

1 **Mycorrhizal fungi modulate tree diversity effects on nutrient
2 dynamics**

3 Elisabeth Bönnisch^{1,2}, Evgenia Blagodatskaya³, Rodolfo Dirzo⁴, Olga Ferlian^{1,2}, Andreas
4 Fichtner⁵, Yuanyuan Huang^{1,2}, Samuel J. Leonard⁴, Fernando T. Maestre^{6,7}, Goddert von
5 Oheimb⁸, Tama Ray^{1,8,9}, Nico Eisenhauer^{1,2}

6
7

8 ¹ German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103
9 Leipzig, Germany; ² Institute of Biology, Leipzig University, Leipzig, Germany; ³ Helmholtz-Centre for
10 Environmental Research (UFZ) Soil Ecology Department, Theodor-Lieser-Str. 11, 06120 Halle,
11 Germany UFZ; ⁴ Departments of Biology and Earth Systems Science, Stanford University, Stanford,
12 CA, USA 94305; ⁵ Institute of Ecology, Leuphana University of Lüneburg, Universitätsallee 1, 21335
13 Lüneburg, Germany; ⁶ Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef”,
14 Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, Alicante, Spain; ⁷ Departamento
15 de Ecología, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, Alicante, Spain; ⁸
16 Institute of General Ecology and Environmental Protection, TU Dresden University of Technology,
17 Pienner Straße 7, 01737 Tharandt, Germany; ⁹ Institute of Biology/Geobotany and Botanical Garden,
18 Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany

19

20 Author for correspondence:

21 *Elisabeth Bönnisch*

22 Tel: +49 341 9733185

23 Email: elisabeth.boenisch@idiv.de

24

Total word count (excluding summary, references and legends):	6449	No. of Figures:	4
Summary:	199	No. of Tables:	2
Introduction:	987	No of Supporting Information files:	28 (Fig. S1-S10; Table S1-S18)
Materials and Methods:	2222		
Results:	981		
Discussion:	2166		
Acknowledgements:	93		

25

26 **Summary**

27 Species-specific differences in nutrient acquisition strategies allow for complementary use of
28 resources among plants in mixtures, which may be further shaped by mycorrhizal associations.
29 However, empirical evidence of these relationships is scarce, particularly for tree communities.

30 We investigated the impact of tree species richness and mycorrhizal types, arbuscular
31 mycorrhizal fungi (AM) and ectomycorrhizal fungi (EM), on the above- and belowground
32 carbon (C), nitrogen (N), and phosphorus (P) dynamics.

33 Soil and microbial biomass elemental pools did not strongly respond to tree species richness
34 or mycorrhizal type. Tree species richness increased foliage C and P pools depending on
35 mycorrhizal type. Additive partitioning analyses showed that net biodiversity effects for C, N,
36 P pools in EM tree communities, and N pools in AM tree communities, were driven by selection
37 effects, while mixtures of both mycorrhizal types were influenced by complementarity effects.
38 Furthermore, tree species richness enhanced soil nitrate uptake over two years but had no
39 impact on ammonium and phosphate levels.

40 Our results indicate that positive effects of tree diversity on aboveground nutrient storage are
41 mediated by complementary mycorrhizal strategies. Given the prevalence of anthropogenic
42 impacts on tree species richness globally, these results may have important implications for
43 reforestation of multifunctional forests.

44

45

46 Key words: *diversity effects, mycorrhizal fungi, MyDiv, nutrient dynamics, plant-soil interaction,*
47 *tree species richness*

48

49

50

51

52

53

54

55

56

57 Introduction

58 The positive relationship between biodiversity and ecosystem functions in terrestrial
59 ecosystems (e.g. Cardinale *et al.*, 2007; Morin *et al.*, 2011; Huang *et al.*, 2018) largely depends
60 on plant nutrient availability, uptake, and their spatio-temporal dynamics (Barry *et al.*, 2019).
61 Theory predicts that these effects are substantially driven by dissimilarities in resource
62 acquisition traits (i.e. different rooting systems; (Dornbush & Wilsey, 2010) and resource use
63 strategies of plant species (i.e. conservative vs. acquisitive; Diaz *et al.*, 2004; Barry *et al.*,
64 2019). Diverse species assemblages occupy a greater number of resource niches which
65 reduces competition for limiting nutrients (Loreau & Hector, 2001; Hooper *et al.*, 2005; Ferlian
66 *et al.*, 2018). The complementary use of resources is expected to enhance resource use and
67 net primary productivity of a community (Tilman, 1980).

68 Besides physiological differences between species supporting resource use complementarity
69 (Barry *et al.*, 2019), plants associate with important symbiotic partners – mycorrhizal fungi (van
70 der Heijden *et al.*, 1998). Mycorrhizal fungi support their plant hosts directly by supplying them
71 with water, mineral nutrients, and protecting them against pathogens (Smith & Read, 2008),
72 as well as indirectly by improving biogeochemical soil properties, such as soil structure and pH
73 (Rillig & Mumme, 2006). In return, plants provide the fungi with carbohydrates and lipids
74 (Luginbuehl *et al.*, 2017). Trees predominantly associate with either arbuscular mycorrhizal
75 fungi (AM) or ectomycorrhizal fungi (EM) or both, and these two mycorrhizal types can have
76 different effects on resource uptake processes (Bonfante & Genre, 2010; Ferlian *et al.*, 2021).
77 AM fungi strongly support the provision of phosphorus to plants (Smith & Smith, 2011) via
78 resource acquisitive traits, characterized by fast biochemical cycling, rapid growth of the host
79 plant (Powell & Rillig, 2018), and nutrient-rich soils, foliage and litter (Phillips *et al.*, 2013; Deng
80 *et al.*, 2023). EM fungi enhance the availability and uptake of organic nutrients, mainly organic
81 nitrogen (van der Heijden *et al.*, 1998) to plants by directly promoting the decomposition of
82 organic matter through the exudation of extracellular enzymes (Diaz *et al.*, 2004; Lambers *et*
83 *al.*, 2009; Phillips *et al.*, 2013). However, this favors a competitive condition between EM and
84 free-living decomposers in soil, slowing down decomposition of plant litter (Averill & Hawkes,
85 2016) thereby promoting carbon accumulation in soils (Orwin *et al.*, 2011; Averill & Hawkes,
86 2016). This slow cycling system (conservative resource use strategy) is characterized by slow
87 growth and slow foraging roots of host plants, poor quality foliage and litter (Cornelissen *et al.*,
88 2001; Midgley & Phillips, 2014; Averill & Hawkes, 2016; Eskelinen *et al.*, 2020). Thus, the
89 presence of two distinct mycorrhizal types, characterized by dissimilar resource uptake
90 strategies and traits, is expected to enhance resource complementarity (Cheng *et al.*, 2016)
91 among their associated plant hosts and alter above- and belowground elemental contents and
92 pools (Ferlian *et al.*, 2018; Eisenhauer *et al.*, 2022).

93 Mycorrhizal fungi, as well as plant diversity, affect overall soil microbial communities. Studies
94 confirmed the positive effect of tree species richness on diversity and composition of soil
95 microbes (Bardgett & van der Putten, 2014; Deng *et al.*, 2023), signaling that resource
96 complementarity between different tree species plays a crucial part (Singavarapu *et al.*, 2021).
97 Due to their distinct functional roles, mycorrhizal fungi strongly affect other soil microbes
98 (Powell & Rillig, 2018). For example, high-quality litter (low carbon-to-nitrogen ratio) of AM
99 trees generally enhances microbial activity and release of macronutrients in soil (Aislabie &
100 Deslippe, 2013; Bardgett & van der Putten, 2014), while the low-quality litter of EM trees
101 triggers competition for nutrients between the fungi and other microbial decomposers (Averill
102 *et al.*, 2014; Averill & Hawkes, 2016).

103 While resource complementarity is expected to play a significant role in space, via the
104 occupation of different nutrient niches in soil by roots, mycorrhizal hyphae, and other microbial
105 communities, nutrient availability is also highly dynamic in time (Eisenhauer *et al.*, 2022).
106 Availability of nutrients is strongly affected by seasonal changes of environmental factors, such
107 as temperature, precipitation, and soil moisture (Niklaus *et al.*, 2001; Scherer-Lorenzen *et al.*,
108 2003; Oelmann *et al.*, 2007). This is caused by the dependency of soil microorganism activity
109 on suitable climatic conditions (Kuzyakov & Blagodatskaya, 2015; Baldrian, 2017). Therefore,
110 mycorrhizal fungi also exhibit a distinct seasonality (Keller & Phillips, 2018), which may further
111 affect their ability to supply their plant hosts with nutrients. Moreover, both mycorrhizal
112 strategies may complement each other over time and therefore enhance total nutrient uptake.
113 However, direct effects of mycorrhizal types and tree species richness on the seasonal
114 availability of nutrients have not been studied yet.

115 Here we aim to shed light on the patterns of nutrient dynamics mediated by mycorrhizal type
116 and tree species richness. The research was conducted within the tree diversity experiment
117 MyDiv, which manipulates both tree species richness and mycorrhizal strategy (Ferlian *et al.*,
118 2018). Knowledge of spatial and temporal nutrient dynamics may improve our understanding
119 of the underlying mechanism driving positive diversity effects. This motivated us to test the
120 following hypotheses:

121 **H 1** Both species-rich and tree communities with mixed mycorrhizal types (AM+EM) will have
122 higher carbon (C), nitrogen (N), and phosphorus (P) contents in soil, soil microbial biomass,
123 and foliage. Consequently, these tree communities will have the largest elemental pools.

124 **H 2** Communities with increased tree species richness and mixed mycorrhizal strategies will
125 enhance resource exploitation from soils and therefore show lower contents of plant-available
126 soil nutrients. These effects will be more pronounced during the growing season and under
127 favorable microclimatic conditions, such as increased soil moisture.

128 **H 3** We expect positive effects of high tree species richness and mixed mycorrhizal types
129 (AM+EM) on aboveground elemental pools to be explained by higher complementarity
130 between tree species and mycorrhizal types.

131 To test these hypotheses, we characterized the predominantly dynamic above- and
132 belowground chemical properties (soil, soil microbial biomass, and foliage carbon (C), nitrogen
133 (N), and phosphorus (P) contents and respective pools) and temporal availability of the
134 nutrients nitrate ($\text{NO}_3\text{-N}$), ammonium ($\text{NH}_4\text{-N}$), and phosphate ($\text{PO}_4\text{-P}$) in the soil for two years.

135 **Materials and Methods**

136 **Study site and experimental design**

137 MyDiv is a long-term tree diversity experiment, located in Bad Lauchstädt (Saxony-Anhalt,
138 Germany). This experiment is run by the German Center of Biodiversity Research (iDiv), Halle-
139 Jena-Leipzig and Helmholtz Center for Environmental Research (UFZ) is part of TreeDivNet
140 (www.treedivnet.ugent.be). The experiment was established in March 2015 on former arable
141 land having a nutrient- and humus-rich Chernozem soil that is rich in N, but limited in P (Ferlian
142 *et al.*, 2018). The experimental site is divided into two blocks according to a gradient in abiotic
143 parameters determined before the establishment (Ferlian *et al.*, 2018). The experiment
144 consists of 80 plots in total. Each of the 11 m x 11 m plots is divided into a buffer zone and a
145 core zone (64 m²) and covered by a weed tarp. Per plot, 140 two-year old tree saplings were
146 planted with 1 m distance from each other (64 trees in the core zone). The species pool
147 contains 10 deciduous tree species, five of which associate predominantly with AM and five
148 with EM fungi (Table 1). The selected deciduous tree species are native to Germany, adapted
149 to the site conditions, and are of either economical or recreational relevance (Ferlian *et al.*,
150 2018). Further, only one species per genus was selected to have representative species widely
151 spread across the angiosperm phylogeny (Ferlian *et al.*, 2018). However, based on these
152 selection criteria, we could not avoid that four of the five EM species belong to the order
153 Fagales. The experiment combines three levels of tree species richness (monocultures, two-
154 species mixtures, and four-species mixtures) with three levels of mycorrhization, either AM,
155 EM, or a mixture of both (plot-specific details on experimental design can be found in
156 Supporting Information Table S1). The treatments of the experiment were confirmed by DNA-
157 sequencing and determining mycorrhization rates, indeed demonstrating that AM trees had
158 substantially higher mycorrhization rates by arbuscular mycorrhizal fungi than by
159 ectomycorrhizal fungi, whereas the opposite pattern was found for EM trees (Table S1 in
160 Ferlian *et al.* 2021). Furthermore, AM and EM richness significantly increased with tree species
161 richness (Ferlian *et al.*, 2021).

162 Table 1 Overview of tree species used in the MyDiv experiment with their respective mycorrhizal
163 association (arbuscular mycorrhizal fungi, AM; ectomycorrhizal fungi, EM). For details, see Ferlian *et al.*
164 (2018).

Species	Family	Mycorrhizal association
<i>Acer pseudoplatanus</i> L.	Sapindaceae	AM
<i>Aesculus hippocastanum</i> L.	Sapindaceae	AM
<i>Fraxinus excelsior</i> L.	Oleaceae	AM
<i>Prunus avium</i> L.	Rosaceae	AM
<i>Sorbus aucuparia</i> L.	Rosaceae	AM
<i>Betula pendula</i> Roth	Betulaceae	EM
<i>Carpinus betulus</i> L.	Betulaceae	EM
<i>Fagus sylvatica</i> L.	Fagaceae	EM
<i>Quercus petraea</i> (Matt.) Liebl.	Fagaceae	EM
<i>Tilia platyphyllos</i> Scop.	Malvaceae	EM

165

166 **Data collection**

167 **Soil physico-chemical measurements**

168 Soil samples for the measurement of soil bulk density (g cm^{-3}) were collected with a 5 cm
169 diameter soil corer to a depth of 5 cm in May 2021. The samples were air dried, weighted, and
170 the core volume calculated. The bulk density was then calculated as the dry weight of soil
171 divided by its volume. Soil samples for the analyses of soil pH were taken with 5 cm soil corers
172 to 10 cm soil depth in October 2021. Four cores were taken per plot, where all tree species
173 were equally represented as neighbors, and finally pooled to one composite sample per plot.
174 Plant material and stones were removed by sieving (2 mm mesh). For pH measurements, soil
175 samples were solved in 25 ml CaCl_2 -solution (0.01 mol l^{-1}), stirred, left for one hour, stirred
176 again, and measured with the probe.

177 For the assessment of soil C, N, and P contents (g kg^{-1}), samples were taken with 5 cm soil
178 corers to 10 cm depth in October 2021. This approach is in line with common soil biodiversity
179 and function monitoring approaches (e.g. Guerra *et al.*, 2021a,b) and based on the biological
180 activity of plants and animals which is highest in the first 5-10 centimeters of the soil and
181 decreases with deeper layers (e.g. Stone *et al.*, 2014; Weldmichael *et al.*, 2020). Four cores
182 were taken per plot, where all tree species were equally represented as neighbors, and finally

183 pooled to one composite sample per plot. Plant material and stones were removed by sieving
184 (2 mm mesh). For analysis of total C, N, and P, samples were dried at 60 °C, ground to fine
185 powder with a ball mill (MM 400, Retsch, Haan, Germany). For C and N analysis, samples
186 were dried for another 24 h, and transferred into tin capsules. Analyses were conducted using
187 an elemental analyzer (VarioMax, Elementar Analysensysteme GmbH, Langenselbold). The
188 analysis of P was conducted by dissolving an aliquot of 500 mg ground soil using microwave
189 digestion at 200°C for 30 minutes (5 ml HNO₃ and 0.5 ml H₂O₂ to avoid production of nitric
190 oxides; Multiwave, Anton Paar GmbH, Graz, Austria). Measurements were carried out with an
191 inductively coupled plasma optical emission spectrometer (wavelength: 177.5 nm; limit of
192 determination: 0.13 mg l⁻¹; Arcos, Spectro Analytical Instruments GmbH, Kleve, Germany).

193 ***Soil microbial C, N, and P measurements***

194 For the analysis of microbial C, N, P contents (µg g⁻¹), soil samples (same pooled samples as
195 for soil C, N, and P analyses) were kept at 4°C and analyzed within three days after sampling
196 by chloroform-fumigation-extraction method (CFE) using 0.05 M K₂SO₄ extracts and a
197 conversion factor (K_p) of 0.45 for C and 0.54 for N (Brookes *et al.*, 1985; Wu *et al.*, 1990).
198 Microbial P content was determined by direct fumigation and anion exchange membrane
199 techniques (Yevdokimov *et al.*, 2016) with conversion factor 0.40 (Brookes *et al.*, 1985). We
200 also tested the calculation of a conversion factor according to the soil properties (Bilyera *et al.*,
201 2018), and confirmed that the K_p values for P did not differ significantly from 0.40 for the soils
202 used in our study.

203 ***Time series of available soil N and P***

204 To assess the intra-annual and inter-annual variation, as well as seasonal differences in soil
205 nitrate (NO₃-N), ammonium (NH₄-N), and phosphate (PO₄-P), we inserted ionic exchange
206 membranes (IEM) each month. IEMs are a valid replacement of traditional methods to measure
207 in situ nutrient availability (measured as µg cm⁻² day⁻¹) for plants in soil. Experimental studies
208 show that ion contents obtained by IEMs correlate with plant uptake of such ions (Ziadi *et al.*,
209 1999; Qian & Schoenau, 2002; Durán *et al.*, 2013). For two years (April 2019 to March 2021),
210 cationic and anionic IEMs were inserted into the soil at 10 cm depth and replicated five times
211 in a transect of 1 m per plot each month. After incubation for one month, the IEMs were dried
212 at room temperature and cleaned. Further processing of the samples was conducted according
213 to (Rodríguez *et al.*, 2009; Durán *et al.*, 2013). To assess daily contents of plant-available
214 nutrients, the measured nutrient contents were divided by the days of incubation.

215 ***Foliage C, N, and P measurement***

216 For the analysis of foliar C, N, and P contents (g kg^{-1}), fresh leaves of all tree species were
217 sampled in July 2021. Nine leaves from three different tree individuals per plot and tree species
218 were sampled at a tree height of approximately 2.5 m. The leaves were dried at 40 °C in the
219 drying oven for 24 h and ground with a ball mill (MM 400, Retsch, Haan, Germany). For C and
220 N analyses, samples were transferred into tin capsules and analyzed using an elemental
221 analyzer (Vario EL cube; Elementar Analysensysteme GmbH, Langenselbold). The analysis
222 of foliage P was conducted the same way as for the soil samples.

223 ***Environmental data***

224 Environmental data (soil moisture (%) and soil temperature (°C) in 10 cm depth; air
225 temperature (°C), air humidity (%)), were measured with three weather stations (mean value
226 used) at the MyDiv experimental site (Meteorological data of Bad Lauchstädt, Helmholtz
227 Centre for Environmental Research (UFZ), Department of Soil System Science). Therefore,
228 only site-specific data were available in 2021, but not plot specific data.

229 **Calculations**

230 ***Soil, soil microbial, and foliage pools***

231 For each plot, soil nutrient pools (g m^{-2}) and soil microbial biomass nutrient pools (g m^{-2}) were
232 calculated as the products of total C, N, and P and soil bulk density (g cm^{-3}) (Rochow, 1975).
233 Community foliage elemental pools (per plot) were derived by multiplying foliage elemental
234 contents (g kg^{-1}) with an index that captures the spatial structural complexity of biomass
235 distribution within a stand (Stand Structural Complexity Index, SSCI; (Ehbrecht *et al.*, 2017),
236 since data on individual leaf biomass or Leaf Area Index (LAI) were not available. The SSCI is
237 based on terrestrial laser scanning data, which were collected in September 2021 at the study
238 site (see Ray *et al.*, 2023). Here, we use the SSCI as a proxy for LAI assuming that structurally
239 more complex stands are associated with greater spatial complementarity in canopy space,
240 and thus greater light interception (Ray *et al.*, 2023). For example, differences in branching
241 intensity and branch density lead to greater crown complementarity (Hildebrand *et al.*, 2021),
242 which in turn should result in a higher leaf foliage production of structurally more complex
243 stands.

244 ***Biodiversity effects***

245 Net biodiversity effects, selection effects, and complementarity effects for the elemental pools
246 were calculated using the additive partitioning method of Loreau & Hector (2001), based on
247 the following equations.

249 Equation 1 $SE_i = (\Delta RY_i - \Delta RY) \times (M_i - M)$
250 Equation 2 $CE_i = M_i \times \Delta RY_i - (\Delta RY_i - \Delta RY) \times (M_i - M)$
251 Equation 3 $NE_i = SE_i + CE_i$

252 Here, ΔRY_i represents the deviation from the expected relative yield of species i in the two-
253 and four-species mixture ($RY_{\text{observed}} - RY_{\text{expected}}$), and ΔRY represents the average relative yield
254 deviation of all species in the tree stand. M_i represents the yield of species i in the
255 monocultures, and M is explained as the average yield of all species in the monoculture. For
256 this, the species-specific elemental pools (Supporting Information Fig. S3) were estimated from
257 the community pools by using species-specific wood volume ($\text{m}^3 \text{ m}^{-2}$) (Eqn. 4; Supporting
258 Information Fig. S1, S2; Table S2, S3).

259 Equation 4 $V_i = (\pi D_i^2/4)H_i f$
260

261 where D_i represents the stem diameter (m) for each tree i measured 5 cm above ground and
262 H_i is the tree height (m). To account for the deviation of the tree volume from the volume of a
263 cylinder f is added as a cylindrical form factor of 0.5 (Ray *et al.*, 2023). Dead trees (2.6 %
264 according to the tree inventory data from 2021) were not considered in the analysis.

265

266 **Statistical Analyses**

267 Linear mixed-effects models (Type I Sum of Squares) were used to assess the impact of tree
268 species richness (numerical with three levels - one, two, four), mycorrhizal type (factorial, three
269 levels: AM, EM, AM+EM), and their interacting effect on elemental contents, elemental pools,
270 and biodiversity effects (net biodiversity effects, selection effects, complementarity effects).
271 Block (factorial, two levels: one, two) was used as a random effect. Further, effects of tree
272 species richness and mycorrhizal type on soil pH and soil bulk density were tested (results can
273 be found in Supporting Information Table S4). To test for effects between groups (e.g. AM vs.
274 EM; AM+EM vs. AM; AM+EM vs. EM) Tukey's honestly significant difference (HSD) tests were
275 conducted. The relationship between response variables (C, N, P contents and C, N, P pools
276 of soil, soil microbial biomass, and foliage; biodiversity effects) and tree species richness as
277 single explanatory variable for each group (AM, EM, AM+EM) was tested with simple linear
278 regression analysis. We used the percentage change as a standardized measure to quantify
279 the strength of biodiversity effects (tree species richness, mycorrhizal type) on the response
280 variables (C, N, P contents and pools) (Supporting Information Table S15 – S18).

281 To improve the normality of residuals, biodiversity effects were square-root-transformed with
282 sign reconstruction ($\text{sign}(y) = |y|$) (Loreau & Hector, 2001). To test whether biodiversity effects

283 were larger than zero, we used one-tailed *t*-tests. Significantly larger biodiversity effects
284 indicate overperformance in two- and four-species tree communities relative to monocultures.

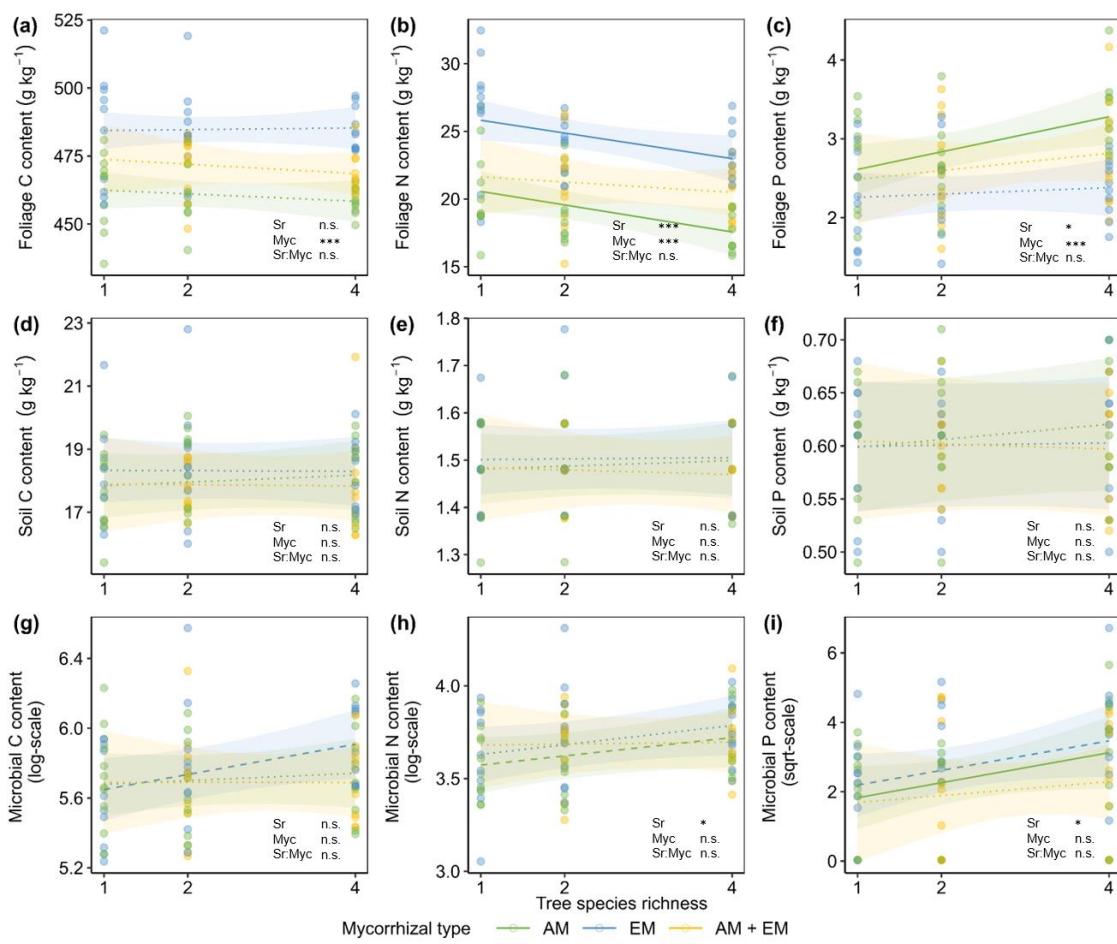
285 For the analysis of the time series dataset on plant available nutrients Bayesian statistics was
286 used to include the temporal trend to estimate the parameters of the models. Models were
287 fitted using R-INLA (R-Integrated Nested Laplace Approximation), with tree species richness,
288 mycorrhizal type, season and soil moisture, as well as their interactions as fixed effects, and
289 block, plot and year as random effects. To account for the temporal trend, we added a RW1
290 (Random walk model of order 1) trend. For model comparison DIC values were used and
291 insignificant interaction terms removed. The final model is given below.

$$\begin{aligned} 292 \quad y_{tj} &= \text{Intercept} + S_{tj} x \beta_1 + M_{tj} x \beta_2 + S_{tj} x \beta_3 + M_{tj} x \beta_4 + \\ 293 \quad M_{tj} : S_{tj} x \beta_5 &+ M_{tj} : M_{tj} x \beta_6 + S_{tj} : M_{tj} x \beta_7 + \\ 294 \quad a_{plot} + a_{block} + a_{year} + \mu_{tj} + \varepsilon_{tj} \\ 295 \quad \mu_{tj} &= \mu_{(t-1)j} + v_{tj} \\ 296 \quad v_{tj} &\sim N(0, \sigma^2_{v_{tj}}) \\ 297 \quad a_{plot} &\sim N(0, \sigma^2_{plot}) \\ 298 \quad a_{block} &\sim N(0, \sigma^2_{block}) \\ 299 \quad a_{year} &\sim N(0, \sigma^2_{year}) \\ 300 \quad \varepsilon_{tj} &\sim N(0, \sigma^2_{\varepsilon_{tj}}) \end{aligned}$$

301 Here, y_{tj} represents the response variable soil nitrate ($\text{NO}_3\text{-N}$), ammonium ($\text{NH}_4\text{-N}$), or
302 phosphate ($\text{PO}_4\text{-P}$) at time t for plot j . S_{tj} , M_{tj} , S_{tj} , and M_{tj} indicate tree species
303 richness, mycorrhizal type, season and soil moisture at time t for plot j respectively, while a_{plot} ,
304 a_{block} , and a_{year} stand for the random effects of plot, block and year respectively. We assume
305 that each random effect is independent and identically distributed with a mean of zero and its
306 variance. The trend μ_{tj} is modelled as a RW1 random walk trend based on penalized complexity
307 (Zuur *et al.*, 2017) prior with parameters of $U = 1$ and $\alpha = 0.01$. Here, we allowed separate
308 trends for each tree species richness and each mycorrhizal type combination within each year.

309 All statistical analyses were performed using R Statistical Software (version 4.3; R
310 Development Core Team, <http://www.R-project.org>) using the packages *lme4* (version 1.1-33;
311 (Bates *et al.*, 2015) and *emmeans* (version 1.8.6; (Lenth *et al.*, 2023) for mixed-effects model
312 analysis and Tukey's HSD tests, respectively. For the additive partitioning method (calculation
313 of biodiversity effects) the function *addpart* from the package *pdif* was used (Niklaus 2022).
314 For the Bayesian-based time series analysis *R-INLA* (version 22.12.16) was used (Zuur *et al.*,
315 2017).

316 **Results**

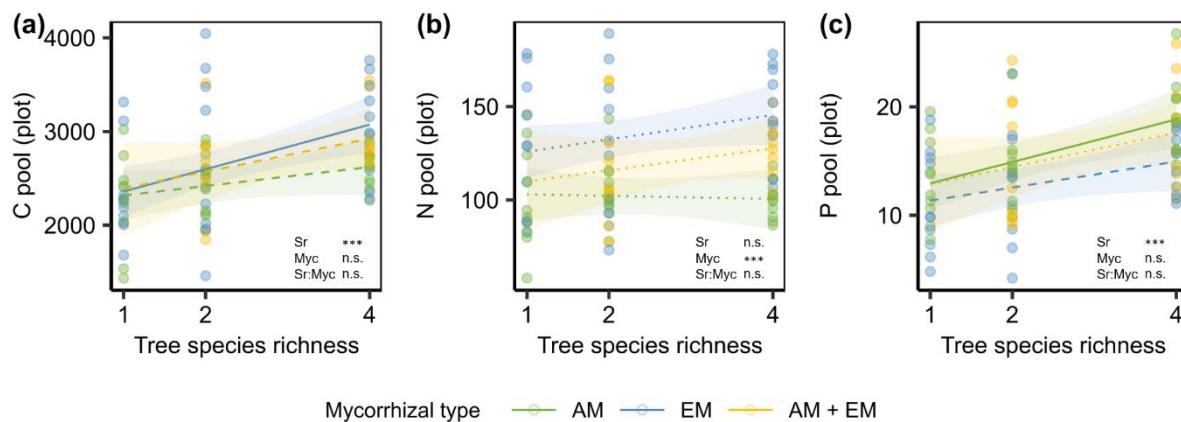

317 ***Elemental contents of foliage, bulk soil, and soil microbial biomass***

318 Overall, effects of tree species richness and mycorrhizal type were most pronounced for the
319 elemental contents of tree foliage. In contrast, no effects of either treatments were observed
320 in bulk soil (Fig. 1d-f; Supporting Information Table S5 b), and they were rarely present in soil
321 microbial biomass (Fig. 1g-i; Supporting Information Table S5 c). Soil microbial biomass N (p
322 = 0.039) and P contents (p = 0.018) were significantly affected by tree species richness and
323 increased by around 3% and 15% in four-species tree stands compared to monocultures
324 respectively, while C content (p = 0.093) was marginally affected. Mycorrhizal strategies did
325 not affect microbial biomass.

326 In tree foliage, tree species richness had contrasting effects on contents of N and P: while N
327 contents decreased significantly with tree species richness ($p < .001$) by about 13% in
328 monocultures compared to four-species communities, P contents increased significantly (p =
329 0.017) by 14% in four-species stands compared to monocultures (Fig. 1a-c; Supporting
330 Information Table S5 a). C contents remained constant along the tree diversity gradient.
331 Mycorrhizal type significantly affected C, N, and P contents ($p < .001$ respectively), whereby C
332 and N contents were highest for EM tree stands (5% and 24% larger compared to AM tree
333 stands, respectively), and P contents for AM tree communities (23% higher compared to EM
334 tree stands; Supporting Information Table S7, S9). Tree stands with mixed mycorrhizal types
335 showed additive effects. We found no interaction effect of mycorrhizal type and tree species
336 richness on elemental contents.

337

338

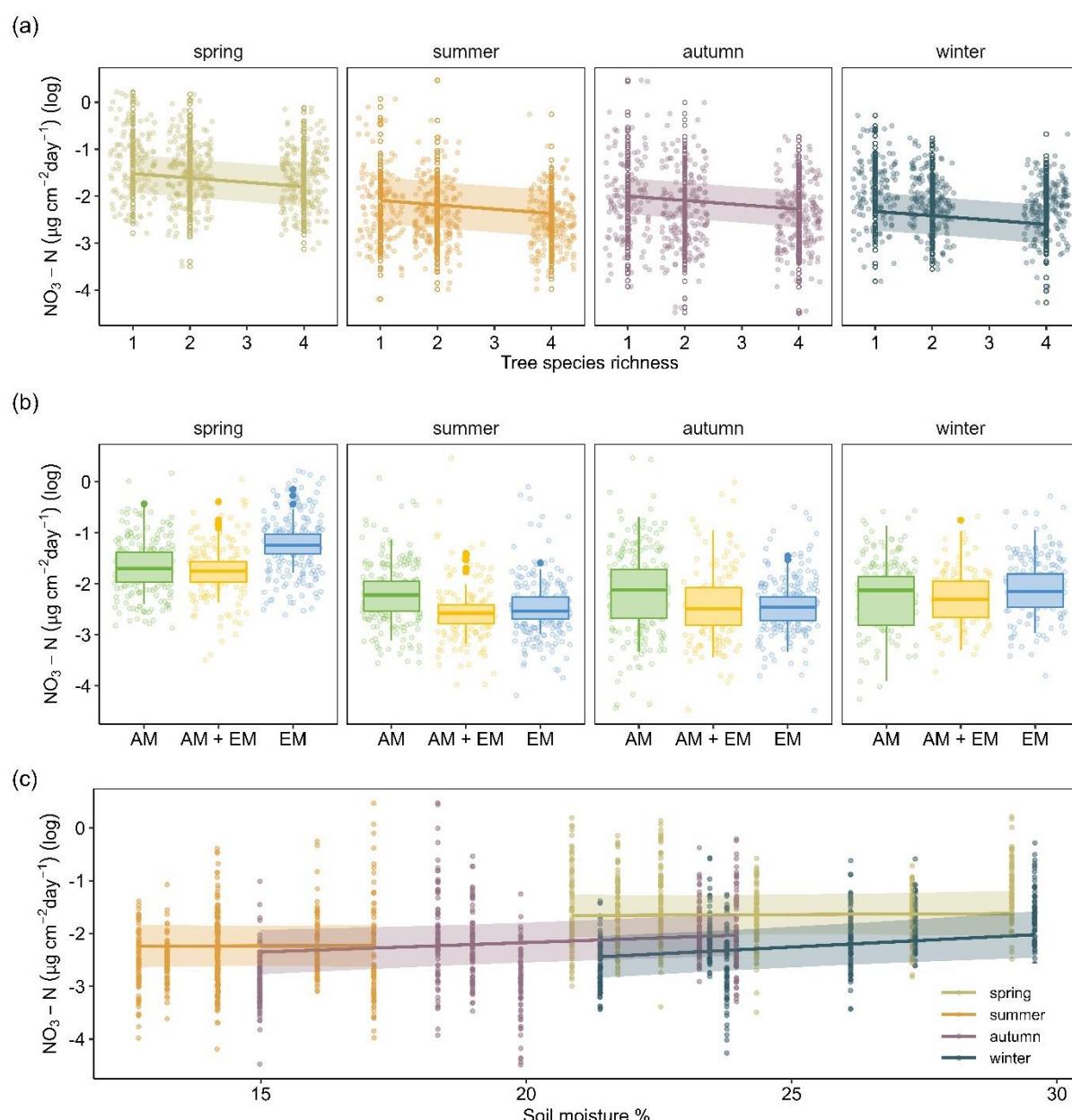

339 Fig. 1 Carbon (C), nitrogen (N) and phosphorus (P) contents in (a-c) foliage, (d-f) soil and (g-i)
340 microbial biomass as a function of Tree species richness (one, two, four; Sr) for communities
341 containing arbuscular mycorrhizal tree species (AM), ectomycorrhizal tree species (EM), or both (AM +
342 EM) tree species (Myc). Each dot represents a tree community, and colors indicate different
343 Mycorrhizal types. Regression lines are based on mixed-effect models (predicted means). Solid lines
344 indicate statistically significant relationships ($p < 0.05$), dashed lines marginally significant
345 relationships ($0.1 > p > 0.05$), and dotted lines non-significant relationships ($p > 0.1$). Statistical
346 significance of main effects is indicated in each panel (n.s., $p > 0.05$; * $p < 0.05$; ** $p < 0.01$; *** p
347 < 0.001).

348 **Elemental pools of foliage, bulk soil, and soil microbial biomass**

349 We found only effects of tree species richness and mycorrhizal type on elemental pools of tree
350 foliage (Fig. 2, Supporting Information Table S6), but not on pools of bulk soil and soil microbial
351 biomass (Supporting Information Fig. S4; Table S6). Tree species richness had an overall
352 positive effect on C ($p < .001$) and P ($p < .001$) pools in foliage, whereby the pool sizes increased
353 by about 25% and 41%, respectively, in four-species mixtures compared to monocultures
354 (Supporting Information Table S10, S16). While N pools in foliage were not significantly
355 affected by tree species richness, they were significantly affected by mycorrhizal type (p

356 <.001), whereby N pools in EM tree stands were about 28% larger compared to N pools in AM
357 tree communities. In contrast, AM tree communities obtained 18% larger P pools in foliage
358 compared to EM tree stands (Supporting Information Table S8). However, no significant main
359 effect of mycorrhizal type on P and C pools was found (Supporting Information Table S6). In
360 addition, the difference between pool sizes of EM and AM tended to increase as species
361 richness increased. For mixtures of the two mycorrhizal types, we consistently observed
362 additive effects, similar to the elemental contents. Significant interaction effects between the
363 two treatments were not detected.

364



365 Fig. 2 Foliage (a) carbon (C), (b) nitrogen (N), and (c) phosphorus (P) pools as affected by Tree
366 species richness (one, two, four; Sr) for communities containing arbuscular mycorrhizal tree species
367 (AM), ectomycorrhizal tree species (EM), or both (AM + EM) tree species (Myc). Each dot represents
368 a tree community, and colors indicate different Mycorrhizal types. Regression lines are based on
369 mixed-effect models (predicted means). Solid lines indicate statistically significant relationships ($p <$
370 0.05), dashed lines marginally significant relationships ($0.1 > p > 0.05$), and dotted lines non-
371 significant relationships ($p > 0.1$). Statistical significance of main effects is indicated in each panel
372 (n.s., $p > 0.05$; * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$).

373 **Seasonal availability of soil nitrate, ammonium, and phosphate**

374 Our study reveals pronounced temporal fluctuations in the availability of nitrate (Fig. 3,
375 Supporting Information Fig. S5), ammonium, and phosphate in the soil (Supporting Information
376 Fig. S6, S7). Specifically, the highest concentrations of nitrate and ammonium were observed
377 during spring (March – May) (Supporting Information Table S11). Furthermore, we identified a
378 robust interaction between soil moisture and season with respect to soil nitrate and ammonium
379 levels (Fig 3, Supporting Information Fig. S8, Table S11). Seasonal effects on soil phosphate
380 were not evident, but we did observe a significant positive of soil moisture on phosphate
381 availability (Supporting Information Fig. S8, Table S11, Mean slope = 0.15, 95% CI [0.09,
382 0.22]). Notably, when assessing these variations along the gradient of tree species richness
383 and among different mycorrhizal types, we found substantial effects only in the case of nitrate

384 (Supporting Information Table S11). Nitrate availability in soil decreased with increasing tree
 385 species richness (Fig. 3, Mean slope = -0.09, 95% CI [-0.15, -0.03]). Regarding mycorrhizal
 386 types, nitrate availability displayed no consistent pattern, but we did observe interactions
 387 between mycorrhizal type and seasonal effects (Fig. 3, Supporting Information Table S11). In
 388 stands with EM trees, soil nitrate availability peaked in early spring, surpassing the nitrate
 389 levels in AM tree communities, and declined notably during the summer during summer. In AM
 390 tree stands, the availability of nitrate reached its peak in May and stayed relatively stable
 391 throughout summer. The temporal pattern of further environmental variables can be found in
 392 Supporting Information Fig. S9, S10; not included in main analyses because of missing main
 393 effects.

394 Fig. 3 Changes in seasonal availability of nitrate ($\text{NO}_3\text{-N}$) in soil as affected by (a) Tree species richness
 395 (one, two, four; Sr), (b) Mycorrhizal type (AM, EM, AM+EM; Myc), and (c) Soil moisture (%). The data
 396 points depict the raw observations, regression lines and the shaded bands in panels (a) and (c), and

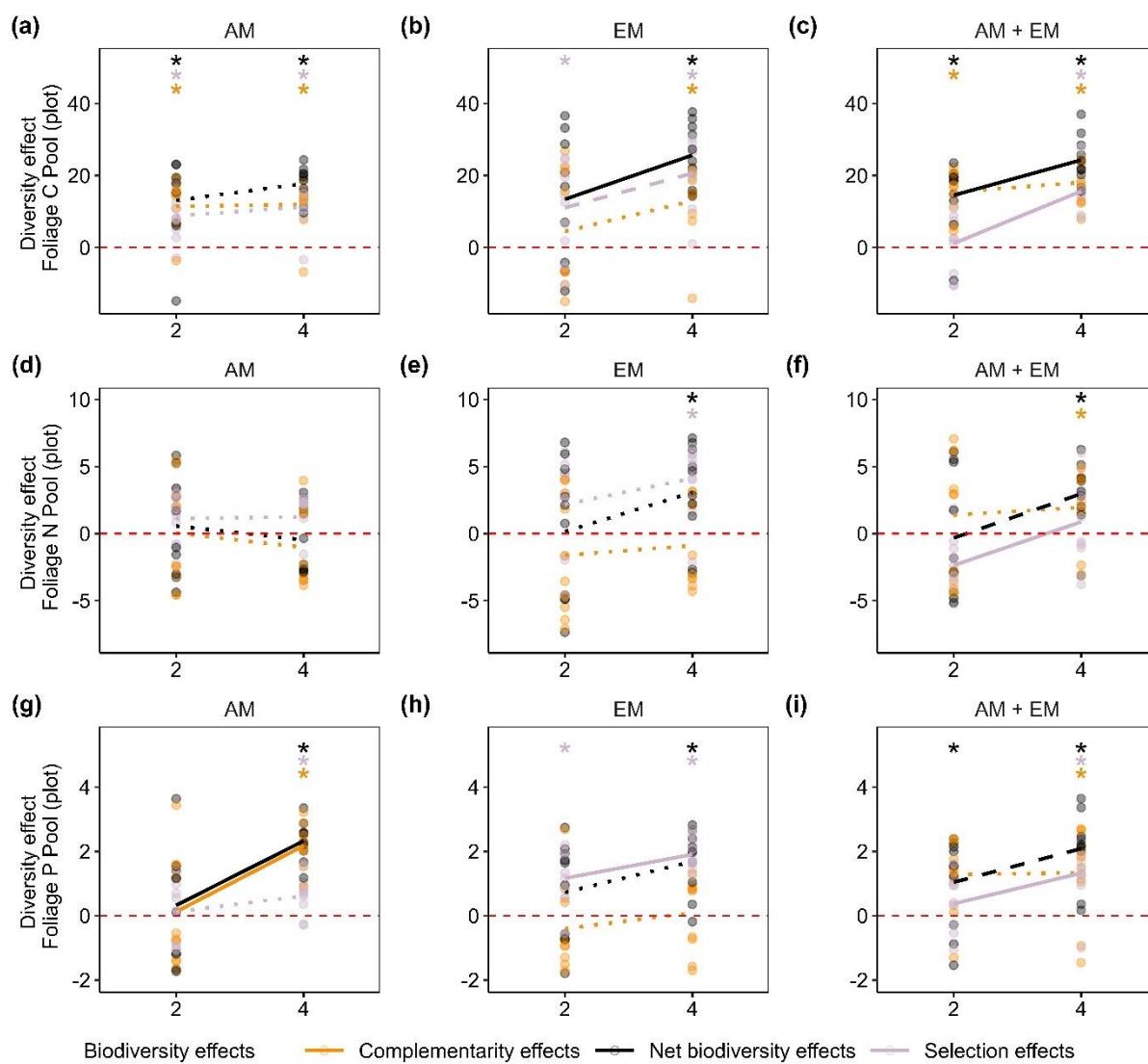
397 boxplots in panel (b) denote 95% credible intervals, which were derived from predictions generated by
398 a random-walk time series model employing Bayesian approach (see Methods).

399 **Biodiversity effects**

400 Overall, we found tree species richness to significantly increase net biodiversity effects (sum
401 of complementarity effects and selection effects) for foliar C ($p = 0.001$) and P ($p < .001$) pools,
402 and to marginally increase net biodiversity effects for N pools ($p = 0.085$) (Table 2, Fig. 4;
403 (Supporting Information Table S14). Values were significantly different from zero for all
404 elemental pools in four-species communities (AM, EM, and AM+EM), except for N pools in AM
405 tree stands (Supporting Information Table S12). In addition, tree species richness significantly
406 increased selection effects for all elemental pools (C: $p < .001$, N: $p = 0.013$, P: $p < .001$) and
407 complementarity effects for C pools ($p = 0.041$) and P pools ($p = 0.007$). For all elemental pools
408 in EM tree communities, and N pools in AM tree communities, the positive net biodiversity
409 effects were mostly driven due to strong selection effects, being larger than or similar to the
410 complementarity effects. This is also apparent when comparing selection effects of
411 communities with tree stands of mixed mycorrhizal type (AM+EM) with EM tree strands, where
412 selection effects were higher in the latter for all elemental pools. Contrary, in stands with mixed
413 mycorrhizal types (AM+EM) complementarity effects significantly contributed to overall
414 elemental pools (Supporting Information Table S13). These effects were most pronounced for
415 two-species communities, while in four-species communities complementarity effects and
416 selection effects did not differ strongly from each other. In general, we found no interaction
417 effects (Sr x Myc) for any of the elemental pools. Only for C pools, selection effects had the
418 tendency to be larger in mycorrhizal mixtures with the highest species richness.

419

420 Table 2 Summary of mixed-effects model analyses testing the effects of tree species richness (two,
421 four; Sr), mycorrhizal type (AM, EM, AM+EM; Myc), and their interactions on net biodiversity effects,
422 selection effects, and complementarity effects based on tree foliage (a) carbon (C) pool, (b) nitrogen
423 (N) pool, and (c) phosphorus (P) pool (n=60).


Source of variation	Net biodiversity effects				Selection effects		Complementarity effects	
	df	ddf	F	p	F	p	F	p
(a) C pool								
Tree species richness (Sr)	1	54	11.475	0.001	17.332	<.001	4.372	0.041
Mycorrhizal type (Myc)	2	54	0.584	0.561	4.540	0.015	4.114	0.022
Sr x Myc	2	54	1.245	0.296	2.680	0.078	1.076	0.348

(b) N Pool								
Tree species richness (Sr)	1	54	3.084	<i>0.085</i>	6.598	0.013	0.006	0.939
Mycorrhizal type (Myc)	2	54	0.951	0.393	10.654	<.001	3.343	0.043
Sr x Myc	2	54	1.983	0.148	1.717	0.189	0.355	0.703
(c) P Pool								
Tree species richness (Sr)	1	54	15.956	<.001	12.803	<.001	7.766	0.007
Mycorrhizal type (Myc)	2	54	0.395	0.675	11.044	<.001	6.062	0.004
Sr x Myc	2	54	0.999	0.375	0.430	0.653	2.322	0.108

424 Shown are the degrees of freedom (df), denominator degrees of freedom (ddf), *F*-values, and the statistical
425 significance of the fixed effects (*p*-values). Significant effects (*p* < 0.05) are given in bold and marginally
426 significant effects (*p* < 0.1) in italics. Species specific elemental pools were derived from the community pools
427 using species-specific wood volume (m³ m⁻²) (see Methods section and Supporting Information Fig. S1, S2; Table
428 S3).
429

430 Fig. 4 Net biodiversity effects, complementarity effects, and selection effects for (a) carbon (C) pool,
431 (b) nitrogen (N) pool, and (c) phosphorus (P) pool as affected by Tree species richness (2 or 4 tree
432 species) and Mycorrhizal type (AM, EM, AM+EM). Asterisks indicate whether the biodiversity effects
433 were significantly greater than zero (indicating overperformance of two- and four-species tree
434 communities compared to monocultures; detailed results can be found in Supporting Information Table
435 S12). Species specific elemental pools were derived from total pools using species-specific tree
436 volume (see Methods section). Regression lines are based on simple linear regression models
437 (Supporting Information Table S14), whereas solid lines indicate significant relationships between two-
438 and four-species communities ($p < 0.05$), dashed lines marginally significant relationships ($0.1 > p >$
439 0.05), and dotted lines nonsignificant relationships ($p > 0.1$).

440

441

442

443 **Discussion**

444 **Elemental contents and pools are affected by tree species richness and mycorrhizal
445 type**

446 We found significant effects of tree diversity on foliage nutrient contents and pools, whereby
447 the direction of effects differed. While tree diversity had a significantly negative effect on N
448 contents in foliage, P contents and also pools increased with tree species richness. The
449 formation of N pools, however, tended to be increased by tree species richness, contrasting
450 the negative effect on N contents, which may be linked to higher biomass production of more
451 diverse communities as has been shown before both in the MyDiv experiment (Dietrich *et al.*,
452 2022; Ray *et al.*, 2023) and in other tree diversity experiments (e.g. Huang *et al.*, 2018) and
453 observations (Liang *et al.*, 2016; Duffy *et al.*, 2017). The higher productivity in more species-
454 rich stands is also supported by the significantly enhanced C pools within these communities.
455 This implies that overall enhanced N uptake at high tree diversity might be masked by an even
456 greater increase in biomass production. Similar patterns were observed in a grassland study
457 where N and P decreased with plant diversity, while C contents remained constant (Guiz *et al.*,
458 2018). Therefore, our first hypothesis (i.e. increased aboveground elemental contents and
459 pools in tree foliage with higher tree diversity) was partly confirmed.

460 Further, all elemental contents and pools were significantly or at least marginally affected by
461 the mycorrhizal type. Thus, we found greater N contents and pools in EM tree stands compared
462 to AM tree stands, while P contents and pools were significantly enhanced in the latter. The
463 widely reported main roles of mycorrhizal types, being EM fungi providing mainly N to plants
464 and AM fungi supplying plants mainly with P (Smith & Read, 2008; Phillips *et al.*, 2013), could
465 therefore also be confirmed for mycorrhizal associations with trees in a young forest plantation
466 (H1). However, in tree stands with both mycorrhizal strategies, we found only additive effects
467 but not an expected elemental pool size that outperforms communities with one mycorrhizal
468 type alone. This is consistent with findings of Dietrich *et al.* (2022) who could not observe any
469 significant overyielding effects of tree productivity in communities of both mycorrhizal types.
470 This is in contrast to our first hypothesis that optimized resource acquisition in mixed stands
471 (Ferlian *et al.*, 2018; Eisenhauer *et al.*, 2022) will lead to larger elemental pools in foliage.

472 While aboveground foliage elemental pools and total contents showed significant effects of
473 tree species richness, belowground elemental pools and contents of soil nutrients and
474 microbes were not significantly affected. Only plant-available nutrients showed a clear effect
475 of tree species richness and mycorrhizal type. These limited effects in soils may result from
476 the young age of the tree stands in the MyDiv experiment (seven years since establishment in

477 2015 until the time point of sampling for this study), given that plant diversity effects on
478 ecosystem functioning have been shown to increase over time in grassland and forest
479 biodiversity experiments (Guerrero-Ramírez *et al.*, 2017). Changes in biogeochemical
480 properties may need a longer period of time to establish (Oelmann *et al.*, 2011; Lange *et al.*,
481 2023). Further, land-use legacies from former agriculture might still persist and thus it is likely
482 that the trajectory of the microbial soil community development is not be affected by tree
483 species richness in such a short time (Fichtner *et al.*, 2014). Missing effects of tree species
484 richness or mycorrhizal type on soil pH and bulk density (Supporting Information Table S4)
485 underpin this assumption. Furthermore, the plastic tarp, initially installed to prevent the growth
486 of weeds that introduce other mycorrhizal types, may have inhibited some processes in nutrient
487 cycling, such as accumulation of organic matter through litter fall and its direct interaction with
488 soil organisms (Berg & McClaugherty, 2014). For example, plants usually modulate their
489 belowground microbiome partly through the quality and composition of litter (Pollierer *et al.*,
490 2007; Prada-Salcedo *et al.*, 2022). Therefore, we expect that species richness effects would
491 be more pronounced in case of direct litter input. However, nutrient cycling can be affected by
492 further processes, such as leaching of water- soluble compounds from litter, which plays a
493 significant role in nutrient return to soil (Chapin *et al.*, 2012) or the dynamics of root exudates,
494 which were found to be influenced by diversity in tree experiments (Weinhold *et al.*, 2022).
495 These processes were not hindered by the tarp. Consequently, we do not anticipate a strong
496 influence of the tarp on our results. In contrast to bulk soil, N and P contents of soil microbial
497 biomass increased with tree species richness, according to our first hypothesis. This
498 observation may indicate that rhizodeposits play a critical role in tree effects on soil food webs
499 (e.g. Pollierer *et al.*, 2007) as well as plant diversity effects on soil communities and functions
500 (Lange *et al.*, 2015; Eisenhauer *et al.*, 2017). While tree diversity had an effect on microbial
501 biomass, we could not find any effects of mycorrhizal type. This is in contrast to further tree
502 diversity studies which found effects of tree diversity or mycorrhizal associations on soil
503 microbial community composition (Singavarapu *et al.*, 2021; Ferlian *et al.*, 2021).

504 **Effects of mycorrhizal type on nitrate content are strongly dependent on season and
505 soil moisture**

506 Along with the information on C, N, and P in bulk soil and soil microbial biomass, we assessed
507 plant-available nutrients in soil to underpin soil-related analyses of resource-use
508 complementarity. Tree species richness showed consistent negative effects on soil nutrient
509 availability, while mycorrhizal type showed differing effects on contents of plant-available
510 nutrients in different seasons. Consistent with our second hypothesis, we found that nitrate
511 content decreased significantly with tree species richness. This effect was likely caused by

512 stronger exploitation of soil nitrate due to more complementary resource-use strategies in more
513 diverse tree stands (Ferlian *et al.*, 2018; Barry *et al.*, 2019).

514 Effects of mycorrhizal type on nitrate content were strongly dependent on season, showing
515 significantly higher levels of nitrate in EM communities in spring compared to summer and
516 autumn, while nitrate contents in AM communities did not change significantly during these
517 seasons. Soil phosphate and ammonium contents showed pronounced temporal dynamics,
518 but were less affected by the experimental treatments. In general, contents of ammonium and
519 phosphate in soils were low, due to fast immobilization by plants and microorganisms and
520 strong adsorption to soil- and organic colloids (Schachtman *et al.*, 1998; Varma *et al.*, 2017).
521 These processes may potentially smooth the effects caused by species richness and
522 mycorrhizal types. Contrary, nitrate, as a negatively charged ion, is not easily absorbed by clay
523 particles in soil, and therefore is very mobile and prone to runoff and leaching (Riley *et al.*,
524 2001).

525 The seasonality of nutrient availability observed is closely linked to the activity of soil organisms
526 and of seasonal patterns of rainfall which is also subject to strong temporal fluctuations
527 (Bardgett & van der Putten, 2014; Baldrian, 2017). Thereby, the seasonally dependent
528 photosynthetic activity of plants and the allocation of photosynthates to the soil play major roles
529 in resource provisioning to soil organisms (Baldrian, 2017). Weather conditions such as
530 temperature, precipitation, and resulting soil moisture (Bardgett & van der Putten, 2014) are
531 important predictors of the activity of soil biodiversity (Bonato Asato *et al.*, 2023). In particular,
532 soil water availability has strong effects on recovery and recurrence of soil microbial
533 communities (Placella & Firestone, 2013). Fast responses were observed for nitrifying bacteria
534 (*Nitrobacter* spp., *Nitrospina* spp., and *Nitrospira*) after rewetting of dry soil, followed by
535 significant nitrogen mineralization (Placella & Firestone, 2013). This underlines our findings of
536 high nitrate availability after summer droughts. In addition, studies on litter decay of AM and
537 EM tree communities showed the influence of seasonally variable environmental factors
538 (precipitation and temperature) on mycorrhizal activity (Keller & Phillips, 2018). The reported
539 responses of decay of EM tree litter with higher mean annual precipitation were significantly
540 stronger compared to AM tree litter and also slightly stronger with increases in mean annual
541 temperature (Keller & Phillips, 2018). These findings by Keller & Phillips (2018) may suggest
542 for our observations a higher sensitivity of EM trees towards higher temperatures and moisture
543 and thus, stronger nutrient release from elevated decay of litter.

544 **Net effects in tree stands of mixed mycorrhizal strategy are driven by complementarity**

545 We found positive net biodiversity effects for C and P pools in foliage. For all elemental pools,
546 net biodiversity effects, selection effects, and complementarity effects increased with tree
547 species richness, except for N pools in AM tree stands. This shows that both, complementarity

548 effects and selection effects, contributed to overall biodiversity effects on nutrient accumulation
549 in foliage in young tree stands. Further, for all elemental pools in four-species communities
550 (AM, EM, AM+EM), except N pools in AM tree stands, net biodiversity effects were significantly
551 different from zero, which indicates overperformance of species-rich communities compared
552 to monocultures (Loreau & Hector, 2001). Similar effects were observed before for other
553 ecosystem functions, such as biomass production in several forest studies (Huang *et al.*, 2018;
554 Dietrich *et al.*, 2022). For the formation of elemental pools of EM tree stands as well as of N
555 pools of AM tree stands, net biodiversity effects were mostly driven by selection effects,
556 whereas complementarity effects were often lower or even negative. This suggests that the
557 observed larger elemental pools in species-rich tree stands are rather the result of the
558 performance of single dominant tree species (Scherer-Lorenzen *et al.*, 2005; Morin *et al.*, 2011;
559 Dietrich *et al.*, 2022). The observation of high selection effects in EM tree stands, may be
560 attributed to the pronounced nutrient uptake of *Betula pendula* Roth, a fast-growing pioneer
561 tree species (Stark *et al.*, 2015), thus contributing a large part to the tree community nutrient
562 pools (Supporting Information Fig. S3). This observation was mainly made for the formation of
563 C, N, and P pools in tree foliage of EM communities with two and four tree species. However,
564 for the generation of foliage P pools in AM four-species communities, complementarity effects
565 were of greater importance. This indicates that the underlying complementarity among trees
566 in the use of P increases P contents and P pools in foliage within higher-diversity communities.

567 We found that net biodiversity effects tended to be more strongly driven by complementarity
568 effects in mixed tree stands featuring both mycorrhizal types. Therefore, our findings suggest
569 that mixed mycorrhizal strategies may enhance resource partitioning among associated plant
570 hosts and alter aboveground nutrient dynamics in tree foliage (Cheng *et al.*, 2016; Ferlian *et*
571 *al.*, 2018; Eisenhauer *et al.*, 2022). Although not significant, this was more pronounced for two-
572 species stands compared to four-species stands. This result is in line with a recent meta-
573 analysis (Luo *et al.*, 2023), which observed highest productivity in stands composed of different
574 mycorrhizal types with equal proportions. Further, that fact that more tree species employ a
575 greater number of resource niches due to increased functional diversity may lead to
576 redundancy in the different roles of mycorrhizal strategies (Luo *et al.*, 2023). The third
577 hypothesis (positive effects of high tree species richness and mixed mycorrhizal types on
578 foliage elemental pools can be explained by higher complementarity between tree species and
579 mycorrhizal types) cannot be confirmed.

580 This study cannot fully explain underlying patterns of positive biodiversity effects, because a
581 direct link between the aboveground and belowground elemental pools was not detected.
582 Elemental assessment of foliage in summer was followed by analyses of soil elements in
583 autumn, which may indicate some temporal mismatch between our measurements. The study

584 of litter chemical composition and quality as well as the derivation of nutrient resorption
585 processes could provide additional insights. Litterfall plays a very important role in nutrient
586 cycling. This will allow to close the gap between the observed patterns in nutrient pools above-
587 and belowground. Further, the analysis of wood and root elemental pools may provide a more
588 comprehensive picture of the above- and belowground dynamics. Our study lacks direct
589 measurements of tree foliage biomass or leaf area index. However, we think that quantification
590 of the SSCI is a very precise proxy to account for these missing measurements. Although we
591 made an effort to include phylogenetic diversity in the study taxa, it is worth noting that four of
592 the five EM tree species belong to a single order, Fagales. Some of our results may therefore
593 reflect the response of a particular lineage (see Koele *et al.*, 2012). Clearly, additional research
594 involving a larger group of phylogenetic lineages is warranted.

595 **Conclusion**

596 We show that tree diversity increases foliage C and P pools, and increases soil nitrate uptake.
597 Both mycorrhizal types thereby contribute differently to aboveground elemental pools, with EM
598 trees forming larger N pools and AM trees forming larger P pools. Elemental pool sizes in tree
599 stands with both mycorrhizal strategies, however, did not exceed those of tree stands with EM
600 or AM alone. However, the analysis of biodiversity effects indicates that resource-use
601 complementarity affects the resource uptake and aboveground nutrient storage in foliage more
602 strongly in tree communities with both mycorrhizal types. Our findings thus emphasize the
603 importance of using forest species with diverse mycorrhizal strategies during restoration for
604 achieving a more complete use of available resources and thus to deliver more multifunctional
605 forests. Given the prevalence of impoverished forests due to anthropogenic impact, and the
606 need to implement effective restoration programs, our results are of broad significance.

607

608 **Acknowledgements**

609 We thank Julius Quosh for collecting the dendrometric data and Romy Zeiss, Alla Kavtea, and
610 Tom Künne for collecting the time series data on plant available nutrients (IEMs). Further we
611 thank Victoria Ochoa for the chemical analysis of IEMs and Ines Hilke for the measurements
612 of C, N, and P in the MPI-BGC Jena. We acknowledge funding by the Deutsche
613 Forschungsgemeinschaft (German Centre for Integrative Biodiversity Research, FZT118; and
614 Gottfried Wilhelm Leibniz Prize, Ei 862/29-1). FTM acknowledges funding from the European
615 Research Council (ERC Grant agreement 647038 [BIODESERT]) and Generalitat Valenciana
616 (CIDEVENT/2018/041).

617

618 Competing Interests

619 The authors declare no competing interests.

620 Author contributions

621 N.E. and O.F. designed and established the experiment.
622 N.E. acquired the funds for this project.
623 E.Bö., J.L., F.T.M, E.B. and T.R. acquired the data.
624 E.Bö. analyzed the data and created the figures and wrote the manuscript.
625 Y.H. analyzed the time series data on plant available nutrients.
626 All authors significantly revised the manuscript and approved it for submission.

627 Data availability

628 The data that support the findings of this study are deposited in MyDiv database
629 (<https://mydivdata.idiv.de/>) and will be published after acceptance of the manuscript. Access
630 codes will then be made available.

631 References

632 **Aislabie J, Deslippe JR. 2013.** Soil Microbes and Their Contribution to Soil Services. In: Dymond, J.R., Ed., Ecosystems Services in New Zealand Conditions and Trends, Manaaki Press, Lincoln, 143-161.

635 **Averill C, Hawkes CV. 2016.** Ectomycorrhizal fungi slow soil carbon cycling (R Bardgett, Ed.). *Ecology Letters* **19**: 937–947.

637 **Averill C, Turner BL, Finzi AC. 2014.** Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. *Nature* **505**: 543–545.

639 **Baldrian P. 2017.** Microbial activity and the dynamics of ecosystem processes in forest soils. *Current Opinion in Microbiology* **37**: 128–134.

641 **Bardgett RD, van der Putten WH. 2014.** Belowground biodiversity and ecosystem functioning. *Nature* **515**: 505–511.

643 **Barry KE, Mommer L, van Ruijven J, Wirth C, Wright AJ, Bai Y, Connolly J, De Deyn GB, de Kroon H, Isbell F, et al. 2019.** The Future of Complementarity: Disentangling Causes from Consequences. *Trends in Ecology & Evolution* **34**: 167–180.

646 **Bates D, Mächler M, Bolker B, Walker S. 2015.** Fitting Linear Mixed-Effects Models Using lme4. *Journal of Statistical Software* **67**: 1–48.

648 **Berg B, McClaugherty C. 2014.** *Plant Litter: Decomposition, Humus Formation, Carbon Sequestration*. Berlin, Heidelberg: Springer.

650 **Bilyera N, Blagodatskaya E, Yevdokimov I, Kuzyakov Y. 2018.** Towards a conversion
651 factor for soil microbial phosphorus. *European Journal of Soil Biology* **87**: 1–8.

652 **Bonato Asato AE, Wirth C, Eisenhauer N, Hines J. 2023.** On the phenology of soil
653 organisms: Current knowledge and future steps. *Ecology and Evolution* **13**: e10022.

654 **Bonfante P, Genre A. 2010.** Mechanisms underlying beneficial plant–fungus interactions in
655 mycorrhizal symbiosis. *Nature Communications* **1**: 48.

656 **Brookes PC, Landman A, Pruden G, Jenkinson DS. 1985.** Chloroform fumigation and the
657 release of soil nitrogen: A rapid direct extraction method to measure microbial biomass
658 nitrogen in soil. *Soil Biology and Biochemistry* **17**: 837–842.

659 **Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M,
660 Weis JJ. 2007.** Impacts of plant diversity on biomass production increase through time
661 because of species complementarity. *Proceedings of the National Academy of Sciences* **104**:
662 18123–18128.

663 **Chapin III FS, Matson P, Vitousek P. 2012.** Principles of Terrestrial Ecosystem Ecology. In:
664 369–397.

665 **Cheng L, Chen W, Adams TS, Wei X, Li L, McCormack ML, DeForest JL, Koide RT,
666 Eissenstat DM. 2016.** Mycorrhizal fungi and roots are complementary in foraging within
667 nutrient patches. *Ecology* **97**: 2815–2823.

668 **Cornelissen J, Aerts R, Cerabolini B, Werger M, van der Heijden M. 2001.** Carbon
669 cycling traits of plant species are linked with mycorrhizal strategy. *Oecologia* **129**: 611–619.

670 **Deng M, Hu S, Guo L, Jiang L, Huang Y, Schmid B, Liu C, Chang P, Li S, Liu X, et al.**
671 **2023.** Tree mycorrhizal association types control biodiversity-productivity relationship in a
672 subtropical forest. *Science Advances* **9**: eadd4468.

673 **Diaz S, Hodgson J g., Thompson K, Cabido M, Cornelissen J h. c., Jalili A, Montserrat-
674 Martí G, Grime J p., Zarrinkamar F, Asri Y, et al. 2004.** The plant traits that drive
675 ecosystems: Evidence from three continents. *Journal of Vegetation Science* **15**: 295–304.

676 **Dietrich P, Ferlian O, Huang Y, Luo S, Quosh J, Eisenhauer N. 2022.** Tree diversity
677 effects on productivity depend on mycorrhizae and life strategies in a temperate forest
678 experiment. *Ecology* **104**: e3896.

679 **Dornbush ME, Wilsey BJ. 2010.** Experimental Manipulation of Soil Depth Alters Species
680 Richness and Co-Occurrence in Restored Tallgrass Prairie. *Journal of Ecology* **98**: 117–125.

681 **Duffy JE, Godwin CM, Cardinale BJ. 2017.** Biodiversity effects in the wild are common and
682 as strong as key drivers of productivity. *Nature* **549**: 261–264.

683 **Durán J, Delgado-Baquerizo M, Rodríguez A, Covelo F, Gallardo A. 2013.** Ionic
684 exchange membranes (IEMs): A good indicator of soil inorganic N production. *Soil Biology
685 and Biochemistry* **57**: 964–968.

686 **Ehbrecht M, Schall P, Ammer C, Seidel D. 2017.** Quantifying stand structural complexity
687 and its relationship with forest management, tree species diversity and microclimate.
688 *Agricultural and Forest Meteorology* **242**: 1–9.

689 **Eisenhauer N, Bonfante P, Buscot F, Cesarz S, Guerra C, Heintz-Buschart A, Hines J,
690 Patoine G, Rillig M, Schmid B, et al. 2022.** Biotic Interactions as Mediators of Context-

691 Dependent Biodiversity-Ecosystem Functioning Relationships. *Research Ideas and*
692 *Outcomes* **8**: e85873.

693 **Eisenhauer N, Lanoue A, Strecker T, Scheu S, Steinauer K, Thakur MP, Mommer L.**
694 **2017**. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass.
695 *Scientific Reports* **7**: 44641.

696 **Eskelinen A, Gravuer K, Harpole WS, Harrison S, Virtanen R, Hautier Y. 2020.**
697 Resource-enhancing global changes drive a whole-ecosystem shift to faster cycling but
698 decrease diversity. *Ecology* **101**: e03178.

699 **Ferlian O, Cesarz S, Craven D, Hines J, Barry KE, Bruelheide H, Buscot F, Haider S,**
700 **Heklau H, Herrmann S, et al. 2018**. Mycorrhiza in tree diversity–ecosystem function
701 relationships: conceptual framework and experimental implementation. *Ecosphere* **9**:
702 e02226.

703 **Ferlian O, Goldmann K, Eisenhauer N, Tarkka MT, Buscot F, Heintz-Buschart A. 2021.**
704 Distinct effects of host and neighbour tree identity on arbuscular and ectomycorrhizal fungi
705 along a tree diversity gradient. *ISME Communications* **1**: 1–10.

706 **Fichtner A, von Oheimb G, Härdtle W, Wilken C, Gutknecht JLM. 2014.** Effects of
707 anthropogenic disturbances on soil microbial communities in oak forests persist for more
708 than 100 years. *Soil Biology and Biochemistry* **70**: 79–87.

709 **Guerra CA, Bardgett RD, Caon L, Crowther TW, Delgado-Baquerizo M, Montanarella L,**
710 **Navarro LM, Orgiazzi A, Singh BK, Tedersoo L, et al. 2021a.** Tracking, targeting, and
711 conserving soil biodiversity. *Science* **371**: 239–241.

712 **Guerra CA, Wall D, Eisenhauer N. 2021b.** Unearthing soil ecological observations: see
713 supporting information as supplementary material. *SOIL ORGANISMS* **93**: 79–81.

714 **Guerrero-Ramírez NR, Craven D, Reich PB, Ewel JJ, Isbell F, Koricheva J, Parrotta JA,**
715 **Auge H, Erickson HE, Forrester DI, et al. 2017.** Diversity-dependent temporal divergence
716 of ecosystem functioning in experimental ecosystems. *Nature Ecology & Evolution* **1**: 1639–
717 1642.

718 **Guiz J, Ebeling A, Eisenhauer N, Hacker N, Hertzog L, Oelmann Y, Roscher C, Wagg C,**
719 **Hillebrand H. 2018.** Interspecific competition alters leaf stoichiometry in 20 grassland
720 species. *Oikos* **127**: 903–914.

721 **van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller**
722 **T, Wiemken A, Sanders IR. 1998.** Mycorrhizal fungal diversity determines plant biodiversity,
723 ecosystem variability and productivity. *Nature* **396**: 69–72.

724 **Hildebrand M, Perles-Garcia MD, Kunz M, Härdtle W, von Oheimb G, Fichtner A. 2021.**
725 Tree-tree interactions and crown complementarity: The role of functional diversity and branch
726 traits for canopy packing. *Basic and Applied Ecology* **50**: 217–227.

727 **Hooper DU, Chapin III FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge**
728 **DM, Loreau M, Naeem S, et al. 2005.** Effects of Biodiversity on Ecosystem Functioning: A
729 Consensus of Current Knowledge. *Ecological Monographs* **75**: 3–35.

730 **Huang Y, Chen Y, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang A, Li Y, Härdtle W,**
731 **von Oheimb G, Yang X, et al. 2018.** Impacts of species richness on productivity in a large-
732 scale subtropical forest experiment. *Science* **362**: 80–83.

733 **Keller AB, Phillips RP. 2018.** Leaf litter decay rates differ between mycorrhizal groups in
734 temperate, but not tropical, forests. *New Phytologist* **222**: 556–564.

735 **Koele N, Dickie IA, Oleksyn J, Richardson SJ, Reich PB. 2012.** No globally consistent
736 effect of ectomycorrhizal status on foliar traits. *New Phytologist* **196**: 845–852.

737 **Kuzyakov Y, Blagodatskaya E. 2015.** Microbial hotspots and hot moments in soil: Concept
738 & review. *Soil Biology and Biochemistry* **83**: 184–199.

739 **Lambers H, Mougel C, Jaillard B, Hinsinger P. 2009.** Lambers H, Mougel C, Jaillard B,
740 Hinsinger P.. Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective.
741 *Plant Soil* **321**: 83–115. *Plant Soil* **321**: 83–115.

742 **Lange M, Eisenhauer N, Chen H, Gleixner G. 2023.** Increased soil carbon storage through
743 plant diversity strengthens with time and extends into the subsoil. *Global Change Biology* **29**:
744 2627–2639.

745 **Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI, Mellado-Vázquez
746 PG, Malik AA, Roy J, Scheu S, et al. 2015.** Plant diversity increases soil microbial activity
747 and soil carbon storage. *Nature Communications* **6**: 6707.

748 **Lenth RV, Bolker B, Buerkner P, Giné-Vázquez I, Herve M, Jung M, Love J, Miguez F,
749 Riebl H, Singmann H. 2023.** emmeans: Estimated Marginal Means, aka Least-Squares
750 Means.

751 **Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze E-D, McGuire AD,
752 Bozzato F, Pretzsch H, et al. 2016.** Positive biodiversity-productivity relationship
753 predominant in global forests. *Science* **354**: aaf8957.

754 **Loreau M, Hector A. 2001.** Partitioning selection and complementarity in biodiversity
755 experiments. *Nature* **412**: 72–76.

756 **Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A,
757 Oldroyd GED, Eastmond PJ. 2017.** Fatty acids in arbuscular mycorrhizal fungi are
758 synthesized by the host plant. *Science* **356**: 1175–1178.

759 **Luo S, Phillips RP, Jo I, Fei S, Liang J, Schmid B, Eisenhauer N. 2023.** Higher
760 productivity in forests with mixed mycorrhizal strategies. *Nature Communications* **14**: 1377.

761 **Midgley MG, Phillips RP. 2014.** Mycorrhizal associations of dominant trees influence nitrate
762 leaching responses to N deposition. *Biogeochemistry* **117**: 241–253.

763 **Morin X, Fahse L, Scherer-Lorenzen M, Bugmann H. 2011.** Tree species richness
764 promotes productivity in temperate forests through strong complementarity between species.
765 *Ecology Letters* **14**: 1211–1219.

766 **Niklaus PA, Leadley PW, Schmid B, Körner Ch. 2001.** A Long-Term Field Study on
767 Biodiversity x Elevated Co2 Interactions in Grassland. *Ecological Monographs* **71**: 341–356.

768 **Niklaus PA. 2022.** *pdiv* package GitHub repository <https://github.com/pascal-niklaus/pdiv>

769 **Oelmann Y, Buchmann N, Gleixner G, Habekost M, Roscher C, Rosenkranz S, Ernst
770 Detlef S, Steinbeiss S, Temperton V, Weigelt A, et al. 2011.** Plant diversity effects on
771 aboveground and belowground N pools in temperate grassland ecosystems: Development in
772 the first 5 years after establishment. *Global Biogeochemical Cycles* **25**.

773 **Oelmann Y, Wilcke W, Temperton VM, Buchmann N, Roscher C, Schumacher J,**
774 **Schulze E-D, Weisser WW. 2007.** Soil and Plant Nitrogen Pools as Related to Plant
775 Diversity in an Experimental Grassland. *Soil Science Society of America Journal* **71**: 720–
776 729.

777 **Orwin KH, Kirschbaum MUF, St John MG, Dickie IA. 2011.** Organic nutrient uptake by
778 mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. *Ecology*
779 *Letters* **14**: 493–502.

780 **Phillips RP, Brzostek E, Midgley MG. 2013.** The mycorrhizal-associated nutrient economy:
781 a new framework for predicting carbon–nutrient couplings in temperate forests. *New*
782 *Phytologist* **199**: 41–51.

783 **Placella SA, Firestone MK. 2013.** Transcriptional Response of Nitrifying Communities to
784 Wetting of Dry Soil. *Applied and Environmental Microbiology* **79**: 3294–3302.

785 **Pollierer MM, Langel R, Körner C, Maraun M, Scheu S. 2007.** The underestimated
786 importance of belowground carbon input for forest soil animal food webs. *Ecology Letters* **10**:
787 729–736.

788 **Powell JR, Rillig MC. 2018.** Biodiversity of arbuscular mycorrhizal fungi and ecosystem
789 function. *New Phytologist* **220**: 1059–1075.

790 **Prada-Salcedo LD, Prada-Salcedo JP, Heintz-Buschart A, Buscot F, Goldmann K. 2022.**
791 Effects of Tree Composition and Soil Depth on Structure and Functionality of Belowground
792 Microbial Communities in Temperate European Forests. *Frontiers in Microbiology* **13**:
793 920618.

794 **Qian P, Schoenau JJ. 2002.** Availability of nitrogen in solid manure amendments with
795 different C:N ratios. *Canadian Journal of Soil Science* **82**: 219–225.

796 **Ray T, Delory BM, Beugnon R, Bruelheide H, Cesarz S, Eisenhauer N, Ferlian O, Quosh**
797 **J, von Oheimb G, Fichtner A. 2023.** Tree diversity increases productivity through
798 enhancing structural complexity across mycorrhizal types. *Science Advances* **9**: eadi2362.

799 **Riley WJ, Ortiz-Monasterio I, Matson PA. 2001.** Nitrogen leaching and soil nitrate, nitrite,
800 and ammonium levels under irrigated wheat in Northern Mexico. *Nutrient Cycling in*
801 *Agroecosystems* **61**: 223–236.

802 **Rillig MC, Mumme DL. 2006.** Mycorrhizas and soil structure. *New Phytologist* **171**: 41–53.

803 **Rochow JJ. 1975.** Mineral Nutrient Pool and Cycling in a Missouri Forest. *Journal of*
804 *Ecology* **63**: 985–994.

805 **Rodríguez A, Durán J, Fernández-Palacios JM, Gallardo A. 2009.** Wildfire changes the
806 spatial pattern of soil nutrient availability in *Pinus canariensis* forests. *Annals of Forest*
807 *Science* **66**: 210–210.

808 **Schachtman DP, Reid RJ, Ayling SM. 1998.** Phosphorus Uptake by Plants: From Soil to
809 Cell. *Plant Physiology* **116**: 447–453.

810 **Scherer-Lorenzen M, Körner C, Schulze E-D (Eds.). 2005.** *Forest Diversity and Function*.
811 Berlin/Heidelberg: Springer-Verlag.

812 **Scherer-Lorenzen M, Palmborg C, Prinz A, Schulze E-D. 2003.** The Role of Plant
813 Diversity and Composition for Nitrate Leaching in Grasslands. *Ecology* **84**: 1539–1552.

814 **Singavarapu B, Beugnon R, Bruelheide H, Cesarz S, Du J, Eisenhauer N, Guo L-D,**
815 **Nawaz A, Wang Y, Xue K, et al. 2021.** Tree mycorrhizal type and tree diversity shape the
816 forest soil microbiota. *Environmental Microbiology* **24**: 4236–4255.

817 **Smith SE, Read DJ. 2008.** *Mycorrhizal Symbiosis*. 3rd Edition, Academic Press, London.

818 **Smith SE, Smith FA. 2011.** Roles of Arbuscular Mycorrhizas in Plant Nutrition and Growth:
819 New Paradigms from Cellular to Ecosystem Scales. *Annual Review of Plant Biology* **62**: 227–
820 250.

821 **Stark H, Nothdurft A, Block J, Bauhus J. 2015.** Forest restoration with *Betula* ssp. and
822 *Populus* ssp. nurse crops increases productivity and soil fertility. *Forest Ecology and*
823 *Management* **339**: 57–70.

824 **Stone MM, DeForest JL, Plante AF. 2014.** Changes in extracellular enzyme activity and
825 microbial community structure with soil depth at the Luquillo Critical Zone Observatory. *Soil*
826 *Biology and Biochemistry* **75**: 237–247.

827 **Tilman D. 1980.** Resources: A Graphical-Mechanistic Approach to Competition and
828 Predation. *The American Naturalist* **116**: 362–393.

829 **Varma A, Prasad R, Tuteja N (Eds.). 2017.** *Mycorrhiza - Nutrient Uptake, Biocontrol,*
830 *Ecorestoration*. Cham: Springer International Publishing.

831 **Weinhold A, Döll S, Liu M, Schedl A, Pöschl Y, Xu X, Neumann S, van Dam NM. 2022.**
832 Tree species richness differentially affects the chemical composition of leaves, roots and root
833 exudates in four subtropical tree species. *Journal of Ecology* **110**: 97–116.

834 **Weldmichael TG, Michéli E, Fodor H, Simon B. 2020.** The Influence of Depth on Soil
835 Chemical Properties and Microbial Respiration in the Upper Soil Horizons. *Eurasian Soil*
836 *Science* **53**: 780–786.

837 **Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC. 1990.** Measurement
838 of soil microbial biomass C by fumigation-extraction—an automated procedure. *Soil Biology*
839 *and Biochemistry* **22**: 1167–1169.

840 **Yevdokimov I, Larionova A, Blagodatskaya E. 2016.** Microbial immobilisation of
841 phosphorus in soils exposed to drying-rewetting and freeze-thawing cycles. *Biology and*
842 *Fertility of Soils* **52**: 685–696.

843 **Ziadi N, Simard RR, Allard G, Lafond J. 1999.** Field evaluation of anion exchange
844 membranes as a N soil testing method for grasslands. *Canadian Journal of Soil Science* **79**:
845 281–294.

846 **Zuur AF, Ieno EN, Saveliev AA. 2017.** *Beginner's guide to spatial, temporal, and spatial-*
847 *temporal ecological data analysis with R-INLA*. Newburgh, Scotland: Highland Statistics Ltd.

848
849
850
851
852
853

854 **Supporting Information**

855
856 Additional Supporting Information may be found online in the Supporting Information section
857 at the end of the article.

858
859 **Fig. S1** Wood volume for tree communities of AM, EM, AM+EM trees with one, two, four tree
860 species.

861
862 **Fig. S2** Species specific wood volume for tree communities of AM, EM, AM+EM trees with
863 one, two, four tree species.

864
865 **Fig. S3** Species specific foliage elemental pools for tree communities of AM, EM, AM+EM
866 trees with one, two, four tree species.

867
868 **Fig. S4** Soil and soil microbial elemental pools for tree communities of AM, EM, AM+EM
869 trees with one, two, four tree species.

870
871 **Fig. S5** Temporal variability of nitrate availability in soil over the period of two years.

872
873 **Fig. S6** Temporal variability of ammonium availability in soil over the period of two years.

874
875 **Fig. S7** Temporal variability of phosphate availability in soil over the period of two years.

876
877 **Fig. S8** Seasonal availability of ammonium and phosphate as affected by soil moisture.

878
879 **Fig. S9** Temporal variation of soil temperature over the period of two years.

880
881 **Fig. S10** Temporal variation of air temperature and air humidity over the period of two years.

882
883 **Table S1** Plot specific information of MyDiv experiment.

884
885 **Table S2** Summary Tukey HSD analysis of wood volume among Mycorrhizal types.

886
887 **Table S3** Summary mixed-effects model analyses testing the effects of Tree species
888 richness and Mycorrhizal type on wood volume.

889
890 **Table S4** Summary mixed-effects model analyses testing the effects of Tree species
891 richness and Mycorrhizal type on soil pH and soil bulk density.

892
893 **Table S5** Summary mixed-effects model analyses testing the effects of Tree species
894 richness, Mycorrhizal type, and their interaction of elemental contents in foliage, soil, and soil
895 microbial biomass.

896
897 **Table S6** Summary mixed-effects model analyses testing the effects of Tree species
898 richness, Mycorrhizal type, and their interaction of elemental pools in foliage, soil, and soil
899 microbial biomass.

900
901 **Table S7** Summary Tukey HSD analysis of elemental contents in foliage, soil, and soil
902 microbial biomass among Mycorrhizal types.

903
904 **Table S8** Summary Tukey HSD analysis of elemental pools in foliage, soil, and soil microbial
905 biomass among Mycorrhizal types.

907 **Table S9** Summary simple linear regression analyses of elemental contents in foliage, soil,
908 and soil microbial biomass.

910 **Table S10** Summary simple linear regression analyses of elemental pools in foliage, soil,
911 and soil microbial biomass.

912 **Table S11** Summary of RW1 model using Bayesian statistics testing the effects of Tree
913 species richness, Mycorrhizal type, Season, and Soil moisture nitrate ammonium phosphate
915 availability.

916 **Table S12** Summary one-tailed t-test to test whether biodiversity effects are significantly
917 different from zero.

919 **Table S13** Summary Tukey HSD analysis testing the difference in biodiversity effects (net
920 biodiversity effects, selection effects, complementarity effects) among Mycorrhizal types.

922 **Table S14** Summary of simple linear regression analyses of biodiversity effects of
923 mycorrhizal tree communities.

925 **Table S15** Percentage changes of elemental contents in foliage, soil, and soil microbial
926 biomass between levels of Tree species richness.

928 **Table S16** Percentage changes of elemental pools in foliage, soil, and soil microbial biomass
929 between levels of Tree species richness.

931 **Table S17** Percentage changes of elemental contents in foliage, soil, and soil microbial
932 biomass between levels of Mycorrhizal type.

934 **Table S18** Percentage changes of elemental pools in foliage, soil, and soil microbial biomass
935 between levels of Mycorrhizal type.

937
938
939