

1 **Dorsal hippocampal oxytocin receptor regulates adult peer bonding in rats**

2 Yufei Hu¹, Wensi Li¹, Yinji Zhao¹, Yuying Liu¹, Wenyu Sun¹, Yi Yan¹, Laixin Liu^{1,3}, Bowen Deng²,
3 Pu Fan^{1*}

4

5 ¹Department of Physiology, Institute of Basic Medical Sciences Chinese Academy of Medical
6 Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.

7 ²Chinese Institute for Brain Research, Beijing, 100069, China

8 ³Current address: School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking
9 University McGovern Institute, Peking University, Beijing, 100871, China.

10 * Corresponding author. Email: pu.fan@ibms.pumc.edu.cn (Pu Fan)

11 **Abstract**

12 Healthy social relationships are beneficial whereas their breakdown is often linked to psychiatric
13 disorders. Parental care and bonding between sexual partners have been well studied both at the level
14 of behavioral analysis and underlying neuronal mechanisms. By contrast, little is known about the
15 neural and molecular basis of peer bonding, defined as social bonds formed between unrelated
16 individuals of the same sex, due to the lack of a suitable experimental paradigm. We found that adult
17 Sprague Dawley (SD) rats of the same sex form strong peer bonds with each other following
18 co-housing. Peer bonded rats exhibit affiliative displays toward their cagemates who are distressed
19 whereas they exhibit agonistic behaviors toward strangers in these situations. Using innovative,
20 genetic strategies in rats, we show that both oxytocin receptor (OXTR) bearing neurons and *Oxtr*
21 signaling in the dorsal hippocampus are essential for peer bonds to form. Together, we have
22 developed a new platform for studying peer bonding and demonstrate a neural pathway that governs
23 this behavior.

25 **Keywords**

26 Peer bonding, Oxytocin receptor, Hippocampus, Rats

27

29 Introduction

30 Social attachments are a defining feature of social animals (Feldman, 2017; Lim and Young, 2006;
31 Seyfarth and Cheney, 2012). Attachments among parents and progeny (parent-infant bonding),
32 sexual partners (pair bonding), and non-related adults who are not sexually engaged (peer bonding)
33 are the most common forms of social relationships (Feldman, 2017). While the neural mechanisms of
34 the first two bonding types have been well studied (Carter et al., 1997; Feldman, 2007; Gobrogge
35 and Wang, 2016; Goldberg, 1983; Johnson and Young, 2015), few studies have been done to
36 understand the neural and molecular mechanisms of peer bonding due to the lack of appropriate
37 experimental models (Schweinfurth et al., 2017). Nevertheless, both humans and other social animals
38 benefit from close and enduring peer social relationships, as these relationships may help increase
39 reproduction and survivability, and reduce stress and disease risk (Berkman et al., 2004; Cameron et
40 al., 2009; Hill et al., 2009; Holt-Lunstad et al., 2010; Kohn, 2017; Silk, 2007). In addition, deficits in
41 developing or maintaining friendships are common in psychiatric patients with disorders such as
42 autism spectrum disorder (ASD) (Bauminger et al., 2008; Jost and Grossberg, 1996; Porcelli et al.,
43 2019; Tough et al., 2017; Umberson and Karas Montez, 2010), highlighting an urgent need for an
44 animal model to study the neural and molecular mechanisms of peer bonding.

45 Previously, social novelty assay was commonly used to evaluate social recognition ability
46 which is a prerequisite of peer bonding (Raam et al., 2017). However, it's essential to note that social
47 recognition only reflects the episodic memory, offering a partial perspective on the multidimensional
48 nature of peer social behaviors. Therefore, there is a pressing need for the development of an
49 experimental model that can comprehensively reveal the features of peer social behaviors. This
50 model should have the capability to effectively delineate the effect of the time accumulation on peer
51 bonding under different contexts. The level of intimacy, which could be reflected by the intensity of
52 social interactions such as affective touch, indicates the strength of peer bonding (Dunbar, 2010;
53 Lackey and Williams, 1995; Nummenmaa et al., 2016). Affiliative social displays, like allogrooming,
54 serve as comforting prosocial behaviors that can alleviate stress in the recipient (Hart and Hart, 1992;
55 Jablonski, 2021; Liu et al., 2022; Rault, 2019; Spruijt et al., 1992; Wu et al., 2021), and have
56 essential roles in building and strengthening social bonds throughout a wide range of species
57 (Cameron et al., 2009; Dunbar, 2010; Silk et al., 2009; Val-Laillet et al., 2009). Indeed, an elevated

58 allogrooming behavior toward distressed partners suggests peer caring in rodents (Burkett et al.,
59 2016; Stieger et al., 2017; Zhang et al., 2022). Conversely, aversive social touch often triggers
60 aggression and occurs in the context of social interactions with unfamiliar individuals (Saarinen et al.,
61 2021). Thus, peer caring extent might be a breakthrough point to explore the features of peer
62 bonding.

63 When opting for an appropriate animal model, it is imperative to consider the selection of rodent
64 species due to the distinctions in social behavior between laboratory mouse and rat strains (Netser et
65 al., 2020). Rats are widely used in neuroscience research with pharmacological and viral
66 manipulation strategies (El-Ayache and Galligan, 2020). Living in large colonies, rats perform
67 complex social behaviors to maintain their social structures within groups (Schweinfurth, 2020) and
68 manifest prosocial behaviors including cooperation (Jiang et al., 2021; Schweinfurth and Taborsky,
69 2018) and helping (Bartal et al., 2011; Mason, 2021; Sato et al., 2015). Considering that social
70 interactions between male mice are usually antagonistic (Weber et al., 2022), rats are more suitable
71 to study peer bonding.

72 The oxytocin system is well-established for its role in promoting social interactions, including
73 parent-infant interactions and pair bonding (Benjamin and Neumann, 2018; Insel, 2010; Marlin et al.,
74 2015; Valery and Ron, 2018; Walum and Young, 2018). In the social interactions among same-sex
75 peer mice, social recognition is also reported to be regulated by the hippocampal oxytocin receptor
76 (OXTR) (Lin et al., 2018; Lin and Hsu, 2018; Pan et al., 2022; Raam et al., 2017; Tsai et al., 2022).
77 Interestingly, a recent research has unearthed a disparity in the necessity of *Oxtr* function for pair
78 bonding and parental behaviors in prairie voles (Berendzen et al., 2023), implying potential
79 species-specific variations in the roles played by the oxytocin system in social bonding. Given that
80 the precise mechanisms governing *Oxtr*'s involvement in animal bonding processes remain largely
81 unknown, and we are still at an early stage of assessing oxytocin-based therapy for psychiatric
82 disorders (e.g., autism) due to the mixed clinical trial results (Young and Barrett, 2015), it is
83 important to ascertain whether and how hippocampal *Oxtr* plays a role in mediating peer bonding.

84 Here, we developed a stress-induced behavioral paradigm to investigate the neural basis of peer
85 bonding establishment with adult peer (same-age, -sex) SD rats. We found that rats formed a close
86 familiarity-based relationship that enabled care-taking for each other when facing distress. By

87 contrast, lack of familiarity led to agonistic interactions between individuals under a similar
88 condition. Based on the affiliative and agonistic actions induced by either forced swimming (FSW)
89 or pain, we further demonstrated that two weeks was an adequate duration for rats to form peer
90 bonding. With viral manipulation and knocking-out *Oxtr* in dorsal hippocampus, we found that
91 dorsal hippocampal *Oxtr* was required for new peer bonding establishment but not maintenance.

92 **Results**

93 **Rats exhibit close social relationships with their familiar peers in distress**

94 Previous studies have demonstrated that stressors including pain, foot shock, forced swimming
95 (FSW), and acute restraint, increase peer-caring behaviors such as allogrooming in rodents (Burkett
96 et al., 2016; Du et al., 2020; Li et al., 2018; Lu et al., 2018; Wu et al., 2021). To explore whether
97 adult rats can form peer bonding, we established a novel paradigm with FSW-induced social
98 interaction on demonstrator-observer pairs with different levels of familiarity (Fig. 1A and Methods).
99 In line with existing studies suggesting the formation of strong social bonds among familiar female
100 individuals (Cameron et al., 2009; Christov-Moore et al., 2014), we initially recorded agonistic and
101 affiliative behaviors during the female-female social interaction section (Fig. 1B and Movie S1). We
102 found that behaviors observed between stranger rats differed from those between co-housed rats (Fig.
103 1C and Movie S2). Stranger rats exhibited more defensive behaviors and a higher aggressive ratio
104 than rats co-housed for more than one week (Fig. 1D -1E), while affiliative behaviors were
105 infrequent in stranger rats (Fig. 1F). The social behavior correlations also demonstrated differences
106 between interactions in stranger rats and cagemate rats (Fig. S1A-S1B). Close relationships form
107 between strangers after a certain amount of time (Levinger, 1980). As affiliative behaviors like
108 allogrooming and crawling on top increased significantly after rats were kept together for two weeks,
109 we reasoned that two weeks is sufficient for adult female rats to form close peer bonding.

110 The increased corticosteroid (CORT) level indicated elevated stress induced by a 5-min FSW
111 (Fig. S1C). Additionally, observer CORT levels increased significantly after social interaction with
112 its distressed cagemate (Fig. S1D), indicating a transfer of stress between peer-bonded rats.
113 Interestingly, elevated CORT levels were also found in observers after interacting with distressed

114 strangers. However, this increase was unlikely due to emotional contagion, as stranger observer
115 CORT levels were also high after interactions with control strangers (Fig. S1D).

116 The social behaviors between male rats were also examined (Fig. S2). Similarly, stranger
117 demonstrators displayed significantly more defensive behaviors (Fig. S2B), while affiliative
118 behaviors between stranger male rats were remarkably lower than those between male rats co-housed
119 for two weeks (Fig. S2D-S2H), further demonstrating that two weeks is adequate for rats of both
120 sexes to form adult peer bonding.

121 **Pain induced similar features of adult peer bonding as FSW-induced distress**

122 To determine whether peer bonding modulates social behaviors in different contexts, female rats
123 were subjected to acute pain induced by injecting 2.5% formalin into the right hind paws of
124 demonstrators (Fig. 2A); this acute pain causes physiological suffering, whereas FSW-induced stress
125 is an affective state (Du et al., 2020). Consistent with previous results, stranger rats showed more
126 defensive behaviors and higher aggressive ratio, while significantly less affiliative behaviors than
127 rats co-housed for 2 weeks (Fig. 2B-2H). To examine whether pain can be transferred between
128 individuals, a pain sensitivity test was performed with observers after a 15-min social interaction
129 with painful stranger rats or cagemates (Fig. 2I). Cagemate observers exhibited a substantially
130 lower paw withdrawal mechanical threshold (PWMT), whereas the PWMT of stranger observers was
131 nearly 100% (Fig. 2J). This result suggests that pain can be transferred to cagemates but not strangers.
132 Thus, both pain- and FSW-induced social interaction patterns demonstrate that adult SD rats can
133 form a familiarity-based relationship that enables care-taking for each other when facing distress or
134 in pain, and that two weeks of co-housing is sufficient for forming close peer bonding.

135 **Dorsal hippocampal neural activities of observers are distinct when exploring distressed
136 stranger or cagemate**

137 Next, to evaluate the brain regions that might be involved in peer bonding formation, we analyzed
138 the expression of FOS protein (the protein that is expressed by the *c-fos* gene) in female observer rats
139 that interacted with the distressed cagemate or stranger. CA1, DG, and CA3_{proximal} had higher ratios
140 of FOS⁺ neurons than that of CA2/CA3_{distal} when comparing the cagemate and stranger groups (Fig.
141 3A-3B), suggesting that sub-regions of dorsal hippocampus may have different roles in peer bonding
142 regulation in rats.

143 **Ablating dorsal hippocampal OXTR⁺ neurons impede peer bonding establishment**

144 The oxytocin system was reported to play a well-established role in promoting social interactions,
145 including parent-infant interactions and pair bonding (Benjamin and Neumann, 2018; Insel, 2010;
146 Marlin et al., 2015; Valery and Ron, 2018; Walum and Young, 2018). Therefore, we investigated
147 whether OXTR is also involved in the regulation of peer bonding. As OXTR was found to be
148 expressed in dorsal hippocampus (Fig. 3C), we initially evaluated the role of dorsal hippocampal
149 OXTR-expressing neurons in peer bonding regulation. We developed an ingenious experimental
150 approach (Fig. S3A) to investigate the influence of these neurons on female rat peer bonding.
151 Initially, OXTR-Cre adeno-associated virus (AAV) was bilaterally injected into the dorsal
152 hippocampus of the target rat. One week later, the target rat was co-housed with a stranger (stranger
153 A) for 2 weeks. Subsequently, the target rat received AAV carrying Cre-dependent taCasp3 (a
154 genetically engineered caspase-3) (Yang et al., 2013) or EGFP into the dorsal hippocampus. After 1
155 week, a second phase of peer bonding was initiated by replacing stranger A with a new stranger rat
156 (stranger B). Social behaviors with the previously co-housed distressed stranger A (old cagemate)
157 and stranger B (new cagemate) were recorded respectively after these two distinct peer bonding
158 phases (Fig. 4A and S3A, Methods). One week or five weeks after virus injection with taCasp3,
159 EGFP⁺ OXTR⁺ neurons in the dorsal hippocampus (mainly in CA1, DG, and CA3_{proximal}) were
160 ablated (Fig. 4B and S3B-S3D), confirming the efficacy of taCasp3. Control rats exhibited similar
161 defensive, aggressive and affiliative behaviors with old cagemates and new cagemates (Fig. 4C-4I).
162 In contrast, rats with ablated dorsal hippocampal OXTR⁺ neurons displayed significantly lower
163 affiliative behaviors with new cagemates compared to their old cagemates (Fig. 4E-4I). Notably,
164 OXTR::taCasp3 rats exhibited normal affiliative behaviors toward the distressed old cagemates,
165 indicating that dorsal hippocampal OXTR⁺ neurons ablation did not impair abilities to exhibit
166 affiliative behaviors but directly impeded peer bonding establishment. The results of the elevated
167 plus maze test (EPM) showed that anxiety levels were not influenced by ablating these neurons (Fig.
168 S3E). To exclude the influence of social experience, we also compared social behaviors with SD rats
169 that interacted with the old cagemate first or those that interacted with the new cagemate first. The
170 results demonstrated that social behaviors were minimally affected by the social experience (Fig.
171 S3F-S3N).

172 **Dorsal hippocampal *Oxtr* regulates peer bonding establishment**

173 Considering that the slightly impaired social recognition ability induced by ablating dorsal
174 hippocampal OXTR⁺ neurons (Fig. 4J-4L) could not fully elucidate the role of these neurons in peer
175 bonding formation, we explored the role of dorsal hippocampal *Oxtr* in peer bonding by deleting
176 *Oxtr* with CRISPR-Cas9 method. Initially, we generated a transgenic rat (LSL-Cas9) to facilitate the
177 conditional expression of Cas9 in a Cre-dependent manner (Fig. 5A-5B and S4A). The decreased
178 immunoreactivity (fluorescent intensity: control, 43.42 ± 0.5847; cKO, 28.50 ± 3.596; unpaired
179 Student's *t*-test, *p*=0.0149, *n*=3 control and 3 cKO) of *Oxtr* in female dorsal hippocampus validated
180 the efficacy of the conditional knockout strategy (Fig. 5C-5D). Consequently, the *Oxtr* cKO female
181 rats displayed significantly reduced affiliative behaviors toward the distressed new cagemates
182 compared to their interactions with the old ones (Fig. 5E-5K). Notably, the rats exhibited normal
183 anxiety levels (Fig. S4B) and social recognition ability (Fig. 5L-5N). These findings provide further
184 evidence highlighting the essential role of *Oxtr* in dorsal hippocampus for peer bonding
185 establishment, but not maintenance.

186 **Discussion**

187 Here, our study addresses a fundamental gap in our understanding of the neural and molecular basis
188 governing peer bonding in adult rodents. We have developed a stress-induced experimental model to
189 study adult peer bonding and demonstrated that a two-week duration was adequate for rats to form
190 this relationship. Furthermore, we established that dorsal hippocampal *Oxtr* is essential for new peer
191 bonding establishment but not maintenance.

192 Our study satisfied the characteristics of the conceptual framework on social bonding developed
193 by Lim and Young (Lim and Young, 2006). First, the individual must be motivated to approach and
194 engage with another conspecific. In the context of rodent rats, it is well-established that they exhibit
195 a strong inclination to engage in social interactions with unfamiliar conspecifics. Second, the animals
196 must be able to identify the individual based on social cues through the formation of social memories.
197 In our experiments, we employed the three-chamber test to demonstrate the capacity of rats to
198 differentiate between conspecifics with varying degrees of familiarity. Finally, a bond can form
199 when given appropriate conditions, leading to preferential interaction with that individual. In our

200 investigation, we identified two crucial initial conditions for the formation of peer bonding: a 2-week
201 duration of co-housing and the intact function of dorsal hippocampal *Oxtr*. Additionally, our results
202 indicate that the distressed stranger always repelled the observer while the distressed cagemate
203 accepted more consolation behaviors from its partner. Thus, our study satisfied the three
204 characteristics of the conceptual framework on social bonding developed by Lim and Young.

205 Previously, affiliative behaviors, especially allogrooming behavior, have primarily been used as
206 bonding indicators. Here, we not only expanded affiliative behavior types, but also added agonistic
207 acts (including defensive and aggressive behaviors) of both demonstrator and observer rats, enabling
208 a more comprehensive measurement of peer bonding. These multidimensional social behaviors
209 increase the credibility of our investigation into social bonding dynamics. Furthermore, both the
210 affiliative and agonistic social displays showed consistent patterns when the peer-bonded rat is in
211 distress following forced swimming or is in pain following formalin injection into a paw. In other
212 words, the experimental rat can generalize its affiliative or agonistic behaviors beyond one context.

213 In the realm of rodent prosocial interaction research, a longstanding question has been never
214 asked and unexamined: the rationale behind the prerequisite that rodents employed in prosocial
215 investigations should cohabit as cagemates for several weeks before behavioral assessments. Our
216 findings, demonstrating that a two-week cohabitation period is adequate for rats to establish a
217 relatively stable peer bonding relationship, now provide a definitive answer to this hitherto
218 unaddressed inquiry. While our results have underscored the requisite duration for rats to form such
219 stable peer bonds, further investigations are warranted to pinpoint the precise temporal dynamics of
220 this bonding event. Additionally, exploring whether these dynamics exhibit sexual dimorphism is
221 essential, as behavioral nuances differ between male and female rats.

222 It is controversial that the oxytocin system is involved in mediating pair bonding and parental
223 care, since prairie voles with null *Oxtr* were reported to show normal social attachment recently
224 (Berendzen et al., 2023). The observed disparities in phenotypes could potentially be attributed to
225 species-specific differences in the oxytocin system's functionality. Differences in the localization of
226 OXTR expression were observed, with mice displaying hilus-based expression in DG (Raam et al.,
227 2017) and rats showing expression in the granular cell layer (Fig. 3C). Furthermore, previous study
228 in mice demonstrated that DG hilar *Oxtr* is necessary for social discrimination (Raam et al., 2017),

229 while we found that rats with *Oxtr* specially knocked out in dorsal hippocampus (mainly in CA1, DG,
230 and CA3_{proximal}) can still distinguish strangers from their new cagemates, but their ability to form
231 new peer bonding was impaired. When considering the disparities in both OXTR expression and
232 function evident across distinct rodent species, it becomes plausible to entertain the idea that the
233 rapid evolution of these neural pathways has contributed to the divergence in neural mechanisms
234 governing social interaction among rodents.

235 It has long been believed that OXTR signaling in CA2/CA3 of hippocampus is crucial for
236 regulating social recognition in same-sex peer mice (Lin et al., 2018; Lin and Hsu, 2018; Pan et al.,
237 2022; Raam et al., 2017; Tsai et al., 2022). Here, we found that, when comparing the FOS⁺ neuron
238 expression in cagemate and stranger groups, the ratio of CA2/CA3_{distal} was lower than 1 (Fig. 3B),
239 suggesting that neurons in this region may be activated when rats encountering a distressed stranger.
240 Our results in rats align with previous findings in mice, indicating the potential preserved role of
241 social recognition-related signaling in CA2/CA3 across species. Besides, the different ratio patterns
242 of FOS⁺ neurons in subregions of rat dorsal hippocampus in our study shed light on the possibility
243 that dorsal hippocampal OXTR may have different divisions of labor on peer bonding regulation in
244 rats.

245 In our investigation, we observed that rats with a specialized knockout of *Oxtr* in dorsal
246 hippocampus (mainly in CA1, DG, and CA3_{proximal}) displayed impaired bonding with their distressed
247 new cagemates, but their affiliative behaviors remained high with their distressed old cagemate rats.
248 This outcome effectively rules out the possibility that dorsal hippocampal *Oxtr* regulates peer
249 bonding directly without influencing the rats' capacity for social behaviors. As we only measured the
250 bonding level through the behavioral paradigm, future studies with techniques such as two-photon
251 imaging could provide in-depth insights into the physiological characteristics of neurons in rats.
252 Given the distinct behavioral responses observed when rats interacted with distressed strangers, old
253 cagemates and new cagemates, it is conceivable that dorsal hippocampal neurons may exhibit
254 varying response patterns in these contexts.

255 Oxytocin has long been recognized as a potential ASD treatment (Andari et al., 2010; Guastella
256 et al., 2010; Ooi et al., 2017), and certain autistic patients have been reported to have genetic variants
257 in the *Oxtr* gene (Campbell et al., 2011; Lerer et al., 2008; LoParo and Waldman, 2015; Wu et al.,

258 2005). Moreover, individuals with ASD encounter challenges in establishing relationships and
259 bonding with unfamiliar individuals. With the innovative rat model, we establish that dorsal
260 hippocampal *Oxtr* is required for peer bonding formation, suggesting the potential avenue for
261 treating autism patients with oxytocin system by leveraging the neural mechanisms underpinning
262 peer bonding. While we found the necessity of *Oxtr* in peer bonding establishment, it remains
263 unknown whether *Oxtr* alone is sufficient to enhance the bonding between peer strangers. As the
264 application of oxytocin therapy for autism is fraught with complexities, there is a compelling need to
265 delve deeper into the neural and molecular mechanisms that underlie the regulation of peer bonding.

266 **Methods**

267 **Rat lines and animal care**

268 Two rat strains were used in the experiments. Sprague Dawley (SD) rats, purchased from Beijing
269 Vital River Laboratories Animal Center, were used for the exploration of peer bonding formation
270 time. The Cre-dependent Cas9 rat line (LSL-Cas9) was generated using a CRISPR/Cas9-based
271 approach. Rats were sex- and age-matched (within one week) and housed 2–4 per cage in standard
272 laboratory conditions under a 12-h light/dark cycle with *ad libitum* access to food and drinking water
273 except during experimental sessions. All experiments were conducted with adult rats (8–15 weeks)
274 and rats used for behavioral tests were 12–15 weeks old. Behavioral testing occurred during the dark
275 period. All experiments were performed in accordance with procedures approved by the Institutional
276 Animal Care and Use Committee at the Institute of Basic Medical Sciences, Chinese Academy of
277 Medical Sciences.

278 **Adeno-associated virus (AAV)**

279 rAAV-ef1 α -DIO-taCasp3-TEVp-P2A-EGFP-WPRE-hGH polyA (2.32 \times 10¹² particles/ml),
280 rAAV2/9-ef1 α -DIO-EGFP-WPRE-hGH polyA (2.56 \times 10¹² particles/ml),
281 rAAV-OXTR-Cre-WPRE-pA (2 \times 10¹² particles/ml),
282 rAAV-U6-sgRNA(Scramble)-U6-sgRNA(Scramble)-CMV-EGFP-WPRE-polyA (2.5 \times 10¹²
283 particles/ml), and rAAV-U6-sgRNA1(*Oxtr*)-U6-sgRNA2(*Oxtr*)-CMV-EGFP-WPRE-polyA
284 (2.5 \times 10¹² particles/ml) were purchased from BrainVTA (Wuhan, China).

285 **Generation of LSL-Cas9 transgenic rat**

286 The LSL-Cas9 rat line was developed by Shanghai Model Organisms Center, Inc. This rat line was
287 generated with CRISPR/Cas9 system by knocking in Cas9 cassette into the SD rat *Rosa26* locus,
288 which is the most frequently used locus to produce ubiquitous or controlled expression of a gene of
289 interest in rodents. Briefly, targeting vector containing the following components were constructed:
290 CAG-LSL-Cas9-FRT-IRES-tdTomato-FRT-WPRE-polyA. Cas9 mRNA was *in vitro* transcribed
291 with mMESSAGE mMACHINE T7 Ultra Kit (Ambion, TX, USA) according to the manufacturer's
292 instructions, and subsequently purified using the MEGAclear™ Kit (ThermoFisher, USA).
293 5'-GGAGCCATGGCCGCGTCCGG-3' and 5'-GGACGGCGGTCTGGTCTGAG-3' were chosen as
294 Cas9 targeted guide RNAs (sgRNAs) and *in vitro* transcribed using the MEGAshortscript Kit
295 (ThermoFisher, USA) and subsequently purified using MEGAclear™ Kit. The donor vector with
296 sgRNA and Cas9 mRNA was microinjected into the fertilized eggs of SD rats. PCR genotyping
297 (Forward: 5'-CAACTCACAAACGTGGCACTG-3', Reverse: CCTGTACGAGACACGGATCG) and
298 sequencing confirmed appropriate targeting to the *Rosa26* locus.

299 **Stereotactic surgery**

300 SD rats (aged 8 weeks) were anesthetized with isoflurane (3-4% for induction, 1-2% for maintenance)
301 and mounted on a stereotaxic frame (RWD, 68027). Small holes were drilled bilaterally after the
302 skull was exposed, and were injected with virus at a rate of 30 nl/min (150nl per site) by using a
303 pulled, fine glass micropipette (World Precision Instruments, Cat#504949). The stereotaxic
304 coordinate of the dorsal hippocampus used were as follows (measured from Bregma in mm):
305 anteroposterior -3.72, mediolateral ± 2.2 , and dorsoventral -3.2 determined according to Paxinos and
306 Watson's *The Rat Brain in Stereotaxic Coordinates* atlas. After completion of the injection, the
307 micropipette was left on the site for an additional 10 min to allow the diffusion of the virus and the
308 electrode was withdrawn slowly before skin was sutured. After surgery, rats were returned to their
309 home cage and monitored during the recovery.

310 **Social interaction after forced swimming**

311 To examine social interactions between rats, we adapted a paradigm that was modified from a
312 previous study in mice (Wu et al., 2021). The observer was isolated for 5 min, while the
313 demonstrator was placed into a beaker containing room temperature (20–23 °) water. The
314 demonstrator was then removed from the beaker and placed together with the observer for 15 min,

315 during which time their social interactions were recorded with an infrared camera installed above the
316 cage (40 cm × 25 cm × 20 cm).

317 The two main behavioral aspects were recorded and statistically analyzed: 1) agonistic acts,
318 including defensive behavior (i.e., kicking, pushing, and escaping) and aggressive behavior (i.e.,
319 aggressive allogrooming and fighting); 2) affiliative behaviors, including allogrooming (observer or
320 demonstrator licks the fur on the back or head of the other rat for more than 1 s), crawling on top
321 (observer or demonstrator crawls onto the back of the other rat laterally), demonstrator approaching
322 (demonstrator comes to the near side of the observer proactively), and selfgrooming in close distance
323 (rats < 2 cm apart while selfgrooming). Other behaviors were categorized as neutral behaviors and
324 include exploring and investigating the home cage, walking, and selfgrooming. Since some
325 behaviors—such as defensive behaviors and demonstrator approaching—occur in a split second,
326 counts were recorded for these behaviors instead of durations. The total affiliative behavior bouts
327 include bouts of demonstrator approaching, observer and demonstrator allogrooming, demonstrator
328 and observer crawling on top, and demonstrator and observer selfgrooming in close distance (< 2
329 cm); total affiliative behavior durations include durations of observer and demonstrator allogrooming,
330 demonstrator and observer crawling on top, and demonstrator and observer selfgrooming in close
331 distance (< 2 cm).

332 **Social interaction after formalin injection in hind paws**

333 The pain consolation paradigm was modified from a previous study (Du et al., 2020). Briefly, rats
334 were randomly chosen as observers or demonstrators. The demonstrator was muffled with a piece of
335 towel for immobility and the right hind paw was injected with 100 µL 2.5% formalin via a
336 microsyringe (Gaoge, China) before it was returned to the cage. Social behaviors, including agonistic
337 acts and affiliative behaviors, were recorded for 15 min with an infrared camera pre-positioned at a
338 top view over the cage.

339 **Quantitative pain sensory test with von Frey filaments**

340 To evaluate the transfer of pain in stranger groups and familiar groups, the observer of each group
341 was used for the mechanical pain sensitivity test based on previously described experimental
342 procedures (Du et al., 2020; Yu et al., 2019). The equipment setup included a nontransparent plastic
343 testing box (10 cm × 30 cm × 20 cm) placed on a supporting platform equipped with a metal mesh

344 (pore size 0.5 cm × 0.5 cm). Von Frey Hairs (Cat. No. 37450-275, Ugo Basile, Italy) were used for
345 the mechanical pain sensitivity test.

346 The observer was acclimated to the experimental environment for two days prior to the day of
347 the experiment; this adaption process included handling, placing, and adapting to other objects in the
348 behavioral testing room. Additionally, the observer received stimulus with an ascending series of
349 calibrated von Frey filaments with intensities ranging from 39.2 mN to 588 mN in the plastic testing
350 box during this two-day acclimation period. Each stimulation was repeated 10 times with an interval
351 of at least 10 s, and the percentages of paw withdrawal were recorded. The mean of the smallest
352 intensities that induced more than 50% paw withdrawal reflex during the two acclimation days was
353 used to establish the baseline.

354 On the test day, the observer was placed into the plastic testing box after the 15-min social
355 interaction with the distressed demonstrator. The percentages of post-treatment paw withdrawal were
356 measured in response to increasing stimulation intensities from the von Frey filaments until the force
357 was sufficient to elicit more than 50% paw withdrawal reflex. The data for paw withdrawal
358 mechanical threshold (PWMT) was normalized using the following formula: PWMT(%) =
359 PWMT_{post-treatment}/PWMT_{baseline} × 100. All tests were performed in a blinded manner.

360 **Old cagemate and new cagemate experimental strategy**

361 For experiments involving rats with ablated dorsal hippocampal OXTR-expressing neurons: To
362 begin, we injected AAV-OXTR-Cre into dorsal hippocampus of SD rats (target rats) bilaterally to
363 facilitate the expression of Cre in OXTR-expressing neurons. After the initial injection, each target
364 rat was co-housed with a stranger rat (Stranger A) for a period of 2 weeks. Subsequently, the target
365 rats received a second injection in the same dorsal hippocampal location, this time with
366 AAV-DIO-taCasp3 or AAV-DIO-EGFP. Following the second injection, the target rats continued to
367 cohabit with Stranger A for an additional week. At this point, Stranger A was replaced with
368 another stranger rat (Stranger B) which was co-housed with the target rat for another 3 weeks.
369 Stranger A and Stranger B served as the old cagemate and new cagemate, respectively. The social
370 behavioral assay was conducted on the following week. Old cagemates or new cagemates were
371 designed as demonstrators, while the target rats served as observers.

372 For experiments involving rats with dorsal hippocampal *Oxtr* conditionally knocked-out: The
373 experimental strategy was similar to the previous one. Briefly, LSL-Cas9 rats (target rats) were
374 co-housed with Stranger A for 2 weeks initially. Following this, the target rats were injected with a
375 combination of AAV-OXTR-Cre and AAV-Oxtr-gRNA (or AAV-control-gRNA) virus. The target
376 rats continued to co-habit with Stranger A for an additional week after the viral injection. The
377 subsequent procedures were consistent with the above-described strategies.

378 **Elevated plus maze test**

379 The elevated plus maze (EPM) test was performed as previously described (Pellow et al., 1985). The
380 plus-cross-shaped maze was custom-made of black Plexiglas consisting of two open arms (50cm ×
381 10cm) and two enclosed arms (50cm × 10cm × 40cm) extending from a central square platform
382 (10cm × 10cm) mounted on a wooden base raised 85cm above the floor. Rats were placed on the
383 center square platform with their face toward an open arm and allowed to freely explore for 10min
384 under a dimmed illumination (about 10 Lux). The behavior of the animals was videotaped by a
385 camera (Shanghai XinRuan Information Technology Co., Ltd) and analyzed by Any-maze
386 (Stoelting). The chamber was thoroughly cleaned with 70% ethanol, and then with paper towels
387 moistened with distilled water. The apparatus would be dried with paper towels before each trial.

388 **Three-chamber test**

389 The three-chamber test for discriminating cagemate from stranger rats was modified from a previous
390 study (Nadler et al., 2004). The apparatus was a rectangular, three-chambered box fabricated from
391 clear polycarbonate (120 cm × 40 cm × 30 cm) and equipped with dividing walls with retractable
392 door-ways that allowed access into each chamber. Prior to the experiment, each observer was
393 allowed to freely explore the three chambers twice for 10 min each time and a 2-h interval between
394 each visit; meanwhile, each demonstrator was adapted to the wire cup (10 cm diameter, 30 cm height)
395 twice for 10 min each time and a 2-h interval between each adaptation episode. On the day of the
396 experiment, the observer rat was first placed into the center chamber with the other two chambers
397 closed and allowed to freely explore for 10 min. The stranger and cagemate were placed in the wire
398 cups prior to opening the doors of the two chambers. The observer was then allowed to explore all
399 three chambers and its behavior was recorded for 10 min with a camera pre-positioned with a top

400 view over the apparatus. The exploration index was calculated using the following formula:

401
$$\text{Exploration index} = (\text{Time}_{\text{cagemate}} - \text{Time}_{\text{stranger}}) / (\text{Time}_{\text{cagemate}} + \text{Time}_{\text{stranger}})$$

402 The chamber was thoroughly cleaned with 70% ethanol followed by paper towels moistened
403 with distilled water. The apparatus was dried with paper towels before each trial.

404 **Serum CORT measurement**

405 To measure the serum CORT levels, the rats were initially anesthetized with isoflurane immediately
406 after experiencing the corresponding treatments, which included no treatment, 5-minute isolation,
407 5-minute forced swimming, and 15-minute social interaction with either distressed or non-distressed
408 conspecifics. Subsequently, blood samples were collected from the tail vein without restraint within
409 a 5-minute timeframe after the anesthetic induction. The rats used for the first blood collection were
410 allowed to recover for at least two weeks until the second blood collection, ensuring that the stress
411 from the blood collection did not influence subsequent behavioral parameters. Approximately 500
412 μL blood was collected from each rat and kept for 1 h at room temperature. The blood samples were
413 centrifuged for 10 min at 3,000 rpm at 4 $^{\circ}\text{C}$, and serum was then collected from the stratified samples
414 and stored at -80 $^{\circ}\text{C}$ until use.

415 Before the CORT was measured, samples were treated with Bond Elut Plexa Solid Phase
416 Extraction (SPE) cartridges (30 mg, 1 mL, Part No. 12109301, Agilent Technologies, Inc., CA, USA)
417 and hormones were separated on an Infinity Lab Poroshell HPH-C8 column (2.1 \times 50 mm, 2.7 μm ,
418 Agilent Technologies, Inc.). Liquid chromatography tandem mass spectrometric detection
419 (LC-MS/MS) was performed on the 6495 Triple-Quadrupole LC/MS system (Agilent Technologies,
420 Inc.) equipped with an ESI source. The LC1290 liquid chromatography system (Agilent
421 Technologies, Inc.) was used to deliver the mobile phases with 0.1% formic acid (FA) in water (A)
422 and methanol (B) at a flow rate of 0.3 mL/min. A sample volume of 50 μL was injected onto an HSS
423 T3 LC column (1.8 mm, 200 A \square , 2.1 mm I.D. \times 100 mm, Waters, Belgium). Gradient LC flow
424 started with 20% B, followed by a linear increase to 100% B in 4 min and held at 100% B for 2 min.
425 The gradient was returned to 20% B in 0.01 min and held at 20% B for 2 min for column
426 equilibration, for a total run time of 8 min. The sheath gas temperatures were set at 350 $^{\circ}\text{C}$, and the
427 sheath gas flow was set at 11 L/min. The mass spectrometer was operated in positive mode with a
428 capillary voltage of 3,000 V. Multiple reaction monitoring (MRM) scan mode was used for the mass

429 spectrometric detection and quantification of the corticosterone in positive mode. The dominant
430 precursor ions were the molecular ion m/z 347.2 in ESI (+). The transition products measured in ESI
431 (+) were m/z 329.2 (obtained by applying a collision energy (CE) of 12 V), and m/z 121 (CE 24V).
432 MassHunter Workstation Software LC/MS Data Acquisition (Version B.07.01 Build 7.1.7112.0;
433 Agilent Technologies, Inc.) was used for data acquisition, and Quantitative Analysis (Version
434 B.07.00 Build 7.0.457.0; Agilent Technologies, Inc.) was used for data analysis.

435 **Immunohistochemistry**

436 Rats were anesthetized with isoflurane and perfused with 0.01M PBS, followed by fixation of 4%
437 paraformaldehyde (PFA). For FOS protein expression analyses, rats were sacrificed 90 min after
438 completing the social interactions and their brains were quickly collected. Brains were collected and
439 post-fixed in 4% PFA overnight at 4°C, then were put into 20% and 30% sucrose at 4°C for 2 days,
440 respectively. Coronal sections were obtained at 16µm using a Leica CM3050 S cryostat. Floating
441 sections were used for immunohistochemical labeling. Briefly, sections were washed in 1×PBS and
442 blocked in 1×PBS containing 5% Albumin bovine V (BSA) and 0.5% Triton X-100 for 1.5-2h at
443 room temperature. Then the sections were incubated in primary antibodies in blocking buffer
444 containing 3% BSA and 0.3% Triton X-100 and shook for 2h at room temperature before stored at 4°C
445 overnight. Primary antibodies were used as follows: c-Fos (Rabbit, Synaptic Systems, Cat#226 308,
446 1:1000), OXTR (Rabbit, Alomone, Cat#AVR-013, 1:100) (Warfvinge et al., 2020). The following
447 day, sections were washed thrice with 1×PBS and incubated with fluorescent-label-coupled
448 secondary antibodies (Alexa 488 or 633-conjugated goat anti-rabbit IgG 1:1000; Invitrogen) for 2h at
449 room temperature. After washing briefly, sections were stained with DAPI for 5min and mounted
450 with mounting medium (Solarbio, Cat#S2100). Images were acquired using Zeiss LSM 980, Leica
451 TCS SP8 gSTED or Nikon AXR laser scanning microscope at 20×.

452 **Quantification of FOS⁺ neurons and EGFP⁺OXTR⁺ neurons**

453 Densities of c-Fos⁺ cells in hippocampal regions of SD rats were quantified using systematic optical
454 density measurements by ImageJ, following a similar approach to a previously published protocol
455 (Ghashghaei and Barbas, 2001). Brain slices, 40 µm in thickness, spanning from Bregma -2.76 to
456 -3.96, were selected for analysis, with one brain slice chosen every 5 successive slices. The numbers
457 of labeled neurons in hippocampal regions were estimated from counts of positively stained cells in 6

458 sections per brain region. Differences in cell counts were statistically evaluated using unpaired *t*-tests
459 to examine the interactions among groups. Counting was performed by an investigator who was
460 blinded to the treatment conditions.

461 For the assessment of EGFP⁺OXTR⁺ cell counts and fluorescence intensity, images were
462 normalized to ensure uniform exposure time across all samples. Brain slices, 20 μm in thickness,
463 spanning from Bregma -3.08 to -4.52, were selected for analysis, with one brain slice chosen every 8
464 slices. Utilizing Fiji (ImageJ), the mean fluorescent intensity (MFI) was measured within a
465 designated region of interest (ROI, DG & CA3proximal) of 500 \times 500 μm^2 , along the same
466 rostro-caudal axis for each image. The MFI of OXTR in each brain slice was then calculated using
467 the formula: Final MFI = MFI of ROI – MFI of the background. Subsequently, the average Final
468 MFI across brain slices within one rat was computed.

469 **Quantification and statistical analysis**

470 All data were collected by experimenters who were blinded to the surgical treatments. The data in
471 scatter dot plots are presented as mean \pm SEM and data in box plots are displayed as the minimum
472 (Min) to the maximum (Max) values. All statistical analyses were carried out using GraphPad Prism
473 9 (GraphPad Software, Inc.) and MATLAB (R2008b, MathWorks). Student's *t* test, Wilcoxon test or
474 Mann-Whitney test was used to evaluate the statistical significance between two datasets. For
475 multiple comparisons, one-way analysis of variance (ANOVA), two-way ANOVA or Mixed-effects
476 analysis was used. The statistical significance is indicated as follows: n.s., no significance; * $p < 0.05$,
477 ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$. Detailed information for all statistical analyses
478 including sample sizes, statistical test(s), and exact *p* values when $p > 0.0001$ are presented in Table
479 S1. Example micrographs show representative results based on at least three independent biological
480 samples.

481 **References**

482 Andari, E., Duhamel, J.-R., Zalla, T., Herbrecht, E., Leboyer, M., and Sirigu, A. (2010). Promoting social behavior with
483 oxytocin in high-functioning autism spectrum disorders. *Proceedings of the National Academy of Sciences* *107*,
484 4389-4394.

485 Bartal, I.B.-A., Decety, J., and Mason, P. (2011). Empathy and pro-social behavior in rats. *Science* *334*, 1427-1430.

486 Bauminger, N., Solomon, M., Aviezer, A., Heung, K., Brown, J., and Rogers, S.J. (2008). Friendship in high-functioning
487 children with autism spectrum disorder: Mixed and non-mixed dyads. *Journal of autism and developmental
488 disorders* *38*, 1211-1229.

489 Benjamin, J., and Neumann, I.D. (2018). The Oxytocin Receptor: From Intracellular Signaling to Behavior.
490 *Physiological Reviews* 98, 1805-1908.

491 Berendzen, K.M., Sharma, R., Mandujano, M.A., Wei, Y., Rogers, F.D., Simmons, T.C., Seelke, A.M., Bond, J.M.,
492 Larios, R., and Goodwin, N.L. (2023). Oxytocin receptor is not required for social attachment in prairie voles.
493 *Neuron* 111, 787-796. e784.

494 Berkman, L.F., Melchior, M., Chastang, J.-F., Niedhammer, I., Leclerc, A., and Goldberg, M. (2004). Social integration
495 and mortality: a prospective study of French employees of Electricity of France–Gas of France: the GAZEL
496 Cohort. *American journal of epidemiology* 159, 167-174.

497 Burkett, J.P., Andari, E., Johnson, Z.V., Curry, D.C., de Waal, F.B., and Young, L.J. (2016). Oxytocin-dependent
498 consolation behavior in rodents. *Science* 351, 375-378.

499 Cameron, E.Z., Setsaas, T.H., and Linklater, W.L. (2009). Social bonds between unrelated females increase reproductive
500 success in feral horses. *Proceedings of the National Academy of Sciences* 106, 13850-13853.

501 Campbell, D.B., Datta, D., Jones, S.T., Batey Lee, E., Sutcliffe, J.S., Hammock, E.A., and Levitt, P. (2011). Association
502 of oxytocin receptor (OXTR) gene variants with multiple phenotype domains of autism spectrum disorder. *Journal*
503 of neurodevelopmental disorders 3, 101-112.

504 Carter, C.S., DeVRIES, A.C., Taymans, S.E., Roberts, R., Williams, J., and Getz, L. (1997). Peptides, steroids, and pair
505 bonding. *The integrative neurobiology of affiliation* 807, 260-272.

506 Christov-Moore, L., Simpson, E.A., Coudé, G., Grigaityte, K., Iacoboni, M., and Ferrari, P.F. (2014). Empathy: gender
507 effects in brain and behavior. *Neurosci Biobehav Rev* 46 Pt 4, 604-627.

508 Du, R., Luo, W.J., Geng, K.W., Li, C.L., Yu, Y., Wei, N., and Chen, J. (2020). Empathic Contagious Pain and
509 Consolation in Laboratory Rodents: Species and Sex Comparisons. *Neuroscience Bulletin* 36, 649-653.

510 Dunbar, R.I. (2010). The social role of touch in humans and primates: behavioural function and neurobiological
511 mechanisms. *Neuroscience & Biobehavioral Reviews* 34, 260-268.

512 El-Ayache, N., and Galligan, J.J. (2020). The rat in neuroscience research. In *The Laboratory Rat* (Elsevier), pp.
513 1003-1022.

514 Feldman, R. (2007). Parent–infant synchrony: Biological foundations and developmental outcomes. *Current directions in*
515 *psychological science* 16, 340-345.

516 Feldman, R. (2017). The neurobiology of human attachments. *Trends in cognitive sciences* 21, 80-99.

517 Ghashghaei, H., and Barbas, H. (2001). Neural interaction between the basal forebrain and functionally distinct prefrontal
518 cortices in the rhesus monkey. *Neuroscience* 103, 593-614.

519 Gobrogge, K., and Wang, Z. (2016). The ties that bond: neurochemistry of attachment in voles. *Current Opinion in*
520 *Neurobiology* 38, 80-88.

521 Goldberg, S. (1983). Parent-infant bonding: Another look. *Child development*, 1355-1382.

522 Guastella, A.J., Einfeld, S.L., Gray, K.M., Rinehart, N.J., Tonge, B.J., Lambert, T.J., and Hickie, I.B. (2010). Intranasal
523 oxytocin improves emotion recognition for youth with autism spectrum disorders. *Biological psychiatry* 67,
524 692-694.

525 Hart, B.L., and Hart, L.A. (1992). Reciprocal allogrooming in impala, *Aepyceros melampus*. *Animal Behaviour* 44,
526 1073-1083.

527 Hill, K., Barton, M., and Hurtado, A.M. (2009). The emergence of human uniqueness: Characters underlying behavioral
528 modernity. *Evolutionary Anthropology: Issues, News, and Reviews: Issues, News, and Reviews* 18, 187-200.

529 Holt-Lunstad, J., Smith, T.B., and Layton, J.B. (2010). Social relationships and mortality risk: a meta-analytic review.
530 *PLoS medicine* 7, e1000316.

531 Insel, T.R. (2010). The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative
532 behavior. *Neuron* 65, 768-779.

533 Jablonski, N.G. (2021). Social and affective touch in primates and its role in the evolution of social cohesion.

534 *Neuroscience* 464, 117-125.

535 Jiang, M., Wang, M., Shi, Q., Wei, L., Lin, Y., Wu, D., Liu, B., Nie, X., Qiao, H., and Xu, L. (2021). Evolution and

536 neural representation of mammalian cooperative behavior. *Cell Reports* 37, 110029.

537 Johnson, Z.V., and Young, L.J. (2015). Neurobiological mechanisms of social attachment and pair bonding. *Current*

538 *opinion in behavioral sciences* 3, 38-44.

539 Jost, B.C., and Grossberg, G.T. (1996). The evolution of psychiatric symptoms in Alzheimer's disease: a natural history

540 study. *Journal of the American Geriatrics Society* 44, 1078-1081.

541 Kohn, G.M. (2017). Friends give benefits: autumn social familiarity preferences predict reproductive output. *Animal*

542 *behaviour* 132, 201-208.

543 Lackey, C., and Williams, K.R. (1995). Social bonding and the cessation of partner violence across generations. *Journal*

544 *of Marriage and the Family*, 295-305.

545 Lerer, E., Levi, S., Salomon, S., Darvazi, A., Yirmiya, N., and Ebstein, R. (2008). Association between the oxytocin

546 receptor (OXTR) gene and autism: relationship to Vineland Adaptive Behavior Scales and cognition. *Molecular*

547 *psychiatry* 13, 980-988.

548 Levinger, G. (1980). Toward the analysis of close relationships. *Journal of experimental social psychology* 16, 510-544.

549 Li, C.-L., Yu, Y., He, T., Wang, R.-R., Geng, K.-W., Du, R., Luo, W.-J., Wei, N., Wang, X.-L., and Wang, Y. (2018).

550 Validating rat model of empathy for pain: effects of pain expressions in social partners. *Frontiers in Behavioral*

551 *Neuroscience*, 242.

552 Lim, M.M., and Young, L.J. (2006). Neuropeptidergic regulation of affiliative behavior and social bonding in animals.

553 *Hormones and behavior* 50, 506-517.

554 Lin, Y.-T., Hsieh, T.-Y., Tsai, T.-C., Chen, C.-C., Huang, C.-C., and Hsu, K.-S. (2018). Conditional deletion of

555 hippocampal CA2/CA3a oxytocin receptors impairs the persistence of long-term social recognition memory in

556 mice. *Journal of Neuroscience* 38, 1218-1231.

557 Lin, Y.-T., and Hsu, K.-S. (2018). Oxytocin receptor signaling in the hippocampus: Role in regulating neuronal

558 excitability, network oscillatory activity, synaptic plasticity and social memory. *Progress in Neurobiology* 171,

559 1-14.

560 Liu, B., Qiao, L., Liu, K., Liu, J., Piccinni-Ash, T.J., and Chen, Z.-F. (2022). Molecular and neural basis of pleasant

561 touch sensation. *Science* 376, 483-491.

562 LoParo, D., and Waldman, I. (2015). The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: a

563 meta-analysis. *Molecular psychiatry* 20, 640-646.

564 Lu, Y.-F., Ren, B., Ling, B.-F., Zhang, J., Xu, C., and Li, Z. (2018). Social interaction with a cagemate in pain increases

565 allogrooming and induces pain hypersensitivity in the observer rats. *Neuroscience letters* 662, 385-388.

566 Marlin, B.J., Mitre, M., D'amour, J.A., Chao, M.V., and Froemke, R.C. (2015). Oxytocin enables maternal behaviour by

567 balancing cortical inhibition. *Nature* 520, 499-504.

568 Mason, P. (2021). Lessons from helping behavior in rats. *Current Opinion in Neurobiology* 68, 52-56.

569 Nadler, J.J., Moy, S.S., Dold, G., Trang, D., Simmons, N., Perez, A., Young, N.B., Barbaro, R.P., Piven, J., Magnuson,

570 T.R., *et al.* (2004). Automated apparatus for quantitation of social approach behaviors in mice. *Genes Brain and*

571 *Behavior* 3, 303-314.

572 Netser, S., Meyer, A., Magalnik, H., Zylbertal, A., de la Zerda, S.H., Briller, M., Bizer, A., Grinevich, V., and Wagner, S.

573 (2020). Distinct dynamics of social motivation drive differential social behavior in laboratory rat and mouse

574 strains. *Nature Communications* 11, 5908.

575 Nummenmaa, L., Tuominen, L., Dunbar, R., Hirvonen, J., Manninen, S., Arponen, E., Machin, A., Hari, R., Jääskeläinen,
576 I.P., and Sams, M. (2016). Social touch modulates endogenous μ -opioid system activity in humans. *NeuroImage*
577 138, 242-247.

578 Ooi, Y.P., Weng, S.-J., Kossowsky, J., Gerger, H., and Sung, M. (2017). Oxytocin and autism spectrum disorders: a
579 systematic review and meta-analysis of randomized controlled trials. *Pharmacopsychiatry* 50, 5-13.

580 Pan, L., Zheng, L., Wu, X., Zhu, Z., Wang, S., Lu, Y., He, Y., Yang, Q., Ma, X., and Wang, X. (2022). A short period of
581 early life oxytocin treatment rescues social behavior dysfunction via suppression of hippocampal hyperactivity in
582 male mice. *Molecular Psychiatry*, 1-15.

583 Pellow, S., Chopin, P., File, S.E., and Briley, M. (1985). Validation of open: closed arm entries in an elevated plus-maze
584 as a measure of anxiety in the rat. *Journal of neuroscience methods* 14, 149-167.

585 Porcelli, S., Van Der Wee, N., van der Werff, S., Aghajani, M., Glennon, J.C., van Heukelum, S., Mogavero, F., Lobo,
586 A., Olivera, F.J., and Lobo, E. (2019). Social brain, social dysfunction and social withdrawal. *Neuroscience &*
587 *Biobehavioral Reviews* 97, 10-33.

588 Raam, T., McAvoy, K.M., Besnard, A., Veenema, A., and Sahay, A. (2017). Hippocampal oxytocin receptors are
589 necessary for discrimination of social stimuli. *Nature Communications* 8.

590 Rault, J.L. (2019). Be kind to others: Prosocial behaviours and their implications for animal welfare. *Applied Animal*
591 *Behaviour Science* 210, 113-123.

592 Saarinen, A., Harjunen, V., Jasinskaja-Lahti, I., Jääskeläinen, I.P., and Ravaja, N. (2021). Social touch experience in
593 different contexts: A review. *Neuroscience & Biobehavioral Reviews* 131, 360-372.

594 Sato, N., Tan, L., Tate, K., and Okada, M. (2015). Rats demonstrate helping behavior toward a soaked conspecific.
595 *Animal cognition* 18, 1039-1047.

596 Schweinfurth, M.K. (2020). The social life of Norway rats (*Rattus norvegicus*). *Elife* 9, e54020.

597 Schweinfurth, M.K., Neuenschwander, J., Engqvist, L., Schneeberger, K., Rentsch, A.K., Gygax, M., and Taborsky, M.
598 (2017). Do female Norway rats form social bonds? *Behavioral Ecology and Sociobiology* 71, 1-9.

599 Schweinfurth, M.K., and Taborsky, M. (2018). Relatedness decreases and reciprocity increases cooperation in Norway
600 rats. *Proceedings of the Royal Society B: Biological Sciences* 285, 20180035.

601 Seyfarth, R.M., and Cheney, D.L. (2012). The evolutionary origins of friendship. *Annual review of psychology* 63,
602 153-177.

603 Silk, J.B. (2007). Social components of fitness in primate groups. *Science* 317, 1347-1351.

604 Silk, J.B., Beehner, J.C., Bergman, T.J., Crockford, C., Engh, A.L., Moscovice, L.R., Wittig, R.M., Seyfarth, R.M., and
605 Cheney, D.L. (2009). The benefits of social capital: close social bonds among female baboons enhance offspring
606 survival. *Proceedings of the Royal Society B: Biological Sciences* 276, 3099-3104.

607 Spruijt, B.M., Vanhooff, J., and Gispen, W.H. (1992). ETHOLOGY AND NEUROBIOLOGY OF GROOMING
608 BEHAVIOR. *Physiological Reviews* 72, 825-852.

609 Stieger, B., Schweinfurth, M.K., and Taborsky, M. (2017). Reciprocal allogrooming among unrelated Norway rats
610 (*Rattus norvegicus*) is affected by previously received cooperative, affiliative and aggressive behaviours.
611 *Behavioral Ecology and Sociobiology* 71, 1-12.

612 Tough, H., Siegrist, J., and Fekete, C. (2017). Social relationships, mental health and wellbeing in physical disability: a
613 systematic review. *BMC public health* 17, 1-18.

614 Tsai, T.-C., Fang, Y.-S., Hung, Y.-C., Hung, L.-C., and Hsu, K.-S. (2022). A dorsal CA2 to ventral CA1 circuit
615 contributes to oxytocinergic modulation of long-term social recognition memory. *Journal of biomedical science* 29,
616 1-20.

617 Umberson, D., and Karas Montez, J. (2010). Social relationships and health: A flashpoint for health policy. *Journal of*
618 *health and social behavior* 51, S54-S66.

619 Val-Laillet, D., Guesdon, V., von Keyserlingk, M.A., de Passillé, A.M., and Rushen, J. (2009). Allogrooming in cattle:
620 Relationships between social preferences, feeding displacements and social dominance. *Applied Animal
621 Behaviour Science* *116*, 141-149.

622 Valery, G., and Ron, S. (2018). Interplay between Oxytocin and Sensory Systems in the Orchestration of
623 Socio-Emotional Behaviors. *Neuron* *99*, 887-904.

624 Walum, H., and Young, L.J. (2018). The neural mechanisms and circuitry of the pair bond. *Nature reviews Neuroscience*
625 *19*.

626 Warfvinge, K., Krause, D., and Edvinsson, L. (2020). The distribution of oxytocin and the oxytocin receptor in rat brain:
627 relation to regions active in migraine. *Journal of Headache and Pain* *21*.

628 Weber, E.M., Zidar, J., Ewaldsson, B., Askevik, K., Udén, E., Svensk, E., and Törnqvist, E. (2022). Aggression in
629 Group-Housed Male Mice: A Systematic Review. *Animals* (Basel) *13*.

630 Wu, S., Jia, M., Ruan, Y., Liu, J., Guo, Y., Shuang, M., Gong, X., Zhang, Y., Yang, X., and Zhang, D. (2005). Positive
631 association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. *Biological
632 psychiatry* *58*, 74-77.

633 Wu, Y.E., Dang, J.M., Kingsbury, L., Zhang, M.M., Sun, F.M., Hu, R.F.K., and Hong, W.Z. (2021). Neural control of
634 affiliative touch in prosocial interaction. *Nature* *599*, 262-+.

635 Yang, C.F., Chiang, M.C., Gray, D.C., Prabhakaran, M., Alvarado, M., Juntti, S.A., Unger, E.K., Wells, J.A., and Shah,
636 N.M. (2013). Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and
637 aggression in males. *Cell* *153*, 896-909.

638 Young, L.J., and Barrett, C.E. (2015). Can oxytocin treat autism? *Science* *347*, 825-826.

639 Yu, Y., Li, C.L., Du, R., and Chen, J. (2019). Rat Model of Empathy for Pain. *Bio-Protocol* *9*.

640 Zhang, M.-M., Geng, A.-Q., Chen, K., Wang, J., Wang, P., Qiu, X.-T., Gu, J.-X., Fan, H.-W., Zhu, D.-Y., and Yang,
641 S.-M. (2022). Glutamatergic synapses from the insular cortex to the basolateral amygdala encode observational
642 pain. *Neuron* *110*, 1993-2008. e1996.

643

644 **Acknowledgments**

645 We thank Dr. Yi Rao for providing LSL-Cas9 rats. We thank Dr. Wei Zhang at Tsinghua university
646 for valuable suggestions on the manuscript. We thank Dr. Chao Ma and Dr. Fan Liu at the Institute
647 of Basic Medical Sciences Chinese Academy of Medical Sciences for help with pain sensitivity
648 threshold test. We also thank Dr. Jianjun Zhang at Institute of Psychology, Chinese Academy of
649 Sciences for providing Any-maze software. We thank National Center for Protein Sciences at Peking
650 University in Beijing, China, for assistance with serum CORT measurement, acquiring confocal
651 images, and making rat behavior graphs. This work was supported by grant 2021ZD0203300 from
652 the Ministry of Science and Technology of the People's Republic of China, grant 2021-I2M-1-034
653 from the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, grant
654 3332021040 from Fundamental Research Funds for the Central Universities, grant 2060204 from

655 State Key Laboratory Special Fund, grant KF-202302 from the Open Research Fund of the National
656 Center for Protein Sciences at Peking University in Beijing and Y.H. is an awardee of Young Elite
657 Scientist Sponsorship Program by Beijing Association for Science and Technology.

658 **Author information**

659 Laixin Liu

660 Present address: School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking
661 University McGovern Institute, Peking University, Beijing

662 Authors and affiliations

663 Department of Physiology, Institute of Basic Medical Sciences Chinese Academy of Medical
664 Sciences, School of Basic Medicine Peking Union Medical College, Beijing

665 Yufei Hu, Wensi Li, Yinji Zhao, Yuying Liu, Wenyu Sun, Yi Yan, Laixin Liu & Pu Fan
666 Chinese Institute for Brain Research, Beijing

667 Bowen Deng

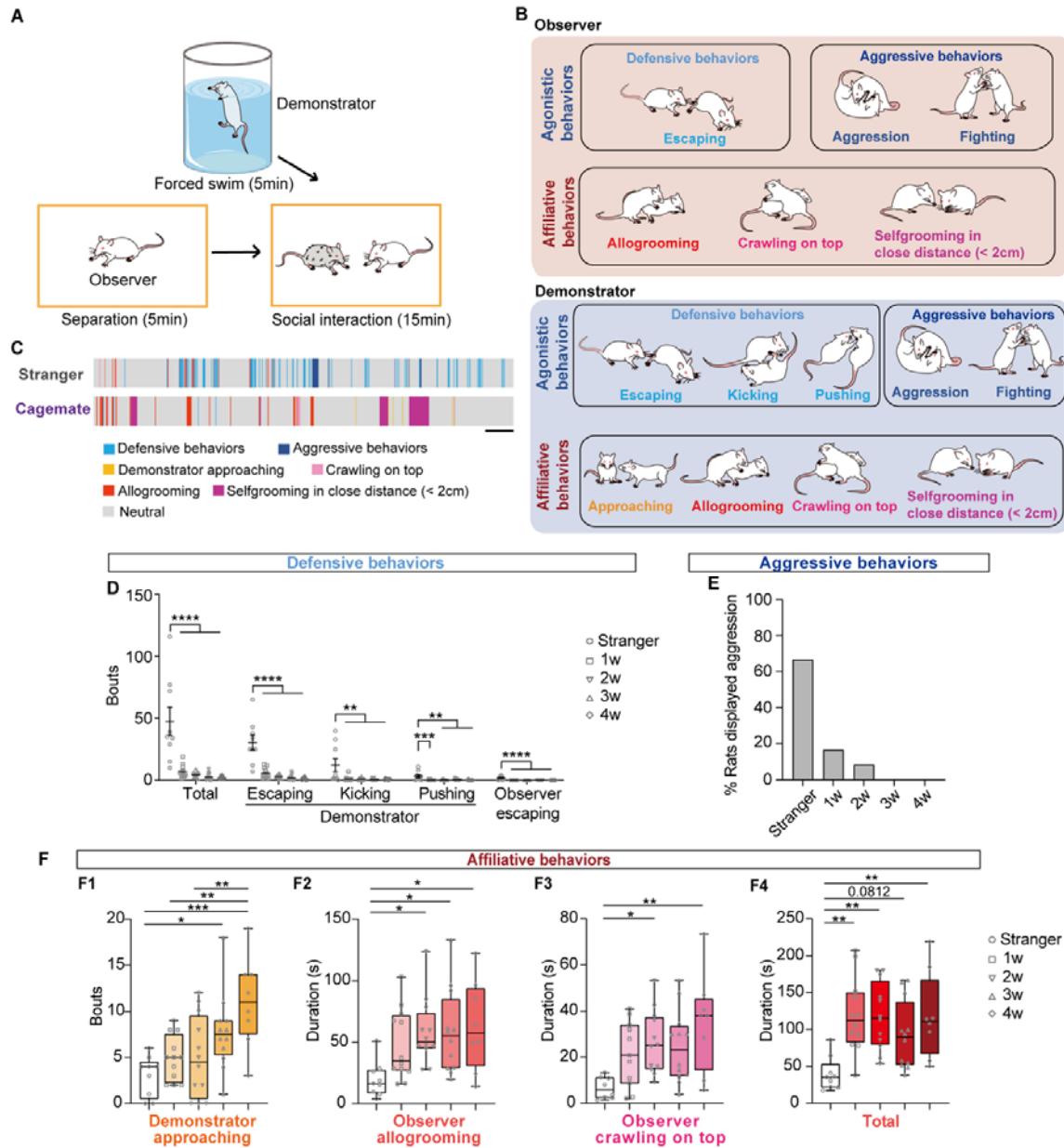
668 Contributions

669 Y.H., W.L., Y.Z., Y.L., Y.Y., and L.L. performed the experiments. B.D. contributed the generation
670 of LSL-Cas9 rat. Y.H. and P.F. analyzed data and wrote the manuscript. Y.H. and W.S. made the
671 figures. All authors discussed and commented on the manuscript.

672 Corresponding author

673 Correspondence to Pu Fan.

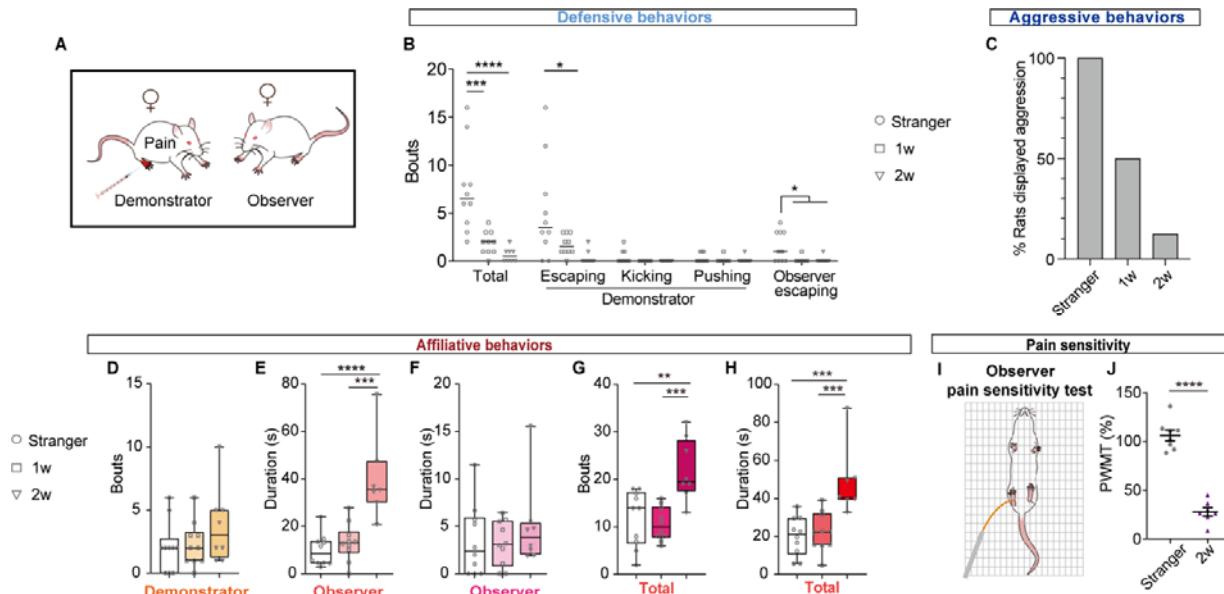
674 **Competing interests**


675 The authors declare no competing interests.

676 **Data and materials availability**

677 All data is available in the main text and the supplementary materials.

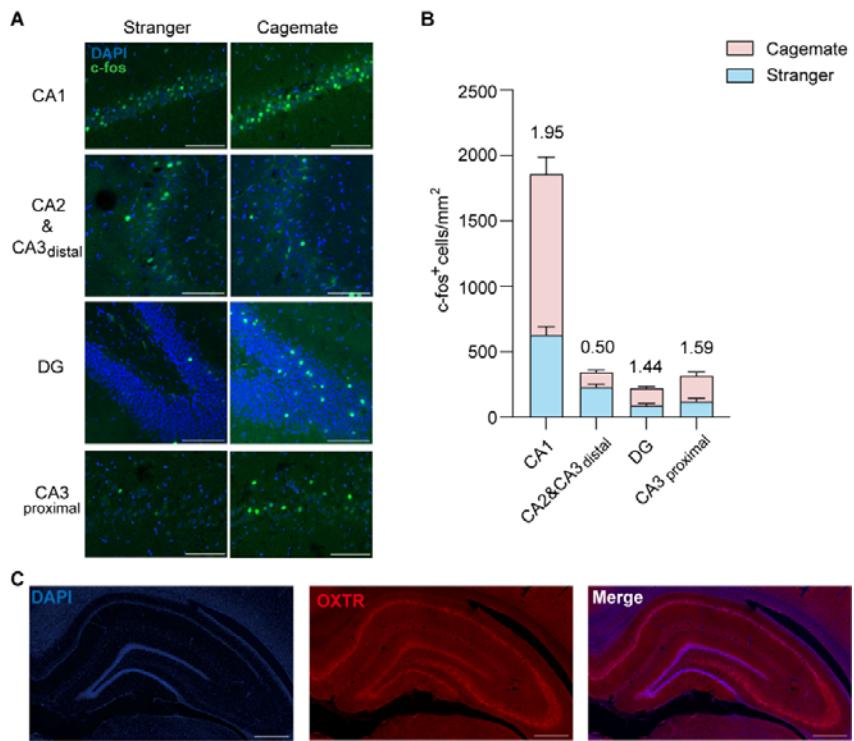
678


679 **Figures**

680

681 **Fig. 1. Rats exhibit close social relationships with their familiar peers in distress.** (A) Schematic
 682 of forced-swimming consolation experiment setup. (B) Agonistic and affiliative behavior types during
 683 the experiment. (C) Behavioral description in two example sessions. Colors denote the different
 684 behaviors, as labeled in the key. Scale bar, 1 min. (D) Comparison of defensive behaviors in female
 685 rats co-housed for different durations. $n_{\text{stranger}} = 9$, $n_{1w} = 12$, $n_{2w} = 12$, $n_{3w} = 12$, $n_{4w} = 8$, One-way
 686 analysis of variance (ANOVA) followed by Tukey's multiple comparisons test, Mean \pm SEM, $**P <$
 687 0.01 , $***P < 0.001$, $****P < 0.0001$. (E) Ratio of aggressive behaviors in each group. $n_{\text{stranger}} = 9$, $n_{1w} = 12$,
 688 $n_{2w} = 12$, $n_{3w} = 12$, $n_{4w} = 8$. (F) Comparison of affiliative behaviors in female rats co-housed for

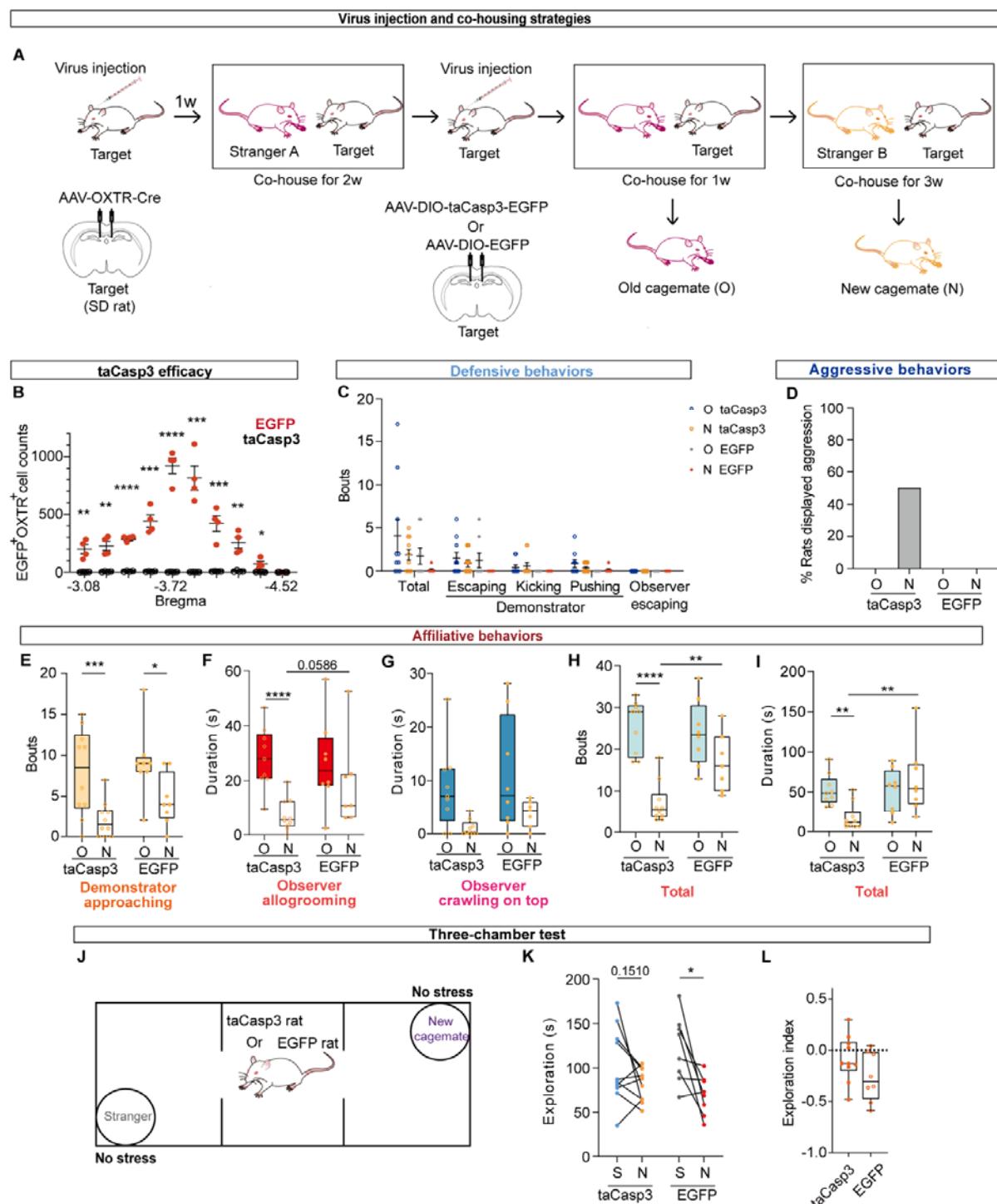
689 different durations. $n_{stranger} = 9$, $n_{1w} = 12$, $n_{2w} = 12$, $n_{3w} = 12$, $n_{4w} = 8$, One-way ANOVA followed by
690 Tukey's multiple comparisons test, $*P < 0.05$, $**P < 0.01$, $***P < 0.001$.
691
692


693

694 **Fig. 2. Rats exhibit close social relationships with their familiar peers in pain.** (A) Experimental
695 setup of an acute pain-induced stress model of female rats co-housed at different durations; resulting
696 social behaviors were recorded. (B) Comparison of defensive behaviors in female rats co-housed for
697 different durations. $n_{\text{stranger}} = 10$, $n_{1\text{w}} = 10$, $n_{2\text{w}} = 8$, One-way ANOVA followed by Tukey's multiple
698 comparisons test, $*P < 0.05$, $***P < 0.001$, $****P < 0.0001$. (C) Ratio of aggressive behaviors in each
699 group. (D-H) Comparison of affiliative behaviors in female rats co-housed for different durations.
700 $n_{\text{stranger}} = 10$, $n_{1\text{w}} = 10$, $n_{2\text{w}} = 8$, One-way ANOVA followed by Tukey's multiple comparisons test, $**P < 0.01$,
701 $***P < 0.001$, $****P < 0.0001$. (I) Schematic diagram of observer pain sensitivity test. (J) Comparison of paw withdrawal mechanical thresholds (PWMT) from stranger and familiar rats.
702 PWMT (%) = $\text{PWMT}_{\text{post-treatment}} / \text{PWMT}_{\text{baseline}} \times 100$. $n_{\text{stranger}} = 8$, $n_{2\text{w}} = 7$, unpaired Student's t -test,
703 Mean \pm SEM, $****P < 0.0001$.

704

705

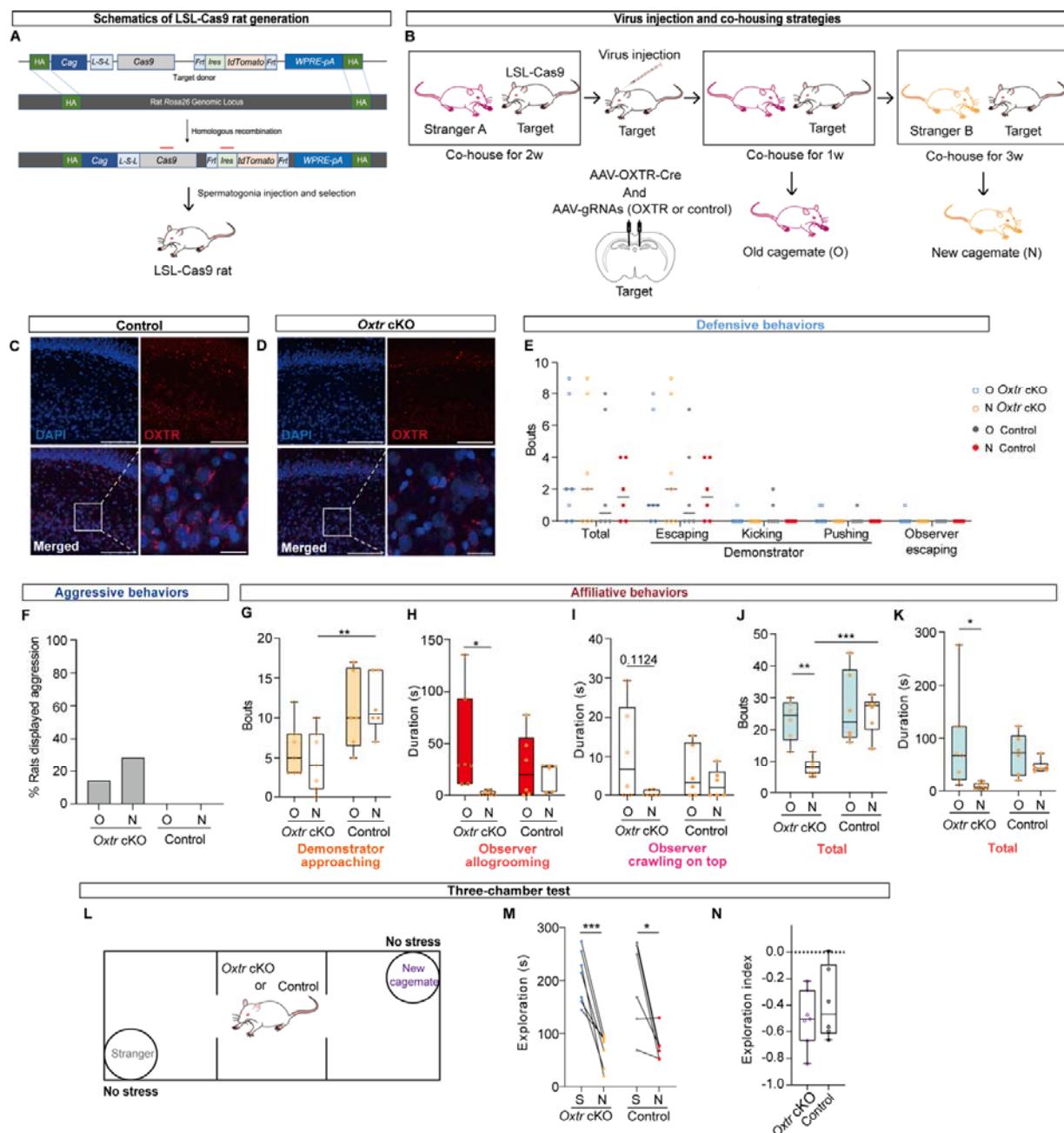

706

707
708 **Fig. 3. Dorsal hippocampal neural activities of observers are distinct when exploring distressed**
709 **stranger or cagemate.** (A) Representative images showing FOS⁺ neurons in the subregions of

710 hippocampus from the cagemate and stranger observers (scale bars, 100 μ m). (B) Histogram showing
711 the number of FOS⁺ neurons per mm^2 in CA1, CA2/CA3_{distal}, DG and CA3_{proximal}. The ratio of
712 Cagemate/Stranger in each region is indicated on the up side of the bar chart. $N_{\text{total}}=18$ (3 rats and 6
713 sections for each rat). (C) Representative images of OXTR expressions in dorsal hippocampus. Scale
714 bar, 500 μ m.

715
716

717


718 **Fig. 4. Ablating dorsal hippocampal OXTR⁺ neurons impede peer bonding establishment. (A)**
 719 Virus injection and co-housing strategies. SD female rats (Target rats) were firstly injected with AAVs
 720 virus to express Cre in dorsal hippocampal OXTR⁺ neurons. After 1-week recovery and 2-weeks
 721 co-housing with SD female rats (Stranger A), they were randomly chosen as control target (EGFP) or
 722 treatment target (taCasp3) by injecting the corresponding Cre-dependent virus. After one more week
 723 co-housed with treatment or control rats, Stranger A rats were replaced with Stranger B rats for another
 724 3 weeks. Stranger A and Stranger B were old cagemate (O) and new cagemate (N) of the target,

725 respectively. **(B)** The efficacy of taCasp3 on ablating dorsal hippocampal OXTR-expressing neurons
726 from Bregma -3.08 to Bregma -4.52 after virus were injected for 5 weeks. n=4 for each group,
727 unpaired Student's *t*-test, Mean \pm SEM, **P* < 0.05, ***P* < 0.01, ****P* < 0.001, *****P* < 0.0001. **(C)**
728 Comparison of defensive behaviors of female rats in treatment (taCasp3) and control (EGFP) groups.
729 n_{taCasp3}=10 pairs for both old and new cagemate social interactions, n_{EGFP}= 8 pairs for old cagemate
730 social interaction and n_{EGFP}= 7 pairs for new cagemate social interaction (an outlier was excluded),
731 Mean \pm SEM, Mixed-effects analysis, ns, no significance. **(D)** Ratio of aggressive behaviors in each
732 group. n_{taCasp3}=10 pairs, n_{EGFP}= 8 pairs for both old and new cagemate social interactions. **(E-I)**
733 Comparison of affiliative behaviors in female rats in treatment and control groups. n_{taCasp3}=9-10 pairs,
734 n_{EGFP}= 7-8 pairs for old and new cagemate social interactions, Mixed-effects analysis, **P* < 0.05, ***P*
735 < 0.01, ****P* < 0.001, *****P* < 0.0001. **(J-L)** Social preference comparison of treatment and control
736 rats. Experimental setup **(J)**; statistical analysis of exploration time **(K)** and index **(L)**, Exploration
737 index = (Time_{new cagemate} – Time_{stranger})/(Time_{new cagemate} + Time_{stranger}). n= 8–10, Paired Student's *t*-test
738 **(K)**, unpaired Student's *t*-test **(L)**, **P* < 0.05.

739

740

741

742

743 **Fig. 5. Dorsal hippocampal *Oxtre* regulates peer bonding establishment.** (A) Schematics of
 744 generating LSL-Cas9 rat. Red bars indicate the locations of primers for genotyping. (B) Virus injection
 745 and co-housing strategies. (C-D) Representative images of OXTR expressions in dorsal hippocampus
 746 (DG and CA3_{proximal}) of control rats (C) and *Oxtr* conditional knockout rats (D) after viruses were
 747 injected for 5 weeks. Scale bar, 100 μm (scale bar: 20 μm for the enlarged images). (E) Comparison of
 748 defensive behaviors of female rats in treatment (*Oxtr* cKO) and control groups. $n_{Oxtr\ cKO}=7$ pairs,
 749 $n_{control}=6$ pairs, Two-way repeated ANOVA followed by Šídák's multiple comparisons test, no
 750 significance. (F) Ratio of aggressive behaviors in each group. $n_{Oxtr\ cKO}=7$ pairs, $n_{control}=6$ pairs for both
 751 old and new cagemate social interactions. (G-K) Comparison of affiliative behaviors in female rats in
 752 treatment and control groups. $n_{Oxtr\ cKO}=6-7$ pairs, $n_{control}=6$ pairs for old and new cagemate social

753 interactions, Two-way repeated ANOVA followed by Šídák's multiple comparisons test (**G-H, J-K**),
754 Mixed-effects analysis (**I**), $*P < 0.05$, $**P < 0.01$, $***P < 0.001$. **L-N**, Social preference comparison of
755 treatment and control rats. Experimental setup (**L**); statistical analysis of exploration time (**M**) and
756 index (**N**), Exploration index = $(\text{Time}_{\text{new cagemate}} - \text{Time}_{\text{stranger}}) / (\text{Time}_{\text{new cagemate}} + \text{Time}_{\text{stranger}})$. $n=6-7$,
757 Paired student's *t*-test (**M**), unpaired Student's *t*-test (**N**), $*P < 0.05$, $***P < 0.001$.
758
759