomes graphs, light blue = female fertility gene, yellow = gene drive, orange = functional resistance allele, dark brown = essential gene, dark blue = non-functional resistance allele (only the female fertility target site is displayed for the distant-site suppression system). Additionally in the schematics, light brown = essential gene rescue. Primary problems for drive designs are in black, and secondary problems in grey.

86 the other chromosome. Sometimes, particularly if the cut is
87 made outside of the time window in which this repair pathway
88 is preferred, repair can occur via end-joining instead.
89 This repair pathway is error-prone and often leads to small
90 insertions and/or deletions. Because of these mutations, the
91 gene drive guide RNA (gRNA) usually cannot recognise the
92 new sequence, making it a resistance allele that can no longer
93 be converted to a drive allele. Resistance alleles that preserve
94 the function of the target gene, or "r1" alleles, are problematic
95 as there is very strong selection for this allele which will
96 rescue the population from the suppression drive(16). Non-
97 functional resistance alleles ("r2" alleles), on the other hand,
98 will not be able to rescue the population because of their dele-
99 terious nature(20). Although r2 alleles can reduce drive ef-
100 ficiency, the less common r1 alleles are the bigger problem
101 because they will outcompete the gene drive in the popula-
102 tion. There are several strategies to avoid the formation of r1
103 alleles in suppression drives, which include targeting an ex-
104 tremely conserved locus(8), multiplexing gRNAs(19, 24, 25),
105 and using improved promoters(26–28).

106 Besides r1 alleles, a second challenge for suppression

107 gene drives is low drive conversion, which is the rate at which
108 wild type alleles are converted into drive alleles(17, 25). In
109 *Anopheles* mosquitoes, drive conversion has been shown to
110 reach 95-99%(8, 29). In *Aedes* mosquitoes and *Drosophila*
111 *melanogaster* on the other hand, the conversion rate was
112 usually significantly lower, around 50 to 70% for most
113 constructs(20, 25, 30–32). Additionally, it appears that mul-
114 tiplexing, which is a way to avoid r1 alleles, may further re-
115 duce conversion rates beyond 2-4 gRNAs(19, 25). This low
116 efficiency results in partial population suppression instead of
117 population elimination. The amount by which the popula-
118 tion size is reduced compared to the expected population size
119 in the absence of the gene drive is the genetic load of the
120 gene drive when it reaches its equilibrium frequency in the
121 population(14). In an infinitely large population, the genetic
122 load needed for elimination is one minus the inverse of the
123 low-density growth rate (the reproductive advantage individ-
124 uals experience in the absence of competition), but in smaller
125 or less fecund populations, genetic drift and stochasticity
126 can somewhat ease this requirement. Drive conversion effi-
127 ciency seems to be partially based on the species for the most

128 commonly used promoters, though improvements might be
129 made by regulating the expression of the gene drive to more
130 precisely coincide with the window for homology-directed
131 repair(17, 26, 28, 33, 34), or perhaps by more strongly local-
132 ising the gene drive mRNA to the nucleus(35).

133 To tackle this issue, we propose a novel gene drive design
134 that has two targets: a homing site where drive conversion
135 takes place, and a distant cutting site (where the drive is not
136 present) for providing the fitness cost for population suppression
137 (see Figure 1). For the homing site, we will harness a
138 modification drive that is located in an essential gene (thereby
139 disrupting it) while also providing a rescue for this gene (see
140 Figure 1)(36). A previous study has already demonstrated
141 the practical feasibility of using a homing gene drive while
142 also targeting another gene for population modification(37), and
143 another recent study has shown that modifying a natural
144 gene drive to also target a distant female fertility gene is
145 feasible for population suppression(10). Thus, we model the
146 two-target design, comparing it to standard homing suppression
147 gene drives, and find that this two-target system allows
148 suppression to occur over a much wider range of drive con-
149 version efficiency. Most notably, the suppressive power now
150 depends usually on cutting efficiency at the distant target in-
151 stead of drive conversion, which is advantageous because the
152 total cutting rate is easier to increase and has often been sub-
153 stantially higher than drive conversion rate(17, 18, 20, 32).
154 We constructed a proof of concept of this drive in *Drosophila*
155 *melanogaster* and show that both components function suc-
156 cessfully. The drive conversion rate was within the range
157 generally observed in *D. melanogaster*, and the cut rate at the
158 distant-site target was very high. However, high fitness costs
159 still thwarted the drive's success in cage populations, a factor
160 that could potentially be problematic in any suppression
161 drive based on targeting essential genes. Nevertheless, our
162 improved gene drive design enables development of strong
163 homing suppression gene drives for a wide array of species
164 where drive conversion is less efficient.

165 Methods

166 **A. Modelling.** We use a stochastic, individual-based model
167 with non-overlapping generations in a randomly mating pop-
168 ulation of fixed carrying capacity. We use the population ge-
169 netics modelling software SLiM version 4.0.1 (38) in combi-
170 nation with R version 4.1.0 (39). Our code can be found on
171 GitHub at https://github.com/NickyFaber/Two-target_drive.

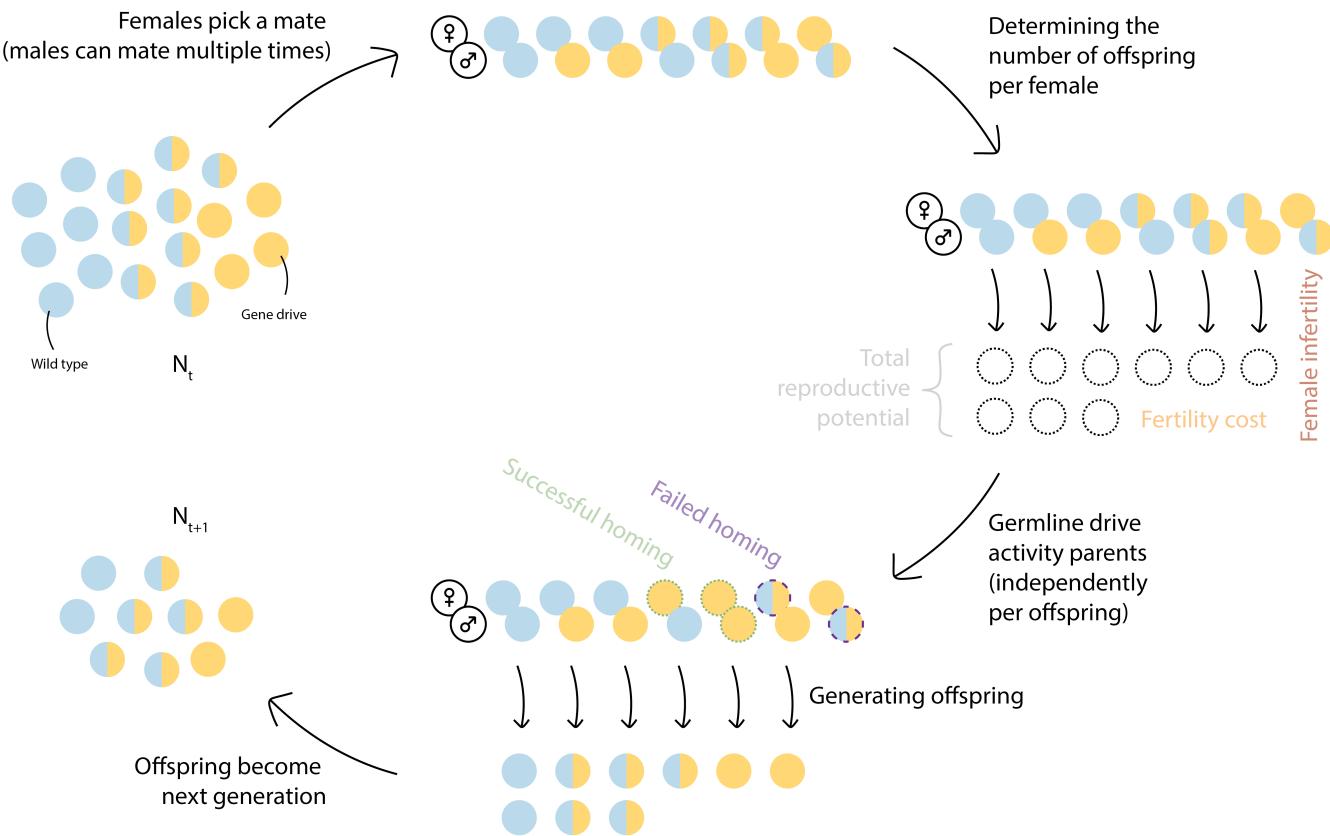
172 **A.1. Drive types.** We have modelled 10 different types of
173 homing suppression drives. For ease of visualisation, we
174 have chosen to show the three most representative drives in
175 the main results. A list of the rest of the drives and their mod-
176 elling results are in the Supplementary Materials.

- 177 1. Drive with female fertility target
- 178 2. Haplolethal rescue drive with distant-site female ferti-
179 lity target
- 180 3. Haplosufficient rescue drive with distant-site female
181 fertility target

182 For a detailed explanation of the mechanics and pheno-
183 types of these three drives, see the results. To model each
184 drive, we include two loci in SLiM: the homing site and an
185 optional distant-site. At the homing site, there are four poten-
186 tial alleles: wild type, drive, r1 (functional resistance), and r2
187 (nonfunctional resistance). At the distant site, we only model
188 wild-type and r2 alleles (full freedom to choose any set of
189 gRNAs is assumed to reduce functional r1 resistance to negli-
190 gible levels, see results). The structure and steps of the model
191 are described below.

192 **A.2. Model structure.** We have used previous work by Cham-
193 per et al. (2020) as a starting point for our modelling(19).
194 That study modelled complex drive activity in the germline,
195 including gRNA multiplexing, timing of drive activity, and
196 gRNA saturation. Since our objective is to compare various
197 gene drive designs focusing on genetic load instead of on re-
198 sistance alleles, we have removed some of those complexities
199 for this study. We model the population and introduction of
200 the gene drives as follows:

- 201 • Generation 1: Population initialization
- 202 • Generation 1-10: Population equilibration without
203 gene drive
- 204 • Generation 11: Introduction of heterozygous gene
205 drive individuals
- 206 • Generation 111 or 161: End of the model. As default,
207 we run the model for 111 generations (100 generations
208 with gene drive). When we calculate the genetic load,
209 we run it for an additional 50 generations to increase
210 the number of generations in which we can determine
211 the equilibrium genetic load.


212 In each generation, the model executes the following
213 steps in order (see Figure 2):

214 **1) Reproduction.** In our model, the number of offspring
215 that is generated by each female is a product of the fertility
216 status of the female, her ability to find a mate, the carrying
217 capacity, and the fitness of the female.

- 218 • Fertility status check. A female could be infertile due
219 to the drive mechanism, both at the homing site and
220 the distant site. These loci are both checked for the
221 presence of nonfunctional alleles, that is, either a drive
222 allele or an r2 allele. If the female has two of these
223 in any combination at at least one locus, she does not
224 generate any offspring.
- 225 • Selecting a mate. A female randomly selects a male
226 from the population. If there are no males available,
227 she does not generate any offspring.
- 228 • Generating offspring. For each female, the number of
229 offspring she generates in that generation (i) is based
230 on a binomial distribution:

$$O_i = B(O_{max}, p_i), \quad (1)$$

231 where i is the current generation, O_{max} is the maxi-
232 mum amount of offspring per female, and p is the av-
233 erage fraction of this maximum amount of offspring
234 that will be generated. This fraction is normally de-
235 fined as $\frac{2}{O_{max}}$ (each female must generate two off-

Figure 2. Model overview, showing a simplified sequence of steps the model goes through every generation. Each circle represents an individual, and its color shows the genotype. We show a simple homing gene drive with only wild type (blue) and drive (yellow) alleles. The two-target drives will show different dynamics dependent on their design (see figure 3). After each female picks a male for mating, we calculate the reproductive potential of these females. Then, based on drive genotype, females can be either completely fertile, or completely sterile (drive homozygotes), or partially fertile (drive heterozygotes). Offspring is generated, and for each individual offspring, Mendelian inheritance is modified by drive activity in the parental germline. This means that drive conversion could be successful for one offspring of a single drive parent, but not another. Additional drive activity from maternally deposited Cas9 is also modeled, but not shown in this figure. Finally, these offspring become the next generation of adults.

spring to maintain the population at carrying capacity). However, our model includes two further influences. First, p can be increased when the population is below carrying capacity because offspring will have more resources to survive, or vice versa, which we call the carrying capacity factor (CCF). Second, p can be decreased in female drive carriers due to somatic expression of the drive reducing fertility (because some wild-type female fertility alleles are disrupted in somatic cells where they are needed for fertility), which we call the somatic expression fertility factor ($SEFF$). Thus, p is defined as:

$$p_i = CCF_i * SEFF_i * \frac{2}{O_{max}}. \quad (2)$$

The carrying capacity factor is defined so that at very low population densities, it is close to the maximum growth rate (r), at carrying capacity (K), it is close to 1, and above carrying capacity, it is between 0 and 1. This leads to a logistic growth curve:

$$CCF_i = \frac{r}{(r-1) * \frac{N_i}{K} + 1}, \quad (3)$$

where N is the number of adults in the population.

Fertility scaling is done for females with at least one drive allele. Somatic expression of the drive can impact female fertility by prematurely disrupting wild-type fertility gene alleles. One of our modelled drives targets a female fertility gene at the homing site without rescue and the other two at the distant site. We only model somatic expression fitness costs for the drive sites without rescue. The total fertility cost is calculated per female as follows:

$$SEFF = m^{H_{wt}} * m^{\frac{1}{D_{wt}}}, \quad (4)$$

where m is the somatic expression fertility cost multiplier, from 0 (complete sterility) to 1 (no fertility cost), H_{wt} is the number of wild type alleles at the homing female fertility site (which can only be 0 or 1, since the other allele must be the drive), and D_{wt} is the number of wild-type alleles at the distant female fertility target. At the distant locus, individuals with two wild-type alleles will be less impacted by the fertility cost, since it is less likely that both copies of the fertility gene are disrupted due to somatic expression.

2) Gene drive activity. After all the offspring is generated, each offspring's genotype is modified based on the

254
255
256
257
258
259
260
261
262

263
264
265
266
267
268
269
270
271
272
273
274

275 drive activity in the parents' germline. Drive activity in the
 276 parental germlines is modelled for each offspring independently.
 277 Cutting, homing, and the creation of resistance alleles
 278 is stochastic.

- 279 • Germline gene drive activity. For both parents of each
 280 offspring, the presence of the drive in their genome is
 281 checked. If at least one copy of the drive is present, the
 282 gene drive is active in the germline. First, the cut rate
 283 is a parameter in our model, but it can be impacted by
 284 gRNA saturation as follows:

$$P_{cs} = 1 - (1 - P_c)^{\frac{s}{s+l-1}}, \quad (5)$$

285 where P_{cs} is the cut rate adjusted for gRNA saturation,
 286 l is the number of loci, either 1 or 2 depending
 287 on whether the drive targets a distant site in addition
 288 to the homing site (we assume equal gRNA multiplexing
 289 at both sites), P_c is the global cut rate, and s is the
 290 Cas9 saturation factor, which can range from 1 (which
 291 means 1 gRNA is enough to saturate all Cas9 proteins,
 292 so the cut rate for each gRNA rapidly declines as more
 293 gRNAs are added) to infinite (which means no amount
 294 of gRNAs is enough to saturate the Cas9 proteins, so
 295 the cut rate at each gRNA remains the same regardless
 296 of the number of gRNAs). If a randomly generated
 297 number between 0 and 1 is higher than this cut rate,
 298 cutting occurs. We do this separately for the distant
 299 site alleles as well, if present.

300 At the distant site, cutting always results in an r2 allele.
 301 At the drive locus however, homing can occur if there
 302 was successful cutting based on the homing success
 303 rate (P_h). The homing success rate is defined at the
 304 beginning of the model based on the conversion rate
 305 (P_{conv}), which is a parameter:

$$P_h = \frac{P_{conv}}{P_c}, \quad (6)$$

306 where P_{conv} can only be as high as P_c . If homing is
 307 successful, again based on P_h , the allele is converted
 308 to a drive allele. If there was cutting, but no homing,
 309 the locus is converted into an r1 allele with a proba-
 310 bility equal to the r1 formation rate. Otherwise, it will
 311 become an r2 allele.

- 312 • Embryo gene drive activity. In the early embryo, we
 313 model maternal deposition of drive Cas9 and gRNAs.
 314 Potential cuts that occur here always result in a resis-
 315 tance allele (which can be r1 or r2 as above). The cut
 316 rate (P_{es}) is calculated the same as in Formula 5, ex-
 317 cept the exponent is additionally multiplied by a mat-
 318 ernal deposition factor (d) that accounts for either a drive
 319 heterozygous or homozygous mother:

$$P_{es} = 1 - (1 - P_e)^{\frac{s*d}{s+l-1}}, \quad (7)$$

320 where P_e is the embryo cut rate, which is a param-
 321 eter in our model. The maternal deposition factor is
 322 based on experimental data showing that the cut rate
 323 is higher in embryos with a drive/wild-type heterozy-
 324 gous mother than expected due to drive conversion, so

325 d is 1.83 and 2 for drive/wild-type heterozygotes and
 326 drive homozygotes, respectively. It would remain 1 for
 327 fertile drive/resistance allele heterozygotes(19).

- 328 • Offspring viability. After drive activity in the parental
 329 germline, inheritance, and embryo activity, we check
 330 if the offspring's resulting genotype is still viable. All
 331 drives that target either a haplolethal gene (where any
 332 nonfunctional resistance allele makes individuals non-
 333 viable) or haplosufficient gene (where only nonfunc-
 334 tional resistance allele homozygotes are nonviable)
 335 could result in nonviable offspring. These offspring
 336 are removed from the population.

- 337 3) **Mortality.** We model discrete, non-overlapping gen-
 338 erations, so we remove the entire parental generation after
 339 offspring have been generated.

- 340 4) **Calculating genetic load.** Because our model is
 341 stochastic, populations can be suppressed if the genetic load
 342 is close to, but lower than the deterministic requirement,
 343 which is below 1 and depends on the maximum growth rate
 344 of the population. Therefore, in order to calculate genetic
 345 load with precision for drives with high genetic loads, we run
 346 a module in the model in which we artificially raise the num-
 347 ber of offspring a female produces by multiplying it with a
 348 certain bonus factor(19). These are later corrected for when
 349 we calculate the genetic load. With this approach, the popu-
 350 lation is not eliminated unless the genetic load is practically
 351 1, allowing for precise measurements of high genetic load
 352 for several generations when the drive is at its equilibrium
 353 frequency. This bonus factor (BF) is calculated as follows:

$$BF_i = \frac{F_f}{F_i}, \quad (8)$$

354 where F is the number of females, and F_f is the number of
 355 fertile females.

356 Then, in the next generation, the number of offspring cal-
 357 culated in Formula 1 is increased as follows:

$$O_{BF_i} = \frac{O_i}{BF_i}, \quad (9)$$

358 rounded to a whole number. Additionally, in genetic
 359 load simulations, gene drive carriers are introduced at 0.5 fre-
 360 quency, and the model is run for 150 generations after intro-
 361 ducing the gene drive. The mean genetic load is calculated as
 362 the mean genetic load over the last 10 generations. The low-
 363 density growth rate and the maximum number of offspring
 364 are set a factor 10 higher than default (so 100 and 500 instead
 365 of 10 and 50, respectively).

- 366 5) **Tracking outcomes of interest.** Each generation, we
 367 calculate population size, genetic load, and genotype fre-
 368 quencies at both the homing site and the distant site. We
 369 calculate the genetic load (GL) based on the observed and
 370 expected population size in the next generation (N_{i+1} and
 371 $N_{exp_{i+1}}$, respectively):

$$GL_i = 1 - \frac{N_{i+1} * BF_i}{N_{exp_{i+1}}}, \quad (10)$$

372 where BF is the above mentioned bonus factor we apply.

373 N_{exp} is based on the number of females (F) and the car-
374 rying capacity factor CFF defined in Equation 3:

$$N_{exp_i} = 2 * F_i * CCF_i, \quad (11)$$

375 where CFF is the same carrying capacity factor defined in
376 Equation 3, and again multiplying by 2 because each female
377 must generate two offspring to maintain the population at car-
378 rying capacity.

379 B. Experimental work.

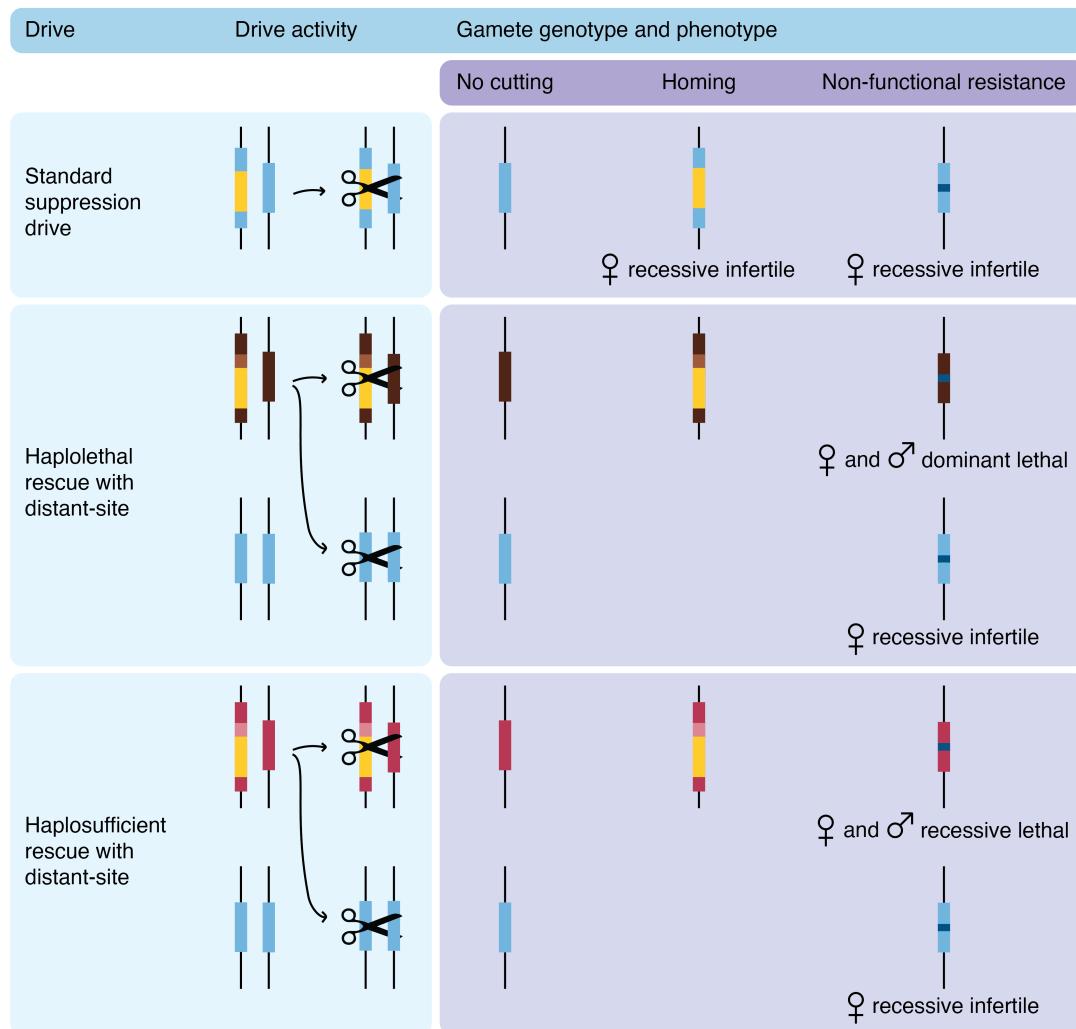
380 **B.1. Plasmid construction.** The starting plasmids TTTgR-
381 NAT and TTTgRNAtrRNAi were used for building gRNA
382 helper plasmids for knock-in(36). The gRNA cassette used
383 in the donor plasmid was obtained from HSDygU4(25).
384 A two-step assembly process was done to generate donor
385 plasmids (SI Appendix, Methods). Q5 High-Fidelity DNA
386 Polymerase used for PCR and enzymes for digestion were
387 purchased from New England Biolabs. PCR and restriction
388 digestion products were purified with Zymo Research
389 Gel DNA Recovery Kit, and plasmids were assembled by
390 using HiFi DNA Assembly Cloning Kit and subsequently
391 transformed into DH5 α competent cells from TIANGEN.
392 ZymoPure Midiprep Kit (Zymo Research) was used to
393 prepare donor constructs for embryo injection. Oligo syn-
394 thesis and sanger sequencing was done by BGI Genomics.
395 All the primers, plasmids, and construction procedures
396 used in this study can be found in can be found in SI
397 Appendix, Methods. Plasmid maps are available on GitHub
398 (<https://github.com/NickyFaber/HaploLethalFertilityDrive>)
399 in ApE format(40).

400 **B.2. Generation of transgenic lines..** Fly injection was com-
401 pleted by UniHuaii. The donor plasmid HSDrgU2U4v2 (518
402 ng/ μ l) was injected into AHD352v2 flies(36) along with TT-
403 TrgU2t (150 ng/ μ l), which provided gRNAs for transforma-
404 tion, and Cas9-expressing helper plasmid TTChsp70c9 (450
405 ng/ μ l) to generate the drive line. The other donor plasmid
406 SNC9NR (506 ng/ μ l) was injected into w1118 flies along with
407 helper plasmids BHDabg1 (100 ng/ μ l) and TTChsp70c9 (459
408 ng/ μ l) to construct a *nanos*-Cas9 line. Surviving G0 flies
409 were crossed to w1118 flies, and G1 adults were screened
410 for transgenic inserts based on the presence of green or red
411 fluorescence in the eyes. Flies were reared in an incubator at
412 25°C following a 14/10-h day/night cycle.

413 For phenotyping, flies were first anesthetized with CO₂
414 and then screened for fluorescence using the NIGHTSEA
415 system (SFA-GR). The homozygosity of flies was scored by
416 the fluorescence intensity and confirmed by sequencing.

417 **B.3. Drive conversion.** Drive (gRNA-expressing line) males
418 were crossed to Cas9 females to generate heterozygous off-
419 spring, which was subsequently out-crossed to *w1118*. The
420 drive inheritance and sex of offspring were recorded. To con-
421 firm whether the distant target site in *yellow-g* was disrupted,
422 individuals containing both drive and Cas9 alleles were ran-
423 domly collected for genomic DNA extraction and genotyp-
424 ing. A fragment covering *yellow-g* target sites was amplified

425 with primers 52_YGLeft_S_F3 and 54_YGRight_S_R6 (see
426 GitHub DNA files).


427 **B.4. Small cage study.** Drive heterozygous males with red
428 fluorescence from the Cas9 allele were crossed to homozy-
429 gous Cas9 females for several generations to produce a line
430 that was heterozygous for the drive and homozygous for Cas9
431 (D $+$; Cas9/Cas9). Two experimental groups were set up with
432 different initial release frequencies. In the higher release fre-
433 quency group, four drive females were crossed to four drive
434 males, while in the medium release frequency group, four
435 drive females were crossed with four drive males, and one
436 Cas9 virgin female was crossed to Cas9 males. Thus, the high
437 drive frequency release should theoretically be 0.5 (1.0 car-
438 rier frequency), and the medium drive frequency release 0.4
439 (0.8 carrier frequency). These adults were allowed to mate in
440 vials for one day before moving females into a separate bot-
441 tle for oviposition. Females were allowed to lay eggs (which
442 represented “generation 0”) for three days and were then re-
443 moved from bottles. When most pupae eclosed to adults, they
444 were moved to a new bottle for a one-day oviposition be-
445 fore being removed and phenotyped. Hereafter, only one-day
446 oviposition was conducted in each generation. The adults of
447 each generation were scored for eye fluorescence phenotype
448 and sex.

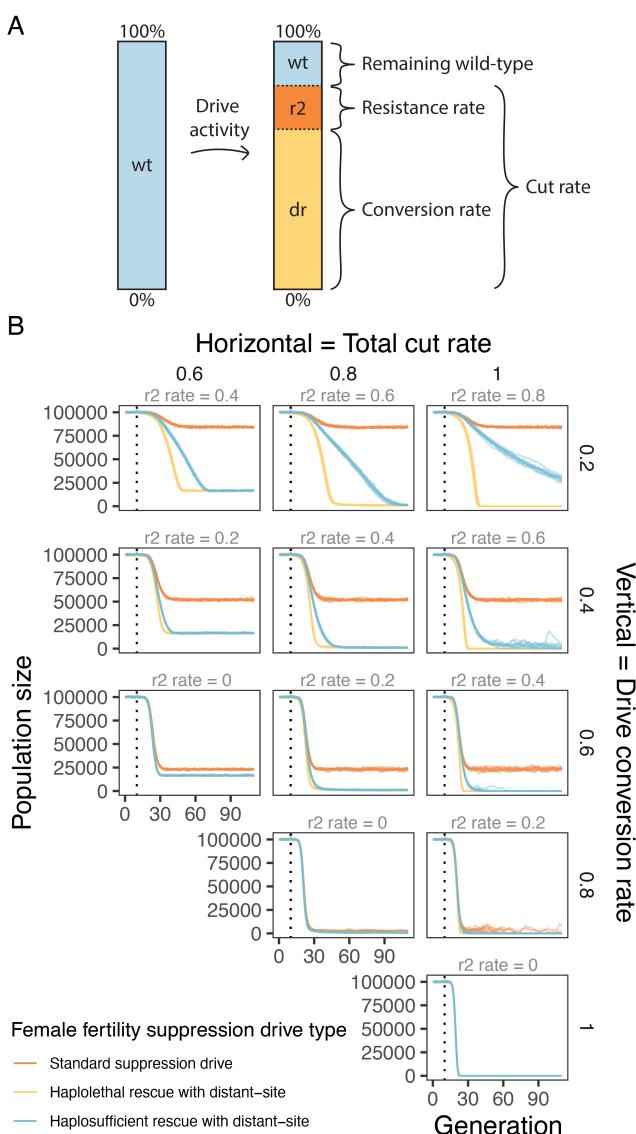
449 **B.5. Fecundity and fertility test.** To minimize batch effects
450 caused by food quality or population density, flies with differ-
451 ent genotypes used for this test were generated from the same
452 parental cross and reared in the same bottle. First, males that
453 were heterozygous for the drive and homozygous for Cas9
454 were crossed to Cas9 homozygous females, generating off-
455 spring with different genotypes. Next, these offspring were
456 individually crossed to Cas9 homozygous males or females
457 and allowed to lay eggs for three days. Adults in the same
458 vial were moved to a new vial each day, and the number of
459 eggs was counted in each vial. Offspring were allowed to
460 hatch, and the egg-to-adult survival rate and adult phenotypes
461 of these offspring were scored. Female drive offspring were
462 randomly collected and crossed to Cas9 males, after which
463 the sterile females were genotyped for the *yellow-g* distant
464 site.

465 Results

466 **A. Modelling the two-target gene drive performance.**
467 In our main results, we show the modelling results of three
468 gene drives: a standard female fertility homing suppression
469 drive and two two-target drives that target a female fertility
470 gene at a distant site for population suppression. These two-
471 target drives are located in and provide rescue for a haplo-
472 lethal or a haplosufficient gene. Drive conversion occurs nor-
473 mally in these, but they also cut and disrupt a distant-site fe-
474 male fertility target without rescue. Figure 3 shows the three
475 drives’ loci and dynamics, and also the alleles and pheno-
476 types that can result in gametes from drive activity.

477 **A.1. Cut and conversion rate.** Because the drive conversion
478 rate is one of the most important parameters to determine the

Figure 3. Overview of our three modelled drives, their activity, and the resulting gamete genotypes and phenotypes. We do not show functional resistance alleles, but their phenotypes would be the same as wild-type. Light blue = female fertility gene, yellow = gene drive, dark blue = non-functional resistance allele, dark brown = haplolethal essential gene, light brown = haplolethal essential gene rescue, dark pink = haplosufficient essential gene, light pink = haplosufficient essential gene rescue.


479 success of a suppression drive, we start by varying it, together
 480 with the total cut rate (referring to germline cutting)(12). Any
 481 wild-type alleles that are cut but not converted to drive alleles
 482 are converted to nonfunctional resistance alleles (Figure 4A).
 483 At the distant female fertility gene target, there is no drive
 484 allele present, so the total cut rate can only result in nonfunc-
 485 tional resistance alleles. Besides these, all other parameters
 486 are fixed at optimum values (no embryo resistance, no fitness
 487 costs, no functional resistance, and no effect of Cas9 satura-
 488 tion). Figure 4B shows population size over time after a gene
 489 drive introduction.

490 At 100% cutting and drive conversion, all three drives
 491 work equally well, rapidly eliminating the population. As the
 492 conversion rate decreases to 0.8, we still observe drive suc-
 493 cess, but stochasticity now plays an important role in achiev-
 494 ing population elimination for the standard suppression drive.
 495 The haplosufficient rescue drive with distant-site suppression
 496 experiences such fluctuations as the drive conversion is fur-
 497 ther reduced, but it still achieves rapid success when drive
 498 conversion is 0.6, at which point the standard suppression
 499 drive fails. Only the haplolethal rescue drive with distant-site

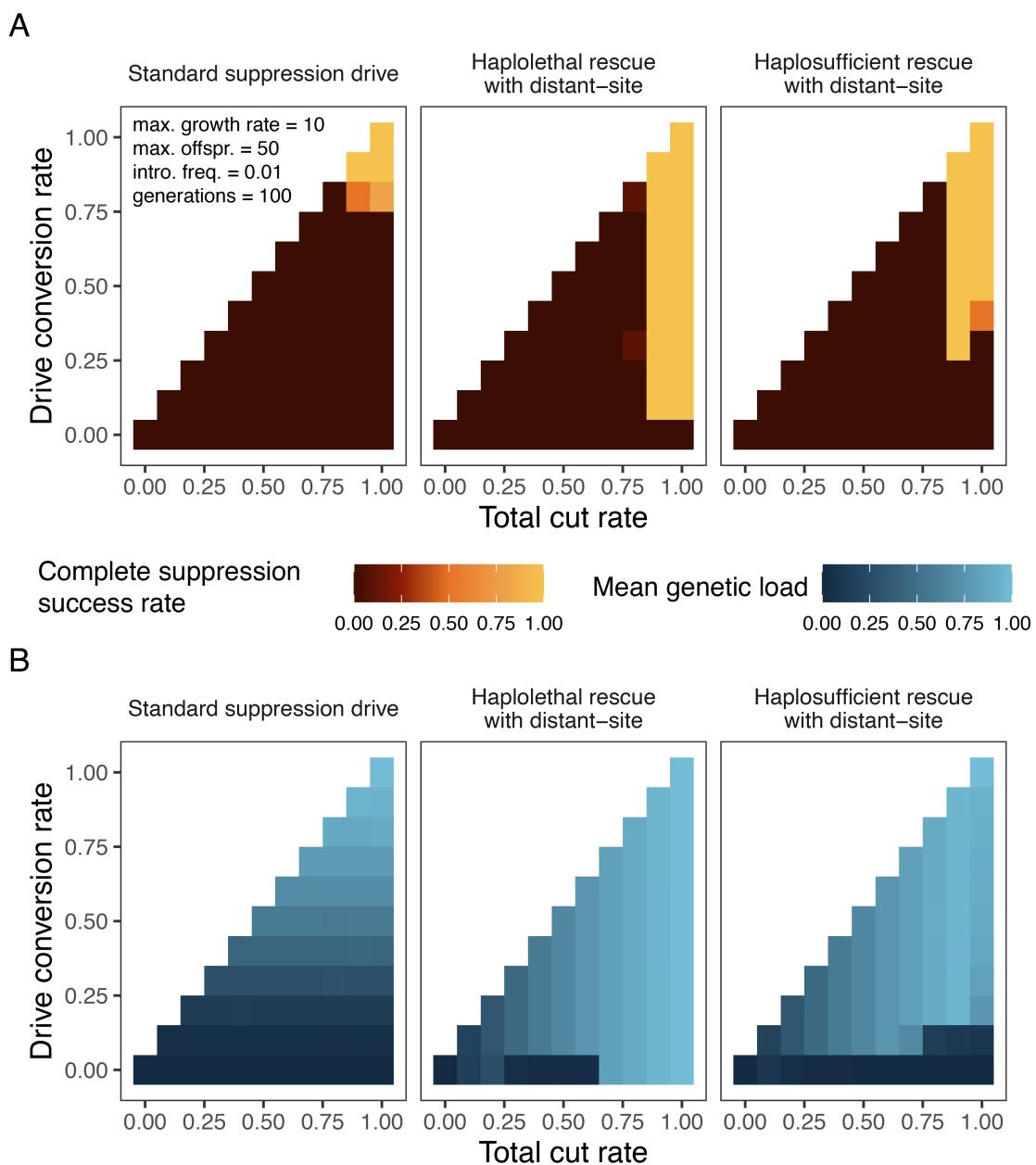
500 suppression is still able to reliably achieve population elimi-
 501 nation.

502 These major differences between drives can be explained
 503 by the standard suppression drive relying on drive conver-
 504 sion to both spread and suppress the population, whereas both
 505 two-target drives use two separate loci for this (Figure 3). The
 506 haplolethal distant-site drive can make r2 alleles at the drive
 507 locus that are immediately removed due to the haplolethal
 508 nature of the gene (Figure S1A). Therefore, this gene drive
 509 spreads the most efficiently. The haplosufficient rescue drive
 510 and the standard suppression drive also form deleterious r2
 511 alleles, but these can remain in the population due to slower
 512 removal, which impairs drive spread because drive conver-
 513 sion will not occur in drive/r2 heterozygotes. Additionally,
 514 in the standard suppression drive, not only do r2 alleles re-
 515 main in the population and impair homing, but they also de-
 516 crease the drive frequency (female drive/r2 heterozygotes are
 517 sterile) (Figure S1).

518 As the cutting rate decreases with constant drive conver-
 519 sion, we see that the standard suppression drive is not heav-
 520 ily impacted (its genetic load depends heavily on the conver-

Figure 4. Example population trajectories under varying cut and conversion rates. A) Schematic of drive activity rates in the germline. B) Population suppression with varying total cut and drive conversion rates. The gene drive is introduced after generation 10 (the dotted line). The introduction frequency of gene drive heterozygotes is 0.01, and the total population size is 100,000. Note that both drive conversion rate and total cut rate are absolute rates, so the drive conversion rate can never be higher than the total cut rate. For each combination of parameters, we ran 10 model repetitions for each drive that are each shown as a translucent line.

sion rate, with germline resistance alleles having little effect), whereas the distant-site suppression drives do not lose their effectiveness until the total cut rate falls to 0.6 (Figure 4 and Figure S2). Because the distant site drives use the total cut rate for disruption of the female fertility gene target, this total cut rate largely determines the suppressive power rather than drive conversion. Though the distant-site haplosufficient rescue drive is slower to spread due to reduced ability to remove r2 alleles, they both eventually reach the same equilibrium population suppression (Figure S2).


For each gene drive, we determined the complete suppression success rate and the genetic load (Figure 5). The genetic load is the suppressive power of a drive, defined as the reduction in reproduction of the population compared to

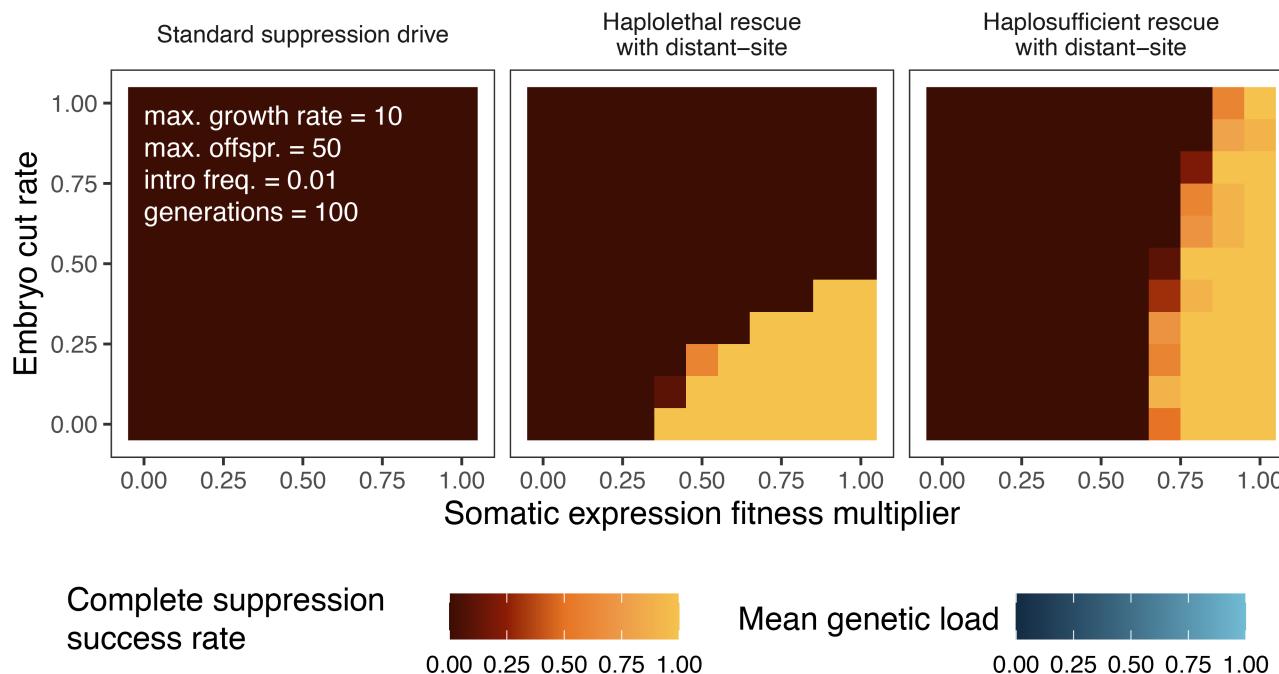
a wild-type population of the same size(14). In Figure 5A, we see that the standard suppression drive has the smallest area of population elimination success, followed by the haplosufficient two-target drive, and then the haplolethal two-target drive. The standard suppression drive requires a high drive conversion rate to eliminate the population, whereas both two-target drives rely mostly on the cut rate alone. The same pattern is visible in the genetic load in Figure 5B, where the genetic load of the standard suppression drive relies on the conversion rate only, whereas both two-target drives rely almost entirely on the cut rate for their genetic load.

The haplosufficient rescue drive shows some more complex dynamics in some areas of parameter space in Figure 5B. When the cut rate is 1 but the drive conversion is low, the genetic load is reduced because the drive itself is not able reach high frequency due to r2 alleles are blocking its progress (Figure S3). The drive spreads best with the highest genetic load when the total cut rate is somewhat below 1. At the same time, high cut rates are still necessary at the distant site to achieve population complete suppression (Figure S3).

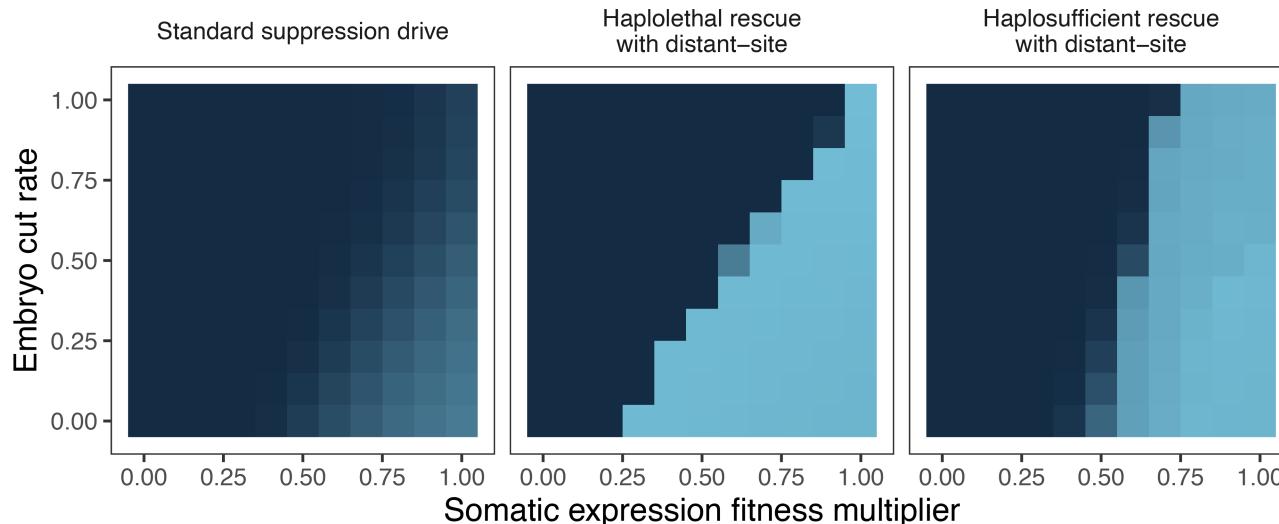
Another notable dynamic for both two-target drives in Figure 5B is the bottom row, where drive conversion is 0. Here, the two two-target drives become identical to a version of two toxin-antidote drives previously described called a TADE (Toxin Antidote Dominant Embryo) suppression drive and a TARE (Toxin Antidote Recessive Embryo) suppression drive(41). These drives show density-dependent dynamics, so their ability to increase in frequency depends on their frequency as well as their total cut rate, hence the lack of suppression success for the haplolethal rescue drive due to our small release size. In the case of the haplolethal two-target drive, due to the additional disruption of the distant-site female fertility gene, a cut rate of at least 0.7 is necessary for the drive to increase in frequency. The TARE-like suppression drive is not able to reach a high genetic load in the first place(41). Interestingly, at very low cut rates, we observe that the two-target drives are able to remain in the population long enough for the distant-site to be disrupted up to a certain frequency, after which the gene drive can sometimes induce a small genetic load during the simulation.

A.2. Embryo cut rate and somatic expression effects on fitness. Two other important determinants of drive success are the embryo cut rate and fitness costs in heterozygous females based on the disruption of wild-type alleles when they are needed for fertility(25, 29). Embryo cutting occurs when Cas9 and gRNAs are maternally deposited into the embryo post-fertilisation. Any wild-type alleles (at the drive or distant target site), especially paternal wild-type alleles, can be cleaved, which always results in resistance allele formation at this stage (since the window for homology-directed repair is over). This process impairs the drive's spread much more than germline resistance alleles because female drive progeny will be sterile, and male drive progeny will be unable to perform drive conversion. Similarly, undesired Cas9 expression in somatic cells, regardless of whether it results in drive conversion or resistance allele formation, will disrupt the wild-type alleles needed for female fertility, at least in

Figure 5. Drive performance under varying cut and conversion rates. A) Complete suppression success rate and **B)** mean genetic load with variable total cut and drive conversion rates. The complete suppression success rate is calculated as the number of repetitions in which population elimination occurs within 100 generations after drive introduction divided by the total number of repetitions. For each combination of parameters, we ran 10 model repetitions.


592 some cells. Depending on where and when the fertility target
593 gene is needed, even necessary germline expression could in-
594 duce a similar fitness cost in female drive heterozygotes (or
595 any female with at least one drive allele and at least one wild-
596 type fertility target gene).

597 To assess the effects of embryo resistance and fitness
598 cost under moderate drive conversion, we model a total cut
599 rate of 0.9 and drive conversion rate of 0.5. Varying these
600 two parameters over their full range (Figure 6A), we see
601 that the haplolethal two-target drive is sensitive to high em-
602 bryo cut rates, whereas the haplosufficient two-target drive
603 is not strongly affected by this. Both are affected negatively
604 by female heterozygote fitness costs, which prevent success


605 more easily for the weaker haplosufficient drive. Looking
606 at genetic load (Figure 6B), the standard suppression drive
607 starts out weak, with increases in the embryo cut rate hav-
608 ing roughly half the effect of reduction of female fitness.
609 The two-target drives have a larger area of high genetic load
610 compared to the area of complete suppression success, rep-
611 resenting areas where the drive is still able to increase and
612 eventually reach higher genetic load, but not within the time
613 frame of the normal simulations. Higher initial release fre-
614 quencies could still allow these drives to succeed in a shorter
615 time frame.

616 To further show drive dynamics besides the eventual ge-
617 netic load, Figure S5 shows population size over time af-

A

B

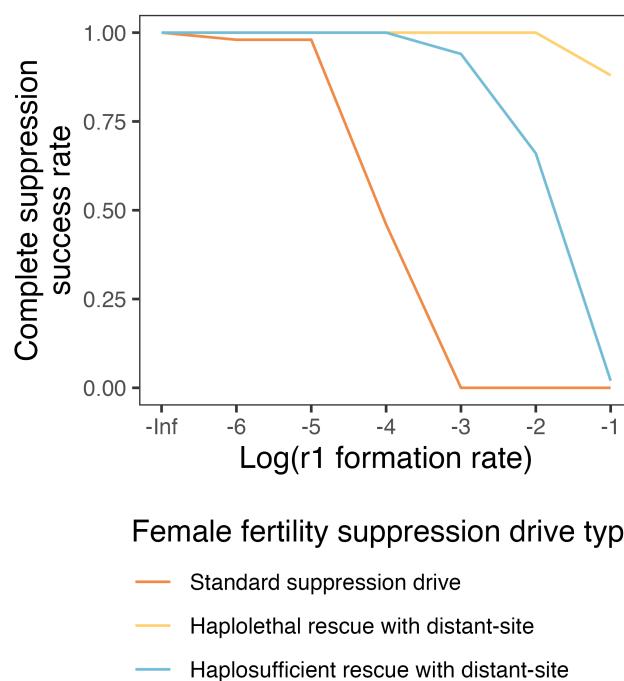
Figure 6. Drive performance under varying somatic and embryonic drive activity. **A**) Complete suppression success rate and **B**) mean genetic load under variable female fitness in drive heterozygotes from somatic expression fertility effects and variable embryo cut rates in the progeny of drive females. The complete suppression success rate is calculated as the fraction of simulations in which population elimination occurs within 100 generations after drive introduction. For **A**, the introduction frequency of gene drive heterozygotes is 0.1, and the total population capacity is 100,000. The total cut rate is fixed to 0.9, and the drive conversion rate is 0.5. For each combination of parameters, we ran 10 model repetitions.

ter the gene drive introduction. The standard suppression drive cannot perform well with these parameters, so it always reaches an equilibrium population size, which is higher with increasing embryo cutting and fitness cost. With no somatic fertility cost and no embryo cutting, both two-target drives suppress the population rapidly. With an increasing embryo cut rate, all drives are slower for all three drives, but the haplolethal two-target drive is especially sensitive to this, losing all suppressive power (and the ability to increase in

frequency at all) when the embryo cut rate is high. This is because high embryo cutting at the drive's site results in immediate removal of drive alleles in the progeny of females (all progeny with nonfunctional resistance alleles at this site are nonviable).

With decreasing drive female fitness from somatic Cas9 cleavage, all drives are slower to suppress the population. Eventually, the drives lose the ability to increase in frequency in the first place, with the exact point being dependent on the

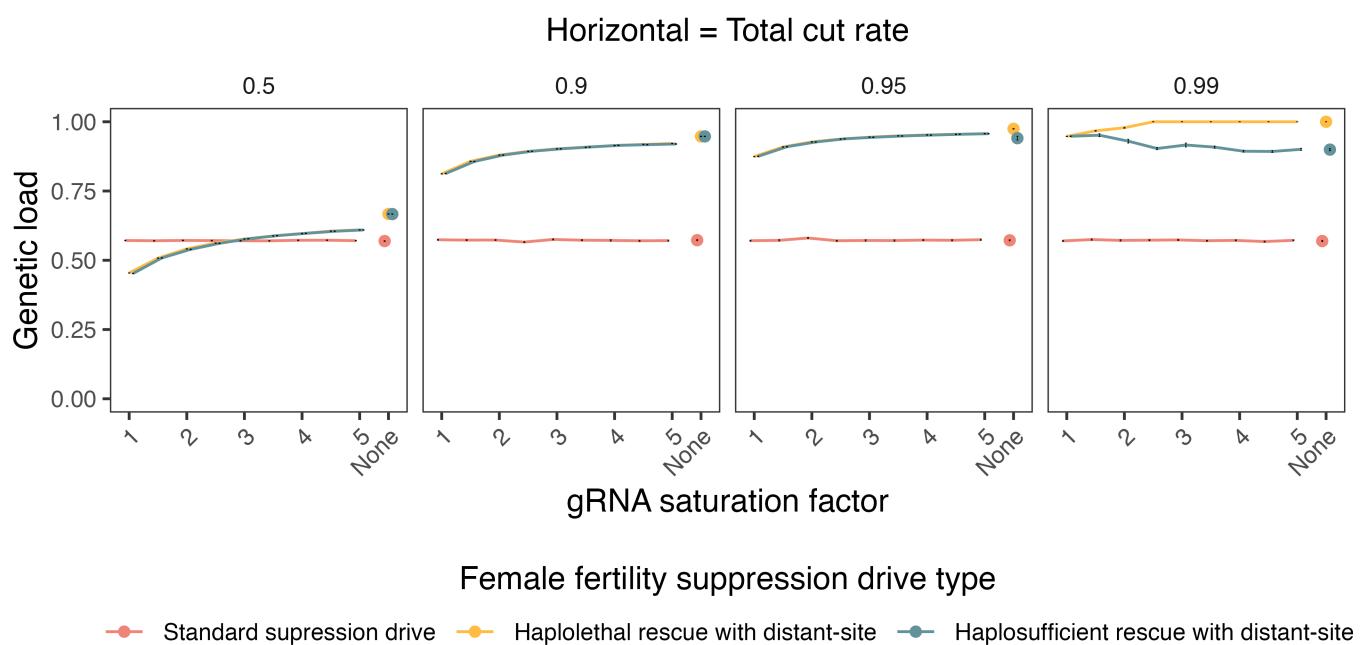
618
619
620
621
622
623
624
625
626


627
628
629
630
631
632
633
634
635

636 drive (Figure S6). With low embryo cutting, the haplolethal
637 drive remains successful for lower female fitness values, and
638 this trend is reversed for higher embryo cutting.

639 **A.3. Functional resistance alleles.** Functional r1 resistance
640 alleles have been shown to be a major challenge for many
641 gene drives, so we investigate how well these can be handled
642 by the two-target drive design. We only model r1 alleles at
643 the homing site of each drive, and not at the distant site. The
644 rescue modification drives can suffer from r1 alleles that form
645 due to incomplete homing, where only the rescue sequence is
646 copied, but not the rest of the gene drive(19). Thus, even with
647 multiplexed gRNAs, there may be a lower limit for functional
648 resistance for these sorts of drives. For a standard suppression
649 drive, this is not an issue. However, while multiplexing
650 can likely reduce functional resistance to low levels(25),
651 this could reduce the drive conversion rate with more than
652 2-4 gRNAs, or with gRNAs that are further apart, both of
653 which could cause drive failure due to lack of genetic load,
654 thus leading to practical limits for multiplexing that may still
655 permit functional resistance. At the distant site, multiplexing
656 is more flexible because either homology-directed repair or
657 end-joining can achieve the desired result. This could allow
658 for more gRNAs that target the most highly conserved sites
659 throughout the target gene, largely eliminating the chance to
660 form functional resistance alleles, much like CRISPR toxin-
661 antidote drives(42).

662 We compare the drives in a range of parameter space
663 where all are always successful in the absence of r1 alleles
664 (Figure S8). We see that at relatively low r1 rates, the stan-
665 dard suppression drive is the first to succumb to functional
666 resistance allele formation in some simulations (Figure 7).
667 This is because r1 alleles provide immediate benefit, directly
668 allowing females to be fertile, which results in rapid increase
669 in frequency of the r1 allele at low population density (Figure
670 S9). Thus, if a resistance allele forms, it only needs to
671 avoid stochastic loss for a small number of generations be-
672 fore it will prevent population elimination. Both two-target
673 drives remain successful in all repetitions up to an r1 rate
674 of 0.1. Then, the haplosufficient two-target drive fails in all
675 repetitions, whereas the haplolethal two-target drive remains
676 successful in most, but not all, replicates (Figure S8). In these
677 drives, r1 alleles have only a modest advantage over the drive
678 allele, and this is indirect. Individuals will not experience the
679 modest female heterozygote fitness cost if they have only r1
680 and wild-type alleles at the drive site, and the r1 allele will
681 not itself disrupt the female fertility gene for progeny, po-
682 tentially increasing its chance of being passed on to a fertile
683 female. However, the drive will reach high frequency (Figure
684 S9), meaning that most r1 alleles will be together with
685 drive alleles, limiting their advantage and thus doing little to
686 prevent suppression, which only requires one drive allele to
687 disrupt the distant-site female fertility gene.


688 **A.4. gRNA saturation.** Because the two-target drives need
689 double the amount of gRNAs, the drive as a whole may suf-
690 fer from additional gRNA saturation compared to a standard
691 homing suppression drive. This means that the cutting ef-

692 **Figure 7. Impact of functional resistance alleles on drive performance.** Suc-
693 cessful population elimination under various functional resistance allele formation
694 rates. The r1 formation rate is the relative rate of resistance alleles that are func-
695 tional, rather than nonfunctional r2 alleles. The model is run for 100 genera-
696 tions after an introduction of drive heterozygotes at 0.01 frequency into a popula-
697 tion of 100,000. To compare the drives where they were all successful in the absence of
698 functional resistance alleles, we used a total cut rate 1.0, drive conversion rate 0.9,
699 somatic expression female fertility fitness effect of 0.9, and an embryo cut rate of
700 0.1 in the progeny of female drive carriers. For each combination of parameters, we
701 ran 50 model repetitions.

702 efficiency of each individual gRNA is reduced due to limited
703 amount of Cas9 protein. Gene drives using multiplexing to
704 avoid r1 alleles already face this challenge(19), which would
705 be amplified in two-target drives. We do not model multi-
706 plexing explicitly, but instead assume that an equal number
707 of gRNAs will be used for the homing site and the distant
708 site, thus allowing us to reduce the cutting efficiency at each
709 site proportionally. Here, we calculated the genetic load for
710 each drive with various cut rates and gRNA saturation factors
711 (Figure 8). The gRNA saturation factor is the relative Cas9
712 activity level with unlimited gRNAs (spread equally between
713 all the gRNAs), with "1" being the activity in the presence of
714 a single gRNA(19). A saturation factor of 1 thus means that
715 the total cut rate is immediately split between any number of
716 gRNAs, while a rate of infinity (our default in previous sim-
717 ulations) means that the cut rate at each gRNA target is the
718 same as the cut rate of a 1-gRNA system.

719 The standard suppression drive is not impacted by this
720 model of gRNA saturation because this drive only targets a
721 single site (it can be thought of as the "baseline" in this sce-
722 nario, even if it would have multiple gRNAs in practice) (Fig-
723 ure 8). The two-target drives are both impacted by gRNA sat-
724 uration, which reduces the genetic load a moderate amount
725 if the gRNA saturation factor is low. This reduction is low
726 if the total cut rate is high (Figure S12). For the haplosuf-
727 ficient drive with a cut rate of 0.99, gRNA saturation ac-

Figure 8. Mean genetic load with variable gRNA saturation factor and total cut rates. The gRNA saturation factor is modelled as relative Cas9 activity with unlimited gRNAs compared to the activity with a single gRNA. We assume that the distant site target gene drives have double the amount of gRNAs compared to a standard suppression drive and that the cut rates are equally reduced at both sites (the two sites are assumed to have the same number of gRNAs). The specified total cut rate is the rate for unlimited gRNA saturation factor. We used a drive conversion rate 0.5, somatic expression female fertility effect of 1, and embryo cut rate of 0. For each combination of parameters, we ran 10 model repetitions.

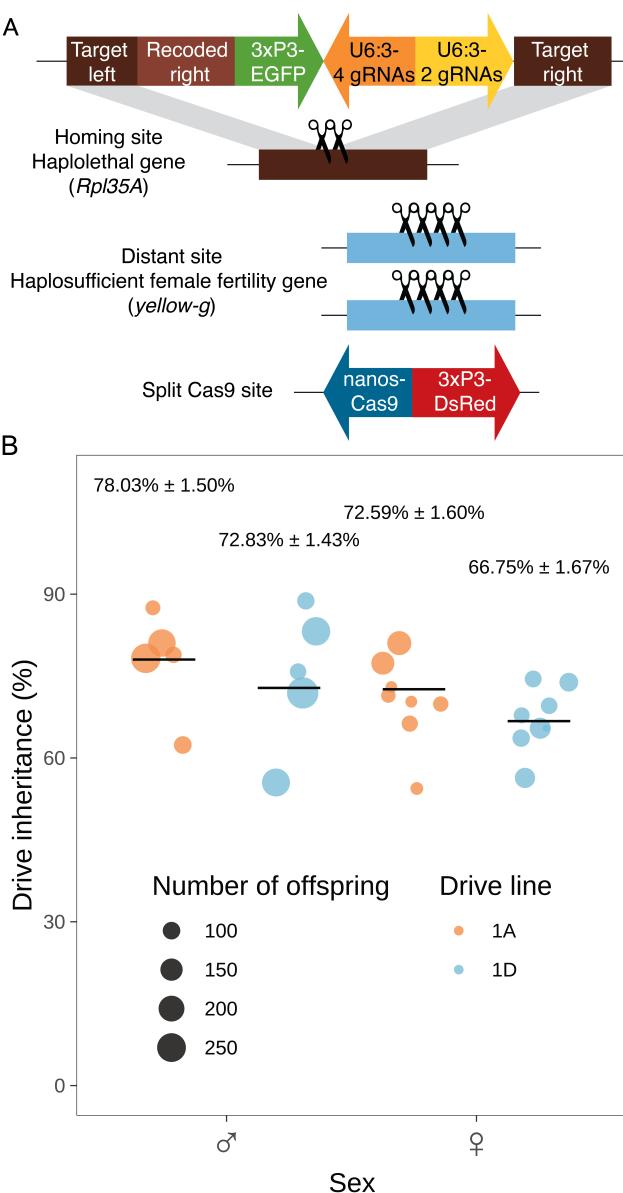
tually has a positive effect on the drive because its optimal cut rate is somewhat lower than 0.99 (Figure S13). The current best estimate of the gRNA saturation factor is 1.5 (19), though this could potentially vary substantially between systems. Overall, gRNA saturation is potentially problematic, though the two-target drives would still usually be expected to have higher power than a standard suppression drive, especially when the total cut rate is high.

B. Proof of concept of two-part gene drive in *Drosophila melanogaster*. We constructed the two-target gene drive design by reusing two previously built gene drives, a standard female fertility suppression drive and a haplolethal modification drive, and combining them (25, 36). We show that the gene drive has moderate drive conversion in both male and female drive heterozygotes, and that cutting at the distant site is highly efficient. However, we also show that drive heterozygous females suffer a significant fertility cost that usually prevented the gene drive from eliminating cage populations.

B.1. Drive crosses. To demonstrate a proof-of-principle for this novel drive design, we developed a suppression drive in *D. melanogaster*, with the drive construct integrated in the haplolethal gene *RpL35A*. The distant target site is the haplosufficient female fertility gene *yellow-g* (Figure 9A). This drive was constructed based on another successful drive reported previously (36), by adding extra gRNAs targeting *yellow-g* from a previous suppression drive (25) to convert the original modification drive into a suppression drive.

Two independent EGFP-marked drive lines (named as

line 1A and line 1D) were generated. These drive lines were respectively crossed to a DsRed-marked *nanos*-Cas9 line to produce heterozygous individuals carrying one copy of the drive and one copy of the Cas9 allele, after which these heterozygotes were crossed to w1118 flies for assessing drive efficiency. The drive inheritance rates of Line 1A were 78% for drive males and 73% for drive females, while the inheritance rates of Line 1D were 73% for drive males and 67% for drive females, significantly higher than the 50% expected with Mendelian inheritance (Binomial exact test, $p < 0.0001****$ for all four comparisons) (Figure 9B, Supplementary Data Set S1). The drive inheritance rates were much lower than the original haplolethal homing drive, where drive inheritance rates for both male and female heterozygotes were 91%. This difference is likely caused by gRNA saturation, meaning that the two gRNAs of the homing drive had lower cut rates because they shared the same amount of Cas9 with the additional four gRNAs targeting *yellow-g*. Besides the difference between males and females, the two gRNA lines performed slightly differently in drive conversion rate as well. To find the cause of this difference, Sanger sequencing was conducted to compare their genomic structures. Sequencing results showed that line 1D contained the full construct as expected, while line 1A showed recombination inside the construct (flipping of the DNA between the U6 promoters for the gRNA cassettes targeting *yellow-g* and *RpL35A*).


B.2. Cage experiments. To characterize the population suppression activity of this drive, cage experiments were set up by mixing drive carriers (heterozygous for the drive allele and

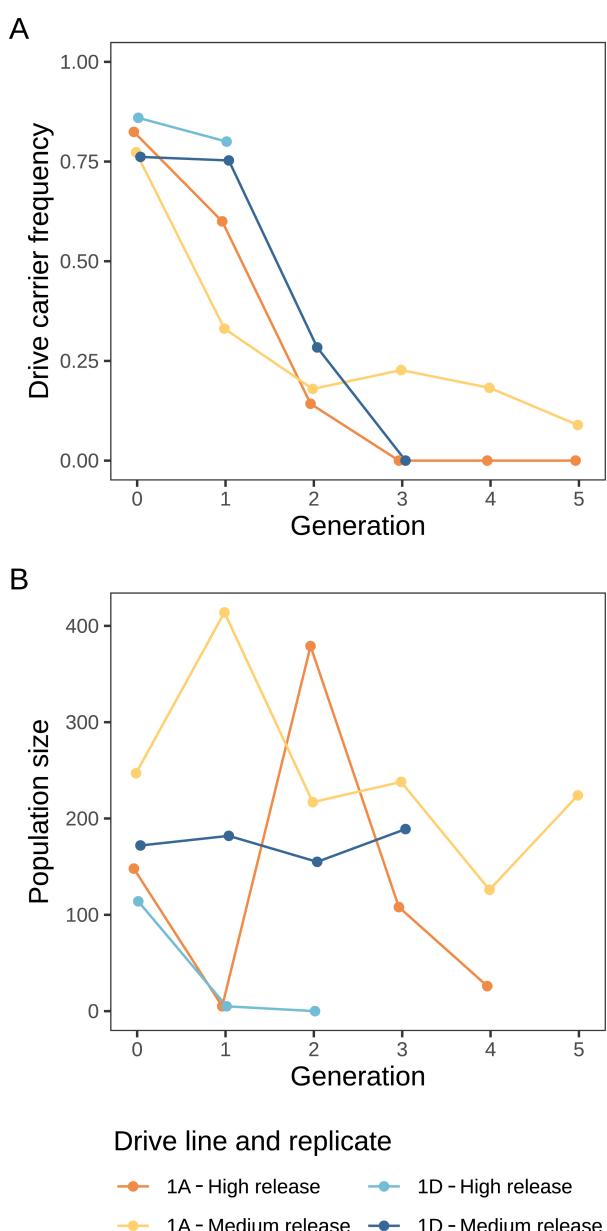
777 homozygous for Cas9) and a small fraction of Cas9 homozygous flies. These cages were followed for several discrete 778 generations, measuring drive carrier frequency by phenotyping 779 all adults. Though there was some stochasticity in population 780 size due to the single bottle nature of the cages, the 781 dynamic of the drive was clear. Drive carrier proportions of 782 most cages quickly decreased within five generations (Figure 783 10A). The population size for the two lower frequency 784

785 releases was unaffected, and for one of the high release frequency 786 cages, the population size recovered after an initial reduction 787 (Figure 10B, Supplementary Data Set S2). However, the other high 788 frequency release cage showed complete population suppression in the 789 second generation even though drive carrier frequency was declining. In the 790 suppressed population, the five remaining flies all happened to be females, 791 whereas this was not the case in the population that recovered. 792 There, the five flies in that generation consisted of four females (one of 793 which lacked the drive) and one male (also without the drive), allowing the 794 population to grow immensely in the next generation. This result implies that the 795 distant-site suppression drive was functional, though overall 796 efficiency was low due to drive fitness costs outweighing biased 797 drive inheritance. It also confirms that near-fixation of a 798 gene drive will not be enough to suppress a population of *D. 799 melanogaster*, given their ability to produce many offspring 800 from just a few remaining individuals under the conditions of 801 these cages. 802

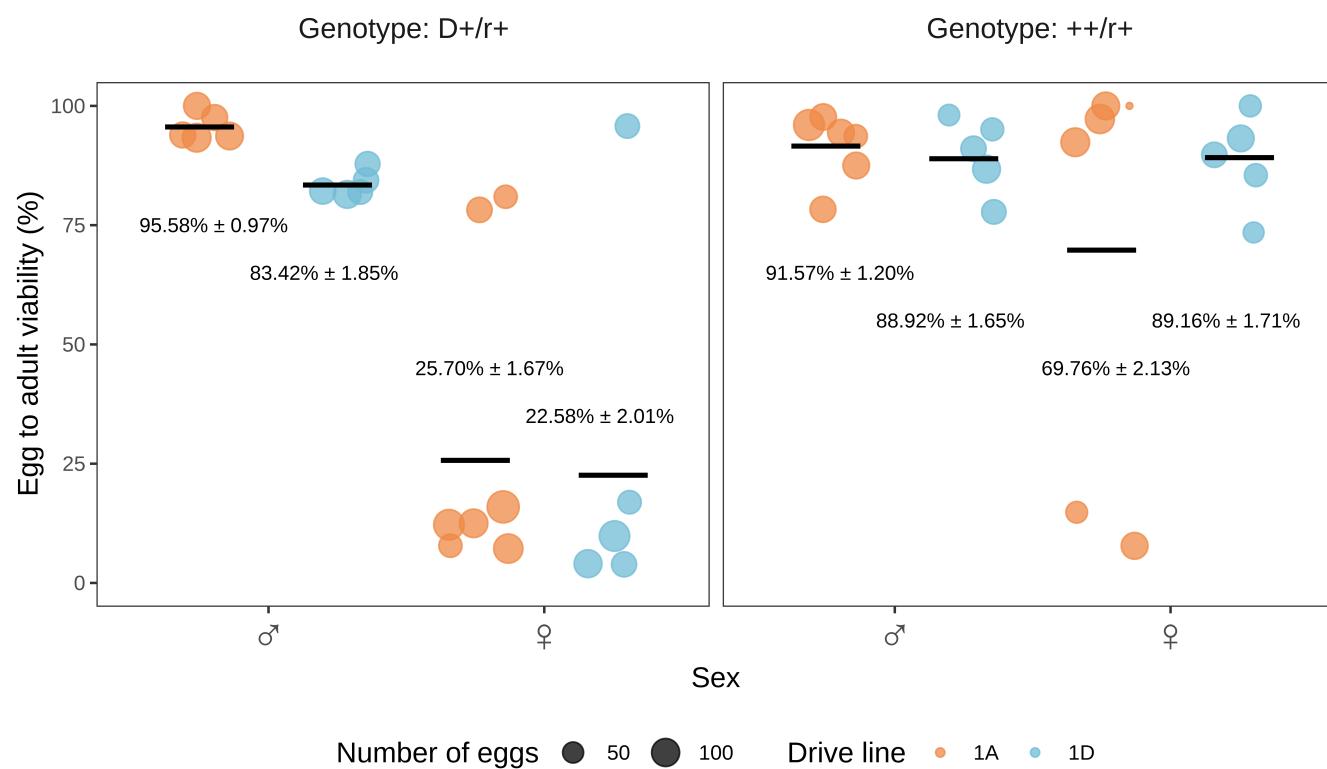
803 **B.3. Resistance alleles and fertility.** While functional resistance 804 is a possible explanation for the rapid decline of a suppression 805 drive from high frequency, we considered this unlikely due to the use of multiplexed gRNAs and previous 806 studies in larger cages with similar drives finding no evidence 807 of functional resistance(25, 36). To explore the possible reason 808 for poor cage performance, a fertility test was conducted 809 to assess the fitness of our drive carriers (which was found 810 to be reduced in both drives this two-target drive is based on, 811 but not to the extent of eliminating them from cages(25, 36)). 812 This fitness cost is based on egg viability from drive females, 813 which was much lower compared with drive males and controls 814 without the drive. In non-drive females, egg viability 815 was and perhaps also slightly lower (Figure 11, Supplementary 816 data set S3), though this latter effect could potentially 817 be ascribed to a batch effect due to the purported haplosufficiency 818 of *yellow-g*. We collected 16 and 18 drive daughters from 819 drive females (which were offspring of the above cross) of 820 line 1A and line 1D, respectively, and crossed them to 821 *w1118* males. 87.50% from line 1A and 77.78% from line 1D 822 were sterile (Supplementary data set S4), which was likely 823 caused by resistance allele formation in the embryo at the 824 *yellow-g* target site due to maternal deposition of Cas9 and 825 gRNAs. Indeed, these sterile females were collected for 826 sequencing, which indicated 100% cutting in the *yellow-g* target 827 site. Another 16 non-drive progeny from drive female and 828 Cas9 male cross were randomly collected for sequencing, 829 showing 87.5% (14 out of 16) cutting in *yellow-g*. These 830 results indicate that the poor cage performance in this study 831 is likely due to fitness cost of female drive heterozygotes together 832 with high levels of embryo resistance allele formation at the 833 female fertility site and some embryo resistance allele 834 formation at the drive site, though it is currently unclear to 835 what extent each of these factors contributes. 836

837 In addition to the egg to adult viability, we measured 838 the drive inheritance of these offspring. The drive inheritance 839 rate of line 1A was $67.67\% \pm 2.25\%$ in drive males and 840 $73.71\% \pm 3.33\%$ in drive females, while it was $75.96\% \pm 841$

Figure 9. Drive construct and inheritance rates. **A**) The drive allele is inserted into the haplolethal gene *Rpl35A* and contains a recoded version as rescue to avoid gRNA cleavage. It is expected that only offspring inheriting two functional copies of *Rpl35A* (which can be either a drive or wild-type allele) can survive. The two blue lightning bolts show the gRNA sites for cleaving *Rpl35A* and homing, while the four brown lightning bolts show the gRNA sites for disrupting *yellow-g*, a haplosufficient female fertility gene located at a distant site. **B**) The drive inheritance rate indicates the percentage of offspring with EGFP fluorescence from the cross between heterozygotes (containing one copy of drive and one copy of Cas9) and *w1118* flies (without drive and Cas9). The size of each dot represents the total number of offspring. The inheritance rate of paternal drive is significantly higher than that of maternal drive in both line 1A (Fisher's exact test, $p = 0.0153$) and line 1D ($p = 0.0057$).


842 2.83% in drive males and $77.75 \pm 4.21\%$ in drive females in
843 line 1D (Figure S15). The drive inheritance rates of these flies
844 were somewhat higher than our previous test where drive hetero-
845 zygotes had only a single copy of Cas9, except for drive
846 males of line 1A. The reason for this anomaly is unclear, par-
847 ticularly considering that lack of Cas9 appears to be a lim-
848 iting factor in the performance of the drive compared to the
849 original modification drive it is based off. Additionally, al-
850 though drive inheritance rates in the previous test were higher
851 in drive males than drive females, this difference was not seen
852 in this later drive conversion test.

Discussion


In this study, we analyzed the possibility of converting a modification to a suppression drive by addition of gRNAs targeting a female fertility or other essential gene without rescue. We found via modelling that this can substantially increase the genetic load (suppressive power) of the drive compared to a similar standard suppression drive, unless the drive conversion rate is already very high. Instead of the genetic load being mainly determined by the drive conversion rate, it is determined by the total germline cut rate in these two-target drives. We then demonstrated such a drive in the model organism *D. melanogaster*, which successfully biased its inheritance while cutting the distant female fertility gene target at high rates. However, fitness costs in drive heterozygous females were quite high for this drive, which prevented success in most cage replicates despite high release frequency. Nevertheless, two-target drive systems may be quite desirable tools for suppression of pests where high drive conversion is difficult to achieve but not high cut rates. Such high drive conversion has only been consistently achieved in *Anopheles* mosquitoes, while several other species have had substantially lower or inconsistent drive conversion, such as *Drosophila*, *Aedes*, and mice (20, 24, 25, 30, 32, 37). In these, relatively high cut rates have often been achieved when drive conversion is low, which would be necessary for the two-target drive design to work in these species.

In the two-target suppression drive, population suppression is largely decoupled from drive frequency increase. This is in contrast to the standard homing suppression drive, where the drive allele itself is mainly responsible for disrupting the suppression target. Thus, the two-target drive can keep increasing in frequency and eventually cut most female fertility target alleles. The standard suppression drive reaches an equilibrium that allows many wild-type alleles to remain, mostly accounting for its genetic load. Though the two-target suppression drive allows for higher suppressive power, it still needs to be able to increase in frequency in the first place. Thus, drive conversion must be sufficiently high to overcome fitness costs and embryo resistance (the latter of which is mostly important at the distant site, though it could have a substantial negative effect at the drive site if the drive targets a haplolethal gene there). These performance parameters are still highly dependent on the Cas9 promoter and to a lesser extent, the target gene. For the target gene, additional possibilities are available for two-target drives because they can keep high genetic load even when targeting X-linked female fertility genes.

While our modeling results are promising for two-target drives that lack high drive conversion rates, it should be noted that drive conversion is still essential for determining the speed at which the drive's frequency will increase, which determines the time to population elimination. Though this system can increase the genetic load, such drives will still take longer to eliminate a population than a drive with high drive conversion efficiency (regardless of whether such a drive is a standard suppression drive or a two-target system). In more complex environments such as two-dimensional continuous

Figure 10. Small cage experiments. Heterozygous flies carrying one copy of the drive allele and two copies of Cas9 were used to generate progeny for "generation zero" of four small cages (the two medium release cages also included a non-drive female that was also homozygous for Cas9). **A**) Drive carrier frequency and **B**) population size in each generation.

Figure 11. Egg viability test. The individuals tested in this experiment were all homozygous for Cas9, but different in the drive site and distant site, for which genotypes are listed at the top. “+”, “D” and “r” respectively represent wild-type allele, drive allele and nonfunctional (*yellow-g* target site) resistant allele. Note that while cut rates at the *yellow-g* site were high, it is possible that a small fraction of flies marked as having an “r” at the target site were in fact homozygous for wild-type at this site.

space, this slowed rate of increase could potentially result in failed suppression due to the “chasing” effect, where wild type individuals migrate back into an area previously cleared by the gene drive, resulting in cycles of suppression and re-establishment(12). However, this same study included a powerful but slow drive that avoided this effect, which may be analogous to a two-target system. Additional modeling is thus needed to explore the outcomes of two-target drives in complex scenarios.

In our experimental demonstration, the constructs functioned generally as expected, performing drive conversion while cutting the distant site at high rates. However, drive efficiency at the homing site was considerably lower than the original modification rescue drive(36). Because we used the same Cas9 and gRNAs, the reason for this was likely Cas9 saturation from the additional gRNAs targeting the distant site. With only two gRNAs for the homing site and four gRNAs for the distant site (both selected based on previously available constructs(25, 36)), the cut rate at the homing site would be expected to decrease more than at the distant site (in our model we assume that the same number of gRNAs target each site), especially because the cut rate for the original modification drive was not high in the first place(36), at least compared to other published drives in *D. melanogaster*. These issues could be more readily avoided using entirely new designs with balanced numbers of gRNAs.

Arguably more problematic, the high fitness cost in female heterozygotes prevented success in population cages,

and embryo resistance at both the drive site and the distant-target site further contributed to drive failure. This fitness cost was expected to an extent because our two-target drive is based on a suppression drive showing reduced fitness as well(25). In the haplolethal modification drive, drive carrier males showed no significant reduction in offspring egg-to-pupa survival, but females did show a significant effect(36). This fitness reduction would represent an addition fitness cost in our two target drive and is likely from nonfunctional resistance alleles rendering offspring nonviable. If formed in the germline, these alleles would not have significant negative effects, but if formed in the embryo, it could further contribute to reduced drive success. In the earlier standard suppression drive targeting *yellow-g*, at first, offspring from neither male or female drive parents showed a significant reduction in the egg-to-pupa survival rate, but later crosses with drier food conditions did show a significant reduction in egg-to-pupa survival rate, and inference from cage experiments showed even higher fitness costs. This fitness cost likely indicates either leaky somatic expression or disruption of *yellow-g* too early in the germline where it still might need to function. Together, these factors could all contribute to the more severe fitness cost for female drive carriers with our two-target drive, though we currently do not know what factor contributes to what extent. In the original suppression drive, offspring of drive carrier females were found to be sterile at high rates. This infertility indicates significant embryo activity, which also had a similar negative effect on the two-target drive.

966 In the two-target drive, gRNA saturation could have slightly
967 ameliorated these effects due to the presence of more gRNAs
968 and cut rates being slightly reduced, but the different
969 genomic site may change this, and reduction in drive conver-
970 sion efficiency for similar reasons would likely outweigh any
971 benefits.

972 All of these fitness costs will likely be similar for two-
973 target drives targeting different genes using *nanos*-Cas9, with
974 the exception of *yellow-g* potentially being required in the
975 early germline. Therefore, finding promoters that are exclu-
976 sively expressed in the (late) germline is essential for future
977 development of two-target drives (and any suppression drive
978 for that matter), and promoters with little to no embryo ac-
979 tivity are also preferred. In the standard suppression drive,
980 however, the higher drive conversion rate (and lack of em-
981 bryo cutting at the haplolethal target) still allowed it to reach a
982 moderate equilibrium instead of declining to zero. If the two-
983 target drive in our study had similar or even somewhat lower
984 drive conversion, our model indicates that it would have been
985 able to increase in frequency in the population and eventually
986 eliminate it with high genetic load. Even in current form, our
987 drive could potentially be successful with repeated releases,
988 analogous to a more powerful form of sterile insect tech-
989 nique, which is far less powerful than a gene drive but still
990 potentially useful in several situations due to its self-limiting
991 nature(43).

992 Overall, we have shown that for scenarios of low to mod-
993 erate drive conversion and high total germline cut rates, two-
994 target drives may offer substantially increased suppressive
995 power. With further efforts to find better Cas9 promoters and
996 target gene combinations with lower fitness costs, this unique
997 drive design may unlock the potential for strong population
998 suppression in many scenarios.

ACKNOWLEDGEMENTS

1000 This study was supported by the Graduate School for Production Ecology &
1001 Resource Conservation (PE&RC) in the Netherlands, laboratory startup funds from
1002 Peking University, the Center for Life Sciences, the Li Ge Zhao Ning Life Science
1003 Youth Research Fund, and grants from the National Science Foundation of China
1004 (32302455, 32270672, and Overseas Youth).

COMPETING INTERESTS

1005 The authors declare no competing interests.

References

1. Kevin M Esveld, Andrea L Smidler, Flaminia Catteruccia, and George M Church. Concerning RNA-guided gene drives for the alteration of wild populations. *eLife*, 3:e03401, July 2014. ISSN 2050-084X. doi: 10.7554/eLife.03401.
2. Jackson Champer, Arina Buchman, and Omar S. Akbari. Cheating evolution: engineering gene drives to manipulate the fate of wild populations. *Nature Reviews Genetics*, 17(3): 146–159, March 2016. ISSN 1471-0056, 1471-0064. doi: 10.1038/nrg.2015.34.
3. H. Charles J. Godfray, Ace North, and Austin Burt. How driving endonuclease genes can be used to combat pests and disease vectors. *BMC Biology*, 15(1):81, December 2017. ISSN 1741-7007. doi: 10.1186/s12915-017-0420-4.
4. Ethan Bier. Gene drives gaining speed. *Nature Reviews Genetics*, 23(1):5–22, January 2022. ISSN 1471-0056, 1471-0064. doi: 10.1038/s41576-021-00386-0.
5. Guan-Hong Wang, Jie Du, Chen Yi Chu, Mukund Madhav, Grant L. Hughes, and Jackson Champer. Symbionts and gene drive: two strategies to combat vector-borne disease. *Trends in Genetics*, 38(7):708–723, Jul 2022. ISSN 01689525. doi: 10.1016/j.tig.2022.02.013.
6. Luke S. Alphey, Andrea Crisanti, Filippo (Fil) Randazzo, and Omar S. Akbari. Opinion: Standardizing the definition of gene drive. *Proceedings of the National Academy of Sciences*, page 202020417, November 2020. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.202041117.
7. Valentino M Gantz, Nijole Jasinskienė, Olga Tatarenkova, Aniko Fazekas, Vanessa M Mancias, Ethan Bier, and Anthony A James. Highly efficient cas9-mediated gene drive for population modification of the malaria vector mosquito *Anopheles stephensi*. *Proceedings of the National Academy of Sciences*, 112(49):E6736–E6743, 2015.
8. Kyros Kyrou, Andrew M Hammond, Roberto Galizi, Nace Kranjc, Austin Burt, Andrea K Beaghton, Tony Nolan, and Andrea Crisanti. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged *Anopheles gambiae* mosquitoes. *Nature Biotechnology*, 36(11):1062–1066, November 2018. ISSN 1087-0156, 1546-1696. doi: 10.1038/nbt.4245.
9. Thomas A. A. Prowse, Phillip Cassey, Joshua V. Ross, Chandran Pfitzner, Talia A. Wittmann, and Paul Thomas. Dodging silver bullets: good CRISPR gene-drive design is critical for eradicating exotic vertebrates. *Proceedings of the Royal Society B: Biological Sciences*, 284(1860):20170799, August 2017. ISSN 0962-8452, 1471-2954. doi: 10.1098/rspb.2017.0799.
10. Luke Gierus, Aysegul Birand, Mark D. Bunting, Gelshan I. Godahewa, Sandra G. Piltz, Kevin P. Oh, Antoinette J. Piaggio, David W. Threadgill, John Godwin, Owain Edwards, Phillip Cassey, Joshua V. Ross, Thomas A. A. Prowse, and Paul Q. Thomas. Leveraging a natural murine meiotic drive to suppress invasive populations. *Proceedings of the National Academy of Sciences*, 119(46):e2213308119, November 2022. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.2213308119.
11. Kym E. Wilkins, Thomas A.A. Prowse, Phillip Cassey, Paul Q. Thomas, and Joshua V. Ross. Pest demography critically determines the viability of synthetic gene drives for population control. *Mathematical Biosciences*, 305:160–169, November 2018. ISSN 00255564. doi: 10.1016/j.mbs.2018.09.005.
12. Samuel E. Champer, Nathan Oakes, Ronin Sharma, Pablo García-Díaz, Jackson Champer, and Philipp W. Messer. Modeling CRISPR gene drives for suppression of invasive rodents using a supervised machine learning framework. *PLOS Computational Biology*, 17(12): e1009660, December 2021. ISSN 1553-7358. doi: 10.1371/journal.pcbi.1009660.
13. Kevin M. Esveld and Neil J. Gemmell. Conservation demands safe gene drive. *PLOS Biology*, 15(11):e2003850, November 2017. ISSN 1545-7885. doi: 10.1371/journal.pbio.2003850.
14. Sumit Dhole, Alun L. Lloyd, and Fred Gould. Gene Drive Dynamics in Natural Populations: The Importance of Density Dependence, Space, and Sex. *Annual Review of Ecology, Evolution, and Systematics*, 51(1):505–531, November 2020. ISSN 1543-592X, 1545-2069. doi: 10.1146/annurev-ecolsys-031120-101013.
15. Tom A R Price, Nikolai Windbichler, Robert L Unckless, Andreas Sutter, Jan-Niklas Runge, Perran A Ross, Andrew Pomiąkowski, Nicole L Nuckolls, Catherine Montchamp-Moreau, Nicole Mideo, Oliver Y Martin, Andri Manser, Mathieu Legros, Amanda M Larracueta, Luke Holman, John Godwin, Neil Gemmell, Cécile Courret, Anna Buchman, Luke G Barrett, and Anna K Lindholm. Resistance to natural and synthetic gene drive systems. *Journal of evolutionary biology*, 33(10):1345–1360, 2020.
16. Andrew M. Hammond, Kyros Kyrou, Marco Bruttini, Ace North, Roberto Galizi, Xenia Karlsson, Nace Kranjc, Francesco M. Carpi, Romina D'Aurizio, Andrea Crisanti, and Tony Nolan. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. *PLOS Genetics*, 13(10):e1007039, October 2017. ISSN 1553-7404. doi: 10.1371/journal.pgen.1007039.
17. Chandran Pfitzner, Melissa A. White, Sandra G. Piltz, Michaela Scherer, Fatwa Adikusuma, James N. Hughes, and Paul Q. Thomas. Progress Toward Zygotic and Germline Gene Drives in Mice. *The CRISPR Journal*, 3(5):388–397, October 2020. ISSN 2573-1599, 2573-1602. doi: 10.1089/crispr.2020.0050.
18. Hannah A. Grunwald, Valentino M. Gantz, Gunnar Poplawski, Xiang-Ru S. Xu, Ethan Bier, and Kimberly L. Cooper. Super-Mendelian inheritance mediated by CRISPR–Cas9 in the female mouse germline. *Nature*, 566(7742):105–109, February 2019. ISSN 0028-0836, 1476-4687. doi: 10.1038/s41586-019-0875-2.
19. Samuel E. Champer, Suh Yeon Oh, Chen Liu, Zhaoxin Wen, Andrew G. Clark, Philipp W. Messer, and Jackson Champer. Computational and experimental performance of CRISPR homing gene drive strategies with multiplexed gRNAs. *Science Advances*, 6(10):eaaz0525, March 2020. ISSN 2375-2548. doi: 10.1126/sciadv.aaz0525.
20. Jackson Champer, Riona Reeves, Suh Yeon Oh, Chen Liu, Jingxian Liu, Andrew G. Clark, and Philipp W. Messer. Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations. *PLOS Genetics*, 13(7):e1006796, July 2017. ISSN 1553-7404. doi: 10.1371/journal.pgen.1006796.
21. Eli M. Carrami, Kolja N. Eckermann, Hassan M. M. Ahmed, Héctor M. Sánchez C., Stefan Dippel, John M. Marshall, and Ernst A. Wimmer. Consequences of resistance evolution in a cas9-based sex conversion-suppression gene drive for insect pest management. *Proceedings of the National Academy of Sciences*, 115(24):6189–6194, Jun 2018. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1713825115.
22. Thai Binh Pham, Celine Hien Phong, Jared B. Bennett, Kristy Hwang, Nijole Jasinskienė, Kiona Parker, Drusilla Stillingar, John M. Marshall, Rebeca Carballar-Lejarazú, and Anthony A. James. Experimental population modification of the malaria vector mosquito, *Anopheles stephensi*. *PLOS Genetics*, 15(12):e1008440, Dec 2019. ISSN 1553-7404. doi: 10.1371/journal.pgen.1008440.
23. Nicolas O. Rode, Arnaud Estoup, Denis Bourguet, Virginie Courtier-Orgogozo, and Florence Débarre. Population management using gene drive: molecular design, models of spread dynamics and assessment of ecological risks. *Conservation Genetics*, 20(4):671–690, Aug 2019. ISSN 1566-0621, 1572-9737. doi: 10.1007/s10592-019-01165-5.
24. Georg Oberhofer, Tobin Ivy, and Bruce A. Hay. Behavior of homing endonuclease gene drives targeting genes required for viability or female fertility with multiplexed guide rnas. *Proceedings of the National Academy of Sciences*, 115(40):E9343–E9352, 2018.
25. Emily Yang, Matthew Metzloff, Anna M Langmüller, Xuejiao Xu, Andrew G Clark, Philipp W Messer, and Jackson Champer. A homing suppression gene drive with multiplexed grnas maintains high drive conversion efficiency and avoids functional resistance alleles. *G3*, 12(6):jkgc081, 2022.
26. Andrew Hammond, Xenia Karlsson, Ioanna Morianou, Kyros Kyrou, Andrea Beaghton, Matthew Gribble, Nace Kranjc, Roberto Galizi, Austin Burt, Andrea Crisanti, and Tony Nolan. Regulating the expression of gene drives is key to increasing their invasive potential and the mitigation of resistance. *PLOS Genetics*, 17(1):e1009321, Jan 2021. ISSN 1553-7404. doi: 10.1371/journal.pgen.1009321.
27. Rebeca Carballar-Lejarazú, Christian Ogaugwu, Taylor Tushar, Adam Kelsey, Thai Binh

Pham, Jazmin Murphy, Hanno Schmidt, Yoosook Lee, Gregory C. Lanzaro, and Anthony A. James. Next-generation gene drive for population modification of the malaria vector mosquito, *Anopheles gambiae*. *Proceedings of the National Academy of Sciences*, 117(37): 22805–22814, Sep 2020. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.2010214117.

28. Jie Du, Weizhe Chen, Xihua Jia, Xuejiao Xu, Emily Yang, Ruizhi Zhou, Yuqi Zhang, Matt Metzloff, Philipp W. Messer, and Jackson Champer. New germline cas9 promoters show improved performance for homing gene drive. *BioRxiv*, Jul 2023. doi: 10.1101/2023.07.16.549205.

29. Andrew Hammond, Roberto Galizi, Kyros Kyrou, Alekos Simoni, Carla Siniscalchi, Dimitris Katsanis, Matthew Gribble, Dean Baker, Eric Marois, Steven Russell, Austin Burt, Nikolai Windbichler, Andrea Crisanti, and Tony Nolan. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector *Anopheles gambiae*. *Nature Biotechnology*, 34(1):78–83, January 2016. ISSN 1087-0156, 1546-1696. doi: 10.1038/nbt.3439.

30. Ming Li, Ting Yang, Nikolay P Kandul, Michelle Bui, Stephanie Gamez, Robyn Raban, Jared Bennett, Héctor M Sánchez C, Gregory C Lanzaro, Hanno Schmidt, Yoosook Lee, John M Marshall, and Omar S Akbari. Development of a confinable gene drive system in the human disease vector *aedes aegypti*. *eLife*, 9:e51701, Jan 2020. ISSN 2050-084X. doi: 10.7554/eLife.51701.

31. William Reid, Adeline E Williams, Irma Sanchez-Vargas, Jingyi Lin, Rucsanda Juncu, Ken E Olson, and Alexander W E Franz. Assessing single-locus crispr/cas9-based gene drive variants in the mosquito *aedes aegypti* via single-generation crosses and modeling. *G3 Genes/Genomes/Genetics*, 12(12):jkac280, Dec 2022. ISSN 2160-1836. doi: 10.1093/g3journal/jkac280.

32. Michelle A. E. Anderson, Estela Gonzalez, Joshua X. D. Ang, Lewis Shackleford, Katherine Nevard, Sebald A. N. Verkuil, Matthew P. Edgington, Tim Harvey-Samuel, and Luke Alphey. Closing the gap to effective gene drive in *aedes aegypti* by exploiting germline regulatory elements. *Nature Communications*, 14(1):338, Jan 2023. ISSN 2041-1723. doi: 10.1038/s41467-023-36029-7.

33. Yuk-Sang Chan, David S. Huen, Ruth Glauert, Eleanor Whiteway, and Steven Russell. Optimising homing endonuclease gene drive performance in a semi-refractory species: The *drosophila melanogaster* experience. *PLoS ONE*, 8(1):e54130, Jan 2013. ISSN 1932-6203. doi: 10.1371/journal.pone.0054130.

34. Rebeca Carballar-Lejaráz, Taylor Tushar, Thai Binh Pham, and Anthony A James. Cas9-mediated maternal effect and derived resistance alleles in a gene-drive strain of the african malaria vector mosquito, *Anopheles gambiae*. *Genetics*, page iyac055, Apr 2022. ISSN 1943-2631. doi: 10.1093/genetics/iyac055.

35. Amarish K. Yadav, Cole Butler, Akihiko Yamamoto, Anandrao A. Patil, Alun L. Lloyd, and Maxwell J. Scott. Crispr/cas9-based split homing gene drive targeting doublesex for population suppression of the global fruit pest *drosophila suzukii*. *Proceedings of the National Academy of Sciences*, 120(25):e2301525120, Jun 2023. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.2301525120.

36. Jackson Champer, Emily Yang, Esther Lee, Jingxian Liu, Andrew G. Clark, and Philipp W. Messer. A crispr homing gene drive targeting a haplolethal gene removes resistance alleles and successfully spreads through a cage population. *Proceedings of the National Academy of Sciences*, 117(39):24377–24383, Sep 2020. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.2004373117.

37. Nikolay P Kandul, Junru Liu, Anna Buchman, Valentino M Gantz, Ethan Bier, and Omar S Akbari. Assessment of a Split Homing Based Gene Drive for Efficient Knockout of Multiple Genes. *G3 Genes/Genomes/Genetics*, 10(2):827–837, 02 2020. ISSN 2160-1836. doi: 10.1534/g3.119.400985.

38. Benjamin C. Haller and Philipp W. Messer. SLiM 4: Multispecies eco-evolutionary modeling. *The American Naturalist*, page 723601, November 2022. ISSN 0003-0147, 1537-5323. doi: 10.1086/723601.

39. R Core Team. *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria, 2021.

40. M Wayne Davis and Erik M Jorgensen. Ape, a plasmid editor: a freely available dna manipulation and visualization program. *Frontiers in Bioengineering and Biotechnology*, 2:818619, 2022.

41. Jackson Champer, Samuel E. Champer, Isabel K. Kim, Andrew G. Clark, and Philipp W. Messer. Design and analysis of crispr-based underdominance toxin-antidote gene drives. *Evolutionary Applications*, 14(4):1052–1069, Apr 2021. ISSN 1752-4571, 1752-4571. doi: 10.1111/eva.13180.

42. Jackson Champer, Isabel K. Kim, Samuel E. Champer, Andrew G. Clark, and Philipp W. Messer. Performance analysis of novel toxin-antidote crispr gene drive systems. *BMC Biology*, 18(1):27, Dec 2020. ISSN 1741-7007. doi: 10.1186/s12915-020-0761-2.

43. Siân AM Spinner, Zoe H Barnes, Alin Mirel Puinean, Pam Gray, Tarig Dafa'alla, Caroline E Phillips, Camila Nascimento de Souza, Tamires Fonseca Frazão, Kyla Ercit, Amandine Collado, et al. New self-sexing *aedes aegypti* strain eliminates barriers to scalable and sustainable vector control for governments and communities in dengue-prone environments. *Frontiers in Bioengineering and Biotechnology*, 10, 2022.

44. Yiran Liu and Jackson Champer. Modelling homing suppression gene drive in haplodiploid organisms. *Proceedings of the Royal Society B*, 289(1972):20220320, 2022.

45. Pavel P Khil, Natalya A Smirnova, Peter J Romanienko, and R Daniel Camerini-Otero. The mouse x chromosome is enriched for sex-biased genes not subject to selection by meiotic sex chromosome inactivation. *Nature Genetics*, 36(6):642–646, Jun 2004. ISSN 1061-4036, 1546-1718. doi: 10.1038/ng1368.

46. Michael Parisi, Rachel Nuttall, Daniel Naiman, Gerard Bouffard, James Malley, Justen Andrews, Scott Eastman, and Brian Oliver. Paucity of genes on the *drosophila* x chromosome showing male-biased expression. *Science*, 299(5607):697–700, Jan 2003. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.1079190.

A.1. Drive types. We have modelled 10 different types of homing suppression drives. The first three in the list below are shown in the main results. Modelling for the rest of the drives are shown here in the Supplementary Materials.

1. Drive with female fertility target
2. Haplolethal rescue drive with distant-site female fertility target
3. Haplosufficient rescue drive with distant-site female fertility target
4. X-linked female fertility target
5. Haplolethal rescue drive with distant-site X-linked female fertility target
6. Haplosufficient rescue drive with distant-site X-linked female fertility target
7. Haplosufficient but essential target
8. Haplolethal rescue drive with distant-site haplosufficient but essential target
9. Haplosufficient rescue drive with distant-site haplosufficient but essential target
10. Standard female fertility drive with distant-site female fertility target

The methods are all described in the main text, except for one detail for drives number 7, 8 and 9. Since these drives target an essential gene instead of a female fertility gene to achieve population suppression, we have implemented the somatic expression fitness cost as an embryo viability effect rather than a female fertility effect. The formula remains the same as in Formula 4.

B. Supplementary results.

B.1. Additional drive types. Besides our three main types of drives, we have modelled seven more (see Section A.1). These seven include various drives with X-linked targets and viability targets (that affect both sexes, rather than only fecundity and only in females), plus one drive that does not include a rescue element and instead operates similar to a standard suppression drive at its homing site (while still targeting a second distant female fertility gene).

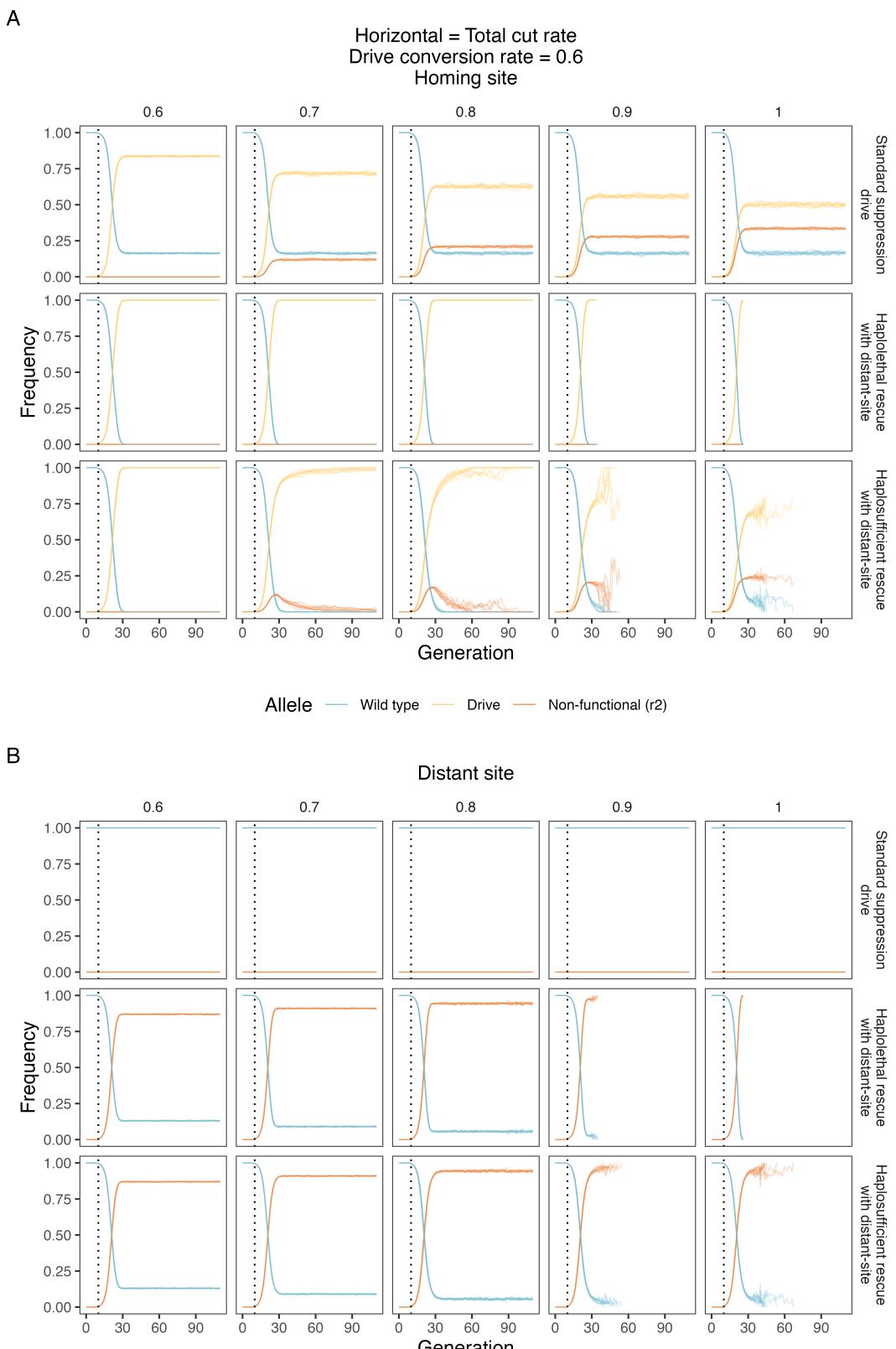
First, although the standard drive loses suppressive power more quickly when the female fertility gene is X-linked(44), the two distant-site drives show no significant decrease in suppressive power when the main drive is on the autosome and the distant target is X-linked (Figure S4). This difference is that homing can still occur in both sexes in this situation, allowing the drive to increase in frequency more rapidly. Because there are many genes located on the X chromosome that are differentially expressed between males and females and might play a role in female fertility(45, 46), this possibility could increase the number of potential target genes while still retaining high drive efficiency.

Second, a standard gene drive that targets a both-sex viability genes requires higher performance to achieve the same success as a drive targeting female fertility (Figure S4).

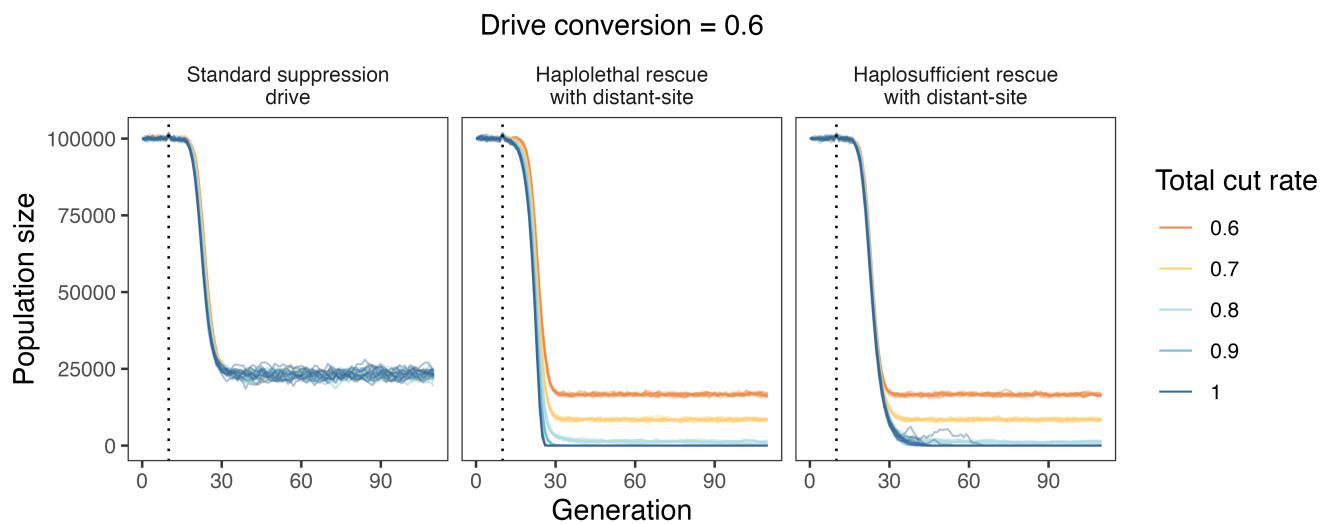
Supplementary Materials

A. Supplementary methods.

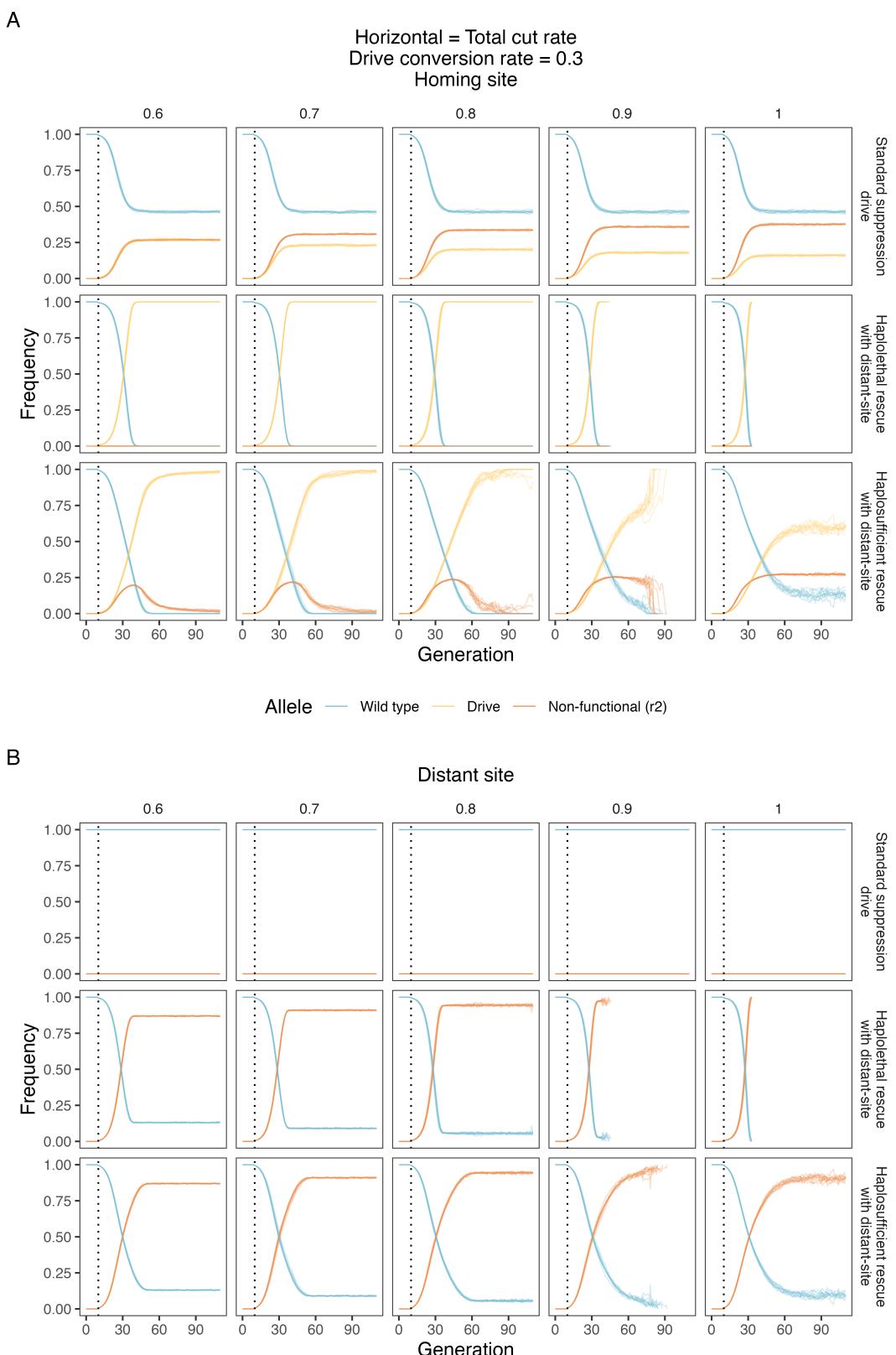
Distant-site targeting of such a gene does increase the genetic load, but performance is still weaker than a female fertility target, especially if the rescue element is for a haplosufficient gene. In this latter variant, higher total cut rates beyond the level of the drive conversion rate will first increase but eventually reduce the drive's genetic load, even though it still offers superior performance to a standard drive targeting a both-sex viability gene.

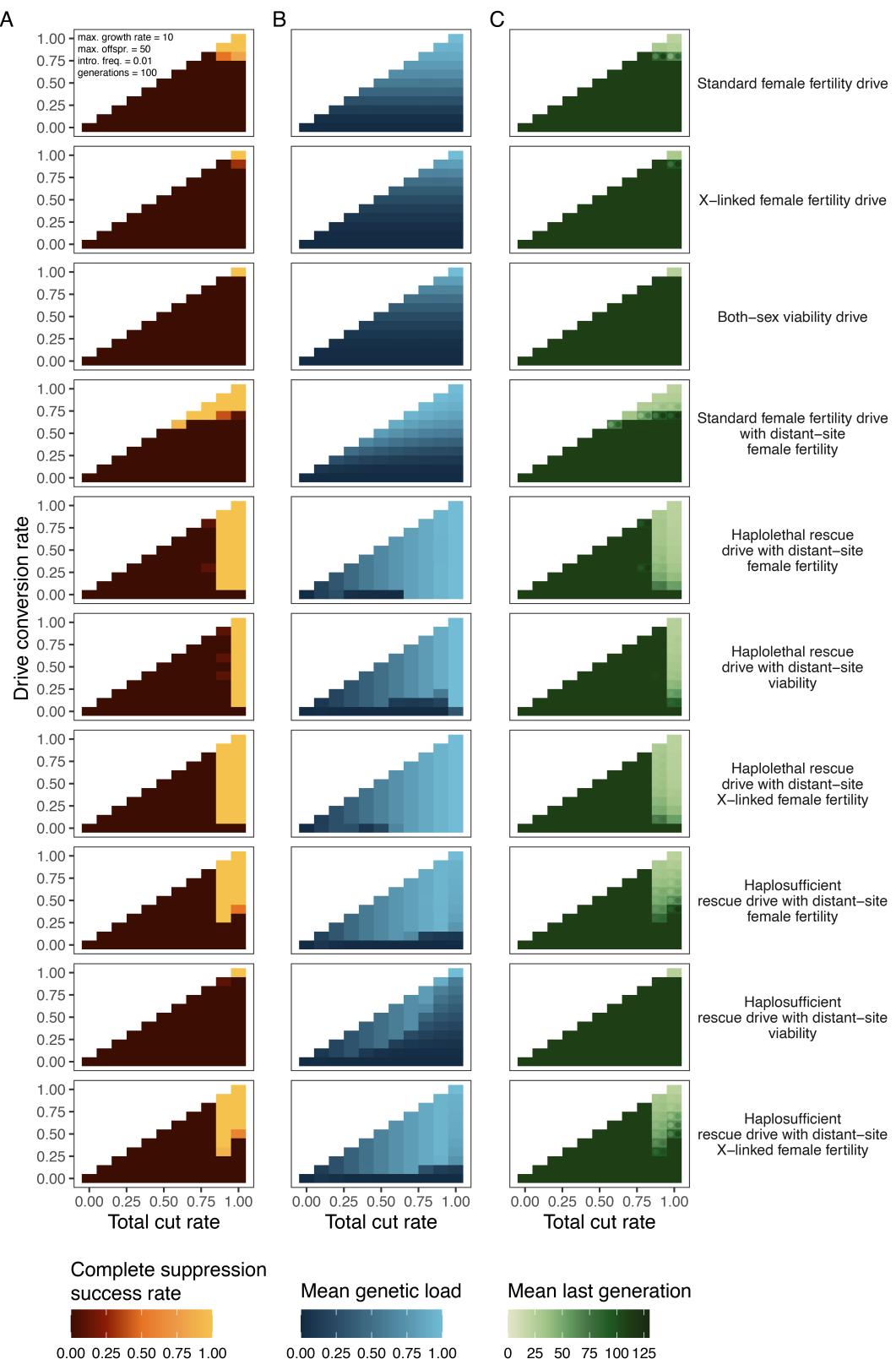

Third, the standard female fertility drive with an extra distant-site female fertility target has an area of complete suppression success where none of the other drives do with lower total cut rate (because cutting at both targets now contributes to genetic load), though the drive conversion rate still needs to be relatively high for success. This drive always performs worse with higher total cut rate if the drive conversion rate is fixed.

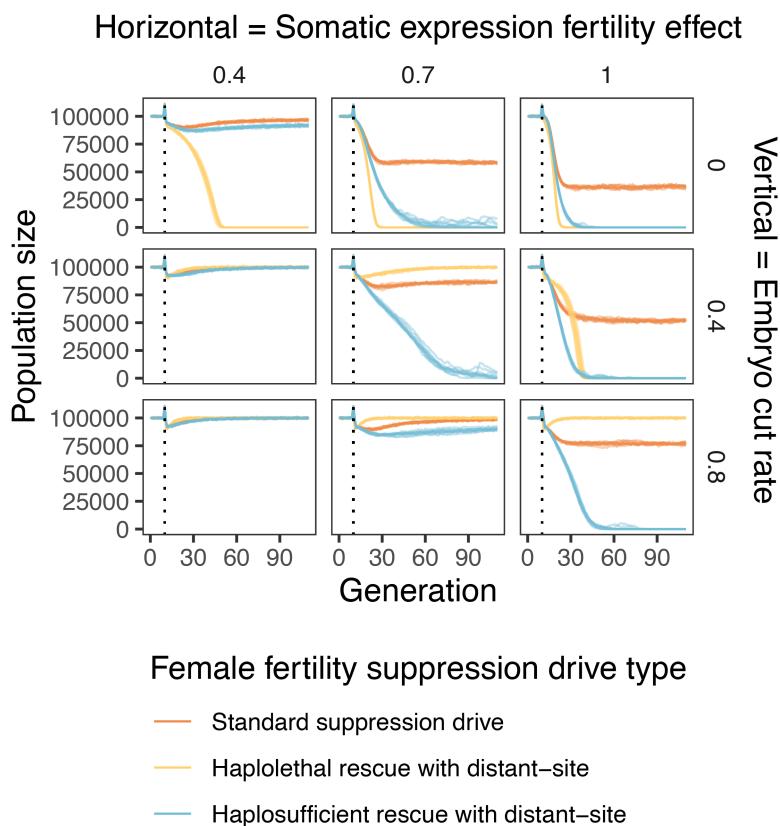
We further show that the two-target drives that target female fertility are more robust against embryo cutting and somatic expression fitness costs than their standard drive counterparts (Figure S7), although it must be noted that some drives (including the standard X-linked drive and standard viability drive) are already unable to achieve any genetic load under the chosen parameters.

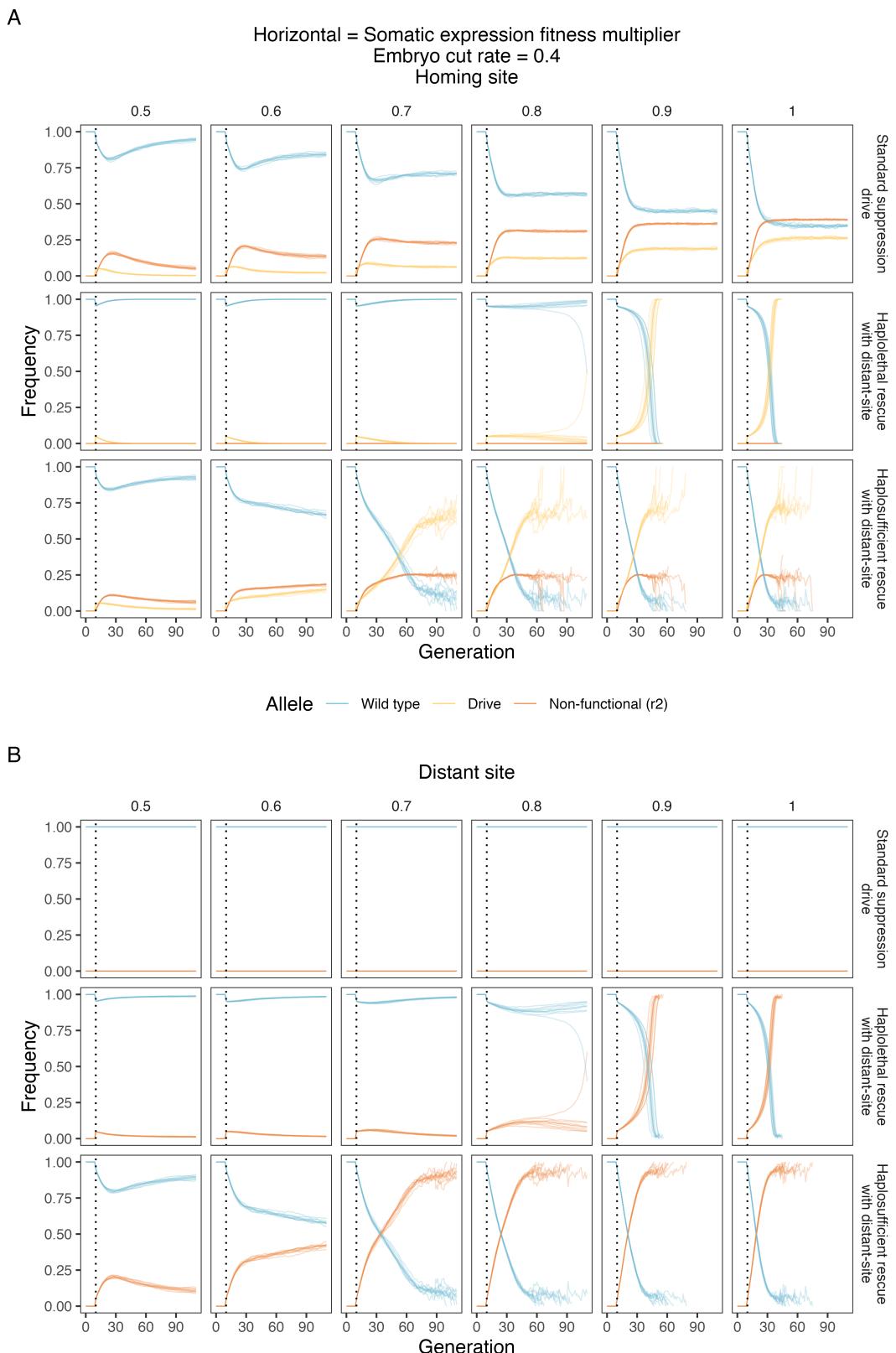

Modelling functional resistance, we show that two drives appear superior to all others, still achieving complete population suppression in most replicates: the haplolethal rescue drive with distant site female fertility target, and the same drive with an X-linked fertility target (Figure S10 and S11). Though some of the modelled drives are unable to achieve complete population suppression even in the absence of functional resistance alleles, we show that the two-target drives are consistently better than their single-target counterparts drives targeting the same gene in preventing functional resistance alleles from rescuing the population.

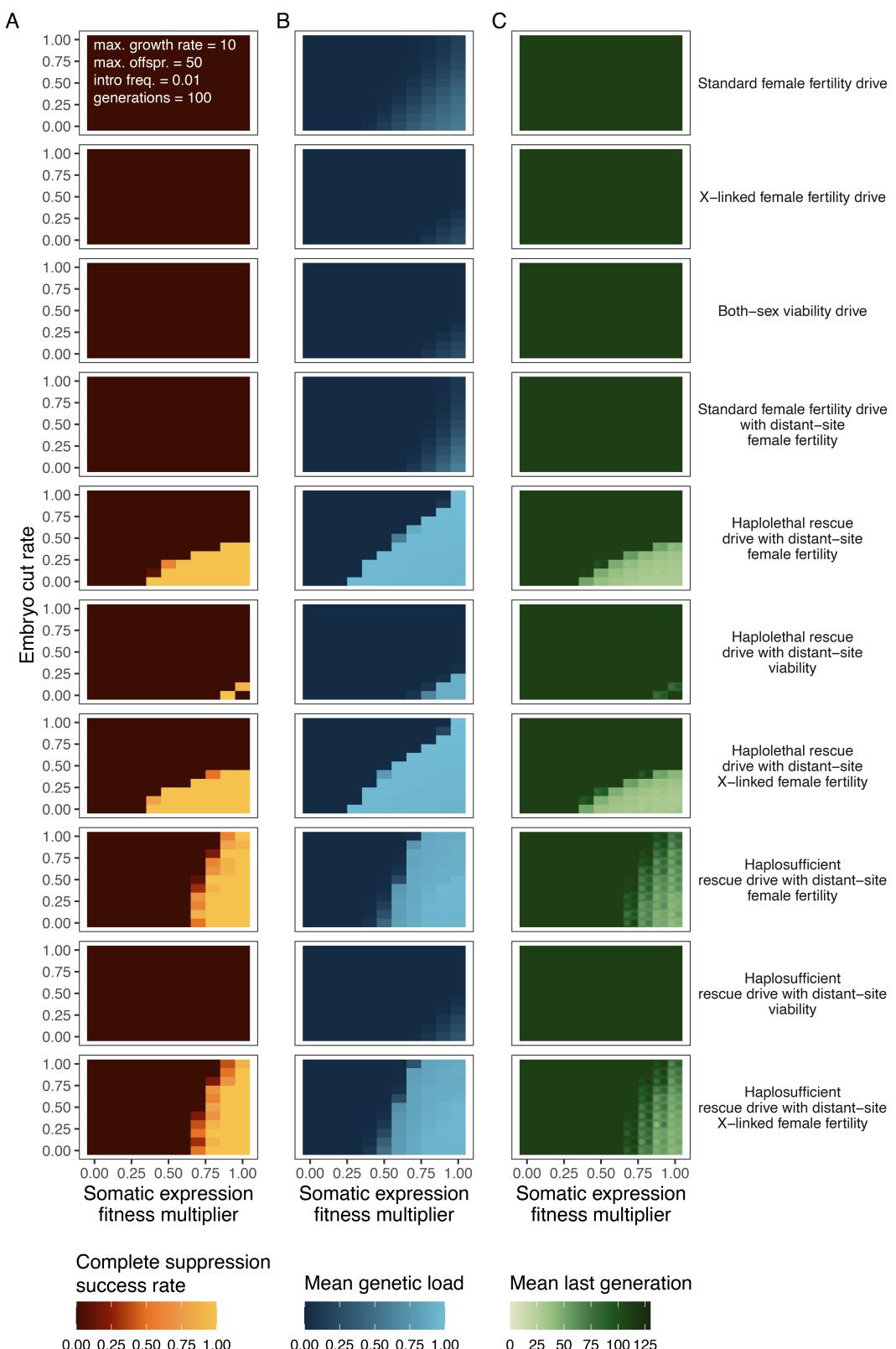
Finally, we find that all two-target drives are similarly impacted by gRNA saturation (Figure S14), with the notable exception of the haplosufficient rescue drive with a distant-site viability target. This drive benefits most from the conversion rate being close to the cut rate (Figure S4), so gRNA saturation can benefit the drive in some cases. For the same reason, though most drives show a higher genetic load with a higher cut rate, the standard female fertility drive with distant-site female fertility target shows a somewhat reversed trend.

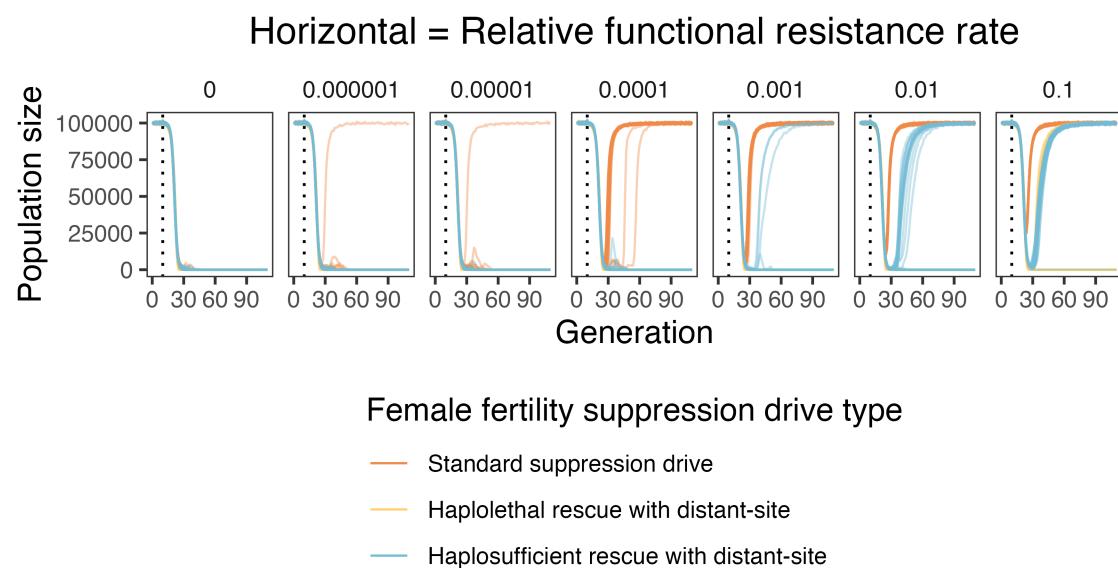

C. Supplementary figures.

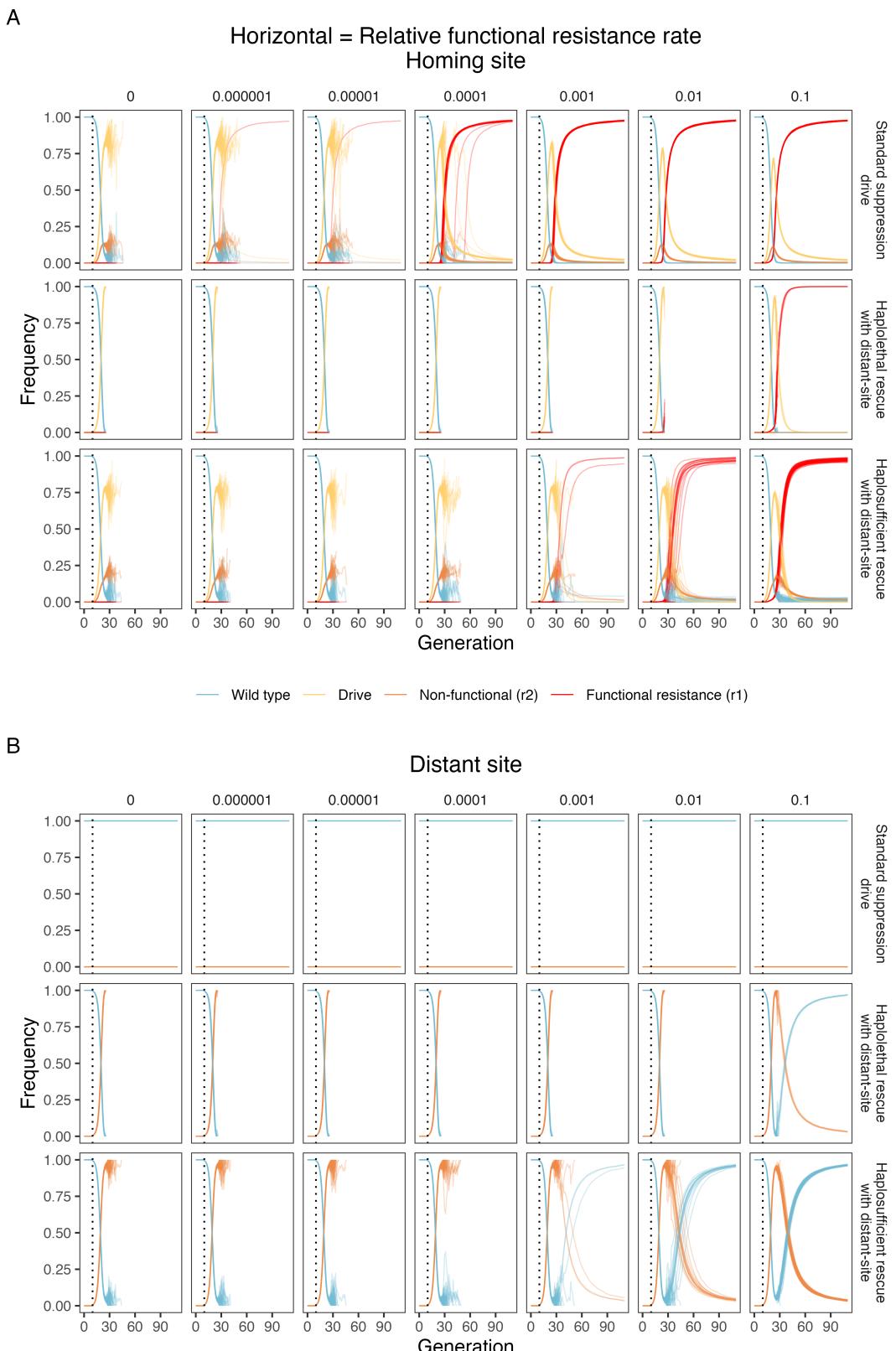

Figure S1. Example allele frequency trajectories. **A)** homing site and **B)** distant site allele frequencies under a conversion rate of 0.6 and varying total cut rate. The gene drive is introduced after generation 10 (the dotted line). The introduction frequency of gene drive heterozygotes is 0.01, and the total population size is 100,000. Note that both drive conversion rate and total cut rate are absolute rates, so the drive conversion rate can never be higher than the total cut rate. For each combination of parameters, we ran 10 model repetitions for each drive.

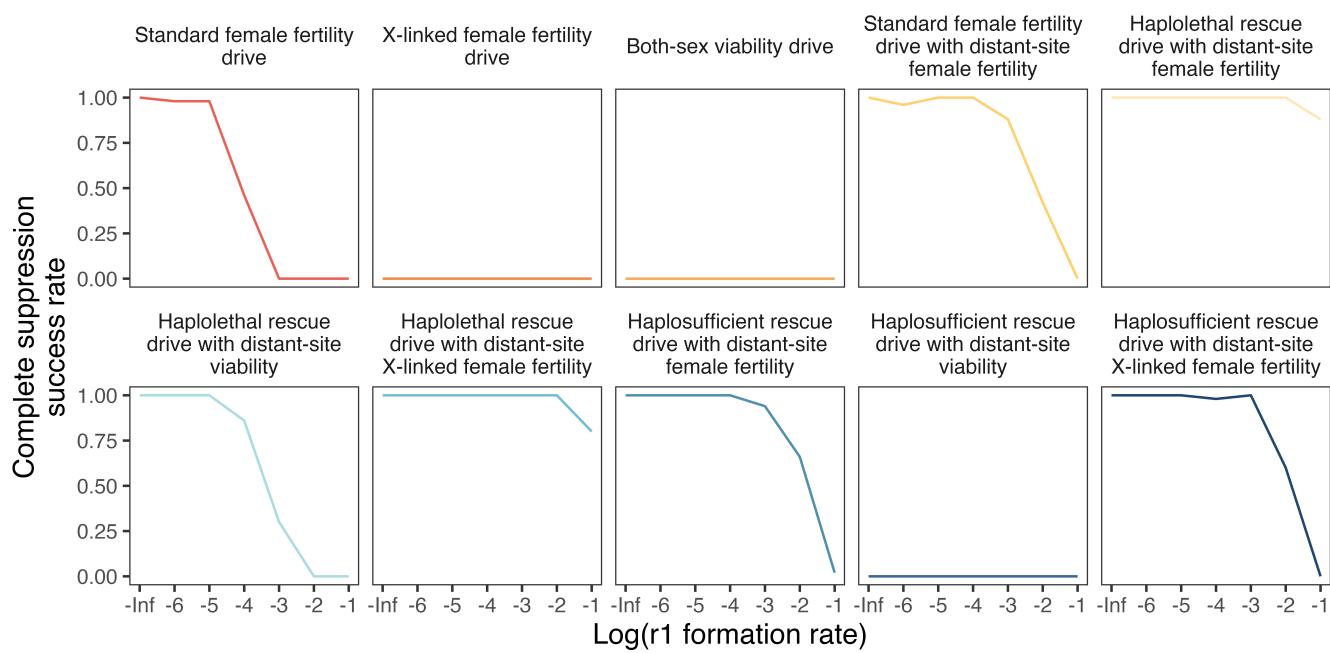

Figure S2. Population suppression under varying cut rates. Population size under a conversion rate of 0.6 and varying cut rates. The gene drive is introduced after generation 10 (the dotted line). The introduction frequency of gene drive heterozygotes is 0.01, and the total population size is 100,000. Note that both drive conversion rate and total cut rate are absolute rates, so the drive conversion rate can never be higher than the total cut rate. For each combination of parameters, we ran 10 model repetitions for each drive.

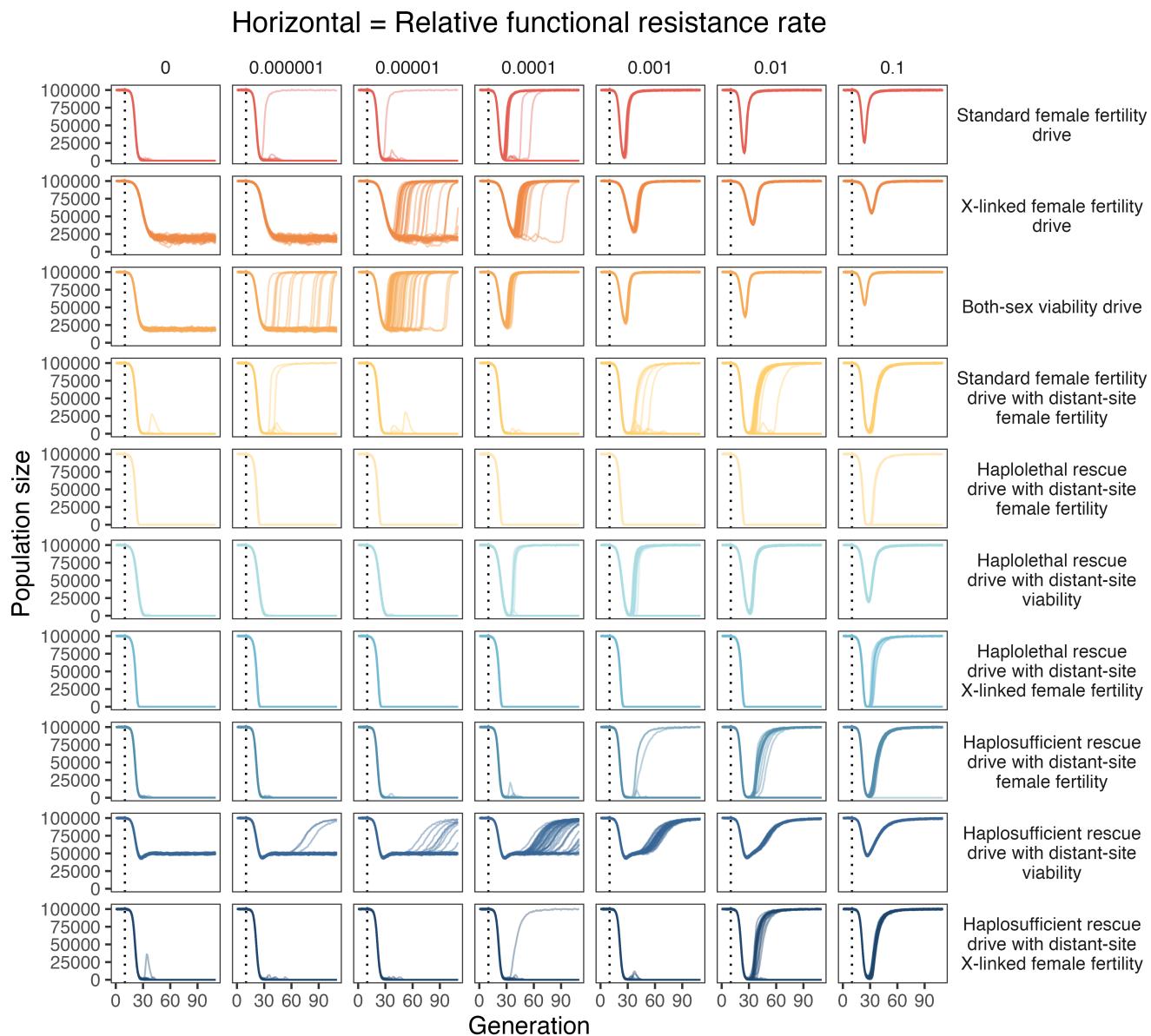

Figure S3. Example allele frequency trajectories. **A)** homing site and **B)** distant site allele frequencies under a conversion rate of 0.3 and varying total cut rate. The gene drive is introduced after generation 10 (the dotted line). The introduction frequency of gene drive heterozygotes is 0.01, and the total population size is 100,000. Note that both drive conversion rate and total cut rate are absolute rates, so the drive conversion rate can never be higher than the total cut rate. For each combination of parameters, we ran 10 model repetitions for each drive.

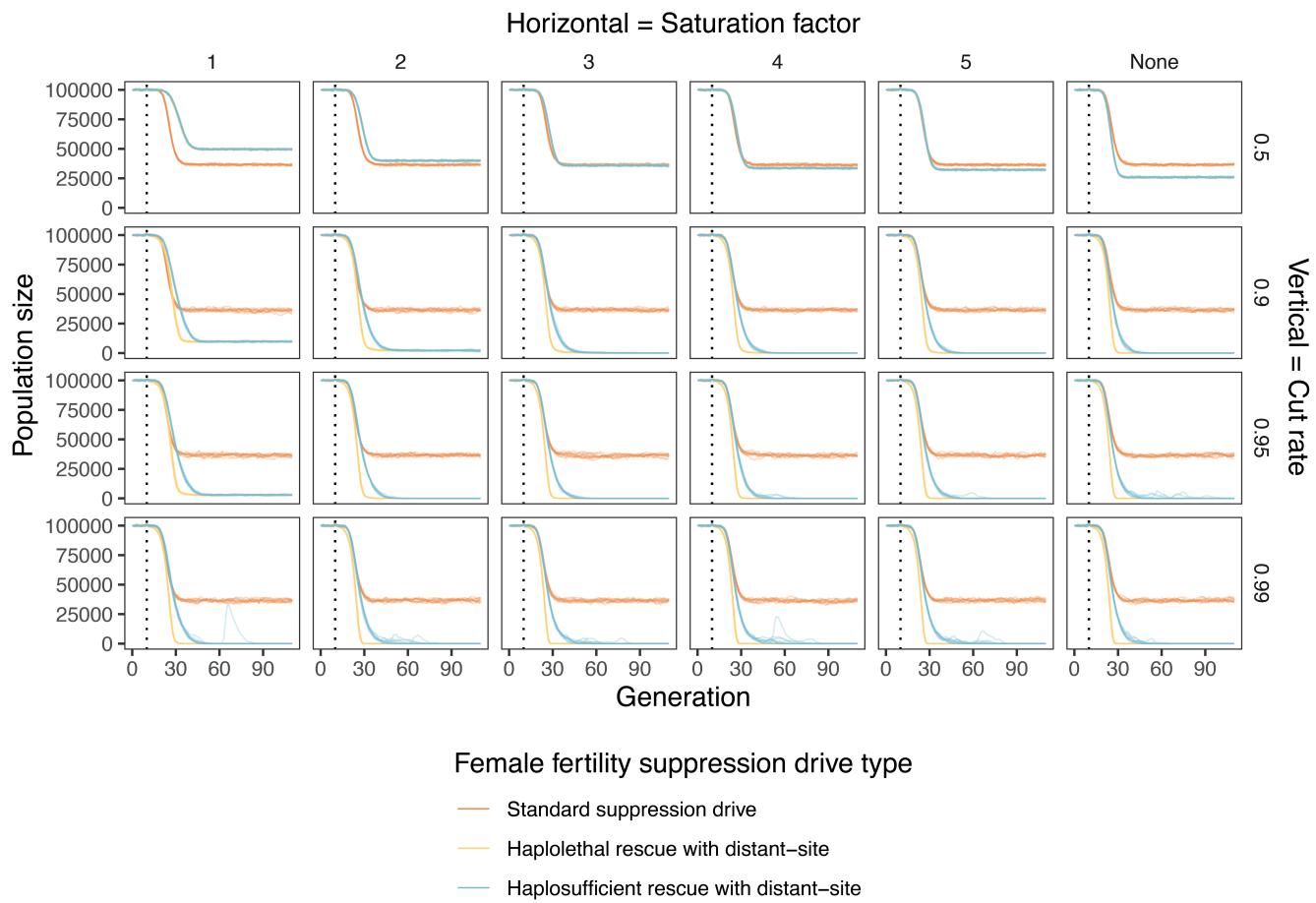

Figure S4. Drive performance heatmaps for additional drive variants. **A)** Population elimination success rate, **B)** mean genetic load, and **C)** number of generations before population elimination for all ten gene drive types under various cut and conversion rates. In **C**, the coloured circles in the heatmap show the 95% confidence interval around the mean. The complete suppression success rate is calculated as the number of repetitions in which complete suppression occurs divided by the total number of repetitions. Because the model stops at 111 generations, a last generation of 111 means that suppression was not successful. For each combination of parameters, we ran 10 model repetitions.

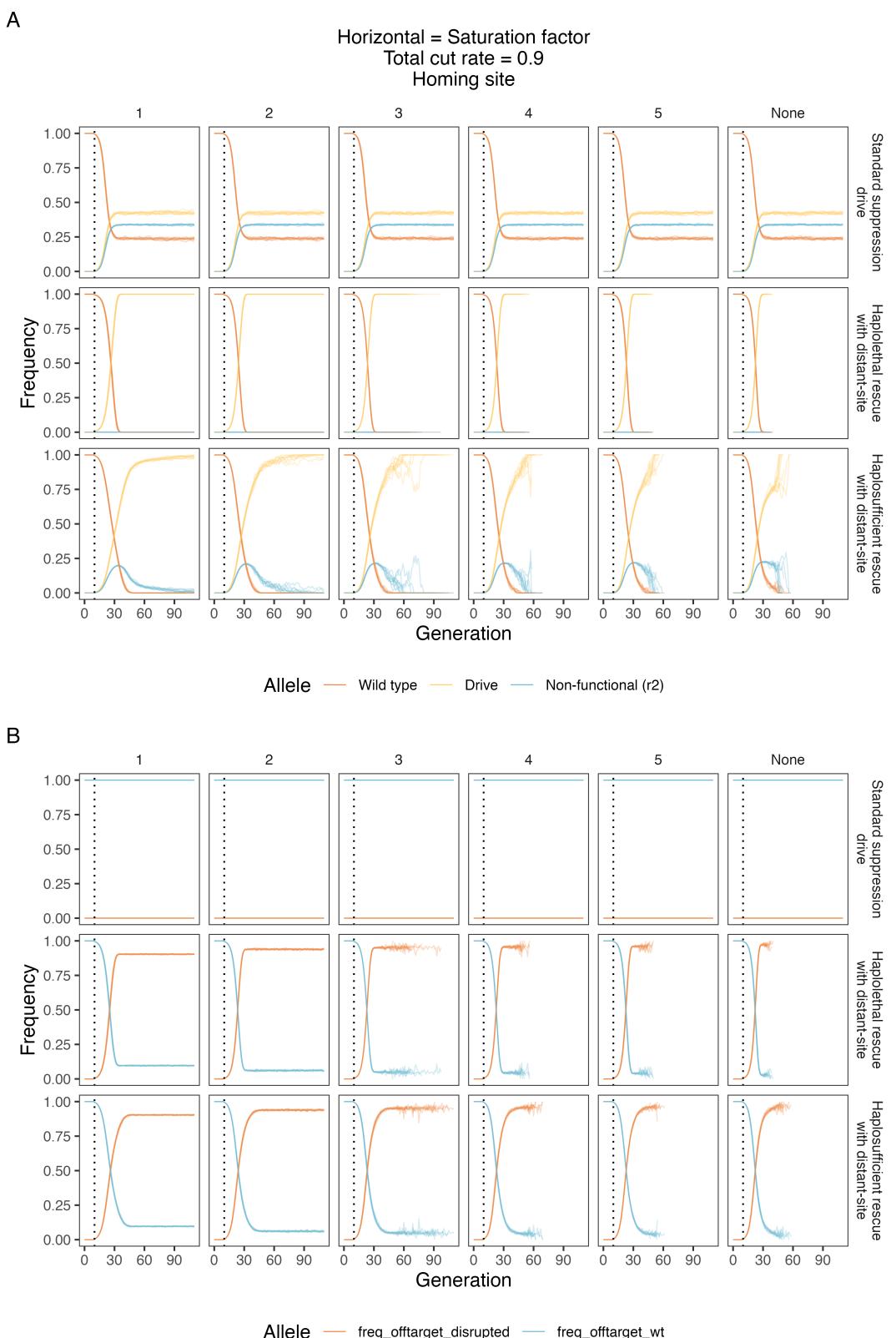

Figure S5. Population trajectories under variable somatic and embryonic drive activity. female fitness in drive heterozygotes from somatic expression fertility effects and variable embryo cut rates in the progeny of drive females. The gene drive is introduced after generation 10 (the dotted line), and the model is run for a further 100 generations. The introduction frequency of gene drive heterozygotes is 0.01, and the total population capacity is 100,000. The total cut rate is fixed to 0.9, and the drive conversion rate is 0.5. For the somatic expression fertility effect, 1 means there is no reduction in fertility, and 0 means females are completely sterile when the gene drive is present. For each combination of parameters, we ran 10 model repetitions.

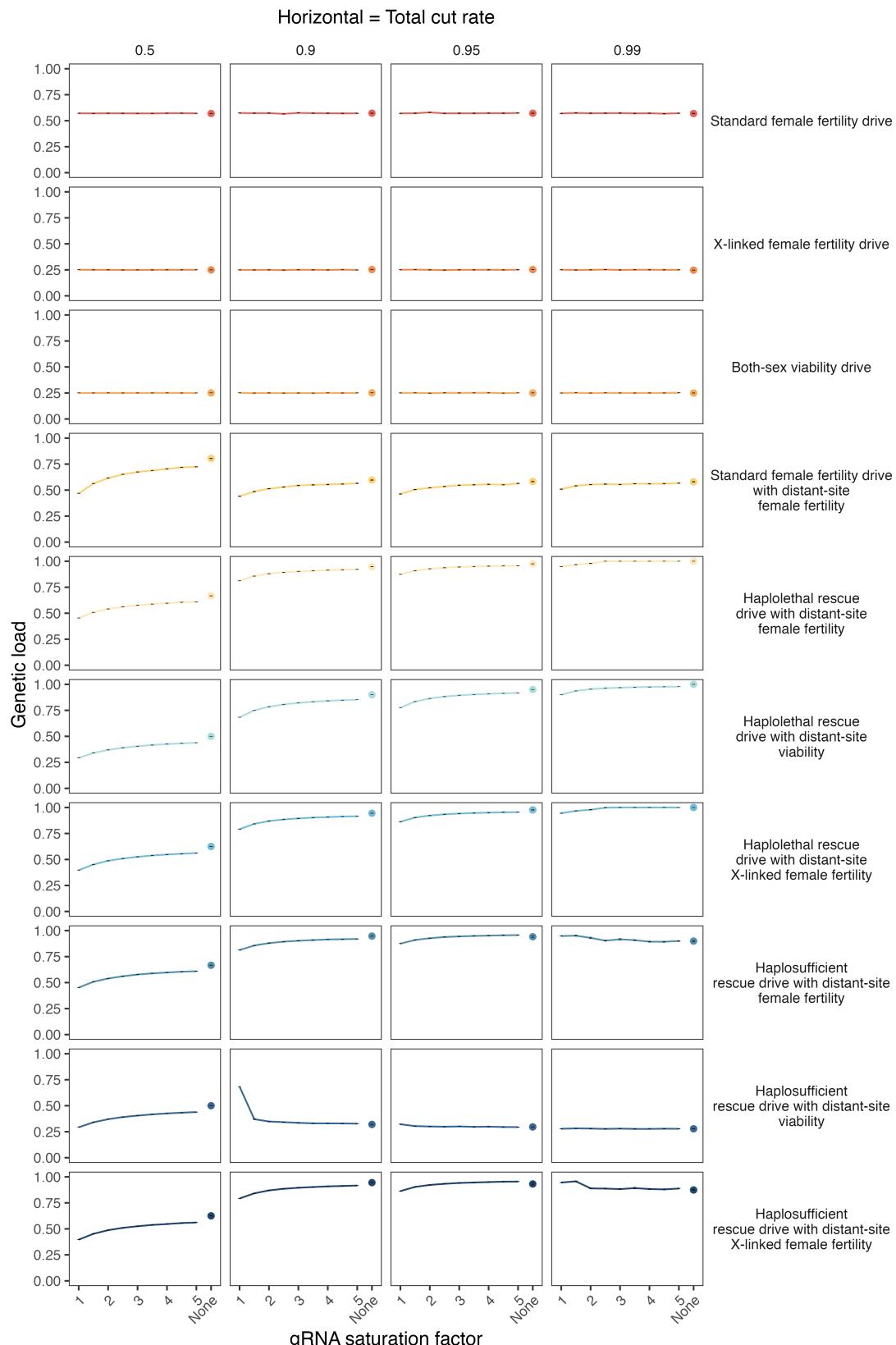

Figure S6. Example allele frequency trajectories. **A)** homing site and **B)** distant site allele frequencies under an embryo cut rate of 0.4 and varying somatic expression fitness multipliers. The gene drive is introduced after generation 10 (the dotted line). The introduction frequency of gene drive heterozygotes is 0.01, and the total population size is 100,000. For each combination of parameters, we ran 10 model repetitions for each drive.


Figure S7. Drive performance heatmaps for additional drive variants. **A)** Population elimination success rate, **B)** mean genetic load, and **C)** number of generations before population elimination for all ten gene drive types under various embryo cut rates and somatic expression multipliers. In **C**, the coloured circles in the heatmap show the 95% confidence interval around the mean. The complete suppression success rate is calculated as the number of repetitions in which complete suppression occurs divided by the total number of repetitions. Because the model stops at 111 generations, a last generation of 111 means that suppression was not successful. For each combination of parameters, we ran 10 model repetitions.


Figure S8. Example population trajectories under varying relative functional resistance rates. Population suppression with varying functional resistance rates. The gene drive is introduced after generation 10 (the dotted line). The introduction frequency of gene drive heterozygotes is 0.01, and the total population size is 100,000. For each combination of parameters, we ran 50 model repetitions for each drive.


Figure S9. Example allele frequency trajectories. **A)** homing site and **B)** distant site allele frequencies under varying functional resistance rates. The gene drive is introduced after generation 10 (the dotted line). The introduction frequency of gene drive heterozygotes is 0.01, and the total population size is 100,000. For each combination of parameters, we ran 50 model repetitions for each drive.


Figure S10. Impact of functional resistance alleles on drive performance. Complete suppression success rate under various functional resistance allele formation rates. The r_1 formation rate is the relative rate of resistance alleles that are functional, rather than nonfunctional r_2 alleles. The model is run for 100 generations after an introduction of drive heterozygotes at 0.01 frequency into a population of 100,000. We used a total cut rate 1.0, drive conversion rate 0.9, somatic expression female fertility fitness effect of 0.9, and an embryo cut rate of 0.1 in the progeny of female drive carriers. The complete suppression success rate is calculated as the number of repetitions in which complete suppression occurs divided by the total number of repetitions. Because the model stops at 111 generations, a last generation of 111 means that suppression was not successful. For each combination of parameters, we ran 50 model repetitions.


Figure S11. Impact of functional resistance alleles on drive performance. Population suppression with varying functional resistance rates. The r_1 formation rate is the relative rate of resistance alleles that are functional, rather than nonfunctional r_2 alleles. The model is run for 100 generations after an introduction of drive heterozygotes at 0.01 frequency into a population of 100,000. We used a total cut rate 1.0, drive conversion rate 0.9, somatic expression female fertility fitness effect of 0.9, and an embryo cut rate of 0.1 in the progeny of female drive carriers. For each combination of parameters, we ran 50 model repetitions.

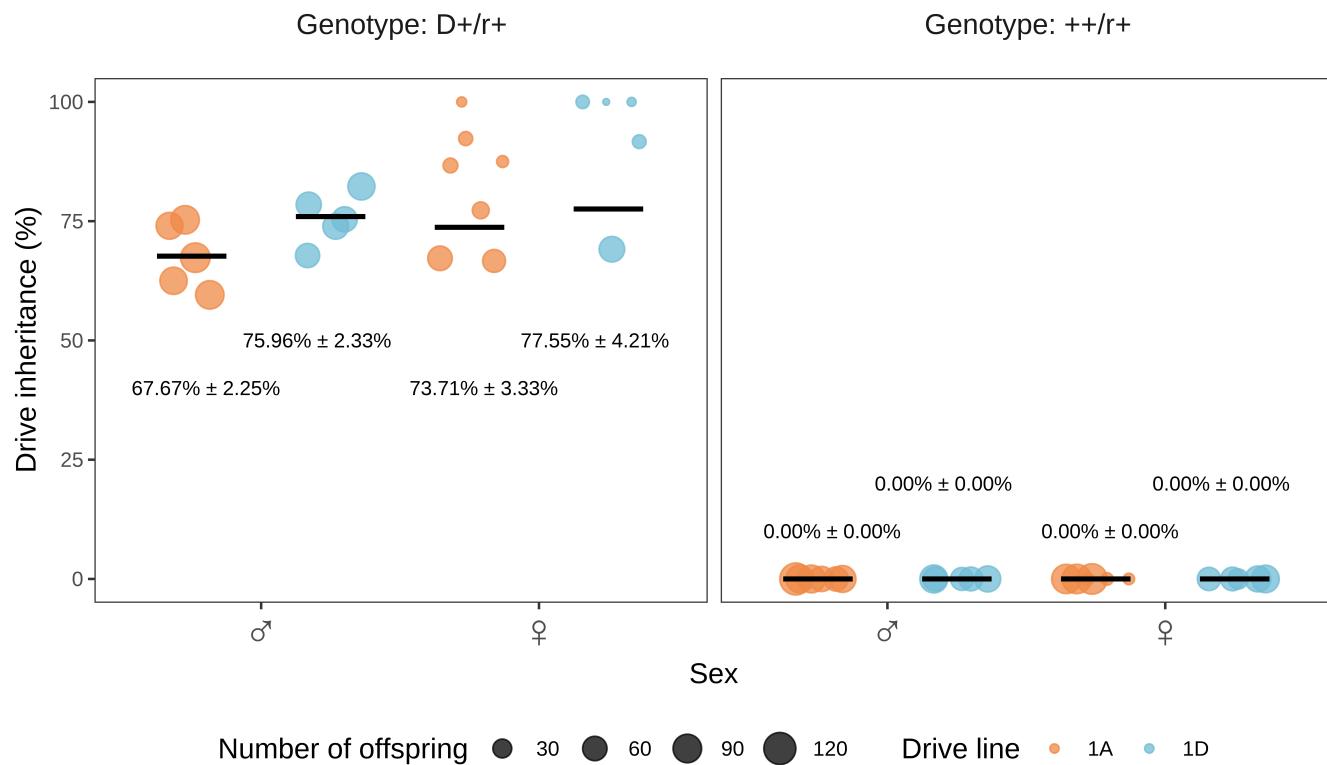

Figure S12. Example population trajectories under varying gRNA saturation factors and total cut rates. The gene drive is introduced after generation 10 (the dotted line). The introduction frequency of gene drive heterozygotes is 0.01, and the total population size is 100,000. We used a drive conversion rate 0.9, somatic expression female fertility fitness effect of 1, and an embryo cut rate of 0 in the progeny of female drive carriers. For each combination of parameters, we ran 10 model repetitions for each drive.

Figure S13. Example allele frequency trajectories. **A**) homing site and **B**) distant site allele frequencies under varying gRNA saturation and total cut rates. The gene drive is introduced after generation 10 (the dotted line). The introduction frequency of gene drive heterozygotes is 0.01, and the total population size is 100,000. We used a drive conversion rate 0.9, somatic expression female fertility fitness effect of 1, and an embryo cut rate of 0 in the progeny of female drive carriers. For each combination of parameters, we ran 10 model repetitions for each drive.

Figure S14. Mean genetic load with variable gRNA saturation factor and total cut rates. The gRNA saturation factor is modelled as relative Cas9 activity with unlimited gRNAs compared to the activity with a single gRNA. We assume that the distant site target gene drives have double the amount of gRNAs compared to a standard suppression drive and that the cut rates are equally reduced at both sites (the two sites are assumed to have the same number of gRNAs). The specified total cut rate is the rate for unlimited gRNA saturation factor. We used a drive conversion rate 0.9, somatic expression female fertility fitness effect of 1, and an embryo cut rate of 0 in the progeny of female drive carriers. For each combination of parameters, we ran 10 model repetitions.

Figure S15. Drive inheritance rates of fertility experiment. The drive inheritance rate indicates the percentage of offspring with EGFP fluorescence from the cross between drive heterozygotes and Cas9 homozygotes with w1118 flies (without drive and Cas9). The size of each dot represents the total number of offspring.