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18 Highlights

19 @ BGC-Prophet shows superior performance to existing tools in terms of accuracy
20 and speed.

21 ® BGC-Prophet is the first ultrahigh-throughput (UHT) method that enables
22 pan-phylogenetic screening and whole-metagenome screening of BGCs.

23 ® BGC-Prophet builds the comprehensive profile of BGCs on 85,203 genomes and
24 9,428 metagenomes from the magjority of bacterial and archaeal lineages.

25 @ BGC-Prophet reveas the profound enrichment pattern of BGCs after important

26 geological events.
27 Abstract

28  Microbial secondary metabolites are usually synthesized by colocalized genes termed
29  biosynthetic gene clusters (BGCs). A large portion of BGCs remain undiscovered in
30 microbia genomes and metagenomes, representing a pressing challenge in unlocking
31 thefull potential of natural product diversity. In this work, we propose BGC-Prophet,
32 a language model based on the transformer encoder that captures the distant
33  location-dependent relationships among biosynthetic genes, allows accurately and
34 efficiently identifies known BGCs and extrapolates novel BGCs among the microbial
35 universe. BGC-Prophet is the first ultrahigh-throughput (UHT) method that is several
36 orders of magnitude faster than existing tools such as DeepBGC, enabling
37  pan-phylogenetic screening and whole-metagenome screening of BGCs. By analyzing
38 85,203 genomes and 9,428 metagenomes, new insights have been obtained about the
39 diversity of BGCs on genomes from the magority of bacterial and archaeda lineages.
40  The profound enrichment of BGCs in microbes after important geological events have
41 been revealed: Both the Great Oxidation and Cambrian Explosion events led to a
42 surge in BGC diversity and abundance, particularly in polyketides. These findings
43  suggest that it is a genera but constantly evolving approach for microbes to produce
44  secondary metabolites for their adaptation in the changing environment. Taken

45  together, BGC-Prophet enables accurate and fast detection of BGCs on a large scale,
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46  holds great promise for expanding BGC knowledge, and sheds light on the
47  evolutionary patterns of BGCs for possible applications in synthetic biology.
48 Keywords: Natura product; Biosynthetic gene cluster (BGC); Language model;

49  Microbia genome; M etagenome

50

51 Introduction

52  Microbia secondary metabolism, one of the important sources of natural products, is
53 generated through the coordinated action of numerous genes organized into
54  biosynthetic gene clusters (BGCs) [1, 2]. Across the tree of life, these natural products
55 comprise thousands of different chemical structures, including polyketides,
56  saccharides, terpenes and alkaloids, that facilitate an organism’s ability to thrive in a
57  particular environment [3, 4]. These secondary metabolites also demonstrate efficacy
58  across multiple therapeutic areas, including antimicrobial and cancer immunotherapy
59 [5, 6]. The biosynthesis of these compounds involves multienzyme loci called BGCs,
60  which encode the biosynthetic pathways for one or more specific compounds [7, 8].
61  With the exponential growth of genomic data, identifying and classifying BGCs from
62 microbia genomes or metagenomic assembled genomes (MAGs) has become a
63 pressing challenge in exploring and exploiting natural product diversity [9, 10].
64 Developments in computational omics technologies have provided new means to
65 assess the hidden diversity of natural products, unearthing new potential for drug
66  discovery [11, 12].

67

68 BGC encodes a series of genes involved in biosynthetic or metabolic pathways, which
69 are arranged in a sequential order on the genome. These genes work together to
70  produce one or more small molecular compounds, such as penicillin [13, 14]. Recent
71 insights revedled that BGC comprised a cluster of spatially adjacent colocalization
72 genes, including biosynthetic genes and auxiliary genes (e.g., transport-related genes,
73 regulatory genes) [15, 16]. These biosynthetic genes play key catalytic roles in the

74  formation of microbia secondary metabolites. In addition to biosynthetic enzymes,
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75 many BGCs aso harbor enzymes to synthesize specialized monomers for a pathway.
76  For example, the erythromycin gene cluster encodes a set of enzymes for the
77  biosynthesis of two deoxy-sugars that are appended to the polyketide aglycone [17].
78 In many cases, transporters, regulatory elements, and genes that mediate host
79  resistance are aso contained within the BGC [18]. Although some BGCs are so well
80 understood that the biosynthesis of their small molecule product has been
81  reconstituted in heterologous hosts, little is known about the vast mgjority of BGCs,
82 even those that have been linked to asmall molecule product.

83

84  The explosion of microbial genomic data, including complete and partial genome
85  seguences, has led to a transformative change in how computational methods are
86 employed in natural product drug candidate discovery. Computational approaches are
87  being developed to predict BGCs based on genome sequences alone, fuelled by data
88 on known biosynthetic pathways and their chemical products, which are currently
89  standardized with predicted BGCs stored in public databases [19]. Identifying natural
90 product BGCs dtill largely relies on rule-based methods such as those used in
91 antiSMASH [15, 16] and PRISM [20]. Although these approaches are successful at
92 detecting known BGC categories, they are less proficient at identifying novel
93  categories of BGC [21, 22]. In these more complex cases of identifying novel BGCs,
94  machine learning algorithms have been shown to offer significant advantages over
95  rule-based methods. For example, ClusterFinder [23], NeuRiPP [24] and DeepRiPP
96 [25] each use machine learning to identify BGCs. These methods often have a
97 tradeoff in terms of efficiency and accuracy, have a higher false positive rate than
98  rule-based approaches and suffer from false negatives for known categories of BGC.
99 Recently, deep learning approaches have been developed for BGC annotation,
100  including DeepBGC [26], e-DeepBGC [27], Deep-BGCPred [28], and SanntiS [29].
101 All of these deep learning approaches call biosynthetic gene families using collections
102  of curated profile-Hidden Markov Models (pHMMs) and employs a bidirectional long
103  short-term memory (BiLSTM) recurrent neural network for improved identification of

104 BGCs[26-29]. Although these approaches have improved the detection of BGCs from
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105 bacterial genomes and harness great potential to detect novel categories of BGCs,
106  they have common drawbacks: BiLSTM might lose distant memories during the
107  recurrent neural network and is unable to capture distant location-dependent
108  relationships between biosynthetic genes, while the utilization of pHMM heavily
109  relies on manual determination by experts to define the scope of each domain from
110  the Pfam database [30], and is computationally intensive.

111

112 Collectively, several challenges persist for contemporary BGC prediction tools. First,
113 these tools cannot accurately capture the location-dependent relationships between
114  genes, resulting in limited accuracy and applicability, particularly in novel BGC
115  predictions. Additionally, existing methods rely on time-consuming sequence
116 alignment to extract features (such as Pfam domains), which hinders their speed for
117  pan-phylogenetic screening and whole-metagenome screening of BGCs. Furthermore,
118  the low throughput of existing methods makes it impossible for them to construct a
119 comprehensive profile of BGCs on almost all lineages of genomes and metagenomes,
120  thereby precluding the revelation of enrichment patterns of BGCs on a broad scale.
121

122  To address these limitations, we proposed BGC-Prophet, a deep learning approach
123  that leverages a language model to accurately and efficiently identify known BGCs
124  and extrapolate novel BGCs among the microbia universe. Previous studies have
125 shown that the success of language models for BGC detection and product
126  classification [31, 32]. Encouraged by this, our BGC-Prophet employs the powerful
127  language model of the transformer encoder [33, 34], which captures the distant
128  location-dependent relationships among biosynthetic genes for improved BGC
129  detection and classification.

130

131 Our experiments show that BGC-Prophet achieves a >90% area under the receiver
132  operating characteristic curve (AUROC) on the validation datasets and offers a
133  comparable ability in BGC identification to existing tools such as DeepBGC.
134  BGC-Prophet is the first ultrahigh-throughput (UHT) method that is severa orders of
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135 magnitude faster than existing tools such as DeegpBGC, enabling pan-phylogenetic
136  screening and whole-metagenome screening of BGCs. By analyzing 85,203 genomes
137 and 9,428 metagenomes, new insights have been obtained about the diversity of
138 BGCs on genomes from the majority of bacterial and archaeal lineages. This is
139  exemplified by the discovery of the profound enrichment of BGCs in microbes after
140  important geological events. Both the Great Oxidation and Cambrian Explosion
141  events led to a surge in BGC diversity and abundance, particularly in polyketides.
142  These findings suggest that microorganisms could adapt to the changing environment
143 by evolving BGC to produce specific secondary metabolites. In summary,
144  BGC-Prophet enables accurate and fast detection of BGCs on a large scale, holds
145  great promise for expanding BGC knowledge, and sheds light on the evolutionary
146  patterns of BGCs for possible applications in synthetic biology.

147

148 Reaults

149  BGC-Prophet model establishment and assessment strategy

150 BGC consists of a cluster of functionally related colocalized genes that can be
151  regarded as sentences, and BGC prediction could be regarded as a problem of text
152  classification in the field of natural language processing. Currently, many language
153  models have been proposed and used to solve the problem of text classification, such
154  as long short-term memory (LSTM) and bidirectional encoder representations from
155  transformers (BERT). The original BERT proposed a revolutionary technique that
156  generates generic knowledge of language by pretraining and then transfers the
157  knowledge to downstream tasks of different configurations using fine-tuning [33, 34].
158  Following BERT’'s mentality and paradigm, we developed a BGC language
159  processing neural network model, BGC-Prophet, which captures location-dependent
160  relationships between biosynthetic genes by being trained on thousands of microbial
161 genomes and assigns gene types or product classes by simply plugging in two
162  classifiers and fine-tuning the parameters supervised by a reference dataset (Figure

163  1A-C). Training on thousands of microbial genomes enables the model to learn the
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164  genera syntax of genes, that is, gene location dependencies, which helps to improve
165  generalizability and avoid overfitting. Fine-tuning ensures that the output embedding
166  for each gene encodes context information that is more relevant to the biosynthetic
167  functional profiles.

168

169  BGC-Prophet has innovative designs to unleash its power in the BGC prediction task.
170  First, BGC-Prophet uses genes as tokens to represent sentences (Figure 1A). Previous
171 methods such as DeepBGC take Pfam domains as tokens that effectively balance
172 genetic information loss and computational complexity. However, Pfam relies on
173  manua determination by experts to define the scope of each domain. Here, we choose
174  genes as tokens, which are more natural and do not require additional operations.
175  Second, BGC-Prophet uses the evolutionary scale modeling (ESM, a pretrained
176  language model for proteins) method to generate the embedding of gene tokens [35]
177 (Figure 1B-C). The resulting numerical vectors of genes encapsulated evolutionary
178  signals and functional properties based on their sequences, allowing us to leverage
179  contextual similarities between genes.

180

181  To train the language model, we curated a training dataset of 12,510 positive and
182 20,000 negative samples, each of which is a gene cluster containing 128 genes
183  (Figure 1A, Supplementary Table S1). Considering that the longest BGC in MIBiG
184  (Minimum Information about a Biosynthesis-related Gene cluster) consists of 115
185 genes and the number of non-BGC genes between BGCs in genomes, we set the
186  maximum number of genes to 128 in a sample (Supplementary Figure Sl). Details
187  of the generation of positive and negative samples are provided in the Methods
188  section.

189

190 BGC-prophet accepts a set of genes as input and predicts BGC location and category.
191 The input of the BGC-Prophet model is a sequence of embeddings represented by
192  320-dimensional vectors generated by the evolutionary-scale modeling (ESM) method
193  [35] (Supplementary Figure S2). The output of the BGC-Prophet model consists of
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194  two parts. The first part is a sequence of values ranging from O to 1 representing the
195  prediction scores of individual genesto be part of a BGC. The second part is which of
196  the seven categories (see M ethods) the input gene clusters belong.

197

198  We clarified severa experiments for the evaluation and application of BGC-Prophet
199 inthisstudy (Figure 1D). First, we evaluated the performance of BGC-Prophet on the
200 NG dataset, which comprises nine genomes mentioned in previous studies
201  (Supplementary Table S2) [23, 26]. Second, we compared the BGCs predicted by
202 BGC-Prophet and antiSMASH on the AG dataset, which comprises 982 genomes
203  from Aspergillus, a genus with great biosynthetic potential. Then, we attempted to
204  discover new insights into the diversity and novelty of BGCs on the 85KG, which
205 comprises 85,203 available bacterial and archaeal genomes in the genome taxonomy
206 database (GTDB), and MG (9,428 metagenomic samples involved in 47 studies)
207  datasets (Supplementary Table S3). We finally studied the enrichment pattern of
208 BGCsin microbes after important geological eventsin life on earth (Figure 1E).

209

210  Evaluation of context-awarerepresentations of genes

211 The ESM method generated context-aware representations of genes, thereby serving
212 as meaningful input features for the BGC prediction model. In this subsection, we
213  investigate the effectiveness of using vector representations generated by the ESM
214  method. To achieve this, we first used ESM-2 8M (version 2 with 8 million
215  parameters) to generate the vectors for a set of genes. Then, we consolidated the
216  numerous genes within each BGC into a singular representative BGC vector by
217  averaging the vectors. We evaluated the representative vectors of al BGCs from the
218 MIBIG database via t-distributed stochastic neighbor embedding (t-SNE) analysis.
219  Subsequently, we reduced the dimensionality of the representative BGC vectors from
220 320 dimensions to 2 dimensions by the t-SNE method for improved visualization.

221

222  Different categories of BGCs demonstrate distinct patterns within the t-SNE

223 dimensionality reduction plot (Figure 2). It is evident that the seven distinct
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224  categories of BGCs exhibit a concentrated distribution into three clusters (top right,
225  bottom left, and bottom right). For instance, terpenes predominantly cluster in the
226  bottom right, saccharides and RiPPs primarily cluster in the top right, and polyketides
227  primarily cluster in the bottom left and bottom right. The remaining categories display
228 awidespread distribution across al three clusters. The boxplot showed that the points
229  of any two categories of BGCs exhibited clear separation on the scatter plot (Figure
230 2A), such as polyketide and terpene (t test, p < 0.001). We also analyzed the
231 two-dimensiona distribution of BGCs (positive sample) and non-BGCs (negative
232  sample) in the training set. Despite the fact that there are areas in the graph that are
233  exclusively occupied by BGCs (bottom right), there is substantial overlap between
234  BGCs and non-BGCs on the scatter plot (Figure 2B), although their distributions are
235 dggnificantly different on both axes (t test, p < 0.001). Our findings demonstrated that
236 the ESM method generated context-aware representations of genes and therefore
237  helped the language model learn the location-dependent relationships between genes
238 that distinguish between BGCs and non-BGCs.

239

240  Accurate and ultrahigh-throughput BGC prediction

241 To demonstrate the capabilities of our proposed framework, we assessed the
242  performance of BGC-Prophet by evaluating its ability to (1) accurately locate BGCs
243  throughout the bacterial genome (BGC gene detection) and (2) categorize them into
244  their respective categories according to the types of their products (BGC product
245  classification). Since DeepBGC is widely used by the community and is one of the
246  best tools among existing BGC prediction tools, we choose DeegpBGC as a
247  representative and compare the performance of BGC-Prophet and DeepBGC.

248

249  BGC-Prophet has shown superior performance to DeepBGC in terms of accuracy. We
250 initidly evaluated the performance of BGC-Prophet and DeepBGC for BGC gene
251  detection, and the results showed that the performances of BGC-Prophet and
252  DeepBGC were comparable on the NG dataset (Figure 3A, B). Under the default
253  threshold of 0.5, the BGC-Prophet model outperforms DeepBGC in metrics such as
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254  false positive rate and precision, while it lags behind in metrics such as false negative
255 rate and recall (Supplementary Figure S3). However, in terms of the AUROC,
256  BGC-Prophet achieved an overall AUROC of 91.9% with regard to locating BGCs
257  throughout the bacterial genome, while DeepBGC achieved 93.1% (Figure 3B). We
258  further examined the performance of both tools on individual genomes and found that
259  BGC-Prophet outperformed DeepBGC in several cases (Figure 3A). Specifically,
260 BGC-Prophet had a higher AUROC than DeepBGC on three of the nine genomes, and
261 DeepBGC had a higher AUROC on the remaning six genomes (Figure 3A).
262 BGC-Prophet achieved the highet AUROC of 96.0% on the genome
263 GCA_000158815 (NCBI accession), while DegpBGC achieved the highest AUROC
264 of 96.0% on the genome GCA_000154945 (NCBI accession). Subsequently, we
265 evauated the performance of BGC-Prophet and DeepBGC on BGC product
266 clasgsification. In this task, BGC-Prophet achieved an AUROC of 98.8% with regard
267 to differentiating among the seven BGC categories, while DeepBGC achieved 91.3%
268  (Figure 3C). This indicates that BGC-Prophet is better at accomplishing the BGC
269  product classification task.

270

271 BGC-Prophet uses a more efficient ESM method to generate vector representations of
272  genes, avoiding the time-consuming sequence alignment (Pfams alignment), and
273  improving the throughput of genomic data processing. For instance, when we
274  extrapolate the number of genomes to 10 (randomly select and replicate genomes) for
275 efficiency evaluation, DeepBGC needed an average of four hours per genome,
276  whereas BGC-Prophet could process each genome in just one minute (Figure 3D).
277 We emphasize that BGC-Prophet is the firss UHT method that enables
278  pan-phylogenetic screening and whole-metagenome screening of BGCs.

279

280 BGC-Prophet captures distant location-dependent relationships among biosynthetic
281  genes. For example, we selected a BGC in the NG dataset and obtained its attention
282 map during a single prediction process. The attention map shows the attention

283  relationships between the BGC and surrounding genes (Figure 3E, Supplementary
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284  Figure $4). The gene 76 (KUTG_02125), which encodes a non-ribosomal peptide
285  synthetase, receiving the highest attention scores from other BGC genes, possibly
286  implying its conservativeness and centrality in this BGC (Figure 3F). Such examples
287 are plentiful (Supplementary Figure $4), and the attention maps clearly show the
288 language model can capture distant location-dependent relationships among
289  biosynthetic genes.

290

291 Comprehensive profiling of BGCsin 982 genomes from Aspergillus

292 BGC-Prophet predicts BGCs in a comprehensive manner and can predict more
293  previously uncommented BGCs. Here, we utilized BGC-Prophet and antiSMASH to
294  predict BGCs in genomes from Aspergillus, a genus with great biosynthetic potential
295 and hundreds of genomes of this lineage. The results have shown that BGC-Prophet
296  predicts a greater number of potential BGCs compared to antiSMASH, particularly in
297 the terpene category (52,004 vs. 7,748, with 7,260 intersection BGCs). The
298  predictions of BGCs in the NRP category by the two tools are nearly identical (27,603
299  vs. 27,100, with 26,278 intersection BGCs). BGC-Prophet predicts alarger number of
300 BGCs in the categories of terpene and polyketide (35,606 vs. 18,225, with 16,607
301 intersection BGCs). Moreover, the prediction of BGCs in the RiPPs category by both
302 tools exhibited complementarity (27,155 vs. 8,082, with 1,401 intersection BGCs),
303 enhancing the coverage of predicted BGCs. Furthermore, BGC-Prophet predicts
304 additiona BGCs in the categories of alkaloids and saccharides compared to
305 antiSMASH. The results showed a notable discrepancy between the BGCs predicted
306 by the two tools, suggesting that BGC-Prophet can predict potentially novel BGCs
307  beyond those detected by antiSMASH. We then studied the distribution spectrum of
308 the predicted BGCs by both BGC-Prophet and antiSMASH. The results showed that
309 BGC-Prophet predicted BGCs amost three times as many as antiSMASH (167,375 vs.
310 59,037, Figure 4A), and most of them are potentially novel BGCs (Figure 4B, C).
311 The prediction results of the two tools showed a clear linear correlation
312 (Supplementary Figure S5, r = 0.91, p < 0.001), indicating that the BGCs predicted
313 by BGC-Prophet have no preference for specific species. Overall, we demonstrate that
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314  BGC-Prophet predicts BGC in a more comprehensive manner and can predict more
315  previously unannotated BGCs.

316

317 Comprehensive profiling of BGCs on 85,203 microbial genomes from the
318  majority of bacterial and archaeal lineages

319  With BGC-Prophet, new insights have been obtained about the diversity of BGCs on
320 genomes from the majority of bacterial and archaeal lineages. We used BGC-Prophet
321  toinvestigate the profile of BGCs on 85,203 microbial genomes from the majority of
322  bacteria and archaeal lineages. Among these genomes, 41,599 were found to contain
323  BGCs, resulting in the identification of a total of 119,305 BGCs. We first performed
324  an analysis to determine the proportions of different categories of BGC (Figure 5A).
325  When we mapped BGCs to the species (Figure 5B), the three most widely distributed
326 BGC categories were polyketide (34%), NRP (33%), and RiPP (24%), and the three
327 most abundant categories were NRP (33%), polyketide (28%), and RiPP (27%).
328  Conversely, the akaloid category exhibited the narrowest distribution (2% of the total
329 gpecies) and the lowest abundance (1% of the total number, Figure 5B). In
330 comparison, the three most abundant categories in the MIBIG database were
331 polyketide (41%), NRP (34%), and RiPP (13%) [4]. Moreover, BGC-Prophet
332 identified a significantly greater number of BGCs classified as the “other” category
333 (increasing from 324 to 32,233 and from 13% to 24%), indicating its enhanced
334  capability in mining potentially novel BGC categories. Our findings showed that
335 BGC-Prophet identified several times more BGCs than MIBIG, with notable
336 differencesin the composition of BGCs (Supplementary Table $4).

337

338 The host distribution of BGC showed species-specific characteristics, exemplified by
339 the Actinomycetota phylum having the highest predicted number of BGCs (39,252 in
340 tota), and the Pseudomonadota phylum exhibited the widest genomic coverage, with
341 12,637 genomes containing at least one BGC, encompassing a total of 29,675 BGCs
342  (Figure 5A, C, Supplementary Table S5). At the rank of order, the top 27 orders
343  with the highest average number of predicted BGCs (> 7.0) are distributed across 15
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344  phyla, such as Actinobacteria and Acidobacteriota (Figure 5C), which were reported
345 to have relatively high biosynthetic potential (Supplementary Text S1). We
346  proceeded to analyze BGCs separately for archaea and bacteria. Out of all these
347  gspecies, we identified 1,762 and 117,543 BGCs from 1,079 archaeal genomes and
348 40,520 bacterial genomes, respectively. On average, archaeal genomes contained 1.63
349  BGCs per genome, while bacterial genomes contained 2.90 BGCs per genome. These
350 results indicate a significantly lower abundance of BGCs in archaead genomes
351  compared to bacterial genomes (t test, p = 6.1e-29). The predominant BGC categories
352  in archaea were saccharides (30%) and RiPP (24%), whereas in bacteria, they were 10%
353  and 11%, respectively. The predominant BGC categories in bacteria were NRP (33%)
354  and polyketide (28%), whereas in archaea, they were 8% and 1%, respectively. This
355 observation may be attributed to the more ancient nature of archaea compared to
356 bacteria, particularly in energy acquisition and metabolism. While bacteria rely
357 mainly on aerobic respiration, archaea have adapted to survive in extreme
358  environments by using alternative strategies such as sulfur reduction, denitrification,
359  and nitrate reduction (Supplementary Text S2) [36, 37].

360

361  Comprehensive profiling of BGCsin 9,428 metagenomic samples

362 BGC-Prophet is the first UHT method that enables whole-metagenome screening of
363 BGCs. We used 9,428 metagenomic samples corresponding to 47 studies from the
364 human microbial environment and performed species annotations and BGC
365 predictions on these samples (details in Methods). A total of 160,814 bins were
366  generated from these metagenomic samples, of which 132,809 bins were successfully
367 assigned to species, while 28,005 bins remained unclassified. Of the 9,428
368 metagenomic samples analyzed, atotal of 8,255 were predicted to contain at |east one
369 BGC. The number of predicted BGCs was 248,229, distributed among 2,922 known
370  species and unclassified species. The distribution of predicted BGCs from the human
371 microbiome metagenomic dataset is shown in Figure 6. Consistent with the findings
372  from the GTDB dataset, BGCs were significantly enriched in species belonging to

373  Actinomycetota compared to species other than Actinomycetota (average of 8.30
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374  BGCs per genome vs. 4.24 BGCs per genome, p = 1.06e-105). Additionally, archaeal
375  species exhibited a higher number of BGCs compared to bacterial species (average of
376  9.00 BGCs vs. 4.88 BGCs, p = 0.0001). In terms of the abundance of BGCs for
377  different categories, on average, there were 1.58 RiPPs, 1.36 saccharides, 1.12 NRPs,
378  1.10 polyketides, 1.07 terpenes, and 1.02 alkaloids.

379

380 Theprofound enrichment of BGC in microbes after important geological events
381 Large differences were observed in the distribution of BGCs among different species,
382 particularly in light of the evolution over billions of years. To understand this
383  phenomenon, we searched TimeTree [38] and identified two time points for the rapid
384  growth of lineages, which corresponded to the Great Oxidation [39] and Cambrian
385 Explosion [40] events (Supplementary Figure S6). After both of these events, we
386  observed a surge in BGC diversity and abundance, possibly indicating the impact of
387  the environment on BGC.

388

389  The Great Oxidation event occurred approximately 2.5 to 2.3 billion years ago, which
390 was about the same time as the emergence of ribosomes [41, 42]. Prior to this time
391 point, there was a shift in the evolution of certain bacterial genera, such as
392 Mesoaciditoga [43], Vampirovibrio [44], and Synechococcus [44], which are
393  categorized as the “pre” group. These genera comprise 56 out of 41,599 genomes
394 anayzed. The remaining 2,215 genera evolved after this time point and are
395  categorized as the “post” group. Statistical analysis revealed a significant increase in
396 the average number of BGCs per genome from 2.5 to 4.5 between these two groups (t
397 test, p = 0.024). The abundance of polyketide BGCs also showed a significant
398 increase after the Great Oxidation event, with the average number of polyketides per
399 genome rising from 1.09 to 2.81 (t test, p = 0.057). The possible reason is that
400 polyketides are usually small compounds involved in oxidation reactions influenced
401 by the increase in oxygen levels [45]. On the other hand, there were no significant
402  differencesin the average abundance of RiPPs (decreased from 1.29 to 1.25, t test, p =
403  0.807) and NRPs (increased from 1.0 to 3.16, t test, p = 0.242). The change in RiPP
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404  before and after the Great Oxidation event is not significant, which may be because
405 the synthesis of RiPP primarily relies on the ribosoma pathway, involving
406  dehydration and condensation reactions rather than oxidation [46]. On the other hand,
407  athough the number of NRP increases, the statistical significance is not substantial
408 due to the limited data available before this event, which consists of only three cases
409  [47].

410

411 The Cambrian Explosion event occurred approximately 542 to 520 million years ago,
412  marked by rapid diversification of multicellular organisms [48]. Prior to this time
413  point, 1,529 genera comprised 9,212 out of 41,599 genomes analyzed, which were
414  categorized as the “pre’ group. The remaining 589 genera evolved after this time
415 point and were categorized as the “post” group. At this time point, there was a
416  dignificant increase in the average number of BGCs per genome, with the “post”
417  group having double the number compared to the “pre” group (6.07 vs. 2.95, t test, p
418 = 4.89e-305). Further analysis of different categories of BGCs revealed significant
419  differences in their average abundance before and after this time point. All categories
420  of BGCs showed an increase in average abundance, with rapid increases observed in
421  polyketides and NRPs. Polyketides encompass compounds such as erythromycin and
422  tetracycline, while NRPs encompass cephalosporins, daptomycin, and vancomycin,
423  among others. These compounds play crucial roles in defending against other bacteria
424  and enhancing fitness in diverse environments [49, 50]. One possible explanation for
425  thisfinding is that during the Ediacaran period, approximately 635-541 million years
426  ago, Cyanobacteria began to appear, leading to a significant increase in oxygen
427  production through photosynthesis, which resulted in heightened ocean oxygenation
428 [51]. This amplified ocean and atmospheric oxygenation may have sped up the
429  process of life evolution [52, 53]. It was during this time that multicellular organisms
430 started to emerge [54]. On the one hand, multicellular organisms have aways been
431 hosts of microorganisms, and there is evidence to suggest that the genetic evolution of
432  multicellular organisms occurred five times faster during the early Cambrian [55],

433  leading to rapid life evolution in the oceans. On the other hand, the Earth’s ecological
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434  environment underwent alterations due to the activities of various species, generating
435  numerous microenvironments [56]. These microenvironments provide a variety of
436  environmental pressures for microbia selection, resulting in a surge in the
437  biosynthetic potential of microorganisms and leading to the synthesis of diverse
438 secondary metabolites that enable microorganisms to better adapt to different
439  environments and compete for resources.

440

441  These findings highlight the evolutionary dynamics of BGCs on a large temporal
442  scale and shed light on the impact of environmental changes on the diversity and
443  abundance of specialized metabolites produced by microbes. Further research is
444  needed to explore the functional roles and ecological significance of these BGCs in
445  the context of bacterial evolution and their potential applications in various fields,
446  including medicine and biotechnol ogy.

447

448 Discussion

449  BGCs represent a promising source of natural products but are difficult to discover,
450 express, and characterize. In this study, we developed BGC-Prophet to
451  comprehensively identify known and predict potentially novel BGCs and their
452  products. BGC-prophet is a supervised language processing neural network model
453 that captures the location-dependent relationships between genes and learns
454  biosynthetic-aware representations of BGCs based on their gene evolutionary patterns.
455  These new properties make BGC-Prophet advantageous over previous methods,
456  enabling it to accurately and quickly profile BGCs for a wide range of lineages from
457  microbia genomes and metagenomes.

458

459  The novelty of this work is demonstrated in three contexts. First, BGC-Prophet
460 utilizes the powerful language model of the transformer encoder, uses the
461  context-aware representations of genes as input features, captures the distant

462  location-dependent relationships among biosynthetic genes, learns biosynthetic-aware
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463  representations of BGCs based on their gene evolutionary patterns, and shows
464  superior performance to existing tools such as DeepBGC. Specifically, BGC-Prophet
465 achieved an AUROC of 91.9% with regard to locating BGCs throughout the genome
466  and 98.8% with regard to differentiating among the seven BGC categories (Figure
467  3A-C). BGC-Prophet's exceptional processing speed enables it to quickly anayze
468 vast amounts of genomic data with high efficiency (Figure 3D), alowing for
469  extensive profiling of BGCsin large-scale genomic and metagenomic data.

470

471 Second, BGC-Prophet is the first UHT method that enables pan-phylogenetic
472  screening and whole-metagenome screening of BGCs and builds a comprehensive
473  profile of BGCs on 85,203 genomes and 9,428 metagenomes from the majority of
474  bacteria and archaeal lineages. We investigated the biosynthetic potential of the
475  Aspergillus genomes and revealed numerous potentially novel BGCs missed by
476  antiSVMASH (Figure 4). Our examination of the BGC profile in the majority of
477  bacterial and archaeal lineages revealed that BGC-Prophet allows for the detection of
478  previously undiscovered BGCs, as well as reconstruction of a comprehensive picture
479  of BGCs on genomes from the mgjority of bacterial and archaeal lineages (Figure 5).
480

481  Third, BGC-Prophet reveals the profound enrichment pattern of BGCs after important
482  geological events, possibly indicating the impact of the environment on BGC.
483  Specificaly, the Great Oxidation event had a profound impact on microbia genomes,
484  with asignificant increase in the average number of BGCs per genome, particularly in
485  polyketides. This suggests that polyketides may play an important role in oxidation
486 reactions due to the increased oxygen levels during this time. The Cambrian
487  Explosion event led to a significant increase in the average number of BGCs per
488  genome, with polyketides and NRPs displaying the most pronounced growth. These
489  findings suggest that microorganisms adapted to the rapidly changing environment by
490  producing specific sets of secondary metabolites, including polyketides and NRPs.

491
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492  BGC-Prophet is not without limitations. First, BGC-Prophet can only determine the
493  category of BGC but cannot determine the actual small molecule as a product of BGC.
494 Itisrareto predict BGCs directly from small molecules, and more to predict BGCs by
495  understanding small molecules and their associated microorganisms. Thus, it is
496  possible to predict BGC in microbial genomes associated with small molecules and
497  then use computational chemistry to screen and validate the BGC that matches the
498 small molecules. Further work on establishing the connection between BGCs and
499 small molecules is warranted. In addition, BGC-Prophet requires substantial,
500 accurately annotated training data, while few current natural product databases offer
501  comprehensive, well-curated data. Despite our improved performance, further work is
502  needed to curate more diverse BGC databases that can be used to improve the training
503 and validation of our model. Other possible improvements might include the
504  discovery of new categories of BGCs, as well as the examination of the gain or |oss of
505 BGCson adynamic scale.

506

507  Taken together, the results of this work reveal unprecedented throughput in BGC
508 discovery and annotation via language model. As the first UHT method for
509 pan-phylogenetic screening and whole-metagenome screening of BGCs,
510  BGC-Prophet builds a comprehensive profile of BGCs on genomes from the magjority
511  of bacterial and archaea lineages, reveads the profound enrichment pattern of BGCs
512  after important geological events. The BGC-Prophet could find a way to better
513  understand BGC patterns and mechanisms, as well as in a variety of applications,
514  including microecology protection and synthetic biology.

515

516 Methods

517  Datasetsused in thisstudy

518  We manually curated several datasets in this study, including MIBiG v3.1 (Minimum
519 Information about a Biosynthetic Gene cluster [3]), 6KG (5886 genomes from the
520 GTDB RS214 database [57]), NG (nine genomes used in ClusterFinder and
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521  DeepBGC [23, 26]), AG (982 genomes from the genus of Aspergillus), 85KG (85,203
522  available genomes in GTDB RS214 [57]), and MG (metagenomes from 47
523  metagenomic studies [58]). These datasets are used for a variety of purposes, with
524  MIBIG and 6KG being used to build training and testing sets, NG and AG being used
525 to validate and compare the performance of various methods, and 85KG and MG
526  being used for large-scale genome mining of BGCs (Supplementary Table S1 and
527 S2).

528

529 The MIBIG dataset. The MIBIG dataset specification provides a robust community
530 standard for annotations and metadata on BGCs and their molecular products, which
531  contains 2,502 experimentally validated BGCs.

532

533 The 6KG dataset. The 6KG dataset comprises a set of phylogenetically diverse
534  genomes that were manually curated in GTDB RS214, and it contains 5,886 genomes
535  that spread across the bacterial evolutionary tree.

536

537 The NG dataset. The NG dataset comprises nine bacterial genomes that were
538 examined in previous studies, including ClusterFinder and DeepBGC [23, 26]. These
539 genomesinvolved atotal of 291 BGCs, none of which were used for training.

540

541  The AG dataset. The AG dataset contains a total of 982 genomes from the genus
542  Aspergillusin the NCBI genome database. We utilized BGC-Prophet and antiSMASH
543  to mine BGCs in these genomes and generated a comparison map between the BGCs
544  identified by antiSMASH and BGC-Prophet on the Aspergillus genomes.

545

546  The 85K G dataset. The 85K G dataset contains 85,203 available genomes in GTDB
547 RS214. We utilized BGC-Prophet to mine BGCs in those genomes and built a
548  comprehensive profile of BGCs on genomes from the mgority of bacterial and
549  archaeal lineages.

550
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551 The MG dataset. The MG dataset contains metagenomes involved in 47 studies
552  (Supplementary Table S3). These metagenomic data included 1,792,406,629 contigs
553 from 9,428 metagenomic samples, of which 6,238,438 contigs with nucleotide
554  sequence lengths greater than 20,000 were retained. All datasets are publicly available
555  and shown in Supplementary Tables S1-S3.

556

557  Taxonomic classificationsfor metagenomes. We used 9428 metagenomic

558  assemblies corresponding to 47 studies from the human microbial environment. These
559  metagenomic assemblies were binned using MetaBAT2 (version 2.12.1), and atotal of
560 160,814 bins (or MAGS) were obtained. Taxonomy annotation was then performed on
561  the resulting bins using the Genome Taxonomy Database Toolkit (GTDB-Tk, version
562  2.3.2) with reference to GTDB release 214.0. A total of 160,814 bins were generated
563 from 9,428 metagenomic samples. Among them, 132,809 bins were successfully
564  assigned to species, while 28,005 bins remained unclassified and were designated
565  Unclassified (5,875 bins), Unclassified Archaea (316 bins), or Unclassified Bacteria
566 (21,814 bins), representing unknown species.

567

568 Positive and negative sample generation

569  To train the language model of BGC-Prophet, we manually curated a training dataset
570  of positive and negative samples. The MIBIG and 6KG datasets were used to build
571  the positive and negative samples. Before generating positive and negative samples,
572  we used antiSMASH (v6) to identify BGCs on a public reference set of 5886
573  microbial genomes (6K G dataset). For each reference genome, regions predicted to be
574  part of a BGC were removed, and these pruned genomes without BGC-like regions
575  served asthe non-BGC genelibrary.

576

577  Positive sample generation. The positive samples are derived from the 2502 BGCs
578 in the MIBIG dataset. For each BGC in the MIBIG dataset, we applied two-sided
579  padding with non-BGC genes (as described in the previous paragraph) until the gene
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580  sequence length equaled 128. Considering that the longest BGC in MIBIiG consists of
581 115 genes and the gap (i.e., the average number of non-BGC genes) between BGCs in
582  the genomes from the 6K G dataset (Supplementary Figure S1), we set the maximum
583  gene seguence length of a positive sample to 128. We repeated the generation
584  procedure five times for each BGC in the MIBIG dataset, resulting in 12,510 positive
585  samples.

586

587  Negative sample generation. In the generation of a negative sample (non-BGC), a
588 major challenge is to make non-BGC have a certain degree of similar genes with
589  genesin BGCs but lack the semantic information preserved in BGCs (i.e., the order of
590 genes in BGC). To generate a single negative sample, a random region from the
591  non-BGC gene library was selected, and a subregion containing 128 continuous genes
592  was randomly picked from the selected region. In total, 20,000 negative samples were
593  generated.

594

595  Labeling the samples. According to the MIBIG database, there are seven categories
596 of BGCs, including akaloids, non-ribosomal peptides (NRPs), polyketides,
597  ribosomally synthesized and post-translationally modified peptides (RiPPs),
598  saccharides, terpenes and others (Supplementary Figure S1). Notably, each BGC
599  may have more than one category, so the prediction of BGC categories is amulti-label
600  seven-category problem. For example, the positive sample derived from BGC with
601  MIBIG accession of BGC0000356 was labeled with both the categories of Alkaloid
602 and NRP. For all the negative samples, they are not labeled into any of the seven
603  categories.

604

605 BGC-Prophet implementation

606 Token of the BGC-Prophet model. In the field of natural language processing, the
607 minimal semantic unit is called a "token", which makes up sentences. BGC-Prophet is
608 alanguage processing neural network that takes genes as tokens to represent BGC or

609 non-BGC (sentence). Previous methods ClusterFinder and DeegpBGC take Pfam


https://doi.org/10.1101/2023.11.30.569352
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.30.569352; this version posted December 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

610 domains as tokens that effectively balance genetic information loss and computational
611  complexity. However, Pfam relies on manual determination by experts to define the
612  scope of each domain, and the utilization of pHMMs for identifying conserved Pfam
613  domainsin sequences is computationally intensive. Therefore, a trade-off between the
614 number of Pfam alignments and computational speed must be considered. The
615  dituation of multiple Pfam domains originating from the same gene requires the model
616  to learn such relationships separately. Here, we choose genes as tokens, which are
617  more natural and do not require additional operations.

618

619  Vector representation of token. Each gene present in the training and testing
620 samples needs to be represented as a word embedding vector to serve as input for
621  subsequent language models. We used the ESM-2 8M model (evolutionary scale
622 modeling: pretrained language models for proteins, verson 2 with 8 million
623 parameters) to generate vector representations of genes. ESM is the SOTA
624  genera-purpose protein language model, which can be used to predict structure,
625 function and other protein properties directly from individual sequences [35]. For
626 every positive and negative sample, we applied the ESM-2 8M model to generate a
627  vector representation of genes (embedding dimension of 320). The ESM-2 8M model
628  generates embedding of genes and removes the dependence between acquiring vector
629  representations of tokens and training language models. The vector representation of
630 tokens generated by the ESM-2 8M model directly from individual sequences is more
631  concise and breaks the limitations inherent in the training samples, thus providing a
632  higher possibility of predicting unknown BGCs. All genes in the training data are
633 inferred using the ESM-2 8M model, and the mean of the model’s last layer output is
634 selected as the final word embedding for the sequence. This implies that our word
635  vectors tend to represent higher-level information and can more effectively leverage
636  GPU acceleration for computational processes.

637

638 Model architecture and configuration. Here, we proposed a BGC language
639 processing neural network model, BGC-Prophet, to detect known and predict
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640 potentially novel BGCs from genome sequences. BGC-Prophet employs a language
641  model (i.e., transformer encoder) [33] for BGC identification and classification. The
642 transformer encoder is a neural network model of a specific architecture that uses a
643 multi-head self-attention mechanism to speed up training. The sdf-attention
644  mechanism introduced in the transformer encoder makes it suitable for parallel
645 computation and better than the RNN or LSTM in accuracy. In this study, PyTorch
646 v2.0.0 was used to implement the transformer encoder structure of BGC-Prophet,
647  which learns the representation of gene sequences for different downstream tasks.

648

649 In this study, the parameters of the transformer encoder are set as follows
650 (Supplementary Figure S2). The input dimension is set to 320, which is equivalent
651  to the dimensionality of the embedding generated by the ESM-2 8M model. Then,
652 pre-layer normalization is used to accelerate the convergence of the model [59]. The
653 positional encoding adopts classical sine-cosine position coding, which does not
654  require additional training and captures relative positional relationships between
655 genes effectively. The transformer encoder is configured with two 5-head
656  self-attention layers and a dropout rate of 10%. The model is trained using the
657  AdamW optimizer with alearning rate of 1e-2 and a batch size of 64. Given that the
658  number of training epochs is not fixed, an early stopping strategy is employed, where
659 the loss value of the verification set stops improving after 20 epochs without
660 decreasing, and the model obtained from the epoch with the lowest loss value on the
661  verification set is chosen as the final model.

662

663 BGC gene detection and product classification. We assigned two downstream tasks
664 to BGC-Prophet. The first task is predicting the BGC gene loci of a given BGC
665  sequence, and the second task is predicting the BGC category of a given region on a
666  genome.

667

668 The first task for BGC-Prophet is predicting the BGC gene loci of a given gene

669  sequence. Specifically, given the sequence to be predicted composed of multiple
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670 genes, determine whether each gene is part of a BGC according to the position
671  relationship of all genes. There may be no correlation between the genes that make up
672  the sequence to be predicted, while the gene tag sequence of each gene that makes up
673 the BGC is related in order. Therefore, the task can be statistically modeled using a
674 linear-chain conditional random field (linear-CRF) [60]. According to the linear-chain
675 CRF agorithm, the input is the sequence to be predicted, and the output is the gene
676 tag sequence. In this paper, the downstream neural network is set as a fully connected
677 layer with 128 timesteps, and the weight of each timestep is shared, different from
678 DeepBGC. After passing through the fully connected layer, the hidden state vector
679  dimension of the transformer encoder is reduced from 320 to 128, then from 128 to 32,
680 and finally to 1, which represents the probability score that a given gene is part of a
681 BGC. The Gaussian Error Linear Unit (GELU) [61] is used as the activation function
682  for each fully connected layer, and finaly, the sigmoid activation function is applied.
683  The final fully connected layer outputs a scalar between 0 and 1 that measures how
684  confident the model is that the gene belongs to the BGC. The loss functions of the
685 model in this paper are binary cross entropy, and the AdamW [62] optimization
686  agorithmis used to make them converge.

687

688  The second task for BGC-Prophet is predicting the BGC category of a given region on
689 a genome. According to the MIBiG database, there are seven categories of BGCs,
690 including alkaloids, NRPs, polyketides, RiPPs, saccharides, terpenes, and others. We
691  encode these categories using one-hot encoding and consider an all-zero vector to
692 represent the non-BGC category. Notably, each BGC may have more than one
693 category, so the prediction of the BGC category is a multi-label seven-category
694  problem. The problem can be described as follows: Extracting the sequence of hidden

695 state variables from the transformer encoder model H = (hy, hy,..., hy), h; € R¥
696  and calculating the average hidden state h = % - ¥ h; . Transformer encoders allow

697 input key padding masks to mask given specific timesteps, so this study uses gene

698  tags as masks to prevent non-BGC genes from influencing the classification of BGC.
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699 The hidden states of the sequence are output as 7-dimensiona vectors through a
700 simple fully connected layer, and the sigmoid function is applied to output the
701 confidence score of each label.

702

703  Comparison methods

704 DeepBGC. DeepBGC is a novel deep learning and natural language processing
705 dtrategy for improved identification of BGCs in bacterial genomes. DeepBGC
706  employs a BiLSTM recurrent neural network. DeepBGC improves the detection of
707 BGCs of known classes from bacterial genomes and harnesses great potential to
708 detect novel classes of BGCs. In this study, we used DeepBGC for BGC gene
709 detection and BGC product classification tasks and compared its performance to
710  BGC-Prophet.

711

712 AntiSMASH. The antiSMASH (antibiotics & Secondary Metabolite Analysis Shell)
713 is a comprehensive pipeline capable of identifying biosynthetic loci covering the
714 whole range of known secondary metabolite compound classes. It employs a set of
715 curated pHMMs to call biosynthesis-related gene families and a set of heuristics to
716  designate a portion of a genome as a BGC. In this study, we applied antiSMASH and
717  BGC-Prophet to 982 genomes from Aspergillus and evaluated the capability of
718  BGC-Prophet to identify BGCs.

719

720  Benchmark measures

721 Evaluation was based on five measuring metrics, including accuracy, precision, recall,
722  Fl-score, and AUROC. First, four parameters of the confusion matrix must be
723  clarified: TP (true positive, actually BGC, and judged by the model as BGC), FN
724  (false negative, actually BGC, but judged by the model as non-BGC), TN (true
725  negdtive, the actua valueis non-BGC, and judged by the model as non-BGC); and FP
726  (false positive, the actual value is non-BGC, but judged by the model as BGC). We

727  introduced several measures, including precision, recall, F1, true positive rate (TPR),
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728 and false positive rate (FPR). The definitions of these measures and formulas are as

729  follows:

A - TP+ TN x 100%
Uy = TP ¥ TN + FP + FN 0

TP
Precision = ———— x 1009
recision TP+ FP 00%

Recall = —— % 100%
A= TP ¥ FN 0

_ 2 X Precision X Recall

F1 = X 1009
Precision + Recall %
TPR = e
" TP +FN
FP
FPR = ————
FP+ TN

730  AUROC isthe area under the receiver operating characteristic (ROC) curve, and ROC
731 isthe curve of TPR-FPR traversing different thresholds, which is also based on the
732 confusion matrix.

733

734  Statistical methods

735  UMAP (Uniform Manifold Approximation and Projection) and t-SNE (t-Distributed
736  Stochastic Neighbor Embedding) dimensionality reduction techniques were applied to
737  visualize and explore the high-dimensional gene vectors. To evaluate the differences
738  between two BGC number groups, a t-test was performed. The t-test is a parametric
739  datistical test that determines whether the means of two groups are significantly
740  different from each other. It was used to compare the means of specific variables or
741 features between the groups of interest. Pearson correlation coefficient was utilized to
742  examine the linear relationship between the prediction results of the antiSMASH and
743  BGC-Prophet. The Pearson correlation coefficient provides a measure of the strength
744  and direction of the linear association between variables. It was employed to assess
745  the correlation between different features or variables within the dataset.

746
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962  FigureLegends

963 Figure 1. The workflow of our study. A. Generation of positive and negative
964 samples. To train the BGC-Prophet language model, we curated a training dataset of
965 12,510 positive and 20,000 negative samples, and each sample was a cluster of 128
966  genes. MIBIG, minimum information about a biosynthesis-related gene cluster; 6KG,
967 a phylogenetic diverse set of 5,886 genomes from the GTDB database. B.
968 BGC-Prophet pipeline for BGC gene detection and product classification tasks. C.
969 The architecture of the Transformer encoder used in BGC-Prophet. The prelayer
970 normalization is used to accelerate the convergence of the model. The positional
971  encoding adopts classical sine-cosine position coding, which does not require
972  additional training and captures relative positional relationships between genes
973  effectively. D. Severa datasets used in this study for various purposes. NG, nine
974 genomes that were examined in previous studies, such as ClusterFinder and
975 DeepBGC; AG, 982 genomes from the genus Aspergillus; 85KG, 85,203 available
976 genomesin GTDB RS214; MG, 9,428 metagenomics samples involved in 47 studies.
977 Detalls of these datasets are available in Methods. E. The bar diagram shows the
978  enrichment of BGCs in microbes after important geological eventsin Earth’s history.
979

980 Figure 2. The distribution of ESM embeddings of genes. A. Average ESM
981  embedding distribution for BGCs in the MIBiG database. The representative vectors
982 of al genes within each BGC were averaged, and subsequently, a dimensionality
983  reduction technique called t-SNE was applied to project the BGCs of all categories
984 into a two-dimensiona space. The resulting tSNE1 and tSNE2 values were then
985  utilized to generate scatter and boxplot visualizations. The scatter plot depicts the
986 gpatial distribution of the average vectors representing the BGCs in the
987 two-dimensiona plane. Each BGC exhibits distinct distribution characteristics, and
988 their separability is achieved through nonlinear means. Conversely, the boxplot graph
989  displays the distribution patterns of the seven BGC categories along the tSNE1 and
990 tSNE2 dimensions. It is evident that they predominantly occupy a specific region

991  (-50,50), with only marginal discrepancies observed in terms of median values and
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992  digtribution ranges. Importantly, the observed differences in distribution among the
993  groups are statistically significant under a predetermined level of significance (*, p <
994  0.05; **, p < 0.01; ***, p < 0.001). NRP, non-ribosomal peptide; RiPP, ribosomally
995 synthesized and post-translationally modified peptide. B. Average ESM embedding
996 distribution for BGCs and non-BGCs. Using the t-SNE analysis as before, both the
997 BGCs and non-BGCs were subjected to dimensionality reduction, resulting in scatter
998 and boxplot visualizations. The scatter plot reveds that the non-BGCs are widely
999 digributed, while the BGCs are primarily concentrated in the upper-left and
1000  lower-right corners of the plot. This indicates a clear distinction in the distribution
1001  patterns between BGCs and non-BGCs. On the other hand, the boxplot graph
1002  demonstrates that BGCs tend to be located a the edges of the plot, whereas
1003  non-BGCs exhibit a preference for the central region. This significant difference in
1004  distribution highlights the contrasting characteristics between BGCs and non-BGCs.
1005  We plotted separate boxplots for the horizontal and vertical axes and applied at test to
1006 indicate that there were significant differences between pairwise comparisons of the
1007  samples at the given level of significance (*, p <0.05; **, p < 0.01; ***, p < 0.001).
1008
1009  Figure 3. Evaluation of BGC-Prophet in different settings. A. The evaluation
1010  metrics reflecting the performance of BGC-Prophet and DeepBGC for BGC gene
1011 detection on the nine genomes that were examined in previous studies. All metrics
1012 except AUROC are evaluated under the default threshold of 0.5. B. The evaluation
1013 metrics reflect the performance of BGC-Prophet for BGC product classification, and
1014  the DeepBGC random forest classifier is retrained using the MIBiG database (version
1015  3.0). C. The receiver operating characteristic curve reflecting the performance of
1016  BGC-Prophet. D. The running time of BGC-Prophet and DeepBGC on datasets with
1017 different numbers of genomes. E. The gene heatmap of a gene cluster (128 timesteps)
1018  during a single prediction process on the nine genomes. This heatmap illustrate the
1019  detection model’s first layer’s five heads (see M ethods) average attention map during
1020 a single prediction process by BGC-Prophet on nine genomes. The vertical axis

1021 represents the Query in the self-attention mechanism, corresponding to the input gene
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1022  embedding vectors, while the horizontal axis represents the Key. Horizontaly, the
1023  large heatmap implies that determining whether a gene participates in forming aBGC
1024  requires considering information from multiple positions. Vertically, the vertical dark
1025  purple lines in whole genes heatmap represent a gene influencing the formation of a
1026 BGC by multiple genes. Darker colors along the diagonal in heatmap suggest that
1027  determining whether a BGC is formed primarily relies on the information embedded
1028 in its own vector, indicating the critical role played by the embedding vector’'s
1029 information. The zoomed-in heatmap demonstrate the attention relationships between
1030  the BGC and surrounding genes. Genes 75-79 are annotated as BGC genes. F. The
1031  schematic diagram of attention applied between BGC genes and the genes at both
1032  ends, only colored genes belong to this predicted BGC. Panel F provides a schematic
1033  explanation of the magnified section in panel E, only attention scores between genes
1034  that exceeded 0.08 are shown as lines. The gene 76 (KUTG_02125), which encodes a
1035 non-ribosomal peptide synthetase, receiving the highest attention scores from other
1036 BGC genes. This suggests that annotation tasks need to consider information from
1037  this gene, possibly implying its conservativeness and centrality in this BGC.

1038

1039 Figure 4. The predicted BGCs on the Aspergillus genomes dataset by
1040 BGC-Prophet and antiSMASH. A. The number of BGCs predicted by BGC-Prophet
1041  (green) and antiSMASH (red) for seven categories. The bar plot shows the total
1042  number of BGCs predicted by the two tools. Based on the assumption that if two
1043  prediction tools identify BGCs with identical genes, they are considered to have
1044  predicted the same BGC, the prediction results for all seven BGCs can be visualized
1045  using a Venn diagram for each category. It is important to note that antiSMASH does
1046 not predict BGCs belonging to the alkaloid and saccharide categories. The
1047  BGC-Prophet predictions are based on the default threshold of 0.5. B. The distribution
1048 of BGCs in the genomes of the Aspergillus genus. Within the central core, the
1049  encompassed area represents the entirety of Aspergillus species (atotal of 76 species).
1050  The meaning of each circle from the inside out: first circle, the total number of BGC

1051  predicted by antiSMASH; second circle, the total number of BGC predicted by
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1052 BGC-Prophet, third circle, the number of each category of BGC predicted by
1053 antiSMASH, fourth circle, the number of each category of BGC predicted by
1054  BGC-Prophet. Taking into consideration the presence of multiple subspecies genomes
1055  within a species, the number of predicted BGCs per species is averaged. C. A bar
1056  chart depicting the total number of different types of BGCs predicted by antiSMASH
1057  and BGC-Prophet reveals that BGC-Prophet predicts a significantly higher number of
1058  BGCs across various categories compared to antiSMASH.

1059

1060 Figure 5. Novelty and phylogenomic distribution of microbial biosynthetic
1061  potential in different branches of the evolutionary tree of life. A. The distribution
1062  of predicted BGCs on an evolutionary tree is shown. The evolutionary tree consists of
1063 85,203 bacterial and archaeal genomes from the GTDB database. For visualization
1064  purposes, the treeis displayed at the taxonomic rank of order. The number of BGCsis
1065 averaged per genome within each order. From the innermost to the outermost layers,
1066  the central core represents the evolutionary tree structure, consisting of 148 archaeal
1067 and 1,624 bacterial orders. The first ring depicts a heatmap of the total number of
1068  BGCs, with most genomes having two or fewer BGCs, while a few genomes exhibit
1069  up to 20 BGCs, indicating significant biosynthetic potential. The second to eighth
1070  rings display the distribution of BGC numbers for Other, Alkaloid, Saccharide,
1071  Terpene, Polyketide, and NRP categories, respectively. B. The term "prevalence"
1072  refers to the proportion of genomes that contain a specific type of BGC out of al the
1073  genomes analyzed. The sum of the prevalence values for the seven categories may
1074  exceed 100% because there can be instances where a single BGC belongs to several
1075 BGC categories. C. The average number of BGCs and the distribution of different
1076  BGC categories within selected orders. Among the orders, the top 27 orders with the
1077  highest average number (> 7.0) of predicted BGCs are distributed across 15 different
1078  phyla These 27 orders represent a diverse range of phyla and showcase varying levels
1079  of BGC diversity and distribution across different BGC categories.
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1081 Figure 6. BGC-Prophet reveals the biosynthetic potential of the human
1082  microbiome. A. Distribution of predicted BGCs from the human microbiome
1083  metagenomic dataset (MG) on an evolutionary tree. BGCs were predicted using
1084 BGC-Prophet on the MG dataset, followed by species annotation. For the same
1085  species, the number of BGCs was averaged. From innermost to outermost, the central
1086  core represents the weighted evolutionary tree structure, composed of 13 archaeal
1087  species and 2,909 bacterial species, with different colored sectors representing several
1088  major phyla, such as Actinomycetota, Bacillota A, and Bacteroidota. The first ring
1089  depicts the heatmap of the total number of BGCs, showing a clear enrichment in
1090  phyla such as Actinomycetota. The second to eighth rings display the distribution of
1091  BGCsbelonging to the alkaloid, terpene, polyketide, NRP, saccharide, RiPP, and other
1092  categories, respectively. B. The bar plot from top to bottom shows the total counts,
1093  abundance, and average number of each type of BGC predicted. The order, from
1094 largest to smallest, is Other, RiPP, Saccharide, NRP, Polyketide, Terpene, and
1095 Alkaloid. The total count of BGCs is determined by the combination of abundance
1096  and the average number of a specific type of BGC per genome. The higher count of
1097  Other BGCsiis likely due to shorter contig lengths, which result in fragmented BGC
1098  predictions that cannot be further classified. C. Heatmap showing the number of
1099  different types of predicted BGCs by BGC-Prophet in 47 metagenomic datasets. The
1100  predicted counts vary depending on the number of genomes, contig lengths,
1101 ecological niches, and biosynthetic capabilities of the respective datasets. For detailed
1102  information, please refer to Supplementary Table S6.
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