

1 **Mitochondrial Apolipoprotein MIC26 is a metabolic rheostat**
2 **regulating central cellular fuel pathways**

3 Melissa Lubeck¹, Ritam Naha¹, Yulia Schaumkessel¹, Philipp Westhoff^{2,3}, Anja Stefanski⁴,
4 Patrick Petzsch⁵, Kai Stühler^{4,6}, Karl Köhrer⁵, Andreas P. M. Weber^{2,3}, Ruchika Anand¹,
5 Andreas S. Reichert¹, Arun Kumar Kondadi^{1*}

6 ¹Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital
7 Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany

8 ²Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich
9 Heine University Düsseldorf, Düsseldorf, Germany

10 ³Plant Metabolism and Metabolomics Laboratory, Cluster of Excellence on Plant Sciences
11 (CEPLAS), Heinrich Heine University, D-40225 Düsseldorf, Germany

12 ⁴Molecular Proteomics Laboratory, Medical Faculty and University Hospital, Heinrich Heine
13 University Düsseldorf, Düsseldorf, Germany

14 ⁵Genomics & Transcriptomics Laboratory, BMFZ, Heinrich Heine University Düsseldorf,
15 Düsseldorf, Germany

16 ⁶Institute of Molecular Medicine, Protein Research, Medical Faculty and University Hospital,
17 Heinrich Heine University Düsseldorf, Düsseldorf, Germany

18 Correspondence: kondadi@hhu.de

19 **Summary**

20 Mitochondria play central roles in metabolism and metabolic disorders such as type 2 diabetes.
21 MIC26, a MICOS complex subunit, was linked to diabetes and modulation of lipid metabolism.
22 Yet, the functional role of MIC26 in regulating metabolism under hyperglycemia is not
23 understood. We employed a multi-omics approach combined with functional assays using WT
24 and *MIC26* KO cells cultured in normoglycemia or hyperglycemia, mimicking altered nutrient
25 availability. We show that MIC26 has an inhibitory role in glycolysis and cholesterol/lipid
26 metabolism under normoglycemic conditions. Under hyperglycemia, this inhibitory role is
27 reversed demonstrating that MIC26 is critical for metabolic adaptations. This is partially
28 mediated by alterations of mitochondrial metabolite transporters. Furthermore, *MIC26* deletion
29 led to a major metabolic rewiring of glutamine utilization as well as oxidative phosphorylation.
30 We propose that MIC26 acts as a metabolic 'rheostat', that modulates mitochondrial metabolite
31 exchange via regulating mitochondrial cristae, allowing cells to cope with nutrient overload.

32 **Key words**

33 Mitochondria, Apolipoproteins, MIC26, MICOS complex and Fatty acid metabolism

34 Introduction

35 The increasing prevalence of global obesity is a huge biological risk factor for development of
36 a range of chronic diseases including cardiovascular diseases, musculoskeletal and metabolic
37 disorders (Collaborators *et al*, 2017). At the cellular level, obesity is associated with DNA
38 damage, inflammation, oxidative stress, lipid accumulation and mitochondrial dysfunction
39 (Włodarczyk & Nowicka, 2019). Mitochondria play central roles in anabolic and catabolic
40 pathways (Spinelli & Haigis, 2018) and as a consequence mitochondrial dysfunction is
41 associated with a variety of metabolic diseases such as type 2 diabetes mellitus (T2DM)
42 (Szendoedi *et al*, 2011). Mitochondrial dysfunction is often linked to abnormal mitochondrial
43 ultrastructure (Eramo *et al*, 2020; Kondadi *et al*, 2020b; Zick *et al*, 2009) and abnormal
44 mitochondrial ultrastructure was also associated with diabetes (Bugger *et al*, 2008; Xiang *et*
45 *al*, 2020). Mitochondria harbour two membranes, the mitochondrial outer membrane (OM) and
46 the inner membrane (IM). The part of the IM closely apposed to the OM is termed the inner
47 boundary membrane (IBM) whereas the IM which invaginates towards the mitochondrial matrix
48 is termed the cristae membrane (CM). Crista junctions (CJs) are pore-like structures around
49 12 to 25 nm in diameter, separating the IBM and CM, and are proposed to act as diffusion
50 barriers for proteins and metabolites (Frey & Mannella, 2000; Mannella *et al*, 2013). Formation
51 of CJs depends on Mic60 (Fcj1, Mitofillin, IMMT) which was shown to be located at CJs
52 regulating cristae formation in concert with the F₁F₀ ATP synthase (Rabl *et al*. 2009). Mic60 is
53 a subunit of the 'mitochondrial contact site and cristae organising system' (MICOS) complex
54 (Harner *et al*, 2011; Hoppins *et al*, 2011; von der Malsburg *et al*, 2011) which consists of seven
55 proteins organised into two subcomplexes: MIC60/MIC19/MIC25 and MIC10/MIC26/MIC27
56 with MIC13 stabilizing the MIC10 subcomplex in mammals (Anand *et al*, 2016; Guarani *et al*,
57 2015; Urbach *et al*, 2021). MIC26/APOO harbours an apolipoprotein A1/A4/E family domain
58 and therefore was classified as an apolipoprotein (Koob *et al*, 2015; Lamant *et al*, 2006).
59 Traditionally, apolipoproteins mediate lipid and cholesterol metabolism by facilitating the
60 formation of lipoproteins and regulating their distribution to different tissues via the blood
61 stream (Mehta & Shapiro, 2022). Initially, MIC26 was identified as a protein of unknown
62 function in cardiac transcriptome of dogs fed with high-fat diet (HFD) (Philip-Couderc *et al*,
63 2003) and was incorrectly assumed to exist as a 55 kDa O-linked glycosylated protein as it
64 was immunopositive to a custom-generated MIC26 antibody in samples of human serum, heart
65 tissue and HepG2 cell line (Lamant *et al.*, 2006). However, the recombinant protein was only
66 observed at the expected size of 22 kDa (Lamant *et al.*, 2006) and it was later shown that this
67 22 kDa form is located to mitochondria (Koob *et al.*, 2015; Ott *et al*, 2015). Moreover, using
68 several cellular *MIC26* deletion models and different antibodies, we showed recently that
69 *MIC26* is exclusively present as a 22 kDa mitochondrial protein and not as a 55 kDa protein
70 (Lubeck *et al*, 2023). In light of these findings, the primary physiological function of *MIC26* in

71 diabetes is linked to its role in the mitochondrial IM and not to an earlier proposed secreted
72 form of MIC26.

73 Mutations in *MIC26* were reported to result in mitochondrial myopathy, lactic acidosis and
74 cognition defects (Beninca *et al*, 2021) as well as a lethal progeria-like phenotype (Peifer-Wei^ß
75 *et al*, 2023). Interestingly, there is an intricate connection between MIC26 and metabolic
76 disorders. Patients with diabetes (Lamant *et al*, 2006) and dogs fed with a HFD for 9 weeks
77 (Philip-Couderc *et al*, 2003) showed increased *Mic26* transcripts in the heart. Accordingly,
78 adenovirus-mediated human *MIC26* overexpression in mice, administered through the tail
79 vein, led to increased levels of triacylglycerides (TAG) in murine plasma, when fed with HFD,
80 and TAG accumulation in the murine liver (Tian *et al*, 2017). In another study, MIC26
81 transgenic mice hearts displayed an increase of diacylglycerides (DAG) but not TAG (Turkieh
82 *et al*, 2014) as in the previous described study (Tian *et al*, 2017) suggesting modulatory roles
83 of MIC26 in lipid metabolism. Recently, in mitochondria-rich brown adipose tissue (BAT),
84 downregulation of *Mic26* mRNA and protein levels were reported in diet-induced or leptin-
85 deficient obese (ob/ob) murine models compared to the respective controls. Mice with an
86 adipose tissue specific deletion of *Mic26* which were fed with a HFD gained more total body
87 weight and adipose tissue fat mass than control mice (Guo *et al*, 2023). Hence, we hypothesize
88 that MIC26 has an unidentified regulatory role under nutrient-enriched conditions. Therefore,
89 in order to understand the function of MIC26, we used WT and *MIC26* KO cells as a model
90 system under standard glucose culture conditions as well as excessive glucose culture
91 conditions termed normoglycemia and hyperglycemia, respectively. We employed a multi-
92 omics approach encompassing transcriptomics, proteomics and targeted metabolomics to
93 investigate the pathways regulated by MIC26. We found that the function of MIC26 is critical
94 in various pathways regulating fatty acid synthesis, oxidation, cholesterol metabolism and
95 glycolysis. Interestingly, we observed an entirely antagonistic effect of cellular *de novo*
96 lipogenesis in *MIC26* KO cells compared to WT cells depending on the applied nutrient
97 conditions. This showed that the response to high glucose conditions is strongly dependent on
98 the presence of MIC26. In addition, we found that cells deleted for *MIC26* displayed alterations
99 of mitochondrial glutamine usage and oxidative phosphorylation. Overall, we propose that
100 MIC26 is a unique mitochondrial apolipoprotein functioning as a mitochondrial fuel sensor that
101 regulates central metabolic pathways to meet mitochondrial and thus cellular energy demands.

102 **Results**

103 **Mitochondrial apolipoprotein MIC26 is selectively increased in cells exposed to**
104 **hyperglycemia**

105 There is a strong link between metabolic abnormalities and pattern of *MIC26* expression.
106 Increased levels of *MIC26* transcripts were observed in diabetic patients (Lamant *et al.*, 2006)
107 and increased accumulation of lipids were found upon *Mic26* overexpression in the mouse
108 (Tian *et al.*, 2017; Turkieh *et al.*, 2014). In order to understand the role of MIC26 in cellular
109 metabolism, we used hepatocyte-derived HepG2 cells as the cellular model and generated
110 *MIC26* KO cells using the CRISPR-Cas9 system. WT and *MIC26* KO cells were grown in
111 standard (5.5 mM) and excessive concentrations of glucose (25 mM), defined as
112 normoglycemic and hyperglycemic conditions respectively throughout the manuscript, for a
113 prolonged period of three weeks to investigate long term effects of nutritional overload. Initially,
114 we checked whether there is a difference in the amounts of various MICOS proteins in WT
115 HepG2 cells grown in normoglycemia and hyperglycemia. Western blot (WB) analysis showed
116 a significant increase of MIC26 and MIC27 along with MIC25 in cells grown in hyperglycemia
117 compared to normoglycemia (**Fig 1A & B**). We did not observe any significant changes in the
118 amounts of MIC19, MIC60, MIC10 and MIC13 in WT-Hyperglycemia (WT-H) compared to WT-
119 Normoglycemia (WT-N) condition. This pointed to a specific role of the MICOS subunits,
120 MIC26, MIC27 and MIC25 when cultured in hyperglycemia compared to normoglycemia. The
121 significant increase of MIC27 and MIC25 observed in WT-H when compared to WT-N was
122 abolished in *MIC26* KOs indicating a requirement of MIC26 in this response under nutrient-
123 enriched conditions (**Fig 1A & B**).

124 The MICOS proteins regulate the IM remodelling by working in unison to maintain CJs and
125 contact sites between IM and OM (Anand *et al.*, 2021). Still, deficiency of different MICOS
126 proteins shows variable effects on the extent of CJs loss and cristae ultrastructure (Anand *et*
127 *al.*, 2020; Kondadi *et al.*, 2020a; Stephan *et al.*, 2020; Weber *et al.*, 2013). MIC10 and MIC60
128 have been considered as core regulators of IM remodelling displaying severe loss of CJs
129 (Kondadi *et al.*, 2020a; Stephan *et al.*, 2020). The extent of mitochondrial ultrastructural
130 abnormalities upon *MIC26* deletion varies among different cell lines tested (Anand *et al.*, 2020;
131 Koob *et al.*, 2015; Stephan *et al.*, 2020). Therefore, we performed transmission electron
132 microscopy (TEM) in WT and *MIC26* KO HepG2 cells which revealed a reduction of cristae
133 content (cristae number per unit mitochondrial length per mitochondria) in *MIC26* KOs
134 compared to WT cells in both nutrient conditions (**Fig 1C & E**). Thus, the loss of cristae was
135 dependent on MIC26 and independent of the glucose concentration used in cell culture. In
136 addition, there was a decrease in cristae number in WT cells grown in hyperglycemia
137 compared to normoglycemia showing that higher glucose levels lead to decreased cristae

138 density, which is a common phenotype in diabetic mice models (Bugger *et al.*, 2008; Xiang *et*
139 *al.*, 2020). As the number of cristae were already decreased in certain conditions, we analysed
140 the number of CJs normalised to cristae number and found that a significant decrease of CJs
141 was observed in *MIC26* KOs independent of the nutrient conditions (**Fig 1D & E**). Overall, the
142 loss of *MIC26* leads to mitochondrial ultrastructural abnormalities accompanied by reduced
143 number of cristae as well as CJs compared to WT cells (**Fig 1C-E**).

144

145 **Hyperglycemia confers antagonistic regulation of lipid and cholesterol pathways, in**
146 ***MIC26* KO vs WT cells, compared to normoglycemia**

147 In order to understand the role of *MIC26* in an unbiased manner, we compared WT and
148 *MIC26* KO cells cultured under respective nutrient conditions by employing quantitative
149 transcriptomics and proteomics analyses. A total of 21,490 genes were obtained after the initial
150 mapping of the RNA-Seq data, of which 2,933 were significantly altered in normoglycemic
151 *MIC26* KO compared to WT cells (fold change of ± 1.5 and Bonferroni correction $P \leq 0.05$),
152 while in hyperglycemia, *MIC26* KO had 3,089 significantly differentially expressed genes
153 (DEGs) as compared to WT-N cells. A clustering analysis of identified transcripts involving all
154 four conditions along with respective replicates is depicted (**Fig S1A**). A Treemap
155 representation shows comparison of significantly upregulated clustered pathways in
156 *MIC26* KOs cultured in normoglycemia compared to WT (**Fig 2A**). Interestingly, the pathways
157 relating to sterol, cholesterol biosynthetic processes and regulation of lipid metabolic
158 processes were significantly upregulated in *MIC26* KO-N compared to WT-N. On the contrary,
159 in *MIC26* KO-H compared to WT-H, pathways involved in sterol, secondary alcohol
160 biosynthetic processes along with cholesterol biosynthesis and cellular amino acid catabolic
161 processes including fatty acid oxidation (FAO) were mainly downregulated (**Fig 2B**). Thus, an
162 antagonistic regulation is observed upon *MIC26* deletion when normoglycemia and
163 hyperglycemia are compared. A detailed pathway enrichment analysis for significantly
164 upregulated genes in *MIC26* KO vs WT cells grown in normoglycemia also revealed genes
165 involved in cholesterol, steroid biosynthetic pathways, fatty acid synthesis and oxidation as
166 well as glycolysis and gluconeogenesis (**Fig 2C**). The genes involved in cholesterol
167 biosynthetic pathways, glycolysis and gluconeogenesis, FAO and fatty acid synthesis were
168 significantly downregulated in *MIC26* KOs grown in hyperglycemia compared to WT cells (**Fig**
169 **2D**). The antagonistic behaviour of cholesterol metabolism observed using transcriptomics
170 data (**Fig 2**) was also confirmed in the pathway enrichment analysis for proteomics (**Fig S1B**
171 **& C**). Detailed analysis of the transcriptomics data in *MIC26* KO-N compared to WT-N showed
172 that $\approx 80\%$ of the genes regulating cholesterol biosynthesis were significantly upregulated upon
173 normoglycemia (**Fig S2A**) while the opposite was true for hyperglycemia (**Fig S2B**). At the

174 proteome level, the effect of *MIC26* deletion was mainly observed in normoglycemic conditions
175 where 8 out of 12 detected proteins involved in cholesterol biosynthesis showed a significant
176 increase in peptide abundances, while this increase was diminished in *MIC26* KO-H compared
177 to WT-H cells (**Fig S2C-N**). Thus, the loss of *MIC26* strongly impacts cholesterol biosynthesis
178 in a nutrient-dependent manner. In conclusion, under normoglycemic conditions, *MIC26* acts
179 as a repressor of cholesterol biosynthesis whereas under hyperglycemic conditions *MIC26*
180 rather drives this pathway. We further employed targeted metabolomics to decipher any
181 altered cholesterol biosynthesis by quantifying the cholesterol amounts at steady state. In
182 accordance with cholesterol synthesis promoting role of *MIC26* in hyperglycemia, cholesterol
183 levels were strongly reduced in *MIC26* KO-H compared to WT-H cells. Moreover, cholesterol
184 levels were significantly increased in WT-H cells compared to WT-N which was not the case
185 and even reversed in *MIC26* KO cells (**Fig S2O**). Thus, *MIC26* is required to maintain
186 cholesterol homeostasis and cellular cholesterol demand in a nutrient dependent manner and
187 is of particular importance under hyperglycemia.

188

189 ***MIC26* maintains the glycolytic function**

190 Besides an antagonistic regulation of the cholesterol biosynthetic pathway, we also observed
191 an opposing trend of genes involved in lipid metabolism as well as glycolysis (**Fig 2C & D**). In
192 order to gain further insights about the role of *MIC26* regarding the differential regulation of
193 glycolytic pathways in normoglycemia and hyperglycemia, we re-visited our transcriptomics
194 (**Fig S3**) and proteomics (**Fig 3A-C and H-J**) datasets and investigated the genes regulating
195 glycolysis upon *MIC26* deletion. On the one hand, in *MIC26* KO-N compared to WT-N, we
196 found that the transcripts encoding hexokinase (*HK*) 1, phosphofructokinase 1 (*PFK1*) (**Fig**
197 **S3A**) and aldolase (*ALDOC*) protein levels were significantly upregulated (**Fig 3A**), while
198 glyceraldehyde-3-phosphate dehydrogenase (*GAPDH*) (**Fig 3B**) and enolase (*ENO*) were
199 downregulated (**Fig S3A**). On the other hand, in *MIC26* KO-H compared to WT-H, we observed
200 decreased *GAPDH* and glucose-6-phosphate isomerase (*GPI*) proteins and transcripts (**Fig**
201 **3B & C, Fig S3B**). This could indicate that in hyperglycemia, deletion of *MIC26* leads to
202 deregulation of the glycolysis pathway resulting in increased accumulation of glucose (**Fig 3D**)
203 and decreased glycolysis end products. Therefore, to evaluate the metabolic effect of
204 differentially expressed genes (**Fig S3A & B**) and proteins involved in glucose uptake (**Fig 3**
205 **H-J**) and glycolysis (**Fig 3A-C**), we checked whether the glycolytic function is altered in *MIC26*
206 KOs using a Seahorse Flux Analyzer with the glycolysis stress test (**Fig 3E & F**). Based on the
207 extracellular acidification rate (ECAR), the 'glycolytic reserve' is an index of the ability to
208 undergo a metabolic switch to glycolysis achieved by the cells upon inhibition of mitochondrial
209 ATP generation whereas the 'glycolytic capacity' measures the maximum rates of glycolysis

which the cell is capable to undergo. Overall 'glycolytic function' is measured after cellular glucose deprivation for 1 h and subsequently by quantifying the ECAR primarily arising from cellular lactate formation after providing the cell with saturating glucose amounts. We observed that the glycolytic reserve was significantly increased only in cells cultured in normoglycemia and not in hyperglycemia upon deletion of *MIC26* (**Fig 3F**), while the glycolysis function as well as glycolytic capacity were not significantly increased in *MIC26* KO under both nutrient conditions (**Fig S3C & D**). Therefore, the ability of *MIC26* KO cells (compared to WT) to respond to energetic demand by boosting glycolysis is increased under normoglycemia, while *MIC26* KO cells primed to hyperglycemia were not able to increase glycolytic reserve indicating a clearly different regulation of glycolysis under normoglycemia versus hyperglycemia. In order to understand this better, we quantified the intracellular glucose levels, at steady state in WT and *MIC26* KO, which were significantly increased upon *MIC26* deletion only in hyperglycemia but not normoglycemia compared to the respective WT cells (**Fig 3D**). We further checked whether the increased glucose levels in cells cultured in hyperglycemia is due to increased glucose uptake. In normoglycemia, a glucose uptake assay showed a modest but significant increase of glucose uptake in *MIC26* KOs compared to WT cells (**Fig 3G**) which is consistent with a strong increase in GLUT3 amounts (**Fig 3H**) albeit accompanied by a downregulation of GLUT1 upon *MIC26* depletion (**Fig 3I**). GLUT2 levels remained unchanged in all conditions (**Fig 3J**). However, the observed increased glucose uptake in *MIC26* KO-N (compared to WT-N) was abolished in *MIC26* KO-H (compared to WT-H) and accordingly accompanied by no increase in GLUT3 levels showing that the high amounts of glucose in *MIC26* KO cells grown in hyperglycemia cannot be explained by an increased glucose uptake under these conditions (**Fig 3G**). In *MIC26* KO-N compared to WT-N, even though we observed an increase of glucose uptake, the amount of glycolysis end products, namely pyruvate (**Fig 3K**) and lactate (**Fig 3L**) were unchanged. In hyperglycemia, a significant reduction of pyruvate (**Fig 3K**) and lactate (**Fig 3L**) amounts were observed at steady-state despite increased glucose levels upon *MIC26* deletion. Overall, upon *MIC26* deletion pyruvate and lactate levels were decreased in hyperglycemia while no change was observed in normoglycemia. These results combined with the already discussed differentially regulated transcripts and proteins involved in glycolysis prompted us to check whether there is a difference of shuttling metabolic intermediates from glycolysis towards lipid anabolism. Glycerol-3-phosphate (G3P) is a precursor for lipid biosynthesis synthesized from dihydroxyacetone phosphate which is derived from glycolysis. We observed an increase in G3P levels upon *MIC26* deletion in normoglycemic conditions, while G3P levels were significantly reduced in *MIC26* KO-H cells, compared to the respective WT cells (**Fig 3M**). This opposing trend, together with the previously described antagonistic enrichment in fatty acid biosynthesis (**Fig 2C & D**), indicates that *MIC26* deletion rewires glycolytic function to drive lipogenesis in normoglycemia with an antagonistic effect in

247 hyperglycemia. Further, we checked the cellular effect of *MIC26* loss on lipid anabolism in
248 normo- as well as hyperglycemia.

249

250 **The loss of *MIC26* leads to metabolic rewiring of cellular lipid metabolism via CPT1 and**
251 **dysregulation of fatty acid synthesis**

252 The respective increase and decrease of G3P (**Fig 3M**) in normoglycemia and hyperglycemia
253 upon *MIC26* deletion when compared to WT as well as an opposing trend in fatty acid
254 biosynthesis reflected in our transcriptomics data (**Fig 2C & D**) prompted us to explore the
255 regulation of cellular lipid metabolism. Lipid droplets (LDs) play a key role in energy metabolism
256 and membrane biology by acting as reservoirs to store TAG and sterol esters which are
257 released to the relevant pathways according to cellular demand (Thiam *et al*, 2013). Using
258 BODIPY staining, we checked the cellular LD content in unstimulated and palmitate-stimulated
259 WT and *MIC26* KO cells grown in normoglycemia and hyperglycemia, respectively. The
260 number of LDs and the respective fluorescence intensity of BODIPY are indicative of cellular
261 lipid content (Chen *et al*, 2022). We observed a general increase of LD number in *MIC26* KOs
262 irrespective of treatment conditions (**Fig 4A & B**). However, the increased intensity of BODIPY
263 staining observed in normoglycemia was not evident in *MIC26* KO-H compared to respective
264 WT cells (**Fig 4C & D**). Further, when we fed free fatty acids (FFAs) in the form of palmitate,
265 there was again increased BODIPY intensity in *MIC26* KOs in normoglycemia even at a higher
266 level. In contrast, under hyperglycemia *MIC26* KO cells showed lower LD intensity when
267 compared to WT cells again demonstrating an antagonistic role of *MIC26* when normoglycemia
268 was compared to hyperglycemia (**Fig 4C & D**). These experiments allow us to conclude that
269 the effect of *MIC26* deletion on LD accumulation depends on the nutrient condition which is
270 enhanced under nutrient-rich (high-glucose/high-fat-like) conditions. Overall, *MIC26* is
271 essential to regulate the amount of cellular LD content in a nutrient-dependent manner (**Fig**
272 **4D**).

273 LD biogenesis is closely linked to increased cellular FFA levels (Zadoorian *et al*, 2023). Using
274 targeted metabolomics, we investigated the steady state levels of long chain FFAs in WT and
275 *MIC26* KO cell lines cultured in normoglycemia and hyperglycemia (**Fig 4E**). We identified that
276 there was either no change or an increase of saturated FFAs including lauric (12:0), myristic
277 (14:0), palmitic (16:0), stearic (18:0), arachidic (20:0) as well as behenic (22:0) acid in
278 normoglycemia in *MIC26* KOs compared to WT cells (**Fig 4E**, **Fig S4**). In contrast, we
279 consistently found a decrease in most of the above-mentioned saturated FFAs in *MIC26* KO-
280 H compared to WT-H. This trend was also observed in unsaturated FFAs like oleic acid (18:1).
281 Overall, we conclude that there is a consistent decrease of saturated FFAs in *MIC26* KO-H as
282 opposed to *MIC26* KOs grown in normoglycemic conditions consistent to the observed trend

283 in LD formation. Increased level of FFAs and LDs can arise from increased FFAs biosynthesis
284 as well as reduced FFA catabolism via mitochondrial β -oxidation (Afshinnia *et al*, 2018).
285 Mitochondrial β -oxidation requires import of long chain FFAs using the carnitine shuttle
286 comprised of carnitine palmitoyl transferase 1 (CPT1) and 2 (CPT2) and carnitine-acylcarnitine
287 translocase (CACT), into the mitochondrial matrix. Depletion of CPT1A, which is the rate
288 limiting step of FAO, coincides with lipid accumulation in the liver (Sun *et al*, 2021). Therefore,
289 we determined the CPT1A amounts using WB analysis (**Fig 4F & G**) which were in line with
290 transcriptomics and quantitative PCR data (**Fig S5A & B**). *MIC26* deletion revealed a reduction
291 of CPT1A in normoglycemia compared to WT cells. In WT cells, hyperglycemia already
292 triggered a reduction in CPT1A level and there was no further decrease of CPT1A in
293 *MIC26* KOs grown in hyperglycemia (**Fig 4F & G**). In order to understand the functional
294 significance of CPT1A reduction on mitochondrial function, we checked the FAO capacity of
295 respective cell lines by feeding them with palmitate and analysing the induced basal respiration
296 and spare respiratory capacity (SRC) of mitochondria compared to BSA control group (**Fig 4H**
297 **and I, Fig S5C & D**). SRC is the difference between FCCP stimulated maximal respiration and
298 basal oxygen consumption and therefore is the ability of the cell to respond to an increase in
299 energy demand. We observed a significant reduction in palmitate-induced basal respiration as
300 well as SRC in *MIC26* KO-N compared to WT-N determining decreased mitochondrial long
301 chain fatty acid β -oxidation. It is important to note that we already observed a significant
302 decrease in mitochondrial β -oxidation in WT-H condition which was not further affected in
303 *MIC26* KO-H in agreement with the reduced CPT1A levels (**Fig 4F & G**). We further analysed
304 the reduction of oxygen consumption rate (OCR) induced by etomoxir inhibition of CPT1A (**Fig**
305 **4J**). In *MIC26* KO-N compared to WT-N, palmitate-induced OCR was reduced moderately, yet
306 this was not significant. For the respective hyperglycemic conditions, we did not observe a
307 change which was again in line with the observed CPT1A levels. Thus, reduced β -oxidation in
308 *MIC26* KO-N compared to WT-N is apparently contributing to increased FFA levels and LD
309 content and could be mediated, at least in part, via the reduced levels of CPT1A resulting in
310 reduced transport of FFAs into mitochondria.

311 We further checked whether FFA biosynthesis plays a role in the nutrition-dependent
312 antagonistic regulation of lipid anabolism in *MIC26* KO cell line. FFA biosynthesis is initiated
313 with the export of citrate generated in TCA cycle from mitochondria to the cytosol. The export
314 is mediated by the citrate/malate exchanger SLC25A1 which is present in the mitochondrial
315 IM. Proteomics and transcriptomics data showed that SLC25A1 was increased in
316 normoglycemia in *MIC26*-KOs (compared to respective WT), but not in hyperglycemia (**Fig**
317 **S5E & F**). We then checked for further changes in the transcriptome and proteome levels of
318 key enzymes playing a role in FFA synthesis. We found that ATP citrate lyase (ACLY, **Fig**

319 **S5G**), acetyl-CoA carboxylase (ACACA, **Fig S5H &I**) which converts acetyl-CoA into malonyl-
320 CoA, fatty acid synthase (FASN, **Fig S5J & K**) and acetyl-CoA desaturase (SCD, **Fig S5L &**
321 **M**) were increased in normoglycemia in *MIC26* KOs but mostly unchanged in hyperglycemia.
322 In addition, hyperglycemia resulted in an increase of glycerol kinase (GK) in WT cells which
323 was absent in *MIC26* KO cells (**Fig S5N**). Therefore, our data indicate that the FFA
324 biosynthesis pathway is upregulated upon loss of *MIC26* KO in normoglycemia but not in
325 hyperglycemia compared to respective WT conditions. An upregulation of FFA biosynthesis
326 along with reduced mitochondrial β -oxidation partially mediated by reduced CPT1A amount in
327 *MIC26* KO-N and a shift of glycolytic intermediates resulting in G3P accumulation show that
328 loss of *MIC26* leads to a cumulative metabolic rewiring towards increased cellular lipogenesis.

329

330 ***MIC26* deletion leads to hyperglycemia-induced decrease in TCA cycle intermediates**

331 To synthesize FFA, citrate first needs to be generated by the TCA cycle in the mitochondrial
332 matrix before it is exported to the cytosol. Using targeted metabolomics, we checked whether
333 the TCA cycle metabolism is altered upon *MIC26* deletion at steady state in both nutrient
334 conditions (**Fig 5A**). As previously described, glycolysis resulted in decreased pyruvate levels
335 upon *MIC26* deletion in hyperglycemia, while no change was observed in normoglycemia (**Fig**
336 **3N**). Furthermore, most of the downstream metabolites including (iso-)citrate, succinate,
337 fumarate and malate consistently showed a significant decrease in *MIC26* KO cells cultured in
338 hyperglycemia, compared to WT condition, but not in normoglycemia following the previously
339 observed trend in pyruvate levels. To elucidate a possible defect of mitochondrial pyruvate
340 import, we checked mitochondrial pyruvate carrier 1 (MPC1) and MPC2 abundances (**Fig 5B**
341 **& C**) as well as mitochondrial respiration after blocking mitochondrial pyruvate carrier (glucose
342 / pyruvate dependency) using UK5099 inhibitor (**Fig 5D**). While we observed a downregulation
343 of MPC1 in *MIC26* KO-N compared to WT-N, MPC1 abundances in *MIC26* KO-H compared
344 to WT-H remained unchanged. Further we did not observe any changes in MPC2 level. Also,
345 mitochondrial glucose/pyruvate dependency remained unchanged in the respective
346 hyperglycemia combination while we observed a minor but significant decrease in *MIC26* KO-
347 N compared to WT-N. In addition, elucidation of abundances of mitochondrial enzymes
348 catalyzing TCA cycle metabolites (**Fig S6A-K**) as well as the respective cytosolic enzymes
349 (**Fig S6L-N**) interestingly revealed an upregulation of citrate synthase (**Fig S6A**) and
350 mitochondrial aconitase 2 (**Fig S6B**) in *MIC26* KO cells independent of nutrient conditions.
351 Furthermore, the immediate downstream enzyme isocitrate dehydrogenase 2 which generates
352 α -ketoglutarate (α -KG) was upregulated in *MIC26* KO condition (**Fig S6C**). In contrast to all
353 previously described metabolites, the α -KG levels were increased in hyperglycemia in
354 *MIC26* KO compared to WT. The accumulation of α -KG possibly arises from a significant

355 downregulation of α -KG dehydrogenase in *MIC26* KO independent of the nutrient condition
356 (**Fig S6E**). Following, an accumulation of α -KG by downregulation of α -KG dehydrogenase
357 would further explain the decreased formation of succinate in *MIC26* KO-H compared to WT-H.
358 Succinate dehydrogenases (**Fig S6G & H**) as well as fumarase (**Fig S6I**) did not show any
359 changes in abundances upon the respective *MIC26* KO to WT comparison reflecting the
360 uniform metabolite trend in succinate, fumarate and malate. Overall, we observed a general
361 decrease in several TCA cycle metabolites in *MIC26* KO-H compared to WT-H. Therefore, we
362 propose that a downregulation of FFA biosynthesis in *MIC26* KO-H compared to WT-H results
363 from a limited formation of citrate via the mitochondrial TCA cycle presumably arising from
364 reduced utilization of glucose.

365

366 **Aberrant glutamine metabolism is observed in *MIC26* KOs independent of nutritional
367 status**

368 Glutaminolysis feeds α -KG in the TCA cycle. To check whether the increase in α -KG could be
369 (apart from downregulation of α -KG dehydrogenase amounts) derived from glutaminolysis, we
370 also checked glutamine (**Fig 6A**) and glutamate levels (**Fig 5A**). The amounts of glutamine at
371 steady-state were uniformly increased in *MIC26* KOs irrespective of nutrient conditions (**Fig
372 6A**). Glutamate was decreased in *MIC26* KO-N compared to WT-N (**Fig 5A**). Mitochondria
373 mainly oxidise three types of cellular fuels namely pyruvate (from glycolysis), glutamate (from
374 glutaminolysis) and FFAs. We used a 'mito-fuel-flex-test' for determining the contribution of
375 glutamine as a cellular fuel. The contribution of glutamine as cellular fuel could be determined
376 using BPTES, an allosteric inhibitor of glutaminase (GLS1), which converts glutamine to
377 glutamate. The extent of reduction of mitochondrial oxygen consumption upon BPTES
378 inhibition is used as a measure for determining the glutamine dependency while the capacity
379 is the ability of mitochondria to oxidise glutamine when glycolysis and FFA oxidation are
380 inhibited. Intriguingly, we observed that the *MIC26* KOs do not depend on glutamine as a fuel
381 (**Fig 6B**, left histogram). However, they still can use glutamine when the other two pathways
382 were inhibited (**Fig 6B**, right histogram). The glutamine oxidation capacity of *MIC26* KO cells
383 cultured in normoglycemia as well as hyperglycemia appears slightly decreased compared to
384 WT but this decrease is not statistically significant. Overall, we observe a remarkable metabolic
385 rewiring of *MIC26* KOs to bypass glutaminolysis. In order to understand whether the
386 independency on glutamine as fuel arises due to the possibility of aberrant transport of
387 glutamine into the mitochondria, we analysed transcripts and proteins that were not only
388 significantly downregulated but also present in the mitochondria IM and interacted with MIC26.
389 For this, we investigated putative MIC26 interactors by compiling a list using BioGRID,
390 NeXtProt and IntAct databases. SLC25A12, an antiporter of cytoplasmic glutamate and

391 mitochondrial aspartate, was significantly downregulated (**Fig S7A**) while showing up in the
392 interactome of *MIC26* (**Fig S7E**). Accordingly, WB analysis reveal a reduction of SLC25A12 in
393 *MIC26* KOs compared to WT HepG2 cells in both normoglycemia and hyperglycemia (**Fig 6C**
394 & **D**). Further, it is known that a variant of SLC1A5 transcribed from an alternative transcription
395 start site and present in the mitochondrial IM is responsible for transporting glutamine into
396 mitochondria (Yoo *et al*, 2020a). Transcriptomics data revealed a reduction of SLC1A5 in
397 *MIC26* KOs while proteomics revealed a significant reduction in normoglycemia and non-
398 significant reduction in hyperglycemia in *MIC26* KOs compared to WT (**Fig S7B & C**). An
399 increase of cellular glutamine levels in *MIC26* KOs (**Fig 6A**) along with reduced levels of
400 SLC1A5 and reduced mitochondrial glutamine dependency (**Fig 6B**) indicate a reduced
401 transport of glutamine destined for glutaminolysis into mitochondria.

402 In order to delineate whether the increased glutamine levels at steady-state are due to
403 decreased glutamine utilisation or increased flux, we performed a metabolic tracing experiment
404 where WT and *MIC26* KO cells, cultured in normoglycemia and hyperglycemia, were fed with
405 labelled glutamine [$U-^{13}C_5, ^{15}N_2$] for 0.5 h and 6 h (**Fig 6E-O**). Glutamine is converted to
406 glutamate by glutaminase (GLS) in the mitochondria. The GLS amounts were not altered in
407 *MIC26* KO cells when compared to respective WT cells grown in normoglycemia and
408 hyperglycemia (**Fig S7D**). In line, label enriched glutamate species ($m+1 - m+4$) did not show
409 major differences in all four conditions at both timepoints (**Fig 6E**). Following this, we
410 hypothesize that accumulation of glutamine in *MIC26* KO cells arises from other cellular
411 pathways utilising glutamine being impaired, for example synthesis of purine, pyrimidine or
412 amino acids. However, labelled α -KG ($m+1 - m+5$) was increased upon *MIC26* deletion with a
413 pronounced effect in cells cultured in hyperglycemia similar to the detected steady-state
414 amounts of α -KG (**Fig 6F**). To check the conversion rates of different metabolite reactions, we
415 determined the enzyme conversion rates by calculating the ratio of the highest labelled species
416 from the end-metabolite compared to the starting-metabolite. In accordance to the observed
417 level of α -KG, the conversion ratio from glutamate to α -KG was significantly increased in
418 *MIC26* KO cells (**Fig 6K**). We further checked the flux of TCA metabolites downstream to α -
419 KG namely succinate, fumarate and malate. Despite the increased α -KG levels, the labelled
420 succinate species ($m+1 - m+4$) was decreased in *MIC26* KO cells (**Fig 6H**). In line, the
421 conversion rate from α -KG to succinate was significantly downregulated in *MIC26* KO cells
422 independent of glucose concentrations and timepoints (**Fig 6M**). However, the conversion ratio
423 from succinate to fumarate catalysed by mitochondrial complex II subunits, succinate
424 dehydrogenases A-D, was increased in *MIC26* KO cell lines at the 6 h timepoint compared to
425 WT in both normoglycemia and hyperglycemia (**Fig 6N**). Despite the increase in fumarate
426 conversion, the labelled fumarate and malate were decreased in *MIC26* KO compared to WT
427 in normoglycemia but not in hyperglycemia (**Fig 6I & J**) while there were minor differences at

428 0.5 h. The conversion ratio from α -KG to malate was decreased upon *MIC26* deletion in both
429 nutrient conditions at 0.5 h and 6 h of glutamine labelling. Thus, despite increased conversion
430 of succinate to fumarate as well as increased flux from glutamate to α -KG (in hyperglycemia)
431 upon loss of *MIC26*, cellular glutaminolysis does not function optimally. We also checked the
432 labelled citrate levels which showed minor changes after 0.5 h treatment but a major change
433 in all labelled species (m+1 - m+5) after 6 h (**Fig 6G**). Correspondingly, the levels of citrate in
434 WT-N cells were highly increased compared to all three other conditions. Conversion rates
435 from α -KG (m+5) to citrate (m+5) were significantly reduced in *MIC26* KO cell lines compared
436 to the respective WT cells (**Fig 6L**). Overall, the flux of glutamine through the TCA cycle is
437 accompanied by decreased conversion of TCA cycle intermediates. Therefore, we conclude
438 that aberrant glutaminolysis is observed upon loss of *MIC26*.

439

440 **MIC26 regulates mitochondrial bioenergetics by restricting the ETC activity and**
441 **OXPHOS (super-)complex formation**

442 We have shown that the loss of *MIC26* leads to dysregulation of various central fuel pathways.
443 In order to understand the effect of *MIC26* deletion on cellular bioenergetics, we checked the
444 mitochondrial membrane potential ($\Delta\Psi_m$) of WT and *MIC26* KO cells in both nutrient conditions
445 by employing TMRM dye (**Fig 7A & B**). Loss of *MIC26* leads to decreased $\Delta\Psi_m$ compared to
446 control cells in both normoglycemia and hyperglycemia. It is well known that mitochondrial loss
447 of membrane potential is connected to mitochondrial dynamics (Giacomello *et al*, 2020). Thus,
448 we checked the mitochondrial morphology and observed that loss of *MIC26* consistently leads
449 to a significant increase of mitochondrial fragmentation compared to WT-N (**Fig 7C & D**). In
450 addition, WT cells grown in hyperglycemia despite maintaining the $\Delta\Psi_m$ exhibited fragmented
451 mitochondria. We also checked the levels of major mitochondrial dynamic regulators: MFN1,
452 MFN2, DRP1 as well as OPA1 processing into short forms. WB analysis showed that MFN1
453 levels were significantly decreased upon *MIC26* deletion in both normoglycemia and
454 hyperglycemia compared to respective WT cells (**Fig S8A & B**) which could account for
455 increased fragmentation. There was no major effect on the amounts of other factors which
456 could account for mitochondrial fragmentation. Thus, *MIC26* deletion is characterized by
457 reduced $\Delta\Psi_m$ and fragmentation of mitochondria which indicate altered mitochondrial
458 bioenergetics. To determine this, we checked the mitochondrial function in WT and *MIC26* KO
459 cells by using a mitochondrial oxygen consumption assay (**Fig 7E**). We observed an increased
460 basal respiration in *MIC26* KOs in both normoglycemia and hyperglycemia compared to the
461 respective WT (**Fig 7F**). The ATP production was increased in *MIC26* KO cells in
462 hyperglycemia compared to WT-H (**Fig S8C**). In addition, decreased SRC was observed in
463 *MIC26* KO-N when compared to WT-N condition (**Fig S8D**). Overall, *MIC26* KOs demonstrate

464 higher basal respiration in both nutrient conditions. In order to elucidate the increased basal
465 respiration, we performed blue native PAGE to understand the assembly of OXPHOS
466 complexes along with in-gel activity assays (**Fig 7G**). *MIC26* deletion consistently led to an
467 increase in the levels of OXPHOS complexes I, III, IV and dimeric and oligomeric complex V
468 (shown in green arrows) (**Fig 7G**, left blots respectively for each complex). The increased
469 assembly of OXPHOS complexes was also accompanied by respective increase of in-gel
470 activity (shown in blue arrows) (**Fig 7G**, right blots respectively for each complex). This is
471 consistent with the previously observed increased basal respiration (**Fig 7F**) and the succinate
472 to fumarate conversion representing an increased complex II activity (**Fig 6N**). Altogether, we
473 conclude that formation and stability of OXPHOS (super-) complexes as well as their activity
474 is dependent on *MIC26*.

475

476 **Discussion**

477 Our study identifies *MIC26* as a critical regulator at the crossroads of several major metabolic
478 pathways. Based on detailed multi-omics analyses, we deciphered an intricate interplay
479 between *MIC26*, a mitochondrial IM protein, and global cellular metabolic adaptations. To
480 understand these metabolic changes and their dependency on mitochondrial ultrastructure and
481 function is of high medical relevance as nutrient-overload is known to cause obesity and T2DM
482 in humans. In fact, *MIC26* mutations are also associated with mitochondrial myopathy, lactic
483 acidosis (Beninca *et al.*, 2021) as well as lethality and progeria-like phenotypes (Peifer-Wei^ß
484 *et al.*, 2023). We showed that cellular fatty acid synthesis, cholesterol biosynthesis and LD
485 formation is promoted by *MIC26* under high glucose conditions but that these pathways are
486 conversely inhibited by *MIC26* under normal glucose concentrations (**Fig 7H**). The important
487 role of *MIC26* in channelling nutrient excess from glucose into lipids underscores its reported
488 links to obesity (Tian *et al.*, 2017) and diabetes (Lamant *et al.*, 2006) as it is known that ectopic
489 lipid accumulation is a common feature of the development of metabolic diseases including
490 NAFLD and insulin resistance. Moreover, metabolism of glutamine via glutaminolysis is
491 strongly impaired in the absence of *MIC26*. First, we discuss, how and why *MIC26* promotes
492 lipid anabolism in hyperglycemia and what is known from earlier studies in this context.
493 Previously in mammalian cells, we characterised the role of *MIC26*, which contained a
494 conserved apolipoprotein A1/A4/E family domain, in regulating mitochondrial ultrastructure and
495 function (Koob *et al.*, 2015). We showed that both an increase and decrease of *MIC26* was
496 detrimental to mitochondrial function indicating that optimal *MIC26* amounts are essential for
497 cellular homeostasis. Despite the demonstration of an increase of mitochondrial structural
498 proteins, like *MIC60*, *SAMM50* and *MIC19*, connected with upregulation of key metabolic
499 pathways in mice fed with HFD compared to normal diet (Guo *et al.*, 2013), the interplay of

500 MICOS proteins, including MIC26, and metabolism is not clear. Since, classically
501 apolipoproteins bind to lipids and mediate their transport in the bloodstream (Mehta & Shapiro,
502 2022), the presence of MIC26 in a non-classical environment like the IM raises various
503 questions about its function. Interestingly, a previous report revealed a connection between
504 increased levels of *MIC26* transcripts and nutrient conditions mimicked by oleic acid treatment
505 (Wu *et al.*, 2013). How does the loss of MIC26 alter central metabolic pathways including lipid
506 metabolism in hyperglycemia? In this study, we found an increase of MIC26 in WT cells
507 cultured in hyperglycemia. Concomitant to MIC26 increase, we found that MIC26 stimulates
508 the formation of LDs when glucose is in excess. We demonstrate that MIC26 is essential for
509 glucose utilisation and channelling glycolytic intermediates towards lipid anabolism regulating
510 the accumulation of the LD content. This is supported by several findings including the
511 determined levels of pyruvate and TCA cycle intermediates indicating that by boosting
512 pyruvate levels, MIC26 further increases the amounts of the TCA cycle metabolites including
513 citrate levels which serve as a precursor for cholesterol as well as FFA synthesis. This
514 connection between lipid synthesis and MIC26 is further strengthened by earlier reports in the
515 context of diabetes or obese models. Dogs fed with a HFD for 9 weeks (Philip-Couderc *et al.*,
516 2003) and diabetic patients (Lamant *et al.*, 2006) showed increased *Mic26* transcripts in the
517 heart. Increased TAG and DAG were found upon *MIC26* overexpression in murine liver (Tian
518 *et al.*, 2017) and hearts (Turkieh *et al.*, 2014) respectively showing modulatory roles of MIC26
519 in lipid metabolism. Our data reveals a major MIC26-dependent alteration of metabolite
520 transporters of the mitochondrial IM and also metabolite levels. Thus, loss of MIC26 either
521 alters the level, the activity, or the submitochondrial distribution of various metabolite
522 transporters. In line with our data, the export of citrate from the mitochondrial matrix to the
523 cytosol is presumably of particular importance. MIC26 could regulate metabolite exchange
524 mechanistically either via protein-protein interactions of MIC26 to distinct metabolite
525 transporters such as SLC25A12, by altering the accessibility of metabolites to various
526 transporters due to altered cristae morphology. Overall, we propose that MIC26 regulates
527 metabolite exchange between the cytosol and mitochondria and vice versa in a nutrient-
528 dependent manner which is critical for adaptations to excess of glucose.

529 Under balanced nutrient conditions, MIC26 plays a different role compared to nutrient excess
530 conditions. MIC26 decreases the key enzymes regulating the upper half of glycolytic pathway
531 involved in ATP consumption phase. MIC26 prevents an increase of FFAs and G3P
532 culminating in uncontrolled accumulation of LD content. In line with this, it was recently shown
533 that the loss of MIC26 in BAT led to upregulation of glycolysis and fatty acid synthesis
534 pathways (Guo *et al.*, 2023). This was accompanied by impaired thermogenic activity of BAT,
535 mitochondrial ultrastructure and function which reiterates the role of MIC26 in metabolic
536 reprogramming. In normoglycemia, we found that the presence of MIC26 leads to a decrease

537 of majority of the transcripts enzymes participating in cholesterol biosynthesis, including the
538 sterol regulatory element binding transcription factor 2 (SREBP2) (**Fig S9C**) which is a master
539 regulator of genes involved in sterol and fatty acid synthesis (Madison, 2016). However, we
540 observed equal amounts of cholesterol in *MIC26* KO and WT cells under normoglycemia.
541 Thus, *MIC26* in normoglycemia facilitates equal metabolite distribution to either cholesterol
542 biosynthesis or lipogenesis. This *MIC26*-mediated metabolic switch based on the amount/type
543 of cellular fuel is essential for maintaining key metabolic pathways. A balanced amount of
544 *MIC26* is essential for how much glucose is channelled into lipid synthesis. In congruence with
545 our observations, key lipid metabolism genes were altered upon *Mic26* overexpression with an
546 interesting antagonistic regulation of *de novo* lipid synthesis genes depending on nutritional
547 conditions (Tian *et al.*, 2017). This study demonstrated an increase of important transcripts
548 regulating lipid synthesis like ACACA, FASN and SCD in mice, overexpressing *Mic26*, fed with
549 normal diet and a decrease when fed with HFD, compared to respective control mice. We
550 further observed a decrease in CPT1A level and activity in *MIC26* KO cell lines as well as WT-
551 H. CPT1A activity is known to be regulated either on a transcriptional level via peroxisome
552 proliferator activated receptor α (PPAR α) and peroxisome proliferator-activated receptor
553 gamma coactivator 1 alpha (PGC-1 α) or by allosteric inhibition through malonyl-CoA (López-
554 Viñas *et al.*, 2007; Song *et al.*, 2010). A recent study demonstrated the downregulation of
555 PPAR α protein level in BAT in adipose tissue-specific *MIC26* KO mice (Guo *et al.*, 2023).
556 Further, we observed a high upregulation of ACACA enzyme, which converts acetyl-CoA to
557 malonyl-CoA during *de novo* lipogenesis. Accordingly, it is possible that *MIC26* deletion in
558 normoglycemia could on one hand reduce the expression of PPAR α leading to decreased
559 CPT1A expression and on the other hand increase malonyl-CoA formation leading to
560 decreased CPT1A activity. Taken together, we used a multi-omics approach as well as a
561 variety of functional assays to decipher that loss of *MIC26* leads to an antagonistic regulation
562 of glycolysis, lipid as well as cholesterol synthesis dependent on cellular nutritional stimulation.
563 Besides the antagonistic regulation mediated by *MIC26* in different nutrient conditions, there
564 are general roles of *MIC26* in metabolic pathways which are independent of nutrient conditions.
565 Among the MICOS proteins, proteins like *MIC60* are considered as core components as *MIC60*
566 deletion leads to a consistent loss of CJs (Kondadi *et al.*, 2020a; Stephan *et al.*, 2020) while
567 the effect of *MIC26* deletion on loss of CJs varies with the cell line. Loss of CJs was observed
568 in 143B (Koob *et al.*, 2015) and HAP1 cells (Anand *et al.*, 2020) in contrast to HeLa cells
569 (Stephan *et al.*, 2020). *MIC26* deletion in HepG2 cells in this study revealed a significant
570 reduction of CJs when normalised to the cristae number, highlighting a possible major role of
571 *MIC26* in liver-derived cell lines. Concomitant to the reduction of CJs, we also observed
572 alterations of vital transporters in the mitochondrial IM and OM. It was recently described that
573 deletion of stomatin-like protein 2 (SLP2) leads to a drastic *MIC26* degradation mediated by

574 the YME1L protease (Naha *et al*, 2023). SLP2 was proposed as a membrane scaffold for PARL
575 and YME1L named as the SPY complex (Wai *et al*, 2016). It is therefore conceivable that
576 MIC26 could be concentrated in lipid-enriched nanodomains of the IM justifying its
577 apolipoprotein nomenclature. When we checked the mitochondrial function upon *MIC26*
578 deletion in HepG2 cells, we found that RCCs have enhanced respiratory capacity which was
579 due to: a) increase in the levels of native RCCs as well as supercomplexes and b) increase in
580 the activity of RCCs corresponding to increased RCC amounts. Thus, MIC26 could perform
581 structural as well as functional roles which may or may not be mutually exclusive to the MICOS
582 complex. A reduction of SLC25A12, an antiporter of cytoplasmic glutamate and mitochondrial
583 aspartate, which is present in the IM was observed upon *MIC26* deletion independent of the
584 nutritional status. We also found that SLC25A12 could be an interactor of MIC26 upon using
585 standard interaction databases available online. Presumably, the interaction of SLC25A12 with
586 MIC26 is important for the stability of the former. Such an intricate relationship between MIC26
587 and metabolite transporters in the IM makes it tempting to speculate that mitochondrial
588 membrane remodelling is linked to its metabolic function. In fact, a closer look at the
589 mitochondrial carrier family (SLC25) transcriptomics and proteomics data sets revealed that a
590 majority of the SLC25 transporters were differentially regulated upon *MIC26* deletion in
591 normoglycemia as well as hyperglycemia (**Fig S9A & B**). A prominent example is the reduction
592 of SLC1A5 in *MIC26* KO when compared to WT in hyperglycemia as well as normoglycemia.
593 A recent study showed that a variant of SLC1A5 present in the mitochondrial IM is responsible
594 for transporting glutamine into the mitochondria (Yoo *et al*, 2020a). *MIC26* deletion leading to
595 reduced total amounts of SLC1A5 also indicates reduced transport of glutamine into
596 mitochondria. This was in line with an accumulation of glutamine upon loss of MIC26 at steady
597 state. However, using glutamine tracing experiments we did not observe a decrease in labelled
598 glutamate species but we observed an accumulation of α -KG. This could be due to the
599 observed decrease in α -KG dehydrogenase resulting in reduced conversion of α -KG to other
600 metabolites of the TCA cycle in particular under high glucose conditions. On the other hand,
601 besides mitochondrial glutamine usage to fuel the TCA cycle, glutamine is known to be an
602 essential source for nucleotide biosynthesis (Yoo *et al*, 2020b). *MIC26* KO cells showed a
603 decreased growth rate (**Fig S9D-F**). Hence, glutamine accumulation and with that reduced
604 conversion to nucleotides is a possible mechanism leading to growth deficiencies of *MIC26* KO
605 cells. We found that the transcripts as well as protein levels of NUBPL were prominently
606 downregulated upon *MIC26* deletion independent of the glucose concentrations of the cell
607 culture media (**Fig S9G & H**). NUBPL was demonstrated to function as an assembly factor for
608 complex I (Sheftel *et al*, 2009). Despite the prominent reduction of NUBPL, we did not find any
609 discrepancy in complex I assembly or its activity most likely due to increased RCC amounts.
610 We also found that the transcripts and protein levels of DHRS2 were significantly reduced in

611 ***MIC26* KO (Fig S9I & J).** DHRS2 is implicated in reprogramming of lipid metabolism (Li *et al*,
612 2021) and was found to be downregulated in T2DM (De Silva K 2022).

613 We further found that hyperglycemia as well as *MIC26* deletion resulted in a fragmented
614 mitochondrial morphology compared to WT-N. Mitochondrial dynamics and cellular
615 metabolism including nutritional demands are closely interlinked (Mishra & Chan, 2016).
616 Nutritional overload was associated with increased mitochondrial fragmentation (Yu *et al*,
617 2006) while starvation led to formation of a tubular mitochondrial network (Gomes *et al*, 2011).
618 Further, mice lacking the ability to undergo mitochondrial fission by liver specific deletion of
619 *Drp1* were protected from lipid accumulation in the liver as well as insulin resistance upon HFD
620 feeding (Wang *et al*, 2015). Obesity is associated with increased mitochondrial fragmentation
621 in multiple studies. A recent study showed that mitochondrial fragmentation is positively
622 correlated to mitochondrial long chain FFA oxidation capacity via an increased activity of
623 CPT1A (Ngo *et al*, 2023). A stronger membrane curvature resulting from mitochondrial
624 fragmentation induces a conformational change leading to a decreased inhibitory binding
625 ability of malonyl-CoA on CPT1 activity. Even though we observed mitochondrial fragmentation
626 upon *MIC26* deletion, we did not observe increased FAO. This discrepancy could be explained
627 by a reduction of CPT1A amount on one hand and likely increased production of malonyl-CoA
628 on the other hand due to increased amounts of SLC25A1 and ACACA participating in fatty acid
629 synthesis. Hence, deletion of *MIC26*, leading to mitochondrial fragmentation, contributes to
630 ectopic cellular lipid accumulation but not FAO.

631 In sum, under balanced nutrient availability, we provide evidence that *MIC26* is important to
632 allow efficient metabolite channelling, mainly via glycolysis, thereby preventing unwanted
633 channelling into lipogenesis. In addition, *MIC26* is important to promote exactly the latter when
634 glucose is in excess. This is important for cells to adapt to nutrient overload and explains earlier
635 reports linking *MIC26* to diabetes. We propose that *MIC26* acts as a sensor and valve that
636 opens towards lipid synthesis only when glucose is in excess. Future studies will have to
637 decipher how changes in IM structure directly affect metabolite exchange and how this is
638 regulated dynamically.

639

640 **Acknowledgments**

641 A.K.K received Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
642 Grant KO 6519/1-1. A.S.R received grants from DFG Graduiertenkolleg VIVID RTG 2576 and
643 DFG SFB 1208, project B12 (ID 267205415). R.A received DFG Grant AN 1440/3-1. We thank
644 Gisela Pansegrouw and Andrea Borchardt for technical assistance in western blot and electron
645 microscopy experiments, respectively. We are thankful for excellent technical support by Maria

646 Graf, Elisabeth Klemp, and Katrin Weber (CMMU). RNA-sequencing was performed at the
647 Genomics & Transcriptomics facility, Biological and Medical Research Center (BMFZ), Medical
648 Faculty, Heinrich-Heine-University Düsseldorf. Computational infrastructure and support were
649 provided by the Centre for Information and Media Technology at Heinrich Heine University
650 Düsseldorf. Proteome experiments were performed at the proteomics facility, BMFZ, HHU,
651 Düsseldorf. Metabolite analyses were supported by the CEPLAS Plant Metabolism and
652 Metabolomics Laboratory, which is funded by the DFG under Germany's Excellence Strategy
653 – EXC-2048/1 – project ID 390686111.

654

655 **Author Contributions**

656 A.K.K. and A.S.R. conceptualized the research goals and the experiments of the study. M.L.
657 planned, performed and analysed the results from majority of the experiments. R.N analysed
658 and visualized proteomics and transcriptomics data. Y.S. planned, performed and analysed
659 BN-PAGE and CN-PAGE. P.W. and A.P.M.W. performed and analysed metabolomics data.
660 A.S. and K.S. performed and analysed proteomics data. P.P. and K.K. performed and analysed
661 transcriptomics data. R.A. contributed with scientific and critical inputs to the study. A.K.K. and
662 M.L. wrote the manuscript with input from all authors. A.K.K. supervised the study.

663

664 **Declaration of interests**

665 The authors declare no competing interests

666 **Figure legends**

667 **Figure 1. Mitochondrial apolipoprotein MIC26 is selectively increased in cells exposed**
668 **to hyperglycemia**

669 (A and B) Western blot analysis of all MICOS subunits from HepG2 WT and *MIC26* KO cells
670 cultured in normo- and hyperglycemia (N = 3-5). Chronic hyperglycemia treatment leads to
671 increased levels of MIC27, MIC26 and MIC25 in WT cells. Loss of MIC26 is accompanied by
672 decreased MIC10 in normoglycemia.

673 (C, D and E) Electron microscopy data including quantification of cristae number per unit length
674 (μm) per mitochondrial section (C) as well as crista junctions per cristae per mitochondrial
675 section (D), along with representative images (E) from HepG2 WT and *MIC26* KO cells cultured
676 in normo- and hyperglycemia (N = 2). Loss of MIC26 led to decreased cristae number and
677 crista junctions independent of normo- and hyperglycemia. Red arrows in lower row indicate
678 outer membrane (OM) or cristae. Scale bar represents 500 nm.

679 Data are represented as mean \pm SEM (B, C and D). Statistical analysis was performed using
680 one-way ANOVA with $^*P < 0.05$, $^{**}P < 0.01$, $^{***}P < 0.001$, $^{****}P < 0.0001$. N represents the
681 number of biological replicates.

682 **Figure 2. Hyperglycemia confers antagonistic regulation of lipid and cholesterol**
683 **pathways, in *MIC26* KO vs WT cells, compared to normoglycemia**

684 (A and B) Hierarchical Treemap clustering of significant gene ontology (GO) enriched terms of
685 biological processes upregulated in normoglycemic *MIC26* KO (A) and downregulated in
686 hyperglycemic *MIC26* KO (B) compared to respective WT. Each rectangle represents one
687 BioProcess pathway. Every colour represents clustering of different sub-pathways to pathway
688 families. The rectangle sizes indicate the *P*-value of the respective GO term.

689 (C and D) WikiPathway enrichment using EnrichR analysis of differentially expressed genes
690 (C) upregulated in normoglycemic *MIC26* KO and (D) downregulated in hyperglycemic
691 *MIC26* KO cells compared to respective WT. Arrows indicate antagonistically regulated
692 metabolic pathways including glycolysis, cholesterol biosynthesis, fatty acid synthesis and
693 oxidation.

694 Differentially expressed genes were considered statistically significant with a cut-off fold
695 change of ± 1.5 and Bonferroni correction $P \leq 0.05$. Treemap representation of GO enrichment
696 was plotted with statistically significant pathways with cut-off $P \leq 0.05$.

697 **Figure 3. MIC26 maintains the glycolytic function**

698 (A – C) Peptide abundances of enzymes involved in glycolysis pathway curated from
699 proteomics data (N = 5).

700 (D) Steady state metabolomics (GC-MS) data reveals increased cellular glucose accumulation
701 upon *MIC26* deletion in hyperglycemia (N = 3-4).

702 (E and F) Representative glycolysis stress test seahorse assay analysis, with sequential
703 injection of glucose, oligomycin and 2-deoxyglucose, reveals a tendency towards increased
704 glycolysis upon *MIC26* deletion (E) (n = 23). Quantification from various biological replicates
705 shows a significant increase of cellular glycolytic reserve in normoglycemic, but not in
706 hyperglycemic conditions (F) (N = 3).

707 (G) Cellular glucose uptake was measured using Glucose uptake Glo assay normalized to WT-
708 N. *MIC26* deletion leads to an increased glucose uptake upon normoglycemia (N = 3).

709 (H – J) Peptide abundances of transporters involved in glucose uptake namely GLUT3 (H),
710 GLUT1 (I) and GLUT2 (J) curated from proteomics data (N = 5).

711 (K and L) Steady state metabolomics (GC-MS) shows unaltered cellular pyruvate (K) and
712 lactate (L) levels in *MIC26* KO cell lines in normoglycemia but decreased levels upon *MIC26*
713 deletion in hyperglycemia (N = 3-4).

714 (M) *MIC26* deletion increases glycerol-3-phosphate amount in normoglycemia with an
715 antagonistic effect in hyperglycemia compared to the respective WT (N = 3-4).

716 Data are represented as mean \pm SEM (A-M). Statistical analysis was performed using one-
717 way ANOVA with $^*P < 0.05$, $^{**}P < 0.01$, $^{***}P < 0.001$, $^{****}P < 0.0001$. N represents the number
718 of biological replicates and n the number of technical replicates.

719 **Figure 4. The loss of MIC26 leads to metabolic rewiring of cellular lipid metabolism via
720 CPT1A and dysregulation of fatty acid synthesis**

721 (A – D) Analysis of lipid droplet formation in WT and *MIC26* KO cells cultured in normo- and
722 hyperglycemia either in standard growth condition (CTRL) or upon palmitate stimulation
723 (100 μ M, 24 h). Representative confocal images of lipid droplets stained using BODIPY
724 493/503 are shown (A). Quantification shows number of lipid droplets normalized to the total
725 cell area [μ m 2] (B) and mean fluorescence intensity per cell normalized to mean intensity of
726 WT-N in all biological replicates (C). *MIC26* deletion leads to a nutritional-independent
727 increase in lipid droplet number. However, an opposing effect, leading to increase or decrease
728 of mean fluorescence intensity of lipid droplets, upon comparison of *MIC26* KO to WT was

729 observed in normo- and hyperglycemia respectively, with a pronounced effect upon feeding
730 palmitate (N = 3). Scale bar represents 5 μ m.

731 (E) Heat map representing the abundance of steady state FFA species in WT and *MIC26* KO
732 cells cultured in normo- and hyperglycemia. 11 out of 19 of the FFA species represent an
733 antagonistic behavior upon comparing *MIC26* KO to WT in normo- (increase) and
734 hyperglycemia (decrease) (N = 3-4).

735 (F and G) Western blot analysis (F), along with respective quantification (G) of WT and
736 *MIC26* KO cells cultured in normo- and hyperglycemia, show a reduction of CPT1A in WT-H,
737 *MIC26* KO-N and *MIC26* KO-H compared to WT-N (N = 3).

738 (H – J) Mitochondrial fatty acid oxidation analyzed using Seahorse XF analyzer shows a
739 decreased palmitate-induced basal respiration (H) and spare respiratory capacity (I) and a
740 nonsignificant reduction of etomoxir-sensitive OCR decrease upon comparing *MIC26* KO to
741 WT in normoglycemia (N = 3).

742 Data are represented as mean \pm SEM (B-C and G-J). Statistical analysis was performed using
743 one-way ANOVA with *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. N represents the
744 number of biological replicates.

745 **Figure 5. *MIC26* deletion leads to hyperglycemia-induced decrease in TCA cycle
746 intermediates**

747 (A) Representation of the relative amounts (GC-MS) of TCA cycle metabolites and associated
748 precursors at steady state in WT and *MIC26* KO cells cultured in normo- and hyperglycemia.
749 All the TCA cycle metabolites with the exception of α -ketoglutarate showed a decreasing trend
750 upon *MIC26* KO when compared to WT in hyperglycemia (N = 3-4).

751 (B and C) Mitochondrial pyruvate carrier 1 (MPC1) (B), but not MPC2 (C), is significantly
752 decreased in *MIC26* KO-N compared to WT-N, as revealed by peptide abundances from
753 proteomics data (N = 5).

754 (D) Mitochondrial glucose / pyruvate dependency analysis, using Seahorse XF analyzer mito
755 fuel flex test assay, reveals a decreased mitochondrial respiratory dependency of *MIC26* KO
756 on glucose / pyruvate in normoglycemia (N = 3).

757 Data are represented as mean \pm SEM (A-C). Statistical analysis was performed using one-
758 way ANOVA with *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. N represents the number
759 of biological replicates.

760 **Figure 6. Aberrant glutamine metabolism is observed in *MIC26* KOs independent of**
761 **nutritional status**

762 (A) Metabolomics analysis (GC-MS) shows that glutamine levels were strongly increased in
763 *MIC26* KO cells cultured in both normo- and hyperglycemia at steady state compared to
764 respective WT (N = 3-4).

765 (B) Quantification of mitochondrial glutamine dependency and capacity analysis, using
766 Seahorse XF analyzer mito fuel flex test assay, shows a diminished mitochondrial respiratory
767 dependency on glutamine. A nonsignificant mitochondrial respiratory decreased capacity of
768 *MIC26* KO cells was observed compared to respective WT conditions (N = 3).

769 (C and D) Western Blot analysis (C) along with respective quantification (D) show reduced
770 amounts of the glutamate aspartate antiporter SLC25A12 (ARALAR / AGC1), present in
771 mitochondria, in *MIC26* KO cell lines compared to respective WT cells (N = 3).

772 (E – J) Representation of labeled (m+1 - m+6) and unlabeled (m+0) species of glutamate (GC-
773 MS) (E), and TCA cycle metabolites (AEC-MS) α -KG (F), citrate (G), succinate (H), fumarate
774 (I) and malate (J), from glutamine tracing experiments after labelling for 0.5 h and 6 h (N = 4).

775 (K – O) Conversion rates from different TCA cycle reactions calculated using the ratio of
776 highest labeled species abundances for the conversions of glutamate to α -KG (K), α -KG to
777 citrate (L), α -KG to succinate (M), succinate to fumarate (N) and α -KG to malate (N = 4).

778 Data are represented as mean \pm SEM (A-B and D-O). Statistical analysis was performed using
779 one-way ANOVA with *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. N represents the
780 number of biological replicates.

781 **Figure 7. *MIC26* regulates mitochondrial bioenergetics by restricting the ETC activity**
782 **and OXPHOS (super-)complex formation**

783 (A and B) Representative pseudocolour rainbow LUT intensities from confocal images of WT
784 and *MIC26* KO HepG2 cells stained with TMRM show a reduction in $\Delta\Psi_m$ upon *MIC26* deletion
785 in both normoglycemia and hyperglycemia when compared to respective WT cells (A).
786 Quantification represents mean TMRM fluorescence intensity per cell normalized to mean
787 intensity of WT-N in all biological replicates (B) (N = 3). Scale bar represents 5 μ m.

788 (C and D) Representative confocal images of mitochondrial morphology, visualized by
789 MitoTracker green staining (C), show that loss of *MIC26* shifts mitochondrial morphology from
790 tubular mitochondrial network in WT normoglycemic conditions to fragmented phenotype
791 irrespective of supplemented glucose amount (D) (N = 3). Scale bar represents 5 μ m.

792 (E and F) Representative mitochondrial stress test with Seahorse XF analyzer, with sequential
793 injection of oligomycin, FCCP and rotenone/antimycin (E) (n = 19-23). Quantification from
794 various biological replicates shows a significant increase of basal respiration in *MIC26* KOs
795 cultured in both normo- and hyperglycemia (F) (N = 3).

796 (G) Blue native (respective left panel) and clear native (respective right panel) PAGE analysis
797 reveals an overall increase of OXPHOS complex formation (for CI, CIII, CIV and CV, green
798 arrows) as well as corresponding increased in-gel activity of supercomplexes, and complex
799 III₂IV (blue arrows) upon *MIC26* deletion. CV shows no in-gel activity alterations while a
800 decreased in-gel activity of F₁ occurs upon loss of *MIC26*. Native PAGEs were performed in
801 three biological replicates and representative gels are shown.

802 (H) Model representing the antagonistic regulation of metabolic pathways encompassing
803 glucose usage, lipid droplet formation, cholesterol synthesis, as well as decrease in TCA cycle
804 metabolites in *MIC26* deficient HepG2 cells dependent on nutritional conditions compared to
805 respective WT cells. An increase of glutamine levels as well as assembly of various OXPHOS
806 complexes is observed in *MIC26* KOs independent of the nutritional status. Arrows indicate
807 respective up (red) or downregulated (blue) protein/metabolite or activity levels, respectively.
808 In the model, left panel indicates normoglycemic while the right panel represents the
809 hyperglycemic conditions.

810 Data are represented as mean \pm SEM (B and D-F). Statistical analysis was performed using
811 one-way ANOVA with *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. N represents the
812 number of biological replicates and n the number of technical replicates.

813 **Supplementary Information**

814 **S1 Figure. MIC26 loss leads to an opposing regulation of cholesterol biosynthesis**
815 **pathway upon nutritional stimulation**

816 (A) Overview of transcriptomics clustering analysis showing upregulated (red) and
817 downregulated (blue) transcripts (without fold change or significance cut-offs). All sample
818 replicates are represented (N = 4).

819 (B and C) Proteomics data represented by WikPathway enrichment using EnrichR analysis
820 comparing pathways upregulated in normoglycemia (B) and downregulated in hyperglycemia
821 (C) upon *MIC26* deletion compared to respective WT (N = 5). Arrows indicate increased levels
822 of proteins participating in cholesterol synthesis and glycolysis pathways similar to those
823 observed with transcriptomics data (Fig 2C and D). Differentially expressed proteins were
824 considered statistically significant with a cut-off value of fold change of ± 1.5 and Bonferroni
825 correction $P \leq 0.05$.

826 **S2 Figure. Loss of MIC26 leads to an opposing regulation of cholesterol biosynthesis**
827 **pathway in normoglycemia and hyperglycemia**

828 (A and B) The transcripts of various enzymes regulating cholesterol synthesis are represented
829 using Cytoscape software comparing log2FC data of *MIC26* KO and WT cell lines in normo-
830 (A) and hyperglycemia (B) (N = 4). In *MIC26* KO cell lines, normoglycemia strongly increases
831 transcripts of enzymes participating in cholesterol biosynthesis while an opposing effect is
832 observed in hyperglycemia.

833 (C – N) Peptide abundances of various enzymes participating in cholesterol biosynthesis
834 curated from proteomics data (N = 5).

835 (O) Metabolomics data reveals that cholesterol levels are exclusively decreased in *MIC26* KO
836 at steady state in hyperglycemia compared to WT but not in normoglycemia (N = 3-4).

837 Data are represented as mean \pm SEM (C-O). Statistical analysis was performed using one-
838 way ANOVA with $*P < 0.05$, $**P < 0.01$, $***P < 0.001$, $****P < 0.0001$. N represents the number
839 of biological replicates.

840 **S3 Figure. *MIC26* deletion causes opposing transcriptional regulation of genes involved**
841 **in glycolysis**

842 (A and B) The transcripts of various enzymes participating in glycolysis are represented using
843 Cytoscape software comparing log2FC data of *MIC26* KO and WT cell lines in normo- (A) and
844 hyperglycemia (B) (N = 4).

845 (C and D) Glycolysis stress test Seahorse assay reveals a nonsignificant tendency towards
846 increased glycolysis and glycolytic capacity upon *MIC26* KO in normoglycemic, but not in
847 hyperglycemic conditions (N = 3).

848 Data are represented as mean \pm SEM (C and D). Statistical analysis was performed using one-
849 way ANOVA with $^*P < 0.05$, $^{**}P < 0.01$, $^{***}P < 0.001$, $^{****}P < 0.0001$. N represents the number
850 of biological replicates.

851 **S4 Figure. Majority of free fatty acid species are antagonistically regulated upon *MIC26***
852 **deletion in normoglycemia and hyperglycemia when compared to respective to WT cells**

853 Detailed representation of abundances of various free fatty acid species in WT and *MIC26* KO
854 cell lines cultured in normo- and hyperglycemia (N = 3-4).

855 Data are represented as mean \pm SEM. Statistical analysis was performed using one-way
856 ANOVA with $^*P < 0.05$, $^{**}P < 0.01$, $^{***}P < 0.001$, $^{****}P < 0.0001$. N represents the number of
857 biological replicates.

858 **S5 Figure. *MIC26* deletion leads to alteration of key enzymes regulating lipid metabolism**

859 (A and B) The transcripts of mitochondrial long-chain fatty acid importer CPT1A are strongly
860 decreased in WT-H and *MIC26* KO conditions, compared to WT-N, as shown from
861 transcriptomics data (A) (N = 4) and quantitative PCR (B) (N = 3) analysis.

862 (C and D) Representative fatty acid oxidation assay analyzed using oxygen consumption rates
863 of WT and *MIC26* KO HepG2 cells cultured in normoglycemia (C) and hyperglycemia (D) upon
864 feeding either with BSA or palmitate (n = 8-12).

865 (E and F) Mitochondrial citrate malate exchanger (SLC25A1) is significantly increased upon
866 *MIC26* deletion in normoglycemia compared to WT as detected using proteomics (E) (N = 5)
867 and transcriptomics (F) (N = 4) data.

868 (G – M) Transcripts and available peptide abundances of key genes involved in lipid
869 metabolism curated from transcriptomics (N = 4) and proteomics data (N = 5). Under
870 normoglycemic conditions, loss of *MIC26* increases the expression of ATP citrate lyase (G),
871 acetyl-CoA carboxylase 1 (H and I), fatty acid synthase (J and K) and acetyl-CoA desaturase
872 (L and M).

873 (N) Peptide abundances of glycerol kinase is increased in WT-H compared to WT-N but similar
874 in *MIC26* KO-N and *MIC26* KO-H (N = 5).

875 Data are represented as mean \pm SEM (A-N). Statistical analysis was performed using one-
876 way ANOVA with $^*P < 0.05$, $^{**}P < 0.01$, $^{***}P < 0.001$, $^{****}P < 0.0001$. N represents the number
877 of biological replicates and n the number of technical replicates.

878 **S6 Figure. TCA cycle enzymes are altered upon *MIC26* knockout**

879 (A – K) Representation of peptide abundances of various mitochondrial TCA cycle enzymes
880 curated from proteomics data (N = 5).

881 (L – N) Peptide abundances of cytosolic enzymes involved in metabolite conversion (N = 5).

882 Data are represented as mean \pm SEM (A-N). Statistical analysis was performed using one-
883 way ANOVA with $*P < 0.05$, $**P < 0.01$, $***P < 0.001$, $****P < 0.0001$. N represents the number
884 of biological replicates.

885 **S7 Figure. Mitochondrial glutamine and glutamate carriers are downregulated upon loss
886 of *MIC26***

887 (A) Transcripts of mitochondrial glutamate aspartate antiporter *SLC25A12* (A) are decreased
888 upon *MIC26* deletion in normo- and hyperglycemia (N = 4).

889 (B and C) Transcripts (B) (N = 4) and peptide abundances (C) (N = 5) of cellular and
890 mitochondrial glutamine importer *SLC1A5* are significantly decreased upon *MIC26* deletion in
891 both normo- and hyperglycemia in relation to respective WT cells.

892 (D) Peptide abundances of glutaminase (GLS) are unaltered upon loss of *MIC26* compared to
893 respective WT conditions.

894 (E) *MIC26* interactome, based cumulatively on BioGRID, NeXtProt and IntAct databases,
895 generated with Cytoscape software. From this study, downregulated transcripts comparing
896 *MIC26* KO and WT in normoglycemic condition are highlighted in blue while upregulated
897 transcripts are highlighted in red.

898 Data are represented as mean \pm SEM (A-D). Statistical analysis was performed using one-
899 way ANOVA with $*P < 0.05$, $**P < 0.01$, $***P < 0.001$, $****P < 0.0001$. N represents the number
900 of biological replicates.

901 **S8 Figure. *MIC26* maintains mitochondrial morphology and bioenergetics**

902 (A and B) Western Blots (A) and quantification (B) show a decrease of key mitochondrial fusion
903 mediator MFN1 in *MIC26* KO cells while MFN2 was unchanged. Mitochondrial fission mediator
904 DRP1 is decreased in *MIC26* KO-H compared to WT-H. OPA1 processing shows no significant
905 changes upon *MIC26* deletion and nutritional status (N = 3-4).

906 (C and D) ATP production (C) and spare respiratory capacity (D) determined by mito stress
907 test using Seahorse XF analyzer. Deletion of *MIC26* caused increased ATP production and
908 decreased metabolic flexibility (indicated by SRC) in normoglycemia (N = 3).

909 Data are represented as mean \pm SEM (B-D). Statistical analysis was performed using one-
910 way ANOVA with $*P < 0.05$, $**P < 0.01$, $***P < 0.001$, $****P < 0.0001$. N represents the number
911 of biological replicates.

912 **S9 Figure. *MIC26* deletion induces alterations of SLC25 mitochondrial carrier protein**
913 **family expression and induces growth defects**

914 (A and B) Heat map overview from mean z-score of transcripts (A) (N = 4) and peptide
915 abundances (B) (N = 5) of mitochondrial transporters belonging to SLC25 family.

916 (C) Transcript abundances of *SREBP2* (C) of WT and *MIC26* KO cells grown in normo- and
917 hyperglycemia (N = 4).

918 (D – F) Proliferation of respective cell lines after 24 h (C), 48 h (D) and 72 h (E) determined
919 using SRB assay normalized to WT-N (N = 4).

920 (G – J) Transcripts (N = 4) and peptide abundances (N = 5) of NUBPL (G and H) and DHRS2
921 (I and J) are respectively shown.

922 Data are represented as mean \pm SEM (C-J). Statistical analysis was performed using one-way
923 ANOVA with $*P < 0.05$, $**P < 0.01$, $***P < 0.001$, $****P < 0.0001$. N represents the number of
924 biological replicates.

925 **Supplementary Tables**

926 **Supplementary Table S1**

927 Raw data of targeted metabolomics at steady state including polar metabolites (sheet 1) and
928 free fatty acids (FFAs) (sheet 2) indicating corresponding cell line, group, replicate, cell
929 number, multiplication factor, measured compound name, internal standard (ISTD) name,
930 measured total compound response, ISTD response, ratio of total compound response to ISTD
931 response, relative response and technical procedure data. Relative response is calculated
932 from compound response normalized to ISTD response and cell number multiplied by
933 multiplication factor and used for data representation.

934 **Supplementary Table S2**

935 Raw data of targeted metabolomics from tracing experiments including AEC-MS (sheet 1) and
936 GC-MS (sheet 2) data including cell line group analysed, compound isotopologue species,
937 corrected ratio to naturally occurring isotopologues timepoint and technical information.

938 **Supplementary Table S3**

939 Proteomics raw data analysis including gene description, mean abundance ratio, adjusted *P*-
940 value, mean abundances per group, total measured abundances of all replicate samples and
941 technical data are represented in sheet 1. Filtered significantly (adj. *P*-value ≤ 0.05) altered
942 peptide abundances with $\log_{2}FC > \pm 1.5$ for *MIC26* KO-N vs WT-N or *MIC26* KO-H and WT-H
943 are represented in sheet 2 and 3 respectively. Detected peptides with less than three out of
944 five hits in both of the compared groups were not considered.

945 **Supplementary Table S4**

946 Transcriptomics raw data analysis with sheet 1 representing raw data for all sample replicates,
947 including gene description. Calculated $\log_{2}FC$, FC, *P*-Value, FDR adjusted *P*-Value and
948 Bonferroni correction, as well as raw data from total reads, RPKM, TPM and CPM. DEGs
949 filtered by Bonferroni correction ≤ 0.05 and $\log_{2}FC > \pm 1.5$ for *MIC26* KO-N vs WT-N and
950 *MIC26* KO-H vs WT-H are represented in sheet 2 and 3 respectively. Sheet 4 is showing an
951 overview of number of differentially expressed genes including respective cut-offs.

952 **Materials and Methods**

953 **Key resources table**

954

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
MIC26	Invitrogen	Cat# PA5-116197 RRID: AB_2900831
MIC27	Sigma-Aldrich	Cat# HPA000612 RRID: AB_1078594
MIC10	Abcam	Cat# ab84969 RRID: AB_1924831
MIC13	Pineda	custom made
MIC25	Protein tech	Cat# 20639-1-AP RRID: AB_1069767
MIC60	Abcam	Cat# ab110329 RRID: AB_10859613
MIC19	Protein tech	Cat# 25625-1-AP RRID: AB_2687533
MFN1	Santa Cruz Biotechnologies	Cat# sc-50330 RRID: AB_2250540
MFN2	Abcam	Cat# ab50838 RRID: AB_881507
OPA1	Pineda	custom made
DRP1	Cell Signaling Technologies	Cat# 5391 RRID: AB_11178938
β-Actin	Invitrogen	Cat# MA1-744 RRID: AB_2223496
HSP60	Sigma Aldrich	Cat# SAB4501464 RRID: AB_10746162
CPT1A	Proteintech	Cat# 15184-1-AP RRID: AB_2084676
Goat IgG anti-Mouse IgG	Abcam	Cat# ab97023 RRID: AB_10679675
Goat IgG anti-Rabbit IgG	Dianova	Cat# SBA-4050-05 RRID: AB_2795955
NDUFB4	Abcam	Cat# ab110243 RRID: AB_10890994
UQCRC2	Abcam	Cat# ab14745 RRID: AB_2213640
COXIV	Abcam	Cat# ab16056 RRID: AB_443304
ATP5A	Abcam	Cat# ab14748 RRID: AB_301447
SLC25A12	Santa Cruz Biotechnologies	Cat# sc-271056 RRID: AB10608837
Bacterial and virus strains		
N/A		
Biological samples		
N/A		
Chemicals, peptides, and recombinant proteins		
Etomoxir	Sigma Aldrich	Cat# E1905; CAS: 828934-41-4
3,3'-diaminobenzidine tetrahydrochloride	Sigma Aldrich	Cat# 32750; CAS: 868272-85-9

horse heart cytochrome c	Thermo Scientific	Cat# 147530010; CAS: 9007-43-6
NADH	Biomol	Cat# 16132.1 CAS: 606-68-8
Nitroblue tetrazolium chloride	Biomol	Cat# 06428.1 CAS: 298-83-9
Adenosine 5' triphosphate (ATP)	Sigma Aldrich	Cat# A7699 CAS: 34369-07-8
Lead (II) nitrate / Pb(NO ₃) ₂	Sigma Aldrich	Cat# 1073980100 CAS: 10099-74-8
MitoTracker Green	Invitrogen	Cat# M7514 CAS: 201860-17-5
TMRM	Invitrogen	Cat# T668
BODIPY 493/503	Cayman Chemicals	Cat# Cay25892-5 CAS: 121207-31-6
Poly-D-lysine	Sigma Aldrich	Cat# P7886 CAS: 2796-99-4
Stable Glutamine	PAN-Biotech	Cat# P04-82100
PenStrep	PAN-Biotech	Cat# P06-07100
BSA	Biomol	Cat# Cay29556
Palmitate-BSA	Biomol	Cat# Cay29558
L-Carnitine	Sigma Aldrich	Cat# C0283 CAS: 645-46-1
Ribitol	Sigma Aldrich	Cat# A5502
L-Glutamine-13C5-15N2	Sigma Aldrich	Cat# 607983 CAS: 607983

Critical commercial assays

Glycolysis Stress Test	Agilent Technologies	Cat# 103020-100
Mito Stress Test	Agilent Technologies	Cat# 103015-100
Mito Fuel Flex Test	Agilent Technologies	Cat# 103260-100
Glucose Uptake Glo	Promega	Cat# J1241
GoScript Reverse Transcription Mix, Oligo(dT)	Promega	Cat# A2791
GoTaq qPCR Master Mix	Promega	Cat# A6002
RNeasy Mini Kit	Qiagen	Cat# 74106

Deposited data

MIC26 interactome	N/A	Nextprot, Intact BioGrid
-------------------	-----	--------------------------

Experimental models: Cell lines

HepG2	Sigma Aldrich	Cat# 85011430 RRID: CVCL_0027
-------	---------------	----------------------------------

Experimental models: Organisms/strains

N/A		
-----	--	--

Oligonucleotides

Primer CPT1A Forward GATCCTGGACAATACCTCGGAG	This paper	N/A
Primer CPT1A Reverse CTCCACAGCATCAAGAGACTGC	This paper	N/A
Primer HPRT1 Forward 5'- CATTATGCTGAGGATTGGAAAGG- 3'	This paper	N/A
Primer HPRT1 Reverse 5'- CTTGAGCACACAGAGGGCTACA-3'	This paper	N/A

Recombinant DNA

Double Nickase Plasmid MIC26 KO	Santa Cruz Biotechnology	Cat# sc-413137-NIC
---------------------------------	--------------------------	--------------------

Software and algorithms

Prism	GraphPad	RRID: SCR_002798
Seahorse Wave	Agilent Technologies	RRID: SCR_014526
R Studio	Posit PBC	RRID: SCR_000432
Cytoscape	Cytoscape Consortium	RRID: SCR_003032
Velocity 3D Image Analysis Software	Perkin Elmer	RRID: SCR_002668
MassHunter Qualitative	Agilent Technologies	RRID: SCR_015040
BCL Convert Tool	Illumina	N/A
CLC Genomics Workbench	Qiagen	RRID: SCR_017396
CLC Gene Set Enrichment Test	Qiagen	RRID: SCR_003199
Proteome Discoverer	Thermo Fischer Scientific	RRID: SCR_014477
Other		
DMEM 1 g/L glucose	PAN-Biotech	Cat# P04-01500
DMEM 4.5 g/L glucose	PAN-Biotech	Cat# P04-82100
FBS	Capricorn Scientific	Cat# FBS-11A

955 **Cell culture and treatment conditions**

956 HepG2 cells were cultured in 1 g/L glucose DMEM (PAN-Biotech) supplemented with 10%
957 FBS (Capricorn Scientific), 2 mM stable glutamine (PAN-Biotech) and penstrep (PAN-Biotech,
958 penicillin 100 U/mL and 100 µg/mL streptomycin). Cells were grown at 37°C supplied with 5%
959 CO₂. *MIC26* HepG2 KO cells were generated using the double nickase method as described
960 before (Lubeck *et al.*, 2023). Cells cultured in standard growth media were divided equally into
961 two cell culture flasks and grown in either 1 g/L glucose DMEM (normoglycemia) or 4.5 g/L
962 glucose DMEM (hyperglycemia) (PAN-Biotech) supplemented with above-mentioned
963 reagents. Cells were cultured in normoglycemia and hyperglycemia for a prolonged duration
964 of three weeks. During the three weeks, cell splitting was carried out twice a week with the
965 corresponding media.

966 **SDS gel electrophoresis and Western Blotting**

967 After three washes with 2 mL DPBS (PAN-Biotech), the cells were harvested by scraping and
968 resuspending in an appropriate volume of RIPA buffer (150 mM NaCl, 0.1 % SDS, 0.05 %
969 Sodium deoxycholate, 1 % Triton-X-100, 1 mM EDTA, 1mM Tris, pH 7.4, 1x protease inhibitor
970 (Sigma-Aldrich), PhosSTOP (Roche). Protein concentration was determined using DC™
971 protein assay Kit (BIO-RAD, 5000116). SDS samples were prepared with Laemmli buffer and
972 heated for 5 min at 95°C. Depending on the proteins investigated, a variety of SDS
973 electrophoresis gels (8%, 10%, 12% or 15%) were used for running and separating protein
974 samples. Subsequently, proteins were transferred onto nitrocellulose membranes and stained
975 using Ponceau S (Sigma Aldrich). After destaining, nitrocellulose membranes were blocked
976 with 5 % milk in 1x TBS-T for 1 h, washed three times with TBS-T and probed at 4°C overnight
977 with the following primary antibodies: *MIC26* (Invitrogen, 1:1000), *MIC27* (Sigma-Aldrich,
978 1:2000), *MIC10* (Abcam, 1:1000), *MIC13* (Pineda custom-made, 1:1000), *MIC25* (Proteintech,
979 1:1000), *MIC60* (Abcam, 1:1000), *MIC19* (Proteintech, 1:1000), *MFN1* (Santa Cruz

980 Biotechnologies, 1:1000), MFN2 (Abcam, 1:1000), OPA1 (Pineda custom-made, 1:1000),
981 DRP1 (Cell Signaling Technology, 1:1000), β -Actin (Invitrogen, 1:2000), HSP60 (Sigma-
982 Aldrich, 1:2000) and CPT1A (Proteintech, 1:1000). Goat IgG anti-Mouse IgG (Abcam,
983 1:10000) and Goat IgG anti-Rabbit IgG (Dianova, 1:10000) conjugated to HRP were used as
984 secondary antibodies. The chemiluminescent signals were obtained using Signal Fire ECL
985 reagent (Cell Signaling Technology) and VILBER LOURMAT Fusion SL equipment (Peqlab).

986 **Blue Native and Clear Native PAGE**

987 5×10^6 HepG2 cells were seeded onto 15 cm dishes and cell culture medium was replaced
988 every two days until 80 % confluence was reached. Cells were washed three times with cold
989 PBS, scraped and pelleted at 900 g, 4°C for 5 min. Cell pellets were resuspended in 1 mL lysis
990 buffer (210 mM mannitol, 70 mM sucrose, 1 mM EDTA, 20 mM HEPES, 0,1 % BSA, 1x
991 protease inhibitor) and incubated on ice for 10 min. Mitochondria were isolated by repetitive
992 strokes of mechanical disruption using a 20G canula and sequential centrifugation steps at
993 1000 x g, 4°C for 10 min to remove cell debris and 10,000 x g, 4°C for 15 min to pellet
994 mitochondria. Mitochondrial pellet was resuspended in BSA-free lysis buffer and protein
995 concentration was determined using DC Protein Assay Kit.

996 For blue native page, 100 μ g of mitochondria was solubilized for 1 h on ice using 2.5 g/g of
997 digitonin to protein ratio. The samples were centrifuged for 20 min at 20,000 x g and 4°C to
998 pellet insolubilized material. The supernatants were supplemented with loading buffer (50%
999 glycerol, 8 g/g Coomassie to detergent ratio) and immediately loaded onto 3-13% gradient gel.
1000 Complexes were separated at 150 V, 15 mA for 16 h. Thereafter, protein complexes were
1001 transferred onto PVDF membrane and blocked overnight with 5 % milk in TBS-T at 4°C. For
1002 identification of relevant protein complexes, the membranes were decorated with the following
1003 antibodies: NDUFB4 (Abcam, 1:1000), UQCRC2 (Abcam, 1:1000), COXIV (Abcam, 1:1000)
1004 ATP5A (Abcam, 1:1000) Goat IgG anti-Mouse IgG (Abcam, 1:10000) and Goat IgG anti-Rabbit
1005 IgG (Dianova, 1:10000) conjugated to HRP. The chemiluminescent signals were obtained
1006 using Pierce™ SuperSignal™ West Pico PLUS chemiluminescent substrate reagent (Thermo
1007 Scientific) and VILBER LOURMAT Fusion SL equipment (Peqlab).

1008 For clear native gels, 300 μ g mitochondria was solubilized on ice for 1 h with 2.5 g/g digitonin
1009 to protein ratio. The samples were centrifuged for 20 min at 20,000 x g and 4°C to pellet
1010 insolubilized material. The supernatants were supplemented with loading buffer (50% glycerol,
1011 0.01 % Ponceau S) and immediately loaded onto 3-13% gradient gels. Complexes were
1012 separated at 150 V, 15 mA for 16 h. To assess complex in-gel activity, the gel slices were
1013 incubated in respective buffer solutions for several hours at room temperature. For complex I
1014 activity, the gel was incubated in 5 mM Tris-HCl (pH 7.4), 0.1 mg/mL NADH and 2.5 mg/mL
1015 nitro blue tetrazolium chloride (NBT). For complex III, the gel was incubated in 50 mM sodium

1016 phosphate buffer (pH 7.2), 0.1 % 3,3'-diaminobenzidine tetrahydrochloride (DAB). To assess
1017 complex IV activity, the gel was incubated in 50 mM sodium phosphate buffer (pH 7.2), 0.05
1018 % DAB and 50 μ M horse heart cytochrome c and for complex V, the gel was incubated in 35
1019 mM Tris-base, 270 mM glycine, 14 mM MgSO₄, 0.2 % (w/v) Pb(NO₃)₂ and 8 mM ATP.

1020 **RNA isolation and quantification**

1021 Total RNA was extracted from cell pellets using RNeasy Mini Kit (Qiagen) according to the
1022 manufacturer's protocol. RNA quality and quantity were assessed using BioSpectrometer
1023 (Eppendorf). cDNA synthesis from 5 μ g RNA was performed using the GoScriptTM Reverse
1024 Transcriptase Kit (Promega). Next, quantitative real-time PCR was performed in Rotor Gene
1025 6000 (Corbett Research) using GoTagR qPCR Master Mix (Promega) according to
1026 manufacturer's instructions with the following primers:

1027 1. *CPT1A*:

1028 Forward: 5'- GATCCTGGACAATACCTCGGAGC-3'

1029 Reverse: 5'- CTCCACAGCATCAAGAGACTGC-3'

1030 2. *HPRT1* (Housekeeping gene):

1031 Forward: 5'-CATTATGCTGAGGATTGGAAAGG-3'

1032 Reverse: 5'-CTTGAGCACACAGAGGGCTACA-3'

1033

1034 C_t values were normalized to housekeeping gene *HPRT1* followed by normalization of Δ C_t
1035 values to average Δ C_t of WT-N control group.

1036 **Transcriptomics**

1037 Cells were seeded in quadruplicates onto 10 cm dishes in corresponding cell culture media
1038 and medium was replaced every two days until 80 % cell confluence was obtained. For
1039 preparation of RNA, cells were washed three times with cold PBS and subsequently scraped
1040 and pelleted. RNA isolation from cell pellets was performed using RNeasy Mini Kit (Qiagen)
1041 including DNase digestion according to the manufacturer's protocol. Sample concentration
1042 was determined and 1 μ g RNA was aliquoted for transcriptomics analysis. Total RNA samples
1043 were quantified (Qubit RNA HS Assay, Thermo Fisher Scientific, MA, USA) and quality
1044 measured by capillary electrophoresis using the Fragment Analyzer and the 'Total RNA
1045 Standard Sensitivity Assay' (Agilent Technologies, Inc. Santa Clara, CA, USA). All samples in
1046 this study showed RNA Quality Numbers (RQN) with a mean of 10.0. The library preparation
1047 was performed according to the manufacturer's protocol using the 'VAHTSTM Stranded mRNA-
1048 Seq Library Prep Kit' for Illumina®. Briefly, 700 ng total RNA were used as input for mRNA
1049 capturing, fragmentation, the synthesis of cDNA, adapter ligation and library amplification.
1050 Bead purified libraries were normalized and finally sequenced on the NextSeq2000 system
1051 (Illumina Inc. San Diego, CA, USA) with a read setup of 1x100 bp. The BCL Convert Tool

1052 (version 3.8.4) was used to convert the bcl files to fastq files as well for adapter trimming and
1053 demultiplexing.

1054 Data analyses on fastq files were conducted with CLC Genomics Workbench (version 22.0.2,
1055 Qiagen, Venlo, Netherlands). The reads of all probes were adapter trimmed (Illumina TruSeq)
1056 and quality trimmed (using the default parameters: bases below Q13 were trimmed from the
1057 end of the reads, ambiguous nucleotides maximal 2). Mapping was done against the *Homo*
1058 *sapiens* (hg38; GRCh38.107) (July 20, 2022) genome sequence. After grouping of samples
1059 (four biological replicates) according to their respective experimental conditions, the statistical
1060 differential expression was determined using the CLC differential expression for RNA-Seq tool
1061 (version 2.6, Qiagen, Venlo, Netherlands). The resulting *P* values were corrected for multiple
1062 testing by FDR and Bonferroni-correction. A *P* value of ≤ 0.05 was considered significant. The
1063 CLC gene set enrichment test (version 1.2, Qiagen, Venlo, Netherlands) was done with default
1064 parameters and based on the GO term 'biological process' (*H. sapiens*; May 01, 2021).

1065 The data discussed in this publication have been deposited in NCBI's Gene Expression
1066 Omnibus (Edgar *et al*, 2002) and are accessible through GEO Series accession number
1067 GSE248848.

1068 **Proteomics**

1069 Cells were seeded in quintuplicates onto 10 cm dishes in corresponding cell culture media and
1070 medium was replaced every two days until 80 % cell confluence was obtained. Cells were
1071 washed four times with PBS, scraped and pelleted in a pre-weighed Eppendorf tube. After
1072 complete removal of PBS, cells were immediately frozen in liquid nitrogen and sample weight
1073 was determined for normalization. Proteins were extracted from frozen cell pellets as described
1074 elsewhere (Poschmann *et al*, 2014). Briefly, cells were lysed and homogenized in urea buffer
1075 with a TissueLyser (Qiagen) and supernatants were collected after centrifugation for 15 min at
1076 14,000 x g and 4°C. Protein concentration was determined by means of Pierce 660 nm protein
1077 assay (Thermo Fischer Scientific). For LC-MS analysis, a modified magnetic bead-based
1078 sample preparation protocol according to Hughes and colleagues was applied (Hughes *et al*,
1079 2019). Briefly, 20 µg total protein per sample was reduced by adding 10 µL 100 mM DTT
1080 (dithiothreitol) and shaking for 20 min at 56°C and 1000 rpm, followed by alkylation with the
1081 addition of 13 µL 300 mM IAA and incubation for 15 min in the dark. A 20 µg/µL bead stock of
1082 1:1 Sera-Mag SpeedBeads was freshly prepared and 10 µL was added to each sample.
1083 Afterwards, 84 µL ethanol was added and incubated for 15 min at 24°C. After three rinsing
1084 steps with 80% EtOH and one rinsing step with 100% ACN, beads were resuspended in 50 mM
1085 TEAB buffer and digested with final 1:50 trypsin at 37°C and 1,000 rpm overnight. Extra-
1086 digestion was carried out by adding trypsin (final 1:50) and shaking at 37°C and 1000 rpm for

1087 4 h. The supernatants were collected and 500 ng of each sample digest was subjected to LC-
1088 MS.

1089 For the LC-MS acquisition, an Orbitrap Fusion Lumos Tribrid Mass Spectrometer (Thermo
1090 Fisher Scientific) coupled to an Ultimate 3000 Rapid Separation liquid chromatography system
1091 (Thermo Fisher Scientific) equipped with an Acclaim PepMap 100 C18 column (75 μ m inner
1092 diameter, 25 cm length, 2 μ m particle size from Thermo Fisher Scientific) as separation column
1093 and an Acclaim PepMap 100 C18 column (75 μ m inner diameter, 2 cm length, 3 μ m particle
1094 size from Thermo Fisher Scientific) as trap column was used. A LC-gradient of 180 min was
1095 applied. Survey scans were carried out over a mass range from 200-2,000 m/z at a resolution
1096 of 120,000. The target value for the automatic gain control was 250,000 and the maximum fill
1097 time 60 ms. Within a cycle time of 2 s, the most intense peptide ions (excluding singly charged
1098 ions) were selected for fragmentation. Peptide fragments were analysed in the ion trap using
1099 a maximal fill time of 50 ms and automatic gain control target value of 10,000 operating in rapid
1100 mode. Already fragmented ions were excluded for fragmentation for 60 seconds.

1101 Data analysis was performed with Proteome Discoverer (version 2.4.1.15, Thermo Fisher
1102 Scientific). All RAW files were searched against the human Swissprot database (Download:
1103 23.01.2020) and the Maxquant Contaminant database (Download: 20.02.2021), applying a
1104 precursor mass tolerance of 10 ppm and a mass tolerance of 0.6 Da for fragment spectra.
1105 Methionine oxidation, N-terminal acetylation, N-terminal methionine loss and N-terminal
1106 methionine loss combined with acetylation were considered as variable modifications,
1107 carbamidomethylation as static modification as well as tryptic cleavage specificity with a
1108 maximum of two missed cleavage sites. Label-free quantification was performed using
1109 standard parameters within the predefined workflow. Post processing, proteins were filtered to
1110 1% FDR and a minimum of 2 identified peptides per protein. The mass spectrometry
1111 proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE
1112 (Perez-Riverol *et al*, 2022) partner repository with the dataset identifier PXD047246.

1113 **Metabolomics**

1114 Metabolites were analyzed by gas chromatography (GC) and anion exchange chromatography
1115 (AEC) coupled to mass spectrometry (MS). 1.5×10^6 cells were seeded in quadruplicates onto
1116 6 cm dishes and cultured in the corresponding media overnight. For glutamine tracing
1117 experiments, medium was replaced with corresponding growth media containing 2 mM labeled
1118 glutamine [$U\text{-}^{13}\text{C}_5$, $^{15}\text{N}_2$] (Sigma-Aldrich) either for 30 min or 6 h prior to cell harvesting. For
1119 metabolite extraction, cells were washed five times with ice-cold isotonic NaCl solution (0.9 %),
1120 followed by scraping of cells in 1 mL ice-cold MeOH. Cells were transferred to a 15 mL tube
1121 and diluted with 1 mL MilliQ water. Cell suspension was immediately frozen in liquid nitrogen.

1122 After thawing on ice, 0.5 mL MilliQ water was added supplemented with 10 μ M internal
1123 standard ribitol (Sigma Aldrich) for polar metabolite analysis. After that 1.5 mL MTBE was
1124 added containing 5.4 μ L heptadecanoic acid (1mg/ml) as internal standard for free fatty acid
1125 analysis. After repetitive mixing, samples were incubated on ice for 10 min. Subsequently,
1126 polar and nonpolar phases were separated by centrifugation at 4000 x g for 10 min at 4°C. The
1127 apolar phase was collected, frozen at -80°C and used for free fatty acid analysis. The aqueous
1128 phase was diluted with MilliQ water to decrease the organic proportion below 15 %. The
1129 sample was then frozen at -80°C, dried by lyophilization reconstituted in 500 μ L MilliQ water
1130 and filtered prior to analysis.

1131 For GC-MS, 100 μ L was dried by vacuum filtration. Metabolite analysis was conducted using
1132 a 7890B gas chromatography system connected to a 7200 QTOF mass spectrometer (Agilent
1133 Technologies) as described previously (Shim *et al*, 2019). In brief, methoxyamine
1134 hydrochloride and N-methyl-N-(trimethylsilyl)trifluoroacetamide were subsequently added to
1135 the dried sample to derivatize functional groups of polar compounds. With an injection volume
1136 of 1 μ L, samples were introduced into the GC-MS system and compounds were separated on
1137 a HP-5MS column (30m length, 0.25mm internal diameter and 0.25 μ m film thickness). The
1138 software MassHunter Qualitative (v b08, Agilent Technologies) was used for compound
1139 identification by comparing mass spectra to an in-house library of authentic standards and to
1140 the NIST14 Mass Spectral Library (<https://www.nist.gov/srd/nist-standard-reference-database-1a-v14>). Peak areas were integrated using MassHunter Quantitative (v b08, Agilent
1141 Technologies) and normalized to the internal standard ribitol and cell number. To determine
1142 the ^{13}C and ^{15}N incorporation, isotopologues for individual fragments were analyzed according
1143 to the number of possible incorporation sites. The normalized peak areas were corrected for
1144 the natural abundance using the R package IsoCorrectoR (Heinrich *et al*, 2018).

1146 For the analysis of anionic compounds by AEC-MS, samples were diluted with MilliQ water
1147 (1:2 v/v). Measurements were performed using combination of a Dionex ICS-6000 HPIC and
1148 a high field Thermo Scientific Q Exactive Plus quadrupole-Orbitrap mass spectrometer (both
1149 Thermo Fisher Scientific) as described earlier with minor modifications (Curien *et al*, 2021). 10
1150 μ L of sample was injected via a Dionex AS-AP autosampler in push partial mode. Anion
1151 exchange chromatography was conducted on a Dionex IonPac AS11-HC column (2 mm X 250
1152 mm, 4 μ m particle size, Thermo Scientific) equipped with a Dionex IonPac AG11-HC guard
1153 column (2 mm X 50 mm, 4 μ m, Thermo Scientific) at 30°C. The mobile phase was established
1154 using an eluent generator with a potassium hydroxide cartridge to produce a potassium
1155 hydroxide gradient. The column flow rate was set to 380 μ L min^{-1} with a starting KOH
1156 concentration of 5 mM for one minute. The concentration was increased to 85 mM within 35
1157 min and held for 5 min. The concentration was immediately reduced to 5 mM and the system

1158 equilibrated for 10 min. Spray stability was achieved with a makeup consisting of methanol
1159 with 10 mM acetic acid delivered with 150 $\mu\text{L min}^{-1}$ by an AXP Pump. The electro spray was
1160 achieved in the ESI source using the following parameters: sheath gas 30, auxiliary gas 15,
1161 sweep gas 0, spray voltage - 2.8 kV, capillary temperature 300°C, S-Lens RF level 45, and
1162 auxiliary gas heater 380°C. For the untargeted approach, the mass spectrometer operated in
1163 a combination of full mass scan and a data-dependent Top5 MS2 (ddMS2) experiment. The
1164 full scan (60-800 m/z) was conducted with a resolution of 140,000 and an automatic gain
1165 control (AGC) target of 10^6 ions with a maximum injection time of 500 ms. The Top5 ddMS2
1166 experiment was carried out with a resolution of 17,500 and an AGC target of 10^5 and a
1167 maximum IT of 50 ms. The stepped collision energy was used with the steps (15, 25, 35) to
1168 create an average of NCE 25. Data analysis was conducted using Compound Discoverer
1169 (version 3.1, Thermo Scientific) using the “untargeted Metabolomics workflow” for steady state
1170 analysis. Compound identification was achieved on the level of mass accuracy (MS1 level),
1171 fragment mass spectra matching (MS2 level) and retention time comparison with authentic
1172 standards. For the enrichment analysis with stable heavy isotopes, the standard workflow for
1173 “stable isotope labelling” was chosen with the default settings 5 ppm mass tolerance, 30 %
1174 intensity tolerance and 0.1 % intensity threshold for isotope pattern matching and a maximum
1175 exchange rate was of 95%.

1176 For free fatty acid analysis via GC-MS, lipids were hydrolysed and free fatty acids were
1177 methylated to fatty acid methyl esters (FAMEs). To do so, the organic phase was transferred
1178 into a glass vial and dried under a stream of nitrogen gas. The dried sample was resuspended
1179 in 1 mL of methanolic hydrochloride (MeOH/3 N HCl) and incubated at 90°C for 1 h. One mL
1180 of hexane and 1 mL of NaCl solution (1%) were added before centrifugation at 2000 g for 5 min.
1181 The FAME-containing organic phase (top layer) was collected in a clean glass vial and stored
1182 at -20°C until measurement as described recently (Vasilopoulos *et al*, 2023).

1183 **Quantification of mitochondrial morphology, membrane potential ($\Delta\Psi_m$) and cellular
1184 lipid droplets**

1185 HepG2 cells (0.25×10^6 cells) were seeded onto 35 mm Poly-D-Lysine-coated (50 $\mu\text{g/ml}$) live-
1186 imaging dishes (MATTEK P35G-1.5-14-C) and incubated for 24 h at 37°C, 5 % CO₂ in the
1187 corresponding normoglycemic or hyperglycemic media. The assessment of mitochondrial
1188 morphology, $\Delta\Psi_m$ and cellular lipid droplets was performed by addition of MitoTracker Green
1189 (Invitrogen, 200 nM), TMRM (Invitrogen, 50 nM), BODIPY 493/503 (Cayman Chemicals,
1190 10 μM) respectively for 30 min at 37°C, followed by washing thrice. Live-cell microscopy was
1191 performed using a spinning disc confocal microscope (PerkinElmer) equipped with a 60x oil-
1192 immersion objective (N.A = 1.49) and a Hamamatsu C9100 camera (1000 X 1000 pixel). The

1193 cells were maintained at 37°C in DMEM supplemented with 10 mM HEPES for the imaging
1194 duration. MitoTracker Green and BODIPY 493/503 were excited with a 488 nm laser while
1195 TMRM was excited with a 561 nm laser. The images were obtained at emission wavelength of
1196 527 nm (W55) and 615 nm (W70) for 488 nm and 561 nm excitation respectively. The cell
1197 population was classified into tubular, intermediate and fragmented mitochondrial morphology
1198 based on the majority of mitochondria belonging to the respective class. Cells classified as
1199 tubular and fragmented contained mostly long tubular and short fragments respectively
1200 whereas cells classified as intermediate had a mixture of mostly short pieces, few long tubes
1201 as well as fragmented mitochondria. Velocity image analysis software was used for the
1202 quantification regarding $\Delta\Psi_m$ and lipid droplets. The total fluorescence intensities of TMRM
1203 and BODIPY were obtained per cell after respective background subtraction. Each cell was
1204 manually demarcated by drawing a ROI. Lipid droplet number within a ROI was obtained
1205 automatically using find spots by setting threshold of brightest spot within a radius of 0.5 μm
1206 and compartmentalization to ROI.

1207 **Glucose Uptake Assay**

1208 3×10^4 HepG2 cells were seeded in triplicates onto a dark 96-well plate overnight and in parallel
1209 onto a clear-96 well plate for cell normalization. Cellular glucose uptake was measured using
1210 Glucose Uptake-Glo™ Assay kit (Promega), according to the manufacturer's protocol.
1211 Luminescence was measured by microplate reader (CLARIOstar Plus, BMG LABTECH) with
1212 1 s integration after 1 h of incubation. Normalization was performed using Hoechst staining
1213 and mean of signal intensity was used for normalizing luminescence intensities. Luciferase
1214 signals were normalized to WT-N measurement.

1215 **Mitochondrial respirometry**

1216 A variety of respirometry experiments were performed using Seahorse XFe96 Analyzer
1217 (Agilent). HepG2 cells were seeded onto Poly-D-Lysine-coated (50 $\mu\text{g}/\text{ml}$) Seahorse XF96 cell
1218 culture plate (Agilent) at a density of 3.0×10^4 cells per well. For mitochondrial stress test,
1219 mitochondrial fuel flexibility test and glycolysis stress test, cells were incubated overnight in
1220 standard growth media. For fatty acid oxidation (FAO) test, standard growth medium was
1221 replaced by serum-deprived growth medium (DMEM without glucose, pyruvate and glutamine),
1222 containing 1 % FBS, 0.5 mM glucose, 0.5 mM L-Carnitine (Sigma Aldrich) and 1.0 mM
1223 glutamine 10 h after cell seeding and incubated overnight.

1224 Prior to performing the assay, old medium was removed and cells were washed twice after
1225 which cells were supplemented with the corresponding assay media followed by 45 min CO_2 -
1226 free incubation. Mitochondrial stress test was performed using Seahorse assay media (Agilent)
1227 supplemented with 10 mM glucose, 2 mM stable glutamine and 1 mM sodium pyruvate.

1228 Mitochondrial oxygen consumption was measured after sequential addition of oligomycin
1229 (1 μ M), FCCP (0.25 μ M) and rotenone/antimycin (0.5 μ M) according to the manufacturer's
1230 protocol. Mitochondrial fuel flexibility test was performed using Seahorse assay media
1231 containing 10 mM glucose, 2 mM stable glutamine and 1 mM sodium pyruvate. After initial
1232 acquisition of basal respiration, glucose, glutamine and FAO dependency and capacity was
1233 assessed according to manufacturer's protocol by sequential incubation with UK5099 (2 μ M)
1234 and Etomoxir (4 μ M) / BPTES (3 μ M), BPTES (3 μ M) and Etomoxir (4 μ M) / UK5099 (2 μ M) or
1235 Etomoxir (4 μ M) and UK5099 (2 μ M) / BPTES (3 μ M) respectively. Glycolysis stress test was
1236 performed in Seahorse assay media supplemented with 2 mM glutamine. After 15 min of basal
1237 ECAR determination, glycolysis was induced by addition of glucose (10 mM), followed by
1238 oligomycin (1 μ M) and lastly 2-DG (50 mM). For assessment of FAO, cells were pretreated
1239 with Seahorse assay media containing BSA (Biomol, 200 μ M) or Palmitate (Biomol, 200 μ M).
1240 FAO was measured by sequential addition of etomoxir (Sigma Aldrich, 4 μ M) or media and
1241 mitochondrial stress test kit chemicals oligomycin (1.5 μ M), FCCP (1 μ M), rotenone/antimycin
1242 A (0.5 μ M). Cell numbers were normalized using Hoechst (10 μ g/mL) staining intensity
1243 assessed by microplate reader (Tecan M200 pro). Data were analyzed using wave software
1244 (Agilent) and Microsoft Excel.

1245 **Electron Microscopy**

1246 4 \times 10⁶ HepG2 cells were grown overnight in 10 cm petri dishes at 37°C with 5% CO₂ in the
1247 corresponding treatment media. Cells were fixed using 3 % glutaraldehyde, 0.1 M sodium
1248 cacodylate buffer at pH 7.2 and subsequently pelleted. Cell pellets were washed in fresh 0.1
1249 M sodium cacodylate buffer at pH 7.2 and embedded in 3 % low melting agarose. Cells were
1250 stained using 1% osmium tetroxide for 50 min, washed twice with 0.1 M sodium cacodylate
1251 buffer and once using 70% ethanol for 10 min each. Thereafter, cells were stained using 1%
1252 uranyl acetate/1% phosphotungstic acid in 70% ethanol for 1 h. Stained samples were
1253 embedded in spur epoxy resin for polymerization at 70°C for 24 hours. Ultrathin sections were
1254 prepared using a microtome and imaged on a transmission electron microscope (Hitachi,
1255 H600) at 75 V equipped with Bioscan 792 camera (Gatan). Image analysis was performed
1256 using ImageJ software.

1257 **Sulforhodamine B (SRB) assay**

1258 Cell viability was assessed by SRB colorimetry assay. 2.5 \times 10⁴ HepG2 cells were seeded in
1259 24 well plates and incubated for 24 h, 48 h or 72 h. Subsequently, cells were washed with PBS
1260 and fixed with 10% (w/v) cold trichloroacetic acid solution (500 μ L/well) for 1 h at 4°C. After
1261 washing five times with MilliQ water, cells were dried at RT overnight. Fixed cells were stained
1262 with SRB solution (0.4% (w/v) in 1% acetic acid, 300 μ L/well) for 15 min at RT, washed five
1263 times with 1% acetic acid and dried at RT for 1 h. SRB extraction was performed by addition

1264 of 400 μ L TRIS-Base (10 mmol/l) per well. The absorbance was measured, after 5 min of
1265 shaking, at 492 nm and 620 nm using a microplate reader (Tecan M200 pro). Total intensity
1266 was calculated from signal intensity at 492 nm after background subtraction of 620 nm
1267 intensity. Proliferation was normalized to WT-N.

1268 **Statistics and data representation**

1269 Data are represented as mean \pm standard error mean (SEM). Statistical significance was
1270 determined by one-way ANOVA followed by Šídák's test for multiple comparisons of selected
1271 pairs with *P -value ≤ 0.05 , $^{**}P$ -value ≤ 0.01 , $^{***}P$ -value ≤ 0.001 , $^{****}P$ -value ≤ 0.0001 . Data
1272 analysis was performed using Microsoft Excel. Data representation and statistical analysis was
1273 performed using GraphPad Prism.

1274 References

1275 Afshinnia F, Rajendiran TM, Soni T, Byun J, Wernisch S, Sas KM, Hawkins J, Bellovich K,
1276 Gipson D, Michailidis G *et al* (2018) Impaired β -Oxidation and Altered Complex Lipid Fatty
1277 Acid Partitioning with Advancing CKD. *J Am Soc Nephrol* 29: 295-306

1278 Anand R, Kondadi AK, Meisterknecht J, Golombek M, Nortmann O, Riedel J, Peifer-Weiss L,
1279 Brocke-Ahmadinejad N, Schlutermann D, Stork B *et al* (2020) MIC26 and MIC27 cooperate to
1280 regulate cardiolipin levels and the landscape of OXPHOS complexes. *Life Sci Alliance* 3:
1281 e202000711

1282 Anand R, Reichert AS, Kondadi AK (2021) Emerging Roles of the MICOS Complex in Cristae
1283 Dynamics and Biogenesis. *Biology (Basel)* 10

1284 Anand R, Strecker V, Urbach J, Wittig I, Reichert AS (2016) Mic13 Is Essential for Formation
1285 of Crista Junctions in Mammalian Cells. *PLoS one* 11: e0160258

1286 Beninca C, Zanette V, Brischigliaro M, Johnson M, Reyes A, Valle DAD, A JR, Degiorgi A,
1287 Yeates A, Telles BA *et al* (2021) Mutation in the MICOS subunit gene APOO (MIC26)
1288 associated with an X-linked recessive mitochondrial myopathy, lactic acidosis, cognitive
1289 impairment and autistic features. *J Med Genet* 58: 155-167

1290 Bugger H, Boudina S, Hu XX, Tuinei J, Zaha VG, Theobald HA, Yun UJ, McQueen AP,
1291 Wayment B, Litwin SE *et al* (2008) Type 1 diabetic akita mouse hearts are insulin sensitive but
1292 manifest structurally abnormal mitochondria that remain coupled despite increased uncoupling
1293 protein 3. *Diabetes* 57: 2924-2932

1294 Chen J, Yue F, Kuang S (2022) Labeling and analyzing lipid droplets in mouse muscle stem
1295 cells. *STAR Protoc* 3: 101849

1296 Collaborators GBDO, Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, Marczak
1297 L, Mokdad AH, Moradi-Lakeh M *et al* (2017) Health Effects of Overweight and Obesity in 195
1298 Countries over 25 Years. *N Engl J Med* 377: 13-27

1299 Curien G, Lyska D, Guglielmino E, Westhoff P, Janetzko J, Tardif M, Hallopeau C, Brugière S,
1300 Dal Bo D, Decelle J *et al* (2021) Mixotrophic growth of the extremophile Galdieria sulphuraria
1301 reveals the flexibility of its carbon assimilation metabolism. *New Phytol* 231: 326-338

1302 Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression
1303 and hybridization array data repository. *Nucleic Acids Res* 30: 207-210

1304 Eramo MJ, Lisnyak V, Formosa LE, Ryan MT (2020) The 'mitochondrial contact site and cristae
1305 organising system' (MICOS) in health and human disease. *J Biochem* 167: 243-255

1306 Frey TG, Mannella CA (2000) The internal structure of mitochondria. *Trends in biochemical
1307 sciences* 25: 319-324

1308 Giacomello M, Pyakurel A, Glytsou C, Scorrano L (2020) The cell biology of mitochondrial
1309 membrane dynamics. *Nat Rev Mol Cell Biol*

1310 Gomes LC, Di Benedetto G, Scorrano L (2011) During autophagy mitochondria elongate, are
1311 spared from degradation and sustain cell viability. *Nat Cell Biol* 13: 589-598

1312 Guarani V, McNeill EM, Paulo JA, Huttlin EL, Frohlich F, Gygi SP, Van Vactor D, Harper JW
1313 (2015) QIL1 is a novel mitochondrial protein required for MICOS complex stability and cristae
1314 morphology. *eLife* 4

1315 Guo X, Hu J, He G, Chen J, Yang Y, Qin D, Li C, Huang Z, Hu D, Wei C *et al* (2023) Loss of
1316 APOO (MIC26) aggravates obesity-related whitening of brown adipose tissue via PPAR α -
1317 mediated functional interplay between mitochondria and peroxisomes. *Metabolism* 144:
1318 155564

1319 Guo Y, Darshi M, Ma Y, Perkins GA, Shen Z, Haushalter KJ, Saito R, Chen A, Lee YS, Patel
1320 HH *et al* (2013) Quantitative proteomic and functional analysis of liver mitochondria from high
1321 fat diet (HFD) diabetic mice. *Molecular & cellular proteomics : MCP* 12: 3744-3758

1322 Harner M, Korner C, Walther D, Mokranjac D, Kaesmacher J, Welsch U, Griffith J, Mann M,
1323 Reggiori F, Neupert W (2011) The mitochondrial contact site complex, a determinant of
1324 mitochondrial architecture. *The EMBO journal* 30: 4356-4370

1325 Heinrich P, Kohler C, Ellmann L, Kuerner P, Spang R, Oefner PJ, Dettmer K (2018) Correcting
1326 for natural isotope abundance and tracer impurity in MS-, MS/MS- and high-resolution-
1327 multiple-tracer-data from stable isotope labeling experiments with IsoCorrectoR. *Sci Rep* 8:
1328 17910

1329 Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, Devay RM, Lackner LL, Westermann B,
1330 Schuldiner M, Weissman JS, Nunnari J (2011) A mitochondrial-focused genetic interaction
1331 map reveals a scaffold-like complex required for inner membrane organization in mitochondria.
1332 *The Journal of cell biology* 195: 323-340

1333 Hughes CS, Mogridge S, Müller T, Sorensen PH, Morin GB, Krijgsveld J (2019) Single-pot,
1334 solid-phase-enhanced sample preparation for proteomics experiments. *Nat Protoc* 14: 68-85

1335 Kondadi AK, Anand R, Hansch S, Urbach J, Zobel T, Wolf DM, Segawa M, Liesa M, Shirihi
1336 OS, Weidtkamp-Peters S *et al* (2020a) Cristae undergo continuous cycles of membrane
1337 remodelling in a MICOS-dependent manner. *EMBO Rep* 21: e49776

1338 Kondadi AK, Anand R, Reichert AS (2020b) Cristae Membrane Dynamics - A Paradigm
1339 Change. *Trends Cell Biol* 30: 923-936

1340 Koob S, Barrera M, Anand R, Reichert AS (2015) The non-glycosylated isoform of MIC26 is a
1341 constituent of the mammalian MICOS complex and promotes formation of crista junctions.
1342 *Biochimica et biophysica acta* 1853: 1551-1563

1343 Lamant M, Smih F, Harmancey R, Philip-Couderc P, Pathak A, Roncalli J, Galinier M, Collet
1344 X, Massabuau P, Senard JM *et al* (2006) ApoO, a novel apolipoprotein, is an original
1345 glycoprotein up-regulated by diabetes in human heart. *J Biol Chem* 281: 36289-36302

1346 Li Z, Liu H, Bode A, Luo X (2021) Emerging roles of dehydrogenase/reductase member 2
1347 (DHRS2) in the pathology of disease. *Eur J Pharmacol* 898: 173972

1348 López-Viñas E, Bentebibel A, Gurunathan C, Morillas M, de Arriaga D, Serra D, Asins G,
1349 Hegardt FG, Gómez-Puertas P (2007) Definition by functional and structural analysis of two
1350 malonyl-CoA sites in carnitine palmitoyltransferase 1A. *J Biol Chem* 282: 18212-18224

1351 Lubeck M, Derkum NH, Naha R, Strohm R, Driessen MD, Belgardt BF, Roden M, Stühler K,
1352 Anand R, Reichert AS *et al* (2023) MIC26 and MIC27 are bona fide subunits of the MICOS
1353 complex in mitochondria and do not exist as glycosylated apolipoproteins. *PLoS one* 18:
1354 e0286756

1355 Madison BB (2016) Srebp2: A master regulator of sterol and fatty acid synthesis. *J Lipid Res*
1356 57: 333-335

1357 Mannella CA, Lederer WJ, Jafri MS (2013) The connection between inner membrane topology
1358 and mitochondrial function. *Journal of molecular and cellular cardiology* 62: 51-57

1359 Mehta A, Shapiro MD (2022) Apolipoproteins in vascular biology and atherosclerotic disease.
1360 *Nat Rev Cardiol* 19: 168-179

1361 Mishra P, Chan DC (2016) Metabolic regulation of mitochondrial dynamics. *The Journal of cell
1362 biology*

1363 Naha R, Strohm R, Urbach J, Wittig I, Reichert AS, Kondadi AK, Anand R (2023) MIC13 and
1364 SLP2 seed the assembly of MIC60-subcomplex to facilitate crista junction formation. *bioRxiv*:
1365 2023.2009.2004.556207

1366 Ngo J, Choi DW, Stanley IA, Stiles L, Molina AJA, Chen PH, Lako A, Sung ICH, Goswami R,
1367 Kim MY *et al* (2023) Mitochondrial morphology controls fatty acid utilization by changing CPT1
1368 sensitivity to malonyl-CoA. *The EMBO journal*: e111901

1369 Ott C, Dorsch E, Fraunholz M, Straub S, Kozjak-Pavlovic V (2015) Detailed analysis of the
1370 human mitochondrial contact site complex indicate a hierarchy of subunits. *PLoS one* 10:
1371 e0120213

1372 Peifer-Weiß L, Kurban M, David C, Lubeck M, Kondadi AK, Nemer G, Reichert AS, Anand R
1373 (2023) A X-linked nonsense APOO/MIC26 variant causes a lethal mitochondrial disease with
1374 progeria-like phenotypes. *Clin Genet*

1375 Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S,
1376 Kundu DJ, Prakash A, Frericks-Zipper A, Eisenacher M *et al* (2022) The PRIDE database
1377 resources in 2022: a hub for mass spectrometry-based proteomics evidences. *Nucleic Acids
1378 Res* 50: D543-d552

1379 Philip-Couderc P, Smih F, Pelat M, Vidal C, Verwaerde P, Pathak A, Buys S, Galinier M,
1380 Senard JM, Rouet P (2003) Cardiac transcriptome analysis in obesity-related hypertension.
1381 *Hypertension* 41: 414-421

1382 Poschmann G, Seyfarth K, Besong Agbo D, Klafki HW, Rozman J, Wurst W, Wiltfang J, Meyer
1383 HE, Klingenspor M, Stuhler K (2014) High-fat diet induced isoform changes of the Parkinson's
1384 disease protein DJ-1. *J Proteome Res* 13: 2339-2351

1385 Sheftel AD, Stehling O, Pierik AJ, Netz DJ, Kerscher S, Elsässer HP, Wittig I, Balk J, Brandt
1386 U, Lill R (2009) Human ind1, an iron-sulfur cluster assembly factor for respiratory complex I.
1387 *Mol Cell Biol* 29: 6059-6073

1388 Shim SH, Lee SK, Lee DW, Brilhaus D, Wu G, Ko S, Lee CH, Weber APM, Jeon JS (2019)
1389 Loss of Function of Rice Plastidic Glycolate/Glycerate Translocator 1 Impairs Photorespiration
1390 and Plant Growth. *Front Plant Sci* 10: 1726

1391 Song S, Attia RR, Connaughton S, Niesen MI, Ness GC, Elam MB, Hori RT, Cook GA, Park
1392 EA (2010) Peroxisome proliferator activated receptor alpha (PPARalpha) and PPAR gamma
1393 coactivator (PGC-1alpha) induce carnitine palmitoyltransferase IA (CPT-1A) via independent
1394 gene elements. *Mol Cell Endocrinol* 325: 54-63

1395 Spinelli JB, Haigis MC (2018) The multifaceted contributions of mitochondria to cellular
1396 metabolism. *Nat Cell Biol* 20: 745-754

1397 Stephan T, Bruser C, Deckers M, Steyer AM, Balzarotti F, Barbot M, Behr TS, Heim G, Hubner
1398 W, Ilgen P *et al* (2020) MICOS assembly controls mitochondrial inner membrane remodeling
1399 and crista junction redistribution to mediate cristae formation. *The EMBO journal* 39: e104105

1400 Sun W, Nie T, Li K, Wu W, Long Q, Feng T, Mao L, Gao Y, Liu Q, Gao X *et al* (2021) Hepatic
1401 CPT1A Facilitates Liver-Adipose Cross-Talk via Induction of FGF21 in Mice. *Diabetes*

1402 Szendroedi J, Phielix E, Roden M (2011) The role of mitochondria in insulin resistance and
1403 type 2 diabetes mellitus. *Nat Rev Endocrinol* 8: 92-103

1404 Thiam AR, Farese RV, Jr., Walther TC (2013) The biophysics and cell biology of lipid droplets.
1405 *Nat Rev Mol Cell Biol* 14: 775-786

1406 Tian F, Wu CL, Yu BL, Liu L, Hu JR (2017) Apolipoprotein O expression in mouse liver
1407 enhances hepatic lipid accumulation by impairing mitochondrial function. *Biochem Biophys
1408 Res Commun* 491: 8-14

1409 Turkieh A, Caubere C, Barutaut M, Desmoulin F, Harmancey R, Galinier M, Berry M, Dambrin
1410 C, Polidori C, Casteilla L *et al* (2014) Apolipoprotein O is mitochondrial and promotes
1411 lipotoxicity in heart. *J Clin Invest* 124: 2277-2286

1412 Urbach J, Kondadi AK, David C, Naha R, Deinert K, Reichert AS, Anand R (2021) Conserved
1413 GxxxG and WN motifs of MIC13 are essential for bridging two MICOS subcomplexes. *Biochim
1414 Biophys Acta Biomembr* 1863: 183683

1415 Vasilopoulos G, Heflik L, Czolkoss S, Heinrichs F, Kleetz J, Yesilyurt C, Tischler D, Westhoff
1416 P, Exterkate M, Aktas M *et al* (2023) Characterization of multiple lysophosphatidic acid
1417 acyltransferases in the plant pathogen *Xanthomonas campestris*. *Febs j*

1418 von der Malsburg K, Muller JM, Bohnert M, Oeljeklaus S, Kwiatkowska P, Becker T,
1419 Loniewska-Lwowska A, Wiese S, Rao S, Milenkovic D *et al* (2011) Dual role of mitofillin in
1420 mitochondrial membrane organization and protein biogenesis. *Developmental cell* 21: 694-707

1421 Wai T, Saita S, Nolte H, Müller S, König T, Richter-Dennerlein R, Sprenger HG, Madrenas J,
1422 Mühlmeister M, Brandt U *et al* (2016) The membrane scaffold SLP2 anchors a proteolytic hub
1423 in mitochondria containing PPAR and the i-AAA protease YME1L. *EMBO Rep* 17: 1844-1856

1424 Wang L, Ishihara T, Ibayashi Y, Tatsushima K, Setoyama D, Hanada Y, Takeichi Y, Sakamoto
1425 S, Yokota S, Mihara K *et al* (2015) Disruption of mitochondrial fission in the liver protects mice
1426 from diet-induced obesity and metabolic deterioration. *Diabetologia* 58: 2371-2380

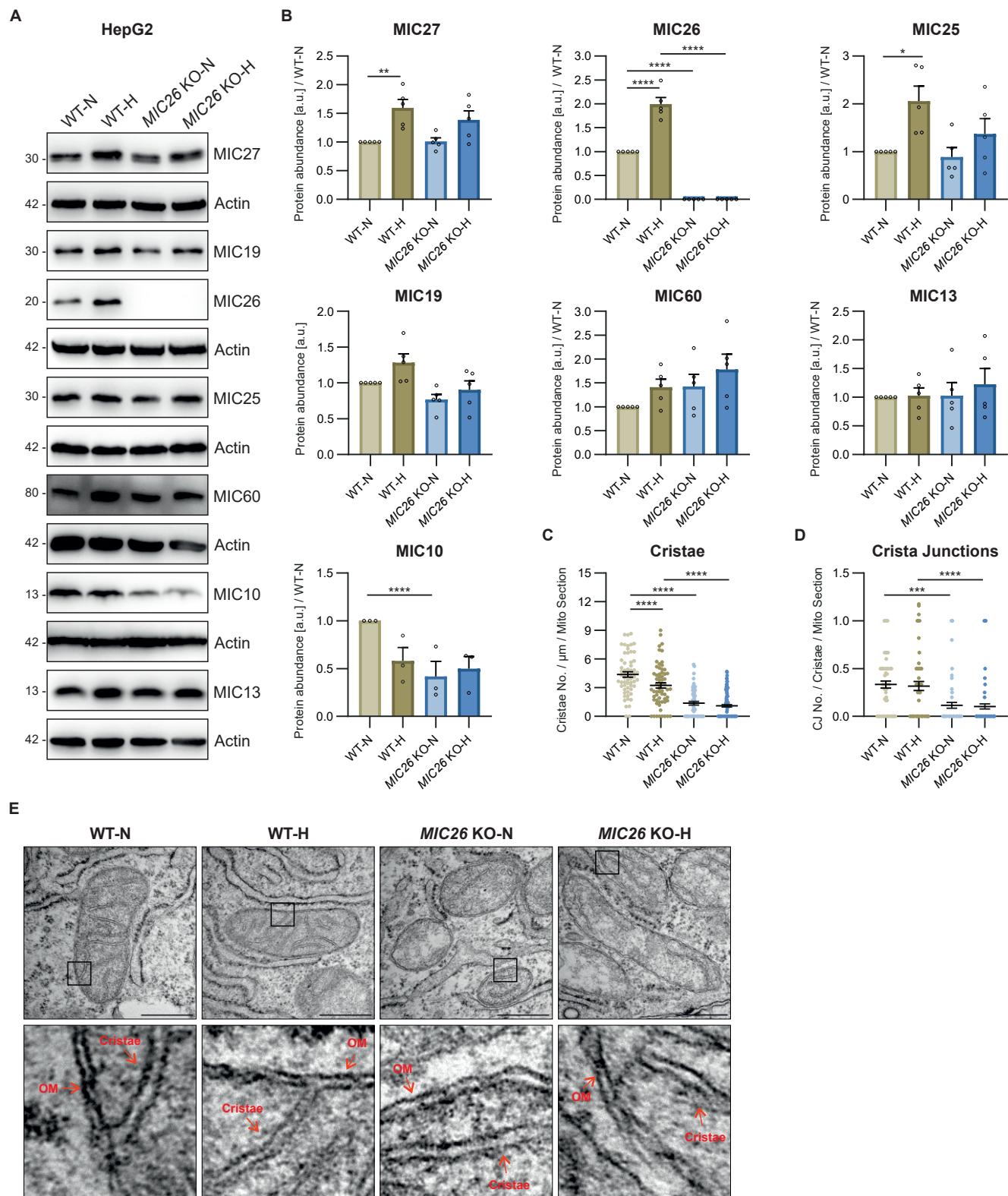
1427 Weber TA, Koob S, Heide H, Wittig I, Head B, van der Bliek A, Brandt U, Mittelbronn M,
1428 Reichert AS (2013) APOOL is a cardiolipin-binding constituent of the Mitofillin/MINOS protein
1429 complex determining cristae morphology in mammalian mitochondria. *PloS one* 8: e63683

1430 Włodarczyk M, Nowicka G (2019) Obesity, DNA Damage, and Development of Obesity-
1431 Related Diseases. *Int J Mol Sci* 20

1432 Wu CL, Zhao SP, Yu BL (2013) Microarray analysis provides new insights into the function of
1433 apolipoprotein O in HepG2 cell line. *Lipids Health Dis* 12: 186

1434 Xiang RL, Huang Y, Zhang Y, Cong X, Zhang ZJ, Wu LL, Yu GY (2020) Type 2 diabetes-
1435 induced hyposalivation of the submandibular gland through PINK1/Parkin-mediated
1436 mitophagy. *J Cell Physiol* 235: 232-244

1437 Yoo HC, Park SJ, Nam M, Kang J, Kim K, Yeo JH, Kim JK, Heo Y, Lee HS, Lee MY *et al*
1438 (2020a) A Variant of SLC1A5 Is a Mitochondrial Glutamine Transporter for Metabolic
1439 Reprogramming in Cancer Cells. *Cell Metab* 31: 267-283.e212


1440 Yoo HC, Yu YC, Sung Y, Han JM (2020b) Glutamine reliance in cell metabolism. *Exp Mol Med*
1441 52: 1496-1516

1442 Yu T, Robotham JL, Yoon Y (2006) Increased production of reactive oxygen species in
1443 hyperglycemic conditions requires dynamic change of mitochondrial morphology. *Proc Natl
1444 Acad Sci U S A* 103: 2653-2658

1445 Zadoorian A, Du X, Yang H (2023) Lipid droplet biogenesis and functions in health and
1446 disease. *Nat Rev Endocrinol* 19: 443-459

1447 Zick M, Rabl R, Reichert AS (2009) Cristae formation-linking ultrastructure and function of
1448 mitochondria. *Biochimica et biophysica acta* 1793: 5-19

Figure 1

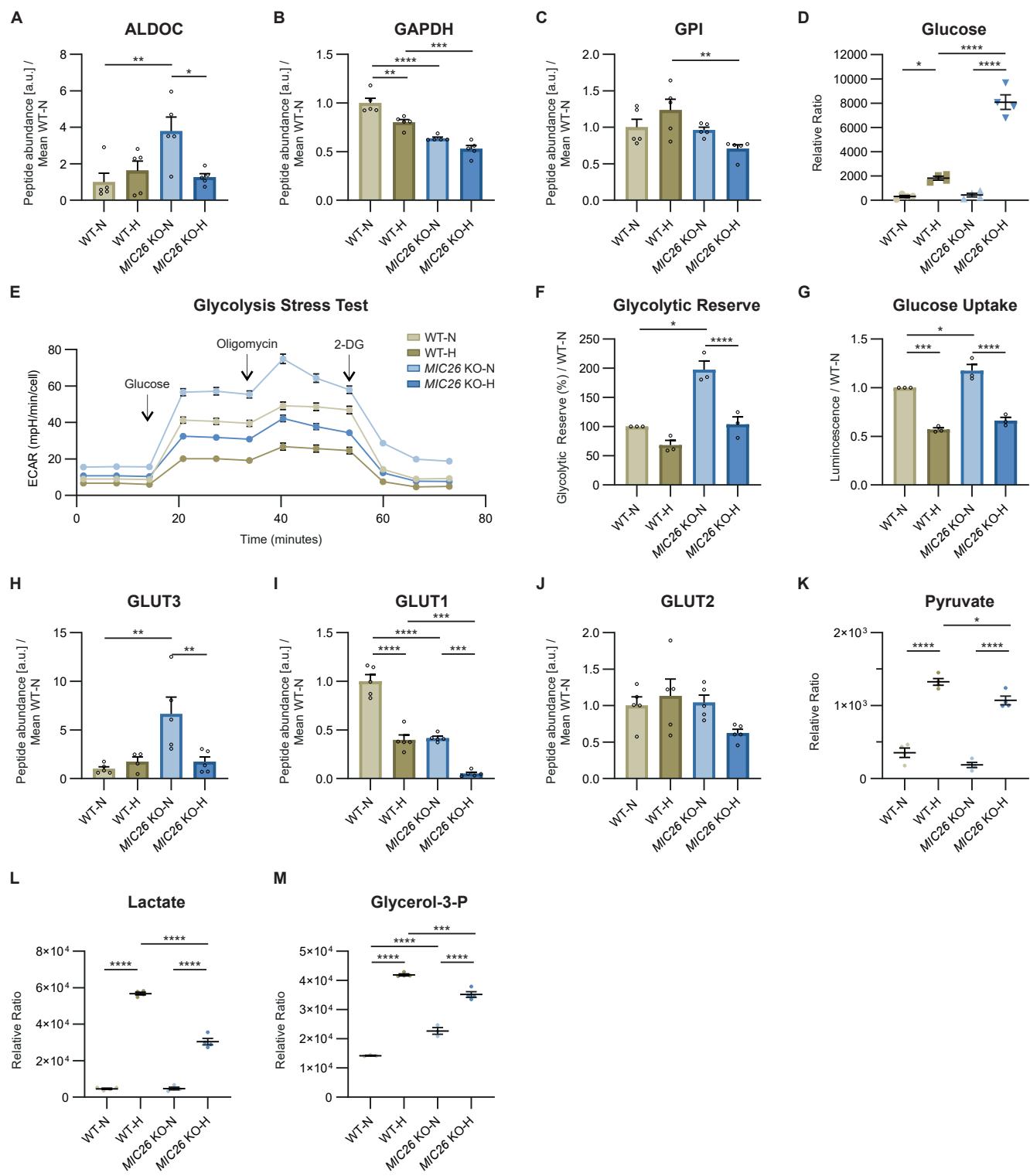
Figure 1. Mitochondrial apolipoprotein MIC26 is selectively increased in cells exposed to hyperglycemia

(A and B) Western blot analysis of all MICOS subunits from HepG2 WT and *MIC26* KO cells cultured in normo- and hyperglycemia (N = 3-5). Chronic hyperglycemia treatment leads to increased levels of MIC27, MIC26 and MIC25 in WT cells. Loss of MIC26 is accompanied by decreased MIC10 in normoglycemia.

(C, D and E) Electron microscopy data including quantification of cristae number per unit length (μm) per mitochondrial section (C) as well as crista junctions per cristae per mitochondrial section (D), along with representative images (E) from HepG2 WT and *MIC26* KO cells cultured in normo- and hyperglycemia (N = 2). Loss of MIC26 led to decreased cristae number and crista junctions independent of normo- and hyperglycemia. Red arrows in lower row indicate outer membrane (OM) or cristae. Scale bar represents 500 nm.

Data are represented as mean \pm SEM (B, C and D). Statistical analysis was performed using one-way ANOVA with $^*P < 0.05$, $^{**}P < 0.01$, $^{***}P < 0.001$, $^{****}P < 0.0001$. N represents the number of biological replicates.

Figure 2


Figure 2. Hyperglycemia confers antagonistic regulation of lipid and cholesterol pathways, in *MIC26* KO vs WT cells, compared to normoglycemia

(A and B) Hierarchical Treemap clustering of significant gene ontology (GO) enriched terms of biological processes upregulated in normoglycemic *MIC26* KO (A) and downregulated in hyperglycemic *MIC26* KO (B) compared to respective WT. Each rectangle represents one BioProcess pathway. Every colour represents clustering of different sub-pathways to pathway families. The rectangle sizes indicate the *P*-value of the respective GO term.

(C and D) WikiPathway enrichment using EnrichR analysis of differentially expressed genes (C) upregulated in normoglycemic *MIC26* KO and (D) downregulated in hyperglycemic *MIC26* KO cells compared to respective WT. Arrows indicate antagonistically regulated metabolic pathways including glycolysis, cholesterol biosynthesis, fatty acid synthesis and oxidation.

Differentially expressed genes were considered statistically significant with a cut-off fold change of ± 1.5 and Bonferroni correction $P \leq 0.05$. Treemap representation of GO enrichment was plotted with statistically significant pathways with cut-off $P \leq 0.05$.

Figure 3

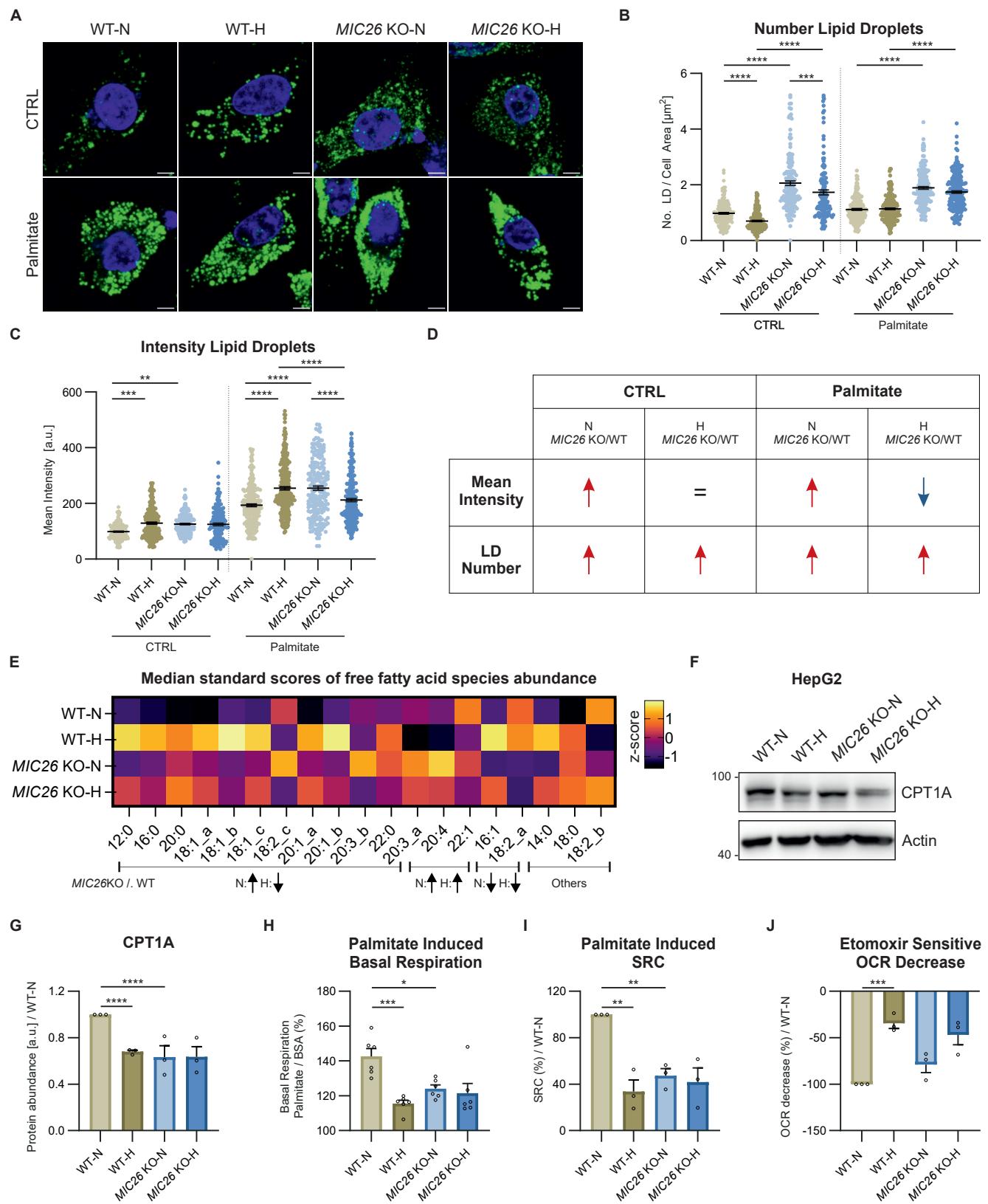
Figure 3. MIC26 maintains the glycolytic function

(A – C) Peptide abundances of enzymes involved in glycolysis pathway curated from proteomics data (N = 5).

(D) Steady state metabolomics (GC-MS) data reveals increased cellular glucose accumulation upon *MIC26* deletion in hyperglycemia (N = 3-4).

(E and F) Representative glycolysis stress test seahorse assay analysis, with sequential injection of glucose, oligomycin and 2-deoxyglucose, reveals a tendency towards increased glycolysis upon *MIC26* deletion (E) (n = 23). Quantification from various biological replicates shows a significant increase of cellular glycolytic reserve in normoglycemic, but not in hyperglycemic conditions (F) (N = 3).

(G) Cellular glucose uptake was measured using Glucose uptake Glo assay normalized to WT-N. *MIC26* deletion leads to an increased glucose uptake upon normoglycemia (N = 3).


(H – J) Peptide abundances of transporters involved in glucose uptake namely GLUT3 (H), GLUT1 (I) and GLUT2 (J) curated from proteomics data (N = 5).

(K and L) Steady state metabolomics (GC-MS) shows unaltered cellular pyruvate (K) and lactate (L) levels in *MIC26* KO cell lines in normoglycemia but decreased levels upon *MIC26* deletion in hyperglycemia (N = 3-4).

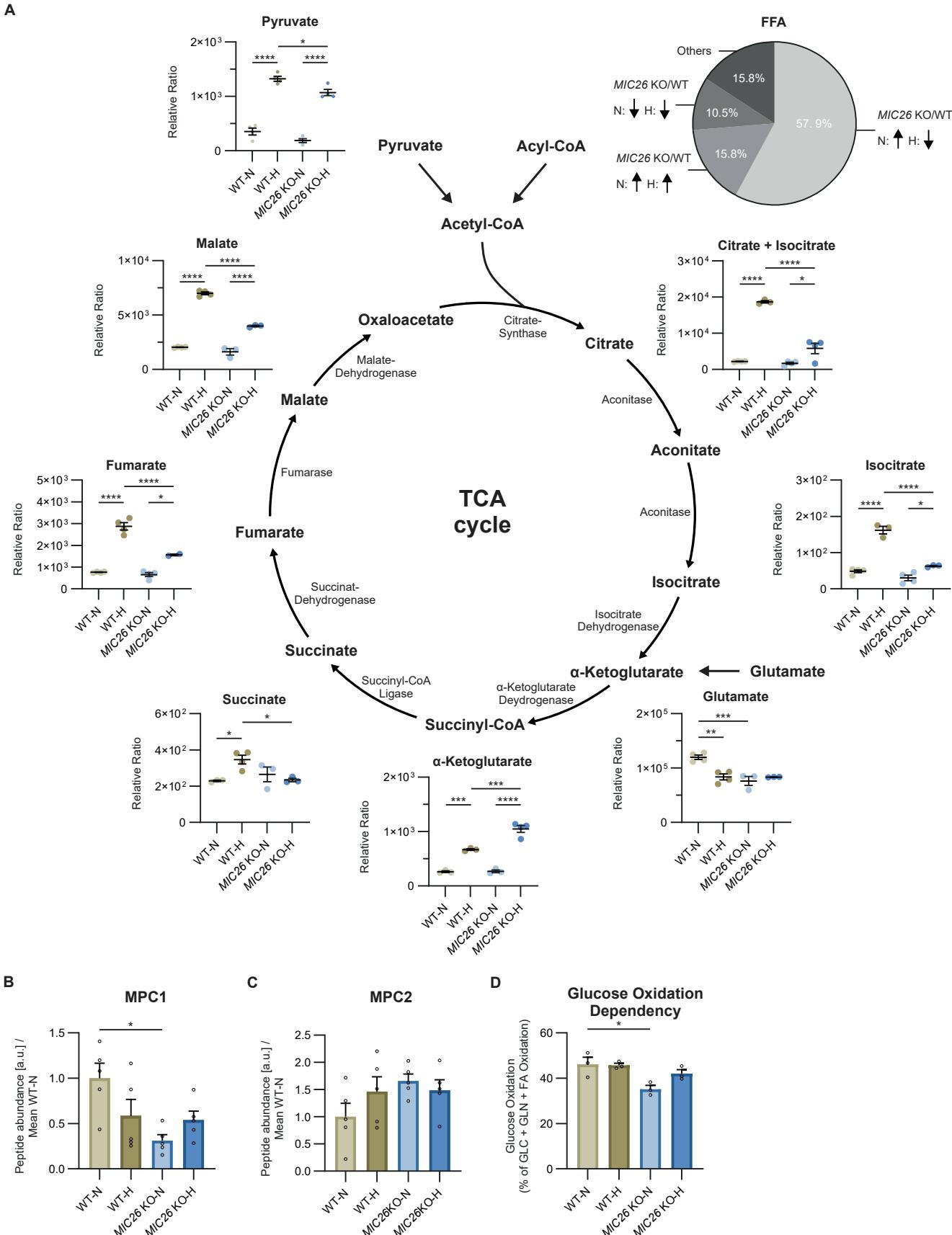
(M) *MIC26* deletion increases glycerol-3-phosphate amount in normoglycemia with an antagonistic effect in hyperglycemia compared to the respective WT (N = 3-4).

Data are represented as mean \pm SEM (A-M). Statistical analysis was performed using one-way ANOVA with $^*P < 0.05$, $^{**}P < 0.01$, $^{***}P < 0.001$, $^{****}P < 0.0001$. N represents the number of biological replicates and n the number of technical replicates.

Figure 4

Figure 4. The loss of MIC26 leads to metabolic rewiring of cellular lipid metabolism via CPT1A and dysregulation of fatty acid synthesis

(A – D) Analysis of lipid droplet formation in WT and *MIC26* KO cells cultured in normo- and hyperglycemia either in standard growth condition (CTRL) or upon palmitate stimulation (100 μ M, 24 h). Representative confocal images of lipid droplets stained using BODIPY 493/503 are shown (A). Quantification shows number of lipid droplets normalized to the total cell area [μ m 2] (B) and mean fluorescence intensity per cell normalized to mean intensity of WT-N in all biological replicates (C). *MIC26* deletion leads to a nutritional-independent increase in lipid droplet number. However, an opposing effect, leading to increase or decrease of mean fluorescence intensity of lipid droplets, upon comparison of *MIC26* KO to WT was observed in normo- and hyperglycemia respectively, with a pronounced effect upon feeding palmitate (N = 3). Scale bar represents 5 μ m.


(E) Heat map representing the abundance of steady state FFA species in WT and *MIC26* KO cells cultured in normo- and hyperglycemia. 11 out of 19 of the FFA species represent an antagonistic behavior upon comparing *MIC26* KO to WT in normo- (increase) and hyperglycemia (decrease) (N = 3-4).

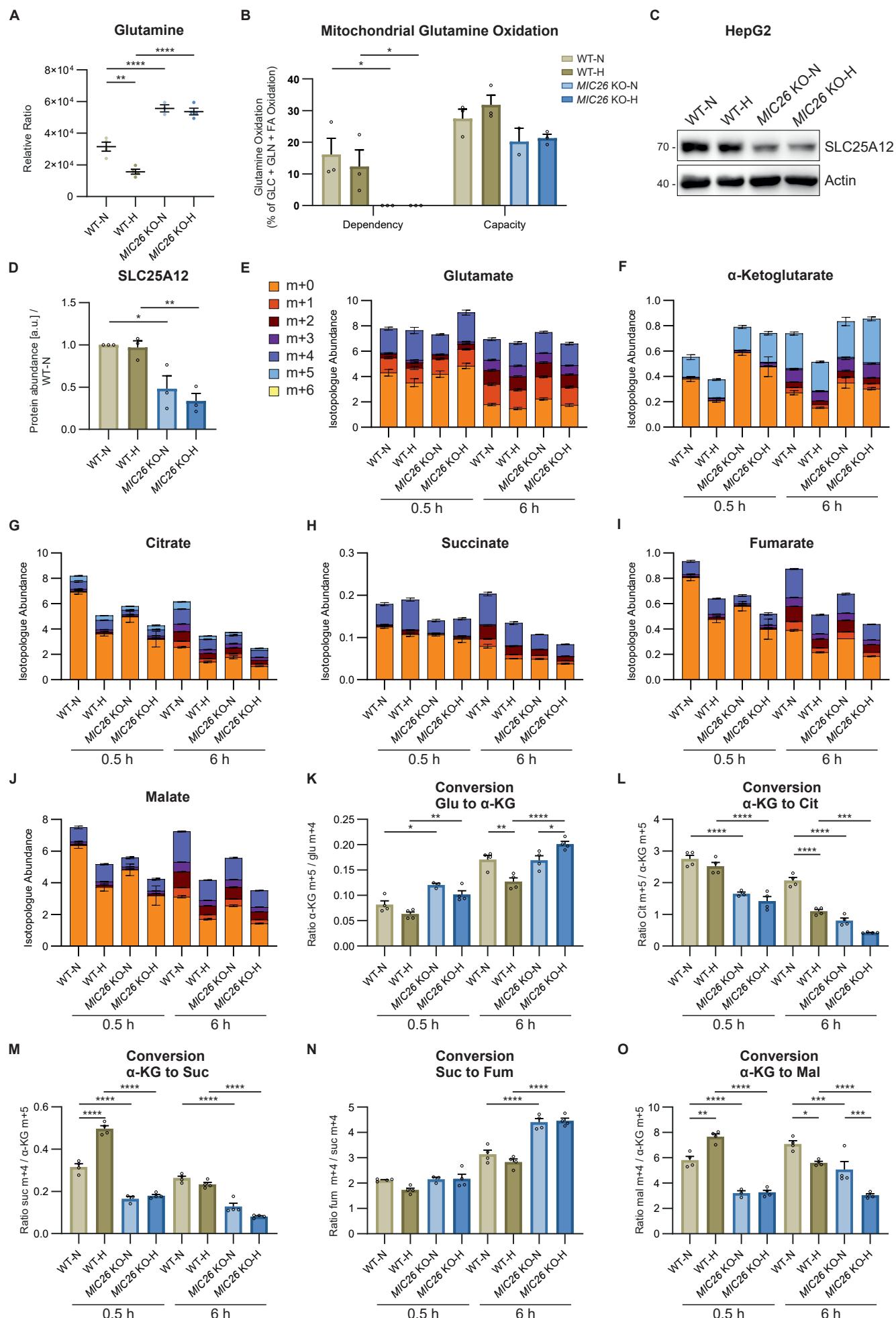
(F and G) Western blot analysis (F), along with respective quantification (G) of WT and *MIC26* KO cells cultured in normo- and hyperglycemia, show a reduction of CPT1A in WT-H, *MIC26* KO-N and *MIC26* KO-H compared to WT-N (N = 3).

(H – J) Mitochondrial fatty acid oxidation analyzed using Seahorse XF analyzer shows a decreased palmitate-induced basal respiration (H) and spare respiratory capacity (I) and a nonsignificant reduction of etomoxir-sensitive OCR decrease upon comparing *MIC26* KO to WT in normoglycemia (N = 3).

Data are represented as mean \pm SEM (B-C and G-J). Statistical analysis was performed using one-way ANOVA with *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. N represents the number of biological replicates.

Figure 5

Figure 5. *MIC26* deletion leads to hyperglycemia-induced decrease in TCA cycle intermediates


(A) Representation of the relative amounts (GC-MS) of TCA cycle metabolites and associated precursors at steady state in WT and *MIC26* KO cells cultured in normo- and hyperglycemia. All the TCA cycle metabolites with the exception of α -ketoglutarate showed a decreasing trend upon *MIC26* KO when compared to WT in hyperglycemia (N = 3-4).

(B and C) Mitochondrial pyruvate carrier 1 (MPC1) (B), but not MPC2 (C), is significantly decreased in *MIC26* KO-N compared to WT-N, as revealed by peptide abundances from proteomics data (N = 5).

(D) Mitochondrial glucose / pyruvate dependency analysis, using Seahorse XF analyzer mito fuel flex test assay, reveals a decreased mitochondrial respiratory dependency of *MIC26* KO on glucose / pyruvate in normoglycemia (N = 3).

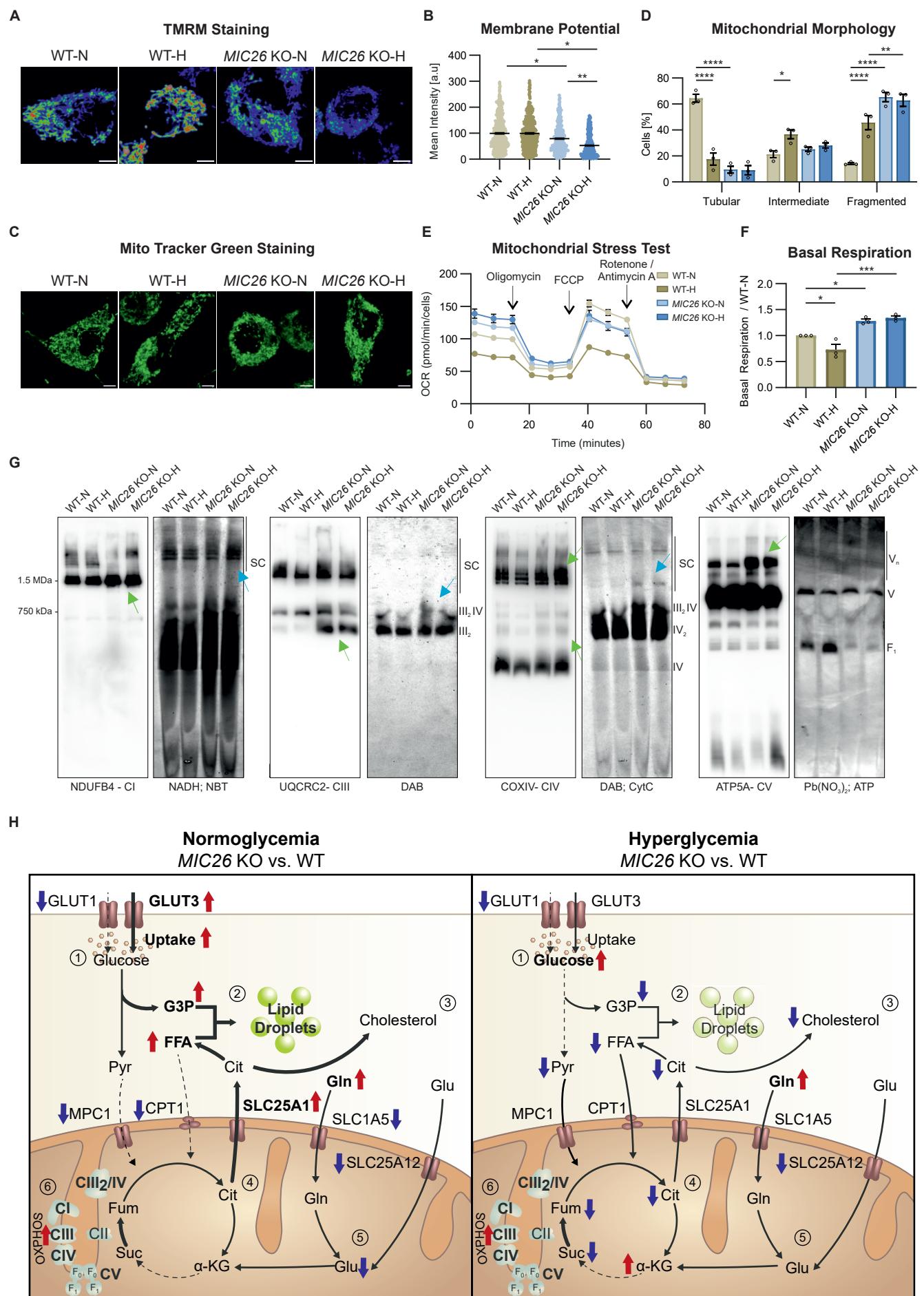
Data are represented as mean \pm SEM (A-C). Statistical analysis was performed using one-way ANOVA with *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. N represents the number of biological replicates.

Figure 6

Figure 6. Aberrant glutamine metabolism is observed in *MIC26* KOs independent of nutritional status

(A) Metabolomics analysis (GC-MS) shows that glutamine levels were strongly increased in *MIC26* KO cells cultured in both normo- and hyperglycemia at steady state compared to respective WT (N = 3-4).

(B) Quantification of mitochondrial glutamine dependency and capacity analysis, using Seahorse XF analyzer mito fuel flex test assay, shows a diminished mitochondrial respiratory dependency on glutamine. A nonsignificant mitochondrial respiratory decreased capacity of *MIC26* KO cells was observed compared to respective WT conditions (N = 3).


(C and D) Western Blot analysis (C) along with respective quantification (D) show reduced amounts of the glutamate aspartate antiporter SLC25A12 (ARALAR / AGC1), present in mitochondria, in *MIC26* KO cell lines compared to respective WT cells (N = 3).

(E – J) Representation of labeled (m+1 - m+6) and unlabeled (m+0) species of glutamate (GC-MS) (E), and TCA cycle metabolites (AEC-MS) α -KG (F), citrate (G), succinate (H), fumarate (I) and malate (J), from glutamine tracing experiments after labelling for 0.5 h and 6 h (N = 4).

(K – O) Conversion rates from different TCA cycle reactions calculated using the ratio of highest labeled species abundances for the conversions of glutamate to α -KG (K), α -KG to citrate (L), α -KG to succinate (M), succinate to fumarate (N) and α -KG to malate (N = 4).

Data are represented as mean \pm SEM (A-B and D-O). Statistical analysis was performed using one-way ANOVA with *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. N represents the number of biological replicates.

Figure 7

Figure 7. MIC26 regulates mitochondrial bioenergetics by restricting the ETC activity and OXPHOS (super-)complex formation

(A and B) Representative pseudocolour rainbow LUT intensities from confocal images of WT and *MIC26* KO HepG2 cells stained with TMRM show a reduction in $\Delta\Psi_m$ upon *MIC26* deletion in both normoglycemia and hyperglycemia when compared to respective WT cells (A). Quantification represents mean TMRM fluorescence intensity per cell normalized to mean intensity of WT-N in all biological replicates (B) (N = 3). Scale bar represents 5 μ m.

(C and D) Representative confocal images of mitochondrial morphology, visualized by MitoTracker green staining (C), show that loss of MIC26 shifts mitochondrial morphology from tubular mitochondrial network in WT normoglycemic conditions to fragmented phenotype irrespective of supplemented glucose amount (D) (N = 3). Scale bar represents 5 μ m.

(E and F) Representative mitochondrial stress test with Seahorse XF analyzer, with sequential injection of oligomycin, FCCP and rotenone/antimycin (E) (n = 19-23). Quantification from various biological replicates shows a significant increase of basal respiration in *MIC26* KOs cultured in both normo- and hyperglycemia (F) (N = 3).

(G) Blue native (respective left panel) and clear native (respective right panel) PAGE analysis reveals an overall increase of OXPHOS complex formation (for CI, CIII, CIV and CV, green arrows) as well as corresponding increased in-gel activity of supercomplexes, and complex III₂IV (blue arrows) upon *MIC26* deletion. CV shows no in-gel activity alterations while a decreased in-gel activity of F₁ occurs upon loss of MIC26. Native PAGEs were performed in three biological replicates and representative gels are shown.

(H) Model representing the antagonistic regulation of metabolic pathways encompassing glucose usage, lipid droplet formation, cholesterol synthesis, as well as decrease in TCA cycle metabolites in MIC26 deficient HepG2 cells dependent on nutritional conditions compared to respective WT cells. An increase of glutamine levels as well as assembly of various OXPHOS complexes is observed in *MIC26* KOs independent of the nutritional status. Arrows indicate respective up (red) or downregulated (blue) protein/metabolite or activity levels, respectively. In the model, left panel indicates normoglycemic while the right panel represents the hyperglycemic conditions.

Data are represented as mean \pm SEM (B and D-F). Statistical analysis was performed using one-way ANOVA with *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. N represents the number of biological replicates and n the number of technical replicates.