
Deciphering the Biosynthetic Potential of Microbial Genomes Using a BGC 1 

Language Processing Neural Network Model 2 

Qilong Lai1,#, Shuai Yao1,#, Yuguo Zha1,#, Haobo Zhang1, Ying Ye2, Yonghui Zhang2, Hong Bai1,*, 3 

Kang Ning1,* 4 

1MOE Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key 5 

Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of 6 

Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong 7 

University of Science and Technology, Wuhan 430074, Hubei, China 8 

2Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of 9 

Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 10 

430030, Hubei, China 11 

# Equal contribution. 12 

* Correspondence author. 13 

E-mail: ningkang@hust.edu.cn (Ning K) and baihong@hust.edu.cn (Bai H). 14 

 15 

Running title: Lai Q et al/BGC-Prophet for BGC mining 16 

  17 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.30.569352doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.30.569352
http://creativecommons.org/licenses/by-nc-nd/4.0/


Highlights 18 

� BGC-Prophet shows superior performance to existing tools in terms of accuracy 19 

and speed. 20 

� BGC-Prophet is the first ultrahigh-throughput (UHT) method that enables 21 

pan-phylogenetic screening and whole-metagenome screening of BGCs. 22 

� BGC-Prophet builds the comprehensive profile of BGCs on 85,203 genomes and 23 

9,428 metagenomes from the majority of bacterial and archaeal lineages. 24 

� BGC-Prophet reveals the profound enrichment pattern of BGCs after important 25 

geological events. 26 

Abstract 27 

Microbial secondary metabolites are usually synthesized by colocalized genes termed 28 

biosynthetic gene clusters (BGCs). A large portion of BGCs remain undiscovered in 29 

microbial genomes and metagenomes, representing a pressing challenge in unlocking 30 

the full potential of natural product diversity. In this work, we propose BGC-Prophet, 31 

a language model based on the transformer encoder that captures the distant 32 

location-dependent relationships among biosynthetic genes, allows accurately and 33 

efficiently identifies known BGCs and extrapolates novel BGCs among the microbial 34 

universe. BGC-Prophet is the first ultrahigh-throughput (UHT) method that is several 35 

orders of magnitude faster than existing tools such as DeepBGC, enabling 36 

pan-phylogenetic screening and whole-metagenome screening of BGCs. By analyzing 37 

85,203 genomes and 9,428 metagenomes, new insights have been obtained about the 38 

diversity of BGCs on genomes from the majority of bacterial and archaeal lineages. 39 

The profound enrichment of BGCs in microbes after important geological events have 40 

been revealed: Both the Great Oxidation and Cambrian Explosion events led to a 41 

surge in BGC diversity and abundance, particularly in polyketides. These findings 42 

suggest that it is a general but constantly evolving approach for microbes to produce 43 

secondary metabolites for their adaptation in the changing environment. Taken 44 

together, BGC-Prophet enables accurate and fast detection of BGCs on a large scale, 45 
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holds great promise for expanding BGC knowledge, and sheds light on the 46 

evolutionary patterns of BGCs for possible applications in synthetic biology. 47 

Keywords: Natural product; Biosynthetic gene cluster (BGC); Language model; 48 

Microbial genome; Metagenome 49 

 50 

Introduction 51 

Microbial secondary metabolism, one of the important sources of natural products, is 52 

generated through the coordinated action of numerous genes organized into 53 

biosynthetic gene clusters (BGCs) [1, 2]. Across the tree of life, these natural products 54 

comprise thousands of different chemical structures, including polyketides, 55 

saccharides, terpenes and alkaloids, that facilitate an organism’s ability to thrive in a 56 

particular environment [3, 4]. These secondary metabolites also demonstrate efficacy 57 

across multiple therapeutic areas, including antimicrobial and cancer immunotherapy 58 

[5, 6]. The biosynthesis of these compounds involves multienzyme loci called BGCs, 59 

which encode the biosynthetic pathways for one or more specific compounds [7, 8]. 60 

With the exponential growth of genomic data, identifying and classifying BGCs from 61 

microbial genomes or metagenomic assembled genomes (MAGs) has become a 62 

pressing challenge in exploring and exploiting natural product diversity [9, 10]. 63 

Developments in computational omics technologies have provided new means to 64 

assess the hidden diversity of natural products, unearthing new potential for drug 65 

discovery [11, 12]. 66 

 67 

BGC encodes a series of genes involved in biosynthetic or metabolic pathways, which 68 

are arranged in a sequential order on the genome. These genes work together to 69 

produce one or more small molecular compounds, such as penicillin [13, 14]. Recent 70 

insights revealed that BGC comprised a cluster of spatially adjacent colocalization 71 

genes, including biosynthetic genes and auxiliary genes (e.g., transport-related genes, 72 

regulatory genes) [15, 16]. These biosynthetic genes play key catalytic roles in the 73 

formation of microbial secondary metabolites. In addition to biosynthetic enzymes, 74 
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many BGCs also harbor enzymes to synthesize specialized monomers for a pathway. 75 

For example, the erythromycin gene cluster encodes a set of enzymes for the 76 

biosynthesis of two deoxy-sugars that are appended to the polyketide aglycone [17]. 77 

In many cases, transporters, regulatory elements, and genes that mediate host 78 

resistance are also contained within the BGC [18]. Although some BGCs are so well 79 

understood that the biosynthesis of their small molecule product has been 80 

reconstituted in heterologous hosts, little is known about the vast majority of BGCs, 81 

even those that have been linked to a small molecule product. 82 

 83 

The explosion of microbial genomic data, including complete and partial genome 84 

sequences, has led to a transformative change in how computational methods are 85 

employed in natural product drug candidate discovery. Computational approaches are 86 

being developed to predict BGCs based on genome sequences alone, fuelled by data 87 

on known biosynthetic pathways and their chemical products, which are currently 88 

standardized with predicted BGCs stored in public databases [19]. Identifying natural 89 

product BGCs still largely relies on rule-based methods such as those used in 90 

antiSMASH [15, 16] and PRISM [20]. Although these approaches are successful at 91 

detecting known BGC categories, they are less proficient at identifying novel 92 

categories of BGC [21, 22]. In these more complex cases of identifying novel BGCs, 93 

machine learning algorithms have been shown to offer significant advantages over 94 

rule-based methods. For example, ClusterFinder [23], NeuRiPP [24] and DeepRiPP 95 

[25] each use machine learning to identify BGCs. These methods often have a 96 

tradeoff in terms of efficiency and accuracy, have a higher false positive rate than 97 

rule-based approaches and suffer from false negatives for known categories of BGC. 98 

Recently, deep learning approaches have been developed for BGC annotation, 99 

including DeepBGC [26], e-DeepBGC [27], Deep-BGCPred [28], and SanntiS [29]. 100 

All of these deep learning approaches call biosynthetic gene families using collections 101 

of curated profile-Hidden Markov Models (pHMMs) and employs a bidirectional long 102 

short-term memory (BiLSTM) recurrent neural network for improved identification of 103 

BGCs [26-29]. Although these approaches have improved the detection of BGCs from 104 
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bacterial genomes and harness great potential to detect novel categories of BGCs, 105 

they have common drawbacks: BiLSTM might lose distant memories during the 106 

recurrent neural network and is unable to capture distant location-dependent 107 

relationships between biosynthetic genes, while the utilization of pHMM heavily 108 

relies on manual determination by experts to define the scope of each domain from 109 

the Pfam database [30], and is computationally intensive. 110 

 111 

Collectively, several challenges persist for contemporary BGC prediction tools. First, 112 

these tools cannot accurately capture the location-dependent relationships between 113 

genes, resulting in limited accuracy and applicability, particularly in novel BGC 114 

predictions. Additionally, existing methods rely on time-consuming sequence 115 

alignment to extract features (such as Pfam domains), which hinders their speed for 116 

pan-phylogenetic screening and whole-metagenome screening of BGCs. Furthermore, 117 

the low throughput of existing methods makes it impossible for them to construct a 118 

comprehensive profile of BGCs on almost all lineages of genomes and metagenomes, 119 

thereby precluding the revelation of enrichment patterns of BGCs on a broad scale. 120 

 121 

To address these limitations, we proposed BGC-Prophet, a deep learning approach 122 

that leverages a language model to accurately and efficiently identify known BGCs 123 

and extrapolate novel BGCs among the microbial universe. Previous studies have 124 

shown that the success of language models for BGC detection and product 125 

classification [31, 32]. Encouraged by this, our BGC-Prophet employs the powerful 126 

language model of the transformer encoder [33, 34], which captures the distant 127 

location-dependent relationships among biosynthetic genes for improved BGC 128 

detection and classification. 129 

 130 

Our experiments show that BGC-Prophet achieves a >90% area under the receiver 131 

operating characteristic curve (AUROC) on the validation datasets and offers a 132 

comparable ability in BGC identification to existing tools such as DeepBGC. 133 

BGC-Prophet is the first ultrahigh-throughput (UHT) method that is several orders of 134 
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magnitude faster than existing tools such as DeepBGC, enabling pan-phylogenetic 135 

screening and whole-metagenome screening of BGCs. By analyzing 85,203 genomes 136 

and 9,428 metagenomes, new insights have been obtained about the diversity of 137 

BGCs on genomes from the majority of bacterial and archaeal lineages. This is 138 

exemplified by the discovery of the profound enrichment of BGCs in microbes after 139 

important geological events. Both the Great Oxidation and Cambrian Explosion 140 

events led to a surge in BGC diversity and abundance, particularly in polyketides. 141 

These findings suggest that microorganisms could adapt to the changing environment 142 

by evolving BGC to produce specific secondary metabolites. In summary, 143 

BGC-Prophet enables accurate and fast detection of BGCs on a large scale, holds 144 

great promise for expanding BGC knowledge, and sheds light on the evolutionary 145 

patterns of BGCs for possible applications in synthetic biology. 146 

 147 

Results 148 

BGC-Prophet model establishment and assessment strategy 149 

BGC consists of a cluster of functionally related colocalized genes that can be 150 

regarded as sentences, and BGC prediction could be regarded as a problem of text 151 

classification in the field of natural language processing. Currently, many language 152 

models have been proposed and used to solve the problem of text classification, such 153 

as long short-term memory (LSTM) and bidirectional encoder representations from 154 

transformers (BERT). The original BERT proposed a revolutionary technique that 155 

generates generic knowledge of language by pretraining and then transfers the 156 

knowledge to downstream tasks of different configurations using fine-tuning [33, 34]. 157 

Following BERT’s mentality and paradigm, we developed a BGC language 158 

processing neural network model, BGC-Prophet, which captures location-dependent 159 

relationships between biosynthetic genes by being trained on thousands of microbial 160 

genomes and assigns gene types or product classes by simply plugging in two 161 

classifiers and fine-tuning the parameters supervised by a reference dataset (Figure 162 

1A-C). Training on thousands of microbial genomes enables the model to learn the 163 
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general syntax of genes, that is, gene location dependencies, which helps to improve 164 

generalizability and avoid overfitting. Fine-tuning ensures that the output embedding 165 

for each gene encodes context information that is more relevant to the biosynthetic 166 

functional profiles. 167 

 168 

BGC-Prophet has innovative designs to unleash its power in the BGC prediction task. 169 

First, BGC-Prophet uses genes as tokens to represent sentences (Figure 1A). Previous 170 

methods such as DeepBGC take Pfam domains as tokens that effectively balance 171 

genetic information loss and computational complexity. However, Pfam relies on 172 

manual determination by experts to define the scope of each domain. Here, we choose 173 

genes as tokens, which are more natural and do not require additional operations. 174 

Second, BGC-Prophet uses the evolutionary scale modeling (ESM, a pretrained 175 

language model for proteins) method to generate the embedding of gene tokens [35] 176 

(Figure 1B-C). The resulting numerical vectors of genes encapsulated evolutionary 177 

signals and functional properties based on their sequences, allowing us to leverage 178 

contextual similarities between genes. 179 

 180 

To train the language model, we curated a training dataset of 12,510 positive and 181 

20,000 negative samples, each of which is a gene cluster containing 128 genes 182 

(Figure 1A, Supplementary Table S1). Considering that the longest BGC in MIBiG 183 

(Minimum Information about a Biosynthesis-related Gene cluster) consists of 115 184 

genes and the number of non-BGC genes between BGCs in genomes, we set the 185 

maximum number of genes to 128 in a sample (Supplementary Figure S1). Details 186 

of the generation of positive and negative samples are provided in the Methods 187 

section. 188 

 189 

BGC-prophet accepts a set of genes as input and predicts BGC location and category. 190 

The input of the BGC-Prophet model is a sequence of embeddings represented by 191 

320-dimensional vectors generated by the evolutionary-scale modeling (ESM) method 192 

[35] (Supplementary Figure S2). The output of the BGC-Prophet model consists of 193 
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two parts. The first part is a sequence of values ranging from 0 to 1 representing the 194 

prediction scores of individual genes to be part of a BGC. The second part is which of 195 

the seven categories (see Methods) the input gene clusters belong.  196 

 197 

We clarified several experiments for the evaluation and application of BGC-Prophet 198 

in this study (Figure 1D). First, we evaluated the performance of BGC-Prophet on the 199 

NG dataset, which comprises nine genomes mentioned in previous studies 200 

(Supplementary Table S2) [23, 26]. Second, we compared the BGCs predicted by 201 

BGC-Prophet and antiSMASH on the AG dataset, which comprises 982 genomes 202 

from Aspergillus, a genus with great biosynthetic potential. Then, we attempted to 203 

discover new insights into the diversity and novelty of BGCs on the 85KG, which 204 

comprises 85,203 available bacterial and archaeal genomes in the genome taxonomy 205 

database (GTDB), and MG (9,428 metagenomic samples involved in 47 studies) 206 

datasets (Supplementary Table S3). We finally studied the enrichment pattern of 207 

BGCs in microbes after important geological events in life on earth (Figure 1E). 208 

 209 

Evaluation of context-aware representations of genes 210 

The ESM method generated context-aware representations of genes, thereby serving 211 

as meaningful input features for the BGC prediction model. In this subsection, we 212 

investigate the effectiveness of using vector representations generated by the ESM 213 

method. To achieve this, we first used ESM-2 8M (version 2 with 8 million 214 

parameters) to generate the vectors for a set of genes. Then, we consolidated the 215 

numerous genes within each BGC into a singular representative BGC vector by 216 

averaging the vectors. We evaluated the representative vectors of all BGCs from the 217 

MIBiG database via t-distributed stochastic neighbor embedding (t-SNE) analysis. 218 

Subsequently, we reduced the dimensionality of the representative BGC vectors from 219 

320 dimensions to 2 dimensions by the t-SNE method for improved visualization. 220 

 221 

Different categories of BGCs demonstrate distinct patterns within the t-SNE 222 

dimensionality reduction plot (Figure 2). It is evident that the seven distinct 223 
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categories of BGCs exhibit a concentrated distribution into three clusters (top right, 224 

bottom left, and bottom right). For instance, terpenes predominantly cluster in the 225 

bottom right, saccharides and RiPPs primarily cluster in the top right, and polyketides 226 

primarily cluster in the bottom left and bottom right. The remaining categories display 227 

a widespread distribution across all three clusters. The boxplot showed that the points 228 

of any two categories of BGCs exhibited clear separation on the scatter plot (Figure 229 

2A), such as polyketide and terpene (t test, p < 0.001). We also analyzed the 230 

two-dimensional distribution of BGCs (positive sample) and non-BGCs (negative 231 

sample) in the training set. Despite the fact that there are areas in the graph that are 232 

exclusively occupied by BGCs (bottom right), there is substantial overlap between 233 

BGCs and non-BGCs on the scatter plot (Figure 2B), although their distributions are 234 

significantly different on both axes (t test, p < 0.001). Our findings demonstrated that 235 

the ESM method generated context-aware representations of genes and therefore 236 

helped the language model learn the location-dependent relationships between genes 237 

that distinguish between BGCs and non-BGCs. 238 

 239 

Accurate and ultrahigh-throughput BGC prediction 240 

To demonstrate the capabilities of our proposed framework, we assessed the 241 

performance of BGC-Prophet by evaluating its ability to (1) accurately locate BGCs 242 

throughout the bacterial genome (BGC gene detection) and (2) categorize them into 243 

their respective categories according to the types of their products (BGC product 244 

classification). Since DeepBGC is widely used by the community and is one of the 245 

best tools among existing BGC prediction tools, we choose DeepBGC as a 246 

representative and compare the performance of BGC-Prophet and DeepBGC. 247 

 248 

BGC-Prophet has shown superior performance to DeepBGC in terms of accuracy. We 249 

initially evaluated the performance of BGC-Prophet and DeepBGC for BGC gene 250 

detection, and the results showed that the performances of BGC-Prophet and 251 

DeepBGC were comparable on the NG dataset (Figure 3A, B). Under the default 252 

threshold of 0.5, the BGC-Prophet model outperforms DeepBGC in metrics such as 253 
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false positive rate and precision, while it lags behind in metrics such as false negative 254 

rate and recall (Supplementary Figure S3). However, in terms of the AUROC, 255 

BGC-Prophet achieved an overall AUROC of 91.9% with regard to locating BGCs 256 

throughout the bacterial genome, while DeepBGC achieved 93.1% (Figure 3B). We 257 

further examined the performance of both tools on individual genomes and found that 258 

BGC-Prophet outperformed DeepBGC in several cases (Figure 3A). Specifically, 259 

BGC-Prophet had a higher AUROC than DeepBGC on three of the nine genomes, and 260 

DeepBGC had a higher AUROC on the remaining six genomes (Figure 3A). 261 

BGC-Prophet achieved the highest AUROC of 96.0% on the genome 262 

GCA_000158815 (NCBI accession), while DeepBGC achieved the highest AUROC 263 

of 96.0% on the genome GCA_000154945 (NCBI accession). Subsequently, we 264 

evaluated the performance of BGC-Prophet and DeepBGC on BGC product 265 

classification. In this task, BGC-Prophet achieved an AUROC of 98.8% with regard 266 

to differentiating among the seven BGC categories, while DeepBGC achieved 91.3% 267 

(Figure 3C). This indicates that BGC-Prophet is better at accomplishing the BGC 268 

product classification task. 269 

 270 

BGC-Prophet uses a more efficient ESM method to generate vector representations of 271 

genes, avoiding the time-consuming sequence alignment (Pfams alignment), and 272 

improving the throughput of genomic data processing. For instance, when we 273 

extrapolate the number of genomes to 10 (randomly select and replicate genomes) for 274 

efficiency evaluation, DeepBGC needed an average of four hours per genome, 275 

whereas BGC-Prophet could process each genome in just one minute (Figure 3D). 276 

We emphasize that BGC-Prophet is the first UHT method that enables 277 

pan-phylogenetic screening and whole-metagenome screening of BGCs. 278 

 279 

BGC-Prophet captures distant location-dependent relationships among biosynthetic 280 

genes. For example, we selected a BGC in the NG dataset and obtained its attention 281 

map during a single prediction process. The attention map shows the attention 282 

relationships between the BGC and surrounding genes (Figure 3E, Supplementary 283 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.30.569352doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.30.569352
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S4). The gene 76 (KUTG_02125), which encodes a non-ribosomal peptide 284 

synthetase, receiving the highest attention scores from other BGC genes, possibly 285 

implying its conservativeness and centrality in this BGC (Figure 3F). Such examples 286 

are plentiful (Supplementary Figure S4), and the attention maps clearly show the 287 

language model can capture distant location-dependent relationships among 288 

biosynthetic genes. 289 

 290 

Comprehensive profiling of BGCs in 982 genomes from Aspergillus 291 

BGC-Prophet predicts BGCs in a comprehensive manner and can predict more 292 

previously uncommented BGCs. Here, we utilized BGC-Prophet and antiSMASH to 293 

predict BGCs in genomes from Aspergillus, a genus with great biosynthetic potential 294 

and hundreds of genomes of this lineage. The results have shown that BGC-Prophet 295 

predicts a greater number of potential BGCs compared to antiSMASH, particularly in 296 

the terpene category (52,004 vs. 7,748, with 7,260 intersection BGCs). The 297 

predictions of BGCs in the NRP category by the two tools are nearly identical (27,603 298 

vs. 27,100, with 26,278 intersection BGCs). BGC-Prophet predicts a larger number of 299 

BGCs in the categories of terpene and polyketide (35,606 vs. 18,225, with 16,607 300 

intersection BGCs). Moreover, the prediction of BGCs in the RiPPs category by both 301 

tools exhibited complementarity (27,155 vs. 8,082, with 1,401 intersection BGCs), 302 

enhancing the coverage of predicted BGCs. Furthermore, BGC-Prophet predicts 303 

additional BGCs in the categories of alkaloids and saccharides compared to 304 

antiSMASH. The results showed a notable discrepancy between the BGCs predicted 305 

by the two tools, suggesting that BGC-Prophet can predict potentially novel BGCs 306 

beyond those detected by antiSMASH. We then studied the distribution spectrum of 307 

the predicted BGCs by both BGC-Prophet and antiSMASH. The results showed that 308 

BGC-Prophet predicted BGCs almost three times as many as antiSMASH (167,375 vs. 309 

59,037, Figure 4A), and most of them are potentially novel BGCs (Figure 4B, C). 310 

The prediction results of the two tools showed a clear linear correlation 311 

(Supplementary Figure S5, r = 0.91, p < 0.001), indicating that the BGCs predicted 312 

by BGC-Prophet have no preference for specific species. Overall, we demonstrate that 313 
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BGC-Prophet predicts BGC in a more comprehensive manner and can predict more 314 

previously unannotated BGCs. 315 

 316 

Comprehensive profiling of BGCs on 85,203 microbial genomes from the 317 

majority of bacterial and archaeal lineages 318 

With BGC-Prophet, new insights have been obtained about the diversity of BGCs on 319 

genomes from the majority of bacterial and archaeal lineages. We used BGC-Prophet 320 

to investigate the profile of BGCs on 85,203 microbial genomes from the majority of 321 

bacterial and archaeal lineages. Among these genomes, 41,599 were found to contain 322 

BGCs, resulting in the identification of a total of 119,305 BGCs. We first performed 323 

an analysis to determine the proportions of different categories of BGC (Figure 5A). 324 

When we mapped BGCs to the species (Figure 5B), the three most widely distributed 325 

BGC categories were polyketide (34%), NRP (33%), and RiPP (24%), and the three 326 

most abundant categories were NRP (33%), polyketide (28%), and RiPP (27%). 327 

Conversely, the alkaloid category exhibited the narrowest distribution (2% of the total 328 

species) and the lowest abundance (1% of the total number, Figure 5B). In 329 

comparison, the three most abundant categories in the MIBiG database were 330 

polyketide (41%), NRP (34%), and RiPP (13%) [4]. Moreover, BGC-Prophet 331 

identified a significantly greater number of BGCs classified as the “other” category 332 

(increasing from 324 to 32,233 and from 13% to 24%), indicating its enhanced 333 

capability in mining potentially novel BGC categories. Our findings showed that 334 

BGC-Prophet identified several times more BGCs than MIBiG, with notable 335 

differences in the composition of BGCs (Supplementary Table S4). 336 

 337 

The host distribution of BGC showed species-specific characteristics, exemplified by 338 

the Actinomycetota phylum having the highest predicted number of BGCs (39,252 in 339 

total), and the Pseudomonadota phylum exhibited the widest genomic coverage, with 340 

12,637 genomes containing at least one BGC, encompassing a total of 29,675 BGCs 341 

(Figure 5A, C, Supplementary Table S5). At the rank of order, the top 27 orders 342 

with the highest average number of predicted BGCs (> 7.0) are distributed across 15 343 
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phyla, such as Actinobacteria and Acidobacteriota (Figure 5C), which were reported 344 

to have relatively high biosynthetic potential (Supplementary Text S1). We 345 

proceeded to analyze BGCs separately for archaea and bacteria. Out of all these 346 

species, we identified 1,762 and 117,543 BGCs from 1,079 archaeal genomes and 347 

40,520 bacterial genomes, respectively. On average, archaeal genomes contained 1.63 348 

BGCs per genome, while bacterial genomes contained 2.90 BGCs per genome. These 349 

results indicate a significantly lower abundance of BGCs in archaeal genomes 350 

compared to bacterial genomes (t test, p = 6.1e-29). The predominant BGC categories 351 

in archaea were saccharides (30%) and RiPP (24%), whereas in bacteria, they were 10% 352 

and 11%, respectively. The predominant BGC categories in bacteria were NRP (33%) 353 

and polyketide (28%), whereas in archaea, they were 8% and 1%, respectively. This 354 

observation may be attributed to the more ancient nature of archaea compared to 355 

bacteria, particularly in energy acquisition and metabolism. While bacteria rely 356 

mainly on aerobic respiration, archaea have adapted to survive in extreme 357 

environments by using alternative strategies such as sulfur reduction, denitrification, 358 

and nitrate reduction (Supplementary Text S2) [36, 37]. 359 

 360 

Comprehensive profiling of BGCs in 9,428 metagenomic samples 361 

BGC-Prophet is the first UHT method that enables whole-metagenome screening of 362 

BGCs. We used 9,428 metagenomic samples corresponding to 47 studies from the 363 

human microbial environment and performed species annotations and BGC 364 

predictions on these samples (details in Methods). A total of 160,814 bins were 365 

generated from these metagenomic samples, of which 132,809 bins were successfully 366 

assigned to species, while 28,005 bins remained unclassified. Of the 9,428 367 

metagenomic samples analyzed, a total of 8,255 were predicted to contain at least one 368 

BGC. The number of predicted BGCs was 248,229, distributed among 2,922 known 369 

species and unclassified species. The distribution of predicted BGCs from the human 370 

microbiome metagenomic dataset is shown in Figure 6. Consistent with the findings 371 

from the GTDB dataset, BGCs were significantly enriched in species belonging to 372 

Actinomycetota compared to species other than Actinomycetota (average of 8.30 373 
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BGCs per genome vs. 4.24 BGCs per genome, p = 1.06e-105). Additionally, archaeal 374 

species exhibited a higher number of BGCs compared to bacterial species (average of 375 

9.00 BGCs vs. 4.88 BGCs, p = 0.0001). In terms of the abundance of BGCs for 376 

different categories, on average, there were 1.58 RiPPs, 1.36 saccharides, 1.12 NRPs, 377 

1.10 polyketides, 1.07 terpenes, and 1.02 alkaloids. 378 

 379 

The profound enrichment of BGC in microbes after important geological events 380 

Large differences were observed in the distribution of BGCs among different species, 381 

particularly in light of the evolution over billions of years. To understand this 382 

phenomenon, we searched TimeTree [38] and identified two time points for the rapid 383 

growth of lineages, which corresponded to the Great Oxidation [39] and Cambrian 384 

Explosion [40] events (Supplementary Figure S6). After both of these events, we 385 

observed a surge in BGC diversity and abundance, possibly indicating the impact of 386 

the environment on BGC. 387 

 388 

The Great Oxidation event occurred approximately 2.5 to 2.3 billion years ago, which 389 

was about the same time as the emergence of ribosomes [41, 42]. Prior to this time 390 

point, there was a shift in the evolution of certain bacterial genera, such as 391 

Mesoaciditoga [43], Vampirovibrio [44], and Synechococcus [44], which are 392 

categorized as the “pre” group. These genera comprise 56 out of 41,599 genomes 393 

analyzed. The remaining 2,215 genera evolved after this time point and are 394 

categorized as the “post” group. Statistical analysis revealed a significant increase in 395 

the average number of BGCs per genome from 2.5 to 4.5 between these two groups (t 396 

test, p = 0.024). The abundance of polyketide BGCs also showed a significant 397 

increase after the Great Oxidation event, with the average number of polyketides per 398 

genome rising from 1.09 to 2.81 (t test, p = 0.057). The possible reason is that 399 

polyketides are usually small compounds involved in oxidation reactions influenced 400 

by the increase in oxygen levels [45]. On the other hand, there were no significant 401 

differences in the average abundance of RiPPs (decreased from 1.29 to 1.25, t test, p = 402 

0.807) and NRPs (increased from 1.0 to 3.16, t test, p = 0.242). The change in RiPP 403 
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before and after the Great Oxidation event is not significant, which may be because 404 

the synthesis of RiPP primarily relies on the ribosomal pathway, involving 405 

dehydration and condensation reactions rather than oxidation [46]. On the other hand, 406 

although the number of NRP increases, the statistical significance is not substantial 407 

due to the limited data available before this event, which consists of only three cases 408 

[47]. 409 

 410 

The Cambrian Explosion event occurred approximately 542 to 520 million years ago, 411 

marked by rapid diversification of multicellular organisms [48]. Prior to this time 412 

point, 1,529 genera comprised 9,212 out of 41,599 genomes analyzed, which were 413 

categorized as the “pre” group. The remaining 589 genera evolved after this time 414 

point and were categorized as the “post” group. At this time point, there was a 415 

significant increase in the average number of BGCs per genome, with the “post” 416 

group having double the number compared to the “pre” group (6.07 vs. 2.95, t test, p 417 

= 4.89e-305). Further analysis of different categories of BGCs revealed significant 418 

differences in their average abundance before and after this time point. All categories 419 

of BGCs showed an increase in average abundance, with rapid increases observed in 420 

polyketides and NRPs. Polyketides encompass compounds such as erythromycin and 421 

tetracycline, while NRPs encompass cephalosporins, daptomycin, and vancomycin, 422 

among others. These compounds play crucial roles in defending against other bacteria 423 

and enhancing fitness in diverse environments [49, 50]. One possible explanation for 424 

this finding is that during the Ediacaran period, approximately 635-541 million years 425 

ago, Cyanobacteria began to appear, leading to a significant increase in oxygen 426 

production through photosynthesis, which resulted in heightened ocean oxygenation 427 

[51]. This amplified ocean and atmospheric oxygenation may have sped up the 428 

process of life evolution [52, 53]. It was during this time that multicellular organisms 429 

started to emerge [54]. On the one hand, multicellular organisms have always been 430 

hosts of microorganisms, and there is evidence to suggest that the genetic evolution of 431 

multicellular organisms occurred five times faster during the early Cambrian [55], 432 

leading to rapid life evolution in the oceans. On the other hand, the Earth’s ecological 433 
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environment underwent alterations due to the activities of various species, generating 434 

numerous microenvironments [56]. These microenvironments provide a variety of 435 

environmental pressures for microbial selection, resulting in a surge in the 436 

biosynthetic potential of microorganisms and leading to the synthesis of diverse 437 

secondary metabolites that enable microorganisms to better adapt to different 438 

environments and compete for resources. 439 

 440 

These findings highlight the evolutionary dynamics of BGCs on a large temporal 441 

scale and shed light on the impact of environmental changes on the diversity and 442 

abundance of specialized metabolites produced by microbes. Further research is 443 

needed to explore the functional roles and ecological significance of these BGCs in 444 

the context of bacterial evolution and their potential applications in various fields, 445 

including medicine and biotechnology. 446 

 447 

Discussion 448 

BGCs represent a promising source of natural products but are difficult to discover, 449 

express, and characterize. In this study, we developed BGC-Prophet to 450 

comprehensively identify known and predict potentially novel BGCs and their 451 

products. BGC-prophet is a supervised language processing neural network model 452 

that captures the location-dependent relationships between genes and learns 453 

biosynthetic-aware representations of BGCs based on their gene evolutionary patterns. 454 

These new properties make BGC-Prophet advantageous over previous methods, 455 

enabling it to accurately and quickly profile BGCs for a wide range of lineages from 456 

microbial genomes and metagenomes. 457 

 458 

The novelty of this work is demonstrated in three contexts. First, BGC-Prophet 459 

utilizes the powerful language model of the transformer encoder, uses the 460 

context-aware representations of genes as input features, captures the distant 461 

location-dependent relationships among biosynthetic genes, learns biosynthetic-aware 462 
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representations of BGCs based on their gene evolutionary patterns, and shows 463 

superior performance to existing tools such as DeepBGC. Specifically, BGC-Prophet 464 

achieved an AUROC of 91.9% with regard to locating BGCs throughout the genome 465 

and 98.8% with regard to differentiating among the seven BGC categories (Figure 466 

3A-C). BGC-Prophet’s exceptional processing speed enables it to quickly analyze 467 

vast amounts of genomic data with high efficiency (Figure 3D), allowing for 468 

extensive profiling of BGCs in large-scale genomic and metagenomic data. 469 

 470 

Second, BGC-Prophet is the first UHT method that enables pan-phylogenetic 471 

screening and whole-metagenome screening of BGCs and builds a comprehensive 472 

profile of BGCs on 85,203 genomes and 9,428 metagenomes from the majority of 473 

bacterial and archaeal lineages. We investigated the biosynthetic potential of the 474 

Aspergillus genomes and revealed numerous potentially novel BGCs missed by 475 

antiSMASH (Figure 4). Our examination of the BGC profile in the majority of 476 

bacterial and archaeal lineages revealed that BGC-Prophet allows for the detection of 477 

previously undiscovered BGCs, as well as reconstruction of a comprehensive picture 478 

of BGCs on genomes from the majority of bacterial and archaeal lineages (Figure 5). 479 

 480 

Third, BGC-Prophet reveals the profound enrichment pattern of BGCs after important 481 

geological events, possibly indicating the impact of the environment on BGC. 482 

Specifically, the Great Oxidation event had a profound impact on microbial genomes, 483 

with a significant increase in the average number of BGCs per genome, particularly in 484 

polyketides. This suggests that polyketides may play an important role in oxidation 485 

reactions due to the increased oxygen levels during this time. The Cambrian 486 

Explosion event led to a significant increase in the average number of BGCs per 487 

genome, with polyketides and NRPs displaying the most pronounced growth. These 488 

findings suggest that microorganisms adapted to the rapidly changing environment by 489 

producing specific sets of secondary metabolites, including polyketides and NRPs. 490 

 491 
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BGC-Prophet is not without limitations. First, BGC-Prophet can only determine the 492 

category of BGC but cannot determine the actual small molecule as a product of BGC. 493 

It is rare to predict BGCs directly from small molecules, and more to predict BGCs by 494 

understanding small molecules and their associated microorganisms. Thus, it is 495 

possible to predict BGC in microbial genomes associated with small molecules and 496 

then use computational chemistry to screen and validate the BGC that matches the 497 

small molecules. Further work on establishing the connection between BGCs and 498 

small molecules is warranted. In addition, BGC-Prophet requires substantial, 499 

accurately annotated training data, while few current natural product databases offer 500 

comprehensive, well-curated data. Despite our improved performance, further work is 501 

needed to curate more diverse BGC databases that can be used to improve the training 502 

and validation of our model. Other possible improvements might include the 503 

discovery of new categories of BGCs, as well as the examination of the gain or loss of 504 

BGCs on a dynamic scale. 505 

 506 

Taken together, the results of this work reveal unprecedented throughput in BGC 507 

discovery and annotation via language model. As the first UHT method for 508 

pan-phylogenetic screening and whole-metagenome screening of BGCs, 509 

BGC-Prophet builds a comprehensive profile of BGCs on genomes from the majority 510 

of bacterial and archaeal lineages, reveals the profound enrichment pattern of BGCs 511 

after important geological events. The BGC-Prophet could find a way to better 512 

understand BGC patterns and mechanisms, as well as in a variety of applications, 513 

including microecology protection and synthetic biology. 514 

 515 

Methods 516 

Datasets used in this study 517 

We manually curated several datasets in this study, including MIBiG v3.1 (Minimum 518 

Information about a Biosynthetic Gene cluster [3]), 6KG (5886 genomes from the 519 

GTDB RS214 database [57]), NG (nine genomes used in ClusterFinder and 520 
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DeepBGC [23, 26]), AG (982 genomes from the genus of Aspergillus), 85KG (85,203 521 

available genomes in GTDB RS214 [57]), and MG (metagenomes from 47 522 

metagenomic studies [58]). These datasets are used for a variety of purposes, with 523 

MIBiG and 6KG being used to build training and testing sets, NG and AG being used 524 

to validate and compare the performance of various methods, and 85KG and MG 525 

being used for large-scale genome mining of BGCs (Supplementary Table S1 and 526 

S2). 527 

 528 

The MIBiG dataset. The MIBiG dataset specification provides a robust community 529 

standard for annotations and metadata on BGCs and their molecular products, which 530 

contains 2,502 experimentally validated BGCs. 531 

 532 

The 6KG dataset. The 6KG dataset comprises a set of phylogenetically diverse 533 

genomes that were manually curated in GTDB RS214, and it contains 5,886 genomes 534 

that spread across the bacterial evolutionary tree. 535 

 536 

The NG dataset. The NG dataset comprises nine bacterial genomes that were 537 

examined in previous studies, including ClusterFinder and DeepBGC [23, 26]. These 538 

genomes involved a total of 291 BGCs, none of which were used for training. 539 

 540 

The AG dataset. The AG dataset contains a total of 982 genomes from the genus 541 

Aspergillus in the NCBI genome database. We utilized BGC-Prophet and antiSMASH 542 

to mine BGCs in these genomes and generated a comparison map between the BGCs 543 

identified by antiSMASH and BGC-Prophet on the Aspergillus genomes. 544 

 545 

The 85KG dataset. The 85KG dataset contains 85,203 available genomes in GTDB 546 

RS214. We utilized BGC-Prophet to mine BGCs in those genomes and built a 547 

comprehensive profile of BGCs on genomes from the majority of bacterial and 548 

archaeal lineages. 549 

 550 
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The MG dataset. The MG dataset contains metagenomes involved in 47 studies 551 

(Supplementary Table S3). These metagenomic data included 1,792,406,629 contigs 552 

from 9,428 metagenomic samples, of which 6,238,438 contigs with nucleotide 553 

sequence lengths greater than 20,000 were retained. All datasets are publicly available 554 

and shown in Supplementary Tables S1-S3. 555 

 556 

Taxonomic classifications for metagenomes. We used 9428 metagenomic 557 

assemblies corresponding to 47 studies from the human microbial environment. These 558 

metagenomic assemblies were binned using MetaBAT2 (version 2.12.1), and a total of 559 

160,814 bins (or MAGs) were obtained. Taxonomy annotation was then performed on 560 

the resulting bins using the Genome Taxonomy Database Toolkit (GTDB-Tk, version 561 

2.3.2) with reference to GTDB release 214.0. A total of 160,814 bins were generated 562 

from 9,428 metagenomic samples. Among them, 132,809 bins were successfully 563 

assigned to species, while 28,005 bins remained unclassified and were designated 564 

Unclassified (5,875 bins), Unclassified Archaea (316 bins), or Unclassified Bacteria 565 

(21,814 bins), representing unknown species. 566 

 567 

Positive and negative sample generation 568 

To train the language model of BGC-Prophet, we manually curated a training dataset 569 

of positive and negative samples. The MIBiG and 6KG datasets were used to build 570 

the positive and negative samples. Before generating positive and negative samples, 571 

we used antiSMASH (v6) to identify BGCs on a public reference set of 5886 572 

microbial genomes (6KG dataset). For each reference genome, regions predicted to be 573 

part of a BGC were removed, and these pruned genomes without BGC-like regions 574 

served as the non-BGC gene library. 575 

 576 

Positive sample generation. The positive samples are derived from the 2502 BGCs 577 

in the MIBiG dataset. For each BGC in the MIBiG dataset, we applied two-sided 578 

padding with non-BGC genes (as described in the previous paragraph) until the gene 579 
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sequence length equaled 128. Considering that the longest BGC in MIBiG consists of 580 

115 genes and the gap (i.e., the average number of non-BGC genes) between BGCs in 581 

the genomes from the 6KG dataset (Supplementary Figure S1), we set the maximum 582 

gene sequence length of a positive sample to 128. We repeated the generation 583 

procedure five times for each BGC in the MIBiG dataset, resulting in 12,510 positive 584 

samples. 585 

 586 

Negative sample generation. In the generation of a negative sample (non-BGC), a 587 

major challenge is to make non-BGC have a certain degree of similar genes with 588 

genes in BGCs but lack the semantic information preserved in BGCs (i.e., the order of 589 

genes in BGC). To generate a single negative sample, a random region from the 590 

non-BGC gene library was selected, and a subregion containing 128 continuous genes 591 

was randomly picked from the selected region. In total, 20,000 negative samples were 592 

generated. 593 

 594 

Labeling the samples. According to the MIBiG database, there are seven categories 595 

of BGCs, including alkaloids, non-ribosomal peptides (NRPs), polyketides, 596 

ribosomally synthesized and post-translationally modified peptides (RiPPs), 597 

saccharides, terpenes and others (Supplementary Figure S1). Notably, each BGC 598 

may have more than one category, so the prediction of BGC categories is a multi-label 599 

seven-category problem. For example, the positive sample derived from BGC with 600 

MIBiG accession of BGC0000356 was labeled with both the categories of Alkaloid 601 

and NRP. For all the negative samples, they are not labeled into any of the seven 602 

categories. 603 

 604 

BGC-Prophet implementation 605 

Token of the BGC-Prophet model. In the field of natural language processing, the 606 

minimal semantic unit is called a "token", which makes up sentences. BGC-Prophet is 607 

a language processing neural network that takes genes as tokens to represent BGC or 608 

non-BGC (sentence). Previous methods ClusterFinder and DeepBGC take Pfam 609 
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domains as tokens that effectively balance genetic information loss and computational 610 

complexity. However, Pfam relies on manual determination by experts to define the 611 

scope of each domain, and the utilization of pHMMs for identifying conserved Pfam 612 

domains in sequences is computationally intensive. Therefore, a trade-off between the 613 

number of Pfam alignments and computational speed must be considered. The 614 

situation of multiple Pfam domains originating from the same gene requires the model 615 

to learn such relationships separately. Here, we choose genes as tokens, which are 616 

more natural and do not require additional operations. 617 

 618 

Vector representation of token. Each gene present in the training and testing 619 

samples needs to be represented as a word embedding vector to serve as input for 620 

subsequent language models. We used the ESM-2 8M model (evolutionary scale 621 

modeling: pretrained language models for proteins, version 2 with 8 million 622 

parameters) to generate vector representations of genes. ESM is the SOTA 623 

general-purpose protein language model, which can be used to predict structure, 624 

function and other protein properties directly from individual sequences [35]. For 625 

every positive and negative sample, we applied the ESM-2 8M model to generate a 626 

vector representation of genes (embedding dimension of 320). The ESM-2 8M model 627 

generates embedding of genes and removes the dependence between acquiring vector 628 

representations of tokens and training language models. The vector representation of 629 

tokens generated by the ESM-2 8M model directly from individual sequences is more 630 

concise and breaks the limitations inherent in the training samples, thus providing a 631 

higher possibility of predicting unknown BGCs. All genes in the training data are 632 

inferred using the ESM-2 8M model, and the mean of the model’s last layer output is 633 

selected as the final word embedding for the sequence. This implies that our word 634 

vectors tend to represent higher-level information and can more effectively leverage 635 

GPU acceleration for computational processes. 636 

 637 

Model architecture and configuration. Here, we proposed a BGC language 638 

processing neural network model, BGC-Prophet, to detect known and predict 639 
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potentially novel BGCs from genome sequences. BGC-Prophet employs a language 640 

model (i.e., transformer encoder) [33] for BGC identification and classification. The 641 

transformer encoder is a neural network model of a specific architecture that uses a 642 

multi-head self-attention mechanism to speed up training. The self-attention 643 

mechanism introduced in the transformer encoder makes it suitable for parallel 644 

computation and better than the RNN or LSTM in accuracy. In this study, PyTorch 645 

v2.0.0 was used to implement the transformer encoder structure of BGC-Prophet, 646 

which learns the representation of gene sequences for different downstream tasks. 647 

 648 

In this study, the parameters of the transformer encoder are set as follows 649 

(Supplementary Figure S2). The input dimension is set to 320, which is equivalent 650 

to the dimensionality of the embedding generated by the ESM-2 8M model. Then, 651 

pre-layer normalization is used to accelerate the convergence of the model [59]. The 652 

positional encoding adopts classical sine-cosine position coding, which does not 653 

require additional training and captures relative positional relationships between 654 

genes effectively. The transformer encoder is configured with two 5-head 655 

self-attention layers and a dropout rate of 10%. The model is trained using the 656 

AdamW optimizer with a learning rate of 1e-2 and a batch size of 64. Given that the 657 

number of training epochs is not fixed, an early stopping strategy is employed, where 658 

the loss value of the verification set stops improving after 20 epochs without 659 

decreasing, and the model obtained from the epoch with the lowest loss value on the 660 

verification set is chosen as the final model. 661 

 662 

BGC gene detection and product classification. We assigned two downstream tasks 663 

to BGC-Prophet. The first task is predicting the BGC gene loci of a given BGC 664 

sequence, and the second task is predicting the BGC category of a given region on a 665 

genome. 666 

 667 

The first task for BGC-Prophet is predicting the BGC gene loci of a given gene 668 

sequence. Specifically, given the sequence to be predicted composed of multiple 669 
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genes, determine whether each gene is part of a BGC according to the position 670 

relationship of all genes. There may be no correlation between the genes that make up 671 

the sequence to be predicted, while the gene tag sequence of each gene that makes up 672 

the BGC is related in order. Therefore, the task can be statistically modeled using a 673 

linear-chain conditional random field (linear-CRF) [60]. According to the linear-chain 674 

CRF algorithm, the input is the sequence to be predicted, and the output is the gene 675 

tag sequence. In this paper, the downstream neural network is set as a fully connected 676 

layer with 128 timesteps, and the weight of each timestep is shared, different from 677 

DeepBGC. After passing through the fully connected layer, the hidden state vector 678 

dimension of the transformer encoder is reduced from 320 to 128, then from 128 to 32, 679 

and finally to 1, which represents the probability score that a given gene is part of a 680 

BGC. The Gaussian Error Linear Unit (GELU) [61] is used as the activation function 681 

for each fully connected layer, and finally, the sigmoid activation function is applied. 682 

The final fully connected layer outputs a scalar between 0 and 1 that measures how 683 

confident the model is that the gene belongs to the BGC. The loss functions of the 684 

model in this paper are binary cross entropy, and the AdamW [62] optimization 685 

algorithm is used to make them converge. 686 

 687 

The second task for BGC-Prophet is predicting the BGC category of a given region on 688 

a genome. According to the MIBiG database, there are seven categories of BGCs, 689 

including alkaloids, NRPs, polyketides, RiPPs, saccharides, terpenes, and others. We 690 

encode these categories using one-hot encoding and consider an all-zero vector to 691 

represent the non-BGC category. Notably, each BGC may have more than one 692 

category, so the prediction of the BGC category is a multi-label seven-category 693 

problem. The problem can be described as follows: Extracting the sequence of hidden 694 

state variables from the transformer encoder model � � ���, �� , . . . , ��
�, �� � 	� 695 

and calculating the average hidden state �
  �
�

�
 · ∑ ��

�

�  . Transformer encoders allow 696 

input key padding masks to mask given specific timesteps, so this study uses gene 697 

tags as masks to prevent non-BGC genes from influencing the classification of BGC. 698 
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The hidden states of the sequence are output as 7-dimensional vectors through a 699 

simple fully connected layer, and the sigmoid function is applied to output the 700 

confidence score of each label. 701 

 702 

Comparison methods 703 

DeepBGC. DeepBGC is a novel deep learning and natural language processing 704 

strategy for improved identification of BGCs in bacterial genomes. DeepBGC 705 

employs a BiLSTM recurrent neural network. DeepBGC improves the detection of 706 

BGCs of known classes from bacterial genomes and harnesses great potential to 707 

detect novel classes of BGCs. In this study, we used DeepBGC for BGC gene 708 

detection and BGC product classification tasks and compared its performance to 709 

BGC-Prophet. 710 

 711 

AntiSMASH. The antiSMASH (antibiotics & Secondary Metabolite Analysis Shell) 712 

is a comprehensive pipeline capable of identifying biosynthetic loci covering the 713 

whole range of known secondary metabolite compound classes. It employs a set of 714 

curated pHMMs to call biosynthesis-related gene families and a set of heuristics to 715 

designate a portion of a genome as a BGC. In this study, we applied antiSMASH and 716 

BGC-Prophet to 982 genomes from Aspergillus and evaluated the capability of 717 

BGC-Prophet to identify BGCs. 718 

 719 

Benchmark measures 720 

Evaluation was based on five measuring metrics, including accuracy, precision, recall, 721 

F1-score, and AUROC. First, four parameters of the confusion matrix must be 722 

clarified: TP (true positive, actually BGC, and judged by the model as BGC), FN 723 

(false negative, actually BGC, but judged by the model as non-BGC), TN (true 724 

negative, the actual value is non-BGC, and judged by the model as non-BGC); and FP 725 

(false positive, the actual value is non-BGC, but judged by the model as BGC). We 726 

introduced several measures, including precision, recall, F1, true positive rate (TPR), 727 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.30.569352doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.30.569352
http://creativecommons.org/licenses/by-nc-nd/4.0/


and false positive rate (FPR). The definitions of these measures and formulas are as 728 

follows: 729 
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AUROC is the area under the receiver operating characteristic (ROC) curve, and ROC 730 

is the curve of TPR-FPR traversing different thresholds, which is also based on the 731 

confusion matrix. 732 

 733 

Statistical methods 734 

UMAP (Uniform Manifold Approximation and Projection) and t-SNE (t-Distributed 735 

Stochastic Neighbor Embedding) dimensionality reduction techniques were applied to 736 

visualize and explore the high-dimensional gene vectors. To evaluate the differences 737 

between two BGC number groups, a t-test was performed. The t-test is a parametric 738 

statistical test that determines whether the means of two groups are significantly 739 

different from each other. It was used to compare the means of specific variables or 740 

features between the groups of interest. Pearson correlation coefficient was utilized to 741 

examine the linear relationship between the prediction results of the antiSMASH and 742 

BGC-Prophet. The Pearson correlation coefficient provides a measure of the strength 743 

and direction of the linear association between variables. It was employed to assess 744 

the correlation between different features or variables within the dataset. 745 
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Figure Legends 962 

Figure 1. The workflow of our study. A. Generation of positive and negative 963 

samples. To train the BGC-Prophet language model, we curated a training dataset of 964 

12,510 positive and 20,000 negative samples, and each sample was a cluster of 128 965 

genes. MIBiG, minimum information about a biosynthesis-related gene cluster; 6KG, 966 

a phylogenetic diverse set of 5,886 genomes from the GTDB database. B. 967 

BGC-Prophet pipeline for BGC gene detection and product classification tasks. C. 968 

The architecture of the Transformer encoder used in BGC-Prophet. The prelayer 969 

normalization is used to accelerate the convergence of the model. The positional 970 

encoding adopts classical sine-cosine position coding, which does not require 971 

additional training and captures relative positional relationships between genes 972 

effectively. D. Several datasets used in this study for various purposes. NG, nine 973 

genomes that were examined in previous studies, such as ClusterFinder and 974 

DeepBGC; AG, 982 genomes from the genus Aspergillus; 85KG, 85,203 available 975 

genomes in GTDB RS214; MG, 9,428 metagenomics samples involved in 47 studies. 976 

Details of these datasets are available in Methods. E. The bar diagram shows the 977 

enrichment of BGCs in microbes after important geological events in Earth’s history. 978 

 979 

Figure 2. The distribution of ESM embeddings of genes. A. Average ESM 980 

embedding distribution for BGCs in the MIBiG database. The representative vectors 981 

of all genes within each BGC were averaged, and subsequently, a dimensionality 982 

reduction technique called t-SNE was applied to project the BGCs of all categories 983 

into a two-dimensional space. The resulting tSNE1 and tSNE2 values were then 984 

utilized to generate scatter and boxplot visualizations. The scatter plot depicts the 985 

spatial distribution of the average vectors representing the BGCs in the 986 

two-dimensional plane. Each BGC exhibits distinct distribution characteristics, and 987 

their separability is achieved through nonlinear means. Conversely, the boxplot graph 988 

displays the distribution patterns of the seven BGC categories along the tSNE1 and 989 

tSNE2 dimensions. It is evident that they predominantly occupy a specific region 990 

(-50,50), with only marginal discrepancies observed in terms of median values and 991 
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distribution ranges. Importantly, the observed differences in distribution among the 992 

groups are statistically significant under a predetermined level of significance (*, p < 993 

0.05; **, p < 0.01; ***, p < 0.001). NRP, non-ribosomal peptide; RiPP, ribosomally 994 

synthesized and post-translationally modified peptide. B. Average ESM embedding 995 

distribution for BGCs and non-BGCs. Using the t-SNE analysis as before, both the 996 

BGCs and non-BGCs were subjected to dimensionality reduction, resulting in scatter 997 

and boxplot visualizations. The scatter plot reveals that the non-BGCs are widely 998 

distributed, while the BGCs are primarily concentrated in the upper-left and 999 

lower-right corners of the plot. This indicates a clear distinction in the distribution 1000 

patterns between BGCs and non-BGCs. On the other hand, the boxplot graph 1001 

demonstrates that BGCs tend to be located at the edges of the plot, whereas 1002 

non-BGCs exhibit a preference for the central region. This significant difference in 1003 

distribution highlights the contrasting characteristics between BGCs and non-BGCs. 1004 

We plotted separate boxplots for the horizontal and vertical axes and applied a t test to 1005 

indicate that there were significant differences between pairwise comparisons of the 1006 

samples at the given level of significance (*, p < 0.05; **, p < 0.01; ***, p < 0.001). 1007 

 1008 

Figure 3. Evaluation of BGC-Prophet in different settings. A. The evaluation 1009 

metrics reflecting the performance of BGC-Prophet and DeepBGC for BGC gene 1010 

detection on the nine genomes that were examined in previous studies. All metrics 1011 

except AUROC are evaluated under the default threshold of 0.5. B. The evaluation 1012 

metrics reflect the performance of BGC-Prophet for BGC product classification, and 1013 

the DeepBGC random forest classifier is retrained using the MIBiG database (version 1014 

3.0). C. The receiver operating characteristic curve reflecting the performance of 1015 

BGC-Prophet. D. The running time of BGC-Prophet and DeepBGC on datasets with 1016 

different numbers of genomes. E. The gene heatmap of a gene cluster (128 timesteps) 1017 

during a single prediction process on the nine genomes. This heatmap illustrate the 1018 

detection model’s first layer’s five heads (see Methods) average attention map during 1019 

a single prediction process by BGC-Prophet on nine genomes. The vertical axis 1020 

represents the Query in the self-attention mechanism, corresponding to the input gene 1021 
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embedding vectors, while the horizontal axis represents the Key. Horizontally, the 1022 

large heatmap implies that determining whether a gene participates in forming a BGC 1023 

requires considering information from multiple positions. Vertically, the vertical dark 1024 

purple lines in whole genes heatmap represent a gene influencing the formation of a 1025 

BGC by multiple genes. Darker colors along the diagonal in heatmap suggest that 1026 

determining whether a BGC is formed primarily relies on the information embedded 1027 

in its own vector, indicating the critical role played by the embedding vector’s 1028 

information. The zoomed-in heatmap demonstrate the attention relationships between 1029 

the BGC and surrounding genes. Genes 75-79 are annotated as BGC genes. F. The 1030 

schematic diagram of attention applied between BGC genes and the genes at both 1031 

ends, only colored genes belong to this predicted BGC. Panel F provides a schematic 1032 

explanation of the magnified section in panel E, only attention scores between genes 1033 

that exceeded 0.08 are shown as lines. The gene 76 (KUTG_02125), which encodes a 1034 

non-ribosomal peptide synthetase, receiving the highest attention scores from other 1035 

BGC genes. This suggests that annotation tasks need to consider information from 1036 

this gene, possibly implying its conservativeness and centrality in this BGC. 1037 

 1038 

Figure 4. The predicted BGCs on the Aspergillus genomes dataset by 1039 

BGC-Prophet and antiSMASH. A. The number of BGCs predicted by BGC-Prophet 1040 

(green) and antiSMASH (red) for seven categories. The bar plot shows the total 1041 

number of BGCs predicted by the two tools. Based on the assumption that if two 1042 

prediction tools identify BGCs with identical genes, they are considered to have 1043 

predicted the same BGC, the prediction results for all seven BGCs can be visualized 1044 

using a Venn diagram for each category. It is important to note that antiSMASH does 1045 

not predict BGCs belonging to the alkaloid and saccharide categories. The 1046 

BGC-Prophet predictions are based on the default threshold of 0.5. B. The distribution 1047 

of BGCs in the genomes of the Aspergillus genus. Within the central core, the 1048 

encompassed area represents the entirety of Aspergillus species (a total of 76 species). 1049 

The meaning of each circle from the inside out: first circle, the total number of BGC 1050 

predicted by antiSMASH; second circle, the total number of BGC predicted by 1051 
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BGC-Prophet, third circle, the number of each category of BGC predicted by 1052 

antiSMASH, fourth circle, the number of each category of BGC predicted by 1053 

BGC-Prophet. Taking into consideration the presence of multiple subspecies genomes 1054 

within a species, the number of predicted BGCs per species is averaged. C. A bar 1055 

chart depicting the total number of different types of BGCs predicted by antiSMASH 1056 

and BGC-Prophet reveals that BGC-Prophet predicts a significantly higher number of 1057 

BGCs across various categories compared to antiSMASH. 1058 

 1059 

Figure 5. Novelty and phylogenomic distribution of microbial biosynthetic 1060 

potential in different branches of the evolutionary tree of life. A. The distribution 1061 

of predicted BGCs on an evolutionary tree is shown. The evolutionary tree consists of 1062 

85,203 bacterial and archaeal genomes from the GTDB database. For visualization 1063 

purposes, the tree is displayed at the taxonomic rank of order. The number of BGCs is 1064 

averaged per genome within each order. From the innermost to the outermost layers, 1065 

the central core represents the evolutionary tree structure, consisting of 148 archaeal 1066 

and 1,624 bacterial orders. The first ring depicts a heatmap of the total number of 1067 

BGCs, with most genomes having two or fewer BGCs, while a few genomes exhibit 1068 

up to 20 BGCs, indicating significant biosynthetic potential. The second to eighth 1069 

rings display the distribution of BGC numbers for Other, Alkaloid, Saccharide, 1070 

Terpene, Polyketide, and NRP categories, respectively. B. The term "prevalence" 1071 

refers to the proportion of genomes that contain a specific type of BGC out of all the 1072 

genomes analyzed. The sum of the prevalence values for the seven categories may 1073 

exceed 100% because there can be instances where a single BGC belongs to several 1074 

BGC categories. C. The average number of BGCs and the distribution of different 1075 

BGC categories within selected orders. Among the orders, the top 27 orders with the 1076 

highest average number (> 7.0) of predicted BGCs are distributed across 15 different 1077 

phyla. These 27 orders represent a diverse range of phyla and showcase varying levels 1078 

of BGC diversity and distribution across different BGC categories. 1079 

 1080 
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Figure 6. BGC-Prophet reveals the biosynthetic potential of the human 1081 

microbiome. A. Distribution of predicted BGCs from the human microbiome 1082 

metagenomic dataset (MG) on an evolutionary tree. BGCs were predicted using 1083 

BGC-Prophet on the MG dataset, followed by species annotation. For the same 1084 

species, the number of BGCs was averaged. From innermost to outermost, the central 1085 

core represents the weighted evolutionary tree structure, composed of 13 archaeal 1086 

species and 2,909 bacterial species, with different colored sectors representing several 1087 

major phyla, such as Actinomycetota, Bacillota_A, and Bacteroidota. The first ring 1088 

depicts the heatmap of the total number of BGCs, showing a clear enrichment in 1089 

phyla such as Actinomycetota. The second to eighth rings display the distribution of 1090 

BGCs belonging to the alkaloid, terpene, polyketide, NRP, saccharide, RiPP, and other 1091 

categories, respectively. B. The bar plot from top to bottom shows the total counts, 1092 

abundance, and average number of each type of BGC predicted. The order, from 1093 

largest to smallest, is Other, RiPP, Saccharide, NRP, Polyketide, Terpene, and 1094 

Alkaloid. The total count of BGCs is determined by the combination of abundance 1095 

and the average number of a specific type of BGC per genome. The higher count of 1096 

Other BGCs is likely due to shorter contig lengths, which result in fragmented BGC 1097 

predictions that cannot be further classified. C. Heatmap showing the number of 1098 

different types of predicted BGCs by BGC-Prophet in 47 metagenomic datasets. The 1099 

predicted counts vary depending on the number of genomes, contig lengths, 1100 

ecological niches, and biosynthetic capabilities of the respective datasets. For detailed 1101 

information, please refer to Supplementary Table S6. 1102 

 1103 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.30.569352doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.30.569352
http://creativecommons.org/licenses/by-nc-nd/4.0/


BGC and nonBGC  samples

BGC

Large-scale BGC mining on 85KG and MG

non-BGC genes Predicted BGC
(abandon)

Validation on NG

A B C

D E

Positional 
encoding

×2

Embeddings of genes

Gene embeddings generated by ESM2

Biosynthetic-aware embeddings

Biosynthetic-aware embeddings

BGC language model 
(Transformer encoder)

Gene detection and product classification

Fully-connected layers

ESM2-8M

Two side padding

Minimum Information about a 
Biosynthetic Gene cluster

9 bacterial genomes 
mentioned in DeepBGC

982 genomes from the genus 
of Aspergillus

85,203 available genomes in 
GTDB RS214

Metagenomes involved in 47 
metagenomic studies

A phylogenetic diverse set of 
5,886 genomes from GTDB

G
re

at
 O

xi
da

tio
n

C
am

br
ia

n 
Ex

pl
os

io
n

R
el

at
iv

e 
ab

un
da

nc
e

Extract by
genomic order

Positive sample of BGC
Sequence length = 128

Negative sample of nonBGC
Sequence length = 128

Predict BGC
using AntiSMASHObtain BGC

MIBiG 6KG

85KG MG

E1 E2 E3 E4 En…

……

……

……

……

E1 E2 E3 En…

E1
’ E2

’ E3
’ En

’…

E1
’ E2

’ E3
’ En

’…

Feed forward (dim=1280

Add

Layer normalization

5-head attention

Add & Layer normalization

AGNG

Profiles of BGCs on AG

Polyketide
NRP

Pre

Post Pre
Post

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.30.569352doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.30.569352
http://creativecommons.org/licenses/by-nc-nd/4.0/


A B

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.30.569352doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.30.569352
http://creativecommons.org/licenses/by-nc-nd/4.0/


BA C

GCA_000154945

GCA_000156435

GCA_000156475

GCA_000158815

GCA_000158875

GCA_000158895

GCA_000158915

GCA_000568255

GCA_000568915

D
(estimated)

F

E

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.30.569352doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.30.569352
http://creativecommons.org/licenses/by-nc-nd/4.0/


antiSMASH BGC-Prophet antiSMASH
0

50000

100000

150000
167375

59037

Number of all BGCs
predicted by 2 tools

BGC-Prophet

A

C

B

Number of BGCs

30

55

85

110

140

170

200

225

250

280

310

Categories

NRP

Polyketide

Other

Alkaloid

RiPP

Saccharide

Terpene

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.30.569352doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.30.569352
http://creativecommons.org/licenses/by-nc-nd/4.0/


B

A

kf ban a kmaeb h c o a kd l i ma ka

C

Avg. No. BGCs 1 5 10 15 20

BGC enriched Orders(Avg. No. BGCs ≥7.0)

a Acidobacteriota
b Actinomycetota
c Armatimonadota

e Bacillota_C
f Bacillota_F
g Bdellovibrionota

h Chloroflexota
i Cyanobacteriota
j JADJOY01
k Myxococcota
l Planctomycetota
m Pseudomonadota
n Tectomicrobia

o Verrucomicrobiota

d Bacillota

b a g j

BGC Number

1

2

4

6

8

10

12

14

16

18

20

Categories

NRP

Polyketide

Other

Alkaloid

RiPP

Saccharide

Terpene

a

c

b

g

f

e

d

h

i

j

k

l

m
n

o

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.30.569352doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.30.569352
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

B C

B G C - p r o p h e t

Tree scale: 1

BGC Number

1

4

7

10

13

16

19

22

25

28

31

Categories

NRP

Polyketide

Other

Alkaloid

RiPP

Saccharide

Terpene

ArchaeaBacillota_A Bacillota

Bacteroidota

Actinomycetota

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.30.569352doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.30.569352
http://creativecommons.org/licenses/by-nc-nd/4.0/


A B

Metagenome Data 
47 metagenome
9428 samples

Extend Data
85205 genomes

Core Data
5886 genomes

C D

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.30.569352doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.30.569352
http://creativecommons.org/licenses/by-nc-nd/4.0/


…

Gene 1

Alkaloid

Polyketide
NRP

RiPP

Saccharide
Terpene

Other

Embedding 1
Dimension = 320

Embedding 2
Dimension = 320

Embedding 128
Dimension = 320

Embedding 1
Dimension = 320

Embedding 2
Dimension = 320

Embedding 128
Dimension = 320

Average embedding
Dimension = 320

A string of genes

Fully-connected
layers

Time-distributed
fully-connected

layers

Gene 2 Gene 128

Average

0 10.5

Probability

…

ESM-2 8M (8 million parameters)

Positional 
encoding

×2

Biosynthetic-aware embeddings

Product classification

Gene detection

Tr
an

sf
or

m
er

 e
nc

od
er

Feed forward (Dim=1280)

Add

Layer normalization

5-head attention

Add & Layer normalization

…

…

…

non-BGC gene non-BGC geneBGC gene

0 10.5

Probability

C

D

B

A

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.30.569352doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.30.569352
http://creativecommons.org/licenses/by-nc-nd/4.0/


BG
C-

Pr
op

he
t

D
ee

pB
G

C

GCA_000154945

BG
C-

Pr
op

he
t

D
ee

pB
G

C

GCA_000156435
BG

C-
Pr

op
he

t

D
ee

pB
G

C

GCA_000156475

BG
C-

Pr
op

he
t

D
ee

pB
G

C

GCA_000158815

BG
C-

Pr
op

he
t

D
ee

pB
G

C

GCA_000158875

BG
C-

Pr
op

he
t

D
ee

pB
G

C

GCA_000158895

BG
C-

Pr
op

he
t

D
ee

pB
G

C

GCA_000158915

BG
C-

Pr
op

he
t

D
ee

pB
G

C

GCA_000568255

BG
C-

Pr
op

he
t

D
ee

pB
G

C

GCA_000568915

0.2

0.4

0.6

0.8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.30.569352doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.30.569352
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

B

C

Gene Position

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.30.569352doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.30.569352
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 2000 4000 6000 8000 10000 12000 14000
Number of BGCs predicted by antiSMASH

0

10000

20000

30000

40000

50000

Nu
m

be
r o

f B
GC

s p
re

di
ct

ed
 b

y 
BG

C-
Pr

op
he

t

Pearson Correlation Coefficient = 0.91
Fitted Line

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.30.569352doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.30.569352
http://creativecommons.org/licenses/by-nc-nd/4.0/


Time (million years)

The Great Oxidation event

The Cambrian Explosion event

1

-4,000 -3,000 -2,000 -1,000 0

10

100

1,000

10,000
N

um
be

r o
f  

lin
ea

ge
s

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.30.569352doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.30.569352
http://creativecommons.org/licenses/by-nc-nd/4.0/

