

AhR ligands from LGG metabolites promote piglet intestinal ILC3 activation and IL-22 secretion to inhibit PEDV infection

3
4 Junhong Wang¹, Yibo Zhao¹, Tong Cui¹, Hongyu Bao¹, Ming Gao¹, Mingyang Cheng¹,
5 Yu Sun¹, Yiyuan Lu¹, Jiayao Guan¹, Di Zhang¹, Yanlong Jiang¹, Haibin Huang¹,
6 Chunwei Shi¹, Jianzhong Wang¹, Nan Wang¹, Jingtao Hu¹, Wentao Yang¹, Guilian
7 Yang¹, Yan Zeng^{1*}, Chunfeng Wang^{1*}, Xin Cao^{1*}.

8
9 ¹ College of Veterinary Medicine, Jilin Provincial Engineering Research Center of
10 Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and
11 Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs)
12 for Major Animal Diseases, Ministry of Education, Jilin Agricultural University,
13 Changchun, 130118, China.

14
15 *Correspondence: zengyan@jlau.edu.cn; wangchunfeng@jlau.edu.cn;
16 xinc@jlau.edu.cn

Competing Interests statement

19 The authors declare that the research was conducted without any commercial or
20 financial relationships.

21
22
23

24 **Abstract**

25 In maintaining organismal homeostasis, gut immunity plays a crucial role. The
26 coordination between the microbiota and the immune system through bidirectional
27 interactions regulates the impact of microorganisms on the host. Our research focused
28 on understanding the relationship between substantial changes in jejunal intestinal
29 flora and metabolites and intestinal immunity during porcine epidemic diarrhea virus
30 (PEDV) infection in piglets. We discovered that *Lactobacillus rhamnosus GG (LGG)*
31 could effectively prevent PEDV infection in piglets. Further investigation revealed
32 that *LGG* metabolites interact with type 3 innate lymphoid cells (ILC3) in the jejunum
33 of piglets through the aryl hydrocarbon receptor (AhR). This interaction promotes the
34 activation of ILC3 cells and the production of interleukin-22 (IL-22). Subsequently,
35 IL-22 facilitates the proliferation of IPEC-J2 cells and activates the STAT3 signaling
36 pathway, thereby preventing PEDV infection. Moreover, the AhR receptor exerts its
37 influence on various cell types within organoids, including intestinal stem cells (ISCs),
38 Paneth cells, and enterocytes, fostering their growth and development, suggesting a
39 broad impact of AhR on intestinal health. In conclusion, our study demonstrates the
40 ability of *LGG* to modulate intestinal immunity and effectively prevent PEDV
41 infection in piglets. These findings highlight the potential application of *LGG* as a
42 preventive measure against viral infections in livestock.

43

44 **Keywords:** PEDV, ILC3, *LGG*, AhR, intestine.

45

46 **Introduction**

47 Porcine epidemic diarrhea virus (PEDV), a member of the genus Coronavirus A
48 of the family Coronaviridae, causes acute diarrhea and/or vomiting, dehydration, and
49 high mortality in neonatal piglets (Jung and Saif 2015). Related studies have reported
50 significant changes in the intestinal microbiota of *Lactobacillus*, *Escherichia coli*, and
51 *Lactococcus* in piglets as a result of PEDV infection (Yang et al., 2020a). Specifically,
52 the abundance of *Lactobacillus* *jejuni* and *Lactobacillus* *cecum* showed a decreasing
53 trend in PEDV-infected piglets, accompanied by significant changes in metabolites(Li
54 et al., 2022).

55 In recent years, it has been found that intestinal immunity has an important role
56 in organismal homeostasis (Yu et al., 2022). Bidirectional interactions between the
57 microbiota and the immune system coordinate many microbial effects on the host
58 (Ronan et al., 2021). Innate lymphoid cells (ILCs), which are continuously interacting
59 with commensal flora in the gut, are the pioneers (Gury-BenAri et al., 2016).
60 Meanwhile, IL-22 production by ILC is critical for intestinal immunity during the
61 early course of infection development (Satoh-Takayama et al., 2008). Previous studies
62 have shown that intestinal flora is a key factor in IL-22 production in the gut, but the
63 regulatory mechanisms are unclear (Yang et al., 2020b).

64 In addition to interacting with a variety of intestinal epithelial cells, ILCs also
65 interact with intestinal stem cells (ISCs) in the crypts to regulate the differentiation
66 and function of ISCs (Lindemans et al., 2015). ILC3-derived IL-22 can promote the
67 phosphorylation of signal transducer and activator of transcription 3 (STAT3) on

68 intestinal stem cells through the action of IL-22R, thus inhibiting the apoptosis of
69 intestinal stem cells. At the same time, IL-22 can stimulate the proliferation of
70 intestinal stem cells and then ameliorate the damage to ISCs caused by chemotherapy
71 (Hanash et al., 2012; Aparicio-Domingo et al., 2015).

72 Aryl hydrocarbon receptor (AhR) is essential for the maintenance of ILC3 and
73 the production of IL-22 (Pernomian et al., 2020). AhR is another key transcription
74 factor for ILC3, and the presence of lymphoid tissue in the intestine is associated with
75 intact AhR expression (Xia et al., 2017). In contrast, the removal of AhR is equivalent
76 to the absence of ILC3, resulting in the disappearance of intestinal lymphoid tissue
77 (Kiss et al., 2011). AhR is expressed in many mammalian tissues, particularly in the
78 liver, intestine, and kidney. In the intestine, AhR, expressed mainly by epithelial cells
79 and innate immune cells, plays an important role in the regulation of innate immunity
80 and regulates the number of lymphocytes within the epithelium. When the energy
81 source is converted from sugar to tryptophan, *Lactobacillus lactis* amplifies and
82 produces indole-3-aldehyde (I3A), which serves as an AhR ligand that promotes the
83 production of IL-22 by ILC3 (Zelante et al., 2013). IL-22 plays a central role in the
84 protection of host cells against pathogens at the surface of the mucosa through the
85 activation of STAT3 (Backert et al., 2014). It has been reported that mature IL-22 of
86 porcine origin inhibits PEDV infection and promotes the expression of antimicrobial
87 peptide β -defensins, cytokine IL-18, and IFN- λ through activation of the STAT3
88 signaling pathway (Xue et al., 2017).

89 An important way in which probiotics combat diarrheal diseases is by

90 modulating the mucosal immune system of the host intestine. Mucosal immunity is
91 one of the important components of the body's immune system, and its main function
92 is to remove pathogenic microorganisms that invade the body through mucosal
93 surfaces. The mucosal immune system has a unique organizational structure and
94 function. It is widely distributed in the mucosal tissues of the respiratory, digestive,
95 and genitourinary tracts, serving as the main site of local immune response. The
96 mucosal immune system consists of various components, including mucosal epithelial
97 tissue, mucosal-associated lymphoid tissue (MALT), intestinal epithelial cells,
98 immune cells, and the molecules or secretions they produce.

99 Additionally, it includes mucosal microorganisms, such as commensal
100 microorganisms, which normally inhabit the mucosa. Some studies have reported that
101 oral administration of *Lactobacillus* inhibits PEDV infection (Yang et al., 2023).
102 Colonization of mice with the model probiotic *Lactobacillus rhamnosus GG* (LGG)
103 enhances the maturation of intestinal function and the production of IgA and produces
104 promising results in protection against intestinal injury and inflammation (Yan et al.,
105 2017).

106 In this study, a co-culture system of porcine jejunal gut tract-like organoids with
107 porcine jejunal lamina propria lymphocytes (LPLs) was established to examine and
108 validate the protective effect of *Lactobacilli* on intestinal epithelial cells. Our
109 hypothesis suggests that LGG may secrete substances, such as I3A, which can activate
110 the AhR receptors located on the surface of ILC3 present in the lamina propria of the
111 pig intestinal mucosa. This activation could potentially enhance the secretion of IL-22

112 by ILC3. Then, the STAT3 signaling pathway of intestinal epithelial cells was
113 activated, regeneration of ISCs was induced to perform damage repair function,
114 Paneth cells were induced to secrete Reg3b and Reg3g to inhibit the growth of
115 pathogenic bacteria, and intestinal cells were induced to secrete IFN- λ to inhibit
116 PEDV replication.

117

118 **Materials and Methods**

119 **Animals and sample collection**

120 We used 3-day-old SPF piglets, which were purchased from the Harbin
121 Veterinary Research Institute. All piglets were transported in enclosed carts designed
122 for SPF conditions. We collected samples from the jejunum and other tissues of the
123 piglets. Then, we analyzed the immune cells in the jejunal tissues using flow
124 cytometry, processed and analyzed the samples using q-PCR and other experimental
125 methods, and sectioned and stained the tissue samples. All animal experiments
126 complied with the requirements of the Animal Management and Ethics Committee of
127 Jilin Agricultural University.

128 **Cell separation**

129 Cell samples obtained from the jejunum of piglets were subjected to subsequent
130 flow assay and in vitro cell culture and q-PCR. Firstly, after euthanasia of piglets,
131 about 5 cm of jejunum was dissected longitudinally, rinsed with PBS and divided into
132 1 cm sized intestinal fragments, which were then transferred to the separation solution
133 (15 mL of RPMI-1640, 1% penicillin and streptomycin, 1% HEPES, 5 mM EDTA, 2

134 mM DTT, and 2% heat-inactivated fetal bovine serum (FBS)) and incubated for 28
135 minutes in a shaking incubator at 37°C and 200 rpm, and then removed. After
136 incubation for 28 minutes in a shaking incubator at 37°C and 250 rpm, the intestinal
137 fragments were obtained rinsed and continued into the enzyme digestion solution (8
138 mL RPMI-1640 medium, 1% penicillin and streptomycin, 1% HEPES, 50 mg
139 collagenase IV, 1 mg DNase I, and 2% FBS), and incubated for 28 minutes in a
140 shaking incubator at 37°C and 250 rpm before being removed, and then filtered
141 through a 70-µm cell strainer to get the LPL cells in the jejunum of piglets.

142 **Antibody Information**

143 Invitrogen: CD2 Monoclonal Antibody (14-0029-82), CD3e Monoclonal
144 Antibody (MA5-28774), CD3e Monoclonal Antibody (Biotin) (MA5-28771), CD11b
145 Monoclonal Antibody (MA5-16604), CD11c Monoclonal Antibody (APC)
146 (17-0116-42), CD21 Monoclonal Antibody (A1-19243), CD21 Monoclonal Antibody
147 (PE) (MA1-19754), CD45 Monoclonal Antibody (FITC) (MA5-28383), CD117 (c-Kit)
148 Monoclonal Antibody (APC) (17-1171-82), CD163 Monoclonal Antibody (PE)
149 (MA5-16476), CD172a Monoclonal Antibody (MA5-28299), CD335 (NKp46/NCR1)
150 Monoclonal Antibody (PE) (MA5-28352), SLA Class II DR Monoclonal Antibody
151 (MA5-28503), Gata-3 Monoclonal Antibody (PE-Cyanine7) (25-9966-42), T-bet
152 Monoclonal Antibody (PE) (12-5825-82), Goat anti-Mouse IgG H&L (PE- Cyanine5)
153 (M35018).

154 BD Pharmingen: Fixable Viability Stain 780 (565388), Purified Rat Anti-Mouse
155 CD16/CD32 (Mouse BD Fc Block) (553142), Rat Anti-Pig $\gamma\delta$ T Lymphocytes (PE)

156 (551543), Rat Anti-Pig $\gamma\delta$ T Lymphocytes (561486), Mouse anti-GATA3 (558686).

157 Abcam: Streptavidin protein (Alexa Fluor 594) (ab272189), Streptavidin protein

158 (APC) (ab243099), Goat Anti-Mouse IgG H&L (FITC) (ab6785), Goat Anti-Rabbit

159 IgG H&L (Alexa Fluor 488) (ab150077), Goat Anti-Mouse IgG H&L (Alexa Fluor

160 488) (ab150113), Goat Anti-Rat IgG H&L (Alexa Fluor 488) (ab150165), Goat

161 F(ab')2 Anti-Mouse IgG H&L (PE) (ab7002), Goat F(ab')2 Anti-Rat IgG H&L

162 (PE-Cyanine5) (ab130803), Goat Anti-Mouse IgG H &L (Alexa Fluor 647)

163 (ab150115), Rabbit Anti-Goat IgG H&L (Alexa Fluor 488) (ab150141), Rat

164 Anti-Mouse IgG1 H&L (PE) (ab99605). Anti-Villin antibody (ab244292).

165 Anti-EpCAM antibody(ab71916). Anti-EpCAM antibody(ab71916). Anti-Ki-67

166 antibody(ab15580). Anti-LGR5 antibody(ab273092).

167 Solarbio: CFSE (S1076), PMA (P6741), D-PBS (D1040), PBS (P1010)

168 GE Healthcare: Percoll (17089101).

169 R&D: APC Anti pig IL-4 (1644057).

170 Sigma: Penicillin And Streptomycin (V900929), Collagenase IV (V900893-1G),

171 Ionomycin (56092-81-0), DNase I (10104159001), DTT (3483-12-3), HEPES

172 (H3375), EDTA (E8008), FBS (F8318).

173 PE Goat anti Mouse(SPP101), FITC Rabbit anti Goat (SPP101-100), PE anti

174 Mouse (SHP501) purchased from 4A Biotech.,Ltd.

175 **Preparation of IL-22 protein and IL-22 monoclonal antibody**

176 The porcine IL-22 (Gene ID: 595104) gene was synthesized by consulting NCBI,

177 and the structural domains and were examined to determine the protein expression

178 scheme, and the prokaryotic and eukaryotic expression vectors were prepared, and the
179 IL-22 protein was obtained after the prokaryotic expression was purified, and the
180 IL-22 protein was immunized to the mice and then taken from the B-cells for the
181 fusion of hybridoma cells, and large quantities of monoclonal antibodies were
182 prepared by means of ascites preparation. A large number of monoclonal antibodies
183 were prepared by ascites preparation, and the antibodies were labeled with antibody
184 labeling kit (ab201795) after purification. This part of the work was done with the
185 help of Shanghai Company.

186 **LGG and EVs Acquisition**

187 LGG (ATCC 53103) was grown in De Man, Rogosa, and Sharpe (MRS) broth
188 for 12 h at 37°C. After culturing overnight, the bacteria were inoculated 1:100 in fresh
189 MRS broth and grown under anaerobic conditions until reaching the mid-log phase.
190 Then, the colonies were counted, and the cell density was adjusted to 5×10^9
191 colony-forming units (CFU)/mL.

192 The culture was centrifuged overnight at 7,000 g for 30 min to eliminate debris,
193 including dead cells and other waste products. The supernatant obtained was filtered
194 and ultracentrifuged at 150,000g for 70 min. The precipitate was collected after
195 centrifugation (LGG-EVs were mainly enriched in the precipitate, with minimal
196 presence in the supernatant) and stored at -80°C for later use.

197 **The PEDV information**

198 The PEDV strain (PEDV LJX01/2014, PEDV N gene GenBank number:
199 MK252703) was provided by the Professor Guangliang Liu, Lanzhou Veterinary

200 Research Institute, China. The propagation and titration of the PEDV LJX strain were
201 described previously (Chen et al., 2020). Piglets were infected by oral feeding using a
202 virus with a copy number of 1.35×10^4 RNA copies/g, and each piglet was infected
203 with 5 mL of virus solution.

204 **Experimental animal models**

205 Three-day-old piglets were treated with oral antibiotics, in which gentamicin 3
206 mg, metronidazole 20 mg, and ampicillin 100 mg per kg of piglets were fed for 7 d.
207 The CON group was fed for PBS 14 d as a control group, the ABX + LGG + PEDV
208 group received PEDV infection after 7 d of antibiotic feeding and further LGG
209 feeding, the ABX + PEDV group received PEDV infection after 7 d of antibiotic
210 feeding and further PBS feeding.

211 **q-PCR experiment**

212 According to the manufacturer's instructions, total RNA was extracted, and 1 mg
213 of RNA was reversed into cDNA by reverse transcriptase (Promega), which reverse
214 transcribed the Moloney mouse leukemia virus. In the real-time quantitative PCR
215 system of Applied Biosystems 7500, quantitative PCR was performed using SYBR
216 Green mixture (TakBR Green). In the real-time quantitative PCR system of Applied
217 Biosystems 7500, quantitative PCR was performed using SYBR Green mixture
218 (Takara Bio). The average mRNA fold changes were calculated by $2^{-\Delta\Delta CT}$, and all
219 primer sequences are shown in Supplementary Data 1.

220 **Cell experiments**

221 We stained the total LPL extracted from the lamina propria with antibodies

222 Live/Dead, CD45, Lin1 (CD3 ϵ , CD21, $\gamma\delta$ T, CD11c, CD172a), and Lin2 (CD4, CD8,
223 CD163, CD11b) and then selected L/D-CD+Lin1-Lin2- cells by flow sorting or
224 magnetic bead sorting (STEMCELL EasySepTM PE Positive Selection Kit). CD163,
225 CD11b) and then selected L/D-CD45+Lin1-Lin2- cells by flow sorting or magnetic
226 bead sorting (STEMCELL EasySepTM PE Positive Selection Kit II # 17684). After
227 obtaining, they were cultured in vitro and then flow assayed. In order to maintain the
228 cellular activity of ILCs, for all immunological cell cultures longer than 24h, we used
229 OP9 cells co-cultured with immune cells to enhance the survival of ILC3 cells.

230 **Organoid experiment**

231 1. Piglets were euthanized by removing 8 cm of jejunum, removing the
232 mesentery, dissecting the intestinal segments longitudinally, washing them with cold
233 PBS until they were cleaned, cutting the segments into 0.5 cm pieces, washing them
234 with cold PBS by blowing gently, and adding 15 mL PBS(2 mM EDTA). Let it stand
235 at room temperature for 40 min.

236 2. Discard the supernatant, add 10 mL of DPBS, and blow 2 times. The
237 supernatant was collected in a 50 mL centrifuge tube through a 70 μ m cell sieve,
238 labeled #1, and repeated 4 times. The filtrate of number 3 and 4 was centrifuged at
239 300 \times g for 5 min, and the supernatant was discarded. The supernatant was
240 resuspended with 1 mL of DME/F12(1% penicillin and streptomycin), transferred to a
241 1.5 mL centrifuge tube, centrifuged at 200 \times g for 3 min, and the supernatant was
242 discarded.

243 3. 250 μ L of complete medium and 250 μ L of Matrigel (operated on ice) were

244 added to the precipitate and blown to mix. Pipette 50 μ L in the center of a 24-well
245 plate and place in the incubator for 30 min. Then, 500 μ L medium (STEMCELL
246 #6000) was added to each well and 500 μ L PBS to the remaining wells.

247 4. When the organoids start to germinate, they should be passaged. First, discard
248 the old medium and add 2 mL DME / F12, blow it up and down, and recycle it into
249 the centrifuge tube. After centrifugation, discard the supernatant and reintroduce it
250 into the complete medium and Matrigel.

251 **Isolation and Characterization of EVs**

252 EVs were isolated from *LGG* using ultracentrifugation. The size distribution and
253 morphology of EVs were analyzed by nanoparticle tracking analysis (NTA) and
254 transmission electron microscopy (TEM), respectively.

255 **Statistics**

256 Statistical analyses were performed using the statistical computer package, GraphPad
257 Prism version 6, (GraphPad Software Inc., San Diego, CA). Results are expressed as
258 means \pm SEM. Statistical comparisons were made using two-way analysis of variance
259 with Tukey's post hoc test or Statistical comparisons were made using two-way
260 analysis of variance with Tukey's post hoc test or Student t test, where appropriate.
261 Differences were considered to be significant at $P < 0.05$. Significance is noted as * P
262 < 0.05 , ** $P < 0.01$, *** $P < 0.001$ and **** $P < 0.0001$ among groups

263

264 **Results**

265 **1. PEDV infection affects changes in the intestinal flora and ILC3 in piglets.**

266 In our previous work, we found a large number of immune cells in the piglet
267 intestine (Wang et al., 2024), and through flow cytometric sorting and single-cell
268 sequencing (scRNA-seq), we found that in Lin⁻ cells, there were a large number of
269 ILCs cells (Fig. 1A), in which ILC3 expressing the signature transcription factor
270 RORC was absolutely dominant (Fig. 1B), and also expressing, IL7R, AhR and other
271 surface molecules, and secreted corresponding cytokines such as IL22 and IL17. The
272 expression of these genes is important for the regulation and protection of intestinal
273 homeostasis (Fig. 1C).

274 Through scRNA-seq analysis, we found that PEDV infection in piglets led to a
275 significant decrease in the number of immune cells in the jejunum, including T cells
276 and ILC3 (Fig. 1D, F, G). In contrast, non-immune cells, such as epithelial cells,
277 exhibited abundant proliferation during the infection. (Fig. 1D, H). Despite the
278 significant decrease in the number of ILC3 cells in the jejunum, the secretion of IL-22
279 was markedly increased (Fig. 1E, I). These results suggest that the increased secretion
280 of IL-22 by ILC3 cells may play a crucial role in conferring resistance against PEDV
281 during PEDV infection. Our flow cytometry assay results were consistent with the
282 single-cell results, the flow gating strategy in Fig. S1A. These results also confirmed a
283 significant decrease in the number of ILC3 cells in the intestinal lamina propria of
284 PEDV-infected piglets, accompanied by an up-regulation of IL-22 secretion by ILC3
285 cells (Fig. 1J). Furthermore, our findings revealed significant alterations in the flora of
286 the jejunum in PEDV-infected piglets. At both the order level and the genus level,
287 there was a notable decrease in the levels of *Lactobacillales* orders and *Lactobacillus*

288 genus (Fig. 1K, L).

289 To further investigate the underlying cause of the significant changes in ILC3
290 during PEDV infection, we aimed to discern whether these changes were primarily
291 driven by viral infection or influenced by alterations in the bacterial flora. To explore
292 this, we conducted an experiment involving antibiotic treatment to manipulate the
293 structure of the flora. By observing the effects of this flora change on the body's
294 immunity, we aimed to gain insights into the intricate relationship between the
295 microbial composition and the immune response.

296 **2. Alteration of intestinal flora may affect ILC3 development.**

297 In our study, we initially established a dysregulation model of piglets' microflora.
298 We observed significant impacts on the immune development of piglets with dysflora.
299 Specifically, there was a noticeable reduction in the number of CD4-T cells in the
300 jejunum lamina propria (Fig. S2A). Additionally, the development of ILC3 was even
301 more severely affected, with a significant decrease in cell numbers and an increase in
302 IL-22 secretion (Fig. 2A). Meanwhile, antibiotic treatment resulted in the decrease of
303 flora richness and *lactobacillus* number in the jejunum of piglets (Fig. 2B, C). Linear
304 discriminant analysis Effect Size (LEfSe) analysis identified significantly different
305 taxa between groups, which were significantly enriched from the point of view of
306 order, genus, and species, respectively, belonging to *Lactobacillales*, *Lactobacillaceae*,
307 and *Lactobacillus* (Fig. 2D, E, F, G).

308 The above results suggest that the number of immune cells, especially ILC3, was
309 significantly affected under both PEDV infection and antibiotic treatment conditions

310 and that this change persisted when only the flora was changed. The flora may play a
311 very important role in the interactions with ILC3, and if there is a regulatory effect of
312 the flora on ILC3, by what pathway does the flora regulate ILC3? Up-regulation of
313 indole analogs, including bisindolylmaleimide I and indoxyl sulfate, has been reported
314 in PEDV infection (Li et al., 2022). Non-targeted metabolomics was further analyzed
315 for the metabolites in jejunum samples. As a result, we found significant changes in
316 some AhR-related regulatory substances in both positive and negative ion modes (Fig.
317 2H, I, J, K), especially many indoles that have been repeatedly shown to have a
318 significant activating effect on the AhR. We further performed enrichment analyses
319 and found a significant enrichment in important immune-regulatory pathways such as
320 tryptophan. To investigate whether differential microbial communities produce
321 differential metabolites, we conducted a combined analysis of 16S and metabolomics.
322 The results revealed a significant decrease in the abundance of regulatory substances
323 secreted by probiotic bacteria, leading to a reduction in their overall levels. However,
324 unfortunately, we did not directly associate the metabolites with the production by
325 *Lactobacillus* (Figure S2B, C).

326 So far, the expression of the AhR receptor has been studied in immune cells in
327 humans and mice, but its expression has not been reported in pigs. Furthermore, the
328 expression of AhR in immune cells in the intestine is unknown. We found that
329 immune cells in the porcine intestine highly expressed AhR receptors by single-cell
330 analysis (Fig. 2L), and further analysis revealed that ILC3 in the intestine expressed
331 high levels of AhR (Fig. 2M). In human intestinal ILC, both ILC3 and ILC1 highly

332 expressed AhR receptors (Fig. S2D), whereas only ILC2 expressed AhR in the murine
333 upper intestine (Fig. S2E). These results suggest that porcine and human intestinal
334 ILC3 exhibit high levels of AhR activation, indicating that ILC3 in the intestine may
335 respond significantly to stimulation by AhR ligand-related substances.

336 **3. Feeding *LGG* can enhance the piglets' immunity against PEDV infection.**

337 To explore whether *Lactobacillus* can resist PEDV infection in the gut, we
338 selected the standard *Lactobacillus* strain *LGG* to supplement piglets with an
339 intestinal flora imbalance and then carried out a PEDV challenge experiment. Our
340 objective was to determine whether feeding *LGG* could enhance intestinal immunity,
341 specifically by activating ILC3 cells, thereby promoting intestinal homeostasis and
342 conferring resistance against PEDV infection.

343 It was found that *LGG* supplementation significantly reduced the pathological
344 changes of PEDV infection in piglets, and the intestinal tract was healthy in the CON
345 group. The villi of the jejunum of piglets in the ABX+*LGG*+PEDV group were
346 shortened and atrophied, and the epithelial cells were mildly diseased. The villi of the
347 jejunum in piglets from the ABX+PEDV group exhibited shortened, fragmented, and
348 broken structures. Additionally, the intestinal epithelial cells underwent typical
349 histopathological changes such as vacuolization, fusion lesions, necrosis, and
350 detachment following PEDV infection (Fig. 3A). The ratio of villus height to crypt
351 depth (VH/CD) of the jejunum villi of piglets in each infection group was found to be
352 significantly lower in the ABX+PEDV group than in the ABX+*LGG*+PEDV group
353 (Fig. 3B). The diarrhea scoring results proved that feeding *LGG* alleviated diarrhea in

354 piglets (Fig. 3C). Next, we found significant differences in viral loads in the
355 duodenum, jejunum and ileum between the ABX+*LGG*+PEDV group and the
356 ABX+PEDV group, especially in the jejunum and ileum, where the viral copy number
357 was significantly decreased after feeding *LGG* (Fig. 3E).

358 Flow results also demonstrated a significant increase in the amount of ILC3 in
359 the intestines of the ABX+*LGG*+PEDV group, which was close to that of the CON
360 group and significantly higher than that of the ABX+PEDV group. The secretion of
361 IL-22 was also significantly lower than that of the ABX+PEDV group, suggesting that
362 the inflammatory state of the jejunum intestinal tract of the piglets was ameliorated in
363 response to the infection (Fig. 3D). A dramatic improvement also occurred in the
364 abnormal activation state of the intestinal tract through stimulation by feeding *LGG* to
365 promote proliferation of epithelial cells and the production of IL-22 after viral
366 infection, including the expression of proteins such as EpCAM and VILLIN in the
367 intestinal tract (Fig. 3F). There was also a significant reduction in the cell
368 proliferation-related proteins LGR5 and Ki-67 (Fig. S3A).

369 Our results at the mRNA level were consistent with the results at the protein
370 level, revealing that inflammation-related genes such as IL-22 and IL-1 β , the
371 epithelial gene EpCAM, the villi gene VILLIN, the proliferation and
372 differentiation-related gene MKI-67, the ISC labeling genes Lgr5, Ascl2, Olfm4, and
373 the Paneth cell activation genes Lyz1 and REG3b were all significantly reduced
374 (Figure S3B). Feeding *LGG* also significantly increased the abundance of intestinal
375 flora in piglets, particularly the number of the *Lactobacillus* genus, and elevated the

376 content of other probiotics, such as *Streptococcus spp*, suggesting that feeding *LGG*
377 can promote the recovery of the intestinal flora (Fig. S3C).

378 **4. *In vitro* cellular experiments demonstrated that *LGG* metabolites promote**
379 **ILC3 cell activation to resist PEDV.**

380 We first successfully constructed an in vitro culture model of ILC3 (Fig. S4A),
381 performed a flow cytometry assay under different stimulant-inducing conditions, and
382 developed a gating strategy (Fig. S4B). We found that both *LGG*-secreted
383 extracellular vesicles (EVs) and Indole-3-carbinol (I3C) could significantly promote
384 ILC3 proliferation and secretion of IL-22 through activation of the AhR. The effect
385 disappeared when the AhR antagonist CH-223191 (CH) was added (Fig. 4A).

386 Previous correlational studies have indicated the possibility of ILC
387 transformation within the organism, particularly when induced by specific conditions
388 (Bal et al., 2020). To investigate whether the change in the number of ILC3 is due to
389 the transformation of other immune cells, we conducted magnetic bead sorting on
390 ILCs cells and subsequently examined them using SFSE staining (Fig. S4C). We
391 discovered that ILC3 is the primary cell population within ILCs where proliferation
392 occurs. The proliferation of ILCs cells dominated by ILC3 was significantly stronger
393 than that of other non-ILC cells (Fig. S4D). The expression of ILC3-related cytokines,
394 including IL-22, IL-17A, IL-17B, CXCL2, and CXCL8, were all found to be
395 significantly up-regulated (Fig. 4B).

396 Our study investigated whether the activation of ILC3 and secretion of IL-22
397 promoted by EVs are effective in enhancing the resistance of porcine epithelial cells

398 to PEDV infection. We established a co-culture model of ILC3 and IPEC-J2 cells (Fig.
399 S4E) and observed that IL-22 secreted by EVs-promoted ILC3 had a positive impact
400 on IPEC-J2 cell proliferation and the activation of STAT3 (Fig. 4C). Furthermore,
401 when EVs and ILC3 were added to co-cultured IPEC-J2 cells after PEDV infection, it
402 significantly influenced the outcome of PEDV infection by preventing apoptosis of
403 IPEC-J2 cells (Fig. 4D), the gating strategy in Fig. S4F.

404 These results suggest that EVs derived from *LGG* can stimulate the proliferation
405 and secretion of IL-22 by ILC3 through the AhR receptor on ILC3. This process
406 promotes the proliferation and activation of epithelial cells and enhances the
407 expression of the STAT3 gene. Therefore, it alleviates IPEC-J2 apoptosis caused by
408 PEDV infection.

409 **5. Porcine intestinal organoid proving experiments.**

410 We successfully constructed an in vitro model of organoids from the jejunum of
411 piglets. The size of isolated intestinal crypts was about 15 μm , and they were cultured
412 with matrigel. The first generation of organoids grew slowly and developed into
413 mature bodies with a diameter of about 200 μm by the eighth day and were continued
414 to be cultured. Then they died and fragmented, and displayed a large number of buds
415 in 5-8 d and could be propagated through passaging culture(Fig. 5A). Subsequently,
416 the cultured organoids grew rapidly after passaging, reaching a size of 100 μm in
417 three d and matured into bodies with a diameter of 200 μm within 5 d (Figure S5B).

418 Previous experiments have shown that EVs can stimulate the secretion of IL-22
419 from ILC3. Therefore, it is worth investigating if IL-22, secreted by ILC3, can

420 promote the growth of organoids. In our study, we initially supplemented the
421 intestinal organoid medium with HK *LGG* and EVs derived from *LGG* (Fig. 5B). We
422 then monitored the number of organoids, organoid size, and germination rate
423 throughout the organoid growth process. Interestingly, we observed that the addition
424 of HK *LGG* and EVs alone did not have any noticeable effect on the development of
425 organoids (Fig. 5D).

426 In the next phase of our study, we successfully established a co-culture system
427 involving intestinal organoids, stimulatory molecules, and ILC3 cells (Fig. 5C).
428 Initially, we attempted to culture ILC3 cells by adding them directly to the matrigel.
429 However, this method proved unsuitable for the survival of ILC3 cells and resulted in
430 severe cell death and fragmentation within 24 h. To overcome this issue, we
431 performed co-cultures using a transwell system with a pore size of 0.4 μ m. We
432 renewed the upper layer of ILC3 cells every 24 h. Notably, we observed that the
433 growth of the organoids was significantly enhanced in the co-culture system when
434 EVs+ILC3 and IL-22 were added. Within the first two d, the organoids experienced
435 rapid growth, reaching a size of 70 μ m. Subsequently, they started to exhibit
436 significant budding and divided into multiple crypts on the third day. The organoids
437 continued to grow rapidly, whereas the promotional effect of EVs and IL-22 on
438 organoid growth disappeared upon the addition of an antibody specific to IL-22.
439 Importantly, the number of organoids was not affected (Fig. 5E). Comparing the
440 experimental group (EVs+ILC3, IL-22) with the control group (including ILC3,
441 ILC3+EVs(*LGG*)+anti-IL-22, IL-22+anti-IL-22), we found that the experimental

442 group significantly promoted the growth of the organoids. Notably, a significant
443 difference was observed on the third day during germination, and by the sixth day, the
444 size of the organoids in the experimental group showed significant differences
445 compared to the control (Fig. 5F).

446 Next, immunofluorescence results revealed significant expression of
447 proliferation-related proteins in organoids after addition of co-cultures of EVs+ILC3
448 and IL-22, including increased expression of 5-Ethynyl-2'-deoxyuridine (EdU) (Fig.
449 5G), the ISCs activation-related protein LGR5, and the cell proliferation-related
450 protein Ki67; a significant increase in expression of the epithelial Significantly
451 increased expression of the epithelial protein EpCAM and the chorionic protein
452 VILLIN was also found (Fig. S5C). Q-PCR results also identified the epithelial gene
453 EpCAM, the chorionic gene VILLIN, the proliferation and differentiation-associated
454 gene MKI-67, and the ISCs marker genes Lgr5, Ascl2, and Olfm4 in the class of
455 organoids following the incorporation of co-cultures of EVs+ILC3 and IL-22; and
456 Paneth cell activation genes Lyz1 and REG3b were significantly increased (Fig. 5H).

457 These results demonstrated that the EVs of LGG could significantly promote the
458 growth and development of organoids and activate ISCs, Paneth cells, epithelial cells,
459 and other cells in organoids.

460 **6. The metabolites of *LGG* are rich in AhR ligands, such as indole compounds.**

461 We further examined the *LGG*-produced EVs and found the diameter of the EVs
462 to be around 70 nm by nanoflow cytometry (Fig. 6A). The signature
463 horseshoe-shaped structure of the EVs, which contained a large amount of *LGG*

464 metabolites, was visualized under an electron microscope (Fig. 6B).

465 We enriched and collected the extracellular vesicles (EVs) through ultrafast
466 centrifugation. Subsequently, we conducted off-target metabolism detection. In total,
467 414 substances were identified in the positive mode (POS), while 326 substances
468 were detected in the negative mode (NEG). We observed a significant presence of
469 lipids and lipid-like molecules, as well as organic acids and derivatives, in both the
470 POS and NEG modes (Fig. 6C). We found a wide range of substances that can interact
471 with AhR, including indole compounds such as L-5-Hydroxytryptophan and
472 Indole-3-acrylic acid, as well as several ketone compounds, and some ketones.
473 Research has indicated that, apart from indoles, ketones can also interact with AhR
474 (Amakura et al., 2008).

475 We conducted KEGG enrichment analysis on the total metabolites and found
476 significant enrichment in the Metabolism pathway. Additionally, enrichment was
477 observed in pathways such as Cellular Processes, Environmental Information
478 Processing, and Genetic Information Processing (Fig. 6D).

479 Our study provides insights into the interaction between ILC3s in the porcine
480 small intestine and *Lactobacillus*, aiming to understand better how they interact. We
481 have demonstrated that oral *LGG* is a potential approach for preventing PEDV
482 infection in pigs. It can alleviate intestinal inflammation, intestinal damage, and
483 clinical diarrhea symptoms caused by PEDV infection. We found that EVs (*LGG*) can
484 activate ILC3s and promote IL-22 secretion, thereby influencing intestinal stem cell
485 regeneration and epithelial protection. Ultimately, this helps to purify the gut

486 environment and resist PEDV infection. In summary, our research demonstrates that
487 oral *LGG* promises to be a potential method for preventing PEDV infection in pigs.
488 Furthermore, it opens up new avenues for preventing PEDV infection in piglets.

489

490 **Discussion**

491 Recently, we discovered the presence of ILCs in the jejunum of piglets. These
492 cells are predominantly ILC3 and play a crucial role in maintaining intestinal immune
493 homeostasis. In our study, we further elucidated the interaction between ILC3 and the
494 gut microbiota, particularly *Lactobacillus*, in the jejunum of piglets to maintain
495 intestinal homeostasis. Based on our findings and existing literature, we constructed a
496 pathway diagram illustrating how EVs produced by *LGG* facilitate the secretion of
497 IL-22 by ILC3 cells. IL-22, in turn, acts on downstream targets such as epithelial cells,
498 Paneth cells, and ISCs to regulate intestinal immune function, thereby conferring
499 protection against PEDV infection (Figure 6E).

500 The gut microbiota plays a crucial role in the development and maintenance of
501 the host immune system, and its complexity is undeniable. It stabilizes mucosal
502 function by maintaining the integrity of the gut barrier and balances the inflammatory
503 response with immune tolerance through the induction of T lymphocyte
504 differentiation. Additionally, the gut microbiota promotes the development of early B
505 lymphocytes in the lamina propria of the mouse small intestine (Zegarra-Ruiz et al.,
506 2021; Rooks and Garrett, 2016). At the same time, the immune system also regulates
507 the microbial community in a certain way to maintain relative balance. However,

508 changes in this balance are often associated with the occurrence or progression of
509 diseases. Probiotics have a positive effect on the gut microbiota, especially in the
510 innate and adaptive immune systems. Preclinical studies and clinical practice have
511 shown that the use of probiotics can limit the overgrowth of pathogenic bacteria and
512 control the host's pathological processes (Pitocco et al., 2020). Furthermore, the
513 interaction between bacteria and host cells is a complex process that has yet to be
514 fully understood and deserves further exploration. Our research revealed significant
515 changes in the gut microbiota during PEDV infection, including a decrease in the
516 abundance of beneficial bacteria such as *Lactobacillus*. However, oral administration
517 of *LGG* can greatly alleviate dysbiosis and increase the diversity of the gut
518 microbiota.

519 AhR is a widely expressed transcription factor in immune system cells,
520 particularly playing a crucial role in intestinal immune cells. Studies have shown that
521 AhR activation specifically alters innate and adaptive immune responses and
522 participates in the regulation of cell differentiation and inflammation-related gene
523 expression. Furthermore, inducible AhR activation may serve as a mechanism by
524 which the gut microbiota promotes mucosal homeostasis. In comparison to its role in
525 intestinal immune cells, the function of AhR in intestinal epithelial cells (IECs) has
526 not been extensively studied. Previous research has found a close association between
527 AhR in IECs and the maintenance of epithelial barrier function (Qian et al., 2022).
528 One of the endogenous ligands for AhR is a metabolite of tryptophan. The gut
529 microbiota can convert tryptophan into various molecules, including ligands for AhR,

530 such as indole and its derivatives (e.g., IAld, IAA, IPA, IAAlld, and indole-3-acrylic
531 acid). The AhR signaling pathway is an essential component for maintaining barrier
532 immune responses, promoting epithelial cell recovery, preserving barrier integrity, and
533 regulating certain immune cell functions to maintain gut homeostasis. The gut
534 microbiota and tryptophan and its metabolites interact closely in various aspects,
535 including gut barrier function, gut immunity and endocrine activity, and intestinal
536 motility (Su et al., 2022). Current research has described a few commensal bacteria,
537 such as *Lactobacillus*, capable of producing AhR ligands (Agus et al., 2018).
538 However, the significance of these complex phenomena in the intestinal system still
539 requires further investigation. One study discovered that adaptive lactobacilli can
540 expand and produce an AhR ligand, I3A, which contributes to the transcription of
541 IL-22 dependent on AhR. Therefore, the microbiota-AhR axis may serve as an
542 important strategy for modulating host mucosal immune responses in symbiotic
543 evolution (Zelante et al., 2013).

544 Additionally, lactobacilli can regulate immune cells through AhR by producing
545 substances like tryptophan and expressing tryptophanase, thus promoting the
546 production of indole-3-propionic acid associated with human health (Liu et al., 2023).
547 Our research findings demonstrate that in a healthy state of piglet gut microbiota,
548 there is a higher proportion of *Lactobacillus*. Additionally, we observed a significant
549 presence of substances in the gut that interact with AhR. Moreover, AhR exhibits
550 notable upregulation of porcine immune cells, particularly ILC3, indicating a
551 potentially tighter regulatory relationship between ILC3 and the gut microbiota via

552 AhR in the pig gut. In states of PEDV infection or dysbiosis, the levels of substances
553 interacting with AhR significantly increase in the gut. Activation of ILC3 and
554 secretion of IL-22 are subsequently promoted through AhR, thereby exacerbating
555 inflammation and accelerating stimulation and activation of downstream receptor
556 cells by IL-22. However, oral administration of *LGG* to piglets leads to significant
557 restoration of gut microbiota balance and the regulatory relationship between
558 metabolites and AhR.

559 IL-22 is a member of the IL-10 family that can be produced by ILCs and CD4-T
560 cells. The IL-22-IL-22R signaling axis plays a crucial role in integrating immune
561 responses with mucosal surface barrier function (Makowski et al., 2020; Dudakov et
562 al., 2015). Increasing evidence suggests that IL-22 plays an important role in
563 inflammatory bowel disease (IBD) (Mizoguchi 2012). IL-22 produced by ILC3 is
564 essential for maintaining intestinal homeostasis and provides early protection to
565 epithelial barrier function during inflammation and injury (Zenewicz et al., 2008). The
566 interaction between the microbiota and IL-22 is central to regulating the barrier sites
567 in intestinal homeostasis. On the one hand, IL-22 promotes intestinal barrier function
568 by inducing antimicrobial peptides, mucins, and other beneficial factors from
569 epithelial cells, thereby modulating the composition of the gut microbiota. On the
570 other hand, the gut microbiota also regulates the production of intestinal IL-22,
571 although the underlying mechanisms are not fully understood. Research has reported
572 that many functions of the gut microbiota in regulating health and disease are
573 mediated through their metabolites (Lynch and Pedersen 2016, Rooks and Garrett

574 2016). In our in vitro experiments using IPEC-J2 cells and piglet intestinal organoids,
575 we found that EVs produced by *LGG* can promote the activation of ILC3 cells and the
576 production of IL-22. The generated IL-22 can act on IPEC-J2 cells, promoting their
577 proliferation, activating the STAT3 signaling pathway, and conferring resistance
578 against PEDV infection. Moreover, the produced IL-22 can also act on Paneth cells,
579 ISCs, and epithelial cells within the organoids to promote their growth and
580 development.

581 Investigators have found that IFN- γ and IL-22 act synergistically to induce
582 interferon-stimulated genes and control rotavirus infection. Therefore, this pathway
583 may not be specific to PEDV infection and could potentially play a role in other
584 diseases as well (Hernández et al., 2015). Although we observed significant changes
585 in the secretion of ILC3 and IL-22 in the jejunum of piglets following exposure to
586 *Lactobacillus*, it is still unknown whether other bacteria can significantly stimulate
587 ILC3 to secrete IL-22. Could it be possible that the balance between lactobacilli and
588 ILC3 is disrupted, leading to dysregulation of the existing regulatory relationship and
589 a significant increase in the number of harmful bacteria, thereby further stimulating
590 ILC3 activation? These questions remain unanswered, and we hope to address them in
591 future research.

592 Currently, there is increasing interest in studying the interactions between
593 microorganisms and the immune system. On the one hand, the immune system can
594 regulate and shape the microbial community, and on the other hand, the established
595 microbial community can promote the development of the host's immune system and

596 provide signals for subsequent immune responses. However, our understanding of the
597 interactions between microorganisms and the immune system is still limited, and
598 unraveling these complexities requires interdisciplinary collaboration and innovation.

599 Numerous intrinsic factors influence the balance within the animal body. Although
600 our research focuses on the interaction between intestinal lactobacilli and ILC3
601 through the AhR, it is important to note that there are countless regulatory pathways
602 within the animal body. Moreover, research on pigs is relatively scarce, and much of
603 our knowledge comes from studies conducted on humans and mice. Therefore, we
604 cannot fully comprehend the complete role of ILC cells in the intestinal immunity of
605 pigs. Furthermore, considering that ILC3 is an emerging cell type in pigs, our work is
606 just the beginning. In the future, we will explore the changes in this cell population
607 during intestinal immunity and disease states, laying the foundation for studying
608 intestinal immunity in pigs.

609

610

611

612

613

614

615

616

617

618 **Acknowledgments**

619 We thank Dr. Guangliang Liu Provided to us with the PEDV strain. We thank Dr.
620 Xuechao Gao from Geneu Biotech Co., Ltd., who helped us obtain monoclonal
621 antibodies against porcine IL-22. We thank Novogene Co., for providing technical
622 services such as detecting and analyzing of scRNA-seq raw data, 16S rDNA
623 sequencing and Metabolome sequencing.

624 **Data availability statement**

625 The raw data for this article were deposited in the National Center for
626 Biotechnology Information (NCBI) Sequence Read Archive (SRA) database, Gene
627 Expression Omnibus (GEO) database and EBI database. The source of the jejunal
628 single cell data after PEDV infection in piglets is GSE175411. Single cell data of
629 piglet jejunum ILCs in PRJNA907920. We comparisons with Human intestinal ILCs
630 (GSA-Human: HRA000919) and mouse intestinal ILCs (GSE166266). 16S rRNA
631 amplicon sequencing data in PRJNA526581, PRJNA1048561 and PRJNA1048648.

632 **Author contributions**

633 Cell isolation, J.H.W., Y.B.Z., and T.C.; data analysis, J.H.W., H.Y.B., M.G., Y.S.,
634 and Y.Y.L.; manuscript preparation and writing, J.H.W., Y.Y.L., M.Y.C., and H.Y.B.;
635 Information collection, Y.B.Z., T.C., and H.Y.B.; supervision and project
636 administration, C.F.W., Y.Z., and X.C. Preparation of experimental reagent materials,
637 C.W.S., J.Y.G., J.Z.W., N.W., W.T.Y., Y.L.J., H.B.H., D.Z., J.T.H., G.L.Y. All authors
638 contributed to the article and approved the submitted version.

639 **Ethics declarations**

640 **Consent to publish**

641 All authors have approved the content of this manuscript and provided consent
642 for publication.

643 **Conflict of Interest**

644 The authors declare that the research was conducted without any commercial or
645 financial relationships that could be construed as a potential conflict of interest.

646 **Ethics**

647 The animal management procedures and all laboratory procedures abided by the
648 regulations of the Animal Care and Ethics Committees of Jilin Agriculture University,
649 China.

650 **Funding**

651 This work was supported by the National Natural Science Foundation of China (652
32273043, 32202890, U21A20261), the Science and Technology Development
653 Program of Changchun City (21ZY42), the Science and
654 Technology Development Program of Jilin Province(20200402041NC), and China
655 Agriculture Research System of MOF and MARA (CARS-35).

656

657 This paper does not report the original code. Any additional information required
658 to reanalyze the data reported in this paper is available from the lead contact upon
659 request.

660 **References**

661 Agus A, Planchais J, Sokol H (2018). Gut Microbiota Regulation of Tryptophan
662 Metabolism in Health and Disease. *Cell host & microbe* 23: 716-724.

663

664 Amakura Y, Tsutsumi T, Sasaki K, Nakamura M, Yoshida T, Maitani T (2008).
665 Influence of food polyphenols on aryl hydrocarbon receptor-signaling pathway
666 estimated by in vitro bioassay. *Phytochemistry* 69: 3117-3130.

667

668 Aparicio-Domingo P, Romera-Hernandez M, Karrich J, Cornelissen F, Papazian N,
669 Lindenbergh-Kortleve D et al (2015). Type 3 innate lymphoid cells maintain intestinal
670 epithelial stem cells after tissue damage. *The Journal of experimental medicine* 212:
671 1783-1791.

672

673 Backert I, Koralov S, Wirtz S, Kitowski V, Billmeier U, Martini E et al (2014). STAT3
674 activation in Th17 and Th22 cells controls IL-22-mediated epithelial host defense
675 during infectious colitis. *Journal of immunology* (Baltimore, Md : 1950) 193:
676 3779-3791.

677

678 Bal S, Golebski K, Spits H (2020). Plasticity of innate lymphoid cell subsets. *Nature*
679 *reviews Immunology* 20: 552-565.

680

681 Chen J, Cui Y, Wang Z, Liu G (2020). Identification and characterization of PEDV

682 infection in rat crypt epithelial cells. *Veterinary microbiology* 249: 108848.

683

684 Dudakov J, Hanash A, van den Brink M (2015). Interleukin-22: immunobiology and

685 pathology. *Annual review of immunology* 33: 747-785.

686

687 Gury-BenAri M, Thaiss C, Serafini N, Winter D, Giladi A, Lara-Astiaso D et al

688 (2016). The Spectrum and Regulatory Landscape of Intestinal Innate Lymphoid Cells

689 Are Shaped by the Microbiome. *Cell* 166: 1231-1246.e1213.

690

691 Hanash A, Dudakov J, Hua G, O'Connor M, Young L, Singer N et al (2012).

692 Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and

693 regulates sensitivity to graft versus host disease. *Immunity* 37: 339-350.

694

695 Hernández P, Mahlakoiv T, Yang I, Schwierzeck V, Nguyen N, Guendel F et al (2015).

696 Interferon-λ and interleukin 22 act synergistically for the induction of

697 interferon-stimulated genes and control of rotavirus infection. *Nature immunology* 16:

698 698-707.

699

700 Jung K, Saif L (2015). Porcine epidemic diarrhea virus infection: Etiology,

701 epidemiology, pathogenesis and immunoprophylaxis. *Veterinary journal* (London,

702 England : 1997) 204: 134-143.

703

704 Kiss E, Vonarbourg C, Kopfmann S, Hobeika E, Finke D, Esser C et al (2011).

705 Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal

706 lymphoid follicles. *Science* (New York, NY) 334: 1561-1565.

707

708 Li Z, Zhang W, Su L, Huang Z, Zhang W, Ma L et al (2022). Difference analysis of

709 intestinal microbiota and metabolites in piglets of different breeds exposed to porcine

710 epidemic diarrhea virus infection. *Frontiers in microbiology* 13: 990642.

711

712 Lindemans C, Calafiore M, Mertelsmann A, O'Connor M, Dudakov J, Jenq R et al

713 (2015). Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration.

714 *Nature* 528: 560-564.

715

716 Liu L, Narrowe A, Firman J, Mahalak K, Bobokalonov J, Lemons J et al (2023).

717 Lacticaseibacillus rhamnosus Strain GG (LGG) Regulate Gut Microbial Metabolites,

718 an In Vitro Study Using Three Mature Human Gut Microbial Cultures in a Simulator

719 of Human Intestinal Microbial Ecosystem (SHIME). *Foods* (Basel, Switzerland) 12.

720

721 Lynch S, Pedersen O (2016). The Human Intestinal Microbiome in Health and

722 Disease. *The New England journal of medicine* 375: 2369-2379.

723

724 Makowski L, Chaib M, Rathmell J (2020). Immunometabolism: From basic

725 mechanisms to translation. *Immunological reviews* 295: 5-14.

726

727 Mizoguchi A (2012). Healing of intestinal inflammation by IL-22. *Inflammatory*
728 *bowel diseases* 18: 1777-1784.

729

730 Pernomian L, Duarte-Silva M, de Barros Cardoso C (2020). The Aryl Hydrocarbon
731 Receptor (AHR) as a Potential Target for the Control of Intestinal Inflammation:
732 Insights from an Immune and Bacteria Sensor Receptor. *Clinical reviews in allergy &*
733 *immunology* 59: 382-390.

734

735 Pitocco D, Di Leo M, Tartaglione L, De Leva F, Petruzzello C, Saviano A et al (2020).
736 The role of gut microbiota in mediating obesity and diabetes mellitus. *European*
737 *review for medical and pharmacological sciences* 24: 1548-1562.

738

739 Qian M, Liu J, Zhao D, Cai P, Pan C, Jia W et al (2022). Aryl Hydrocarbon Receptor
740 Deficiency in Intestinal Epithelial Cells Aggravates Alcohol-Related Liver Disease.
741 *Cellular and molecular gastroenterology and hepatology* 13: 233-256.

742

743 Ronan V, Yeasin R, Claud E (2021). Childhood Development and the
744 Microbiome-The Intestinal Microbiota in Maintenance of Health and Development of
745 Disease During Childhood Development. *Gastroenterology* 160: 495-506.

746

747 Rooks M, Garrett W (2016). Gut microbiota, metabolites and host immunity. *Nature*

748 *reviews Immunology* 16: 341-352.

749

750 Satoh-Takayama N, Vosshenrich C, Lesjean-Pottier S, Sawa S, Lochner M, Rattis F et
751 al (2008). Microbial flora drives interleukin 22 production in intestinal NKp46+ cells
752 that provide innate mucosal immune defense. *Immunity* 29: 958-970.

753

754 Su X, Gao Y, Yang R (2022). Gut Microbiota-Derived Tryptophan Metabolites
755 Maintain Gut and Systemic Homeostasis. *Cells* 11.

756

757 Wang J, Gao M, Cheng M, Luo J, Lu M, Xing X et al (2024). Single-Cell
758 Transcriptional Analysis of Lamina Propria Lymphocytes in the Jejunum Reveals
759 Innate Lymphoid Cell-like Cells in Pigs. *Journal of immunology* (Baltimore, Md :
760 1950).

761

762 Xia P, Liu J, Wang S, Ye B, Du Y, Xiong Z et al (2017). WASH maintains NKp46
763 ILC3 cells by promoting AHR expression. *Nature communications* 8: 15685.

764

765 Xue M, Zhao J, Ying L, Fu F, Li L, Ma Y et al (2017). IL-22 suppresses the infection
766 of porcine enteric coronaviruses and rotavirus by activating STAT3 signal pathway.

767 *Antiviral research* 142: 68-75.

768

769 Yan F, Liu L, Cao H, Moore D, Washington M, Wang B et al (2017). Neonatal

770 colonization of mice with LGG promotes intestinal development and decreases
771 susceptibility to colitis in adulthood. *Mucosal immunology* 10: 117-127.

772

773 Yang S, Li Y, Wang B, Yang N, Huang X, Chen Q et al (2020a). Acute porcine
774 epidemic diarrhea virus infection reshapes the intestinal microbiota. *Virology* 548:
775 200-212.

776

777 Yang S, Li S, Lu Y, Jansen C, Savelkoul H, Liu G (2023). Oral administration of
778 Lactic acid bacteria inhibits PEDV infection in young piglets. *Virology* 579: 1-8.

779

780 Yang W, Yu T, Huang X, Bilotta A, Xu L, Lu Y et al (2020b). Intestinal
781 microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production
782 and gut immunity. *Nature communications* 11: 4457.

783

784 Yu L, Agirman G, Hsiao E (2022). The Gut Microbiome as a Regulator of the
785 Neuroimmune Landscape. *Annual review of immunology* 40: 143-167.

786

787 Zegarra-Ruiz D, Kim D, Norwood K, Kim M, Wu W, Saldana-Morales F et al (2021).
788 Thymic development of gut-microbiota-specific T cells. *Nature* 594: 413-417.

789

790 Zelante T, Iannitti R, Cunha C, De Luca A, Giovannini G, Pieraccini G et al (2013).
791 Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and

792 balance mucosal reactivity via interleukin-22. *Immunity* 39: 372-385.

793

794 Zenewicz L, Yancopoulos G, Valenzuela D, Murphy A, Stevens S, Flavell R (2008).

795 Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease.

796 *Immunity* 29: 947-957.

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814 **Figure legends**

815 Fig. 1 | PEDV infection resulted in abnormal changes in both the intestinal flora and
816 ILC of piglets.

817 A: UMAP plots showing the immune landscape of the 12 subpopulations of the
818 intestine cell(Selection by flow cytometry). B: UMAP plots showing the immune
819 landscape of the 4 clusters of intestine cells (ILC regrouping). Cells are color-coded
820 according to the defined subset (ILC3: yellow; ILC1: red; ILC2: green; NK: blue). C:
821 Heatmap showing the marker genes with some highest differentially expressed in
822 each cluster, Abscissa shows different clusters, and ordinate shows differentially
823 expressed gene names. D: UMAP plots showing the immune landscape of intestine
824 cells in the jejunum of piglets in both PEDV-infected and normal states. E: The
825 amount of ILC3 significantly decreased, while the secretion of IL-22 was significantly
826 increased. F: Variations in the quantity of immune cells. G: Variations in the quantity
827 of ILC3. H: Variations in the quantity of epithelial cells. I: Differential changes in the
828 secretion of IL-22 by ILC3. J: The amount of ILC3 in the intestinal lamina propria of
829 PEDV-infected piglets significantly decreased, and the secretion of IL-22 increased. K:
830 Changes in Lactobacillales orders in the intestinal tract of piglets. J: Changes in
831 Lactobacillus Genus in the intestinal tract of piglets.

832

833 Fig. 2 | The imbalance of intestinal flora may affect the development of ILC3.

834 A: The number of ILC3 in the intestinal lamina propria of piglets with intestinal flora
835 disturbance decreased significantly, and the secretion of IL-22 increased. B: The Venn

836 diagram showed the difference of intestinal flora species between the PBS and ABX
837 groups (α Diversity). C: PCA analysis between the PBS and ABX groups (β
838 Diversity). D: LDA Effect Size (LEfSe) analysis between the PBS and ABX groups (β
839 Diversity). E: Changes in Lactobacillales orders in the intestinal tract of piglets. F:
840 Changes in Lactobacillaceae family in the intestinal tract of piglets. G: Changes in
841 Lactobacillus genus in the intestinal tract of piglets. H: Changes in differential
842 metabolites in the negative ion mode. I: Changes in differential metabolites in the
843 positive ion mode. J: Different substances were observed between the groups in
844 negative ion mode, with a particular focus on substances that are associated with AHR.
845 K: Different substances were observed between the groups in negative ion mode, with
846 a particular focus on substances that are associated with AHR. L: UMAP and violin
847 plots showing the AHR was prominently expressed in immune cells within pig
848 intestines. M: UMAP and violin plots showing the AHR was prominently expressed in
849 ILC3 within pig intestines.

850

851 Fig. 3 | LGG can help piglets resist PEDV infection
852 A: Feeding LGG can significantly alleviate the pathological changes of jejunum in
853 piglets. B: The ratio of villus height to crypt depth (VH/CD) of intestinal villi of
854 piglets. C: Piglet diarrhea score. 0= normal stool, 1= soft but formed stool, 2=
855 semi-liquid stool, 3= watery diarrhea, with a score of 2 or more considered diarrhea.
856 D: Flow cytometry showed the change of ILC3 quantity and IL-22 secretion in the
857 intestinal tract of piglets. E. The q-PCR results showing viral load in the intestines of

858 piglets. F: Immunofluorescence assay showed the expression of EpCAM and VILLIN
859 in the gut, Analysis by image J software.

860

861 Fig. 4 | Experimental results of LGG metabolites promoting ILC3 cell activation
862 A: Flow cytometry showed that I3C and EVs can promote the amount of ILC3 and
863 the secretion of IL-22 under co-culture conditions. B: Transcriptional levels of
864 ILC3-related cytokines stimulated by LGG metabolites were measured by q-PCR. C:
865 Statistics of the number of IPEC-J2 cells; The transcription level of STAT3 gene in
866 IPEC-J2 cell species was detected by q-PCR. D: Flow cytometry calculates the
867 percentage of cells that die. The Annexin V-/PI+ cells in the upper left quadrant may
868 represent cell fragments lacking cell membranes or dead cells resulting from other
869 causes. The Annexin V-/PI- cells in the lower left quadrant are considered normal and
870 alive. The Annexin V+/PI+ cells in the upper right quadrant are indicative of late
871 apoptotic cells. Lastly, the Annexin V+/PI- cells in the lower right quadrant also
872 correspond to early apoptotic cells.

873

874 Fig. 5 | Piglet intestinal organoids experiment

875 A: Crypts isolated from piglet intestines were cultured in vitro, and the images depict
876 the changes in organoid size over an eight-day period. B: HK LGG and EVs were
877 added to the intestinal organoid culture hole. C: The co-culture system consisted of
878 intestinal organoids, along with associated stimulatory molecules and ILC3 cells. D:
879 Effects of HK LGG and EVs on the growth of intestinal organoids. Including size of

880 organoids treated with/without HK LGG and EVs, total organoids number and
881 budding organoids percentage of total organoids per well (day 3) (n=50). E. The
882 effects of adding ILC3, ILC3+EVs, ILC3+EVs(LGG)+anti-IL-22, IL-22,
883 IL-22+anti-IL-22 in organoid medium on organoid growth were statistically analyzed
884 (n=50). F: Organoid growth of the experimental group and the control group began to
885 show significant differences on day 2. G: Organoids were stained with EdU (red).
886 Nuclei are stained blue. EdU-positive cells were found in the transit-amplifying
887 region with obvious differences in the percentages among samples (n=10). H:
888 Transcriptional changes of EpCAM, VILLIN, MKI-67, Lgr5, Ascl2, Olfm4, Lyz1 and
889 REG3b genes were detected by q-PCR (n=3).

890

891 Fig. 6 | The detection of EVs (LGG) and the pathway of maintaining intestinal
892 immune homeostasis

893 A: Results of nanoflow cytometry detection of EVs (LGG). B: Observation of EVs
894 (LGG) under electron microscope. C: Detection of EVs (LGG), classification of LGG
895 metabolites in positive and negative ion modes. D: KEGG enrichment analysis was
896 conducted for LGG metabolites. E: The pathway of EVs (LGG) to maintain intestinal
897 immune homeostasis in piglets.

898

899

900

901

902

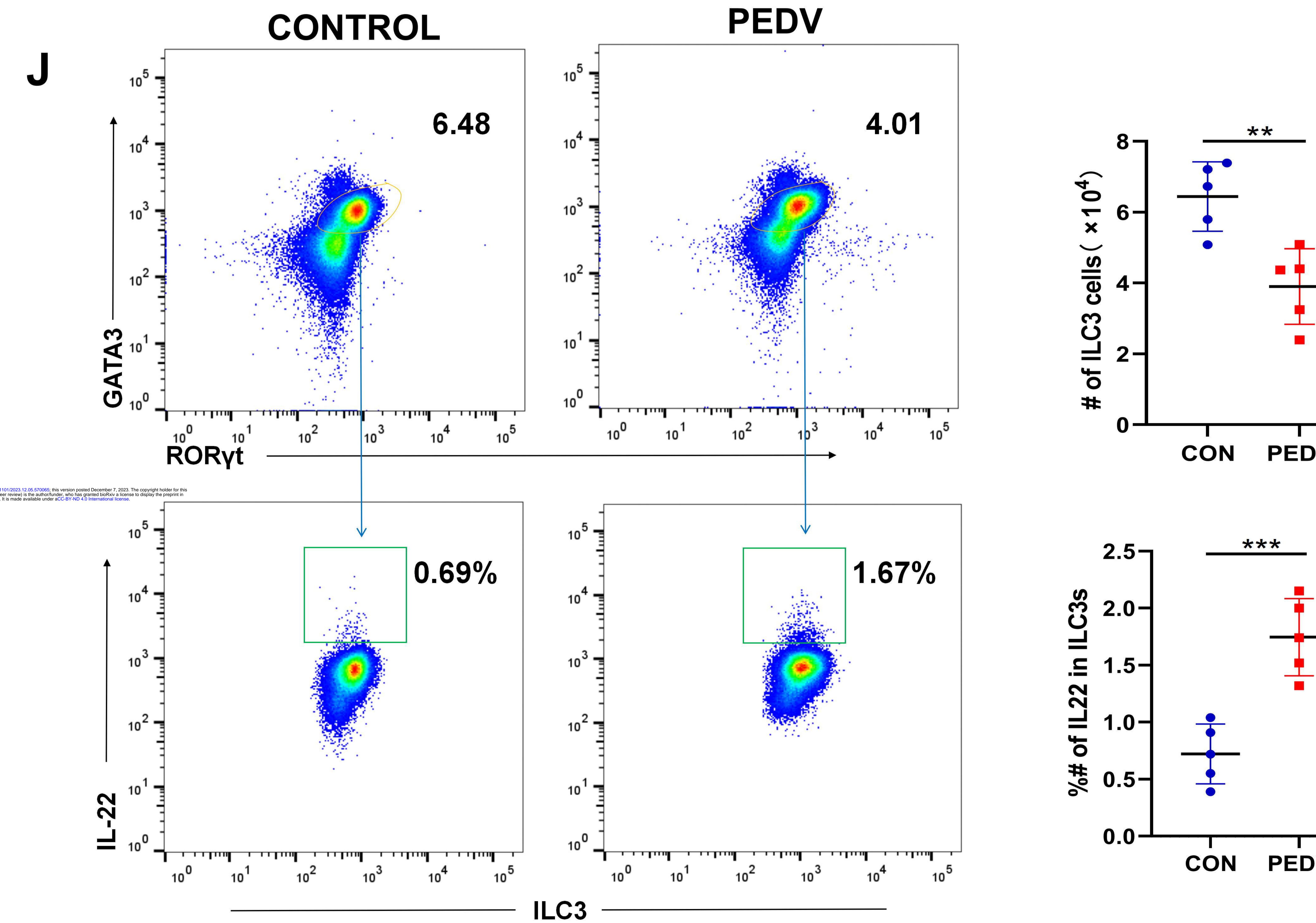
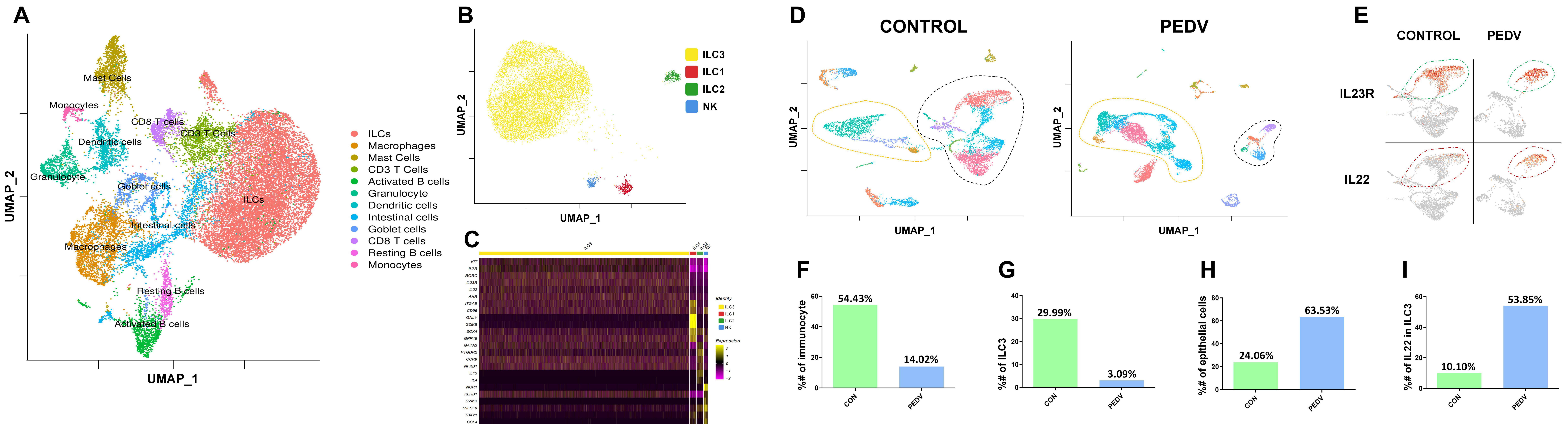
903 Fig. S1 | A: The gating of ILC subsets.

904

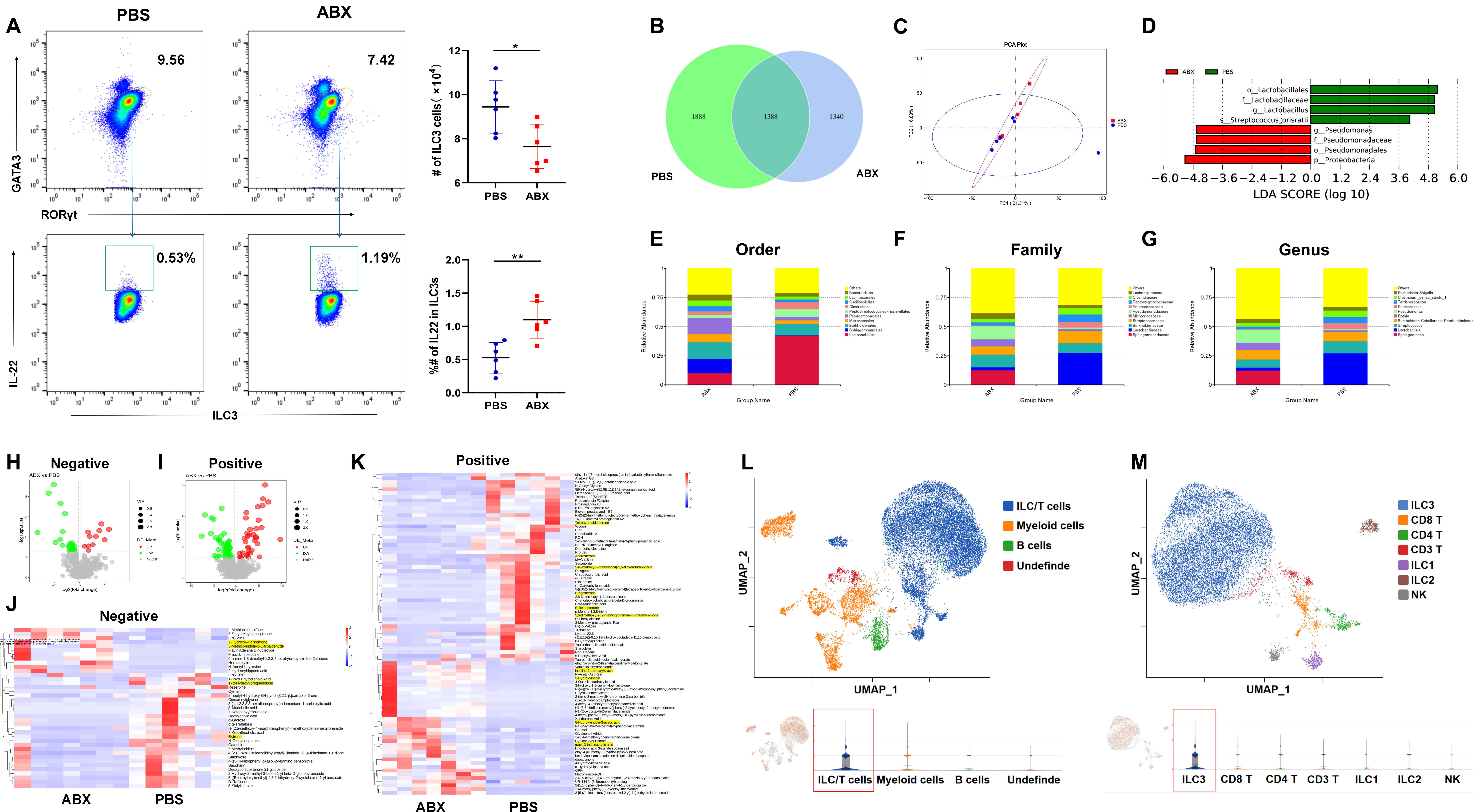
905 Fig. S2 | A: The statistical analysis of flow cytometry results revealed that antibiotic
906 treatment had an impact on CD4-T cell in LPL, although the difference was not
907 significant. However, it did not have any effect on CD8-T cell. B/C: We showed the
908 results of the correlation analysis between differential metabolites and differential
909 microbial communities, including the positive and negative ion modes. D: UMAP and
910 violin plots showing the AHR was prominently expressed in ILC3 and ILC1 within
911 human intestines. E: UMAP and violin plots showing the AHR was prominently
912 expressed in ILC2 within mice intestines.

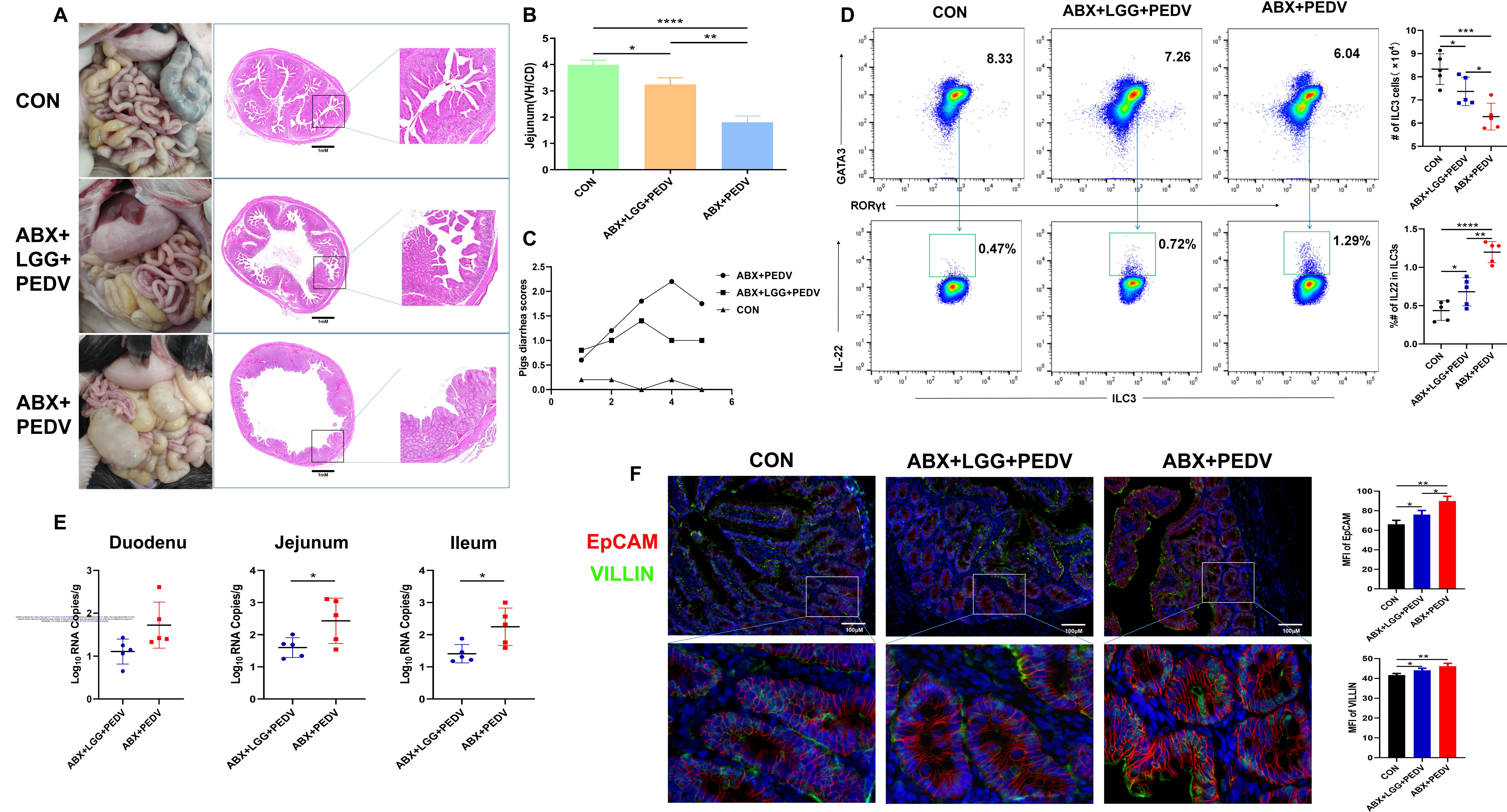
913

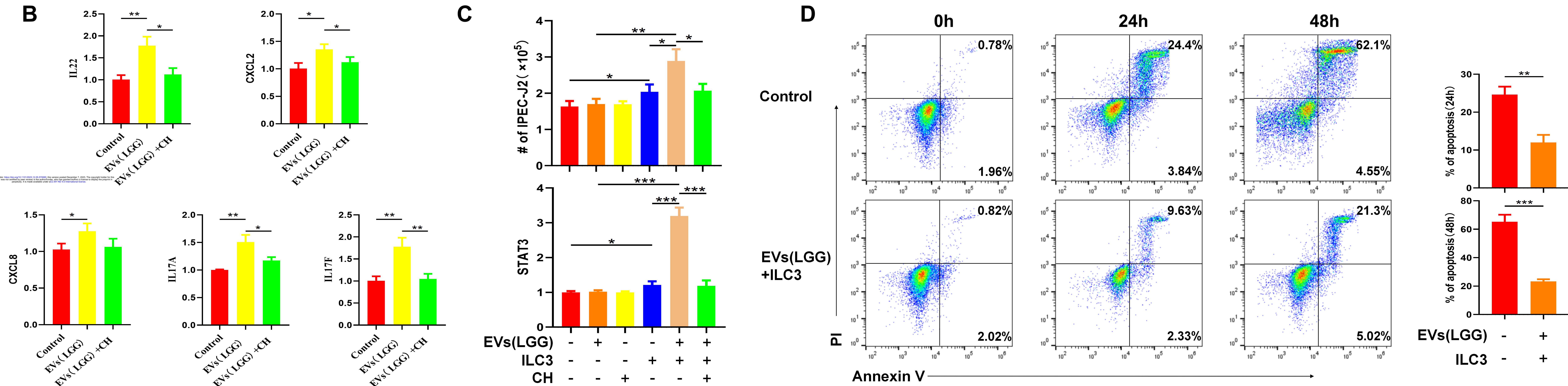
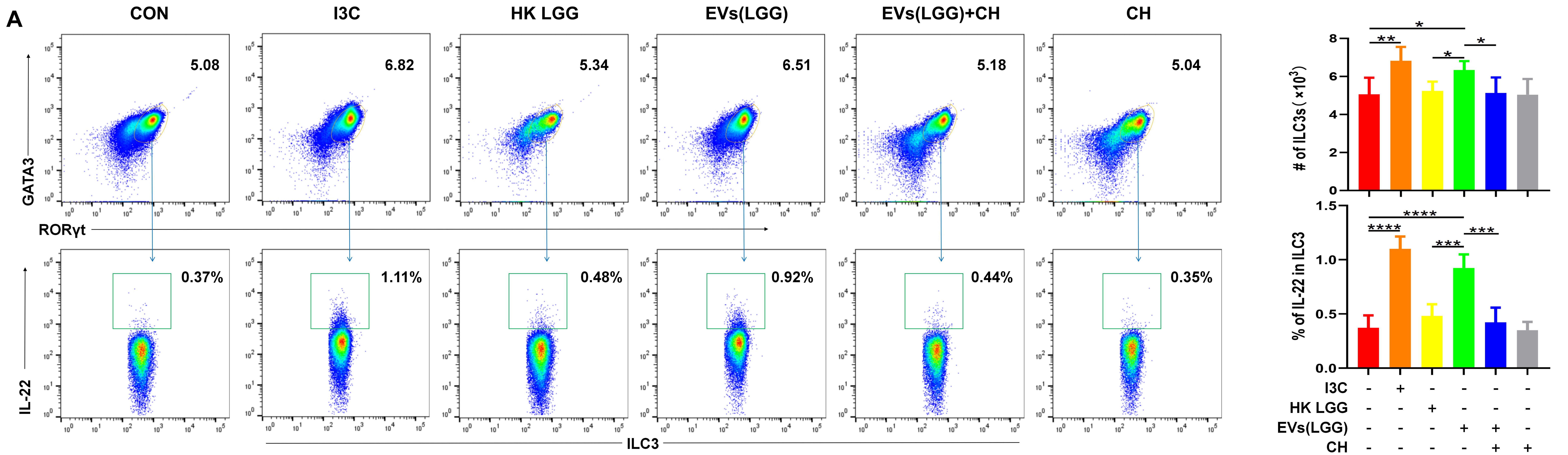
914 Fig. S3 | A: Immunofluorescence assay showed the expression of LGR5 and Ki-67 in
915 the gut, Analysis by image J software. B: q-PCR experiment counted the secretion of
916 related cytokines in the intestines of piglets in each group. C: Bar chart analysis of the
917 genus-level microbiota in the jejunum of piglets from different groups. D: Heatmap
918 depicting the differences in genus-level microbiota composition in the jejunum of
919 piglets from different groups. E: Alpha diversity refers to the analysis of differences
920 between groups, and box plots can visually represent the median, dispersion,
921 maximum value, minimum value, and outliers of species diversity within each group.
922 F: In the study of beta diversity, four metrics, namely Weighted unifrac distance,
923 Unweighted unifrac distance, Jaccard distance, and Bray-Curtis distance, are used to

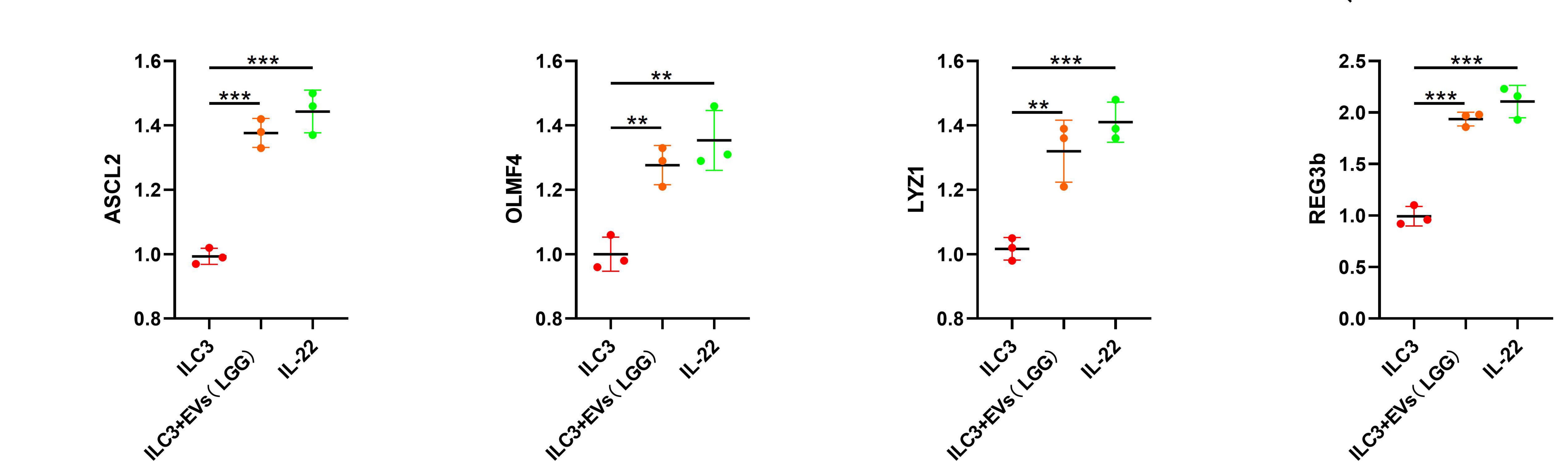
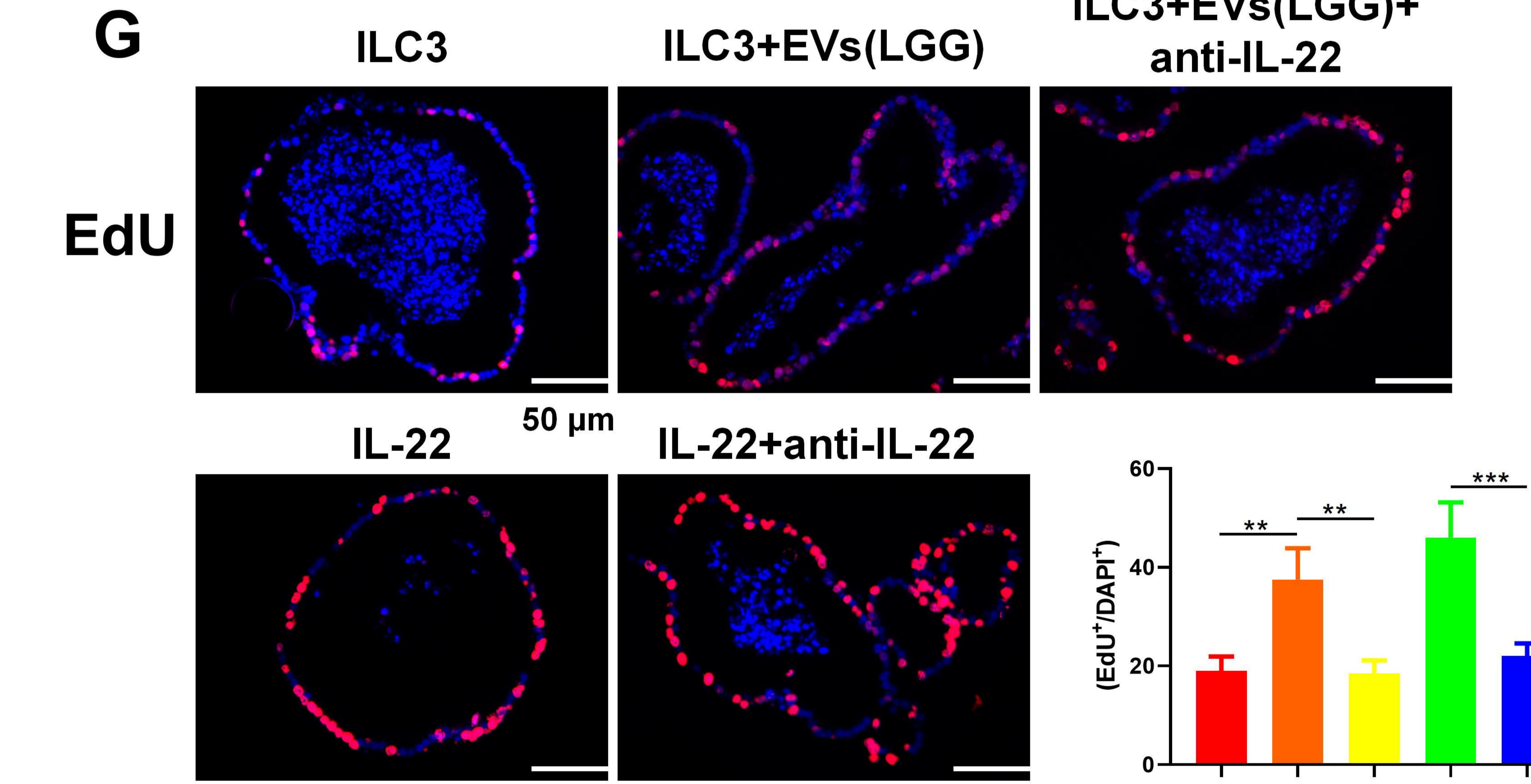
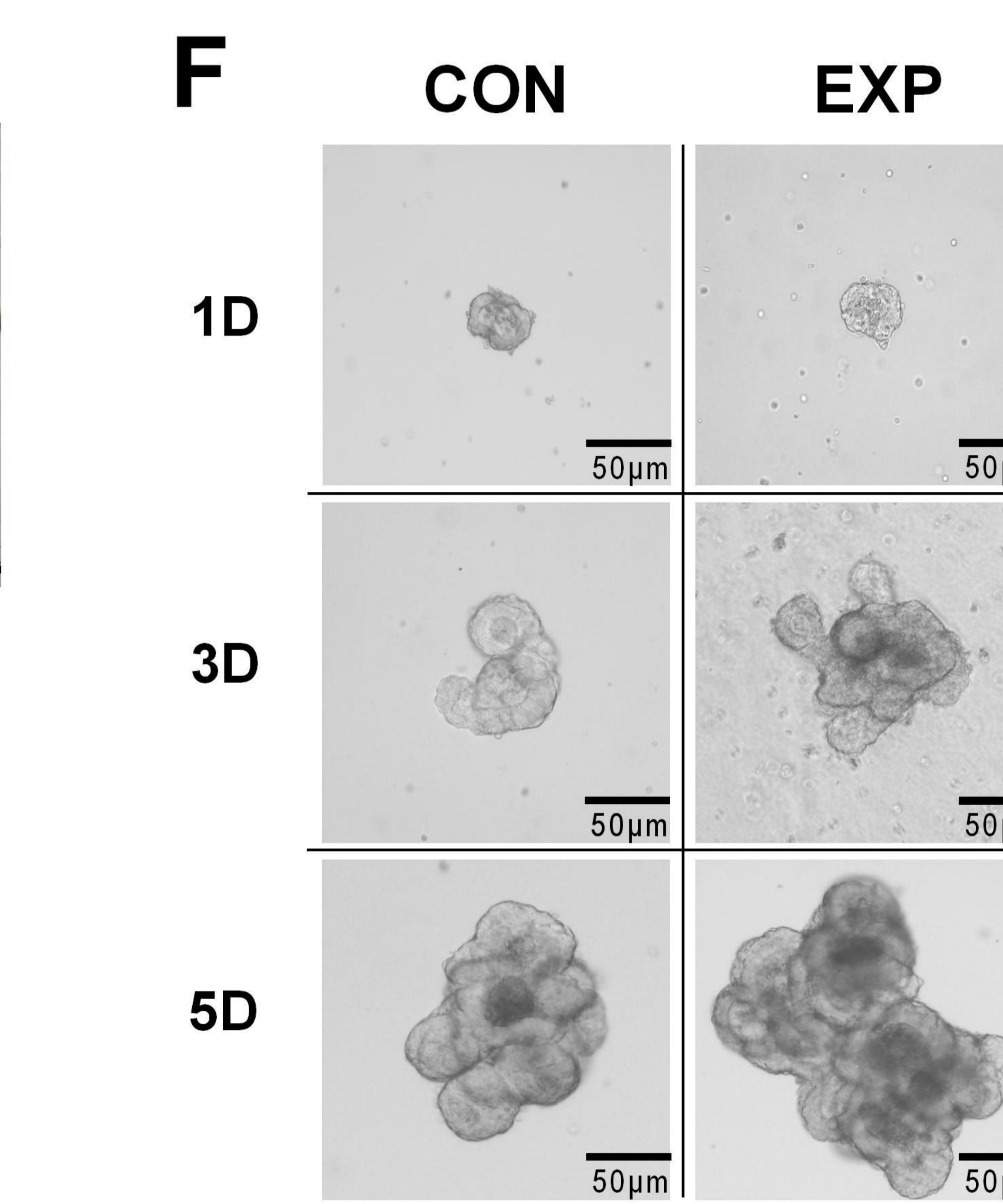
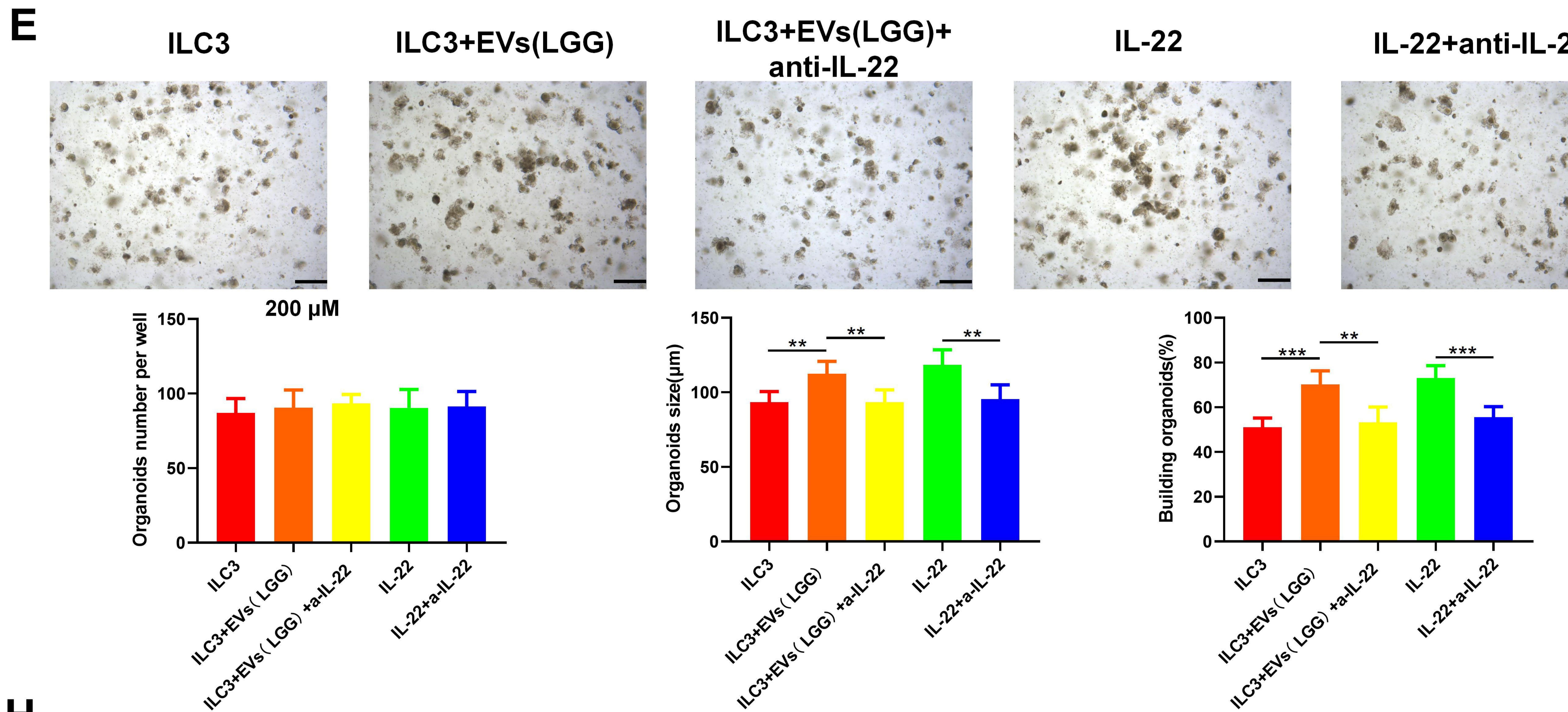
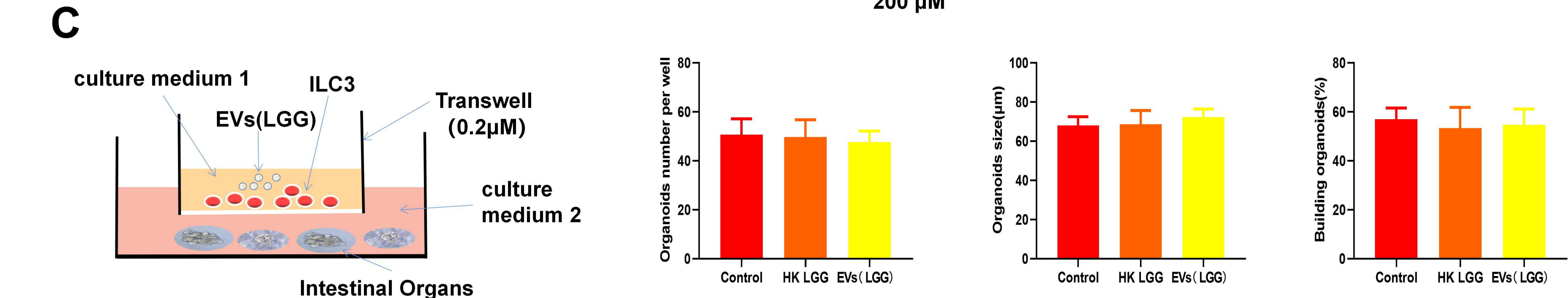
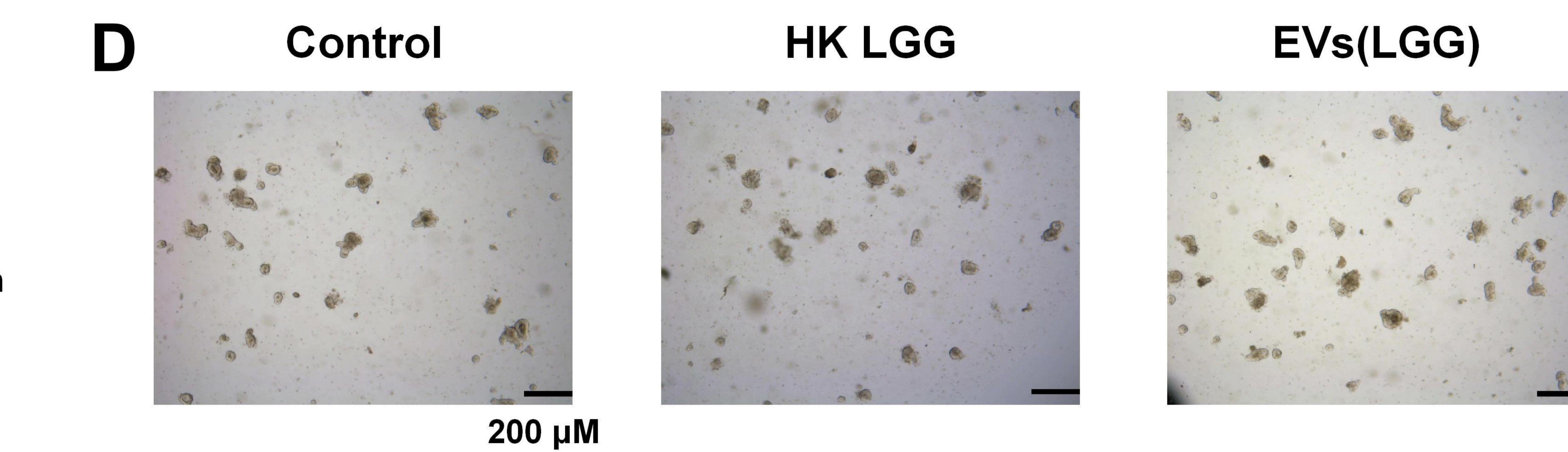
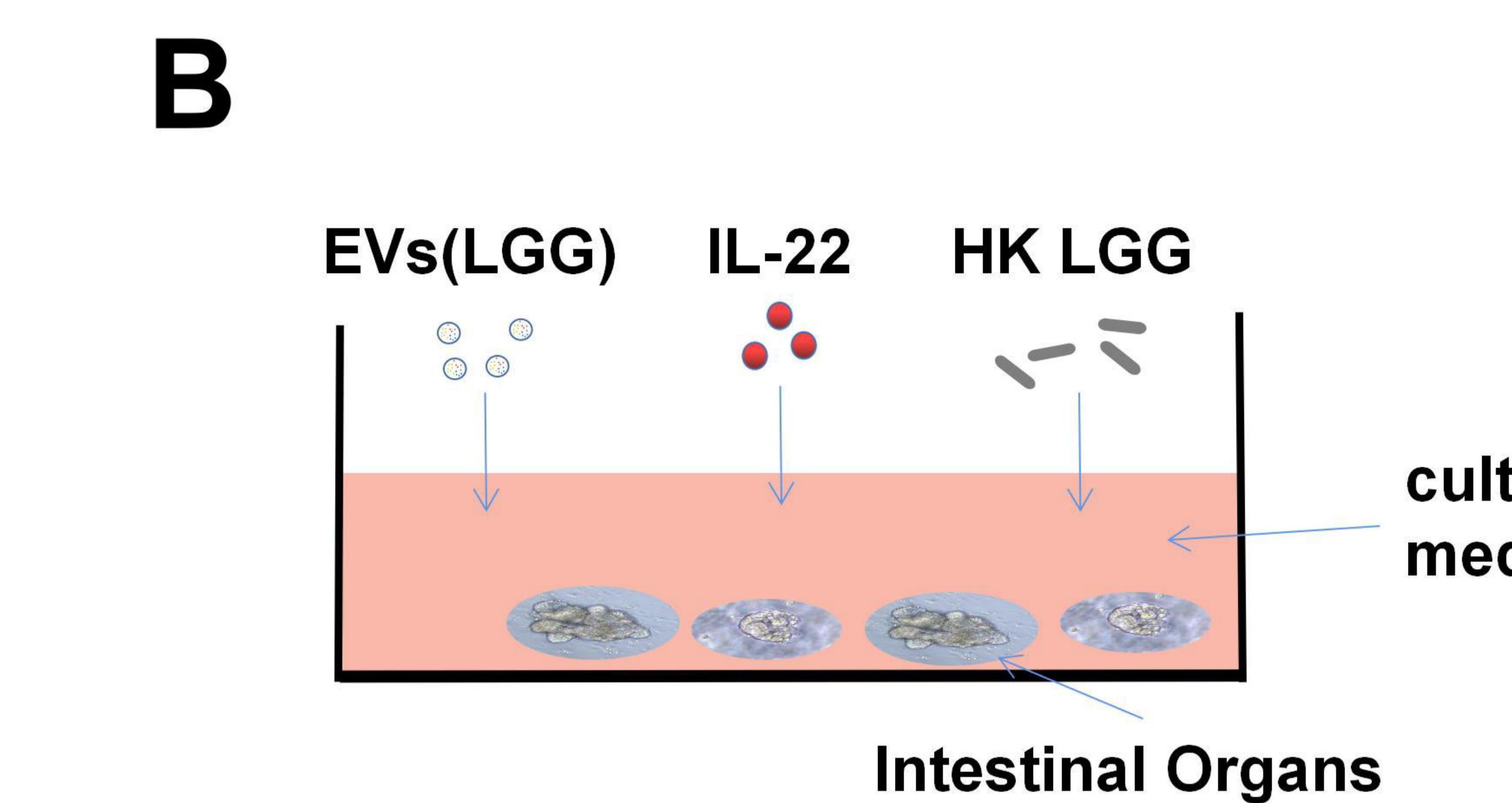
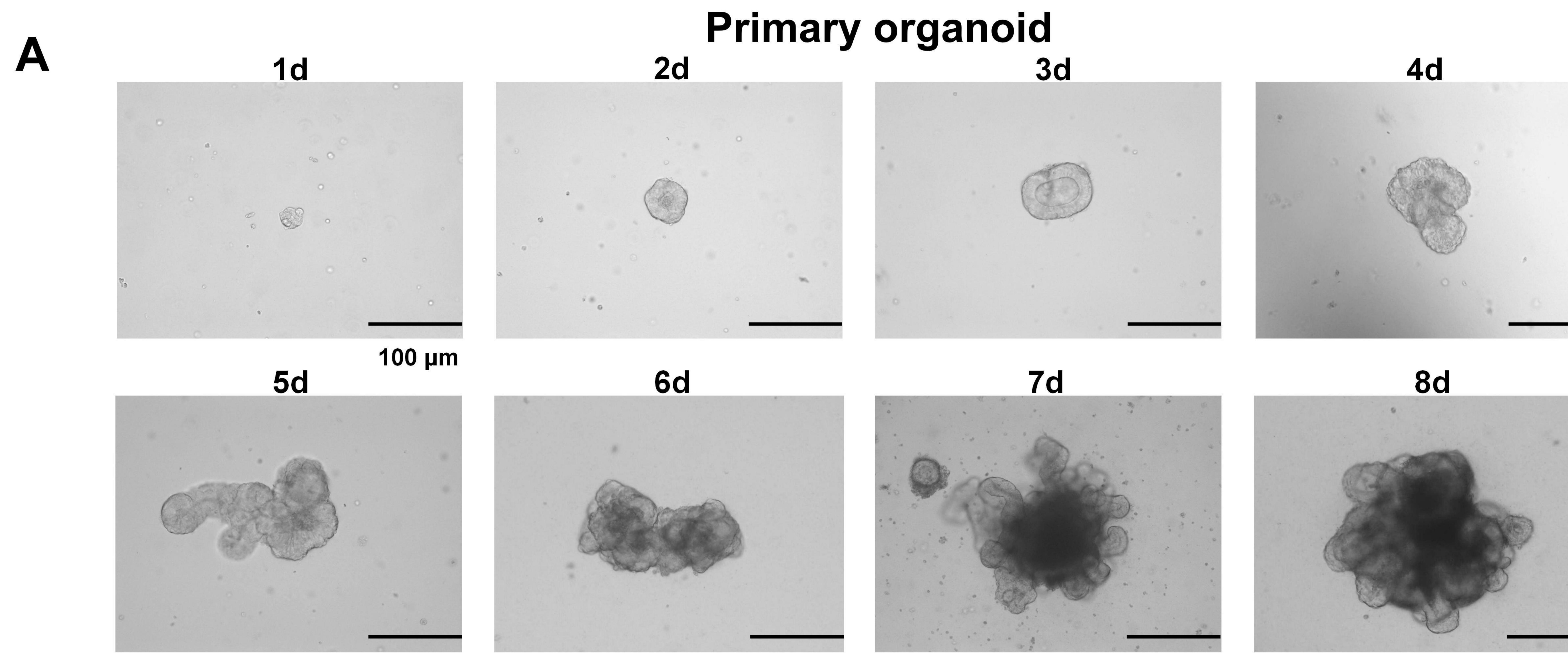


924 measure the dissimilarity coefficient between two samples. A smaller value indicates
925 that the two samples have less differences in terms of species diversity.

926


927 Fig. S4 | A: Figure depicting an in vitro co-culture model of ILC3. B: Schematic
928 representation of the flow cytometry gating strategy. C: Illustration of magnetic bead
929 sorting demonstrated by flow cytometry results. D: Proliferation assay of ILC cells,
930 quantitatively analyzed using flow cytometry. E: Schematic diagram of an in vitro
931 co-culture model of ILC3 with IPEC-J2. F: Flow cytometry gating strategy.


932



933 Fig. S5 | A: Growth dynamics of porcine intestinal organoids during 5 days of serial
934 passage culture. B: Schematic representation of the composition of porcine intestinal
935 organoids. C: Immunofluorescence experiment demonstrating the expression of
936 proteins such as Villin, EpCAM, Ki-67, Lgr5, among others, between different groups
937 (n=10).









Figure 1:

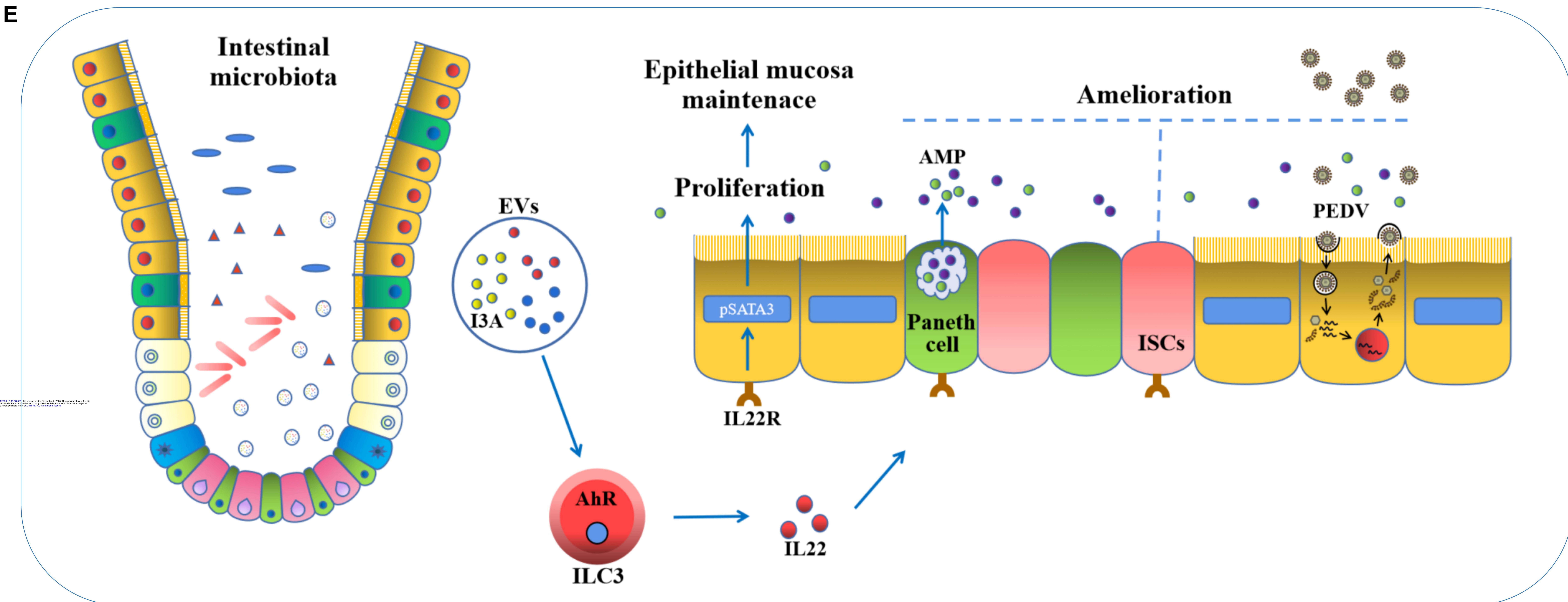
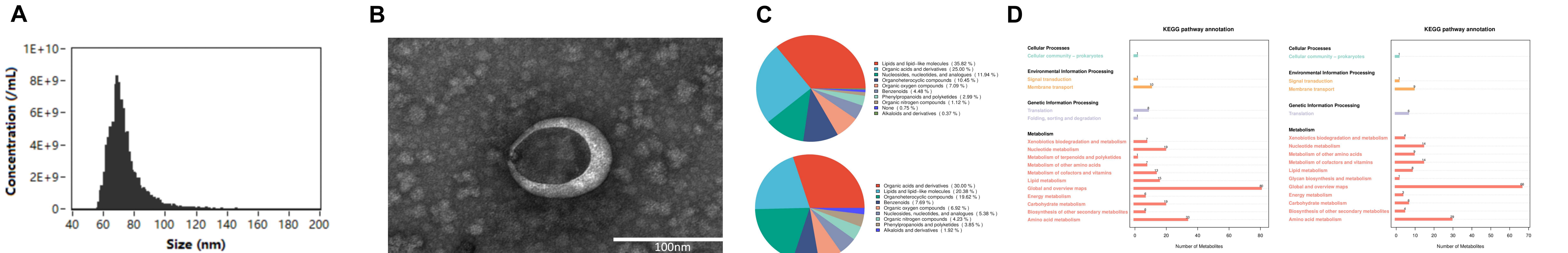


Figure 2:

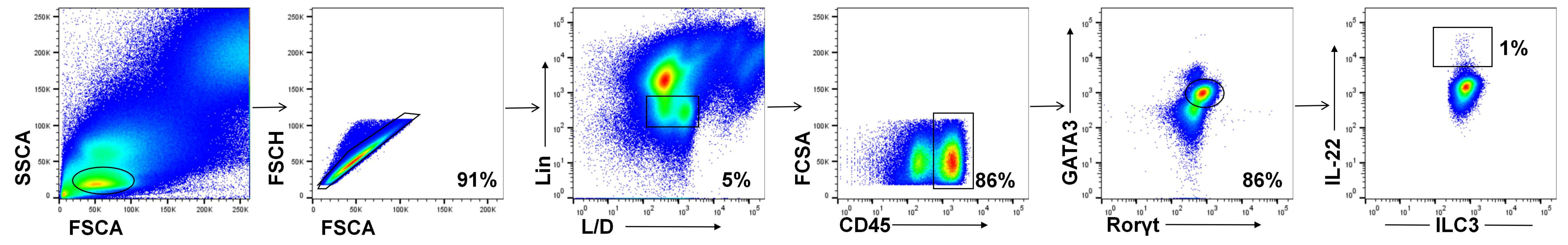
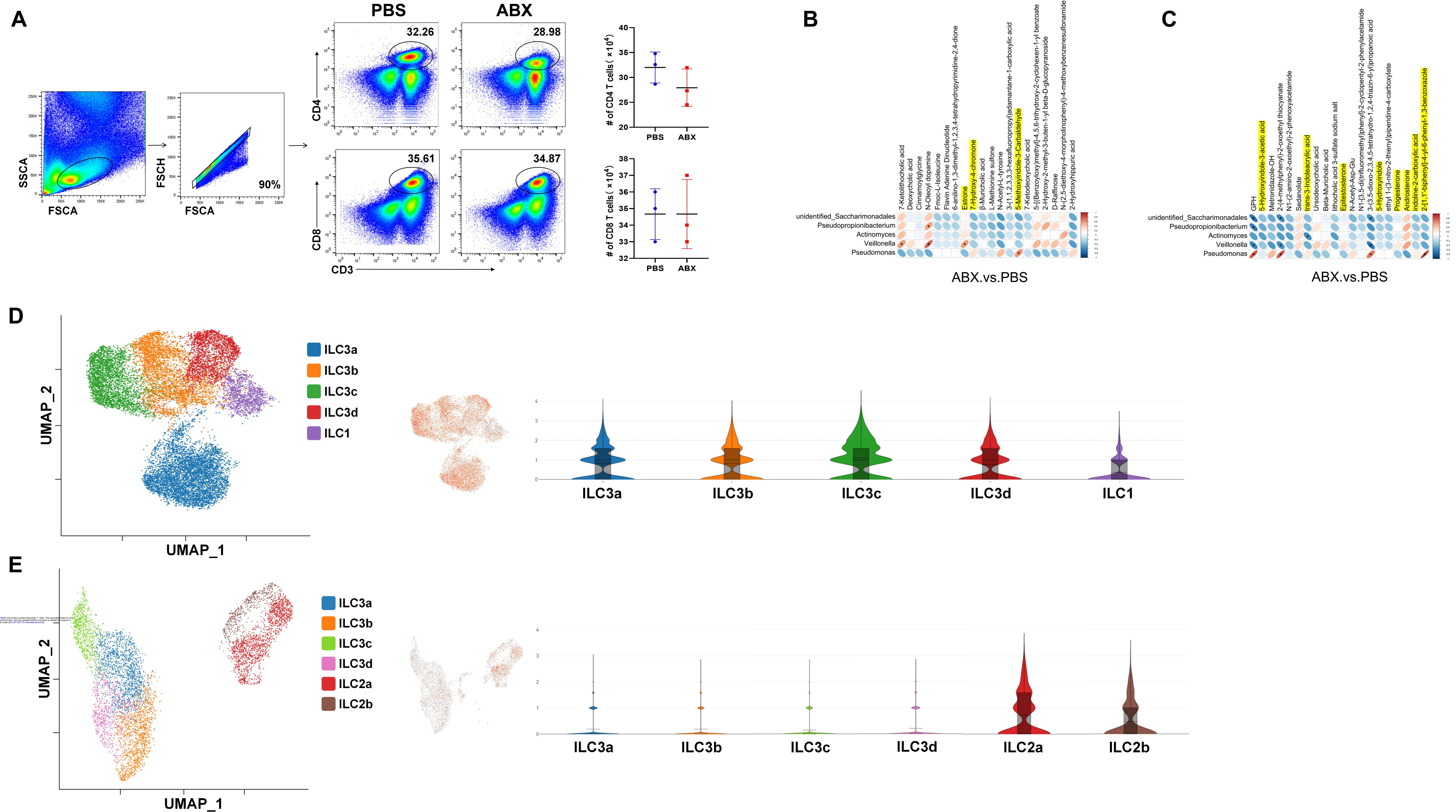
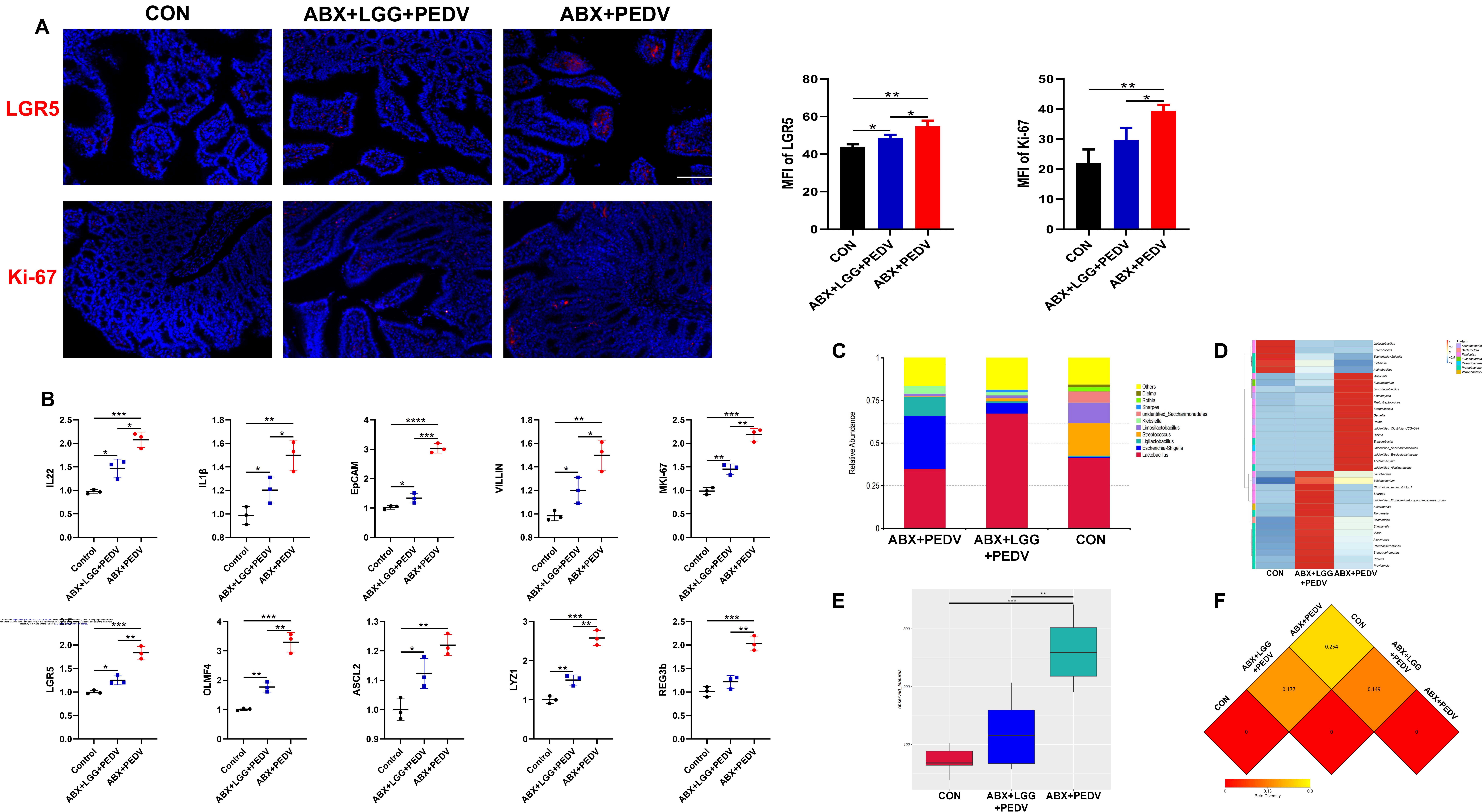
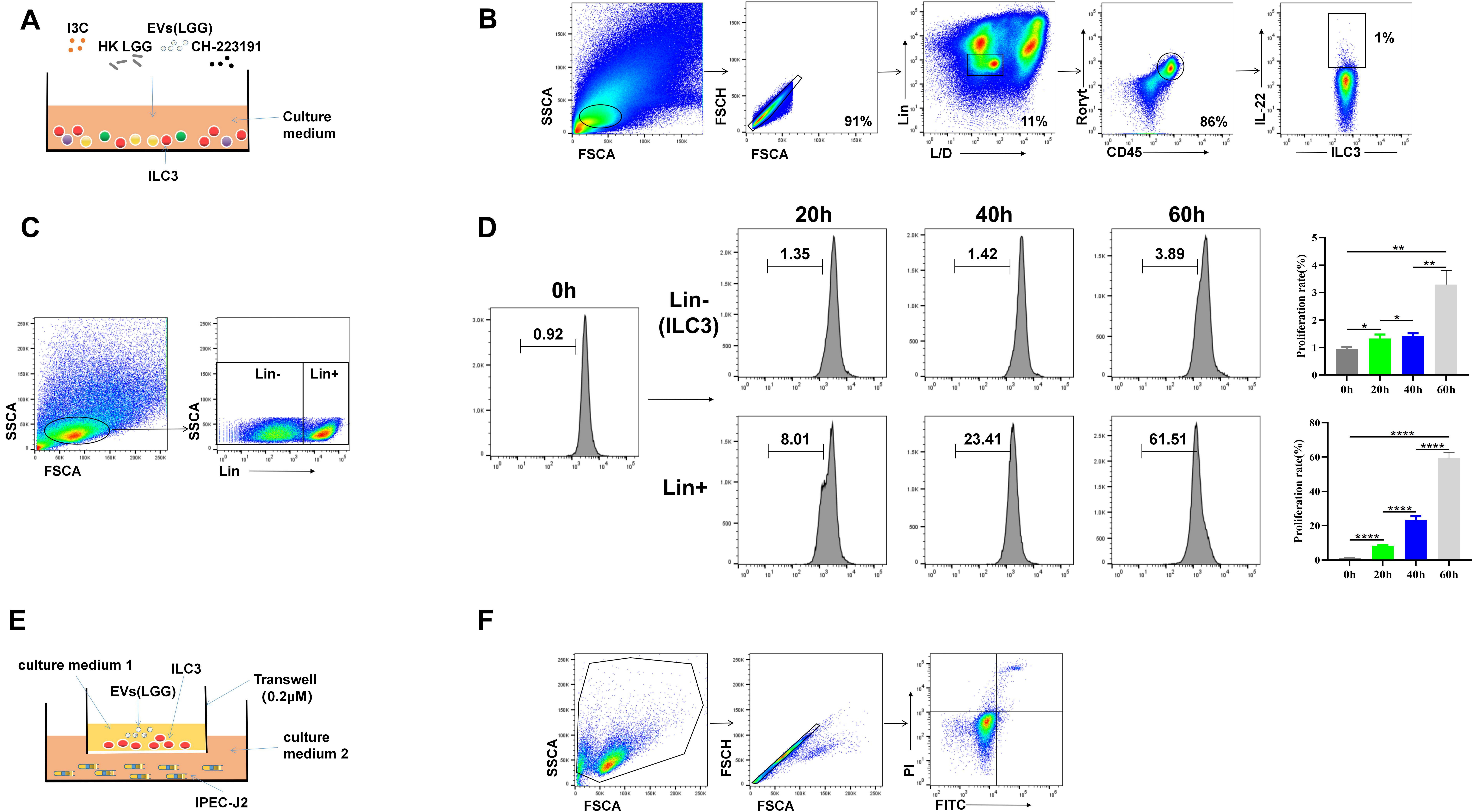
Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure S1:

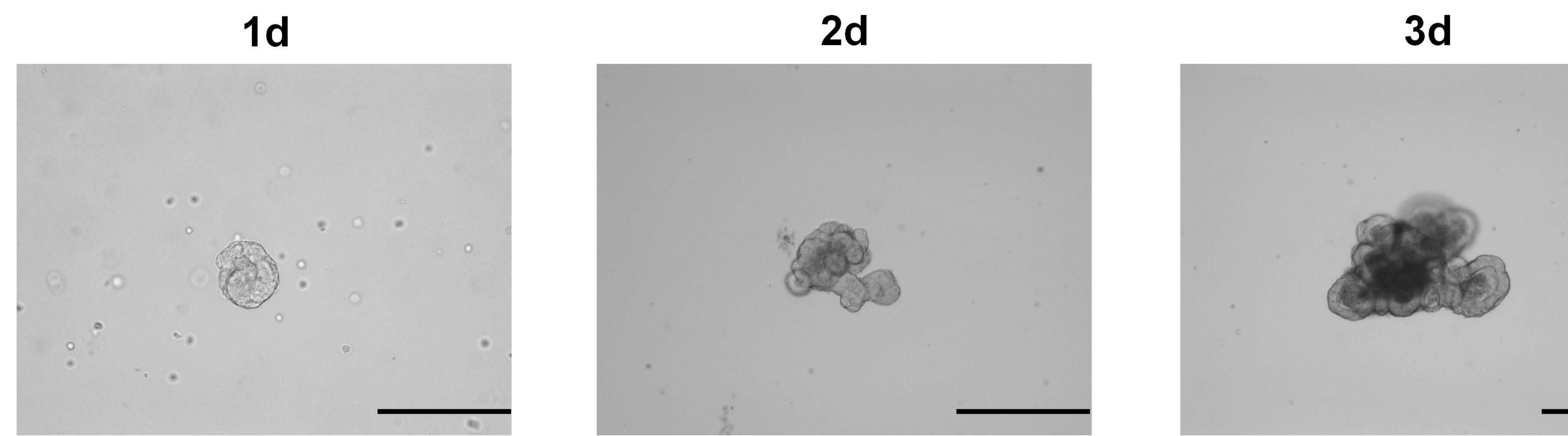
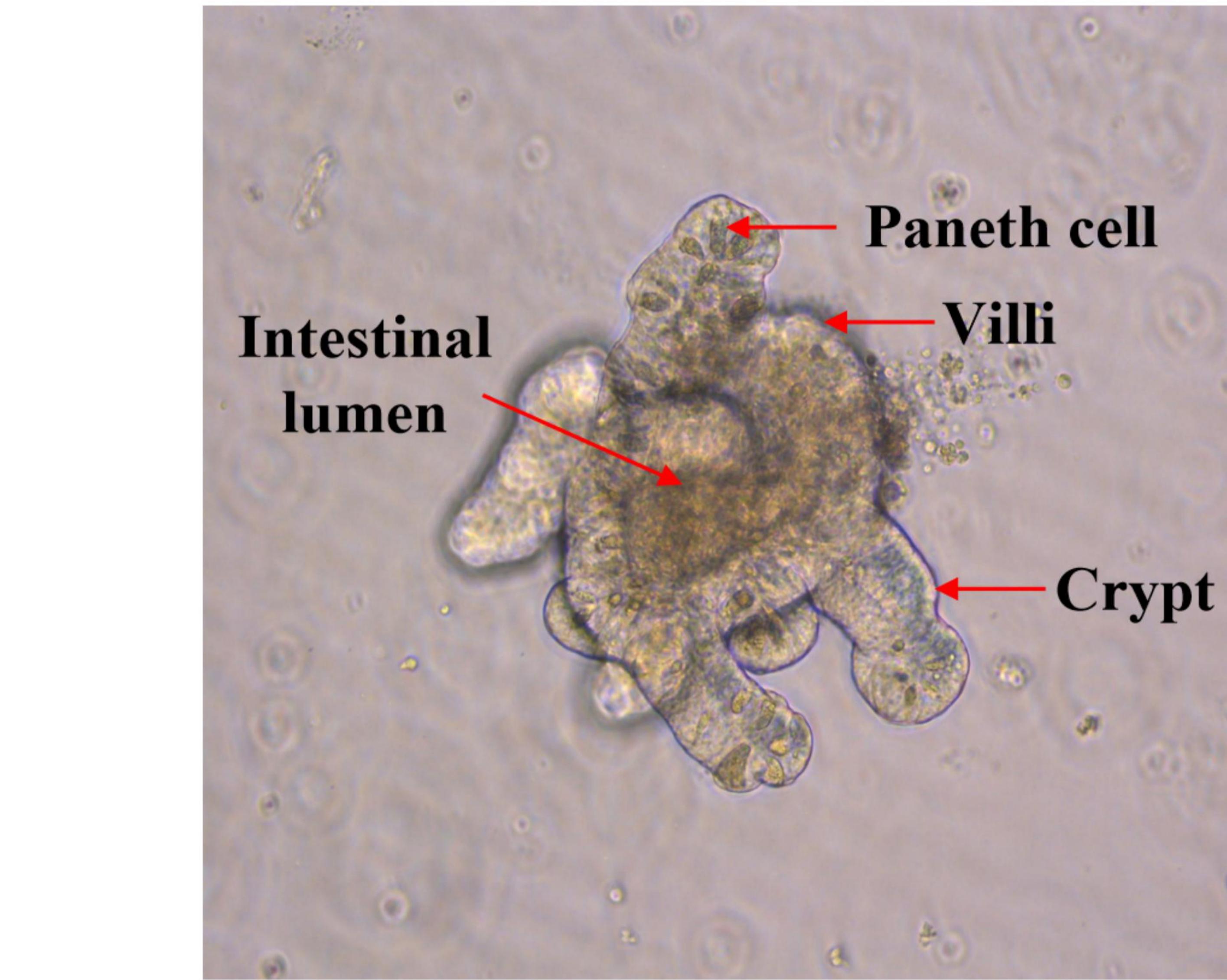
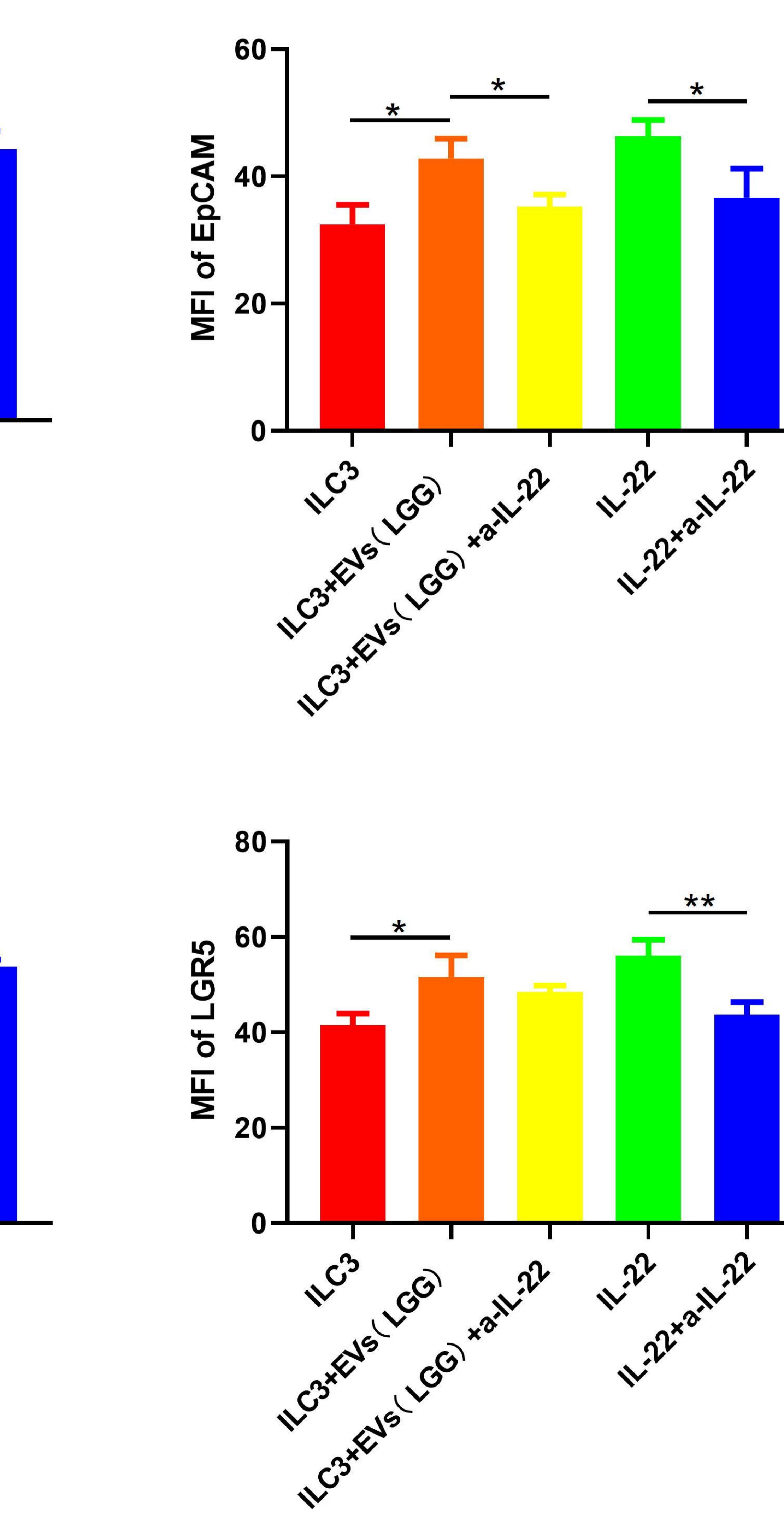
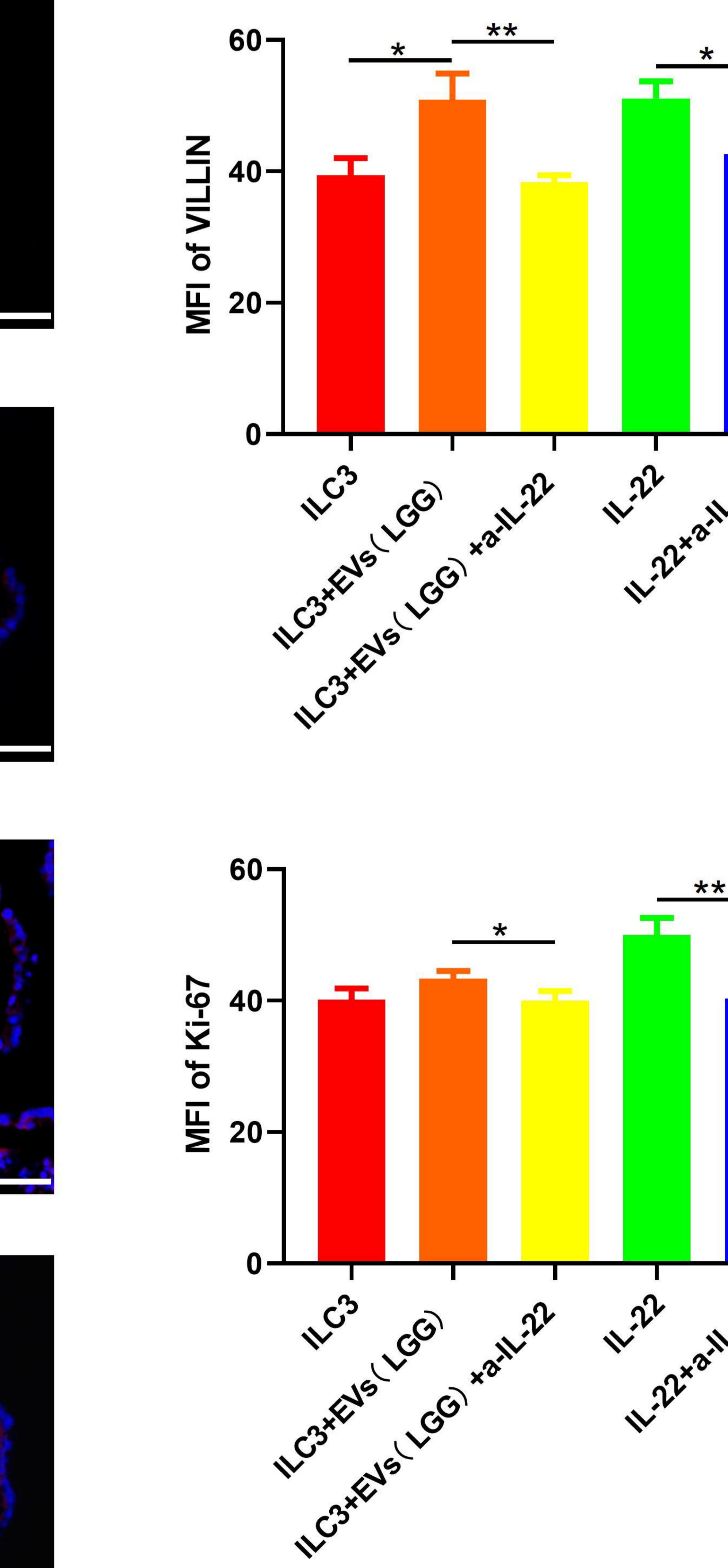
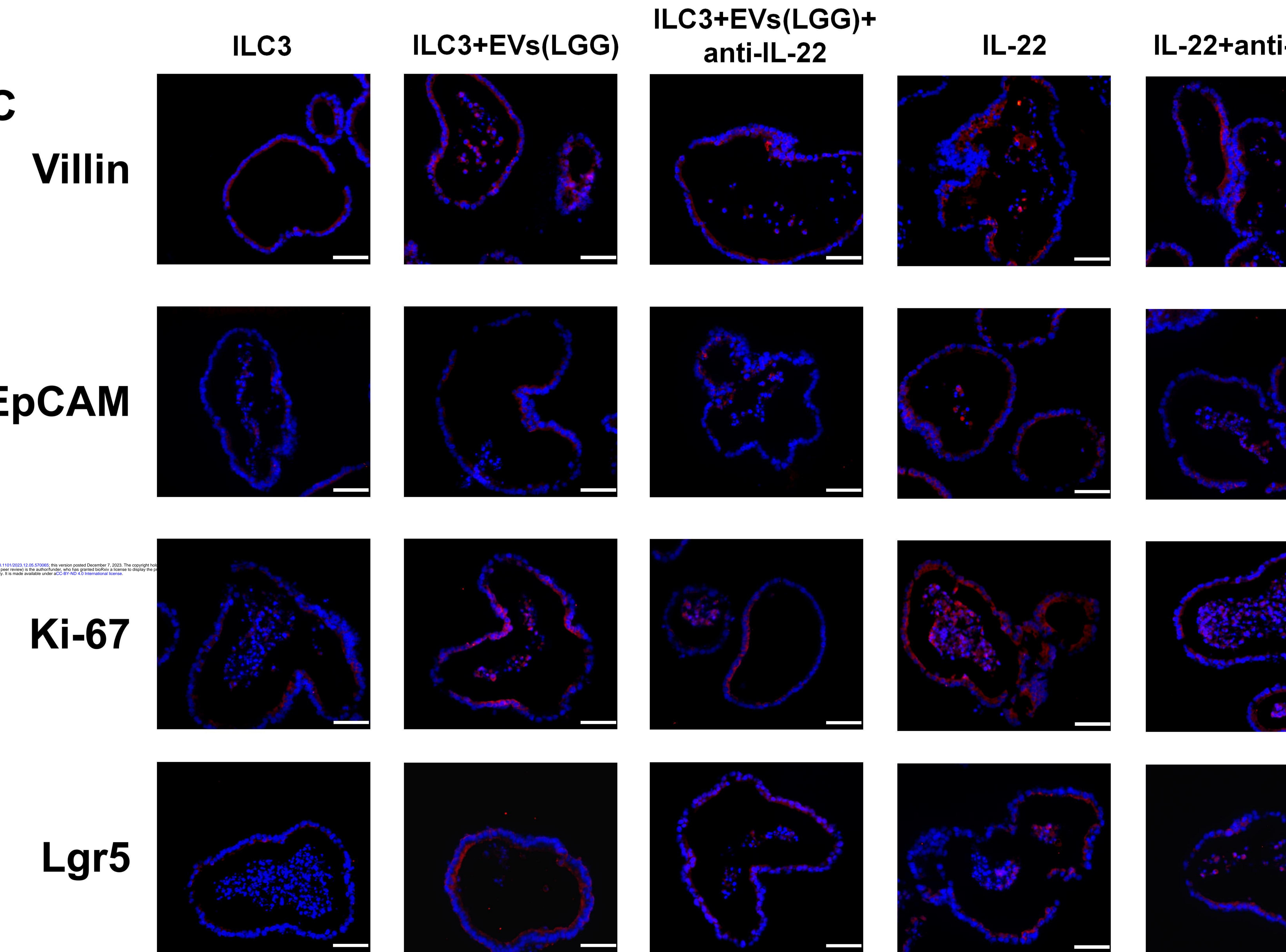





Figure S2:

Figure s3:

Figure s4:

Figure S5:**A****Passage organoid****B****Morphologically obvious organoid bodies****C**