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Abstract

Diffuse invasion of glioblastoma cells through normal brain tissue is a key contributor to tumor
aggressiveness, resistance to conventional therapies, and dismal prognosis in patients. A deeper
understanding of how components of the tumor microenvironment (TME) contribute to overall tumor
organization and to programs of invasion may reveal opportunities for improved therapeutic strategies.
Towards this goal, we applied a novel computational workflow to a spatiotemporally profiled GBM
xenograft cohort, leveraging the ability to distinguish human tumor from mouse TME to overcome
previous limitations in analysis of diffuse invasion. Our analytic approach, based on unsupervised
deconvolution, performs reference-free discovery of cell types and cell activities within the complete
GBM ecosystem. We present a comprehensive catalogue of 15 tumor cell programs set within the
spatiotemporal context of 90 mouse brain and TME cell types, cell activities, and anatomic structures.
Distinct tumor programs related to invasion were aligned with routes of perivascular, white matter, and
parenchymal invasion. Furthermore, sub-modules of genes serving as program network hubs were
highly prognostic in GBM patients. The compendium of programs presented here provides a basis for
rational targeting of tumor and/or TME components. We anticipate that our approach will facilitate an
ecosystem-level understanding of immediate and long-term consequences of such perturbations,
including identification of compensatory programs that will inform improved combinatorial therapies.
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Introduction

Glioblastoma is the most common malignant brain tumor in adults — incurable despite multi-modal
treatment with maximal safe surgical resection, radiation and chemotherapy?. Part of the treatment
challenge in GBM stems from its highly invasive phenotype, wherein individual tumor cells move
through normal tissues diffusely or follow perivascular routes or white matter tracts to spread far
beyond the main tumor mass?. Although surgery removes the bulk of the tumor, these infiltrating cells
are left behind as they are not only difficult to detect but also impossible to remove without
unacceptable neurologic consequences. The residual cells can then continue to evolve and adapt to the
selective pressures of conventional and rational therapies — a process that is multifaceted, and that
involves genetic heterogeneity, phenotypic plasticity, and the ability to engage with and co-opt the
tumor microenvironment (TME) into a pro-tumorigenic state?” — to result in recurrence.
Understanding of the biology of the invasive front and delineating the mechanisms by which these cells
engage with their surrounding normal cells and environment to promote the malignant phenotype is
thus of high clinical importance.

Multiple factors have hindered our ability to understand the invasive front, however, and its
relationships with the rest of the spatial glioblastoma ecosystem. First, surgery removes the most solid
tumor tissue, but the outermost regions of infiltration are often inaccessible and undersampled due to
clinical limitations. Second, surgery and tissue banking typically yield small and unoriented tissue
fragments with an unknown spatial relationship relative to each other. Thus, most GBM literature
describes heterogeneity within only small regions of the highly cellular or highly vascularized resectable
portion of the tumor and are unable to capture overall tumor organization. Third, studies to date have
implicated multiple factors in invasion, including signaling pathways®°, components of the extracellular
matrix (ECM)%!!  and interactions with nearby or distal cells of the tumor!?13 and TME, but there
have been limited approaches and tools to contextualize the many processes as part of an ecosystem
of interdependent processes within the tumor's overall organization®. These challenges have
collectively limited our ability to assess global patterns of adaptation to local tissue contexts, for
instance invasion along white matter tracts or perivascular routes within the same tumor.

Fortunately, new technologies for spatial profiling, which can delineate the organization of tumor
transcriptional cell states in relation to each other, to genetic diversity, and to metabolic and cellular
diversity of the TME, have the potential to greatly increase our understanding of tumor ecosystems!¢-
20 Nevertheless, the spatial profiling platforms available to date that offer global transcriptome
coverage —and that could therefore support exploratory studies— do not have single cell resolution
(NanoString GeoMx, 10X Genomics Visium). The resulting data are therefore mixtures of cell types and
states that require computational deconvolution. Strategies to deconvolute spatial data employ either
supervised approaches (requiring matched single cell data to infer cellular composition within each
profiled region)?23, unsupervised approaches based on matrix factorization or probabilistic
modelling?*?’ (to identify latent gene expression programs representing cell types or states), or semi-
supervised approaches?®?°, Regardless of strategy, most current applications of deconvolution have not
robustly disambiguated low frequency signals and have primarily focused on regions where signals of
interest are >20% of the total. This excludes areas of diffuse tumor infiltration'®17:2° as well as lower
frequency cells and states of the TME. Altogether, these limitations hold back key aspects of tumor
biology from comprehensive study, including components of the TME and cellular interactions that
drive tumor growth and invasion.
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Here, we aim to address these challenges by coupling transcriptome-wide spatial profiling of
xenografted GBM cells with temporal sampling throughout tumor progression, and an analytic
workflow that enables highly specific and sensitive detection of cellular programs (Fig. 1a). A key
strength of the xenograft strategy is genomic distinction between human tumor cells and mouse-
derived TME, which we leverage to boost signal detection in regions with low tumor content. This
approach captures transcriptional phenotypes across the whole tumor including areas of invasion. The
GBM lines selected represent multiple common genetic drivers, allowing identification of both universal
and genotype-enriched transcriptional programs that can be linked back to external patient cohorts. To
identify molecular programs, we developed a computational workflow centered on unsupervised
deconvolution that does not require matched single cell data and enables de novo discovery of both
known and novel expression programs corresponding to cell types, cell activities, or combinations
thereof. This led to deconvolution of the mouse brain and TME with far greater granularity than
previously achieved for spatial data, distinguishing 71 cell types and anatomic structures, and 19 TME-
related programs in this cohort. Many of the TME programs (including astrocytic, myeloid, and vascular
cell types and states) showed spatiotemporal variation in abundance, reflecting dynamic changes
during tumor growth and invasion. We further identified multiple highly resolved human tumor cell
programs and explored within-tumor and tumor-TME crosstalk across regions of variable tumor
density, identifying unique interactions along distinct routes of invasion. Altogether, our work provides
insight into previously elusive aspects of the GBM ecosystem and enabled systematic exploration of the
invasive front.
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Main
stRNAseq profiling and program discovery in GBM xenograft models

To comprehensively capture spatial transcriptional heterogeneity in vivo, we selected 6 well
characterized brain tumor initiating cell (BTIC) lines®°. These derive from four patients spanning a range
of clinical variables including sex, exposure to standard therapy, MGMT methylation status, and
common GBM molecular drivers (Fig. 1b, Supplementary Table 1a). In addition to diversity of genetic
drivers, our cohort further included BTIC lines from two patients (BT143 and BT238) that captured
acquired phenotypic diversity during tumor evolution. In these patients, multiple lines were
concurrently derived from anatomically distinct regions of the tumor as defined by pre-operative MRI,
including the densely growing core (x), the contrast-enhancing highly vascularized tumor margin (y),
and the highly diffuse leading edge of the tumor (z) that is typically outside of the surgical margin. Lines
from each patient shared genomic drivers but maintained distinct growth phenotypes in vivo, with x
lines growing densely relative to the diffusely infiltrating y and z lines (Fig. 1c). The consistency of x/y/z
growth patterns across patients indicated that predictable phenotypic adaptations can be acquired by
GBM cells during tumor evolution, that these adaptations relate to spatial context (e.g., core vs edge),
and that they are heritable, likely being fixed in the genome or epigenome. Similar observations have
been made for other lines derived from edge versus core!? and in the context of adaptation to
hypoxia®®. Our x/y/z BTIC lines thus offer a rare opportunity to investigate expression programs
underlying dense versus diffuse growth. Finally, to capture invasion dynamics across tumor stages, our
cohort includes early, mid, and late timepoints of growth based on known time to endpoint (ranging
between 76-428 days across lines) (Fig. 1b, Supplementary Table 1a).

We profiled 51,952 individual spatial transcriptomic RNAseq (stRNAseq) measurements (spots) using
Visium, from a total of 23 samples (Fig. 1c, “Methods”) spanning all lines and timepoints. In many cases,
we were able to fit a complete coronal brain section diagonally within the capture area, ensuring
profiling across the whole tumor and invasive front. In other cases, the injection side (i) and
contralateral side (c) were mounted on separate capture areas (e.g., BT143y/z endpoint samples, Fig.
1c). Further, we also profiled sequential sections cut 30-40um apart but did not observe notable
biological variability (data not shown). We used human-to-mouse transcriptome admixture to calculate
the relative contribution of tumor cells to the transcriptional output of each spot. Admixture ranged
from 0 in spots with 100% mouse cells, to 1 in spots with 100% tumor cells (Fig. 1c-e, Supplementary
Fig. 1a,b). The sensitivity with which we could distinguish mouse from human cells enabled us to focus
our next analyses on regions of high (80-100%; D4), moderate-high (50-80%; D3), moderate-low (20-
50%; D2), and low (5-20%; D1) tumor cell density, as well as spots of mouse brain without tumor (DO).
We observed highly variable levels of tumor density among lines and timepoints across tumor regions
defined in this way. BT143x stood out as the most densely growing line with many spots at >80% tumor
density by endpoint (Fig. 1e). BT161 and BT238 were the next-most densely growing, with many spots
having 50-80% tumor cell density at endpoint. In contrast, BT134 endpoint tumors, and all earlier
timepoints across lines grew diffusely.

Gene expression program discovery in human and mouse cells

Since stRNAseq does not have single cell resolution, we utilized unsupervised deconvolution to identify
admixed cell types and states separately for human and mouse data. We used consensus Non-negative
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Matrix Factorization (cNMF)3! to identify robust transcriptional programs across all 23 samples together
and quantify their relative usage within spots. Factorization yielded 15 human tumor cell programs
(referred to as h1-h15) and 90 mouse brain and TME programs (referred to as m1-m90), in line with the
greater transcriptional diversity of the mouse brain. To decipher if programs represented cell types, cell
states, or anatomical structures, we used gene set enrichment analysis (GSEA) and established
reference marker genes for normal mouse brain cell types?®3233, TME-specific cell types’?83*, and
human GBM states*>17354%(Supplementary Table 2a, Methods).

Human tumor programs were most diverse in the core, with 3-4 discernable programs per spot in high
density regions, and 1-2 programs present per spot in lower density regions (Supplementary Fig. 1c).
Mouse programs included 11 cell activities and 18 cell types resident in the normal brain, 19 TME-
specific or enriched cell types and states, and 42 programs representing combinations of cell types that
could not be further disambiguated at this level of factorization (Supplementary Table 2b). Annotation
by a neuropathologist confirmed that most of these combination programs corresponded to anatomic
regions or structures of the mouse brain (Supplementary Table 2b). We detected an average of 5
normal brain mouse programs per spot in regions without GBM (D0) and in the tumor leading edge
(D1), with diversity decreasing at higher tumor densities (D2-D4; Supplementary Fig. 1c). In contrast,
only 1-2 TME-related programs were observed per spot in tumor regions. Overall, across both human
and mouse data our approach was able to quantify usage of up to 8 programs per spot, showing far
greater sensitivity than previously achieved with stRNAseq analyses (i.e., ~2 programs/spot)?®.

To ensure our workflow generated meaningful results, we evaluated a set of mouse programs expected
to closely match previous literature for cell types and anatomic structures. A first example is program
m25, which corresponds to ependymal cells based on enrichment of marker genes (Supplementary
Table 2d, 5b). Ependymal cells form a single-cell layer restricted to the lining the ventricles, and indeed,
m25 was localized to the ventricular lining with no background signal elsewhere (Fig. 1f-g). Usage values
ranged between 0.3-0.5, indicating ependymal cells make up one third to one half of the signal in these
spots, in line with known cell composition in the ventricular lining*!. Analysis of marker genes and
transcription factor (TF) activity further validated m25 as an ependymal program (Fig. 1i,j). Within the
subventricular zone, we also identified progenitor cell programs at lower cellular frequency per spot (3-
10%), including gliogenic progenitors concentrated in the dorsolateral ventricular region (m58), and
two proliferating progenitor programs (m6, m83) located in the lateral ventricular lining and with
diffuse spread into the brain parenchyma (Fig. 1f,g). As a second example, we could distinguish
pericytes from endothelial cells (Supplementary Fig. 1e), even though these cell types always co-occur
spatially within the vasculature, represent a minority of signals within a given Visium spot (max of 8%
usage for the pericyte program), and have not previously been deconvoluted in spatial datasets!¢:17.20.28,
In a final example, we highlight identification of cortical layers with high resolution (Supplementary Fig.
1f), including the outermost meninges (m4) and vascular leptomeningeal smooth muscle cells (m11).
The cortical layers are arranged in a spatially overlapping manner that reflects the changing
composition of cell types and states along the radial axis of the brain. This compositional gradient is
guantitatively captured by the program usage values, recapitulating the level of spatial overlap
between cortical programs (Supplementary Fig. 1f). Based on these observations, we conclude that our
deconvolution and annotation approach is highly specific (enabling identification of unique cell types,
states, and anatomic structures), is highly sensitive (capable of deconvoluting signals with low overall
signals in the range of 3-10%), can identify both spatially coherent and diffuse programs, and provides
interpretable usage values that quantify up to 8 programs within each Visium spot.
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Tumor programs span progenitor states to invasion phenotypes

Having established the sensitivity and specificity or our deconvolution approach, we characterized 15
de novo human tumor cell programs using a similar strategy (Fig. 2a-d, Supplementary Fig. 2a,b and
Supplementary Table 2b). This included pathway-based and marker gene-based annotations,
transcription factor (TF) activity-based similarity, and spatial co-occurrence. These analyses were used
to label and assign each program to broader themes based on all information (Supplementary Data 3a-
e). The 15 human tumor programs are fully described in the context of known GBM transcriptional
classes, pathways, and TME spatial neighborhoods in Supplemental Results.

We classified programs into 6 major themes, representing progenitor states, cell cycle, metabolism,
astrocytic-like, oligodendrocytic-like, and invasion. Progenitor programs (h5_progenitor,
h13_DNArepair) were most prevalent in high tumor cell density regions (D4) (Fig. 2e, Supplementary
Fig. 2c, Supplementary Table 3f), along with one of the cell cycle programs (h7_telomere), indicating
that cycling progenitors preferentially reside there. The OC-like programs (h12_0OC1, h14 _0C2) also
showed enrichment in denser tumor regions (Fig. 3e), with h14_0OC2 representing a genetic subclone
within the BT143x cell line (Supplementary Fig. 2d-g, Supplemental Materials). Outside of the dense
tumor core, a trio of programs formed a gradient of outward tumor expansion reflecting a phenotypic
arrangement centering on regions of hypoxia (h9_hypoxia most centrally located), extending to regions
of more diffuse tumor expansion without hypoxia (h2_AC), and finally to invasion into the normal brain
(h11_invason) (Fig. 2f,g). This was reminiscent of hypoxia-centered cellular organization within human
tumors!®#?, indicating our xenograft cohort captures this facet of tumor biology, and importantly,
extends the previous work by revealing a program of diffuse invasion (h11). The h11_invasion program
scored highly for leading edge gene-sets (LE_IvyGAP; Fig. 2b), comprised a majority of D1-D2 spots at
early to late timepoints, and was the only tumor program with significant over-representation in D1
regions within individual patients (Fig. 2g, Supplementary Table 3g). Finally, we noted that a few
programs did not have cohort-wide usage (Fig. 2d). Instead, these were prevalent within individual
patients suggesting that specific tumor genotypes could be linked to unique repertoires of tumor cell
programs, and that larger xenograft cohorts will likely reveal additional insights. In support of this,
previous work establishing that EGFR plays a role in errant neovascularization*? was in line with
enrichment of angiogenic tumor cell programs (h3, h10) in the tumor line BT134, which harbours high-
level EGFR amplification (93 copies).

Finally, we gauged how prevalent xenograft tumor programs were in other datasets by comparing them
with similarly identified programs in external cohorts of human tumors>'’30, brain tumor initiating cell
linesY, and xenografts®® (Supplementary Fig. 2i, Supplementary Table 3h). This comparison showed
highest correlations for progenitor, cell cycle, and metabolism programs among datasets. We saw less
concordance for genotype-specific programs outside of the TFRI cohort (which included the bulk RNA-
seq of these xenograft samples) indicating that these programs are less prevalent across GBM patients.

Tumor program association with survival and transcriptional subtypes

We next asked how the 15 human programs related to survival differences, anticipating that
associations may be context-dependent with respect to the GBM transcriptional subtypes (classical,
mesenchymal, proneural). For each tumor program we first identified the genes most strongly
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contributing to program identity (i.e. top-scoring genes) (Fig. 3a, Supplementary Fig. 3, Supplementary
Table 4a), then performed network analysis to select the subset acting as network hubs based on
protein-protein-interactions (Fig. 3a, Supplementary Fig. 3, Supplementary Table 4b). Hub genes were
distinct among programs (Fig. 3b) and well aligned with previously described program themes (Fig. 2a).
We performed survival analyses in the TCGA cohort using both top-scoring and hub genes and found
that hub genes had a strong associations with survival across all transcriptional subtypes (Fig. 3c,f,i,
Supplementary Table 4e). This was true in both a classic survival analysis (comparing survival of patients
ranked by gene-set expression; Fig. 3d,g,j), and when comparing gene-set enrichment in patients first
stratified by survival outcome (Fig. 3e,h,k). Several programs emerged as robustly associated with
survival in a subtype-specific manner. For instance, high expression of h1_metabolism and h12_0OC1
was robustly associated with poor survival in classical tumors. The GSEA normalized enrichment scores
(NES) of h1 and h12 genesets were very highly correlated across the TCGA cohort (cor=0.85;
Supplementary Table 4f,g), indicating that OC-like cells enacting h1 metabolic activities (primarily
cholesterol biosynthesis) operate as a unit, together influencing cell phenotypes related to survival.
Mesenchymal tumors were stratified by cell cycle/epigenetic (h8_epigenetic) and invasion
(h11_invasion) programs. Lower NES correlations between h8 and h11 (cor=0.3; Supplementary Table
4f,g) indicated these programs independently influenced survival. Proneural tumors were also stratified
by cell cycle (h7_telomere), and the three programs encompassing the hypoxia-to-invasion gradient
(h9_hypoxic, h2_AC1, h11_invasion). NES correlation values among these programs in TCGA followed
the same graded pattern of co-occurrence observed in xenografts (h9-h2-h11), strongly supporting
their spatial and phenotypic relationship in human patients (Supplementary Table 4f,g).

Having established prognostic value of the tumor programs, we more deeply investigated how these
related to known GBM molecular transcriptional states (Neftel)*. This was specifically motivated by the
weaker observed match of the strongly prognostic invasion programs (h2, h11) to NPC-like states (Fig.
2b), despite previous links between NPC-like states and GBM invasion*®43, Given that multiple states
typically co-exist within a tumor and that state transitions can reflect adaptations to the TME*®37, we
anticipated correspondence between Neftel states and tumor density. As expected, each xenograft
harbored all four states (Supplementary Fig. 4a-c), with NPC-like and MES states less abundant overall,
but with significantly higher prevalence in D1-D2 regions relative to the tumor core (Supplementary
Fig. 4a). We also found that tumor-baseline (majority) states were evident in each xenograft sample,
were stable across timepoints and tumor density regions, were independent of cNMF program usage,
and therefore likely intrinsic to each line, as previously observed® (Supplementary Fig. 4c). By then
calculating the rate of transition away from tumor-baseline in spots with usage of individual programs,
we established that transitions were common across programs (Supplementary Fig. 4d). This supported
the high plasticity of Neftel states among the tumor programs defined here, and specifically for
h11_invasion in regions of diffuse infiltration (D1) where dynamic transitions from an AC baseline to an
NPC-like state predominated across all timepoints. This supported h11 as an invasion program largely
orthogonal to the previously established NPC-like state.

Microenvironment programs encompass cell types and states

Of the 90 mouse programs, we focused on 19 that were either specific to or highly enriched in regions
of tumor, each with dynamic spatial and temporal kinetics. These TME-programs were broadly
categorized into 11 cell types and 8 cell activities based on marker gene, TF-activity, and pathway
annotations, and co-localization (Fig. 4a-d, Supplementary Fig. 5a-c, Supplementary Table 2b,5a-d,
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3e). Programs were labeled as cell types when marker gene-based annotations were unambiguous and
strong, otherwise, labels thematically reflected highly enriched pathways indicating cell activities. All
programs of the TME were detected in all lines (Fig. 4e). We describe the resulting in vivo spatial
xenograft TME catalogue in Supplemental Results, covering astrocytes, vasculature, immune cells
(microglia, monocytes, macrophages), and multiple activity programs.

TME programs were broadly organized along a spatial axis corresponding to tumor density. For
instance, we observed that mature astrocytes (m74_Astrol) widespread and resident throughout the
normal mouse brain were prevalent in the invasive tumor front but excluded from dense tumor regions
(Fig. 4f,h). m49 _AstroRNA, representing normal astrocytic activities (related to RNA processing,
proliferation, glutamatergic synapses) was prevalent in astrocytes localized to the normal brain and
tumor periphery (Supplementary. Fig 5d, Supplementary Table 5e). Within the context of the tumor
however, a dramatic state shift toward a reactive program (m43_AstroReac) was enacted across the
full spectrum of tumor density and sustained at all timepoints of disease progression (Fig. 4f,
Supplementary Fig. 5d, Supplementary Table 5e). Astrocytes in this reactive state were enriched for
terms relating to proliferation, inflammatory response, and ECM organization, and had a strong match
to established reactive signatures** (Supplementary Fig. 5e). Altogether, these state-change patterns
supported phenotypic co-option of normal astrocytes along the advancing tumor front. We were
surprised to also observe tumor-association of a regional astrocytic cell subtype or activity
(m44_AstroHY), characterized by pathway enrichment of terms relating to precursor cell proliferation.
This seemingly homeostatic program, highly used within hypothalamic regions at all timepoints (Fig.
4h), also showed early and sustained tumor-enrichment (Supplementary Fig. 5d, Supplementary Table
5e), indicating that tumor-proximal astrocyte transitions to this state could play an important a role
within the context of the GBM TME.

We observed similar regional specificity of endothelial programs, with normal vasculature in the normal
brain and invasive front (m52_Endol, m59 EndoLV) gradually replaced by tumor-enriched vascular
programs (m86_Endo2, m30_EndoHyp) within the denser and more hypoxic regions of tumor (Fig 4c,f).
Microglial programs were also present diffusely throughout the normal brain (Fig. 4f,g), had an early
response to sites of injury (injection tract) and persisted long-term within lower density tumor areas
(D2-D3) (Fig. 4f, Supplementary Fig. 5d, Supplementary Table 5e). Of these, m7_MG1 was more
abundant overall, scoring strongly for response to injury and antigen processing and presentation, while
m77_MG2 was involved in apoptotic cell clearance (Supplementary Table 5a), indicating these
microglial subpopulations play different roles within the tumor. Two monocyte derived macrophage
(MDM) programs were rapidly recruited to early lesions and were otherwise absent from the normal
brain (Fig. 4f,g). Although these two MDM programs had broadly similar spatial distributions, they
enacted distinct activities possibly related to their micro-local spatial contexts — m40_MDM1 was
enriched in terms relating to cell-matrix adhesion, chemotaxis and migration, while m84_MDM?2 scored
highly for macrophage proliferation and phagocytosis (Fig. 4b, Supplementary Table 5a). Of the
multiple immune cell activities identified (Supplemental Results), we highlight the cytotoxic program
m57_Cytotoxic as primarily enacted by MG and MDMs (based on co-localization; Supplementary Fig.
5c, Supplementary Table 5d), and observed as the most prevalent immune activity in D4, indicating
that cytotoxicity plays a more central role in denser regions (Fig. 4f,i).

We sought to compare this highly detailed catalogue of TME programs with programs identifiable in
external cohorts. We used cNMF to similarly identify programs in 5 additional datasets, including single
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cell and spatial data from non-tumor-bearing developing and adult mouse brain (Kleinman,
Bayraktar)?®32, and single cell data from CD45+ cells sorted from syngeneic (Movahedi)** and xenograft
(Senger)” GBM models (Supplementary Fig. 5f, Supplementary Table 5f). After factorizing these
datasets, we identified the best match between the TME programs and the resulting ensemble of cNMF
solutions, observing general agreement along expected themes. For instance, astrocytic and
endothelial programs had higher correlation with programs in normal brain datasets compared to
CD45+ enriched datasets where non-immune cells were depleted. Interestingly, we saw better matches
between m52_Endol and Visium rather than single-nuclei data (Bayraktar), indicating possible loss of
normal vascular cells during single cell sample processing. Brain-resident microglial programs were also
more prevalent in normal brain versus GBM datasets, whereas the opposite was true for MDM
programs. Monocytes also showed specific enrichment in the GBM datasets, as expected from their
recruitment during tumor progression. Overall, broad concordance among cohorts and data types
indicated that the TME program catalogue defined here represents meaningful biological signals.

Tumor-Microenvironment crosstalk

Cellular communication is vital to the tumor ecosystem, with cell-cell contacts, tumor-extracellular
matrix (ECM) interactions, and secreted signaling all pivotal to tumor growth, adaptation, and invasion.
To better understand how the glioma and non-malignant cells described here communicate across
distinct niches, we quantifed directional ligand-receptor (LR) sighaling using CellChat*, expecting to
capture distinct interactions in dense versus invasive regions reflective of cellular changes in TME
composition. We surveyed all possible tumor-tumor, tumor-TME, and TME-TME interactions, stratified
by density region (Fig. 5a, Supplementary Fig. 6a). In all, 63 pathways were involved in significant
crosstalk, comprising 8 major groups based on the directional involvement of human versus TME
ligands and receptors (LR1-LR8; Fig. 5b). Within the TME (LR1) for instance, we observed that CSF-CSF1R
signaling in D1-D2 regions involved microglia as the primary signal-receiving cells, based on high scores
for CSF1R in these programs (CSF1R gene rank m7=16, m77=22; Supplementary Table 6a). In LR2,
significant Spp1-CD44 crosstalk took place between macrophages and reactive astrocytes at early
timepoints, and also between macrophages and tumor cells at later stages (Supplementary Fig. 6b-e,
Supplementary Table 6a). In this case, the spatial data enabled distinction of mouse versus human
receivers based on spatial co-localization of mouse sender and receiver cells at early timepoints
(Supplementary Fig. 6e). LR8 involved within-tumor signals related to invasion and stemness. In this
group, CALCR signaling stood out based on the CALCRL receptor as the top scoring gene in the
h5_progenitor program (Supplementary Table 6a). CALCRL had previously been linked to glioma cell
proliferation, has been negatively associated with glioma prognosis, and promotion of angiogenesis?*.
Based on these associations, we speculate that the observed enrichment of the h5_progenitor program
along with tumor-enriched vasculature programs in D4 could be related to vascular stem cell niche
development and maintenance. Indeed, CALCRL is a marker of stemness and a promising candidate
therapeutic target in other diseases®’.

By far the most abundant group of pathways encompassed multidirectional signaling within and
between tumor and TME (LR3), including MK and PTN pathways, AGRN, JAM and NCAM (cell-adhesion),
tumorigenic NOTCH, PDGF, FGF, and angiogenic VEGF (Fig. 5a,b, Supplementary Table 6b,c). We noted
that multiple LR3 pathways converged on formation and maintenance of the ECM (tenascin, laminin,
collagen, fibronectin). Laminin and tenascin ligands were primarily human (LAMB2, LAMA4, TNC, TNR),
while fibronectin ligands were made by both mouse and human cells (Fig. 5d-f). Mouse (but not human)
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Fnl predominated at early timepoints (Supplementary Fig. 6d) and in D1 regions (Fig. 6f), providing the
majority of this tumor-ECM component in areas of diffuse infiltration. Since vascular programs were
strongly associated with Fn1 (m52, m30, m86), we conclude that a major invasion route in D1 is along
vessels. Collagens also derived from both tumor and TME components, with higher contribution from
tumor (Supplementary Fig. 6a-c, Supplementary Table 6c). Deposition of human collagens was
spatially distinct, with COL6A1 dominant in D1-D3 and specifically associated with the h11 invasion
program. In D4, COL9A2 and COL9A3 were more prevalent and associated with h1_metabolism and
h7_telomere, indicating changing ECM deposition based on density and niche (Supplementary Fig.
6b,c). Mouse collagens Col4al and Col4a2 were highest in D4 and derived from the tumor-associated
vasculature (with high program scores in m30_EndoHyp and m86_Vasc2). Altogether, cells of both
tumor and TME differentially contributed to the tumor ECM, resulting in a dynamic structural scaffold
underlying gradients of invasion and forming the basis for distinct tumor cell niches.

Within areas of diffuse infiltration (D1) we observed significant invasion-associated midkine signaling
through human receptors PTPRZ1 and LRP1, both highly scoring genes in h11 and h2 programs. These
receptors responded to midkine ligands from astrocytic sources (Mdk highly scoring in m74_Astro1 and
m44_AstroHY). Notch signaling also stood out as a main source of mouse-human crosstalk in D1 (LR5;
Fig. 5g-i, Supplementary Fig. 6d, Supplementary Table 6a). Notch1 is important in GBM invasion along
white matter tracts® and for GBM cell survival within the perivascular niche®. Our data supports that in
D1 regions, the human NOTCH1 receptor (highly scoring in h2 and h11) can bind to mouse ligands Dlk1
and Jag2. These ligands were associated with normal vasculature (DIkl in m52 Vascl) and
hypothalamic astrocytes (Jag2 in m44_AstroHYP), highlighting these cellular programs as distinct TME
participants in the invasion signaling axis.

Molecular and structural contributors to invasion along distinct routes of tumor cell travel

Invasion involves tumor cell movement along white matter tracts, along perivascular routes, as well as
directly through the brain parenchyma?°4, We attempted to identify and characterize these routes
through association of mouse brain programs with tumor invasion, followed by CellChat* and
differential expression analyses*>°°, We first assessed over-representation of all 90 mouse brain
programs in D1 spots, expecting to see enrichment of invasion-relevant cell types or anatomic regions
(Fig. 6a,b). Indeed, white matter (WM)-related programs had the highest association with D1 tumor
regions (Supplementary Fig. 7a, Supplementary Table 7a). We therefore selected D1 spots with high
usage of mouse WM programs as representative of human tumor cells traveling along white matter
tracts. Likewise, we observed that usage of caudoputamen programs (m1, m73) were also significantly
enriched in D1 regions (Fig. 6a,b, Supplementary Fig. 7a). Further analysis showed that many
caudoputamen spots also had usage of vascular programs (expected from the high diversity of
programs identifiable per spot; Supplementary Fig. 1a); we therefore further stratified caudoputamen
spots based on co-usage of the four vascular programs (Supplementary Fig. 7b). This strategy
distinguished the D1 tumor cells travelling along each type of vasculature (perivascular routes), from
those moving directly through the brain parenchyma (i.e. caudoputamen spots without vasculature).
We observed that NPC-like and OPC-like states were more common in D1 tumor cells travelling along
white matter tracts, while those within the brain parenchyma were skewed toward MES and AC-like
states (Fig 6¢). Thus, although h11 and h2 invasion programs were highly plastic (Supplementary Fig.
4a-d), cell state decisions in the invasive front reflect adaptation to the local cellular context of specific
routes.
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We conducted another CellChat analysis on the resulting 6 groups of D1 spots: white matter (WM),
parenchyma (Par), and perivascular routes (m52, m30, m86, m59) (Fig. 6d, Supplementary Fig. 7c-e).
Collagen, fibronectin, and laminin interactions were significant and prevalent along all routes (Fig. 6d).
Human integrin receptor interactions with various mouse collagens were largely stratified by
vasculature programs, suggesting that tumor cells co-opted existing collagen scaffolds within the TME
for movement. A notable exception involved human COL6A1 interactions in parenchyma and m52
regions, indicating that tumor cells specifically required and secreted this ECM component (Fig 6e).
Similarly, tumor cells bound to multiple mouse laminins (Fig 6e; Supplementary Table 7b), but also
contributed a select subset of ligands to the ECM (LAMAS in the parenchyma, and LAMB2 in the
vasculature) (Fig 6e). A single laminin was specific to the WM route (mouse Lama2) (Fig 6e). This gene
was highly ranking in program m71 (newly forming oligodendrocytes), indicating that this
oligodendrocyte subtype contributes to the migration scaffold. Collectively, these results highlighted
that TME-derived ECM could differentiate between invasion routes, and notably, that a subset of
regionally-specific components originated from the tumor cells themselves — indicating the importance
of these molecules to glioma cell movement along distinct routes of travel.

CellChat analysis also revealed several signaling interactions specific to the parenchyma, including
NRXN, CD99, PSAP, PTN, MK, CNTN, and NOTCH (Fig. 6d, Supplementary Table 7b). Of these, we
highlight tumor (NRXN1) crosstalk with neuron-derived synaptic adhesion molecule neuroligins (Nlgn1,
NIgn2, NIgn3) (Fig. 6d,e). This previously described mitogenic signaling axis co-opts excitatory neuronal
activity toward tumor growth, suggesting that active neurons are playing a role in glioblastoma invasion
through the parenchyma!*>, In addition, we also further observed interactions between tumor cells
via the NRCAM (neuronal cell adhesion molecule) receptor and the mouse Cntn1 ligand — a gene highly
scoring in cholinergic and GABAergic neurons, suggesting that these neurons may play additional roles
in invasion beyond excitatory activity (Fig 6e, Supplementary Data 2d).

As an orthogonal approach to identification of invasion-relevant genes, we performed differential
expression analysis between spots with high versus low tumor density in each line (i.e., a program-
agnostic approach; Methods), and shortlisted genes with recurrent upregulated expression in areas of
low tumor density (Supplementary Table 7c). Moreover, to further distinguish between invasion routes
we performed differential expression analysis between WM and the other 5 groups of interest
(parenchyma, m52, m30, m59, m86), shortlisting significant genes (Supplementary Table 7d,e). We
observed high overlap of these differentially expressed genes with the top-scoring and hub genes of
programs h2, h9, hll (and to a lesser extent the genotype-specific h6 and h10 programs)
(Supplementary Fig. 7f)

Finally, we combined the evidence from all analyses focused on D1, including the full CellChat analysis
(Fig. 5a), the invasion route-specific CellChat analysis, and the two differential expression analyses
above. Intersecting the resulting genes with tumor programs revealed an overlap of 27 genes that were
also top-scoring or network hub genes within the prognostic invasion-related programs h2 and h11 (Fig.
6f). Nine of these were hub genes in either h2 (PTN, PTPRZ1, LRP1, NRXN1, VEGFA) or h11 (SDC3,
COL6A1, NCAM1, NOTCH2), while 2 genes were hubs in both (FN1, APP) (Fig. 6f). Moreover, in the TCGA
cohort, three of these genes were independently associated with poor survival outcomes in Proneural
subtype tumors (TUBA1A, NRCAM, LGALS1; Fig. 6g). NRCAM is a neural adhesion molecule participating
in cell proliferation, axon growth, and synapse formation during neural development, and was
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previously observed to be overexpressed in brain tumors®?=>4 TUBA1A is a microtubule subunit with
effector functions in neuronal migration and causally implicated in neurodevelopmental defects>>>®.
LGALS1 (Galectin-1) has a role in GBM invasion through modulation of cell-cell and cell-matrix
interactions®’ and also promotes an immunosuppressive TME®8. Another two genes were
independently and significantly associated with poor survival in TCGA Mesenchymal tumors (COL6A1,
FN1; Fig. 6h). Both were previously associated with increased deposition in the ECM by CD133+ glioma
cancer stem cells relative to differentiated glioblastoma cells®®* and COL6A1 has been observed in
perivascular and PAN regions in patient samples®. Our results now place these genes in relation to each
other and to other genes within modular networks that constitute prognostic invasion programs.

Discussion

In this study we used global transcriptional profiling and unsupervised reference-free deconvolution to
perform de novo discovery of cell types and states within the GBM ecosystem. We collated a
comprehensive and in-depth catalogue of 15 tumor cell programs within the spatiotemporal context of
90 mouse brain cell types, activities, and anatomic structures. The xenograft platform was critical in
providing the resolution needed to study the invasive front, where tumor cells were a small minority of
the transcriptional output per spot. It has long been recognized that gliomas display histologically
distinct patterns of growth relative to normal brain structures. As reported first by Scherer in 1938%,
these include close interactions of glioma cells with neurons, close interactions with vessels, invasion
along white matter tracts, and subpial accumulation. Our findings provide a glimpse into the underlying
mechanisms of tumor-microenvironmental cell interactions that support those routes of migration.
Importantly, while some of the genes highlighted here had been individually studied in previous work,
our deconvolution approach was able to frame these within protein-protein interaction modules that
relate expression programs to in vivo phenotypes. In particular, genes serving as program network hubs
were highly prognostic, stratifying patients across transcriptional subtypes. Whether effective
targeting of these prognostic programs could be achieved through perturbation of single or multiple
hubs will require future functional testing in vivo to ensure that dependencies between invasion
programs and invasion routes are faithfully maintained.

In addition to human tumor cell programs, we provide a spatiotemporal breakdown of the glioblastoma
TME, encompassing multiple cell types and states. We anticipate that this catalogue will represent a
tractable system for gauging the potential impact of rational therapies. For instance, both MDM
programs (m40_MDM1, m84_MDM?2) showed high program scores for Lilrb4a —a gene with established
roles in promoting immunosuppression, and the target of immunomodulatory therapies currently
under development®®. Similarly, Gpnmb was highly scoring in both MDM programs, has been implicated
in proneural to mesenchymal state transitions in GBM®? and is another promising TME-specific target
in GBM. Our data suggest that targeting of these molecules could effectively impact MDMs but not
microglial or monocyte programs, where these genes do not significantly contribute to program
identity. More generally, coupling spatial profiling analysis as described here with in vivo preclinical
assessment of targeted therapies toward either tumor or TME components would facilitate an
ecosystem-level understanding of the immediate and long-term consequences of such perturbations.
This would include identification of compensatory programs and build toward design of combination
therapies with improved efficacy.
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Our study was in part limited by the impact of cohort composition on program identification using
unsupervised deconvolution. The cNMF programs identified here represented the most coherently co-
varying signals in the data, and as such, inclusion of more samples or of distinct biological conditions
would likely increase the number of meaningful programs. For instance, inclusion of xenografts treated
with standard or rational therapies should reveal contextual tumor and TME adaptations to therapy.

Understanding these relationships will be pivotal in designing and preclinical testing of more effective
rational and combination therapies.
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Figure 1. Study overview

(a) Schematic representation of data generation and analysis. Cell lines established from patient
tumors were xenografted into mice. In some patients, multiple lines were generated from tumor core
(x), contrast-enhancing region (y), and leading edge (z). Early, mid, and late timepoints were profiled
with the Visium platform, quantifying gene expression programs from tumor, TME, and normal brain
using unsupervised deconvolution, their relationship within the GBM ecosystem, and a focus on
invasion. Additional available datasets were similarly deconvoluted, to enable comparison between
profiling platforms and sample types. (b) Genomic overview of the xenograft cohort, including
somatic mutations and copy number events in each line, corresponding sample and patient
characteristics, and xenograft samples collected. (c) Spatial plots of 23 coronal sections showing the
ratio of human-mouse transcriptome data. High values (indigo) indicate high tumor density, low
values (yellow) indicate low or absent tumor density. (d) lllustration of tumor density regions (left
panel) stratified based on human:mouse transcriptome admixture, and two selected samples (right
panels). (e) Proportion of spots in D1-D4 tumor-density ranges per sample (replicate annotations
overlaid on plot). (f) H&E histology images with overlay of spot perimeters. (g) Spatial plots of mouse
program usage. Dynamic scales indicate proportional program usage for each spot. (h-i) Hierarchically
clustered heatmaps of top 10 genes (h; rank ordered cNMF-derived gene scores) and top 10
transcription factors (i; rank ordered SCENIC activity scores) in mouse programs from panel h.

15


https://doi.org/10.1101/2023.12.05.570149
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.05.570149; this version posted December 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Figure 2

|

available under aCC-BY-NC-ND 4.0 International license.

Pathway enrichment
—peptide biosynthetic process/metabolism

[

— et ersssne

|— G2M transition
of nuclear division
%ﬁ?ﬁ&mﬂw
|— RNA metabolism, splicing, stability
| SERSISRERIER organization
SR SR e

g ot

.

,_m% nmwmtmy response

Gene marker scores

h2_AC
h4_autophagy

h12_oC1

h9_hypoxia

hS_progenitor
h13_DNArepair
h6_synaptic
h3_vascular
h7_telomere
h11_invasion

— cholesterol biosynthesis

calreticulin cycle
+—reg'n of neural precursor cell proliferation

}»Imaﬂamn alpha / beta signaling

F8EES53¢
22E32%%
§5388¢
2825 :2
ER ]
§5°44¢

22
o E
2

Admix

h6_synaptic
h7_telomere

h8_epigenetic

er
MES1_Neftel

i

h10_IFN

h7_telomere

h14_0C2
h12_oC1

h13_DNArepair
h1_metabolism
h15_mitochondria

h11_invasion
h2_AC
h9_hypoxia
h3_vascular
h10_IFN
ha_autophagy
hé_synaptic

ilic cell = oo
R 58 AREND ditterentation e -
g
fatty acid metabolism g 2 %%
g
glycolytic process s g 28 g
— Euwhnondulldsnm = o ] ©
z
T B s gsalessus it 8 d =
= uiation of cell and motil g
= Fesammmmmasroy 2 Cla o moro m onc mone
. g g
=l - o 8
E_ [t s F
2 os
P s 5
Taenanes of Colilar homeostasis @ o
325348 2o
2 €200
Eufes 3558 EEFE25585538
3zg== E23E3 28885899
J E 6986898 ¢C<c >3 L~
< ] 2 Sog s Z2o< Oy
£ 22852588 S582C2
= JSEEY B¢ 2550
2m|‘.€: Z: .:m‘m
= 29
<2 1 z
H

Tumor density

hS_progenitor

h8_epigenetic

e Early Mid Late
.
D1 i
| I— | — '
ool - =
04 —
36 o © 538 8 ° g g g
1 |- [m !
D2 | E— — ]
p3(M B =
—
D4
[
or| - b |
0| — B| |k
o3/ = L] B
04 —
7358 © 888 < g g §§
o1 - T
7 comm—
2 o L =
k-] D4 -
§ ©°=zws ~°-s588 °B8FS
g o/ ] ]
02 I =
oo | |
04 1
R EX =
|
GEP
L
0
Hw
W ms
13
W o
e
W
[
19
| w1
W
s
W
e
BT143_z1_mid BT143_z4_late

Jloyuaboud EIE1 Y [E)

wsijoqe iy

(=00

AB

Ell

8 10, 2
@ 3 8 3
3 £ 8 g° e H
i 55, £
- 10 1.870-72 °
B 5

2 k]
£ i H
o3 20 H
i i
g_s p-851e-|5 ©
, B a 83
N £ g
g - E a0 21 p=0.00167 _ 3
- = 3 H n — H
l':'—J 200 g4 g
0 — %2 - o

- 8 = 2

z &8 8 8

Hoo
0DO (0-0.5) *D1(0.05-0.2) W expected .obsclvad I ‘spots with program . ‘spots without program

D2 (0.2:0.5) *D3 (0.5-0.8)


https://doi.org/10.1101/2023.12.05.570149
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.05.570149; this version posted December 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 2. Tumor programs

(a) Summary of biological processes (GO:BP; rows) significantly enriched among the top 2000 genes of
tumor gene expression programs (columns). (b) Heatmap of marker gene enrichment scores of tumor
programs (columns) calculated for GBM cell-states (rows) in external datasets. (c) Proportion of
spatial overlap between TME programs. Spatial overlap for a pair of programs is calculated as the
proportion of spots in program 1 that also have usage of program 2, and vice versa. Minimum usage
threshold=0.1. (d) Proportion of tumor spots per patient with usage (> 0.1) the 15 tumor programs,
ordered by category. (e) Bar plots of number of spots with usage of each tumor program, stratified by
tumor cell density and timepoint. Programs are grouped by thematic category. (f) Spatial plots of
selected tumor program usage, with tumor admixture and tumor density groups on the left. (g)
Number of expected and observed spots with usage of selected programs, and chi-squared residuals
and pvalues indicating the significance of difference between observed and expected numbers across
categories (D1-D4).
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Figure 3. Survival associations

(a) Network plot of top-scoring genes (yellow nodes) for selected programs, with hub genes in orange,
and labelled with gene name. Node size is proportional to the correlation between a gene’s usage in a
program to its expression, and edges represent the functional associations. (b) GO:BP terms enriched
in hub-genes of tumor programs. (c,f,i) Survival results table for Classical IDHwt tumors. For each
program, top-scoring program genes and hub genes were tested separately using two methods. First,
ssGSEA was run for each geneset, and patients were ranked by survival. Three thresholds were used
to separate top and bottom scoring patients (25%, 33%, and 50%). The NES difference between
patients with low and high survival (dNES) and the t-test pvalue are reported in separate columns.
Second, Kaplan Meyer analysis was performed and pvalues are also reported in a column, colour-
coded to highlight blocks of significant and marginally significant pvalues across thresholds and the
two testing strategies. (d,g,j) Kaplan Meyer plots for selected program in each GBM tumor subtype.
(e,h,k) Distributions of NES values in patients ranked by survival are shown along with adjusted
Student’s t-test significance. (*: p <=0.05; **: p <= 0.01).
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Figure 4. TME programs

(a) Pathway-based hierarchical relationship of 19 TME programs based on clustering of significant
GO:BP gene-sets (adjusted p.value < 0.05) enriched among the top 2000 genes in each program
(ranked based on program gene scores) (top panel). Hierarchincal clustering based association of
programs based on TF-activity scores (bottom panel). (b-d) Pvalue heatmaps and annotations of (b)
immune, (c) vascular and (d) astrocytic programs. (e) Proportion of tumor spots per patient with
usage (> 0.05) the 19 TME programs, ordered by category. (f) Bar plots showing the number of spots
with usage of each TME program, stratified by tumor cell density and timepoint. (g-i) Spatial plots of
(g) immune, (h) astrocytic and (i) activity programs in selected samples, with tumor admixture and
tumor density indicated on the left for reference.
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Figure 5. LR communication

(a) Significant pathways (x axis) from CellChat are shown for each tumor density group (y axis).
Piecharts indicate the proportion of human and mouse ligand-receptor interaction types. Piechart size
represents the total number of interactions active in a pathway. (b) Stacked barplot indicating the
proportion of interactions per pathway identified as significant. LR interactions are categorized and
colored based on the species of the ligand and receptor involved, resulting in 4 interaction categories
(ligand__receptor): TME__TME, TME__Tumor, Tumor__TME, and Tumor__Tumor. Pathways are
categorized into 8 groups (LR1-LR8) based on combinations of the 4 interaction categories. (c)
Overview of significantly enriched biological processes among ligand and receptor genes in each LR
group. (d,h) Scaled expression levels (z-scores) of ligand and receptor genes per pathway, stratified by
tumor density (D1-D4). (e,i) Spatial plots of human (h.GENE) and mouse (m.Gene) genes in selected
samples (right panels) with tumor admixture and tumor density for reference (left panels). (f,g) Chord
diagrams show receptor (bottom) and ligand (top) interactions for the FN (g) and NOTCH (h)
pathways. Interactions are analyzed between all possible pairs of tumor-density groups which make
up the sources (outer, lower semi-circle) and targets (upper semi-circle), with links representing the
signaling strength of interactions between them (i.e. communication probability). Text labels of D1
interactions between human NOTCH1 and mouse ligands are in red.
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Figure 6. Invasion

(a,b) Spatial plots of usage of programs classified either as white matter, or caudoputamen, which
includes both vascular and parenchymal invasion routes, with admixture, tumor cellularity, and
invasion routes of interest for reference. (c) Boxplot of module scores per spot for each GBM cell-
state in white matter, parenchymal or perivascular routes of invasion. Significant differences are
annotated (wilcoxon rank-sum test ; ns: p > 0.05; *: p <=0.05; **: p <= 0.01) (d) Significant pathways (x
axis) from CellChat are shown for each D1 category group (y axis), for the subset of pathways with at
least one human ligand or receptor. Piecharts indicate the proportion of human and mouse ligand-
receptor interaction types. Piechart size represents the total number of interactions active in a
pathway. (e) Scaled expression levels of selected genes involved in ECM (Collagens and Laminins) and
neuronal interactions along white matter, parenchymal or perivascular (m30, m52, m59, m86)
invasion routes. (f) Summary of invasion-associated genes (columns) based on multiple assessments
(rows), including differential expression (DE) between high and low density regions (DE (low density)),
DE between parenchyma and white matter spots (DE (invasion)), ligand-receptor interactions from
panel (d) (LR (invasion)), and ligand-receptor interactions in D1 from Figure 5a (LR (D1)). (g,h) Kaplan
Meyer survival curves of genes from panel (f) with prognostic significance in Proneural (e) and
Mesenchymal (f) patient tumors.
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SUPPLEMENTARY FIGURES
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Supplemental Figure 1
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Supplementary Figure 1. Study overview

(a) Distribution of human-mouse admixture per line and time-point (biological replicates merged).
Violins are colored based on time-point and ordered by the mean admixture values. (b) Spatial plots
overlayed with tumor cell density groups (D0-D4) based on human-mouse admixture. (c) Density plots
of the number of tumor, TME, brain, and total (human and mouse) programs used per spot across
tumor cell density groups, DO-D4. A usage threshold of 0.05 was set to define is a program was
observed in each spot. (d) Violin plots indicate the range of usage values in tumor (n=15), TME(n=19)
or other programs (n=81). (e-f) Spatial plots of program usage in (e) vascular, and (f) cortical layer
programs.
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Supplementary Figure 2
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Supplementary Figure 2. Tumor programs

(a) Heatmap of marker-gene scores of tumor programs (columns) calculated with gene sets of GBM
cell-states (rows) in external cohorts. (b) A hierarchically clustered heatmap of 10 highest-ranking
genes in each program, based on cNMF gene scores. (c) Number of expected and observed spots with
usage of selected programs, and chi-squared residuals and pvalues indicating the significance of
difference between observed and expected numbers across categories (D1-D4). (d) inferCNV results
for BT143x samples with clonal CNVs marked in black outline and labelled. (e) Smoothed inferCNV
signal for the 4 clones in panel d, with regions of clonal copy number divergence highlighted in blue
and labelled above the plot. Divergence is relative to the baseline clone 1, and above/below the score
thresholds of 1.5 and 0.5. (f) Heatmap of spatial overlap between CNV clones and tumor
programswith high usage in BT143x3 and BT143x4 samples. (g) Spatial plots of program usage in h14
and clone2 spots in BT143x3. (i) Prevalence (blue stacked barplots) and correlation (grey bars) to
programs identified in external cohorts. Barplots show the maximum correlation obtained between
each tumor program in the xenograft cohort programs derived from cNMF across a series of ranks in
external cohorts. A vertical line is drawn at r=0.4 as a visual reference. Prevalence barplots represent
the proportion of patients in the external dataset that have usage of the program with maximum
correlation above a specific threshold.
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Supplementary Figure 3. Survival associations

(a) Network plot of top-scoring genes (yellow nodes) for tumor programs, with hub genes in orange,
and labelled with gene name. Node size is proportional to the correlation between a gene’s usage in a
program to its expression, and edges represent the functional associations.
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Supplementary Figure 4. Neftel and baseline states

(a) Boxplot showing the proportion of spots in each GBM cell-state with increasing tumor density, D1
to D4. Significant differences across the four groups in each GBM cell-state are marked (wilcoxon
rank-sum test ; ns: p > 0.05; *: p <=0.05; **: p <= 0.01). (b) Spatial plots of tumor admixture (left) and
module scores for NPC, OPC, AC and MES-like states (right). (c) Heatmaps depicting the proportion of
spatial co-occurence between tumor programs (rows) and GBM cellular states (NPC, OPC, AC and
MES; columns) stratified by tumor stage (early, mid, late) and tumor density (D1-D4). Tumor baseline
states (labelled) correspond to the most abundant GBM cellular state across all samples from each
tumor. (d) Barplots indicate proportion of cell-state transitions away from the baseline states (AC,
OPC, AC-OPC) for tumor programes, stratified by tumor stage and density. Cell-state transition indicate
the proportion of spots with each non-baseline state relative to spots with the baseline state (for
spots with cell state usage > 0.1).
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Supplementary Figure 5

a. Microglia and Macrophages Monocytes

-p0_ENDO._Pons_E

. F-p0_ENDO | in_Endothelial

p6_ENDO_ Pons_Endothelial_1
15 EN i

\ Astrocytes
s50_F-p0_ASTR1_Forebrain._ Astrocylos_1
3 ASTR2-2_Pons s 2

0 Forebrain_Astrocytes
_e15_DRGC_Forebrain. Dorsal_radal_glal_cels

\STR3_Forebrain. 3
-p0_ASEP._Pons_Astro-ependymal_progenitors
sse_P-p3_ASTR3 Pons_Astrocytes 3
~012 DRGCForran Dorsal radl ol ol
~e12_THLP. Forebrain_Thalamic. precursors.
"—p6_ASTR3Forebrain_ Astrocytes 3
-p6 ASTR3 Pons_Astrocytes_3
jse_P-p0_EPEN_Pons_Ependymal
, F_e15_DRGC-P_Forebrain_Proiferating_dorsal_radial_glal_colls
_P-e12_RGLRP-P_Hindorain_pons_RG
150_P-p6_VSMC_Pons_Vascular
Vascul

m12_Mo1

m30

ms5_Mo2

dl

W Panreactive_UP [l Panreactive DOWN - -
, f. _ y
e Sl Forebran Cortcal pem Kleinman Bayraktar (Visium) )
74 strot - H
i pstonesc | I y — y
mat_astrony | R H —
m49_AStroRNA I 0 T
ms2_Endot - —-
m30_ndoryp | NN '
mes.endo | —
Astrocytic Monocytes MG / MDM Immune activity Vasculature ms9_Encoty | I __ '
e |
d m74 mi2 m7 mi6 m52 | — :
- 30 is meo_vow | I E— H
20 1 20 10 5| mes_wowz | I 1 H
. I||"I"' 4 | ° o, Il s S | — :
0 | | - s o2 |
20 jl' e .mll B L. '-r i rl. — —
_a0| p=0 o 276-79 20 o o Be-104 ~10| p=353¢-58 = = 0 H
2 s ms5 m77 m20 mse — —
S 20 T o 76 o e 6 a 1o o o
3 s 10 N brop.oipatienss  Maxcor rop ot paterts axcor
TR . Gl K
= 0 L 4 — 0 -
& . I' r ,sI. 'm ° - l-r ’ r I'I' Bayraktar (scANA) Movahedi Senger
= - EY - - B
s p=0 =2.05e-52 -  de-159 =2.02e-217 1.63e-05 — | | — H
b= -0l P 158 =2 pe202e- = | — :
g || — :
2 m43 m78 m4o m54 m86 g = g :
g 2 2, i H
& o 2, 20 o1 760-195 | | — H
- 10 10 o o — )
g ° B 0 — LI | | — H
g o LN °I'- r o.-l._ - o eyt | — :
2 2 po Ol p=271e-160 =10/} p=3.85e-253 <10|® po1.34e-144 _10 I. H = v
o Br Tum D1 D2 D3 D4 | E— H
) | E—
I
I
I
|
u

]

[~ G-

m84 m57
™78 Mo3
10, 20 N 10. P=7.64e-88 ‘m20_MDM-ROS
0 l..- - Category 10 o - L mis_Chemine
s i rogram ms7_Cytotoxic
-10 I. I spots win, 0 l--— l_I- -5 ol =l_ ._._._ o
~10/ |l p=2.19e-302 -10 |l p=7.12e-62 l-

Br Tum D1 D2 D3 D4 Br Tum D1 D2 D3 D4 Br Tum D1 D2 D3 D4 Br Tum D1 D2 D3 D4

02 o040 o5
Maxcore. Prop.of patients

£e
L

threshold [J <03 B (03-0.4) M (04,05 M >=05


https://doi.org/10.1101/2023.12.05.570149
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.05.570149; this version posted December 7, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Supplementary Figure 5. TME programs

(a) Scaled heatmaps of the top 20 highest scoring genes in TME programs. (b) Heatmaps of marker
gene enrichment scores for each TME program (columns) calculated with gene sets of cell-types
(rows) identified in external cohorts. (c) Proportion of spatial overlap between TME programs. Spatial
overlap for a pair of programs is calculated as the proportion of spots in program 1 that also have
usage of program 2, and vice versa. (d) Chi-squared residuals indicating the observed minus expected
number of spots with usage of a specific program per category. Categories include individual tumor
density ranges (D1-D4), all tumor regions together (D1-D4 merged), and non-tumor regions (DO;
Brain) (x-axis). Chi-sq pvalues indicate the significance of the observed versus expected program
usage across categories. (e) Scaled heatmap of gene ranks for pan-reactive astrocyte markers
indicating the relative contribution of marker genes to program identity. (f) Prevalence (blue stacked
barplots) and correlation (grey bars) to programs identified in external cohorts. Barplots show the
maximum correlation obtained between each TME program in the xenograft cohort programs derived
from cNMF across a series of ranks in external cohorts. A vertical line is drawn at r=0.4 as a visual
reference. Prevalence barplots represent the proportion of samples in the external dataset that have
usage of the program with maximum correlation above a specific threshold.
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Supplementary Figure 6
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Supplementary Figure 6. LR communication

(a) Stacked barplot indicating the number of interactions per pathway identified as significant. LR
interactions are categorized and colored based on the species of the ligand and receptor involved,
resulting in 4 interaction categories (ligand__receptor): TME__TME, TME__Tumor, Tumor__TME, and
Tumor__Tumor. (b) Scaled expression levels (z-scores) of ligand and receptor genes for selected
pathway, stratified by tumor density (D1-D4). (c) Chord diagrams show receptor (bottom) and ligand
(top) interactions for selected pathways. Interactions are analyzed between all possible pairs of
tumor-density groups which make up the sources (outer, lower semi-circle) and targets (upper semi-
circle), with links representing the signaling strength of interactions between them (i.e.
communication probability). (d) Scaled expression levels of ligand and receptor genes for
selected pathway, stratified by tumor timepoint (early, mid, late). (e) Spatial plots of selected genes
(right panels) with tumor admixture for reference (left panels).
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Supplementary Figure 7. Invasion

(a) Number of expected and observed spots with usage of D1 white matter tracts (left panels) and D1
caudoputamen regions (right panels), and chi-squared residuals and pvalues indicating the
significance of difference between observed and expected numbers across categories (DO (Brain), D1-
D4 (Tumor), D1-D4 (each)). (b) UpSet plot indicating overlap between D1 spot categories. (c) Stacked
barplot of interactions in significant D1 region pathways. (d-e). Barplots of pathways and interactions
within each D1 region of interest. (f) Barplot of overlap between top-scoring (left panel) or hub genes
(right panel) of each tumor program and the differentially expressed genes that are high in
Parenchyma.
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Description of Additional Supplementary Files
File Name: Supplementary Tables

1. Patient / Cell-line characteristics
Description: 1a) Genetic aberrations and clinical data associated with patient-derived cell-lines.

2. Program annotation and gene markers

Description: 2a) Gene lists used for annotating human and mouse (normal brain & TME) programs,
using marker gene scores. 2b) Cell-type / cell-activity / brain structure annotations of mouse and
human programs. 2c) Top 1000 genes per tumor program, selected by ranking based on cNMF
derived gene-scores. 2d) Top 1000 genes per mouse program.

3. Data associated with tumor programs (Fig. 2)

Description: 3a) Pathway enrichment analysis results obtained by querying top 1000 genes in tumor
programs against gene-ontology terms in gProfiler. 3b) Marker gene scores for gene-sets
representative of GBM cell-types and cell-states, in the tumor programs. 3c) Regulon activity scores
per tumor program from SCENIC analysis. 3d) Spatial concordance matrix i.e., short-range spatial
overlap between tumor programs (Related to Fig. 2c). 3e) Spatial concordance matrix between tumor
and TME programs. 3f) Data and results for the overrepresentation analysis (Chi-sq. test), assessing
enrichment of tumor programs across tumor-density groups at the cohort level and 3g) sample level.
3h) Correlation and prevalence of tumor programs in external patient cohorts (Related to
Supplementary Fig. 2i).

4. Data associated with survival analyses in tumor programs (Fig. 3)

Description: 4a) List of top-scoring genes and 4b) hub genes in tumor programs. 4c) List of top-scoring
genes and 4d) hub genes in TME programs. 4e) Summary of survival analyses performed with the
TCGA-GBM cohort using top-scoring/hub genes in tumor programs (Tables related to Fig. 3c,f,i). 4f)
GSEA results for tumor program top-scoring/hub gene-sets in the TCGA-GBM cohort, used to rank
patients in the survival analysis. 4g) Correlation between GSEA-NES of tumor programs.

5. Data associated with TME/Mouse programs (Fig. 4)

Description: 5a) Pathway enrichment analysis results obtained by querying top 1000 genes in TME
programs against gene-ontology terms in gProfiler. 5b) Marker gene scores for gene-sets
representative of TME cell-types and cell-states, in the tumor programs. 5c¢) Regulon activity scores
per mouse (brain and TME) program from SCENIC analysis. 5d) Spatial concordance matrix i.e., short-
range spatial overlap between tumor programs (Related to Supplementary Fig. 5c). 5e) Data and
results for the overrepresentation analysis (Chi-sq. test), assessing enrichment of TME programs
across tumor-density groups at the cohort level. 5f) Correlation and prevalence of TME programs in
external patient cohorts (Related to Supplementary Fig. 5f).

6. Data associated with Ligand-Receptor analyses across D1 — D4 groups (Fig. 5)

Description: 6a) Significant inter and intra-species ligand-receptor interactions identified within and
between TME and tumor, across tumor density groups (D1-D4) using Cellchat. In addition to
interaction metrics provided by the tool, the table also includes program annotations for ligand and
receptor genes. 6b) Number of interactions per pathway in each ligand_receptor category, stratified
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by tumor density groups (Related to Fig. 5a). 6¢) Total number of L-R pairs per pathway in each
ligand_receptor category (Related to Fig. 5b). 6d) Pathway enrichment analysis results obtained by
guerying ligand and receptor genes from the CellChat analysis against gene-ontology terms in
gProfiler.

7. Data associated with invasion route programs

Description: 7a) Data and results for the overrepresentation analysis (Chi-sg. test), assessing
enrichment of white matter and parenchyma programs across tumor-density groups at the cohort
level. 7b) Significant inter and intra-species ligand-receptor interactions identified within and between
TME and tumor, across invasion-associated programs in D1 spots using Cellchat. 7c) Differential
expression analysis results of high tumor density vs. low tumor density spots, from ALDEx2 R package.
7d) Differential expression analysis results of white matter vs. Parencyhma (vascular and parenchymal
routes) performed per sample, using Seurat. 7e) Differential expression analysis results of white
matter vs. Parenchyma performed per cell-line, using Seurat.
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METHODS
Intracranial BTIC Models

Xenograft samples were generated from brain tumor initiating cells (BTICs) established from patients
with primary and recurrent GBMps1] that were maintained as previously describedips2] prior to
intracranial implantation into 6 to 8-week-old female SCID mice|ps3]. Some BTIC lines were generated
from patient surgical tissue collected from the center of the tumour (x), the highly vascular contrast-
enhancing regions (y) or the infiltrating edge (z) (BT143x, BT143y, BT143z, BT238x, BT238z). Mice
were housed in groups of three to five and maintained on a 12-hr light/dark schedule with a
temperature of 22 °C+1 °C and a relative humidity of 50 + 5% and provided food and water ad libitum.
All animal procedures were reviewed and approved by the University of Calgary Animal Care
Committee (Animal Protocol #AC22-0053).

Visium library preparation and sequencing

The brain was removed and dissected into 2 mm coronal slabs. Fresh tissues were embedded in
Tissue Tek OCT compound (Fisher Scientific 14-373-65) and snap-frozen in a chilled isopentane and
dry ice bath. 10 um cryosections were mounted on barcoded Visium slides (10x Genomics), and
libraries prepared with the 10x Visium Spatial Gene Expression kit per manufacturer's protocol.
Briefly, sections were fixed in methanol, stained with H&E, and scanned on an EVOS FL Auto Imaging
System (Thermo Scientific) using a 10x objective. Permeabilization, reverse transcription, second
strand synthesis, denaturation and cDNA synthesis were performed as per protocol. Cycle number
determination for cDNA amplification was performed on a BioRad Realtime gPCR system using KAPA
SYBR FAST gqPCR Master Mix (Roche, KK4600). cDNA QC and qualification was performed on an
Agilent 2100 Bioanalyzer with Agilent High sensitivity DNA chips (Agilent 5067-4626). After enzymatic
fragmentation and double size selection using SPRIselect reagent (Beckman Coulter, B23318), unique
indexes and P5 and P7 Illumina primers were added to the libraries using Dual Index Kit TT Set A (PN-
1000215). Libraries were sequenced on an lllumina NextSeq500/550 instrument using paired-end
sequencing with the following parameters: 28 cycles for Read1 and 90 cycles for Read ,10-10 cycles
for index i7 and index i5, loading concentration 1.8pM on NextSeq 500/550 High Output Kit v2.5
150cycle (Illumina, 20024904).

Spatial transcriptomics data preprocessing

[llumina sequencing base call data (BCL) was converted to FASTQ files using bcl2fastq (SpaceRanger
v1.3.1) . Using 10x Genomics SpaceRanger software (v1.3.1), the resulting FASTQ files were mapped
to a hybrid genome refence sequence (GRCh38—mm10-2020-A) created by combining the human
reference genome (GENCODE v32/Ensembl 98) and mouse reference (GENCODE vM23/Ensembl 98)
genome. Data was aligned with STAR v2.7.2a, and mapped to spatial coordinates using the spatial
barcode information in SpaceRanger (default parameters). Samples were aggregated using
SpaceRanger Aggr. All reads outside the tissue region were removed in the SpaceRanger pipeline. The
resulting filtered matrix output is used for subsequent analysis. This matrix consisted of human and
mouse genes from 23 samples. The R package Seurat (v4.0.0)*° was used to further process this,
removing genes with expression in less than 3 spots. Spots with low number of detected genes (< 200)
were excluded. Expression of human and mouse genes were normalized together by dividing
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expression in each spot by the total number of transcripts and multiplied by 10,000, followed by a
natural-log transformation.

Publicly available scRNA-seq and stRNA-seq datasets

Multiple external datasets were downloaded and factorized to yield comparable gene expression
programs based on cNMF. The Kleinman3? scRNAseq data included 5 normal forebrains
(developmental timepoints E12.5, E15.5, PO, P3, and P6), the hindbrain (E12.5), and pons (E15.5, PO,
P3, P6). Data was downloaded as CellRanger outputs and cell annotations (GSE133531). Cells in each
sample were filtered based on quality control metrics previously described, using the R package
Seurat (v4.0.0). Libraries were scaled to 10,000 UMIs per cell and natural log normalized
(Seurat::NormalizeData). The Bayraktar?® data included matched snRNA-seq and stRNA-seq from
adjacent brain sections from 6 adult mice. Data were downloaded from ArrayExpression, including
Visium stRNA-seq (E-MTAB-1114; Space Ranger output) and snRNAseq (E-MATB-11115; Cell Ranger
output and cell annotations). For Visium profiles, genes with expression in less than 3 spots were
discarded. snRNA-seq data was subjected to quality control criteria described in the corresponding
publication. Data were scaled to 10,000 UMIs per cell and natural log normalized
(Seurat::NormalizeData). The Movahedi®** study included CD45+ immune cells from orthotopic GL261
tumors in 3 adult mice. CellRanger outputs and cell annotations were downloaded from
www.brainimmuneatlas.org. Outlier cells and low abundance genes were removed based on the
workflow previously described. Raw counts were then scaled to 10,000 UMIs per cell and natural log
normalized (Seurat::NormalizeData) (v4.0.0). The Senger’ study included CD45+ immune cells from
orthotopic xenograft models established from patient-derived BTICs. Cell Ranger outputs and cell
annotations were downloaded (GSE153487). Data was filtered using quality control metrics previously
described and normalized, using R package Seurat (v4.0.0). The Pugh® study included scRNA-seq data
from glioblastoma stem cells (GSC) (26 patient GSC cultures) and from tumors (7 patients). Raw and
normalized gene expression matrices and cell annotations were downloaded from Broad Institute
Single-Cell Portal (https://singlecell.broadinstitute.org/single cell/study/SCP503). The Heiland’3°
study included Visium stRNA-seq profiles of 28 samples from 20 patients. Data from each sample was
downloaded in the form of SPATA objects, converted to Seurat objects, and processed with guidelines
described in the corresponding publication. The TFRI study included bulk RNA-seq data from 56
patients, including 44 tumor samples, 61 BTIC cell-lines, and 13 xenograft samples, including both
longitudinal and multiregional samples. Fastq files were downloaded (EGAS00001002709) and aligned
( STAR v2.9.9a%3, using parameters: --runThreadN 16 --outSAMtype BAM SortedByCoordinate --
guantMode TranscriptomeSAM GeneCounts --outFilterType BySJout --outFilterMatchNminOverlLread
0 --outFilterScoreMinOverLread 0 --outSAMstrandField intronMotif --twopassMode Basic). Human
reference genome (GENCODE v32/Ensembl 98) was used for mapping tumor and BTIC samples, while
a hybrid genome reference (GRCh38—mm10-2020-A) was used for xenografts.

Admixture calculation

We calculated the ratio of UMI counts from human genes relative to the total UMI count per spot, in
order to distinguish tumor from non-neoplastic cells in xenografts. This ratio (human-mouse
admixture) represented the transcriptional contribution of tumor cells relative to the total
transcriptional output in each spot. Admixture was used to categorize spots based on tumor density:
high (admixture 80-100%; D4), moderate (50-80%; D3), low (20-50%; D2), and very low (5-20%; D1).
Tumor-free mouse brain was comprised of spots with admixture <5% (DO).
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Selection of over-dispersed (OD) genes

To select for features that are informative of identity and/or activity states in latent space, we
selected genes significantly over-dispersed across all spots or samples within each dataset. For the
newly-generated xenograft stRNA-seq cohort and the reference sc/snRNA-seq, stRNA-seq datasets,
we selected genes detected in more than 1% but less than 100% of spots or single cells that passed
guality-control thresholds as described above. Next, genes with higher-than-expected expression
variance across the data were selected using a general additive model with a basis of 5 and an
adjusted p-value cutoff of 1e-4. Importantly, in case of the xenograft models, feature selection was
performed individually for mouse and human genes across filtered spots. The calculations were based
on the restrictCorpus() function from the R package STDeconvolve (v1.7.0)%¢.

Matrix factorization and rank selection

We implemented consensus Non-negative Matrix Factorization (c(NMF v1.4)3!, a meta-analysis
approach of matrix decomposition to independently infer gene expression programs. The command
line version of cNMF was run separately for each dataset. In the xenograft models, the pipeline was
run separately for mouse and human gene expression data. Run parameters were first prepared by
providing the raw count matrix, the pre-computed normalized matrix, and a list of over-dispersed
genes to be used for the factorization steps, all in tab-delimited text file formats to cnmf prepare.
Prior to this step, spots with no expression of the OD genes were excluded. The number of factors (K)
were set to range from 2 to 100 factors. The frobenius loss function was used. Other parameters
included --n-iter 200, --total-workers 1, --seed 123456, --densify False. Default parameters were used
in the next series of steps, cnmf factorize and cnmf combine, which factorize and merge results from
200 iterations. The final step, cnmf consensus, used to obtain consensus estimates of gene expression
programs was performed for each value of K.

We selected an optimal rank based on the trade-off between stability and error, as well as biological
interpretability of the factors. This included the anticipated number of cell types and states within a
dataset, and manual review of spatial program profiles (in case of stRNA-seq), as well as enrichment
of previously annotated cell-types in reference scRNA-seq cohorts. For the selected representative
rank in each dataset, the program usage matrix was normalized such that usage values per spot / cell
sum to 1 for downstream analyses. In the xenograft models, we selected a rank of 15 for human and
90 for mouse (brain + TME). To quantify the signal of human and mouse programs relative to the total
signal, human program usages per spot were multiplied by the admixture ratio. Mouse program
usages per spot were multiplied by 1-admixture ratio. The admix-scaled usage matrices were used for
further analyses.

In reference datasets we did not select an optimal rank, as these were used to assess the maximum
concordance of the xenograft programs with programs found in each external cohort. Thus, we
calculated all pairwise correlations between each xenograft program and each program (from all
ranks) in the reference datasets, to identify a best match (i.e., a reference program with maximum
correlation to the xenograft cohort programs). Further, we calculated the proportion of patients in
each external cohort that had usage of the maximally-correlated program above a specific threshold
(<0.3,(0.3-0.4], (0.4-0.5] and > 0.5).

Annotation of Gene Expression Programs
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Gene expression programs identified in the xenograft models were annotated based on cell-type and
cell-state gene signatures derived from multiple studies of the mouse brain, GBM, and the GBM
microenvironment. The sources and the gene markers used are listed in Supplementary Table 2a. We
used two methods: 1. Calculation of marker gene scores and 2. Pathway enrichment analysis using
g:Profiler®4,

Marker gene scores: We computed marker-gene scores for each program, defined as the rank
weighted overlap of top 50 genes in the program with the gene-set being queried. Specifically, for a
given query gene-set (g), the intersection with the top 50 genes in a program (p) was derived. If n is
the number of overlapping genes (genei, geney, ..., genen), the marker gene score MGSy,, is then
calculated as:

MGSg, = Y)1v, 1/rank(gene;),

where the rank of a gene is obtained by rank-ordering the genes in each cNMF program using the
gene-scores (i.e. the highest scoring gene in a program is rank 1). This method resulted in
unambiguous and strong matches to cell-type associated programs, and in poor scores for programs
representing a cell-state or activity not matching the reference marker gene sets.

Pathway enrichment analysis: To annotate cell activities, we used the top 1000 genes in each program
to identify highly enriched pathways from various sources including GO:BP, GO:MF, KEGG and
REACTOMIE, using g:Profiler. Terms with a size > 10 and < 2000 are included and adjusted p-value
threshold was set to 0.05. Results were summarized as a heatmap of adjusted p-values of terms
ordered by significance in each program.

Spatial concordance of programs

To infer short-range spatial overlap between program usage among spots for each program, we
calculated the proportion of spots that also contribute to a second query program. A usage threshold
of >0.1 was needed for a human tumor program to be considered present. Spots with mouse program
usage of >0.05 were considered to be positive for that program. The lower threshold used for mouse
programs reflects the higher diversity of programs per spot in the normal brain relative to human
tumor programs.

SCENIC

Active regulons in human and mouse programs were identified using the R package SCENIC
(v1.1.2.1)% with default parameters. The matrix of z-scores of genes per program obtained from
cNMF was used as input to GENIE3 to infer co-expression modules, where each module consisted of a
transcription factor (TF) and its predicted targets based on co-expression. Next, using RcisTarget
(v1.6.0)%°, each module (regulon) was pruned to include only targets for which the motif of the TF was
enriched. Finally, AUCell (v1.8.0) was used to calculate regulon activity scores per program as the Area
Under the Curve (AUC).

CNV analysis

Copy number changes in individual spots were identified using the R package inferCNV®® (v1.3.3). To
obtain a robust signal, raw gene counts from each sample were subjected to a spatially aware
smoothing method SPCS®’ using default parameters. As normal reference dataset, we used a cortex
section of human brain from 10x Genomics profiled with the Visium platform
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(https://support.10xgenomics.com/spatial-gene-

expression/datasets/1.1.0/V1 Human Brain Section 1). The data were then passed to inferCNV for
copy number variant inference, separately for each cell line and the following parameters were used:
“denoise”, cutoff = 0.1, sd_amplifier = 2.5, scale_data = TRUE, analysis_mode = 'subclusters’,
window_length = 201, num_ref_groups = 15. All remaining parameters were set to default.
Mitochondrial genes were excluded from this analysis. Individual CNV scores were averaged across
clusters to visualize unique transcriptional tumour clones. To further assess how inferred CNVs may
impact tumour biology, clones with variable CNVs across chromosome arms were identified by
assigning genes to regions of gain or loss using inferCNV score cutoffs of 2.5 times the standard
deviation below and above the mean. Spots harbouring these clones were then used to assess spatial
concordance with tumor programs.

GBM cell-state signatures

Module score and change across tumor density: Gene signatures for GBM cell-states (astrocyte-like
(AC-like), oligodendrocyte-like (OPC-like), neural progenitor-like 1/2 (NPC-like) and mesenchymal-like
1/2 (MES-like)) were obtained from Neftel et al*. Spots with admixture ratio of >= 0.05 were selected
for analysis of tumor-cell states. Spots were scored for cell-states using the AddModuleScore()
function in Seurat (v4.0.0). NPC1/2 and MES1/2 scores were averaged to represent a score for NPC-
like and MES-like states respectively. To analyze changes in GBM cell-states as the density of tumor
cells in the xenograft models increase (D1-D4), each spot was assigned to the cell-state with the
highest module score. Then significance of changes in proportion of spots belonging to each state
across the 4 groups were assessed using a Wilcoxon signed rank-sum test and visualized as boxplots.

Cell-state transition: To deduce plasticity among GBM cell-states for each human transcriptional
program, we calculated a transition score representing change from the baseline of the sample to an
end state observed in a given spot. First, a baseline-state was established per sample. This was done
by calculating the proportional overlap of highly contributing spots in a program (usage > 0.1) with
spots assigned a GBM cell-state based on their highest module score. The overlap metrics are
assessed per sample and further by tumor-density groups. The baseline state of a sample was then
defined as that which is observed as the majority signal in end-point sample of patient (heatmaps and
manual review). Next, the transition score for spots of a given baseline-state at a given time-point
(early, mid, or late) and tumor-density range (D1-D4) was derived in two steps: 1. A matrix of
proportional overlap between tumor programs and GBM cell-states was created as described above.
2. For each program, the transition score was calculated as the relative contribution of a cell-state
over the baseline state and visualized as barplots, grouped by tumor stage and tumor density.

Cell-cell communication

Inference of ligand-receptor (LR) communication was based on the R package CellChat (v1.6.1)%.
Given the expected cross-species communication in the xenograft models, ligand, and receptor
information available in species-specific CellChatDB were used to create two additional databases,
one enumerating human-to-mouse interactions and the other, mouse-to-human. To enable
assessment of all directional interactions, the four databases (comprising tumor-to-tumor, TME-to-
TME, tumor-to-TME and TME-to-tumor interactions) were re-built into a single database for further
analysis. The log-normalized matrix consisting of mouse and human gene expression was used to
create a CellChat object. Interactions were inferred across 1. D1-D4 groups and 2. white-matter (WM),
caudoputamen (parenchymal), m30, m52, m59 and m86 (vascular) mouse programs only within the
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D1 group. Spots within D1 (admixture: 0.05-0.2) were assigned to programs in (2) as follows: Spots
with usage > 0.1 in m19 or m71 were assigned to WM, > 0.1 in m1 or m73 to parenchymal and > 0.01
in m30, m52, m59 or m86 to the respective vascular programs. In case of spots with more than one of
these programs, label assignment between the groups was prioritized as WM > Vascular >
Parenchymal. In both analyses, overexpressed genes and interactions were identified using default
parameters. Next, computeCommunProb() was used to derive significant (p.adj < 0.05)
communications with 10% truncated mean for calculating average gene expression per spot. A data-
frame of all communications inferred were obtained using subsetCommunication() and used for
downstream analysis. Chord diagrams of LR interactions per pathway were visualized using
netVisual_chord_cell(). In (1), pathways were categorized into 8 groups LR1-LR8 based on
combinations of the 4 interaction categories (TME__TME, TME__Tumor, Tumor__TME, and
Tumor__Tumor). Pathway enrichment analysis with GO:BP was performed by querying ligands and
receptors of significant interactions in all pathways using g:Profiler. Only terms with a size > 10 and <
2000 were included and adjusted p-value threshold was set to 0.05. Results were summarized as a
heatmap of adjusted p-values of terms ordered by significance in each LR group.

STRINGdb networks and selection of hub genes

Selection of hub genes: To build a network of protein-protein interactions per tumor program, we
queried a set of “top-scoring” genes in STRING database (v2.6.5)% to obtain known and predicted
interactions. Top-scoring genes of a program were derived by plotting the distribution of its gene-
scores produced by cNMF, followed by selection of genes that comprise the final component of
gaussian-mixture model clusters. This was performed with default parameters of densityMclust()
from the R package mclust (v6.0.0). Known+Predicted interactions obtained medium confidence
levels from STRINGdb were plotted as a network with a fruchterman.reingold layout using the R
package iGraph (v1.4.2). Nodes represented genes, and node size corresponded to correlation
between expression of the gene and GEP usage across all spots. Finally, hub genes within the network
were defined as nodes with a PageRank score in the 95" percentile. Hub genes selected using the
PageRank algorithm were observed to be distributed over multiple “fast-greedy” communities within
the networks.

Hub gene characterization: To functionally characterize hub genes identified in PPl networks of highly-
scoring genes, we performed an enrichment analysis of GO:BP terms. Enrichment analysis was
performed using the R package gProfiler2 (v0.2.2). The hub genes were queried using gost() with
default parameters and convert to an enrichResult using the R package enrichplot (v1.14.2). For each
program, terms with size > 5 and < 500 and p.adjust < 0.05 were selected and reduced to ~5 parent
terms using iterative thresholds within go_reduce() from the rutils package (v0.99.2). The data was
then visualized as a dot-plot with the dot size representing the number of terms reduced per parent
term.

Survival analysis

RNA-seq and clinical data for the TCGA-GBM cohort®® were downloaded from http://xena.ucsc.edu.
For a given sample, normalized enrichment score (NES) for the gene-set comprising hub genes of each
tumor program was calculated using the R package fgsea (v1.20.0) with default parameters. Patients
were stratified into three groups based on overall survival time —top and bottom 25%, 33% and 50%
and Kaplan-Meier curves were plotted for each group using R package survminer (v0.4.9) with, p-
values determined by log-rank test. As a complementary method, a Student’s t.test was also
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performed between NES of the stratified patients. Kaplan-Meier curves for individual genes were
obtained from GEPIA27°.

Over-representation analysis

To assess enrichment of a program across regions of varying tumor cell density, Pearson’s chi-square
test was performed using a contingency table encompassing the number spots expressing a program,
(selected based on their usage) and the remainder of the spots in each category [Brain(D0), Tumor
(D1-D4), and four tumor density regions (D1, D2, D3 and D4)]. “Brain” and “Tumor” categories were
excluded while testing for enrichment of tumor programs. A usage threshold of >0.05 was used to
select spots in each TME programs and >0.1 for tumor and normal-brain programs. The chi-squared
residuals indicating the observed minus expected number of spots with usage of a specific program
per category (Brain(D0), Tumor (D1-D2), D1, D2, D3 and D4) are then plotted.

Differential expression analysis

To determine differentially expressed genes between regions of low and high tumor density with a
program-agnostic approach, we used the R package ALDEx2 (v1.24.0)°. First, spots in each sample
were categorized as low and high density (“lowHs” and “higHs”) by selecting those in the 15" and 75"
percentile of the sample’s admixture values. Then, the ALDEx2 pipeline was implemented per sample
using the aldex() function with the following parameters: mc.samples = 256, test = “t”, effect = TRUE,
denom = “lvha”, paired.test = FALSE. Genes with BH adjusted p.value < 0.05 and absolute effect size >
1 were selected as differentially expressed in each category. Further, to obtain differentially
expressed genes between WM and other groups (Par, m52, m30, m59, m86) within the D1 region, we
used FindAllMarkers() with default parameters from R package Seurat (v4.0.0), following filtering
(min.cells = 3, min.features = 5, customized nFeature_RNA and nCount_RNA filters per sample) and
normalization with NormalizeData() of the selected spots. Genes with adjusted p.value < 0.05 and
logfc.threshold > 0.25 were selected as differentially expressed.
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