

1 **Title**

2 **Phenotypic consequences of logarithmic signaling in MAPK stress response**

3 **Authors**

4 Hossein Jashnsaz^{1,*} and Gregor Neuert^{1,2,*}

5 **Affiliations**

6 ¹Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University,
7 Nashville, TN 37232 USA

8 ²Lead Contact

9

10 ***Corresponding authors:**

11 hjashnsaz@gmail.com, gregor.neuert@Vanderbilt.Edu

12

13 **Summary**

14 How cells respond to dynamic environmental changes is crucial for understanding fundamental
15 biological processes and cell physiology. In this study, we developed an experimental and
16 quantitative analytical framework to explore how dynamic stress gradients that change over time
17 regulate cellular volume, signaling activation, and growth phenotypes. Our findings reveal that
18 gradual stress conditions substantially enhance cell growth compared to conventional acute
19 stress. This growth advantage correlates with a minimal reduction in cell volume dependent on
20 the dynamic of stress. We explain the growth phenotype with our finding of a logarithmic signal
21 transduction mechanism in the yeast Mitogen-Activated Protein Kinase (MAPK) osmotic stress
22 response pathway. These insights into the interplay between gradual environments, cell volume
23 change, dynamic cell signaling, and growth, advance our understanding of fundamental cellular
24 processes in gradual stress environments.

25

26 **Keywords**

27 MAPK Hog1, Gradual Environments, Dynamic Cell Signaling, Cell Stress, Cell Volume, Cell
28 Growth

29

32 **INTRODUCTION**

33 Signal transduction is fundamental for a variety of cellular processes, including growth,
34 differentiation, migration, and programmed cell death (1). These complex pathways play a
35 pivotal role in maintaining normal cellular functions, and disruptions in their regulation can result
36 in developmental defects and various human diseases (2–8). Despite the wealth of knowledge
37 on individual proteins and signaling pathways, accurately predicting how cells respond to a range
38 of perturbations, such as environmental changes and drug treatments, remains a formidable
39 challenge (9–11). Understanding the mechanisms of signal transduction is a crucial step in
40 characterizing cellular responses in both healthy and diseased states.

41

42 The complexity of cell signaling behavior is further compounded by their spatio-temporal
43 dynamics. Current cell biology primarily focuses on studying signaling behavior by measuring a
44 limited number of pathway components under steady-state conditions or in response to acute,
45 step-like sudden shifts between two constant concentrations (12–14). However, in their
46 physiological context, cells encounter stress concentrations that change in various forms such
47 as a sudden, linear, nonlinear, and repetitive forms over time, space, or both (15, 16). These
48 changes occur at time scales and length scales that are different from those involving acute
49 transitions between two constant levels (17). For example, circadian oscillations occur once per
50 day, synaptic firing happens multiple times per second, and various hormones, including blood
51 insulin, exhibit unique temporal patterns that selectively regulate intracellular processes based
52 on their dynamics (18). These physiological changes that cells experience are not always acute
53 and they could happen in smooth and slow patterns over time or space (17). This mismatch
54 between traditional experimental conditions and the dynamic reality of physiological
55 environments has created a gap in our understanding of how signaling behaves within complex
56 natural settings.

57

58 Emerging studies demonstrate that different cell stimulations that vary over time or space can
59 dramatically affect intracellular signaling dynamics (17, 19). As a result, qualitatively distinct
60 dynamics of the same signaling molecule such as signals with different amplitudes, durations,
61 rates, or oscillations can lead to altered gene expression or create entirely distinct cell
62 phenotypes (7, 15, 16, 18–32). Such cell stimulations vary widely in their nature from

63 extracellular cues such as growth factors (33) or environmental stressors (22, 34, 35) to
64 intercellular molecules including morphogens (7, 26, 36), cytokines (37–41), hormones (18), or
65 neurotransmitters (42) and extending to intracellular signals such as DNA damage (43) or cell
66 cycle factors (24). The observation that different concentration patterns of the same stimulation
67 molecule over time or space create distinct cellular responses highlights a significant gap in our
68 understanding of the underlying signaling mechanisms in gradual environments that represent
69 physiology.

70

71 To mimic physiological cellular environments, we have developed a novel method for precisely
72 controlling the microenvironment of individual cells by subjecting them to stress with
73 concentrations that change gradually over time (15, 16, 27, 29). Our studies have demonstrated
74 that gradual cell stress yield superior results compared to conventional approaches when
75 constructing predictive mathematical models of cell signaling (15, 16). Furthermore, we and
76 other pioneering studies have investigated the impact of varying the rate of osmotic stress over
77 time on signaling activation and cellular survival (17, 19, 23, 26–29, 44–46). However, our
78 understanding of how cells integrate dynamic signal features continually over time, such as the
79 rate of change in stress, along with the stress concentration itself, remains unknown. In addition,
80 how gradual stress impact cellular morphology and growth over time remains a significant
81 knowledge gap.

82

83 In this study, we delved into the differential effects of acute stress compared to gradual
84 physiological stress on the regulation of signaling and cell growth. Moreover, we sought to gain
85 insights into how cells integrate gradual environmental changes into their responses over time.
86 To address these questions, we present an integrated experimental and quantitative analytical
87 framework designed to explore dynamic volume change and signaling processes under gradual
88 environments. We employed the conserved Mitogen-Activated Protein Kinase (MAPK) High
89 Osmolarity Glycerol (HOG) stress signaling pathway in the yeast *Saccharomyces cerevisiae* as
90 a model system (47, 48). Here, we report our discovery that rate sensing and logarithmic
91 signaling together contribute to the eukaryotic MAPK signal transduction, shedding light on how
92 cells process dynamic stress into their responses over time.

93

94 The Hog1 pathway, among the well-studied eukaryotic signaling pathways, stands out as a
95 blueprint for studying signaling mechanisms (16, 47). Remarkably, this pathway displays
96 conservation in many of its constituent proteins, extending from yeast to humans. As a major
97 MAPK signaling pathway, its fundamental role in the cellular response to osmotic stress makes
98 it an ideal model for exploring cellular responses to gradual environmental changes over time.
99 Numerous key studies have shed light on the significance of the Hog1 pathway in shaping yeast
100 growth phenotypes during osmotic stress (Figures 1A) (48–50). This pathway has been the
101 subject of extensive investigation, with researchers exploring various facets of cellular responses
102 to osmotic stress and the central role Hog1 signaling plays in these intricate processes (29, 35,
103 48–52). For example, it is shown that cell volume reduction in severe osmotic stress conditions
104 slows down Hog1 signal transduction from cytoplasm to nucleus due to molecular crowding and
105 this has implications for a range of cellular processes including cell growth (53–56).

106

107 In experiments, we employed precisely controlled gradual cell stress (Figure 1B). Through real-
108 time measurements, we tracked cell volume changes, Hog1 nuclear localization, and cell growth
109 phenotypes, as elaborated in the subsequent sections. Notably, we observed an optimal cellular
110 growth phenotype under severe osmotic stresses when applied to cells gradually. Our data has
111 revealed the existence of logarithmic signaling, a signal transduction mechanism that perceives
112 relative changes in extracellular stress, shedding light on this phenomenon in eukaryotes with
113 crucial implications for cell volume, signaling and growth.

114

115 In contrast to the transient Hog1 signaling activation seen with acute stress, we observed a
116 gradual Hog1 signaling decay with linear stress and a sustained Hog1 signaling activation over
117 the duration of exponential stress. This observation is different than the predictions of signaling
118 mechanisms through which cells sense the concentration change or the absolute rate of change
119 in stress, as we discuss in the results. These findings collectively contribute to our understanding
120 of how cells adapt and respond to gradual environmental changes.

121

122 RESULTS

123 1. Gradually Rising Stress Conditions Compared to Acute and Pulsatile Stress 124 Conditions result in Growth Advantage.

125 Here, we study how does gradual stress impact the cellular growth phenotype. Our findings
126 revealed a strong correlation between the stress gradient type and cell growth. Standard yeast
127 stress response models suggest that the severity (concentration or duration) of stress directly
128 influences the cell growth phenotype (22, 53, 54, 56). We exposed cells to an acute stress in the
129 form of a 3M pulsatile NaCl for 120 minutes and subsequently quantified the cell doubling time
130 after exposure as 453+/-46 minutes (Figure 2A-2B, Methods). In comparison, exposure of cells
131 to acute 3M NaCl stress for 30 minutes resulted in a cell doubling time of 218+/- 18 minutes
132 (Figure 2C-2D, Methods). Next, we exposed cells to a linear increasing stress (3M NaCl in 120
133 minutes), and measured a reduced cell doubling time of 147+/-16 minutes (Figure 2E). Exposing
134 cells to an exponential increasing stress scenario of the same intensity and duration reduced the
135 cell doubling time to 117+/-1 minutes (Figure 2F). Our investigation unveiled a remarkable
136 deviation from the standard paradigm. The type of gradual stress proved to be a pivotal factor in
137 determining the cell growth phenotype even more than stress intensity, duration, or total stress
138 (integrated stress exposure quantified as the total area under the stress profile) (Figure 2G-2I).
139 Our results indicate that cells grow substantially better under gradually rising stress conditions
140 compared to acute pulsatile stress conditions (Figure 2, purple a cyan compared to blue). These
141 observations are even more prevalent in repetitive stress conditions after exposure to a second
142 stress treatment (Figures 2 and 1S). This intriguing outcome sheds new light on the intricate
143 interplay between the gradual aspects of stress and cellular responses, highlighting the
144 significance of gradual stress exposure in enhancing cell growth.

145
146 **2. Gradual Stress of Single Cells Results in Distinct Cell Volume Phenotypes and Hog1**
147 **Signaling Dynamic Responses.**

148 To understand the observed cell growth phenotypes, we implemented gradual stress paradigms
149 and quantified cell volume changes and Hog1 signaling activation via time lapse microscopy.
150 We aimed to elucidate these dynamics by employing precisely controlled gradual concentration
151 profiles, contrasting them with acute stress implemented as instant step-like concentration
152 changes. The gradual concentration profiles, implemented as polynomial functions of time
153 (Figure 3A), were characterized by three key parameters: C_{\max} (maximum concentration
154 change), T (stress duration), and k (polynomial order), which governed how the profile reached
155 C_{\max} over T (Figure 3B). In these profiles, $k = 1$ represented linear stress, while k values between

156 zero and one signified stress starting with the highest rate and gradually decreasing (Figure 3A).
157 For $k > 1$, stress started with slower rates and increased over time. Additionally, we generated
158 exponentially increasing profiles akin to the polynomial ones, beginning at 0 and reaching C_{max}
159 over T (Figure 3B).

160
161 In our experimental setup, we compared the responses to a 0M NaCl control and an acute 0.6M
162 NaCl stress at t=0 minutes with the responses to polynomial NaCl increases from zero to 0.6M
163 over 25 minutes for k values of 0.5, 1, 2, 3, 5, and 7 (Figure 3C). These concentrations were
164 then maintained at 0.6M for an additional 25 minutes (Figure 3C). Subsequently, we applied
165 these stress profiles to single cells (Figure 3D) and conducted real-time measurements to
166 quantify cellular volume changes over time (Figure 3E) and Hog1 nuclear localization (Figure
167 3F) during the stress periods using time-lapse microscopy (Figure S2).

168
169 Our results unveiled significant distinctions in cellular responses to these dynamic stress profiles
170 even though all concentrations reached the same final values. Under growth media with 0M
171 NaCl, cellular volume showed gradual expansion and an overall increase over time (Figure 3E).
172 In contrast, an acute NaCl stress led to a rapid and substantial reduction in cellular volume.
173 Gradual increases in stress resulted in gradual and sustained cell volume reductions over time
174 (Figure 3E).

175
176 At the signaling level, we observed distinct patterns of Hog1 nuclear localization (defined as
177 $Hog1^{nuc}$) in response to these stress profiles (Figure 3F). In growth media with 0M NaCl, there
178 was no discernible change in Hog1 nuclear localization. Conversely, an acute NaCl stress
179 induced a rapid and robust transient increase in Hog1 nuclear localization. Gradual NaCl stress,
180 however, elicited delayed Hog1 activity that did not reach the maximum activation observed
181 under an acute stress. Furthermore, the timing of maximum activation was shifted, and all
182 activities ultimately adapted to pre-stress levels over a 50-minute period.

183
184 Both in terms of cellular morphology and signaling dynamics, responses to gradual stress
185 exhibited marked differences between conditions over time. These findings underscore the
186 nuanced and distinct cellular responses arising from variations in gradual stress profiles.

187

188 **3. Cell Volume Reduction and Hog1 nuclear localization Follow the Change in Stress**
189 **Dynamics with High Fidelity.**

190 Here, we focused on quantifying the precision and fidelity of cellular responses following the
191 gradual stress profiles, particularly their impact on cell volume reduction and Hog1 nuclear
192 localization. Under gradual NaCl stress, with final concentrations set at $C_{max} = 0.6M$ (Figure 4A),
193 we observed distinct patterns in relative cell volume change (Figure 4B) and cell volume
194 reduction (Figure 4C) phenotypes. We define cell volume reduction as the volume change under
195 each NaCl stress condition relative to the volume change in growth media of 0M NaCl condition.
196

197 The maximum cell volume reduction (Figure 4D) and the total cell volume reduction over the 25-
198 minute stress time (Figure 4E) exhibited marked variations among the stress conditions. The
199 former represents the highest reduction in cell volume, while the latter denotes the integrated
200 cell volume reduction throughout the 25 minutes of cell stress. Notably, step-like stress resulted
201 in the highest cell volume reductions among all the gradual stress profiles. In contrast, both linear
202 and exponential stress led to the lowest (total or maximum) cell volume reduction when
203 compared to other gradual stress. Furthermore, our analysis revealed a negative correlation
204 between cell growth rate and cell volume reductions under osmotic stress conditions (Figure
205 4F).

206
207 Next, we quantified the dynamics of both cell volume reduction and Hog1nuc compared to NaCl
208 stress change by fitting each volume and Hog1 response to a polynomial function (Figures 4G,
209 S3, S4, Table 1, Methods). We found that cells process the stress change at volume level
210 different than that of Hog1 activation. For example, in response to a quadratic stress change
211 over time ($k=2$), cell volume reduction follows a polynomial change of smaller order ($k=1.86$)
212 while Hog1nuc follow a polynomial change of greater order ($k=3.15$) (Figure 4G). This
213 observation suggests a specific mathematical relationship between the applied gradual stress
214 and the resulting cell volume changes and Hog1nuc dynamics.

215
216 To answer whether Hog1nuc activity impacts cell volume reduction, we directly compared the
217 dynamics of Hog1^{nuc} to that of cellular volume reduction under gradual NaCl stress (Figure 4G).
218 Like acute stress conditions (23), we observed that Hog1^{nuc} dynamics is delayed relative to cell

219 volume reduction dynamics under all gradual stress conditions. This observed delay in Hog1^{nuc}
220 dynamics suggest that Hog1^{nuc} dynamics does not impact cell volume reduction. Rather, the
221 observed cell volume reduction is a direct consequence of extracellular stress change,
222 irrespective of Hog1^{nuc} activity.

223

224 These results collectively emphasize the fidelity of cellular responses to gradual stress changes,
225 offering valuable insights into the relationship and the temporal order among extracellular stress
226 change, cell volume dynamics, signaling activation, and cell growth phenotypes. This raises the
227 question why do the linear and exponential profiles cause minimal volume change and enhanced
228 growth under stress.

229

230 **4. Logarithmic Signaling Mediates a Response Proportional to the Relative Changes of**
231 **Extracellular Environment.**

232 To address this question, we aim to better understand how gradual stress profiles control Hog1
233 signaling dynamics by means of phenomenological predictive modeling with the aim to identify
234 a signaling mechanism. We conducted a comprehensive analysis that compared the behaviors
235 of linear signaling (or rate sensing) models, where the cellular response is directly proportional
236 to the rate of change in the stress, with logarithmic signaling models, in which the response is
237 proportionate to the relative change in stress with respect to the perceiving background
238 concentration over time. Additionally, we explored a hybrid model that incorporated equal
239 contributions from both linear and logarithmic signaling responses additively (see Methods). To
240 dissect the unique characteristics of these signaling mechanisms, we subjected each of the
241 linear, logarithmic, and hybrid models to four distinct cell stress paradigms (Figure 5).

242

243 In the linear stress paradigm, cells encountered a stress that exhibited linearly increasing
244 concentration at a consistent rate over time (Figure 5A). Our analysis predicted distinct
245 responses under each of the three signaling mechanisms studied. Following reaching the
246 maximum level, we predicted that the response would exhibit constant (Figure 5B), gradual
247 decay (Figure 5C), and slower decay (Figure 5D) characteristics over time within the linear,
248 logarithmic, and hybrid models, respectively. It's worth noting that the hybrid model was

249 expected to display a slower rate of decay in response compared to the logarithmic mechanism,
250 while the linear signaling mechanism to maintain a constant response level.
251

252 In the exponential stress paradigm, cells were exposed to stress that exponentially increased in
253 concentration over time (Figure 5E), resulting in response dynamics as follows: after the initial
254 rise, the response was expected to show increasing, constant, and slower increasing patterns
255 over time within the linear (Figure 5F), logarithmic (Figure 5G), and hybrid (Figure 5H) models,
256 respectively. In each of the three signaling mechanisms, the response to an exponentially
257 increasing stress was projected to persist at a higher level compared to the response to a linearly
258 increasing stress.
259

260 In the pulsatile stress paradigm, cells received repeating acute stress (Figure 5I), leading to
261 identical responses throughout the stress periods (constant responses at each pulse of stress
262 application) across all signaling mechanisms (Figure 5J-5L). Notably, pulsatile stress did not
263 yield distinctive responses among the signaling mechanisms, indicating their inability to discern
264 between them.
265

266 In the staircase stress paradigm, the cells experienced a stress that followed a staircase pattern,
267 with a constant step change at each period without switching back to pre-stress level (Figure
268 5M). Staircase stress differentiated between the three signaling mechanisms. The linear
269 signaling is predicted to lead to cellular responses that remained constant throughout the stress
270 periods (Figure 5N). On the other hand, the logarithmic and the hybrid signaling mechanisms
271 both are predicted to lead to cellular responses that decayed throughout the stress periods
272 (Figure 5O, 5P).
273

274 In addition to these four major cell stress paradigms and to further test different signaling
275 paradigms, we also considered polynomial cell stress similar to those in Figure 3C. The Taylor
276 series summation of polynomials stress profiles of order $k=1,2,3,5,7$ (the Maclaurin series
277 expansion for an exponential function with coefficients as $1/k!$, where $k!$ represents the factorial
278 of k) recapitulates an exponentially increasing stress profile (Figure 5Q compared to Figure 5E).
279 We quantified the responses to each polynomial stress through each of the models. Similar

280 summations of signaling responses to polynomial stress recapitulated responses consistent with
281 those observed with exponential stress (Figure 5R-5T compared to Figures 5F-5H). Next, we
282 experimentally validate these predictions to differentiate between linear, logarithmic, and hybrid
283 signaling mechanisms.

284

285 **5. Implementing Gradual Cell Stress Confirmed that Logarithmic Signaling Contributes**
286 **to the HOG Pathway Signaling Response.**

287 In our experimental investigations, we employed various gradual cell stress conditions to
288 illuminate the signaling behavior of the HOG pathway. Specifically, we examined the response
289 of yeast cells to different forms of gradual NaCl stress at varying final concentrations. A summary
290 of key findings are as follows:

291

292 Linear stress, characterized by a gradual increase in NaCl concentration with a constant rate
293 over time to two different final concentrations of $C_{max} = 0.6M$ and $0.8M$ (Figure 6A), induced a
294 pattern of increasing cell volume reduction over time (Figure 6B). Quantification of these results
295 indicates that cell volume change follows a polynomial function of order less than $k=1$ for the
296 linear stress (Figures S3D-S3F, cyan). In parallel, this linear stress paradigm resulted in
297 decaying $Hog1^{nuc}$ dynamics after reaching the maximum level (Figure 6C, decaying trend are
298 indicated via black lines). Exponential stress, where the NaCl concentration increased
299 exponentially reaching two different final concentrations of $C_{max} = 0.6M$ and $0.8M$ each over 25
300 minutes (Figure 6D), led to a linear increase in cell volume reductions (Figures 6E, S3D-S3F,
301 purple), and an increase in $Hog1^{nuc}$ activity over the course of stress (Figure 6F). These stress
302 paradigms together show that the $Hog1$ pathway behaves as a hybrid model that combines both
303 rate sensing and logarithmic sensing mechanisms (Figures 5D, 5H).

304

305 To further explore the response patterns, we quantified the sum of the transient $Hog1^{nuc}$
306 responses induced by polynomial stress of various orders ($k=1,2,3,5,7$) (Figure 6G). We
307 performed these sums using weight coefficients according to the Maclaurin series expansion
308 (see Methods). Surprisingly, these responses closely resembled those observed under
309 exponential stress, characterized by linearly increasing cell volume reduction and increasing
310 $Hog1^{nuc}$ dynamics over time (Figure 6H, 6I).

311

312 Finally, we examined the effects of two distinct stress types: pulsatile and staircase. Pulsatile
313 stress consisted of three identical acute stresses between 0 and 0.2M NaCl (Figure 6J, blue
314 line), while staircase stress followed a sequential, constant change of 0.2M, without changing
315 back to 0 (Figure 6J, black line). These stresses resulted in differential dynamics for both cell
316 volume reduction and Hog1^{nuc} responses over time (Figures 6K, 6L, S5).

317

318 Comparing the observations on Hog1 responses under the five distinct NaCl stress paradigms,
319 namely Linear, Exponential, Sum of Polynomials, Pulsatile, and Staircase Stress, to the
320 quantitative results obtained from different models, confirmed that the Hog1 pathway performs
321 signaling according to a hybrid model (a sum of linear signaling and logarithmic signaling) in
322 response to gradual NaCl stress (Figures 6C, 6F, 6I, 6L compared to Figures 5D, 5H, 5L, 5P,
323 and 5T). These findings collectively confirm that the HOG pathway operates at a signaling mode
324 that incorporates both a linear signaling and a logarithmic signaling mechanism in response to
325 gradual environmental changes. The distinct response patterns observed under different stress
326 conditions highlight the pathway's ability to perceive and transduce gradual changes in its
327 environment, providing valuable insights into its role in cellular signal transduction.

328

329 **DISCUSSION**

330 In this study, we implemented gradual stress profiles and quantified dynamic cellular responses
331 under a wide range of conditions. This general approach is a significant development toward a
332 quantitative investigation of dynamic signaling processes, including mechanistic understanding
333 of cell signaling in physiologic cellular environments. We found that cells grow substantially
334 better under gradually rising stress compared to acute and pulsatile stress (Figures 2 and S1).
335 We then implemented gradual cell stress stimulations and time-lapse microscopy to quantify cell
336 volume change and Hog1 signaling activation dynamics in single cells over time. We found that
337 cell volume reduction depends on the gradual dynamic of the stress (Figures 3 and S2).
338 Interestingly, we uncovered that cell growth rate negatively correlates with cell volume reduction
339 for different gradual stress conditions (Figures 4, S3, and S4). Our results revealed that cells
340 grow optimally upon stress conditions that cause minimal cell volume reduction. Through
341 implementing quantitative models of three different signaling mechanisms, we predicted the

342 signatures of signaling activation dynamics under five distinct stress paradigms, namely linear,
343 exponential, polynomials, pulsatile, and staircase stress (Figure 5). We subsequently compared
344 these model predictions to our experimental measurements, confirming logarithmic signaling
345 contributing to the Hog1 pathway response to sense the relative change in gradual stress over
346 the background concentration over time (Figures 6 and S5).

347

348 We find that cell volume reduction, in a stress dynamic-dependent manner, impedes cell growth
349 independent of the rising part of the Hog1 signaling activation, while prolonged signaling under
350 gradual stress may also help cells improve growth. This physiological signaling mechanism is
351 significant because it induces persistent Hog1 activation upon gradual stimulations that
352 maximizes cell survival in severe stress conditions and links cell morphology changes to growth
353 phenotype. These results show that gradual dynamics of extracellular environments impact cell
354 growth and cell volume and our study provides a quantitative framework to investigate what
355 signaling pathways may be involved in these processes.

356

357 Our data establishes logarithmic signaling, a signal transduction mechanism of perceiving
358 relative changes of extracellular stress, with a phenotypic consequence in yeast cells for the first
359 time. Such signaling mechanism may be prevalent in pathways such as ERK, Wnt, NF- κ B, Tgf-
360 β , PI3K-Akt and may play important roles to regulate distinct cellular responses and functions
361 during important biological processes relevant to human health and disease (57–61).

362

363 **SUPPLEMENTAL INFORMATION**

364 Supplemental Information includes Figures S1-S5.

365

366 **ACKNOWLEDGMENTS**

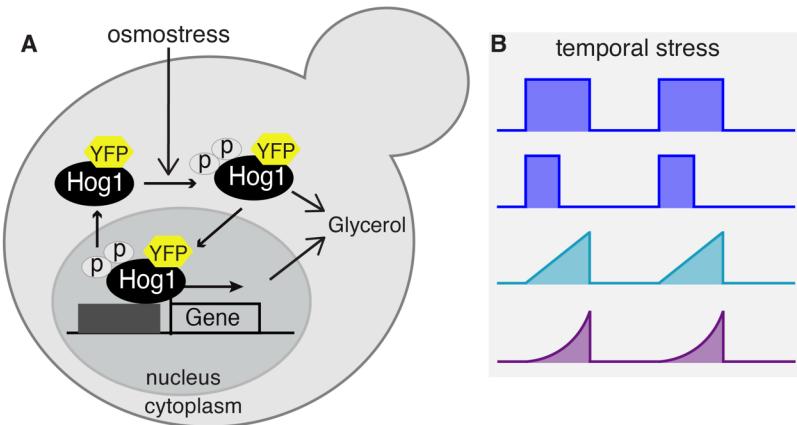
367 GN is supported by NIH R01GM140240, and Vanderbilt Basic Science Dean's Faculty
368 Fellow Endowed Chair. The authors thank Drs. Brian Munsky and Zachary Fox for their valuable
369 discussions on the manuscript and Dr. Zachary Fox for his comments on the manuscript. This
370 study used resources at the Advanced Computing Center for Research and Education (ACCRE)
371 at Vanderbilt University, Nashville, TN (NIH S10 Shared Instrumentation Grant 1S10OD023680-
372 01 (Meiler).

373

374 **AUTHOR CONTRIBUTIONS**

375 Conceptualization, H.J., G.N; Methodology, H.J.; Software, H.J., G.N.; Validation, H.J.; Formal
376 Analysis, H.J.; Investigation, H.J.; Data Curation, H.J.; Writing – Original Draft, H.J.; Writing –
377 Review & Editing, H.J., G.N., Visualization, H.J.; Supervision, G.N., Project Administration, H.J.,
378 G.N.; Funding Acquisition, G.N.

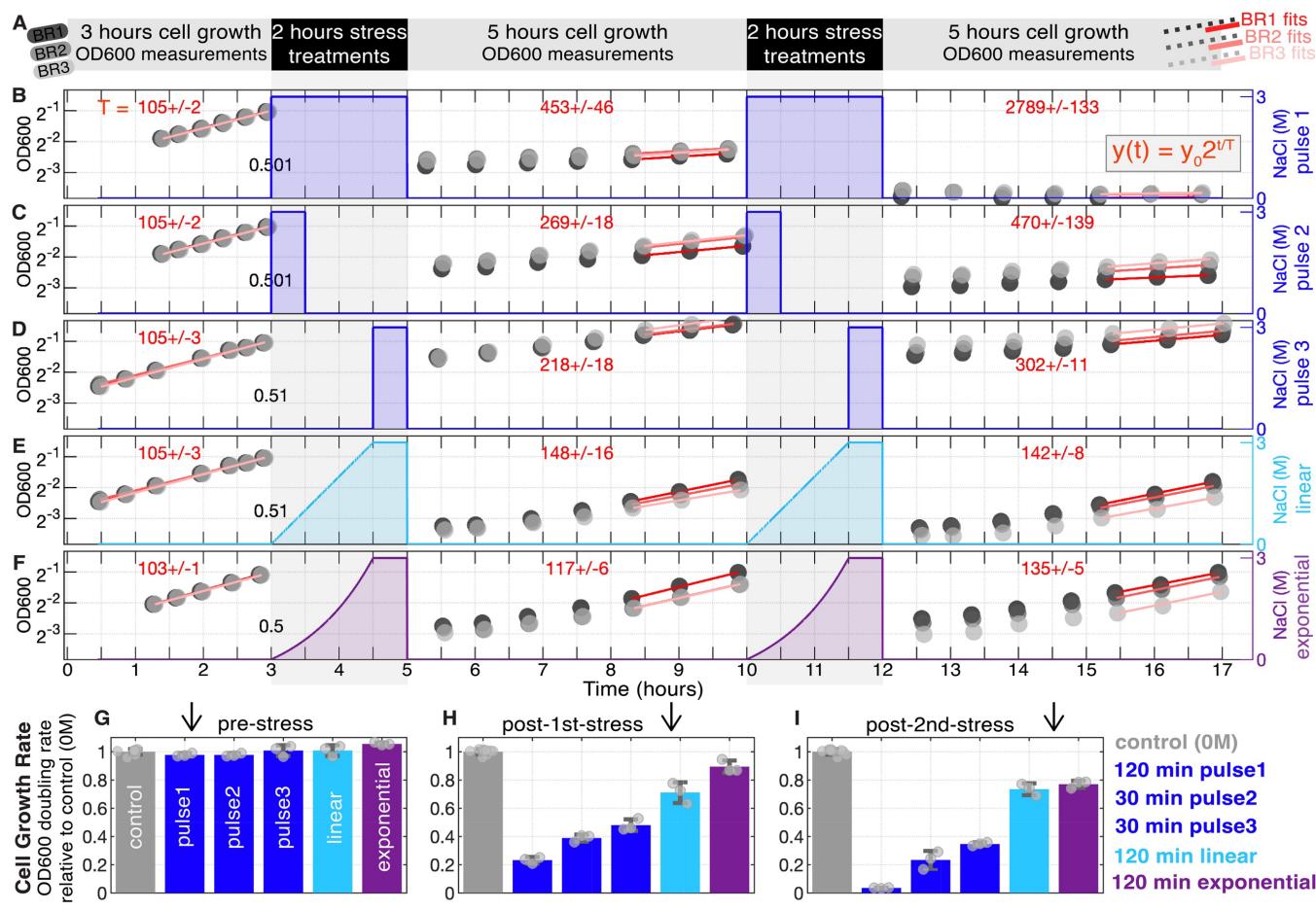
379


380 **DECLARATION OF INTERESTS**

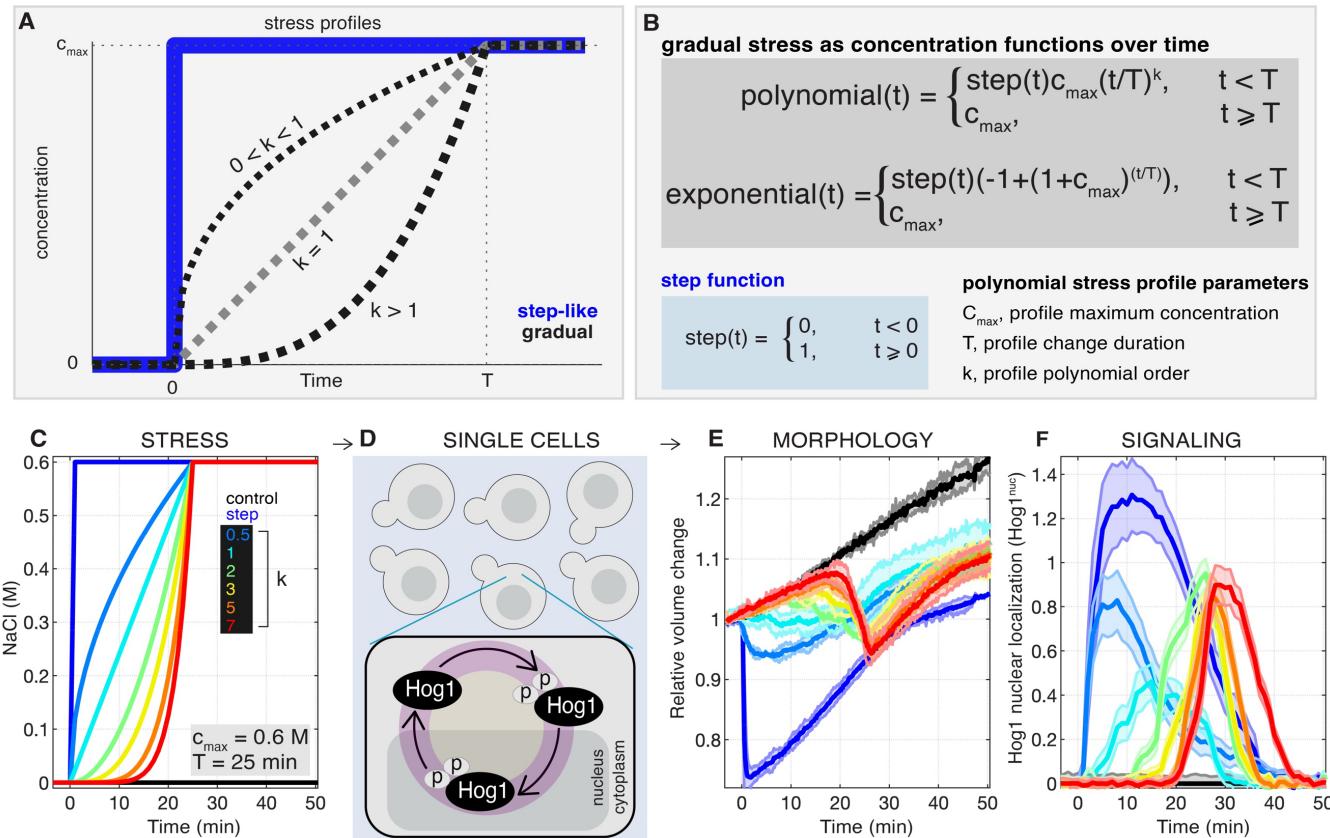
381 Technology to generate gradual environmental changes is disclosed in a provisional patent
382 application #VU22141PCT1.

383

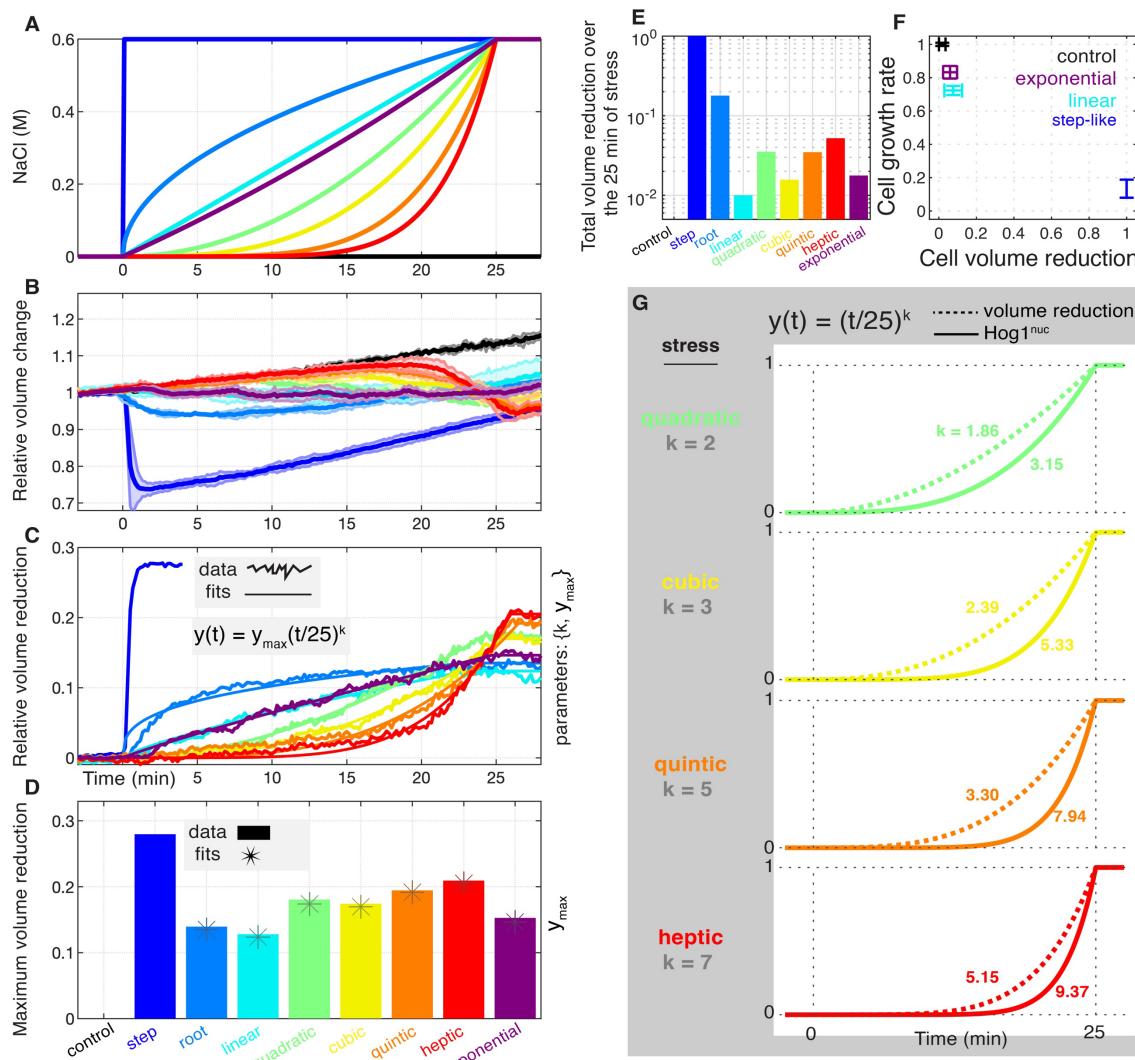
384


385 **FIGURE LEGENDS**

386

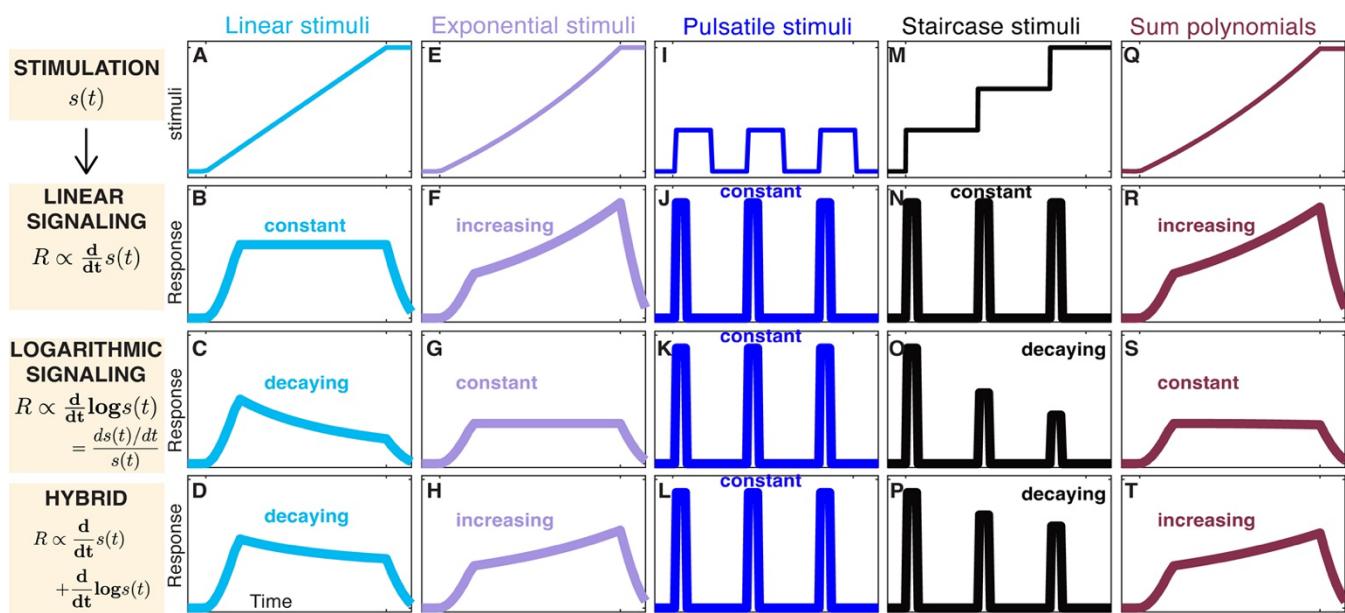

387 **Figure 1. Dissecting Osmostress regulation of Volume Change, Cell Growth and Hog1**
388 **Signaling.** This figure presents an illustration of the conventional Hog1 signaling in yeast stress
389 response pathway and our proposed gradual stress paradigms. **(A)** In accordance with the
390 established model of osmotic stress regulation in yeast, that is based on acute stress, osmotic
391 stress activates Hog1 signaling and inhibits cell growth in an osmotic concentration stress
392 dependent manner. Osmotic stress triggers the activation of and double phosphorylation of Hog1
393 MAPK, via the HOG signal transduction pathway. Dual Hog1 phosphorylation leads to its
394 translocation to the nucleus, where it regulates stress-responsive genes. The concerted action
395 of Hog1 phosphorylation and the gene responses contributes to the regulation of glycerol
396 production and maintenance, facilitating osmoadaptation. **(B)** We applied different stress
397 paradigms including acute (blue) and gradual (cyan and purple) changes to investigate the
398 relationship between osmotic stress, cell volume change, Hog1 signaling, and cell growth.

399

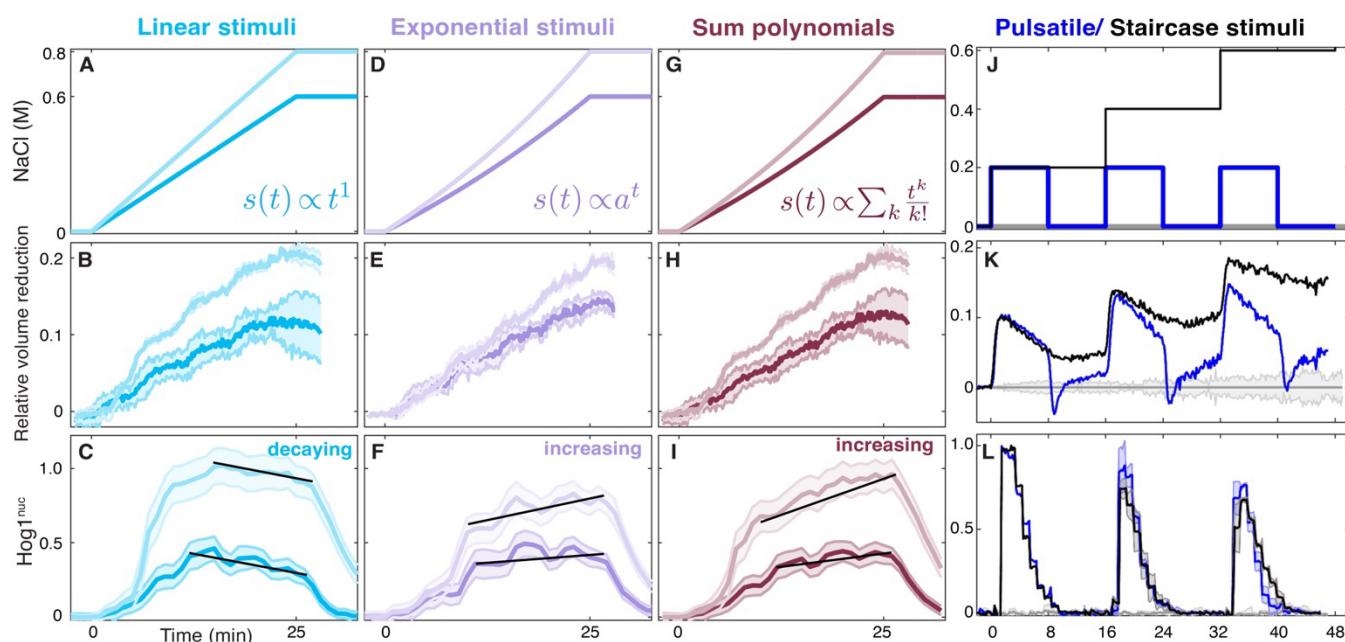


400 **Figure 2. Enhanced Cell Growth under Gradual Osmotic Stress Compared to Acute**
401 **Pulsatile Stress. (A-F)** We evaluated cell growth under various NaCl stress conditions through
402 OD600 measurements of yeast cell cultures. **(A)** Cells were initially grown to an exponential
403 phase ($OD600 = 0.5$) before being subjected to repetitive 3M NaCl osmotic stresses, including
404 **(B)** a 120-minute long pulse, **(C)** a 30-minute pulse, **(D)** a 30-minute pulse starting at $t=90$ min
405 from the start of treatment period (a control for cell density, see Methods), **(E)** a 120-minute
406 linear profile (cyan), and **(F)** a 120-minute exponential profile (purple). The linear and exponential
407 stress profiles gradually increased to 3M over 90 minutes, remaining at this concentration for an
408 additional 30 minutes. Following each 2-hour stress treatment, cells were filtered to remove
409 NaCl, resuspended in fresh growth media, and their OD600 was monitored for 5 hours in 3
410 biological replicates (black, gray, light-filled circles in **B-F**). After 5 hours, the stress treatments
411 and OD600 measurements were repeated. The OD600 measurements were fitted to exponential
412 growth curves (**B-F**), depicted on a log2 y-axis in red over time, and fits utilized the last three
413 timepoints. Cell growth doubling times were calculated from each fit (indicated by red numbers
414 rounded to the nearest minute). The values provided at $t=3$ hours at the onset of the initial 2-

415 hour stress treatment in **(B-F)** represent OD600 estimates derived from fits applied to pre-stress
416 OD600 measurements. An approximate value of 0.5 indicates that all conditions maintained a
417 similar initial cell density at the beginning of the 2-hour stress treatment period. **(G-I)** Cell growth
418 rates, relative to the control (0M, no stress), were determined for **(G)** pre-stress, **(H)** post 1st
419 stress treatments, and **(I)** post 2nd stress treatments based on OD600 doubling rates. Further
420 details can be found in Figure S1.


421 **Figure 3. Distinct Responses to Gradual Stress in Single Cells.** (A) We employed gradual
422 stress concentration increases over time, contrasting them with acute, step-like stress at time
423 zero. (B) Gradual stress followed polynomial increases over time, with profiles reaching the final
424 concentration (C_{\max}) over a specified duration (T), determined by the polynomial order (k).
425 Exponential increases were also considered. (C) Gradual NaCl stress profiles according to
426 polynomial increases are applied to (D) yeast cells resulted in distinct (E) cell volume relative
427 changes and (F) Hog1 kinase nuclear localization dynamics (Hog1^{nuc}) phenotypes. Gradual
428 NaCl concentration profiles in (C) followed various functions, including step (t^0), root (\sqrt{t}), linear
429 (t^1), quadratic (t^2), cubic (t^3), quintic (t^5), and heptic (t^7), each reaching a final concentration of
430 0.60 NaCl over 25 minutes, all compared to a no-salt control (0M). The thick lines and shaded
431 areas in (E, F) represent the mean and standard deviation (std) from 2 or 3 biological replicates,
432 each consisting of approximately 100 single cells observed through live cell time-lapse
433 microscopy. Further details can be found in Figure S2.

434 **Figure 4. Dynamic Cellular Responses to Gradual NaCl Stress.** (A) Gradual NaCl stress
435 were applied to yeast cells, with final concentration of $C_{\max} = 0.6M$, resulting in differential (B)
436 relative cell volume changes and (C) cell volume reduction, defined as the volume change under
437 each stress condition relative to that under the no-salt condition. (D) The maximum cell volume
438 reduction and (E) the total cell volume reduction over the 25-minute stress period exhibited
439 variability across different gradual stresses. (F) Cell growth showed a negative correlation with
440 cell volume reduction amount, including both maximum and total reduction. The x-axis displays
441 the mean and standard deviation (std) of volume reduction values (both maximum and total
442 reductions) under control, step, linear, and exponential stress for five different final
443 concentrations ($C_{\max} = 0.1M, 0.2M, 0.4M, 0.6M$, and $0.8M$), each normalized to the step
444 condition with the greatest cell volume reduction (see Figure S3E). The y-axis illustrates the
445 mean and std of cell growth rates under control, step, linear, and exponential stress conditions,


446 normalized to the control condition with the highest cell growth rate values. Values from three
447 biological replicates at post-1st-stress and post-2nd-stress are aggregated for this quantification
448 (see Figures 2G-2I). (G) The dynamics of Hog1 nuclear localization (Hog1^{nuc}) were delayed
449 concerning cell volume reduction dynamics under all stress changes. Further details can be
450 found in Figures S3 and S4.

451

452 **Figure 5. Different signaling models convert gradual environmental changes into different**
453 **signaling responses.** (A) Under a linear stress, the three models produce (B) constant, (C)
454 decaying, and (D) slower decaying responses over time within the linear, logarithmic, and hybrid
455 models, respectively. (E) An exponential stress results in (F) increasing, (G) constant, and (H)
456 slower increasing responses over time within the three models, respectively. (I) Pulsatile stress
457 induces (J-L) responses that remain constant throughout the stress periods across all three
458 signaling models. (M) A staircase stress mediates (N) constant, (O) decaying, and (P) slower
459 decaying responses throughout the stress periods within the three models. The Taylor series
460 summation of polynomials stress of order $k=1,2,3,5,7$ (the Maclaurin series expansion for
461 exponential stress, see Methods) is illustrated in (Q). Similar summations of signaling to
462 polynomial stress generate (R-T) responses consistent with those observed with exponential
463 stress. The responses are smoothed over 3 timepoints for each model. Further details can be
464 found in the Methods section.

465

466 **Figure 6. Verification of Logarithmic Signaling in the HOG Pathway through Gradual Cell
467 Stress. (A) Linear NaCl stress (with final concentrations of $C_{\max} = 0.6\text{M}$ and 0.8M) lead to (B)
468 increasing cell volume reduction and (C) decaying dynamics of Hog1 nuclear localization over
469 time. (D) Exponential stress result in (E) increasing cell volume reduction and (F) increasing
470 Hog1nuc dynamics over time. Fitting cell volume reduction to a polynomial function indicates
471 that volume reduction changes with a smaller polynomial order under linear stress compared to
472 exponential stress (see Figures S3D, S3F for $C_{\max} = 0.6\text{M}$ and 0.8M). (G-I) Summation of cell
473 volume reduction dynamics and the transient responses of Hog1nuc to NaCl stress with
474 polynomial orders ($k=1,2,3,5,7$) generated (H) increasing cell volume reduction and (I)
475 increasing Hog1nuc dynamics over time, similar to the responses observed with exponential
476 stress at each final concentration. (J) A comparison between pulsatile and staircase NaCl stress,
477 consisting of three equal-height step elevations, shows differential dynamics in both (K) cell
478 volume reduction and (L) Hog1nuc responses over time. The lines represent means, and the
479 shaded areas indicate standard deviations (std) from 2-3 biological replicates (BRs), each with
480 approximately 100 single cells analyzed through time-lapse microscopy. Further details can be
481 found in Figures S5.**

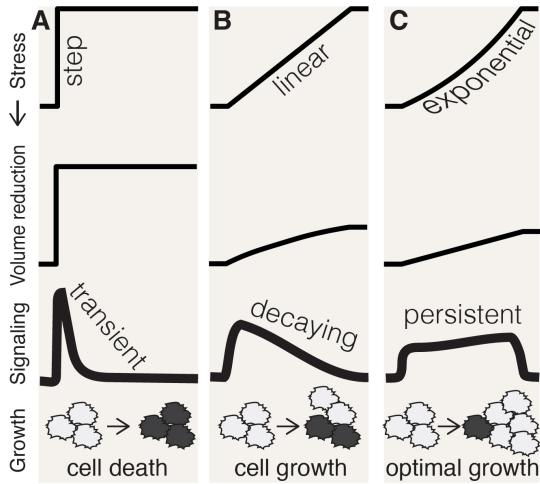
482

483

484

485

486


487

488

489

490

491

492 **Figure 7. Gradual Stress Identified Logarithmic Signaling as a Mechanism Contributing**
493 **to Optimal Cell Growth. (A)** Application of different cell stress profiles over time, in the form of
494 **(A)** an acute step change, **(B)** a linear, and **(C)** an exponential stress, yield distinctive dynamics
495 in signaling activation dynamics and phenotypes. Notably, **(A)** rapid step stress induces
496 substantial cell volume reduction compared to the **(B, C)** gradual stress, while signaling persists
497 longer with gradual stress compared to step stress. Compared to the standard paradigm in which
498 the concentration of osmotic stress dictates cell growth, in this study we discovered that gradual
499 stress, in a dynamic-dependent manner, influences cell volume reduction and signaling
500 activation, which in turn dictates the cell growth phenotype.

501

502 **METHODS**

503 **Resource Availability**

504 **Lead Contact**

505 Further information and requests for resources should be directed to and will be fulfilled by the
506 Lead Contact, Gregor Neuert (gregor.neuert@vanderbilt.edu).

507

508 **Materials Availability**

509 This study did not generate new unique reagents.

510

511

512 **Experimental model, yeast strain**

513 We employed *Saccharomyces cerevisiae* BY4741 (MAT α ; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0)
514 as model system. We used a strain in which a yellow-fluorescent protein (YFP) tag was
515 introduced to the C-terminus of the endogenous Hog1 protein in BY4741 cells via homologous
516 DNA recombination (29).

517

518 **Method Details**

519 **1. Gradual Cell Stimulations Paradigms**

520 To investigate dynamic responses and phenotypes in yeast cells under various gradual stress
521 conditions, we meticulously designed and executed gradual stress profiles spanning a wide
522 range of concentrations and rates. We employed sodium chloride (NaCl, Sigma-Aldrich, S7653)
523 concentration changes based on polynomial and exponential increases over time, ultimately
524 reaching one of the final concentrations of 0.10M, 0.20M, 0.40M, 0.60M, or 0.80M over a 25-
525 minute period in independent experiments (Figures 3C and S3A) (16, 27).

526

527 In our experimental setup, we employed programmable syringe pumps (New Era Pump
528 Systems, NE-1200) capable of operating in 251 phases, enabling the creation of profiles
529 comprising 250 linear concentration intervals, each lasting 6 seconds. This design ensured a
530 continuous, monotonically increasing concentration profiles for all conditions in this study. By
531 progressively increasing the rate between intervals, we achieved the desired rising concentration
532 profiles throughout the entire treatment duration. During each 6-second interval, the pump
533 consistently delivered the stress by introducing the appropriate volume of concentrated stress
534 solution, while correcting for both the added and removed volumes. The former step delivered
535 the concentrated stress to a mixing flask, while the latter delivered the changing concentration
536 to the cells over time.

537

538 These gradual NaCl concentrations were then applied to yeast cells in real time to evaluate their
539 impact on cell growth, cell volume change, and Hog1 kinase nuclear localization (Hog1^{nuc})
540 phenotypes. Additionally, our experimental setup allowed us to implement step-like profiles and
541 pulsatile and staircase stresses by switching the extracellular medium between different fixed
542 final concentrations of NaCl (16, 27).

543

544 **2. Concentrated Stress, 5M NaCl in CSM**

545 We prepared a concentrated stress of 5M NaCl in 1X CSM (yeast growth media) for use in all
546 experiments in this study. To create this solution, we dissolved 292.2 grams of sodium chloride
547 (NaCl) in 850 mL of CSM 1X, followed by autoclaving. We then adjusted the final volume to
548 1,000 mL using 50 mL pipettes and additional CSM. CSM 1X was prepared using 75mL CSM
549 10X (5.925 g CSM, Formedium DCS0019, in 750 mL ddH₂O), 75mL YNB 10X (51.75 g Yeast
550 Nitrogen Base w/o Amino Acids, YNB, Formedium, CYN0410 in 750 mL ddH₂O), 75 mL Glucose
551 20% (150 g Glucose, Fisher, Dextrose Anhydrous 147, M-15722 in 750 mL ddH₂O), and 525mL
552 ddH₂O (16).

553

554 **3. Yeast strain and cell culture**

555 We employed *Saccharomyces cerevisiae* BY4741 (MAT_a; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0)
556 for our experiments. To assess the nuclear enrichment of Hog1 in response to osmotic stress at
557 the single-cell level, we utilized a yellow-fluorescent protein (YFP) tag, which we introduced to
558 the C-terminus of the endogenous Hog1 protein in BY4741 cells via homologous DNA
559 recombination (29).

560

561 In preparation for our experiments, yeast cells from a stock stored at -80°C were streaked onto
562 a complete synthetic media plate three days prior to the study. The day before the experiment,
563 a single colony from the CSM plate was selected and used to inoculate 5 mL of CSM medium
564 to establish a pre-culture. After 6-12 hours, we measured the optical density (OD) of the pre-
565 culture and diluted it into fresh CSM medium to achieve an OD of 0.5 the following morning.

566

567 **4. Cell Growth Measurements**

568 In this study, we exposed yeast cells to various gradual osmotic stress conditions to investigate
569 their effects on cell growth phenotypes. Yeast cell cultures were grown until they reached the
570 exponential growth phase (OD₆₀₀ = 0.5) before subjecting them to different stress conditions.
571 We monitored cell growth by measuring optical density of cell culture at 600 nm (OD₆₀₀) over
572 time, both before and after each stress treatment. Our experiments involved repetitive NaCl
573 stress treatments, including long pulses, short pulses, linear increases, and exponential
574 increases along proper controls to account for stress duration, integrated stress exposure, and

575 cell density, with each reaching a final concentration of 3M NaCl. Detailed profiles for each
576 condition can be found in Figure 2 and S1. To implement these conditions, we added a total of
577 21.75 mL of concentrated stress (5M NaCl in CSM) to 14.5 mL of cells in CSM.

578

579 For pulsatile stress treatments, the entire 21.75 mL of 5M NaCl was introduced to the cells in a
580 mixing flask at once. In the case of linear and exponential stress treatments, the 21.75 mL of 5M
581 NaCl was gradually delivered to the cells over time using a 20 mL BD syringe (BD™, 309628)
582 mounted on a syringe pump. Introducing 21.75 mL of 5M NaCl either in a single acute stress
583 event (pulsatile stress) or gradually over 120 minutes (linear and exponential stress) leads to
584 distinct cell dilution profiles thus distinct cell density changes throughout the 2-hour treatment
585 duration (Figure 2A). These variations may have implications for post-stress cell growth. The
586 experiment presented in Figure 2D serves as a control to account for this potential effect. During
587 the gradual stress applications, the syringe pump functioned according to the calculated linear
588 or exponential profile for the delivery of each over the 90-minute treatment period. The dispensed
589 volume selections were determined by the capacity of the 20 mL BD syringes, which allowed for
590 a 21.75 mL fill volume for each experiment without the need for refilling during the treatment.

591

592 After each stress treatment, we removed the NaCl by filtering the cells using 0.45 µm filters
593 (Filter Membranes, Millipore, HAWP09000) and a glass vacuum system, and then resuspended
594 them in 40 mL of fresh CSM. We incubated the cells and measured OD600 during the next 5
595 hours at various time points: 15 minutes, 1 hour, 1 hour and 45 minutes, 2 hours and 30 minutes,
596 3 hours and 15 minutes, 4 hours, and 4 hours and 45 minutes post-incubation. Throughout the
597 experiments, we ensured homogenous mixing by constantly shaking the cells at 200 rpm in a
598 30°C incubator, and we maintained the growth media and concentrated stress within the same
599 30°C incubator for temperature control.

600

601 **5. Time-lapse microscopy**

602 A volume of 1.5 mL of yeast cells at OD600 = 0.5 were centrifuged, the supernatant was
603 removed, and the remaining cell pellets (approximately 40 µl) from three centrifugation tubes
604 were combined into one, and loaded into the flow chamber. After loading the cells into the flow
605 chamber, the chamber was attached to the microscope, and a 5-minute incubation period

606 allowed the cells to adhere to the Concanavalin (Sigma, L7647) coverslip. The flow chamber
607 configuration comprised an 1/8" Clear Acrylic Slide with three holes (Grace Bio-labs, 44562), a
608 0.17 μ m thick T-shape SecureSeal Adhesive spacer (Grace Bio-labs, 44560, 1 L 44040, R&D),
609 a Microscope Cover Glass (Fisher Scientific, 12545E, No 1 22 \times 50 mm), and Micro medical
610 tubing (Scientific Commodities Inc., BB31695-PE/4, 100 feet, 0.72 mm ID \times 1.22 mm OD). The
611 cover glass had been coated with a solution of 0.1 mg/ml ConA in H₂O.

612

613 NaCl stress profiles were established using Syringe Pumps, consistent with the procedures
614 described in previous sections. To facilitate acute stress, flask 1 contained CSM medium with a
615 predetermined NaCl concentration. For gradual stimulations, the mixing flask initially held media
616 without NaCl at time zero, and we generated concentration profiles by pumping 5M NaCl CSM
617 media into the mixing flask using a syringe pump. These media changes were continuously
618 mixed on a magnetic stir plate to achieve the desired profiles to stress the yeast cells.

619

620 **6. Image Acquisition**

621 For the quantification of nuclear enrichment of Hog1 terminal kinase in individual yeast cells as
622 an indicator of pathway activation, we employed a strain in which a yellow-fluorescent protein
623 (YFP) was integrated at the C-terminus of the endogenous Hog1 protein in *Saccharomyces*
624 *cerevisiae* BY4741 yeast, using homologous DNA recombination.

625

626 Our imaging setup consisted of an inverted microscope, specifically the Nikon Eclipse Ti, which
627 was equipped with several components, including perfect focus (Nikon), a 100 \times VC DIC lens
628 (Nikon), a YFP fluorescent filter from Semrock, an X-cite fluorescent light source (Excelitas), and
629 an Orca Flash 4v2 CMOS camera from Hamamatsu. The entire system was controlled via the
630 Micro-Manager program.

631

632 To capture images, we conducted the following steps:

633 Utilizing the microscope's xy-plane movement, we selected a field of view that exhibited an
634 optimal density of yeast cells within a single z-plane. The z-focus was carefully adjusted to
635 visualize the boundary of most cells, appearing as a white ring. Time-lapse images were

636 recorded, encompassing both bright-field images, taken at intervals of every 10 seconds, and
637 fluorescent channel images, acquired at intervals of every minute.

638

639 **7. Image Segmentation**

640 The published articles (27, 29, 62–64) include the image processing codes for cell segmentation
641 and quantification that are used to analyze the cell volume change and Hog1 nuclear localization
642 data during this study. The codes are available at <https://osf.io/kwbe6/>.

643

644 **8. Quantification of Cell Growth rates**

645 To determine cell growth rates, we employed a fitting procedure to the OD600 measurements,
646 from which we calculated the doubling times and growth rates. This involved fitting the OD600
647 data to doubling functions, calculating doubling times and growth rates, and normalizing these
648 values with respect to the control condition to analyze the impact of various stress conditions on
649 cell growth.

650 The cell growth data were fitted using the following mathematical function:

651
$$y(t) = y_0 * 2^{\frac{t}{T}}$$
 Equation 1

652 Where:

653

- $y(t)$ represents the OD600 measurements at time t .
- y_0 is the initial OD600 value for each condition.
- T represents the doubling time, which is the time it takes for the OD600 to double.
- The reciprocal of T represents the cell growth rate.

657 We independently fitted data from each section for each biological replicate (Figure 2 and
658 S1). For each condition, we performed 30 different fits. The resulting doubling times and
659 growth rate values are obtained as averages of the fit values from these 30 independent fits.
660 To facilitate comparison, we normalized the growth rate values with respect to the mean
661 growth rate observed under control conditions, which involved no NaCl. This normalization
662 allows us to assess the relative changes in growth rates induced by the different stress
663 conditions.

664

665 **9. Quantification of Cell Volume Change**

666 In this study, the assessment of cell volume changes involved two main quantities:

667 i. *Relative Cell Volume Changes Over Time:* We quantified the dynamics of cell volume
668 change over time, normalized to the initial timepoints just before the application of
669 each stress condition. This measure allowed us to track how cell volume evolved
670 under different gradual stress.

671 ii. *Relative Cell Volume Reduction Over Time:* This specific metric was introduced to
672 quantify cell volume change under each stress condition compared to that observed
673 under a no-salt control condition. It was defined as the difference between cell volume
674 changes under a given condition and the baseline cell volume expansion that occurs
675 in standard growth media over time.

676 To obtain the relative cell volume reduction data, we subtracted the cell volume change under
677 each stress condition from that under the no-salt control condition.

678 For the cell volume reduction data, we applied polynomial functions to describe the dynamics
679 and compare cell volume reduction to cell stress dynamics. The fitting function took the
680 following form:

$$681 y(t) = \begin{cases} 0, & \text{for } t < 0 \\ y_{max} * \left(\frac{t}{T}\right)^k, & \text{for } 0 \leq t \leq T \\ y_{max}, & \text{for } T < t \end{cases} \quad \text{Equation 2}$$

682 Where:

- 683 • $y(t)$ represents the cell volume reduction over time.
- 684 • T is a fixed value of 25 minutes, as it was the duration of the stress period.
- 685 • y_{max} stands for the maximum volume reduction achieved for each specific condition.
- 686 • k corresponds to the polynomial order.

687 We independently fitted the data for each condition between time points 0 and 25 minutes.
688 For each condition, we conducted 30 different fits, and the values of k and y_{max} were
689 determined as averages based on the outcomes of these 30 independent fits. For the results
690 presented in Figure 4C-4G and S3D, we used the following fitting function for the polynomial
691 part:

$$693 y(t) = y_{max} * \left(\frac{t}{25+\tau}\right)^k \quad \text{Equation 3}$$

694 Where, τ is a new free parameter that is introduced with its value constrained to the range [-
695 2, 2] in units of minutes, to account for the small delay or expansion that was observed in the

696 measured cell volume data. For example, $\tau = 0$ corresponds to the scenario where $y(t)$
697 reaches its maximum value of y_{max} at $t = 25$ minutes.

698 We examined two key aspects of cell volume change: the maximum cell volume reduction
699 and the total cell volume reduction, both assessed over the 25-minute stress period. This
700 analysis allowed us to quantitatively capture the overall trends in cell volume dynamics under
701 the various stress conditions.

702

703 **10. Quantification of Hog1 Nuclear Localization**

704 In our study, quantification of Hog1 nuclear localization is a crucial aspect of understanding the
705 signaling dynamics within yeast cells subjected to various gradual stress. This quantification
706 involves the calculation of the ratio of Hog1 signal derived from pixels representing the nucleus
707 of individual cells to the total signal from the entire cell, with corrections made for the image
708 background and photobleaching of the fluorescent signals over time. At the single-cell level and
709 over time, we employ the following formula to quantify Hog1 nuclear localization using the
710 nuclear, total cell, and image background signals over time:

$$711 H(t) = \frac{Signal_{Nuclear} - Signal_{ImageBackground}}{Signal_{TotalCell} - Signal_{ImageBackground}} = \frac{\frac{I_n(0)}{I_n(t)} * I_N(t) - \frac{I_b(0)}{I_b(t)} * I_B(t)}{\frac{I_t(0)}{I_t(t)} * I_T(t) - \frac{I_b(0)}{I_b(t)} * I_B(t)} \quad Equation\ 4$$

712 Here, the subscripts (N/n, T/t, B/b) correspond to (nuclear, total cell, image background) regions
713 for a given single cell. We use capital letters (I_N, I_T, I_B) to denote the raw fluorescent signals from
714 these regions. Meanwhile, lowercase letters ($I_n(t), I_t(t), I_b(t)$) represent the double-exponential
715 decaying function fits for these signals obtained from pre-stress and the end of trajectories,
716 modeling the photobleaching decay, while ($I_n(0), I_t(0), I_b(0)$) are the values at the first timepoint.
717 It's important to note that in all conditions we maintain stress at fixed final concentrations for at
718 least 25 minutes allowing Hog1 activities to adapt to pre-stress levels during these fits, allowing
719 for accurate quantification of nuclear localization over time. We quantified Hog1 nuclear
720 localization as $Hog1nuc(t) = H(t) - H(0)$, where $H(0)$ is the value at pre-stress timepoint.

721

722 This analysis plays a crucial role in correcting for the decay in fluorescent signal attributable to
723 photobleaching, a phenomenon that can impact the accuracy of Hog1 nuclear localization
724 measurements. For our control condition (CSM growth media with 0M NaCl), the method
725 effectively achieves a constant $Hog1nuc(t)$ value of 0 over time. However, the quantification of

726 nuclear localization is influenced by the photobleaching events associated with the fluorescent
727 protein used to label Hog1.

728

729 To address this issue and ensure accurate quantification, we conducted additional control
730 experiments involving step-like stimulations applied to the cells at two distinct time points,
731 namely t=12 minutes and t=20 minutes (Figure S2A-S2C). These experiments resulted in an
732 additional 12 and 20 fluorescent images captured before the change in stress, compared to
733 experiments in which we applied the step stress at t=0. The Hog1nuc(t) values obtained from
734 these experiments, using the aforementioned method, exhibited variations in signaling levels.

735

736 In response to these observed variations, we undertook supplementary experiments to
737 empirically correct for the impact of photobleaching in Hog1nuc quantification. Specifically, we
738 conducted nine experiments involving a step-like change of NaCl concentration to 0.6M at t=0,
739 each with an increasing number of pre-stress photobleaching snapshots taken (Figure S2D-
740 S2G). This resulted in varying levels of Hog1nuc, depending on the number of pre-stress
741 photobleaching snapshots.

742

743 To quantify these outcomes, we employed a fitting procedure to establish a relationship between
744 the Hog1nuc values and the number of pre-stress photobleaching snapshots. Importantly, all
745 our experiments involved the acquisition of fluorescent signal data at one-minute intervals,
746 providing us with a quantitative factor to correct Hog1nuc signal over time (Figures S2H-S2J).
747 This correction procedure ensures that the impact of photobleaching on Hog1 nuclear
748 localization is appropriately accounted for in our analyses.

749

750 Similar to cell volume reduction data, we applied polynomial functions to describe the rising
751 dynamics of Hog1^{nuc} data over time and compare them to that of cell volume reduction and cell
752 stimulations. The fitting function is given by Equation 2, where in these fits, we fix T to the value
753 of time (in units of minutes) at which Hog1^{nuc} reaches its maximum value. The results from these
754 analyses are presented in Figures 4 and S4.

755

756 **11. Quantitative Modeling of Different Signaling Mechanisms**

757 To establish a relationship between time-dependent stress and the resulting signaling response
758 dynamics, we developed a series of quantitative models to investigate various signaling
759 mechanisms. Our goal was to predict the signaling response to different gradual stress
760 accurately. To conduct a comprehensive analysis, we compared the behaviors of the following
761 models:

762

763 i) *Linear signaling*: This model is based on rate sensing, where the cellular response is
764 directly proportional to the rate of change in the stress over time. In this model, we
765 describe the signaling response as the first time-derivative of the stress profile.

766

767 ii) *Logarithmic signaling*: This model is based on relative rate sensing, in which the
768 response is proportional to the relative change in stress concerning the background
769 concentration over time. In this model, we describe the signaling response as the ratio
770 of the first time-derivative of the stress divided by the stress concentration over time.

771

772 We considered various gradual stress functions, as shown in Figure 5, and quantified the
773 response from each model using each of the three approaches. Specifically, we numerically
774 simulated concentration values at pre-specified timepoints and from those values we calculated
775 the rate of change as difference in concentration values between adjacent timepoints. We used
776 these values under gradual stress profiles to calculate responses for each model as described
777 above. We then applied a 3-point moving average to smooth the responses.

778

779 Statistics on Single Cells

780 **Table 1. Statistics of the biological replicates and single cells used in Figures S3 and**
781 **S4.** For each condition, the first number represent the number of biological replicates, and the
782 second number indicate an approximate number of total single cells from all biological
783 replicates for that condition.

784

		Final concentrations							
		0.10M	0.20M		0.40M		0.60M		0.80M
	steps (t^0)	(1, 78)	(3, 324)		(3, 487)		(3, 407)		(3, 476)

Gradual stress type	root2 (\sqrt{t})	(1, 64)	(2, 183)	(2, 221)	(2, 285)	(2, 326)
	linears (t^1)	(1, 98)	(2, 195)	(2, 211)	(2, 195)	(2, 307)
	quadratics (t^2)	(1, 102)	(2, 175)	(2, 170)	(2, 243)	(2, 247)
	quints (t^5)	(1, 62)	(3, 252)	(3, 347)	(3, 388)	(2, 282)
	heptics (t^7)	(1, 69)	(3, 285)	(3, 247)	(3, 264)	(2, 276)
	Exponential (a^t)	(1, 71)	(2, 238)	(2, 216)	(2, 237)	(2, 210)

785

786 **Additional resources**

787 For complete details on the protocol, please refer to <https://star->

788 protocols.cell.com/protocols/786.

789

790

791 **References**

792 [1] Wendell Lim, Bruce Mayer TP. (2015) Cell Signaling: Principles and Mechanisms Taylor
793 and Francis Group, LLC, New York, NY, USA.

794 [2] Neben CL, Lo M, Jura N, Klein OD. (2019) Feedback regulation of RTK signaling in
795 development. *Dev Biol* **447**, 71–89.
796 <https://doi.org/10.1016/j.ydbio.2017.10.017>
797 <http://www.ncbi.nlm.nih.gov/pubmed/29079424>

798 [3] Nikolaev SI, Vetiska S, Bonilla X, Boudreau E, Jauhainen S, Rezai Jahromi B, Khyzha N,
799 DiStefano P V., Suutarinen S, Kiehl T-R, *et al.* (2018) Somatic activating KRAS mutations
800 in arteriovenous malformations of the brain. *New England Journal of Medicine* **378**, 250–
801 261.
802 <https://doi.org/10.1056/nejmoa1709449>
803 <http://www.ncbi.nlm.nih.gov/pubmed/29298116>

804 [4] Hata A, Chen YG. (2016) TGF- β signaling from receptors to smads. *Cold Spring Harb
805 Perspect Biol* **8**, a022061.
806 <https://doi.org/10.1101/cshperspect.a022061>
807 <http://www.ncbi.nlm.nih.gov/pubmed/27449815>

808 [5] Hotamisligil GS, Davis RJ. (2016) Cell signaling and stress responses. *Cold Spring Harb
809 Perspect Biol* **8**, a006072.
810 <https://doi.org/10.1101/cshperspect.a006072>
811 <http://www.ncbi.nlm.nih.gov/pubmed/27698029>

812 [6] Peter Parham. (2015) The Immune System Science, Taylor & Francis Group, LLC. Kindle
813 Edition, New York, NY, USA.

814 [7] Harvey SA, Smith JC. (2009) Visualisation and quantification of morphogen gradient
815 formation in the zebrafish. *PLoS Biol* **7**, 1000101.
816 <https://doi.org/10.1371/journal.pbio.1000101>
817 <http://www.ncbi.nlm.nih.gov/pubmed/19419239>

818 [8] Hanahan D. (2022) Hallmarks of Cancer: New Dimensions. *Cancer Discov* **12**, 31–46.
819 <https://doi.org/10.1158/2159-8290.CD-21-1059>
820 <http://www.ncbi.nlm.nih.gov/pubmed/35022204>

821 [9] Groß A, Kracher B, Kraus JM, Kühlwein SD, Pfister AS, Wiese S, Luckert K, Pötz O, Joos
822 T, Van Daele D, *et al.* (2019) Representing dynamic biological networks with multi-scale
823 probabilistic models. *Commun Biol* **2**, 21.
824 <https://doi.org/10.1038/s42003-018-0268-3>
825 <http://www.ncbi.nlm.nih.gov/pubmed/30675519>

826 [10] Romers J, Thieme S, Münzner U, Krantz M. (2020) A scalable method for parameter-free
827 simulation and validation of mechanistic cellular signal transduction network models. *NPJ
828 Syst Biol Appl* **6**, 2.
829 <https://doi.org/10.1038/s41540-019-0120-5>
830 <http://www.ncbi.nlm.nih.gov/pubmed/31934349>

831 [11] Janes KA, Lauffenburger DA. (2013) Models of signalling networks-what cell biologists
832 can gain from them and give to them. *J Cell Sci* **126**, 1913–1921.
833 <https://doi.org/10.1242/jcs.112045>
834 <http://www.ncbi.nlm.nih.gov/pubmed/23720376>

835 [12] Murugan A, Husain K, Rust MJ, Hepler C, Bass J, Pietsch JMJ, Swain PS, Jena SG,
836 Toettcher JE, Chakraborty AK, et al. (2021) Roadmap on biology in time varying
837 environments. *Phys Biol* **18**, 041502.
838 <https://doi.org/10.1088/1478-3975/abde8d>
839 <http://www.ncbi.nlm.nih.gov/pubmed/33477124>
840 [13] Zhang J, Tian X-J, Xing J. (2016) Signal transduction pathways of EMT induced by TGF- β ,
841 SHH, and WNT and their crosstalks. *J Clin Med* **5**, 41.
842 <https://doi.org/10.3390/jcm5040041>
843 <http://www.ncbi.nlm.nih.gov/pubmed/27043642>
844 [14] Handly LN, Yao J, Wollman R. (2016) Signal Transduction at the Single-Cell Level:
845 Approaches to Study the Dynamic Nature of Signaling Networks. *J Mol Biol* **428**, 3669–
846 3682.
847 <https://doi.org/10.1016/j.jmb.2016.07.009>
848 <http://www.ncbi.nlm.nih.gov/pubmed/27430597>
849 [15] Jashnsaz H, Fox ZR, Hughes JJ, Li G, Munsky B, Neuert G. (2020) Diverse cell
850 stimulation kinetics identify predictive signal transduction models. *iScience* **23**, 101565.
851 <https://doi.org/10.1016/j.isci.2020.101565>
852 <http://www.ncbi.nlm.nih.gov/pubmed/33083733>
853 [16] Jashnsaz H, Fox R Z, Munsky B, Neuert G. (2021) Building predictive signaling models by
854 perturbing yeast cells with time-varying stimulations resulting in distinct signaling
855 responses. *STAR Protoc* **2**, 100660.
856 <https://doi.org/10.1016/j.xpro.2021.100660>
857 [17] Thiemicke A, Neuert G. (2023) Rate thresholds in cell signaling have functional and
858 phenotypic consequences in non-linear time-dependent environments. *Front Cell Dev Biol*
859 **11**, 1–17.
860 <https://doi.org/10.3389/fcell.2023.1124874>
861 <http://www.ncbi.nlm.nih.gov/pubmed/37025183>
862 [18] Kubota H, Noguchi R, Toyoshima Y, Ozaki Y ichi, Uda S, Watanabe K, Ogawa W, Kuroda
863 S. (2012) Temporal coding of insulin action through multiplexing of the AKT pathway. *Mol
864 Cell* **46**, 820–832.
865 <https://doi.org/10.1016/j.molcel.2012.04.018>
866 <http://www.ncbi.nlm.nih.gov/pubmed/22633957>
867 [19] Madsen RR, Vanhaesebroeck B. (2020) Cracking the context-specific PI3K signaling
868 code. *Sci Signal* **13**, eaay2940.
869 <https://doi.org/10.1126/scisignal.aay2940>
870 <http://www.ncbi.nlm.nih.gov/pubmed/31911433>
871 [20] Andrew N, Craig D, Urbanski JP, Gunawardena J, Thorsen T. (2009) Microfluidic temporal
872 cell stimulation. *12th International Conference on MicroTAS Miniaturized Syst Chem Life
873 Sci* https://www.rsc.org/binaries/LOC/2008/PDFs/Papers/227_1038.pdf.
874 https://doi.org/https://www.rsc.org/binaries/LOC/2008/PDFs/Papers/227_1038.pdf
875 [21] Mettetal JT, Muzzey D, Gómez-Uribe C, Van Oudenaarden A. (2008) The frequency
876 dependence of osmo-adaptation in *Saccharomyces cerevisiae*. *Science* (1979) **319**, 482–
877 484.
878 <https://doi.org/10.1126/science.1151582>
879 <http://www.ncbi.nlm.nih.gov/pubmed/18218902>

880 [22] Mitchell A, Wei P, Lim WA. (2015) Oscillatory stress stimulation uncovers an Achilles' heel
881 of the yeast MAPK signaling network. *Science* (1979) **350**, 1379–1383.
882 <https://doi.org/10.1126/science.aab0892>
883 <http://www.ncbi.nlm.nih.gov/pubmed/26586187>

884 [23] Muzzey D, Gómez-Uribe CA, Mettetal JT, van Oudenaarden A. (2009) A systems-level
885 analysis of perfect adaptation in yeast osmoregulation. *Cell* **138**, 160–171.
886 <https://doi.org/10.1016/j.cell.2009.04.047>
887 <http://www.ncbi.nlm.nih.gov/pubmed/19596242>

888 [24] Rahi SJ, Larsch J, Pecani K, Katsov AY, Mansouri N, Tsaneva-Atanasova K, Sontag ED,
889 Cross FR. (2017) Oscillatory stimuli differentiate adapting circuit topologies. *Nat Methods*
890 **14**, 1010–1016.
891 <https://doi.org/10.1038/nmeth.4408>
892 <http://www.ncbi.nlm.nih.gov/pubmed/28846089>

893 [25] Shimizu TS, Tu Y, Berg HC. (2010) A modular gradient-sensing network for chemotaxis in
894 *Escherichia coli* revealed by responses to time-varying stimuli. *Mol Syst Biol* **6**, 382.
895 <https://doi.org/10.1038/msb.2010.37>
896 <http://www.ncbi.nlm.nih.gov/pubmed/20571531>

897 [26] Sorre B, Warmflash A, Brivanlou AH, Siggia ED. (2014) Encoding of temporal signals by
898 the TGF- β pathway and implications for embryonic patterning. *Dev Cell* **30**, 334–342.
899 <https://doi.org/10.1016/j.devcel.2014.05.022>
900 <http://www.ncbi.nlm.nih.gov/pubmed/25065773>

901 [27] Thiemicke A, Jashnsaz H, Li G, Neuert G. (2019) Generating kinetic environments to
902 study dynamic cellular processes in single cells. *Sci Rep* **9**, 10129.
903 <https://doi.org/10.1038/s41598-019-46438-8>
904 <http://www.ncbi.nlm.nih.gov/pubmed/31300695>

905 [28] Thiemicke A, Neuert G. (2021) Kinetics of osmotic stress regulate a cell fate switch of cell
906 survival. *Sci Adv* **7**, eabe1122.
907 <https://doi.org/10.1126/sciadv.abe1122>
908 <http://www.ncbi.nlm.nih.gov/pubmed/33608274>

909 [29] Johnson AN, Li G, Jashnsaz H, Thiemicke A, Kesler BK, Rogers DC, Neuert G. (2020) A
910 rate threshold mechanism regulates MAPK stress signaling and survival. *Proc Natl Acad
911 Sci U S A* **118**, e2004998118.
912 <https://doi.org/10.1073/pnas.2004998118>
913 <http://www.ncbi.nlm.nih.gov/pubmed/33443180>

914 [30] Zhang C, Tu H-L, Jia G, Mukhtar T, Taylor V, Rzhetsky A, Tay S. (2019) Ultra-multiplexed
915 analysis of single-cell dynamics reveals logic rules in differentiation. *Sci Adv* **5**, eaav7959.
916 <https://doi.org/10.1126/sciadv.aav7959>

917 [31] Cai Q, Ferraris JD, Burg MB. (2004) Greater tolerance of renal medullary cells for a slow
918 increase in osmolality is associated with enhanced expression of HSP70 and other
919 osmoprotective genes. *Am J Physiol Renal Physiol* **286**, 58–67.
920 <https://doi.org/10.1152/ajprenal.00037.2003>
921 <http://www.ncbi.nlm.nih.gov/pubmed/13129850>

922 [32] Heltberg ML, Krishna S, Jensen MH. (2019) On chaotic dynamics in transcription factors
923 and the associated effects in differential gene regulation. *Nat Commun* **10**, 71.
924 <https://doi.org/10.1038/s41467-018-07932-1>
925 <http://www.ncbi.nlm.nih.gov/pubmed/30622249>

926 [33] Fujita KA, Toyoshima Y, Uda S, Ozaki YI, Kubota H, Kuroda S. (2010) Decoupling of
927 receptor and downstream signals in the Akt pathway by its low-pass filter characteristics.
928 *Sci Signal* **3**, ra56–ra56.
929 <https://doi.org/10.1126/scisignal.2000810>
930 <http://www.ncbi.nlm.nih.gov/pubmed/20664065>
931 [34] Goulev Y, Morlot S, Matifas A, Huang B, Molin M, Toledano MB, Charvin G. (2017)
932 Nonlinear feedback drives homeostatic plasticity in H2O2 stress response. *eLife* **6**,
933 e23971.
934 <https://doi.org/10.7554/eLife.23971>
935 <http://www.ncbi.nlm.nih.gov/pubmed/28418333>
936 [35] Granados AA, Crane MM, Montano-Gutierrez LF, Tanaka RJ, Voliotis M, Swain PS.
937 (2017) Distributing tasks via multiple input pathways increases cellular survival in stress.
938 *eLife* **6**, e21415.
939 <https://doi.org/10.7554/eLife.21415>
940 <http://www.ncbi.nlm.nih.gov/pubmed/28513433>
941 [36] Briscoe J, Small S. (2015) Morphogen rules: Design principles of gradient-mediated
942 embryo patterning. *Development* **142**, 3996–4009.
943 <https://doi.org/10.1242/dev.129452>
944 <http://www.ncbi.nlm.nih.gov/pubmed/26628090>
945 [37] Ashall L, Horton CA, Nelson DE, Paszek P, Harper C V., Sillitoe K, Ryan S, Spiller DG,
946 Unitt JF, Broomhead DS, et al. (2009) Pulsatile stimulation determines timing and
947 specificity of NF-κB-dependent transcription. *Science* (1979) **324**, 242–246.
948 <https://doi.org/10.1126/science.1164860>
949 <http://www.ncbi.nlm.nih.gov/pubmed/19359585>
950 [38] Mokashi CS, Schipper DL, Qasaimeh MA, Lee REC. (2019) A System for Analog Control
951 of Cell Culture Dynamics to Reveal Capabilities of Signaling Networks. *iScience* **19**, 586–
952 596.
953 <https://doi.org/10.1016/j.isci.2019.08.010>
954 <http://www.ncbi.nlm.nih.gov/pubmed/31446223>
955 [39] Oyler-Yaniv A, Oyler-Yaniv J, Whitlock BM, Liu Z, Germain RN, Huse M, Altan-Bonnet G,
956 Krichevsky O. (2017) A Tunable Diffusion-Consumption Mechanism of Cytokine
957 Propagation Enables Plasticity in Cell-to-Cell Communication in the Immune System.
958 *Immunity* **46**, 609–620.
959 <https://doi.org/10.1016/j.jimmuni.2017.03.011>
960 <http://www.ncbi.nlm.nih.gov/pubmed/28389069>
961 [40] Twohig JP, Cardus Figueras A, Andrews R, Wiede F, Cossins BC, Derrac Soria A, Lewis
962 MJ, Townsend MJ, Millrine D, Li J, et al. (2019) Activation of naïve CD4 + T cells re-tunes
963 STAT1 signaling to deliver unique cytokine responses in memory CD4 + T cells. *Nat
964 Immunol* **20**, 458–470.
965 <https://doi.org/10.1038/s41590-019-0350-0>
966 <http://www.ncbi.nlm.nih.gov/pubmed/30890796>
967 [41] Liu T, Zhang L, Joo D, Sun SC. (2017) NF-κB signaling in inflammation. *Signal Transduct
968 Target Ther* **2**, 17023.
969 <https://doi.org/10.1038/sigtrans.2017.23>
970 <http://www.ncbi.nlm.nih.gov/pubmed/29158945>

971 [42] Chanaday NL, Kavalali ET. (2018) Optical detection of three modes of endocytosis at
972 hippocampal synapses. *Elife* **7**, e36097.
973 <https://doi.org/10.7554/eLife.36097>
974 <http://www.ncbi.nlm.nih.gov/pubmed/29683423>
975 [43] Purvis JE, Karhohs KW, Mock C, Batchelor E, Loewer A, Lahav G. (2012) p53 dynamics
976 control cell fate. *Science* (1979) **336**, 1440–1444.
977 <https://doi.org/10.1126/science.1218351>
978 <http://www.ncbi.nlm.nih.gov/pubmed/22700930>
979 [44] Adler M, Alon U. (2018) Fold-change detection in biological systems. *Curr Opin Syst Biol*
980 **8**, 81–89.
981 <https://doi.org/10.1016/j.coisb.2017.12.005>
982 [45] Tendler A, Wolf BC, Tiwari V, Alon U, Danon A. (2018) Fold-change Response of
983 photosynthesis to step increases of light level. *iScience* **8**, 126–137.
984 <http://www.ncbi.nlm.nih.gov/pubmed/30312863>
985 [46] Young JW, Locke JCW, Elowitz MB. (2013) Rate of environmental change determines
986 stress response specificity. *Proc Natl Acad Sci U S A* **110**, 4140–4145.
987 <https://doi.org/10.1073/pnas.1213060110>
988 <http://www.ncbi.nlm.nih.gov/pubmed/23407164>
989 [47] Brewster JL, Gustin MC. (2014) Hog1: 20 years of discovery and impact. *Sci Signal* **7**,
990 re7–re7.
991 <https://doi.org/10.1126/SCISIGNAL.2005458>
992 <http://www.ncbi.nlm.nih.gov/pubmed/25227612>
993 [48] Tatebayashi K, Yamamoto K, Tomida T, Nishimura A, Takayama T, Oyama M, Kozuka-
994 Hata H, Adachi-Akahane S, Tokunaga Y, Saito H. (2020) Osmostress enhances activating
995 phosphorylation of Hog1 MAP kinase by mono-phosphorylated Pbs2 MAP 2K. *EMBO J*
996 **39**, e103444.
997 <https://doi.org/10.15252/embj.2019103444>
998 <http://www.ncbi.nlm.nih.gov/pubmed/32011004>
999 [49] Tanaka K, Tatebayashi K, Nishimura A, Yamamoto K, Yang H-Y, Saito H. (2014) Yeast
1000 Osmosensors Hkr1 and Msb2 Activate the Hog1 MAPK Cascade by Different
1001 Mechanisms. *Sci Signal* **7**, ra21–ra21.
1002 <https://doi.org/10.1126/SCISIGNAL.2004780>
1003 <http://www.ncbi.nlm.nih.gov/pubmed/24570489>
1004 [50] Macia J, Regot S, Peeters T, Conde N, Solé R, Posas F. (2009) Dynamic signaling in the
1005 Hog1 MAPK pathway relies on high basal signal transduction. *Sci Signal* **2**, ra13.
1006 <https://doi.org/10.1126/scisignal.2000056>
1007 <http://www.ncbi.nlm.nih.gov/pubmed/19318625>
1008 [51] Lee J, Reiter W, Dohnal I, Gregori C, Beese-Sims S, Kuchler K, Ammerer G, Levin DE.
1009 (2013) MAPK Hog1 closes the *S. cerevisiae* glycerol channel Fps1 by phosphorylating
1010 and displacing its positive regulators. *Genes Dev* **27**, 2590–2601.
1011 <https://doi.org/10.1101/gad.229310.113>
1012 <http://www.ncbi.nlm.nih.gov/pubmed/24298058>
1013 [52] Mattison CP, Ota IM. (2000) Two protein tyrosine phosphatases, Ptp2 and Ptp3, modulate
1014 the subcellular localization of the Hog1 MAP kinase in yeast. *Genes Dev* **14**, 1229–1235.
1015 <https://doi.org/10.1101/gad.14.10.1229>
1016 <http://www.ncbi.nlm.nih.gov/pubmed/10817757>

1017 [53] Miermont A, Waharte F, Hu S, McClean MN, Bottani S, Léon S, Hersen P. (2013) Severe
1018 osmotic compression triggers a slowdown of intracellular signaling, which can be
1019 explained by molecular crowding. *Proc Natl Acad Sci U S A* **110**, 5725–5730.
1020 <https://doi.org/10.1073/pnas.1215367110>
1021 <http://www.ncbi.nlm.nih.gov/pubmed/23493557>

1022 [54] Babazadeh Roja, Beck AC, Maria S, Petelenz-Kurdziel E, Mattias G, Hohmann S. (2013)
1023 Osmostress-Induced Cell Volume Loss Delays Yeast Hog1 Signaling by Limiting Diffusion
1024 Processes and by Hog1-Specific Effects. *PLoS One* **8**, e80901.
1025 <https://doi.org/10.1371/journal.pone.0080901>

1026 [55] Altenburg T, Goldenbogen B, Uhlendorf J, Klipp E. (2019) Osmolyte homeostasis controls
1027 single-cell growth rate and maximum cell size of *Saccharomyces cerevisiae*. *NPJ Syst
1028 Biol Appl* **5**,
1029 <https://doi.org/10.1038/s41540-019-0111-6>
1030 <http://www.ncbi.nlm.nih.gov/pubmed/31583116>

1031 [56] Talemi SR, Tiger CF, Andersson M, Babazadeh R, Welkenhuysen N, Klipp E, Hohmann
1032 S, Schaber J. (2016) Systems Level Analysis of the Yeast Osmo-Stat. *Sci Rep* **6**, 1–12.
1033 <https://doi.org/10.1038/srep30950>
1034 <http://www.ncbi.nlm.nih.gov/pubmed/27515486>

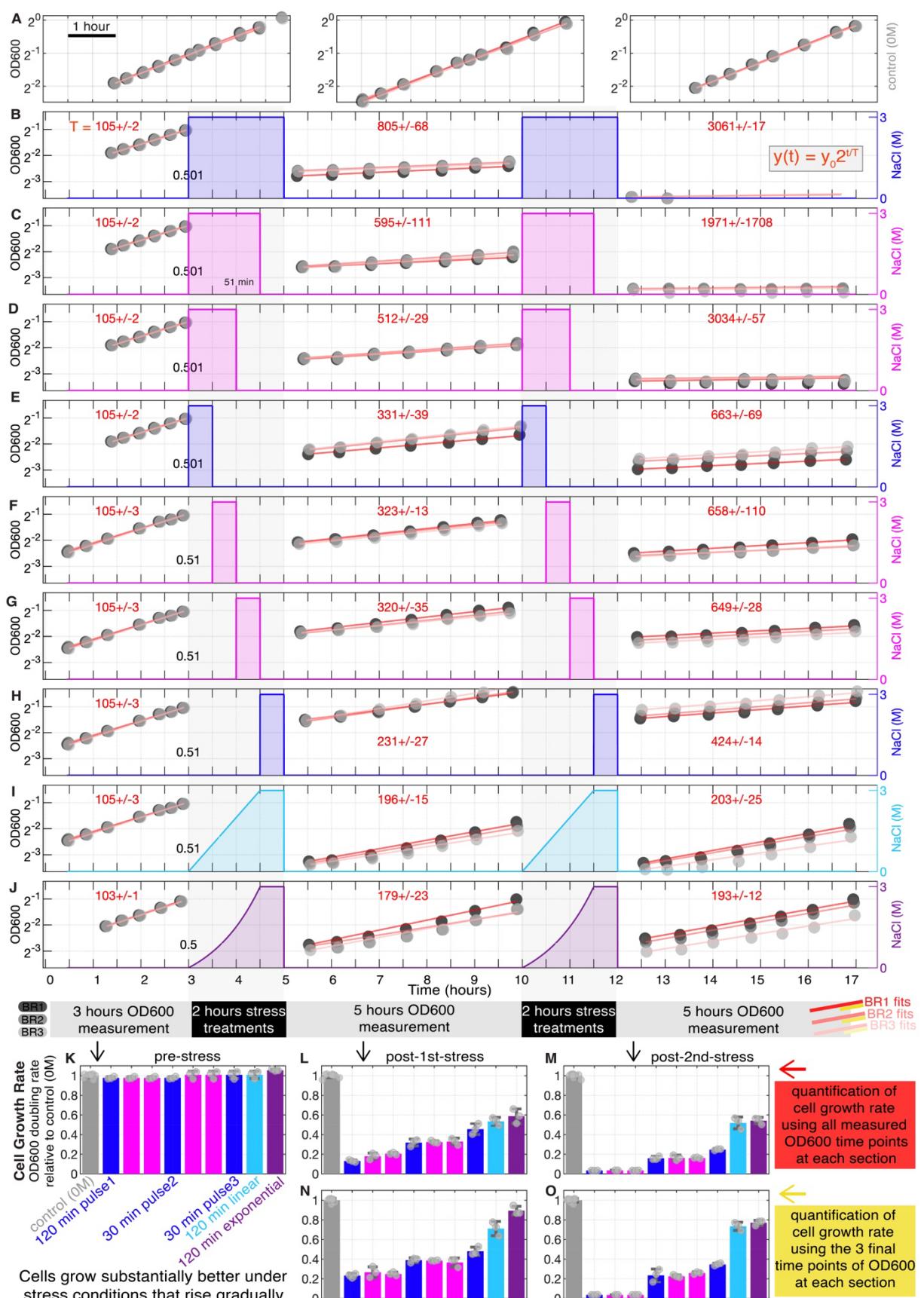
1035 [57] Cohen-Saidon C, Cohen AA, Sigal A, Liron Y, Alon U. (2009) Dynamics and Variability of
1036 ERK2 Response to EGF in Individual Living Cells. *Mol Cell* **36**, 885–893.
1037 <https://doi.org/10.1016/j.molcel.2009.11.025>
1038 <http://www.ncbi.nlm.nih.gov/pubmed/20005850>

1039 [58] Goentoro L, Kirschner MW. (2009) Evidence that fold-change, and not absolute level, of β -
1040 catenin dictates Wnt signaling. *Mol Cell* **36**, 872–884.
1041 <https://doi.org/10.1016/j.molcel.2009.11.017>
1042 <http://www.ncbi.nlm.nih.gov/pubmed/20005849>

1043 [59] Lee REC, Walker SR, Savery K, Frank DA, Gaudet S. (2014) Fold change of nuclear NF-
1044 κ B determines TNF-induced transcription in single cells. *Mol Cell* **53**, 867–879.
1045 <https://doi.org/10.1016/j.molcel.2014.01.026>
1046 <http://www.ncbi.nlm.nih.gov/pubmed/24530305>

1047 [60] Frick CL, Yarka C, Nunns H, Goentoro L. (2017) Sensing relative signal in the Tgf- β /Smad
1048 pathway. *Proc Natl Acad Sci U S A* **114**, E2975–E2982.
1049 <https://doi.org/10.1073/pnas.1611428114>
1050 <http://www.ncbi.nlm.nih.gov/pubmed/28320972>

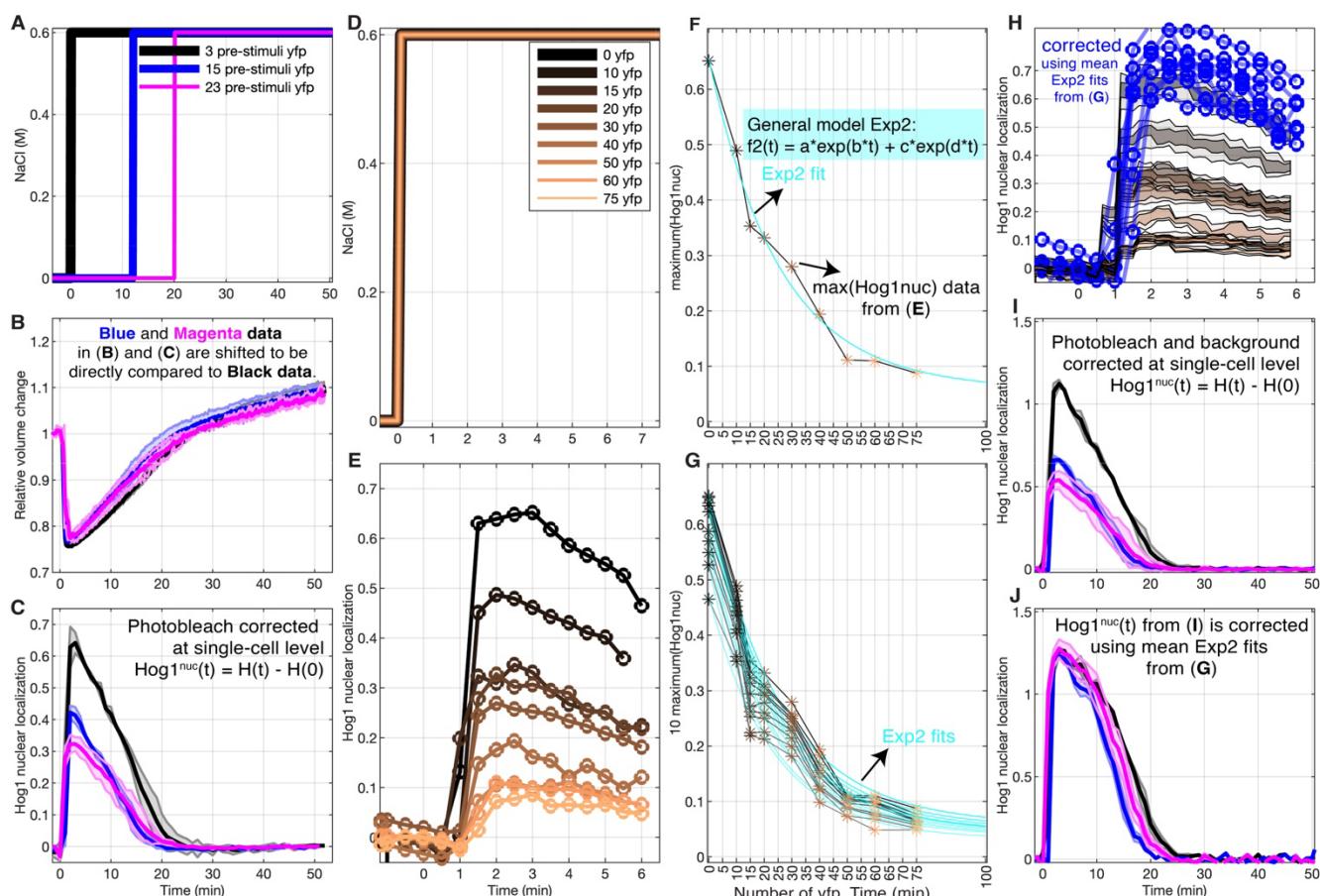
1051 [61] Lyashenko E, Niepel M, Dixit PD, Lim SK, Sorger PK, Vitkup D. (2020) Receptor-based
1052 mechanism of relative sensing and cell memory in mammalian signaling networks. *eLife* **9**,
1053 e50342.
1054 <https://doi.org/10.7554/eLife.50342>
1055 <http://www.ncbi.nlm.nih.gov/pubmed/31961323>


1056 [62] Kesler B, Li G, Thiemicke A, Venkat R, Neuert G. (2019) Automated cell boundary and 3D
1057 nuclear segmentation of cells in suspension. *Sci Rep* **9**, 10237.
1058 <https://doi.org/10.1038/s41598-019-46689-5>
1059 <http://www.ncbi.nlm.nih.gov/pubmed/31308458>

1060 [63] Munsky B, Li G, Fox ZR, Shepherd DP, Neuert G. (2018) Distribution shapes govern the
1061 discovery of predictive models for gene regulation. *Proc Natl Acad Sci U S A* **115**, 7533–
1062 7538.

1063 <https://doi.org/10.1073/pnas.1804060115>
1064 <http://www.ncbi.nlm.nih.gov/pubmed/29959206>
1065 [64] Neuert G, Munsky B, Tan RZ, Teytelman L, Khammash M, Van Oudenaarden A. (2013)
1066 Systematic identification of signal-activated stochastic gene regulation. *Science* (1979)
1067 **339**, 584–587.
1068 <https://doi.org/10.1126/science.1231456>
1069 <http://www.ncbi.nlm.nih.gov/pubmed/23372015>
1070
1071

1072 **SUPPLEMENTAL INFORMATION**


1073 This section includes Figure S1 to Figure S5.

1075 (A-O) Cell growth phenotypes were quantified over time under different NaCl stress conditions
1076 using OD600 measurements of bulk yeast cell cultures. (A) OD600 measurements for yeast
1077 cells growing in normal CSM media without NaCl addition over time in three independent
1078 experiments, each with three independent biological replicates. Black, gray, and light-filled
1079 circles represent the measurements, and red lines show the fits to an exponential function in the
1080 log2 y-axis plot over time.

1081 (B) Cells were grown to the exponential phase (OD600 = 0.5) at the start of each treatment.
1082 Subsequently, they were exposed to various NaCl treatment profiles, including (B-E) repetitive
1083 3M NaCl osmotic stresses in the form of pulses with durations of (B) 120 minutes, (C) 90
1084 minutes, (D) 60 minutes, and (E) 30 minutes, each applied to the cells at t=0 of the 2-hour
1085 treatment period.

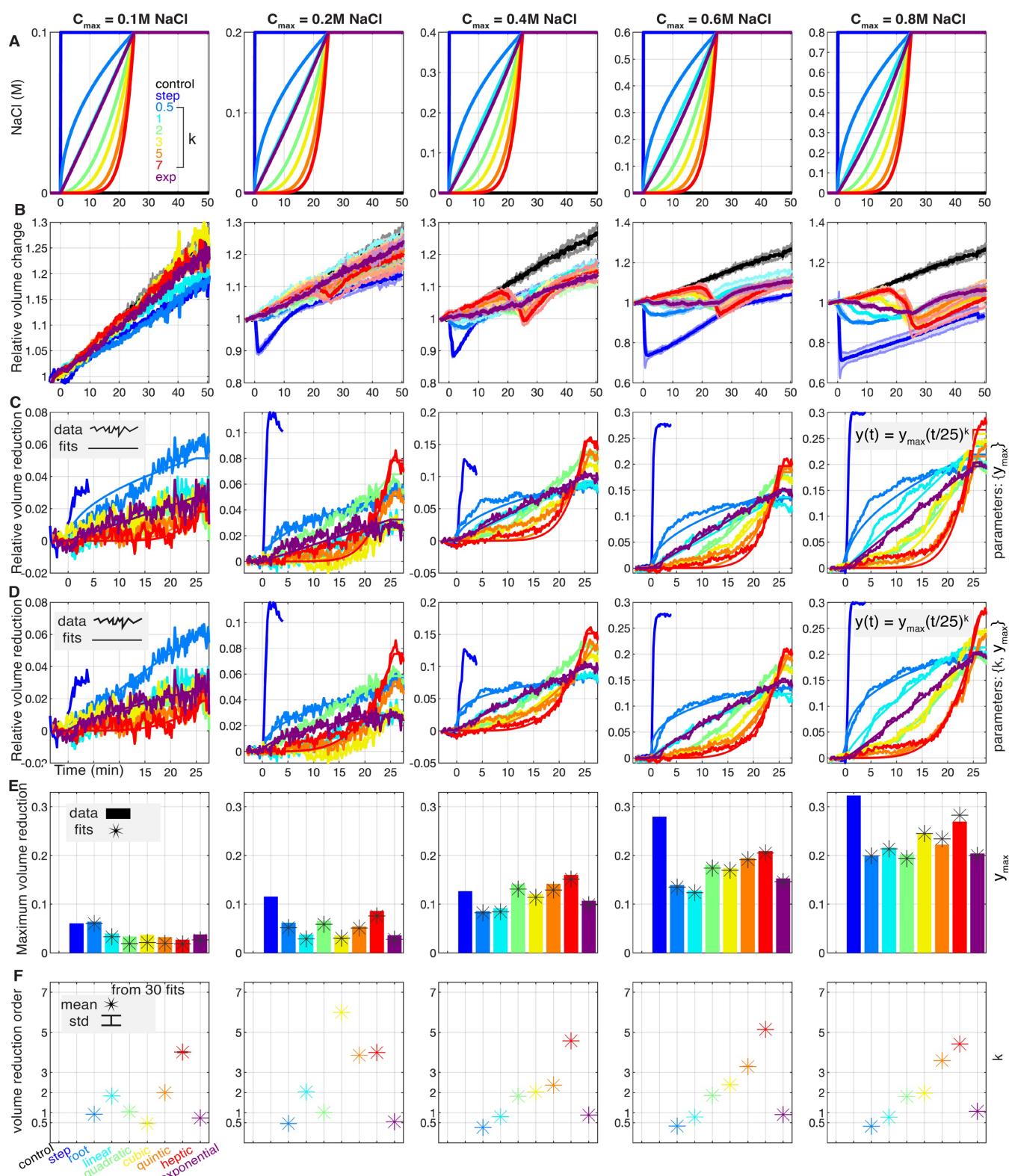

1086 (F-H) Three 30-minute pulse NaCl treatments were administered to the cells at (F) t=30 minutes,
1087 (G) t=60 minutes, and (H) t=90 minutes from the start of the 2-hour treatment period. We also
1088 considered (I) a 120-minute linear (cyan) and (J) a 120-minute exponential (purple) increase.
1089 Each linear and exponential stress profile gradually increased to 3M in 90 minutes and remained
1090 at 3M for another 30 minutes. At the end of each 2-hour treatment period, cells were filtered to
1091 remove NaCl, re-suspended in fresh cell growth media, and their OD600 values were monitored
1092 for 5 hours in three biological replicates (represented by black, gray, and light-filled circles in A-
1093 J). After 5 hours, another round of 2-hour stress treatments (following the protocols described in
1094 B-J) and 5-hour OD600 measurements were repeated. During each pre-stress, post-1st-stress,
1095 and post-2nd-stress period, OD600 measurements from each BR were fitted to an exponential
1096 growth curve (A-J), fits are shown in red in a log2 y-axis plot over time. Cell growth doubling
1097 times were calculated from each fit and are shown in red numbers rounded to the nearest minute.
1098 (K-O) Cell growth rates following each stress treatment were quantified using OD600 doubling
1099 rates relative to the control (0M, no stress) at (K) pre-stress, (L, N) post 1st stress treatments,
1100 and (M, O) post 2nd stress treatments. Results in (L, M) are based on fitting all timepoints, while
1101 the results in (N, O) are based on fitting only the measurements from the three final timepoints.
1102

Figure S2. Correction for Photobleaching of Hog1 Nuclear Localization Data.

(A) Three step-like NaCl stress with final concentrations of $C_{\max} = 0.6\text{M}$ were applied to yeast cells at $t = 0$ minutes, 12 minutes, and 20 minutes in three independent experiments. Images were captured in brightfield every 10 seconds and fluorescent images every one minute with exposure times of 10 and 20 milliseconds (see Methods). The number of fluorescent images (yfp) captured before the step change in stress varied in these experiments, including 3, 15, and 23 fluorescent images, respectively. These stress resulted in (B) consistent relative cell volume changes, which were quantified using brightfield images. However, they led to (C) varying Hog1 nuclear localization dynamics (Hog1^{nuc}) due to photobleaching of fluorescent images over time. (D) To address this issue empirically, we conducted additional control experiments involving step-like 0.6M NaCl stress applied to the cells all at $t=0$, each with an increasing number of pre-stress photobleaching snapshots taken, as shown in the legend. This resulted in (E) varying levels of Hog1^{nuc} , depending on the number of pre-stress photobleaching snapshots. (F) The maximum Hog1^{nuc} values were quantified as a function of the number of pre-stress

1117 photobleaching snapshots and fitted to a two-term exponential model to calculate the decay rate
1118 per yfp image. Fluorescent images were captured every one minute in all experiments, allowing
1119 quantification of photobleaching effects in Hog1nuc data over time. **(G)** The 10 highest Hog1nuc
1120 values were quantified as a function of the number of pre-stress yfp snapshots and fitted with a
1121 two-term exponential model to calculate the decay rate per yfp image. The decay term calculated
1122 as an average from these 10 Exp2 fits was then used to correct all the Hog1nuc data, as follows:
1123 corrected_Hog1nuc(t) = (f2(0)/f2(t)) * Hog1nuc(t), where f2(0) represents the value of f2(t) at t=0.
1124 **(H)** The corrected Hog1nuc data from **(E)** are shown in blue, and the copper colormap in **(H)**
1125 corresponds to data in **(E)**. The outer shaded plots represent the 40-60 percentile of single cells
1126 for each condition. **(I)** Hog1nuc was quantified under stress in **(A)**, correcting both
1127 photobleaching of fluorescent images over time and background fluorescent intensity at single
1128 cells as described in the Methods section using Equations 4 in the Methods section. Y-axis
1129 represent per pixel nucleus to per pixel total cell fluorescent intensity. **(J)** The Hog1nuc data
1130 from **(I)** were corrected using our empirical method described in **(G)**.
1131

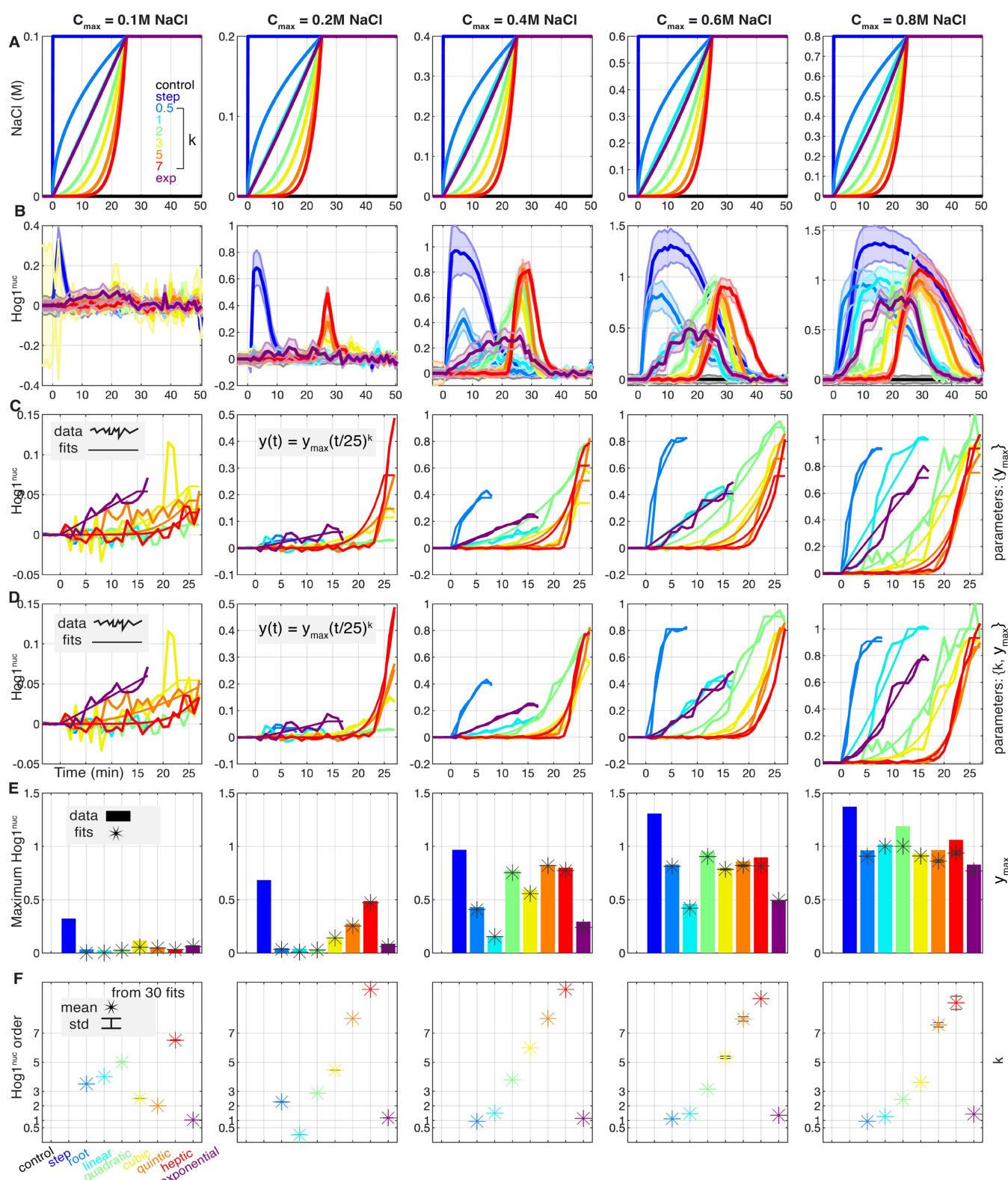

1132

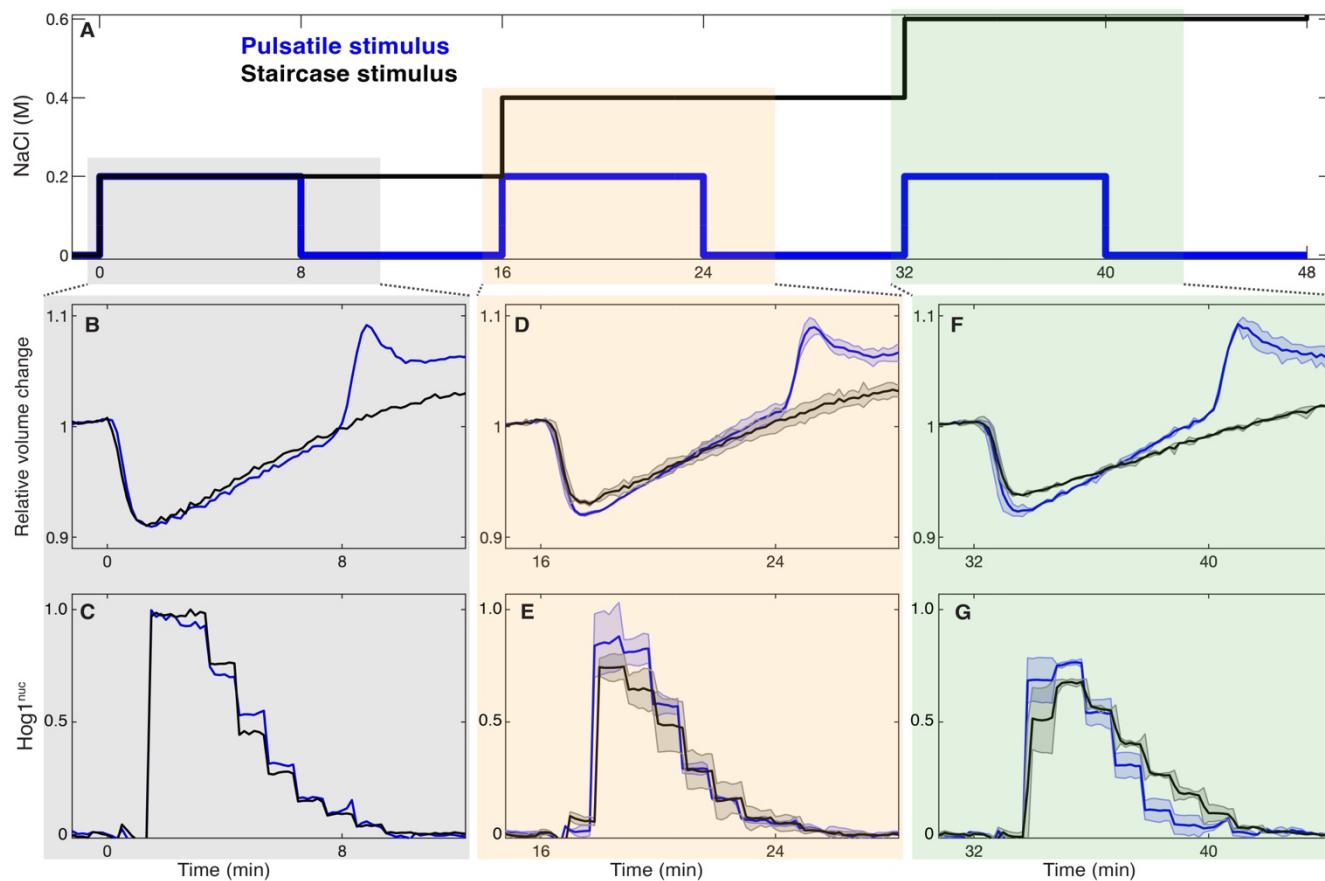
Figure S3. Dynamics of Cell Volume Reduction in Response to Gradual NaCl Stress. (A)

1133

Yeast cells were subjected to gradual NaCl stress, with final concentrations ranging from $C_{\max} =$

1134 0.1M to 0.8M, resulting in differential (**B**) relative cell volume changes and (C-D) cell volume
1135 reduction phenotypes over time. The thick lines and shaded areas in (**B**) represent the mean
1136 and standard deviation (std) from 2 or 3 biological replicates, each consisting of approximately
1137 100 single cells observed through live cell time-lapse microscopy. In (**C-D**), the noisy lines
1138 represent the data (averages from biological replicates), while the smooth lines represent the
1139 fits of the data to polynomial functions. The fits involve one free parameter $\{y_{max}\}$ in (**C**) and two
1140 free parameters $\{y_{max}$ and $k\}$ in (**D**). Further details on the fitting procedure can be found in the
1141 Methods section. For each condition, the values of k and y_{max} were determined as averages
1142 based on the outcomes of 30 independent fits and are presented in (**E-F**), along with their values
1143 directly quantified from the data. (**E**) The maximum cell volume reduction over the 25-minute
1144 stress period exhibited variability across different gradual stresses, regardless of the NaCl stress
1145 final concentration. The fit values for y_{max} here are from (**D**). (**F**) The fit values for the polynomial
1146 order, k , are shown, obtained from the fits in (**D**).

1147


Figure S4. Dynamics of Hog1 nuclear localization in Response to Gradual NaCl Stress.

1148

(A) Yeast cells were subjected to gradual NaCl stress, with final concentrations ranging from

1149 C_{\max} = 0.1M to 0.8M, resulting in differential (**B-D**) Hog1 nuclear localization over time. The thick
1150 lines and shaded areas in (**B**) represent the mean and standard deviation (std) from 2 or 3
1151 biological replicates, each consisting of approximately 100 single cells observed through live cell
1152 time-lapse microscopy. In (**C-D**) we depict the ascending Hog1nuc data to examine the
1153 activation dynamics from the stress change until Hog1 reaches its maximum value. The
1154 comprehensive analysis of Hog1 activation following its peak or early rise is presented and
1155 analyzed in Figures 5 and 6. Here, the noisy lines represent the data (averages from biological
1156 replicates), while the smooth lines represent the fits of the data to polynomial functions. The fits
1157 involve one free parameter $\{y_{\max}\}$ in (**C**) and two free parameters $\{y_{\max}\}$ and $k\}$ in (**D**). Further
1158 details on the fitting procedure can be found in the Methods section. For each condition, the
1159 values of k and y_{\max} were determined as averages based on the outcomes of 30 independent
1160 fits and are presented in (**E-F**), along with their values directly quantified from the data. (**E**) The
1161 maximum Hog1nuc over the 25-minute stress period exhibited variability across different gradual
1162 stresses, regardless of the NaCl stress final concentration. The fit values for y_{\max} here are from
1163 (**D**). (**F**) The fit values for the polynomial order, k , are shown, obtained from the fit in (**D**). These
1164 k values along with the values from Figure S3F are used to directly compare the dynamics of
1165 cell volume change to Hog1nuc dynamics as presented in Figure 4G.

1166

1167 **Figure S5. Responses to Pulsatile Versus Staircase Stress.** Yeast cells were subjected to
1168 gradual NaCl stress in the form of (A) pulsatile versus staircase stress, each comprising three
1169 periods with identical 0.2M step increases at the beginning of each period, with each period
1170 lasting 16 minutes. Relative cell volume changes and Hog1 nuclear localization over time are
1171 shown for the (B, C) first stress period, (D, E) second stress period, and (F, G) third stress period,
1172 respectively. Imaging was conducted independently at each stress period in separate
1173 experiments to minimize the photobleaching effect. The lines in (B, C) represent the means from
1174 hundreds of single cells. The thick lines and shaded areas in (D-G) represent the means and
1175 standard deviations (std) from 2 biological replicates, each consisting of approximately 100
1176 single cells observed through live cell time-lapse microscopy.