

# Deciphering the Biosynthetic Potential of Microbial Genomes Using a BGC Language Processing Neural Network Model

3 Qilong Lai<sup>1,\*</sup>, Shuai Yao<sup>1,\*</sup>, Yuguo Zha<sup>1,\*</sup>, Haobo Zhang<sup>1</sup>, Ying Ye<sup>2</sup>, Yonghui Zhang<sup>2</sup>, Hong Bai<sup>1,\*</sup>,  
4 Kang Ning<sup>1,\*</sup>

5 <sup>1</sup>MOE Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key  
6 Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of  
7 Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong  
8 University of Science and Technology, Wuhan 430074, Hubei, China

9 <sup>2</sup>Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of  
10 Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan  
11 430030, Hubei, China

12 # Equal contribution.

13 \* Correspondence author.

14 E-mail: ningkang@hust.edu.cn (Ning K) and baihong@hust.edu.cn (Bai H).

15

16 **Running title: Lai Q et al/BGC-Prophet for BGC mining**

17

18 **Highlights**

19 ● BGC-Prophet shows superior performance to existing tools in terms of accuracy  
20 and speed.

21 ● BGC-Prophet is the first ultrahigh-throughput (UHT) method that enables  
22 pan-phylogenetic screening and whole-metagenome screening of BGCs.

23 ● BGC-Prophet builds the comprehensive profile of BGCs on 85,203 genomes and  
24 9,428 metagenomes from the majority of bacterial and archaeal lineages.

25 ● BGC-Prophet reveals the profound enrichment pattern of BGCs after important  
26 geological events.

27 **Abstract**

28 Microbial secondary metabolites are usually synthesized by colocalized genes termed  
29 biosynthetic gene clusters (BGCs). A large portion of BGCs remain undiscovered in  
30 microbial genomes and metagenomes, representing a pressing challenge in unlocking  
31 the full potential of natural product diversity. In this work, we propose BGC-Prophet,  
32 a language model based on the transformer encoder that captures the distant  
33 location-dependent relationships among biosynthetic genes, allows accurately and  
34 efficiently identifies known BGCs and extrapolates novel BGCs among the microbial  
35 universe. BGC-Prophet is the first ultrahigh-throughput (UHT) method that is several  
36 orders of magnitude faster than existing tools such as DeepBGC, enabling  
37 pan-phylogenetic screening and whole-metagenome screening of BGCs. By analyzing  
38 85,203 genomes and 9,428 metagenomes, new insights have been obtained about the  
39 diversity of BGCs on genomes from the majority of bacterial and archaeal lineages.  
40 The profound enrichment of BGCs in microbes after important geological events have  
41 been revealed: Both the Great Oxidation and Cambrian Explosion events led to a  
42 surge in BGC diversity and abundance, particularly in polyketides. These findings  
43 suggest that it is a general but constantly evolving approach for microbes to produce  
44 secondary metabolites for their adaptation in the changing environment. Taken  
45 together, BGC-Prophet enables accurate and fast detection of BGCs on a large scale,

46 holds great promise for expanding BGC knowledge, and sheds light on the  
47 evolutionary patterns of BGCs for possible applications in synthetic biology.

48 **Keywords:** Natural product; Biosynthetic gene cluster (BGC); Language model;  
49 Microbial genome; Metagenome

50

## 51 **Introduction**

52 Microbial secondary metabolism, one of the important sources of natural products, is  
53 generated through the coordinated action of numerous genes organized into  
54 biosynthetic gene clusters (BGCs) [1, 2]. Across the tree of life, these natural products  
55 comprise thousands of different chemical structures, including polyketides,  
56 saccharides, terpenes and alkaloids, that facilitate an organism's ability to thrive in a  
57 particular environment [3, 4]. These secondary metabolites also demonstrate efficacy  
58 across multiple therapeutic areas, including antimicrobial and cancer immunotherapy  
59 [5, 6]. The biosynthesis of these compounds involves multienzyme loci called BGCs,  
60 which encode the biosynthetic pathways for one or more specific compounds [7, 8].  
61 With the exponential growth of genomic data, identifying and classifying BGCs from  
62 microbial genomes or metagenomic assembled genomes (MAGs) has become a  
63 pressing challenge in exploring and exploiting natural product diversity [9, 10].  
64 Developments in computational omics technologies have provided new means to  
65 assess the hidden diversity of natural products, unearthing new potential for drug  
66 discovery [11, 12].

67

68 BGC encodes a series of genes involved in biosynthetic or metabolic pathways, which  
69 are arranged in a sequential order on the genome. These genes work together to  
70 produce one or more small molecular compounds, such as penicillin [13, 14]. Recent  
71 insights revealed that BGC comprised a cluster of spatially adjacent colocalization  
72 genes, including biosynthetic genes and auxiliary genes (*e.g.*, transport-related genes,  
73 regulatory genes) [15, 16]. These biosynthetic genes play key catalytic roles in the  
74 formation of microbial secondary metabolites. In addition to biosynthetic enzymes,

75 many BGCs also harbor enzymes to synthesize specialized monomers for a pathway.  
76 For example, the erythromycin gene cluster encodes a set of enzymes for the  
77 biosynthesis of two deoxy-sugars that are appended to the polyketide aglycone [17].  
78 In many cases, transporters, regulatory elements, and genes that mediate host  
79 resistance are also contained within the BGC [18]. Although some BGCs are so well  
80 understood that the biosynthesis of their small molecule product has been  
81 reconstituted in heterologous hosts, little is known about the vast majority of BGCs,  
82 even those that have been linked to a small molecule product.

83

84 The explosion of microbial genomic data, including complete and partial genome  
85 sequences, has led to a transformative change in how computational methods are  
86 employed in natural product drug candidate discovery. Computational approaches are  
87 being developed to predict BGCs based on genome sequences alone, fuelled by data  
88 on known biosynthetic pathways and their chemical products, which are currently  
89 standardized with predicted BGCs stored in public databases [19]. Identifying natural  
90 product BGCs still largely relies on rule-based methods such as those used in  
91 antiSMASH [15, 16] and PRISM [20]. Although these approaches are successful at  
92 detecting known BGC categories, they are less proficient at identifying novel  
93 categories of BGC [21, 22]. In these more complex cases of identifying novel BGCs,  
94 machine learning algorithms have been shown to offer significant advantages over  
95 rule-based methods. For example, ClusterFinder [23], NeuRiPP [24] and DeepRiPP  
96 [25] each use machine learning to identify BGCs. These methods often have a  
97 tradeoff in terms of efficiency and accuracy, have a higher false positive rate than  
98 rule-based approaches and suffer from false negatives for known categories of BGC.  
99 Recently, deep learning approaches have been developed for BGC annotation,  
100 including DeepBGC [26], e-DeepBGC [27], Deep-BGCPred [28], and SanntiS [29].  
101 All of these deep learning approaches call biosynthetic gene families using collections  
102 of curated profile-Hidden Markov Models (pHMMs) and employs a bidirectional long  
103 short-term memory (BiLSTM) recurrent neural network for improved identification of  
104 BGCs [26-29]. Although these approaches have improved the detection of BGCs from

105 bacterial genomes and harness great potential to detect novel categories of BGCs,  
106 they have common drawbacks: BiLSTM might lose distant memories during the  
107 recurrent neural network and is unable to capture distant location-dependent  
108 relationships between biosynthetic genes, while the utilization of pHMM heavily  
109 relies on manual determination by experts to define the scope of each domain from  
110 the Pfam database [30], and is computationally intensive.

111

112 Collectively, several challenges persist for contemporary BGC prediction tools. First,  
113 these tools cannot accurately capture the location-dependent relationships between  
114 genes, resulting in limited accuracy and applicability, particularly in novel BGC  
115 predictions. Additionally, existing methods rely on time-consuming sequence  
116 alignment to extract features (such as Pfam domains), which hinders their speed for  
117 pan-phylogenetic screening and whole-metagenome screening of BGCs. Furthermore,  
118 the low throughput of existing methods makes it impossible for them to construct a  
119 comprehensive profile of BGCs on almost all lineages of genomes and metagenomes,  
120 thereby precluding the revelation of enrichment patterns of BGCs on a broad scale.

121

122 To address these limitations, we proposed BGC-Prophet, a deep learning approach  
123 that leverages a language model to accurately and efficiently identify known BGCs  
124 and extrapolate novel BGCs among the microbial universe. Previous studies have  
125 shown that the success of language models for BGC detection and product  
126 classification [31, 32]. Encouraged by this, our BGC-Prophet employs the powerful  
127 language model of the transformer encoder [33, 34], which captures the distant  
128 location-dependent relationships among biosynthetic genes for improved BGC  
129 detection and classification.

130

131 Our experiments show that BGC-Prophet achieves a >90% area under the receiver  
132 operating characteristic curve (AUROC) on the validation datasets and offers a  
133 comparable ability in BGC identification to existing tools such as DeepBGC.  
134 BGC-Prophet is the first ultrahigh-throughput (UHT) method that is several orders of

135 magnitude faster than existing tools such as DeepBGC, enabling pan-phylogenetic  
136 screening and whole-metagenome screening of BGCs. By analyzing 85,203 genomes  
137 and 9,428 metagenomes, new insights have been obtained about the diversity of  
138 BGCs on genomes from the majority of bacterial and archaeal lineages. This is  
139 exemplified by the discovery of the profound enrichment of BGCs in microbes after  
140 important geological events. Both the Great Oxidation and Cambrian Explosion  
141 events led to a surge in BGC diversity and abundance, particularly in polyketides.  
142 These findings suggest that microorganisms could adapt to the changing environment  
143 by evolving BGC to produce specific secondary metabolites. In summary,  
144 BGC-Prophet enables accurate and fast detection of BGCs on a large scale, holds  
145 great promise for expanding BGC knowledge, and sheds light on the evolutionary  
146 patterns of BGCs for possible applications in synthetic biology.

147

## 148 **Results**

### 149 **BGC-Prophet model establishment and assessment strategy**

150 BGC consists of a cluster of functionally related colocalized genes that can be  
151 regarded as sentences, and BGC prediction could be regarded as a problem of text  
152 classification in the field of natural language processing. Currently, many language  
153 models have been proposed and used to solve the problem of text classification, such  
154 as long short-term memory (LSTM) and bidirectional encoder representations from  
155 transformers (BERT). The original BERT proposed a revolutionary technique that  
156 generates generic knowledge of language by pretraining and then transfers the  
157 knowledge to downstream tasks of different configurations using fine-tuning [33, 34].  
158 Following BERT's mentality and paradigm, we developed a BGC language  
159 processing neural network model, BGC-Prophet, which captures location-dependent  
160 relationships between biosynthetic genes by being trained on thousands of microbial  
161 genomes and assigns gene types or product classes by simply plugging in two  
162 classifiers and fine-tuning the parameters supervised by a reference dataset (**Figure**  
163 **1A-C**). Training on thousands of microbial genomes enables the model to learn the

164 general syntax of genes, that is, gene location dependencies, which helps to improve  
165 generalizability and avoid overfitting. Fine-tuning ensures that the output embedding  
166 for each gene encodes context information that is more relevant to the biosynthetic  
167 functional profiles.

168

169 BGC-Prophet has innovative designs to unleash its power in the BGC prediction task.  
170 First, BGC-Prophet uses genes as tokens to represent sentences (**Figure 1A**). Previous  
171 methods such as DeepBGC take Pfam domains as tokens that effectively balance  
172 genetic information loss and computational complexity. However, Pfam relies on  
173 manual determination by experts to define the scope of each domain. Here, we choose  
174 genes as tokens, which are more natural and do not require additional operations.  
175 Second, BGC-Prophet uses the evolutionary scale modeling (ESM, a pretrained  
176 language model for proteins) method to generate the embedding of gene tokens [35]  
177 (**Figure 1B-C**). The resulting numerical vectors of genes encapsulated evolutionary  
178 signals and functional properties based on their sequences, allowing us to leverage  
179 contextual similarities between genes.

180

181 To train the language model, we curated a training dataset of 12,510 positive and  
182 20,000 negative samples, each of which is a gene cluster containing 128 genes  
183 (**Figure 1A, Supplementary Table S1**). Considering that the longest BGC in MIBiG  
184 (Minimum Information about a Biosynthesis-related Gene cluster) consists of 115  
185 genes and the number of non-BGC genes between BGCs in genomes, we set the  
186 maximum number of genes to 128 in a sample (**Supplementary Figure S1**). Details  
187 of the generation of positive and negative samples are provided in the **Methods**  
188 section.

189

190 BGC-prophet accepts a set of genes as input and predicts BGC location and category.  
191 The input of the BGC-Prophet model is a sequence of embeddings represented by  
192 320-dimensional vectors generated by the evolutionary-scale modeling (ESM) method  
193 [35] (**Supplementary Figure S2**). The output of the BGC-Prophet model consists of

194 two parts. The first part is a sequence of values ranging from 0 to 1 representing the  
195 prediction scores of individual genes to be part of a BGC. The second part is which of  
196 the seven categories (see **Methods**) the input gene clusters belong.

197

198 We clarified several experiments for the evaluation and application of BGC-Prophet  
199 in this study (**Figure 1D**). First, we evaluated the performance of BGC-Prophet on the  
200 NG dataset, which comprises nine genomes mentioned in previous studies  
201 (**Supplementary Table S2**) [23, 26]. Second, we compared the BGCs predicted by  
202 BGC-Prophet and antiSMASH on the AG dataset, which comprises 982 genomes  
203 from *Aspergillus*, a genus with great biosynthetic potential. Then, we attempted to  
204 discover new insights into the diversity and novelty of BGCs on the 85KG, which  
205 comprises 85,203 available bacterial and archaeal genomes in the genome taxonomy  
206 database (GTDB), and MG (9,428 metagenomic samples involved in 47 studies)  
207 datasets (**Supplementary Table S3**). We finally studied the enrichment pattern of  
208 BGCs in microbes after important geological events in life on earth (**Figure 1E**).

209

## 210 **Evaluation of context-aware representations of genes**

211 The ESM method generated context-aware representations of genes, thereby serving  
212 as meaningful input features for the BGC prediction model. In this subsection, we  
213 investigate the effectiveness of using vector representations generated by the ESM  
214 method. To achieve this, we first used ESM-2 8M (version 2 with 8 million  
215 parameters) to generate the vectors for a set of genes. Then, we consolidated the  
216 numerous genes within each BGC into a singular representative BGC vector by  
217 averaging the vectors. We evaluated the representative vectors of all BGCs from the  
218 MIBiG database via t-distributed stochastic neighbor embedding (t-SNE) analysis.  
219 Subsequently, we reduced the dimensionality of the representative BGC vectors from  
220 320 dimensions to 2 dimensions by the t-SNE method for improved visualization.

221

222 Different categories of BGCs demonstrate distinct patterns within the t-SNE  
223 dimensionality reduction plot (**Figure 2**). It is evident that the seven distinct

224 categories of BGCs exhibit a concentrated distribution into three clusters (top right,  
225 bottom left, and bottom right). For instance, terpenes predominantly cluster in the  
226 bottom right, saccharides and RiPPs primarily cluster in the top right, and polyketides  
227 primarily cluster in the bottom left and bottom right. The remaining categories display  
228 a widespread distribution across all three clusters. The boxplot showed that the points  
229 of any two categories of BGCs exhibited clear separation on the scatter plot (**Figure**  
230 **2A**), such as polyketide and terpene (t test,  $p < 0.001$ ). We also analyzed the  
231 two-dimensional distribution of BGCs (positive sample) and non-BGCs (negative  
232 sample) in the training set. Despite the fact that there are areas in the graph that are  
233 exclusively occupied by BGCs (bottom right), there is substantial overlap between  
234 BGCs and non-BGCs on the scatter plot (**Figure 2B**), although their distributions are  
235 significantly different on both axes (t test,  $p < 0.001$ ). Our findings demonstrated that  
236 the ESM method generated context-aware representations of genes and therefore  
237 helped the language model learn the location-dependent relationships between genes  
238 that distinguish between BGCs and non-BGCs.

239

#### 240 **Accurate and ultrahigh-throughput BGC prediction**

241 To demonstrate the capabilities of our proposed framework, we assessed the  
242 performance of BGC-Prophet by evaluating its ability to (1) accurately locate BGCs  
243 throughout the bacterial genome (BGC gene detection) and (2) categorize them into  
244 their respective categories according to the types of their products (BGC product  
245 classification). Since DeepBGC is widely used by the community and is one of the  
246 best tools among existing BGC prediction tools, we choose DeepBGC as a  
247 representative and compare the performance of BGC-Prophet and DeepBGC.

248

249 BGC-Prophet has shown superior performance to DeepBGC in terms of accuracy. We  
250 initially evaluated the performance of BGC-Prophet and DeepBGC for BGC gene  
251 detection, and the results showed that the performances of BGC-Prophet and  
252 DeepBGC were comparable on the NG dataset (**Figure 3A, B**). Under the default  
253 threshold of 0.5, the BGC-Prophet model outperforms DeepBGC in metrics such as

254 false positive rate and precision, while it lags behind in metrics such as false negative  
255 rate and recall (**Supplementary Figure S3**). However, in terms of the AUROC,  
256 BGC-Prophet achieved an overall AUROC of 91.9% with regard to locating BGCs  
257 throughout the bacterial genome, while DeepBGC achieved 93.1% (**Figure 3B**). We  
258 further examined the performance of both tools on individual genomes and found that  
259 BGC-Prophet outperformed DeepBGC in several cases (**Figure 3A**). Specifically,  
260 BGC-Prophet had a higher AUROC than DeepBGC on three of the nine genomes, and  
261 DeepBGC had a higher AUROC on the remaining six genomes (**Figure 3A**).  
262 BGC-Prophet achieved the highest AUROC of 96.0% on the genome  
263 GCA\_000158815 (NCBI accession), while DeepBGC achieved the highest AUROC  
264 of 96.0% on the genome GCA\_000154945 (NCBI accession). Subsequently, we  
265 evaluated the performance of BGC-Prophet and DeepBGC on BGC product  
266 classification. In this task, BGC-Prophet achieved an AUROC of 98.8% with regard  
267 to differentiating among the seven BGC categories, while DeepBGC achieved 91.3%  
268 (**Figure 3C**). This indicates that BGC-Prophet is better at accomplishing the BGC  
269 product classification task.

270

271 BGC-Prophet uses a more efficient ESM method to generate vector representations of  
272 genes, avoiding the time-consuming sequence alignment (Pfams alignment), and  
273 improving the throughput of genomic data processing. For instance, when we  
274 extrapolate the number of genomes to 10 (randomly select and replicate genomes) for  
275 efficiency evaluation, DeepBGC needed an average of four hours per genome,  
276 whereas BGC-Prophet could process each genome in just one minute (**Figure 3D**).  
277 We emphasize that BGC-Prophet is the first UHT method that enables  
278 pan-phylogenetic screening and whole-metagenome screening of BGCs.

279

280 BGC-Prophet captures distant location-dependent relationships among biosynthetic  
281 genes. For example, we selected a BGC in the NG dataset and obtained its attention  
282 map during a single prediction process. The attention map shows the attention  
283 relationships between the BGC and surrounding genes (**Figure 3E, Supplementary**

284 **Figure S4).** The gene 76 (KUTG\_02125), which encodes a non-ribosomal peptide  
285 synthetase, receiving the highest attention scores from other BGC genes, possibly  
286 implying its conservativeness and centrality in this BGC (**Figure 3F**). Such examples  
287 are plentiful (**Supplementary Figure S4**), and the attention maps clearly show the  
288 language model can capture distant location-dependent relationships among  
289 biosynthetic genes.

290

### 291 **Comprehensive profiling of BGCs in 982 genomes from *Aspergillus***

292 BGC-Prophet predicts BGCs in a comprehensive manner and can predict more  
293 previously uncommented BGCs. Here, we utilized BGC-Prophet and antiSMASH to  
294 predict BGCs in genomes from *Aspergillus*, a genus with great biosynthetic potential  
295 and hundreds of genomes of this lineage. The results have shown that BGC-Prophet  
296 predicts a greater number of potential BGCs compared to antiSMASH, particularly in  
297 the terpene category (52,004 vs. 7,748, with 7,260 intersection BGCs). The  
298 predictions of BGCs in the NRP category by the two tools are nearly identical (27,603  
299 vs. 27,100, with 26,278 intersection BGCs). BGC-Prophet predicts a larger number of  
300 BGCs in the categories of terpene and polyketide (35,606 vs. 18,225, with 16,607  
301 intersection BGCs). Moreover, the prediction of BGCs in the RiPPs category by both  
302 tools exhibited complementarity (27,155 vs. 8,082, with 1,401 intersection BGCs),  
303 enhancing the coverage of predicted BGCs. Furthermore, BGC-Prophet predicts  
304 additional BGCs in the categories of alkaloids and saccharides compared to  
305 antiSMASH. The results showed a notable discrepancy between the BGCs predicted  
306 by the two tools, suggesting that BGC-Prophet can predict potentially novel BGCs  
307 beyond those detected by antiSMASH. We then studied the distribution spectrum of  
308 the predicted BGCs by both BGC-Prophet and antiSMASH. The results showed that  
309 BGC-Prophet predicted BGCs almost three times as many as antiSMASH (167,375 vs.  
310 59,037, **Figure 4A**), and most of them are potentially novel BGCs (**Figure 4B, C**).  
311 The prediction results of the two tools showed a clear linear correlation  
312 (**Supplementary Figure S5**,  $r = 0.91$ ,  $p < 0.001$ ), indicating that the BGCs predicted  
313 by BGC-Prophet have no preference for specific species. Overall, we demonstrate that

314 BGC-Prophet predicts BGC in a more comprehensive manner and can predict more  
315 previously unannotated BGCs.

316

317 **Comprehensive profiling of BGCs on 85,203 microbial genomes from the**  
318 **majority of bacterial and archaeal lineages**

319 With BGC-Prophet, new insights have been obtained about the diversity of BGCs on  
320 genomes from the majority of bacterial and archaeal lineages. We used BGC-Prophet  
321 to investigate the profile of BGCs on 85,203 microbial genomes from the majority of  
322 bacterial and archaeal lineages. Among these genomes, 41,599 were found to contain  
323 BGCs, resulting in the identification of a total of 119,305 BGCs. We first performed  
324 an analysis to determine the proportions of different categories of BGC (**Figure 5A**).  
325 When we mapped BGCs to the species (**Figure 5B**), the three most widely distributed  
326 BGC categories were polyketide (34%), NRP (33%), and RiPP (24%), and the three  
327 most abundant categories were NRP (33%), polyketide (28%), and RiPP (27%).  
328 Conversely, the alkaloid category exhibited the narrowest distribution (2% of the total  
329 species) and the lowest abundance (1% of the total number, **Figure 5B**). In  
330 comparison, the three most abundant categories in the MIBiG database were  
331 polyketide (41%), NRP (34%), and RiPP (13%) [4]. Moreover, BGC-Prophet  
332 identified a significantly greater number of BGCs classified as the “other” category  
333 (increasing from 324 to 32,233 and from 13% to 24%), indicating its enhanced  
334 capability in mining potentially novel BGC categories. Our findings showed that  
335 BGC-Prophet identified several times more BGCs than MIBiG, with notable  
336 differences in the composition of BGCs (**Supplementary Table S4**).

337

338 The host distribution of BGC showed species-specific characteristics, exemplified by  
339 the Actinomycetota phylum having the highest predicted number of BGCs (39,252 in  
340 total), and the Pseudomonadota phylum exhibited the widest genomic coverage, with  
341 12,637 genomes containing at least one BGC, encompassing a total of 29,675 BGCs  
342 (**Figure 5A, C, Supplementary Table S5**). At the rank of order, the top 27 orders  
343 with the highest average number of predicted BGCs ( $> 7.0$ ) are distributed across 15

344 phyla, such as Actinobacteria and Acidobacteriota (**Figure 5C**), which were reported  
345 to have relatively high biosynthetic potential (**Supplementary Text S1**). We  
346 proceeded to analyze BGCs separately for archaea and bacteria. Out of all these  
347 species, we identified 1,762 and 117,543 BGCs from 1,079 archaeal genomes and  
348 40,520 bacterial genomes, respectively. On average, archaeal genomes contained 1.63  
349 BGCs per genome, while bacterial genomes contained 2.90 BGCs per genome. These  
350 results indicate a significantly lower abundance of BGCs in archaeal genomes  
351 compared to bacterial genomes (t test,  $p = 6.1\text{e-}29$ ). The predominant BGC categories  
352 in archaea were saccharides (30%) and RiPP (24%), whereas in bacteria, they were 10%  
353 and 11%, respectively. The predominant BGC categories in bacteria were NRP (33%)  
354 and polyketide (28%), whereas in archaea, they were 8% and 1%, respectively. This  
355 observation may be attributed to the more ancient nature of archaea compared to  
356 bacteria, particularly in energy acquisition and metabolism. While bacteria rely  
357 mainly on aerobic respiration, archaea have adapted to survive in extreme  
358 environments by using alternative strategies such as sulfur reduction, denitrification,  
359 and nitrate reduction (**Supplementary Text S2**) [36, 37].

360

### 361 **Comprehensive profiling of BGCs in 9,428 metagenomic samples**

362 BGC-Prophet is the first UHT method that enables whole-metagenome screening of  
363 BGCs. We used 9,428 metagenomic samples corresponding to 47 studies from the  
364 human microbial environment and performed species annotations and BGC  
365 predictions on these samples (details in **Methods**). A total of 160,814 bins were  
366 generated from these metagenomic samples, of which 132,809 bins were successfully  
367 assigned to species, while 28,005 bins remained unclassified. Of the 9,428  
368 metagenomic samples analyzed, a total of 8,255 were predicted to contain at least one  
369 BGC. The number of predicted BGCs was 248,229, distributed among 2,922 known  
370 species and unclassified species. The distribution of predicted BGCs from the human  
371 microbiome metagenomic dataset is shown in **Figure 6**. Consistent with the findings  
372 from the GTDB dataset, BGCs were significantly enriched in species belonging to  
373 Actinomycetota compared to species other than Actinomycetota (average of 8.30

374 BGCs per genome vs. 4.24 BGCs per genome,  $p = 1.06e-105$ ). Additionally, archaeal  
375 species exhibited a higher number of BGCs compared to bacterial species (average of  
376 9.00 BGCs vs. 4.88 BGCs,  $p = 0.0001$ ). In terms of the abundance of BGCs for  
377 different categories, on average, there were 1.58 RiPPs, 1.36 saccharides, 1.12 NRPs,  
378 1.10 polyketides, 1.07 terpenes, and 1.02 alkaloids.

379

380 **The profound enrichment of BGC in microbes after important geological events**

381 Large differences were observed in the distribution of BGCs among different species,  
382 particularly in light of the evolution over billions of years. To understand this  
383 phenomenon, we searched TimeTree [38] and identified two time points for the rapid  
384 growth of lineages, which corresponded to the Great Oxidation [39] and Cambrian  
385 Explosion [40] events (**Supplementary Figure S6**). After both of these events, we  
386 observed a surge in BGC diversity and abundance, possibly indicating the impact of  
387 the environment on BGC.

388

389 The Great Oxidation event occurred approximately 2.5 to 2.3 billion years ago, which  
390 was about the same time as the emergence of ribosomes [41, 42]. Prior to this time  
391 point, there was a shift in the evolution of certain bacterial genera, such as  
392 *Mesoaciditoga* [43], *Vampirovibrio* [44], and *Synechococcus* [44], which are  
393 categorized as the “pre” group. These genera comprise 56 out of 41,599 genomes  
394 analyzed. The remaining 2,215 genera evolved after this time point and are  
395 categorized as the “post” group. Statistical analysis revealed a significant increase in  
396 the average number of BGCs per genome from 2.5 to 4.5 between these two groups ( $t$   
397 test,  $p = 0.024$ ). The abundance of polyketide BGCs also showed a significant  
398 increase after the Great Oxidation event, with the average number of polyketides per  
399 genome rising from 1.09 to 2.81 ( $t$  test,  $p = 0.057$ ). The possible reason is that  
400 polyketides are usually small compounds involved in oxidation reactions influenced  
401 by the increase in oxygen levels [45]. On the other hand, there were no significant  
402 differences in the average abundance of RiPPs (decreased from 1.29 to 1.25,  $t$  test,  $p =$   
403 0.807) and NRPs (increased from 1.0 to 3.16,  $t$  test,  $p = 0.242$ ). The change in RiPP

404 before and after the Great Oxidation event is not significant, which may be because  
405 the synthesis of RiPP primarily relies on the ribosomal pathway, involving  
406 dehydration and condensation reactions rather than oxidation [46]. On the other hand,  
407 although the number of NRP increases, the statistical significance is not substantial  
408 due to the limited data available before this event, which consists of only three cases  
409 [47].

410

411 The Cambrian Explosion event occurred approximately 542 to 520 million years ago,  
412 marked by rapid diversification of multicellular organisms [48]. Prior to this time  
413 point, 1,529 genera comprised 9,212 out of 41,599 genomes analyzed, which were  
414 categorized as the “pre” group. The remaining 589 genera evolved after this time  
415 point and were categorized as the “post” group. At this time point, there was a  
416 significant increase in the average number of BGCs per genome, with the “post”  
417 group having double the number compared to the “pre” group (6.07 vs. 2.95, t test, p  
418 = 4.89e-305). Further analysis of different categories of BGCs revealed significant  
419 differences in their average abundance before and after this time point. All categories  
420 of BGCs showed an increase in average abundance, with rapid increases observed in  
421 polyketides and NRPs. Polyketides encompass compounds such as erythromycin and  
422 tetracycline, while NRPs encompass cephalosporins, daptomycin, and vancomycin,  
423 among others. These compounds play crucial roles in defending against other bacteria  
424 and enhancing fitness in diverse environments [49, 50]. One possible explanation for  
425 this finding is that during the Ediacaran period, approximately 635-541 million years  
426 ago, Cyanobacteria began to appear, leading to a significant increase in oxygen  
427 production through photosynthesis, which resulted in heightened ocean oxygenation  
428 [51]. This amplified ocean and atmospheric oxygenation may have sped up the  
429 process of life evolution [52, 53]. It was during this time that multicellular organisms  
430 started to emerge [54]. On the one hand, multicellular organisms have always been  
431 hosts of microorganisms, and there is evidence to suggest that the genetic evolution of  
432 multicellular organisms occurred five times faster during the early Cambrian [55],  
433 leading to rapid life evolution in the oceans. On the other hand, the Earth’s ecological

434 environment underwent alterations due to the activities of various species, generating  
435 numerous microenvironments [56]. These microenvironments provide a variety of  
436 environmental pressures for microbial selection, resulting in a surge in the  
437 biosynthetic potential of microorganisms and leading to the synthesis of diverse  
438 secondary metabolites that enable microorganisms to better adapt to different  
439 environments and compete for resources.

440

441 These findings highlight the evolutionary dynamics of BGCs on a large temporal  
442 scale and shed light on the impact of environmental changes on the diversity and  
443 abundance of specialized metabolites produced by microbes. Further research is  
444 needed to explore the functional roles and ecological significance of these BGCs in  
445 the context of bacterial evolution and their potential applications in various fields,  
446 including medicine and biotechnology.

447

## 448 **Discussion**

449 BGCs represent a promising source of natural products but are difficult to discover,  
450 express, and characterize. In this study, we developed BGC-Prophet to  
451 comprehensively identify known and predict potentially novel BGCs and their  
452 products. BGC-prophet is a supervised language processing neural network model  
453 that captures the location-dependent relationships between genes and learns  
454 biosynthetic-aware representations of BGCs based on their gene evolutionary patterns.  
455 These new properties make BGC-Prophet advantageous over previous methods,  
456 enabling it to accurately and quickly profile BGCs for a wide range of lineages from  
457 microbial genomes and metagenomes.

458

459 The novelty of this work is demonstrated in three contexts. First, BGC-Prophet  
460 utilizes the powerful language model of the transformer encoder, uses the  
461 context-aware representations of genes as input features, captures the distant  
462 location-dependent relationships among biosynthetic genes, learns biosynthetic-aware

463 representations of BGCs based on their gene evolutionary patterns, and shows  
464 superior performance to existing tools such as DeepBGC. Specifically, BGC-Prophet  
465 achieved an AUROC of 91.9% with regard to locating BGCs throughout the genome  
466 and 98.8% with regard to differentiating among the seven BGC categories (**Figure**  
467 **3A-C**). BGC-Prophet's exceptional processing speed enables it to quickly analyze  
468 vast amounts of genomic data with high efficiency (**Figure 3D**), allowing for  
469 extensive profiling of BGCs in large-scale genomic and metagenomic data.

470

471 Second, BGC-Prophet is the first UHT method that enables pan-phylogenetic  
472 screening and whole-metagenome screening of BGCs and builds a comprehensive  
473 profile of BGCs on 85,203 genomes and 9,428 metagenomes from the majority of  
474 bacterial and archaeal lineages. We investigated the biosynthetic potential of the  
475 *Aspergillus* genomes and revealed numerous potentially novel BGCs missed by  
476 antiSMASH (**Figure 4**). Our examination of the BGC profile in the majority of  
477 bacterial and archaeal lineages revealed that BGC-Prophet allows for the detection of  
478 previously undiscovered BGCs, as well as reconstruction of a comprehensive picture  
479 of BGCs on genomes from the majority of bacterial and archaeal lineages (**Figure 5**).

480

481 Third, BGC-Prophet reveals the profound enrichment pattern of BGCs after important  
482 geological events, possibly indicating the impact of the environment on BGC.  
483 Specifically, the Great Oxidation event had a profound impact on microbial genomes,  
484 with a significant increase in the average number of BGCs per genome, particularly in  
485 polyketides. This suggests that polyketides may play an important role in oxidation  
486 reactions due to the increased oxygen levels during this time. The Cambrian  
487 Explosion event led to a significant increase in the average number of BGCs per  
488 genome, with polyketides and NRPs displaying the most pronounced growth. These  
489 findings suggest that microorganisms adapted to the rapidly changing environment by  
490 producing specific sets of secondary metabolites, including polyketides and NRPs.

491

492 BGC-Prophet is not without limitations. First, BGC-Prophet can only determine the  
493 category of BGC but cannot determine the actual small molecule as a product of BGC.  
494 It is rare to predict BGCs directly from small molecules, and more to predict BGCs by  
495 understanding small molecules and their associated microorganisms. Thus, it is  
496 possible to predict BGC in microbial genomes associated with small molecules and  
497 then use computational chemistry to screen and validate the BGC that matches the  
498 small molecules. Further work on establishing the connection between BGCs and  
499 small molecules is warranted. In addition, BGC-Prophet requires substantial,  
500 accurately annotated training data, while few current natural product databases offer  
501 comprehensive, well-curated data. Despite our improved performance, further work is  
502 needed to curate more diverse BGC databases that can be used to improve the training  
503 and validation of our model. Other possible improvements might include the  
504 discovery of new categories of BGCs, as well as the examination of the gain or loss of  
505 BGCs on a dynamic scale.

506

507 Taken together, the results of this work reveal unprecedented throughput in BGC  
508 discovery and annotation via language model. As the first UHT method for  
509 pan-phylogenetic screening and whole-metagenome screening of BGCs,  
510 BGC-Prophet builds a comprehensive profile of BGCs on genomes from the majority  
511 of bacterial and archaeal lineages, reveals the profound enrichment pattern of BGCs  
512 after important geological events. The BGC-Prophet could find a way to better  
513 understand BGC patterns and mechanisms, as well as in a variety of applications,  
514 including microecology protection and synthetic biology.

515

## 516 **Methods**

### 517 **Datasets used in this study**

518 We manually curated several datasets in this study, including MIBiG v3.1 (Minimum  
519 Information about a Biosynthetic Gene cluster [3]), 6KG (5886 genomes from the  
520 GTDB RS214 database [57]), NG (nine genomes used in ClusterFinder and

521 DeepBGC [23, 26]), AG (982 genomes from the genus of *Aspergillus*), 85KG (85,203  
522 available genomes in GTDB RS214 [57]), and MG (metagenomes from 47  
523 metagenomic studies [58]). These datasets are used for a variety of purposes, with  
524 MIBiG and 6KG being used to build training and testing sets, NG and AG being used  
525 to validate and compare the performance of various methods, and 85KG and MG  
526 being used for large-scale genome mining of BGCs (**Supplementary Table S1** and  
527 **S2**).

528

529 **The MIBiG dataset.** The MIBiG dataset specification provides a robust community  
530 standard for annotations and metadata on BGCs and their molecular products, which  
531 contains 2,502 experimentally validated BGCs.

532

533 **The 6KG dataset.** The 6KG dataset comprises a set of phylogenetically diverse  
534 genomes that were manually curated in GTDB RS214, and it contains 5,886 genomes  
535 that spread across the bacterial evolutionary tree.

536

537 **The NG dataset.** The NG dataset comprises nine bacterial genomes that were  
538 examined in previous studies, including ClusterFinder and DeepBGC [23, 26]. These  
539 genomes involved a total of 291 BGCs, none of which were used for training.

540

541 **The AG dataset.** The AG dataset contains a total of 982 genomes from the genus  
542 *Aspergillus* in the NCBI genome database. We utilized BGC-Prophet and antiSMASH  
543 to mine BGCs in these genomes and generated a comparison map between the BGCs  
544 identified by antiSMASH and BGC-Prophet on the *Aspergillus* genomes.

545

546 **The 85KG dataset.** The 85KG dataset contains 85,203 available genomes in GTDB  
547 RS214. We utilized BGC-Prophet to mine BGCs in those genomes and built a  
548 comprehensive profile of BGCs on genomes from the majority of bacterial and  
549 archaeal lineages.

550

551 **The MG dataset.** The MG dataset contains metagenomes involved in 47 studies  
552 (**Supplementary Table S3**). These metagenomic data included 1,792,406,629 contigs  
553 from 9,428 metagenomic samples, of which 6,238,438 contigs with nucleotide  
554 sequence lengths greater than 20,000 were retained. All datasets are publicly available  
555 and shown in **Supplementary Tables S1-S3**.

556

557 **Taxonomic classifications for metagenomes.** We used 9428 metagenomic  
558 assemblies corresponding to 47 studies from the human microbial environment. These  
559 metagenomic assemblies were binned using MetaBAT2 (version 2.12.1), and a total of  
560 160,814 bins (or MAGs) were obtained. Taxonomy annotation was then performed on  
561 the resulting bins using the Genome Taxonomy Database Toolkit (GTDB-Tk, version  
562 2.3.2) with reference to GTDB release 214.0. A total of 160,814 bins were generated  
563 from 9,428 metagenomic samples. Among them, 132,809 bins were successfully  
564 assigned to species, while 28,005 bins remained unclassified and were designated  
565 Unclassified (5,875 bins), Unclassified Archaea (316 bins), or Unclassified Bacteria  
566 (21,814 bins), representing unknown species.

567

#### 568 **Positive and negative sample generation**

569 To train the language model of BGC-Prophet, we manually curated a training dataset  
570 of positive and negative samples. The MIBiG and 6KG datasets were used to build  
571 the positive and negative samples. Before generating positive and negative samples,  
572 we used antiSMASH (v6) to identify BGCs on a public reference set of 5886  
573 microbial genomes (6KG dataset). For each reference genome, regions predicted to be  
574 part of a BGC were removed, and these pruned genomes without BGC-like regions  
575 served as the non-BGC gene library.

576

577 **Positive sample generation.** The positive samples are derived from the 2502 BGCs  
578 in the MIBiG dataset. For each BGC in the MIBiG dataset, we applied two-sided  
579 padding with non-BGC genes (as described in the previous paragraph) until the gene

580 sequence length equaled 128. Considering that the longest BGC in MIBiG consists of  
581 115 genes and the gap (*i.e.*, the average number of non-BGC genes) between BGCs in  
582 the genomes from the 6KG dataset (**Supplementary Figure S1**), we set the maximum  
583 gene sequence length of a positive sample to 128. We repeated the generation  
584 procedure five times for each BGC in the MIBiG dataset, resulting in 12,510 positive  
585 samples.

586

587 **Negative sample generation.** In the generation of a negative sample (non-BGC), a  
588 major challenge is to make non-BGC have a certain degree of similar genes with  
589 genes in BGCs but lack the semantic information preserved in BGCs (*i.e.*, the order of  
590 genes in BGC). To generate a single negative sample, a random region from the  
591 non-BGC gene library was selected, and a subregion containing 128 continuous genes  
592 was randomly picked from the selected region. In total, 20,000 negative samples were  
593 generated.

594

595 **Labeling the samples.** According to the MIBiG database, there are seven categories  
596 of BGCs, including alkaloids, non-ribosomal peptides (NRPs), polyketides,  
597 ribosomally synthesized and post-translationally modified peptides (RiPPs),  
598 saccharides, terpenes and others (**Supplementary Figure S1**). Notably, each BGC  
599 may have more than one category, so the prediction of BGC categories is a multi-label  
600 seven-category problem. For example, the positive sample derived from BGC with  
601 MIBiG accession of BGC0000356 was labeled with both the categories of Alkaloid  
602 and NRP. For all the negative samples, they are not labeled into any of the seven  
603 categories.

604

## 605 **BGC-Prophet implementation**

606 **Token of the BGC-Prophet model.** In the field of natural language processing, the  
607 minimal semantic unit is called a "token", which makes up sentences. BGC-Prophet is  
608 a language processing neural network that takes genes as tokens to represent BGC or  
609 non-BGC (sentence). Previous methods ClusterFinder and DeepBGC take Pfam

610 domains as tokens that effectively balance genetic information loss and computational  
611 complexity. However, Pfam relies on manual determination by experts to define the  
612 scope of each domain, and the utilization of pHMMs for identifying conserved Pfam  
613 domains in sequences is computationally intensive. Therefore, a trade-off between the  
614 number of Pfam alignments and computational speed must be considered. The  
615 situation of multiple Pfam domains originating from the same gene requires the model  
616 to learn such relationships separately. Here, we choose genes as tokens, which are  
617 more natural and do not require additional operations.

618

619 **Vector representation of token.** Each gene present in the training and testing  
620 samples needs to be represented as a word embedding vector to serve as input for  
621 subsequent language models. We used the ESM-2 8M model (evolutionary scale  
622 modeling: pretrained language models for proteins, version 2 with 8 million  
623 parameters) to generate vector representations of genes. ESM is the SOTA  
624 general-purpose protein language model, which can be used to predict structure,  
625 function and other protein properties directly from individual sequences [35]. For  
626 every positive and negative sample, we applied the ESM-2 8M model to generate a  
627 vector representation of genes (embedding dimension of 320). The ESM-2 8M model  
628 generates embedding of genes and removes the dependence between acquiring vector  
629 representations of tokens and training language models. The vector representation of  
630 tokens generated by the ESM-2 8M model directly from individual sequences is more  
631 concise and breaks the limitations inherent in the training samples, thus providing a  
632 higher possibility of predicting unknown BGCs. All genes in the training data are  
633 inferred using the ESM-2 8M model, and the mean of the model's last layer output is  
634 selected as the final word embedding for the sequence. This implies that our word  
635 vectors tend to represent higher-level information and can more effectively leverage  
636 GPU acceleration for computational processes.

637

638 **Model architecture and configuration.** Here, we proposed a BGC language  
639 processing neural network model, BGC-Prophet, to detect known and predict

640 potentially novel BGCs from genome sequences. BGC-Prophet employs a language  
641 model (*i.e.*, transformer encoder) [33] for BGC identification and classification. The  
642 transformer encoder is a neural network model of a specific architecture that uses a  
643 multi-head self-attention mechanism to speed up training. The self-attention  
644 mechanism introduced in the transformer encoder makes it suitable for parallel  
645 computation and better than the RNN or LSTM in accuracy. In this study, PyTorch  
646 v2.0.0 was used to implement the transformer encoder structure of BGC-Prophet,  
647 which learns the representation of gene sequences for different downstream tasks.

648

649 In this study, the parameters of the transformer encoder are set as follows  
650 (**Supplementary Figure S2**). The input dimension is set to 320, which is equivalent  
651 to the dimensionality of the embedding generated by the ESM-2 8M model. Then,  
652 pre-layer normalization is used to accelerate the convergence of the model [59]. The  
653 positional encoding adopts classical sine-cosine position coding, which does not  
654 require additional training and captures relative positional relationships between  
655 genes effectively. The transformer encoder is configured with two 5-head  
656 self-attention layers and a dropout rate of 10%. The model is trained using the  
657 AdamW optimizer with a learning rate of 1e-2 and a batch size of 64. Given that the  
658 number of training epochs is not fixed, an early stopping strategy is employed, where  
659 the loss value of the verification set stops improving after 20 epochs without  
660 decreasing, and the model obtained from the epoch with the lowest loss value on the  
661 verification set is chosen as the final model.

662

663 **BGC gene detection and product classification.** We assigned two downstream tasks  
664 to BGC-Prophet. The first task is predicting the BGC gene loci of a given BGC  
665 sequence, and the second task is predicting the BGC category of a given region on a  
666 genome.

667

668 The first task for BGC-Prophet is predicting the BGC gene loci of a given gene  
669 sequence. Specifically, given the sequence to be predicted composed of multiple

670 genes, determine whether each gene is part of a BGC according to the position  
671 relationship of all genes. There may be no correlation between the genes that make up  
672 the sequence to be predicted, while the gene tag sequence of each gene that makes up  
673 the BGC is related in order. Therefore, the task can be statistically modeled using a  
674 linear-chain conditional random field (linear-CRF) [60]. According to the linear-chain  
675 CRF algorithm, the input is the sequence to be predicted, and the output is the gene  
676 tag sequence. In this paper, the downstream neural network is set as a fully connected  
677 layer with 128 timesteps, and the weight of each timestep is shared, different from  
678 DeepBGC. After passing through the fully connected layer, the hidden state vector  
679 dimension of the transformer encoder is reduced from 320 to 128, then from 128 to 32,  
680 and finally to 1, which represents the probability score that a given gene is part of a  
681 BGC. The Gaussian Error Linear Unit (GELU) [61] is used as the activation function  
682 for each fully connected layer, and finally, the sigmoid activation function is applied.  
683 The final fully connected layer outputs a scalar between 0 and 1 that measures how  
684 confident the model is that the gene belongs to the BGC. The loss functions of the  
685 model in this paper are binary cross entropy, and the AdamW [62] optimization  
686 algorithm is used to make them converge.

687

688 The second task for BGC-Prophet is predicting the BGC category of a given region on  
689 a genome. According to the MIBiG database, there are seven categories of BGCs,  
690 including alkaloids, NRPs, polyketides, RiPPs, saccharides, terpenes, and others. We  
691 encode these categories using one-hot encoding and consider an all-zero vector to  
692 represent the non-BGC category. Notably, each BGC may have more than one  
693 category, so the prediction of the BGC category is a multi-label seven-category  
694 problem. The problem can be described as follows: Extracting the sequence of hidden  
695 state variables from the transformer encoder model  $H = (h_1, h_2, \dots, h_n)$ ,  $h_i \in \mathbb{R}^k$   
696 and calculating the average hidden state  $\bar{h} = \frac{1}{n} \cdot \sum_i^n h_i$ . Transformer encoders allow  
697 input key padding masks to mask given specific timesteps, so this study uses gene  
698 tags as masks to prevent non-BGC genes from influencing the classification of BGC.

699 The hidden states of the sequence are output as 7-dimensional vectors through a  
700 simple fully connected layer, and the sigmoid function is applied to output the  
701 confidence score of each label.

702

### 703 **Comparison methods**

704 **DeepBGC.** DeepBGC is a novel deep learning and natural language processing  
705 strategy for improved identification of BGCs in bacterial genomes. DeepBGC  
706 employs a BiLSTM recurrent neural network. DeepBGC improves the detection of  
707 BGCs of known classes from bacterial genomes and harnesses great potential to  
708 detect novel classes of BGCs. In this study, we used DeepBGC for BGC gene  
709 detection and BGC product classification tasks and compared its performance to  
710 BGC-Prophet.

711

712 **AntiSMASH.** The antiSMASH (antibiotics & Secondary Metabolite Analysis Shell)  
713 is a comprehensive pipeline capable of identifying biosynthetic loci covering the  
714 whole range of known secondary metabolite compound classes. It employs a set of  
715 curated pHMMs to call biosynthesis-related gene families and a set of heuristics to  
716 designate a portion of a genome as a BGC. In this study, we applied antiSMASH and  
717 BGC-Prophet to 982 genomes from *Aspergillus* and evaluated the capability of  
718 BGC-Prophet to identify BGCs.

719

### 720 **Benchmark measures**

721 Evaluation was based on five measuring metrics, including accuracy, precision, recall,  
722 F1-score, and AUROC. First, four parameters of the confusion matrix must be  
723 clarified: TP (true positive, actually BGC, and judged by the model as BGC), FN  
724 (false negative, actually BGC, but judged by the model as non-BGC), TN (true  
725 negative, the actual value is non-BGC, and judged by the model as non-BGC); and FP  
726 (false positive, the actual value is non-BGC, but judged by the model as BGC). We  
727 introduced several measures, including precision, recall, F1, true positive rate (TPR),

728 and false positive rate (FPR). The definitions of these measures and formulas are as  
729 follows:

$$\begin{aligned} \text{Accuracy} &= \frac{TP + TN}{TP + TN + FP + FN} \times 100\% \\ \text{Precision} &= \frac{TP}{TP + FP} \times 100\% \\ \text{Recall} &= \frac{TP}{TP + FN} \times 100\% \\ F1 &= \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} \times 100\% \\ TPR &= \frac{TP}{TP + FN} \\ FPR &= \frac{FP}{FP + TN} \end{aligned}$$

730 AUROC is the area under the receiver operating characteristic (ROC) curve, and ROC  
731 is the curve of TPR-FPR traversing different thresholds, which is also based on the  
732 confusion matrix.

733

### 734 **Statistical methods**

735 UMAP (Uniform Manifold Approximation and Projection) and t-SNE (t-Distributed  
736 Stochastic Neighbor Embedding) dimensionality reduction techniques were applied to  
737 visualize and explore the high-dimensional gene vectors. To evaluate the differences  
738 between two BGC number groups, a t-test was performed. The t-test is a parametric  
739 statistical test that determines whether the means of two groups are significantly  
740 different from each other. It was used to compare the means of specific variables or  
741 features between the groups of interest. Pearson correlation coefficient was utilized to  
742 examine the linear relationship between the prediction results of the antiSMASH and  
743 BGC-Prophet. The Pearson correlation coefficient provides a measure of the strength  
744 and direction of the linear association between variables. It was employed to assess  
745 the correlation between different features or variables within the dataset.

746

### 747 **References**

748 1. Bauman KD, Butler KS, Moore BS, Chekan JR. Genome mining methods to  
749 discover bioactive natural products. *Natural Product Reports* 2021.

750 38:2100-2129.

751 2. Ma J, Gu Y, Xu P. A roadmap to engineering antiviral natural products  
752 synthesis in microbes. *Current Opinion in Biotechnology* 2020. 66:140-149.

753 3. Kautsar SA, Blin K, Shaw S, Navarro-Muñoz JC, Terlouw BR, van der Hooft  
754 JJ, et al. MIBiG 2.0: a repository for biosynthetic gene clusters of known  
755 function. *Nucleic Acids Research* 2020. 48:D454-D458.

756 4. Terlouw BR, Blin K, Navarro-Muñoz JC, Avalon NE, Chevrette MG, Egbert S,  
757 et al. MIBiG 3.0: a community-driven effort to annotate experimentally  
758 validated biosynthetic gene clusters. *Nucleic Acids Research* 2023.  
759 51:D603-D610.

760 5. Newman DJ, Cragg GM. Natural Products as Sources of New Drugs over the  
761 Nearly Four Decades from 01/1981 to 09/2019. *Journal of Natural Products*  
762 2020. 83:770-803.

763 6. Brown ED, Wright GD. Antibacterial drug discovery in the resistance era.  
764 *Nature* 2016. 529:336-343.

765 7. Martin JF. Clusters of genes for the biosynthesis of antibiotics: Regulatory  
766 genes and overproduction of pharmaceuticals. *Journal of Industrial  
767 Microbiology* 1992. 9:73-90.

768 8. Martin JF, Liras P. Organization and expression of genes involved in the  
769 biosynthesis of antibiotics and other secondary metabolites. 1989. 43:173-206.

770 9. Negri T, Mantri S, Angelov A, Peter S, Muth G, Eustáquio AS, et al. A rapid  
771 and efficient strategy to identify and recover biosynthetic gene clusters from  
772 soil metagenomes. *Applied Microbiology and Biotechnology* 2022.  
773 106:3293-3306.

774 10. Paoli L, Ruscheweyh H-J, Forneris CC, Hubrich F, Kautsar S, Bhushan A, et  
775 al. Biosynthetic potential of the global ocean microbiome. *Nature* 2022.  
776 607:111-118.

777 11. Thomford NE, Senthilbano DA, Rowe A, Munro D, Seele P, Maroyi A, et al.  
778 Natural Products for Drug Discovery in the 21st Century: Innovations for  
779 Novel Drug Discovery. 2018. 19:1578.

780 12. Liu X, Ijzerman AP, van Westen GJP: Computational Approaches for De Novo  
781 Drug Design: Past, Present, and Future. In *Artificial Neural Networks*. Edited  
782 by Cartwright H. New York, NY: Springer US; 2021: 139-165

783 13. Martinet L, Naôm  A, Deflandre B, Maciejewska M, Tellatin D, Tenconi E, et  
784 al. A Single Biosynthetic Gene Cluster Is Responsible for the Production of  
785 Bagremycin Antibiotics and Ferroverdin Iron Chelators. *mBio* 2019.  
786 10:10.1128/mbio.01230-01219.

787 14. Kwon Min J, Steiniger C, Cairns Timothy C, Wisecaver Jennifer H, Lind  
788 Abigail L, Pohl C, et al. Beyond the Biosynthetic Gene Cluster Paradigm:  
789 Genome-Wide Coexpression Networks Connect Clustered and Unclustered  
790 Transcription Factors to Secondary Metabolic Pathways. *Microbiology  
791 Spectrum* 2021. 9:e00898-00821.

792 15. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP,  
793 Medema Marnix H, et al. antiSMASH 6.0: improving cluster detection and

794 comparison capabilities. *Nucleic Acids Research* 2021. 49:W29-W35.

795 16. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, et al.

796 antiSMASH 7.0: new and improved predictions for detection, regulation,

797 chemical structures and visualisation. *Nucleic Acids Research* 2023.

798 51:W46-W50.

799 17. Oliynyk M, Samborskyy M, Lester JB, Mironenko T, Scott N, Dickens S, et al.

800 Complete genome sequence of the erythromycin-producing bacterium

801 *Saccharopolyspora erythraea* NRRL23338. *Nature Biotechnology* 2007.

802 25:447-453.

803 18. Walsh CT, Fischbach MA. Natural Products Version 2.0: Connecting Genes to

804 Molecules. *Journal of the American Chemical Society* 2010. 132:2469-2493.

805 19. van der Hooft JJ, Mohimani H, Bauermeister A, Dorrestein PC, Duncan KR,

806 Medema MH. Linking genomics and metabolomics to chart specialized

807 metabolic diversity. *Chemical Society Reviews* 2020. 49:3297-3314.

808 20. Skinnider MA, Merwin NJ, Johnston CW, Magarvey NA. PRISM 3: expanded

809 prediction of natural product chemical structures from microbial genomes.

810 *Nucleic Acids Research* 2017. 45:W49-W54.

811 21. Medema MH, Fischbach MA. Computational approaches to natural product

812 discovery. *Nature Chemical Biology* 2015. 11:639-648.

813 22. Medema MH, de Rond T, Moore BS. Mining genomes to illuminate the

814 specialized chemistry of life. *Nature Reviews Genetics* 2021. 22:553-571.

815 23. Cimermancic P, Medema Marnix H, Claesen J, Kurita K, Wieland Brown

816 Laura C, Mavrommatis K, et al. Insights into Secondary Metabolism from a

817 Global Analysis of Prokaryotic Biosynthetic Gene Clusters. *Cell* 2014.

818 158:412-421.

819 24. de los Santos ELC. NeuRiPP: Neural network identification of RiPP precursor

820 peptides. *Scientific Reports* 2019. 9:13406.

821 25. Merwin NJ, Mousa WK, DeJong CA, Skinnider MA, Cannon MJ, Li H, et al.

822 DeepRiPP integrates multiomics data to automate discovery of novel

823 ribosomally synthesized natural products. 2020. 117:371-380.

824 26. Hannigan GD, Prihoda D, Palicka A, Soukup J, Klempir O, Rampula L, et al.

825 A deep learning genome-mining strategy for biosynthetic gene cluster

826 prediction. *Nucleic Acids Research* 2019. 47:e110-e110.

827 27. Liu M, Li Y, Li H. Deep Learning to Predict the Biosynthetic Gene Clusters in

828 Bacterial Genomes. *Journal of Molecular Biology* 2022. 434:167597.

829 28. Yang Z, Liao B, Hsieh C, Han C, Fang L, Zhang S. Deep-BGCpred: A unified

830 deep learning genome-mining framework for biosynthetic gene cluster

831 prediction. 2021:2021.2011.2015.468547.

832 29. Sanchez S, Rogers JD, Rogers AB, Nassar M, McEntyre J, Welch M, et al.

833 Expansion of novel biosynthetic gene clusters from diverse environments

834 using SanntiS. *bioRxiv* 2023:2023.2005.2023.540769.

835 30. Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar Gustavo A,

836 Sonnhammer ELL, et al. Pfam: The protein families database in 2021. *Nucleic*

837 *Acids Research* 2020. 49:D412-D419.

838 31. Rios-Martinez C, Bhattacharya N, Amini AP, Crawford L, Yang KK. Deep  
839 self-supervised learning for biosynthetic gene cluster detection and product  
840 classification. *PLOS Computational Biology* 2023. 19:e1011162.

841 32. Huang J, Gao Q, Tang Y, Wu Y, Zhang H, Qin Z. Protein language  
842 model-based end-to-end type II polyketide prediction without sequence  
843 alignment. *bioRxiv* 2023:2023.2004.2018.537339.

844 33. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al:  
845 Attention is all you need. In *Proceedings of the 31st International Conference*  
846 *on Neural Information Processing Systems*. pp. 6000–6010. Long Beach,  
847 California, USA: Curran Associates Inc.; 2017:6000–6010.

848 34. Devlin J, Chang M-W, Lee K, Toutanova K: BERT: Pre-training of Deep  
849 Bidirectional Transformers for Language Understanding. In; *jun; Minneapolis,*  
850 *Minnesota*. Association for Computational Linguistics; 2019: 4171-4186.

851 35. Lin Z, Akin H, Rao R, Hie B, Zhu Z, Lu W, et al. Evolutionary-scale  
852 prediction of atomic-level protein structure with a language model. *Science*  
853 2023. 379:1123-1130.

854 36. Delwiche CC, Bryan BA. Denitrification. *Annual Reviews Microbiology* 1976.  
855 30:241-262.

856 37. Baker BJ, De Anda V, Seitz KW, Dombrowski N, Santoro AE, Lloyd KG.  
857 Diversity, ecology and evolution of Archaea. *Nature Microbiology* 2020.  
858 5:887-900.

859 38. Kumar S, Suleski M, Craig JM, Kasprowicz AE, Sanderford M, Li M, et al.  
860 TimeTree 5: An Expanded Resource for Species Divergence Times. *Molecular*  
861 *Biology and Evolution* 2022. 39:msac174.

862 39. Schopf JW. Geological evidence of oxygenic photosynthesis and the biotic  
863 response to the 2400-2200 ma "great oxidation event". *Biochemistry (Mosc)*  
864 2014. 79:165-177.

865 40. Zhuravlev AY, Wood RA. The two phases of the Cambrian Explosion.  
866 *Scientific Reports* 2018. 8:16656.

867 41. Ostrander CM, Nielsen SG, Owens JD, Kendall B, Gordon GW, Romaniello  
868 SJ, et al. Fully oxygenated water columns over continental shelves before the  
869 Great Oxidation Event. *Nature Geoscience* 2019. 12:186-191.

870 42. Fan L, Wu D, Goremykin V, Xiao J, Xu Y, Garg S, et al. Phylogenetic analyses  
871 with systematic taxon sampling show that mitochondria branch within  
872 Alphaproteobacteria. *Nature Ecology & Evolution* 2020. 4:1213-1219.

873 43. Reysenbach A-L, Liu Y, Lindgren AR, Wagner ID, Sislak CD, Mets A, et al.  
874 *Mesoaciditoga lauensis* gen. nov., sp. nov., a moderately thermoacidophilic  
875 member of the order Thermotogales from a deep-sea hydrothermal vent. 2013.  
876 63:4724-4729.

877 44. Soo RM, Woodcroft BJ, Parks DH, Tyson GW, Hugenholtz P. Back from the  
878 dead; the curious tale of the predatory cyanobacterium *Vampirovibrio*  
879 *chlorellavorus*. *PeerJ* 2015. 3:e968.

880 45. Gallimore AR. The biosynthesis of polyketide-derived polycyclic ethers.  
881 *Natural Product Reports* 2009. 26:266-280.

882 46. Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH,  
883 et al. New developments in RiPP discovery, enzymology and engineering.  
884 *Natural Product Reports* 2021. 38:130-239.

885 47. Marahiel MA. A structural model for multimodular NRPS assembly lines.  
886 *Natural Product Reports* 2016. 33:136-140.

887 48. Wood R, Liu AG, Bowyer F, Wilby PR, Dunn FS, Kenchington CG, et al.  
888 Integrated records of environmental change and evolution challenge the  
889 Cambrian Explosion. *Nature Ecology & Evolution* 2019. 3:528-538.

890 49. Behnken S, Hertweck C. Anaerobic bacteria as producers of antibiotics.  
891 *Applied Microbiology and Biotechnology* 2012. 96:61-67.

892 50. Geller-McGrath D, Mara P, Taylor GT, Suter E, Edgcomb V, Pachiadaki M.  
893 Diverse secondary metabolites are expressed in particle-associated and  
894 free-living microorganisms of the permanently anoxic Cariaco Basin. *Nature  
895 Communications* 2023. 14:656.

896 51. Chen X, Ling H-F, Vance D, Shields-Zhou GA, Zhu M, Poulton SW, et al.  
897 Rise to modern levels of ocean oxygenation coincided with the Cambrian  
898 radiation of animals. *Nature Communications* 2015. 6:7142.

899 52. Fox D. What sparked the Cambrian explosion? *Nature* 2016. 530:268-270.

900 53. Yang D, Guo X, Xie T, Luo X. Reactive oxygen species may play an essential  
901 role in driving biological evolution: The Cambrian Explosion as an example.  
902 *Journal of Environmental Sciences* 2018. 63:218-226.

903 54. Xiao S, Laflamme M. On the eve of animal radiation: phylogeny, ecology and  
904 evolution of the Ediacara biota. *Trends in Ecology & Evolution* 2009.  
905 24:31-40.

906 55. Lee Michael SY, Soubrier J, Edgecombe Gregory D. Rates of Phenotypic and  
907 Genomic Evolution during the Cambrian Explosion. *Current Biology* 2013.  
908 23:1889-1895.

909 56. Briggs DEG. The Cambrian explosion. *Current Biology* 2015. 25:R864-R868.

910 57. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A, Hugenholtz P.  
911 GTDB: an ongoing census of bacterial and archaeal diversity through a  
912 phylogenetically consistent, rank normalized and complete genome-based  
913 taxonomy. *Nucleic Acids Research* 2022. 50:D785-D794.

914 58. Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, et al.  
915 Extensive Unexplored Human Microbiome Diversity Revealed by Over  
916 150,000 Genomes from Metagenomes Spanning Age, Geography, and  
917 Lifestyle. *Cell* 2019. 176:649-662.e620.

918 59. Xiong R, Yang Y, He D, Zheng K, Zheng S, Xing C, et al: On layer  
919 normalization in the transformer architecture. In *Proceedings of the 37th  
920 International Conference on Machine Learning*, vol. 119. pp. Article 975:  
921 JMLR.org; 2020:Article 975.

922 60. Wang F. Linear Chain Conditional Random Field for Operating Mode  
923 Identification and Multimode Process Monitoring. *ACS Omega* 2022.  
924 7:29483-29494.

925 61. Hendrycks D, Gimpel KJal. Gaussian Error Linear Units (GELUs). *arXiv*

926 2016.  
927 62. Zhuang Z, Liu M, Cutkosky A, Orabona F. Understanding AdamW through  
928 Proximal Methods and Scale-Freeness. arXiv 2022.  
929

930 **Declarations**

931 **Ethics approval and consent to participate**

932 Not applicable.

933

934 **Consent for publication**

935 Not applicable.

936

937 **Competing interests**

938 The authors declare that they have no competing interests.

939

940 **Authors' contributions**

941 K.N. and H.B. conceived of and proposed the idea and designed the study. Y.Z., Q.L.,  
942 S.Y. and H.Z. performed the experiments and analyzed the data. Y.Z., Q.L., S.Y., K.N.,  
943 and H.B. contributed to editing and proofreading the manuscript. All the authors have  
944 read and approved the final manuscript.

945

946 **Availability of data and materials**

947 Data download links are provided in **Supplementary Table S3**. All source codes have  
948 been uploaded to the website at  
949 <https://github.com/HUST-NingKang-Lab/BGCP prophet>. Detailed parameters of the  
950 software and package we used in this study are provided in **Supplementary Tables**  
951 **S1-S2**. All datasets and codes used in this study are publicly available.

952

953 **Funding**

954 The National Key R&D Program of China (Grant Nos. 2021YFA0910500,  
955 SQ2023YFA1800082, 2018YFC0910502) and National Natural Science Foundation  
956 of China (Grant Nos. 32071465, 31871334, 31671374).

957

958 **Acknowledgments**

959 We are grateful to Sugon (<https://www.sugon.com/>) for providing computational  
960 resources for this study.

961

962 **Figure Legends**

963 **Figure 1. The workflow of our study.** **A.** Generation of positive and negative  
964 samples. To train the BGC-Prophet language model, we curated a training dataset of  
965 12,510 positive and 20,000 negative samples, and each sample was a cluster of 128  
966 genes. MIBiG, minimum information about a biosynthesis-related gene cluster; 6KG,  
967 a phylogenetic diverse set of 5,886 genomes from the GTDB database. **B.**  
968 BGC-Prophet pipeline for BGC gene detection and product classification tasks. **C.**  
969 The architecture of the Transformer encoder used in BGC-Prophet. The prelayer  
970 normalization is used to accelerate the convergence of the model. The positional  
971 encoding adopts classical sine-cosine position coding, which does not require  
972 additional training and captures relative positional relationships between genes  
973 effectively. **D.** Several datasets used in this study for various purposes. NG, nine  
974 genomes that were examined in previous studies, such as ClusterFinder and  
975 DeepBGC; AG, 982 genomes from the genus *Aspergillus*; 85KG, 85,203 available  
976 genomes in GTDB RS214; MG, 9,428 metagenomics samples involved in 47 studies.  
977 Details of these datasets are available in **Methods**. **E.** The bar diagram shows the  
978 enrichment of BGCs in microbes after important geological events in Earth's history.  
979

980 **Figure 2. The distribution of ESM embeddings of genes.** **A.** Average ESM  
981 embedding distribution for BGCs in the MIBiG database. The representative vectors  
982 of all genes within each BGC were averaged, and subsequently, a dimensionality  
983 reduction technique called t-SNE was applied to project the BGCs of all categories  
984 into a two-dimensional space. The resulting tSNE1 and tSNE2 values were then  
985 utilized to generate scatter and boxplot visualizations. The scatter plot depicts the  
986 spatial distribution of the average vectors representing the BGCs in the  
987 two-dimensional plane. Each BGC exhibits distinct distribution characteristics, and  
988 their separability is achieved through nonlinear means. Conversely, the boxplot graph  
989 displays the distribution patterns of the seven BGC categories along the tSNE1 and  
990 tSNE2 dimensions. It is evident that they predominantly occupy a specific region  
991 (-50,50), with only marginal discrepancies observed in terms of median values and

992 distribution ranges. Importantly, the observed differences in distribution among the  
993 groups are statistically significant under a predetermined level of significance (\*, p <  
994 0.05; \*\*, p < 0.01; \*\*\*, p < 0.001). NRP, non-ribosomal peptide; RiPP, ribosomally  
995 synthesized and post-translationally modified peptide. **B.** Average ESM embedding  
996 distribution for BGCs and non-BGCs. Using the t-SNE analysis as before, both the  
997 BGCs and non-BGCs were subjected to dimensionality reduction, resulting in scatter  
998 and boxplot visualizations. The scatter plot reveals that the non-BGCs are widely  
999 distributed, while the BGCs are primarily concentrated in the upper-left and  
1000 lower-right corners of the plot. This indicates a clear distinction in the distribution  
1001 patterns between BGCs and non-BGCs. On the other hand, the boxplot graph  
1002 demonstrates that BGCs tend to be located at the edges of the plot, whereas  
1003 non-BGCs exhibit a preference for the central region. This significant difference in  
1004 distribution highlights the contrasting characteristics between BGCs and non-BGCs.  
1005 We plotted separate boxplots for the horizontal and vertical axes and applied a t test to  
1006 indicate that there were significant differences between pairwise comparisons of the  
1007 samples at the given level of significance (\*, p < 0.05; \*\*, p < 0.01; \*\*\*, p < 0.001).

1008

1009 **Figure 3. Evaluation of BGC-Prophet in different settings.** **A.** The evaluation  
1010 metrics reflecting the performance of BGC-Prophet and DeepBGC for BGC gene  
1011 detection on the nine genomes that were examined in previous studies. All metrics  
1012 except AUROC are evaluated under the default threshold of 0.5. **B.** The evaluation  
1013 metrics reflect the performance of BGC-Prophet for BGC product classification, and  
1014 the DeepBGC random forest classifier is retrained using the MIBiG database (version  
1015 3.0). **C.** The receiver operating characteristic curve reflecting the performance of  
1016 BGC-Prophet. **D.** The running time of BGC-Prophet and DeepBGC on datasets with  
1017 different numbers of genomes. **E.** The gene heatmap of a gene cluster (128 timesteps)  
1018 during a single prediction process on the nine genomes. This heatmap illustrate the  
1019 detection model's first layer's five heads (see **Methods**) average attention map during  
1020 a single prediction process by BGC-Prophet on nine genomes. The vertical axis  
1021 represents the Query in the self-attention mechanism, corresponding to the input gene

embedding vectors, while the horizontal axis represents the Key. Horizontally, the large heatmap implies that determining whether a gene participates in forming a BGC requires considering information from multiple positions. Vertically, the vertical dark purple lines in whole genes heatmap represent a gene influencing the formation of a BGC by multiple genes. Darker colors along the diagonal in heatmap suggest that determining whether a BGC is formed primarily relies on the information embedded in its own vector, indicating the critical role played by the embedding vector's information. The zoomed-in heatmap demonstrate the attention relationships between the BGC and surrounding genes. Genes 75-79 are annotated as BGC genes. **F**. The schematic diagram of attention applied between BGC genes and the genes at both ends, only colored genes belong to this predicted BGC. Panel **F** provides a schematic explanation of the magnified section in panel **E**, only attention scores between genes that exceeded 0.08 are shown as lines. The gene 76 (KUTG\_02125), which encodes a non-ribosomal peptide synthetase, receiving the highest attention scores from other BGC genes. This suggests that annotation tasks need to consider information from this gene, possibly implying its conservativeness and centrality in this BGC.

1038

**Figure 4. The predicted BGCs on the *Aspergillus* genomes dataset by BGC-Prophet and antiSMASH.** **A.** The number of BGCs predicted by BGC-Prophet (green) and antiSMASH (red) for seven categories. The bar plot shows the total number of BGCs predicted by the two tools. Based on the assumption that if two prediction tools identify BGCs with identical genes, they are considered to have predicted the same BGC, the prediction results for all seven BGCs can be visualized using a Venn diagram for each category. It is important to note that antiSMASH does not predict BGCs belonging to the alkaloid and saccharide categories. The BGC-Prophet predictions are based on the default threshold of 0.5. **B.** The distribution of BGCs in the genomes of the *Aspergillus* genus. Within the central core, the encompassed area represents the entirety of *Aspergillus* species (a total of 76 species). The meaning of each circle from the inside out: first circle, the total number of BGC predicted by antiSMASH; second circle, the total number of BGC predicted by

1052 BGC-Prophet, third circle, the number of each category of BGC predicted by  
1053 antiSMASH, fourth circle, the number of each category of BGC predicted by  
1054 BGC-Prophet. Taking into consideration the presence of multiple subspecies genomes  
1055 within a species, the number of predicted BGCs per species is averaged. **C.** A bar  
1056 chart depicting the total number of different types of BGCs predicted by antiSMASH  
1057 and BGC-Prophet reveals that BGC-Prophet predicts a significantly higher number of  
1058 BGCs across various categories compared to antiSMASH.

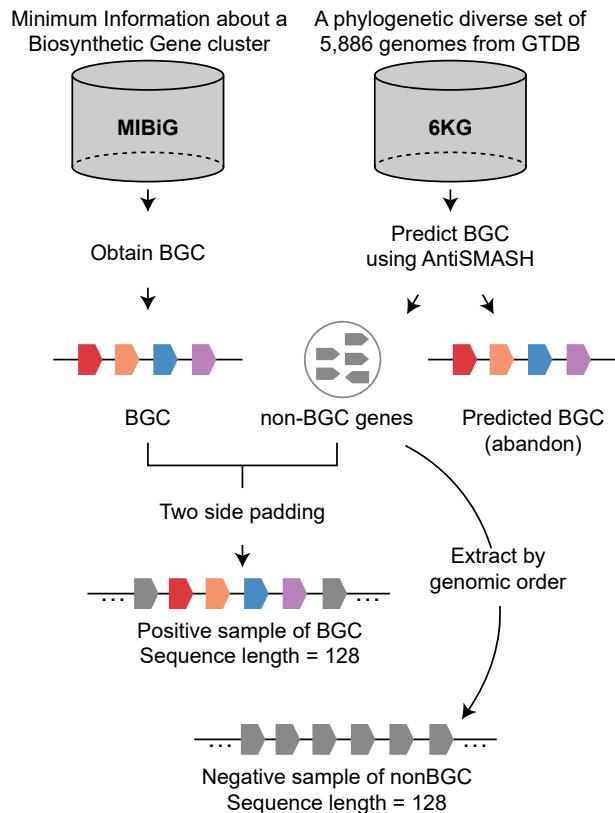
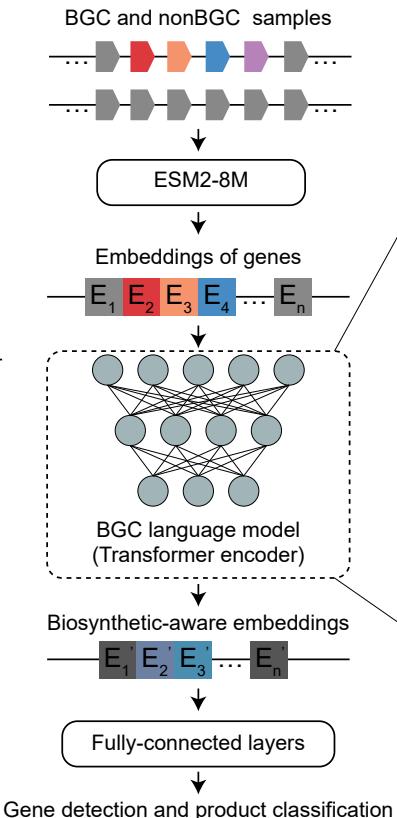
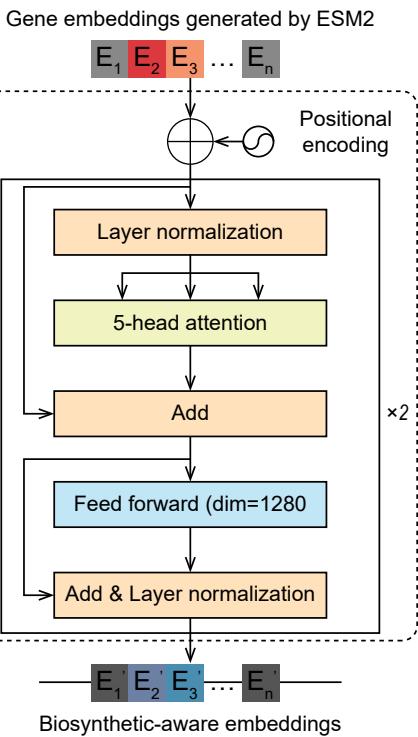
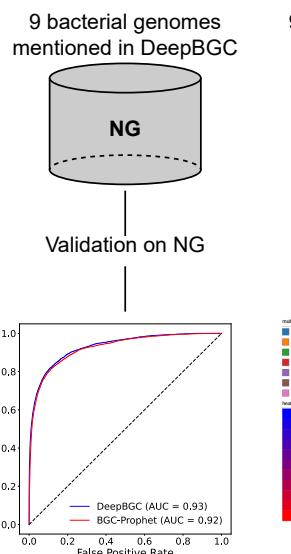
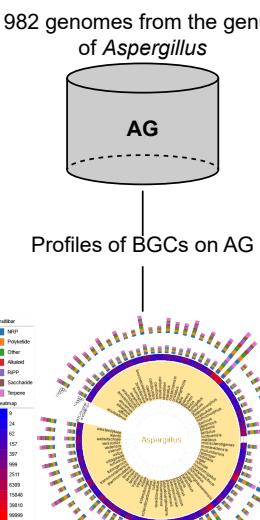
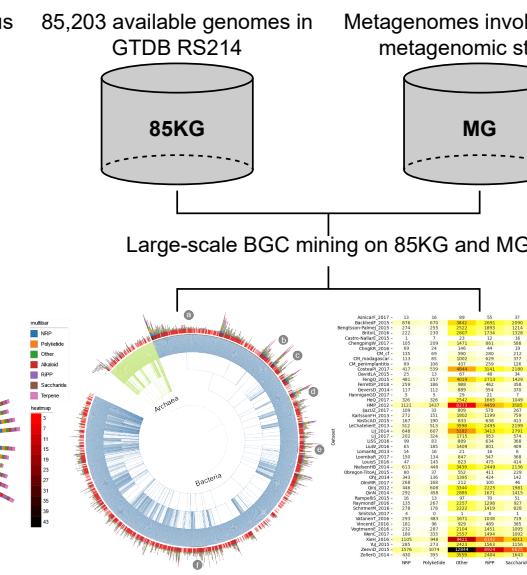
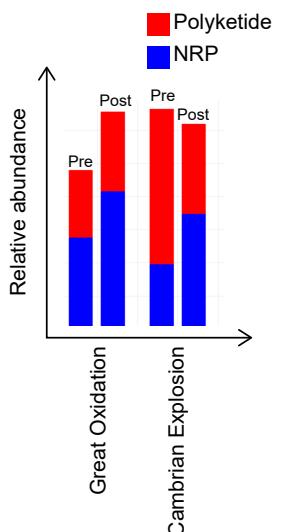
1059

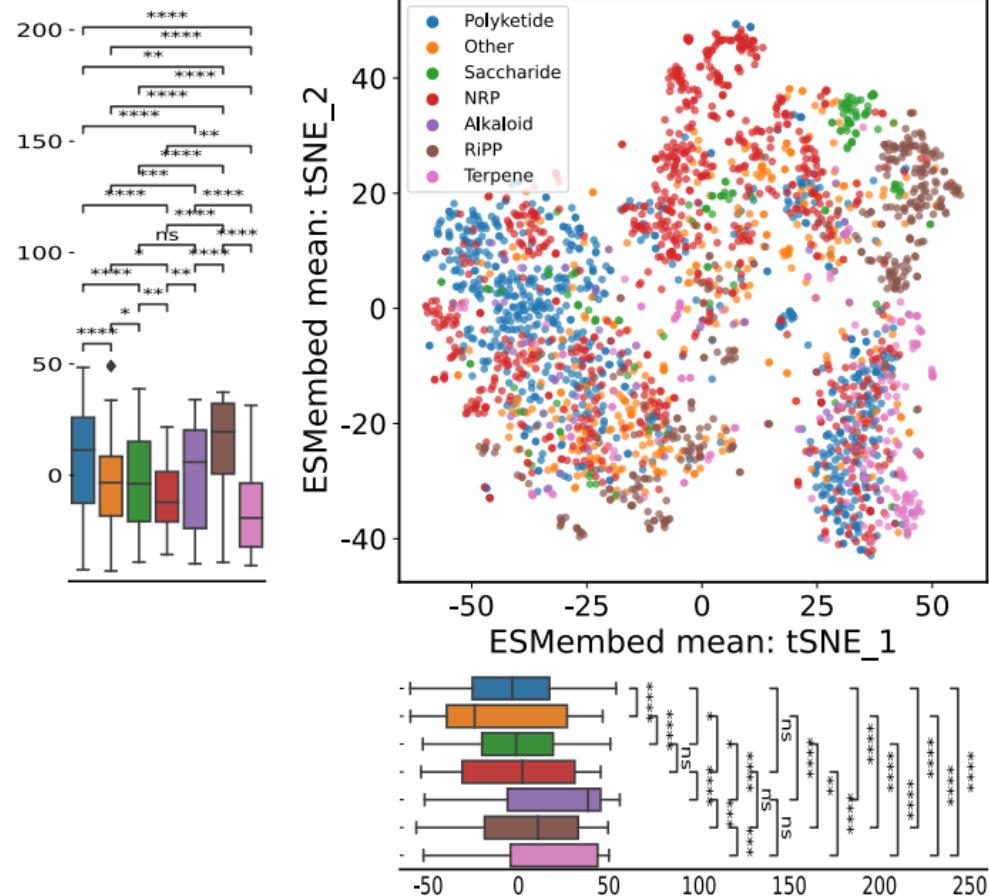
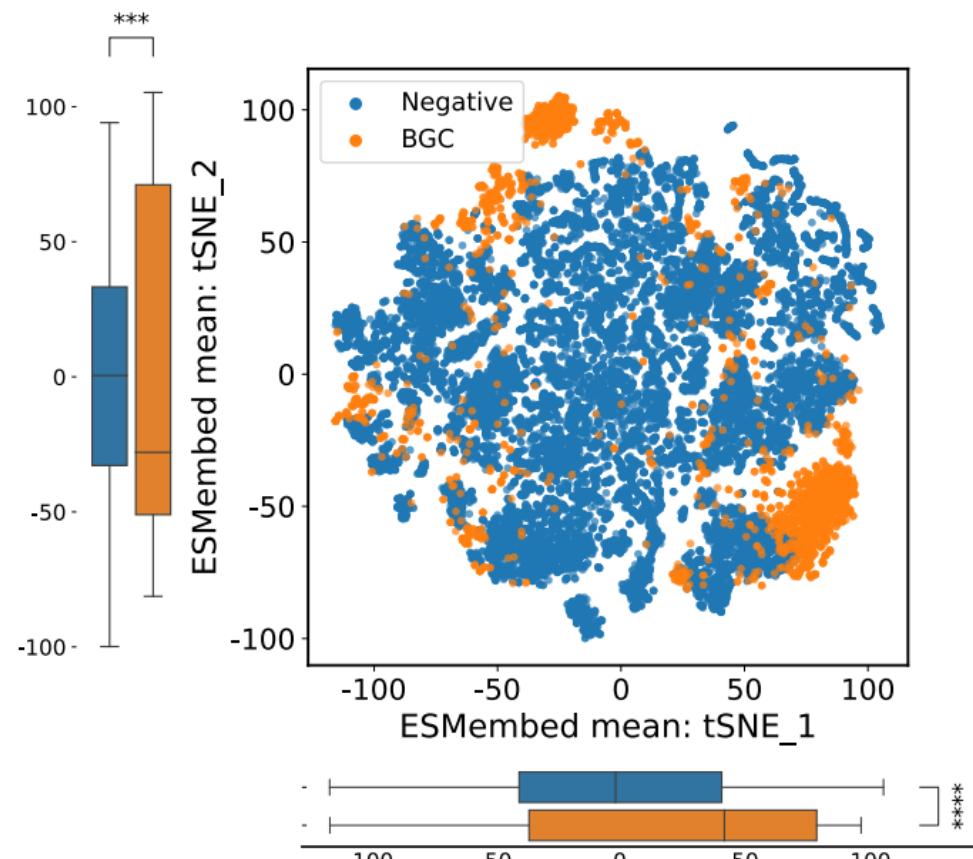
1060 **Figure 5. Novelty and phylogenomic distribution of microbial biosynthetic**  
1061 **potential in different branches of the evolutionary tree of life. A.** The distribution  
1062 of predicted BGCs on an evolutionary tree is shown. The evolutionary tree consists of  
1063 85,203 bacterial and archaeal genomes from the GTDB database. For visualization  
1064 purposes, the tree is displayed at the taxonomic rank of order. The number of BGCs is  
1065 averaged per genome within each order. From the innermost to the outermost layers,  
1066 the central core represents the evolutionary tree structure, consisting of 148 archaeal  
1067 and 1,624 bacterial orders. The first ring depicts a heatmap of the total number of  
1068 BGCs, with most genomes having two or fewer BGCs, while a few genomes exhibit  
1069 up to 20 BGCs, indicating significant biosynthetic potential. The second to eighth  
1070 rings display the distribution of BGC numbers for Other, Alkaloid, Saccharide,  
1071 Terpene, Polyketide, and NRP categories, respectively. **B.** The term "prevalence"  
1072 refers to the proportion of genomes that contain a specific type of BGC out of all the  
1073 genomes analyzed. The sum of the prevalence values for the seven categories may  
1074 exceed 100% because there can be instances where a single BGC belongs to several  
1075 BGC categories. **C.** The average number of BGCs and the distribution of different  
1076 BGC categories within selected orders. Among the orders, the top 27 orders with the  
1077 highest average number ( $> 7.0$ ) of predicted BGCs are distributed across 15 different  
1078 phyla. These 27 orders represent a diverse range of phyla and showcase varying levels  
1079 of BGC diversity and distribution across different BGC categories.

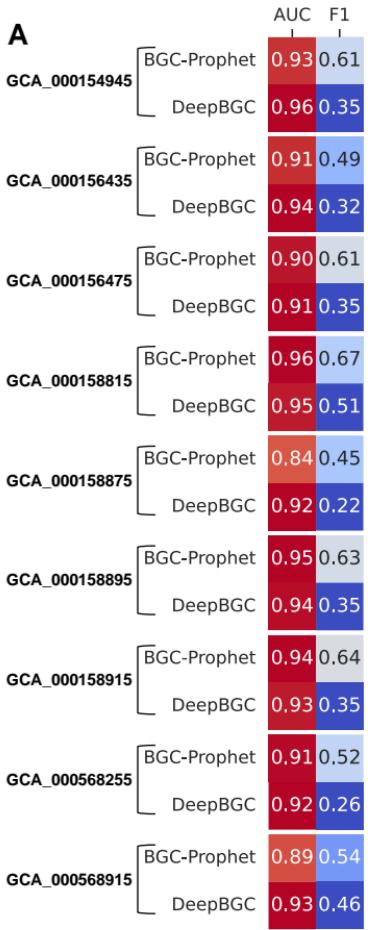
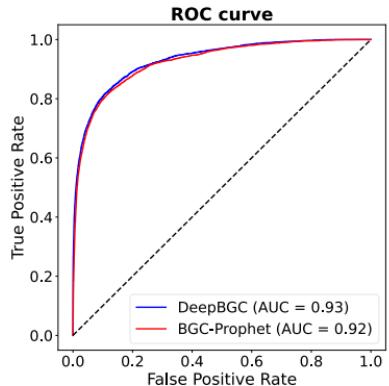
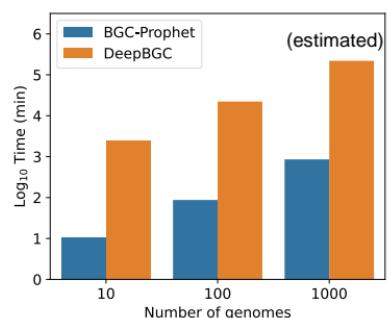
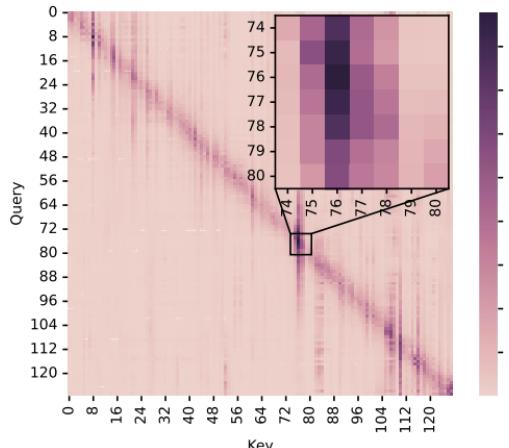
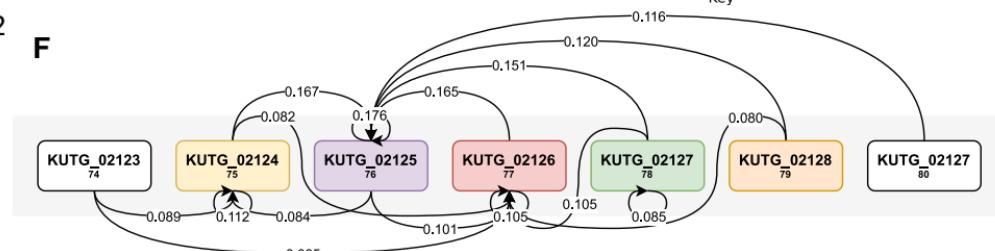
1080

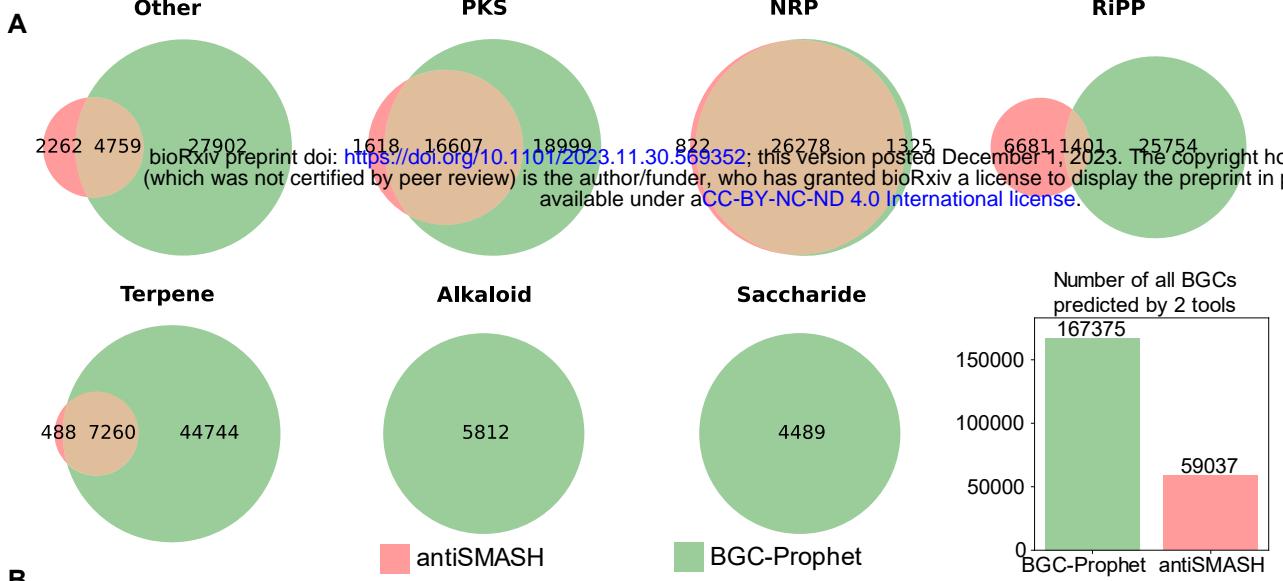
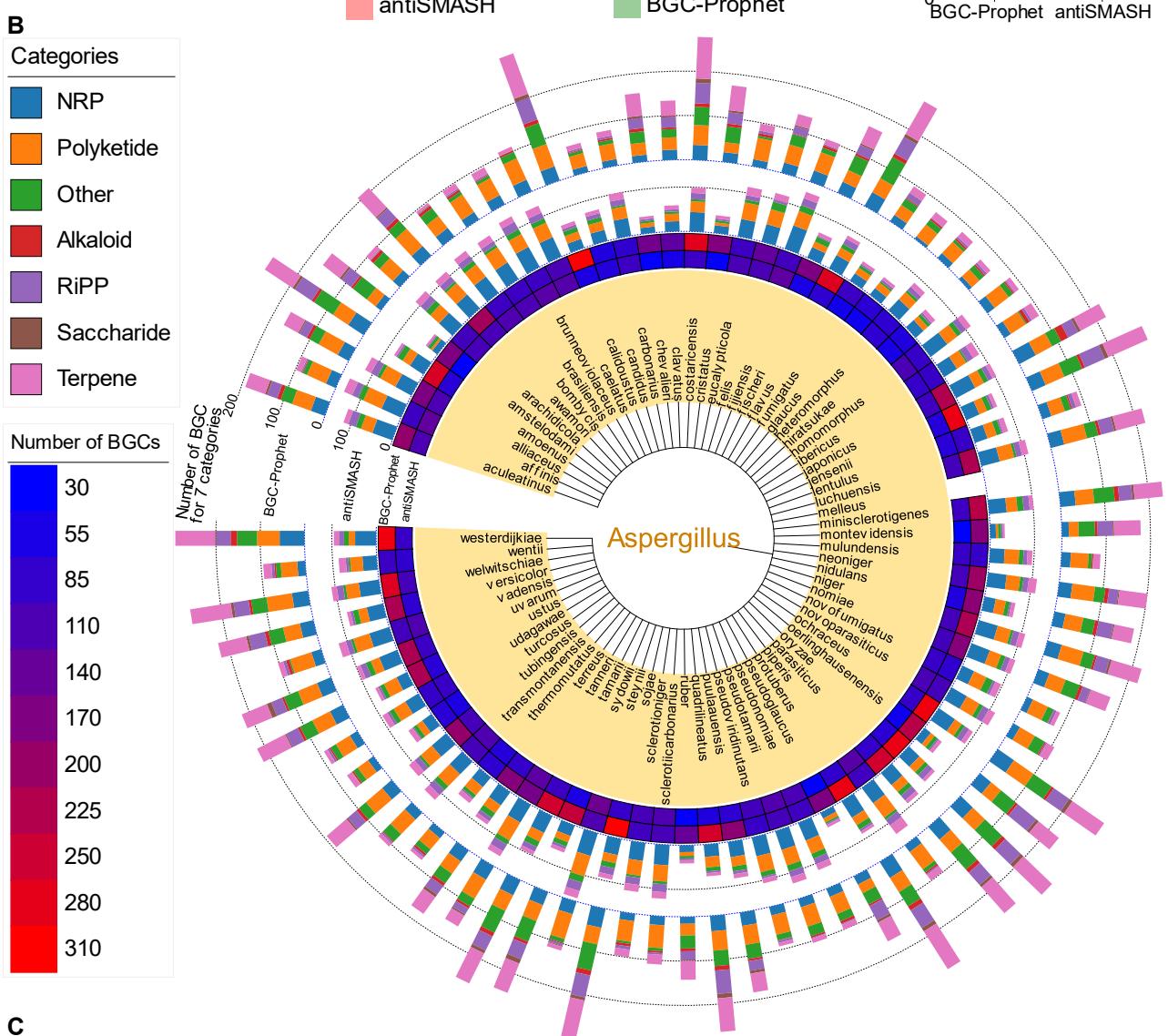
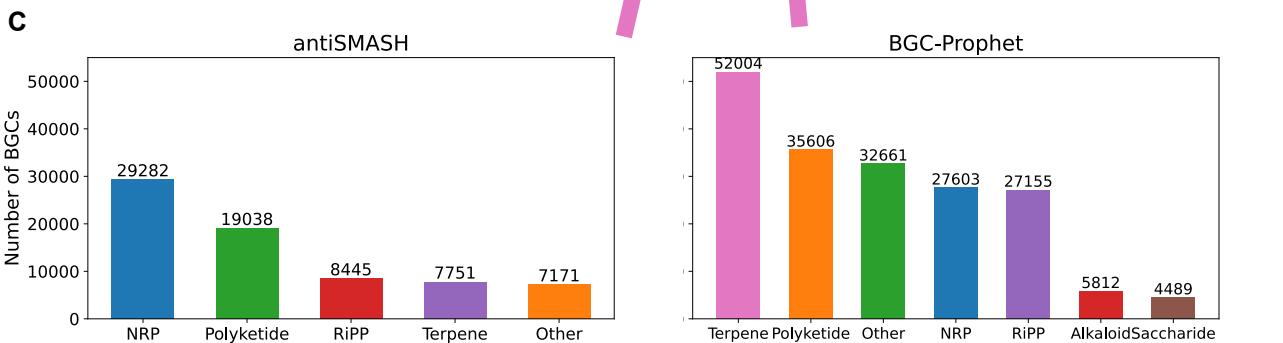
1081 **Figure 6. BGC-Prophet reveals the biosynthetic potential of the human**  
1082 **microbiome. A.** Distribution of predicted BGCs from the human microbiome  
1083 metagenomic dataset (MG) on an evolutionary tree. BGCs were predicted using  
1084 BGC-Prophet on the MG dataset, followed by species annotation. For the same  
1085 species, the number of BGCs was averaged. From innermost to outermost, the central  
1086 core represents the weighted evolutionary tree structure, composed of 13 archaeal  
1087 species and 2,909 bacterial species, with different colored sectors representing several  
1088 major phyla, such as Actinomycetota, Bacillota\_A, and Bacteroidota. The first ring  
1089 depicts the heatmap of the total number of BGCs, showing a clear enrichment in  
1090 phyla such as Actinomycetota. The second to eighth rings display the distribution of  
1091 BGCs belonging to the alkaloid, terpene, polyketide, NRP, saccharide, RiPP, and other  
1092 categories, respectively. **B.** The bar plot from top to bottom shows the total counts,  
1093 abundance, and average number of each type of BGC predicted. The order, from  
1094 largest to smallest, is Other, RiPP, Saccharide, NRP, Polyketide, Terpene, and  
1095 Alkaloid. The total count of BGCs is determined by the combination of abundance  
1096 and the average number of a specific type of BGC per genome. The higher count of  
1097 Other BGCs is likely due to shorter contig lengths, which result in fragmented BGC  
1098 predictions that cannot be further classified. **C.** Heatmap showing the number of  
1099 different types of predicted BGCs by BGC-Prophet in 47 metagenomic datasets. The  
1100 predicted counts vary depending on the number of genomes, contig lengths,  
1101 ecological niches, and biosynthetic capabilities of the respective datasets. For detailed  
1102 information, please refer to **Supplementary Table S6**.

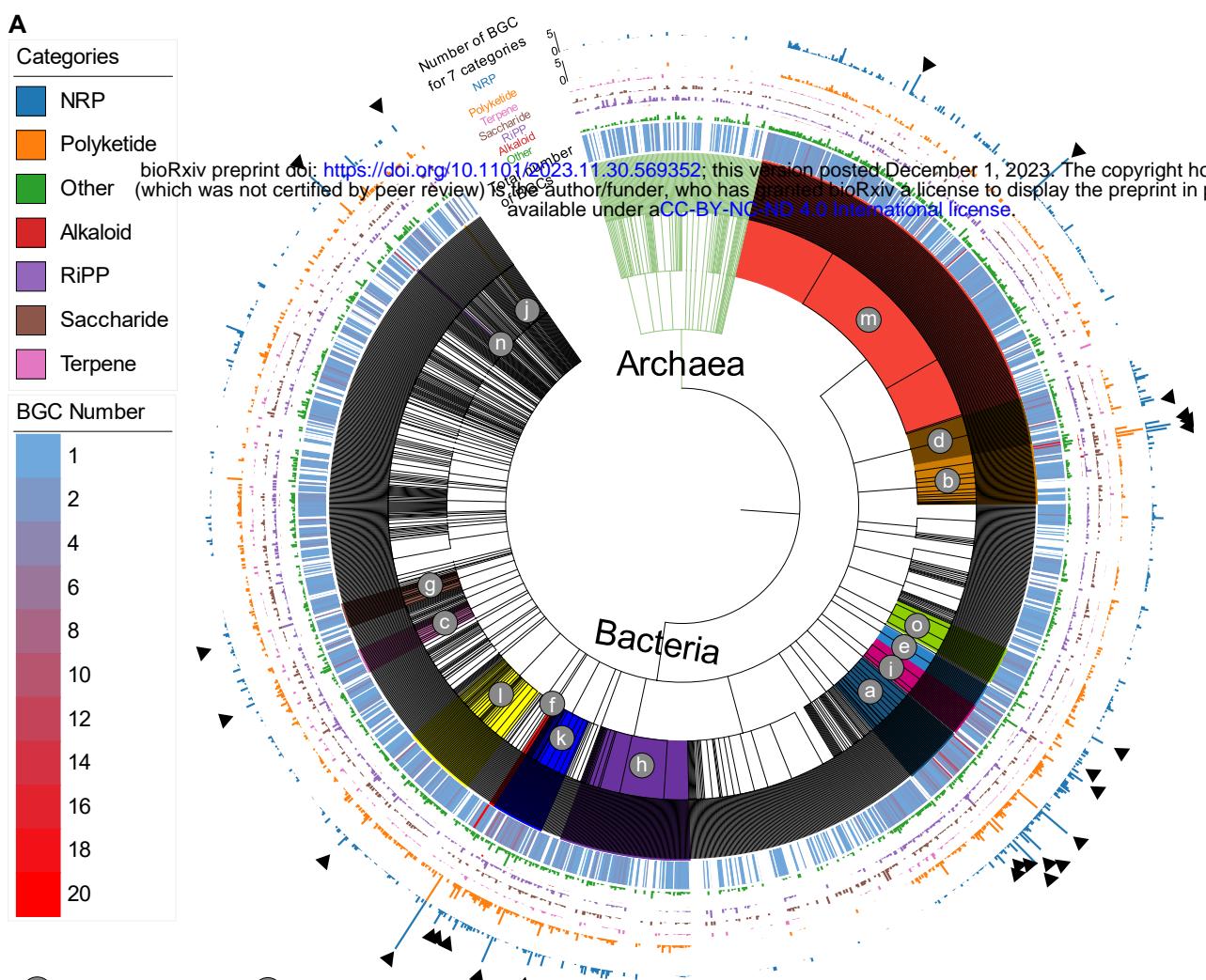
1103

**A****B****C****D****E**

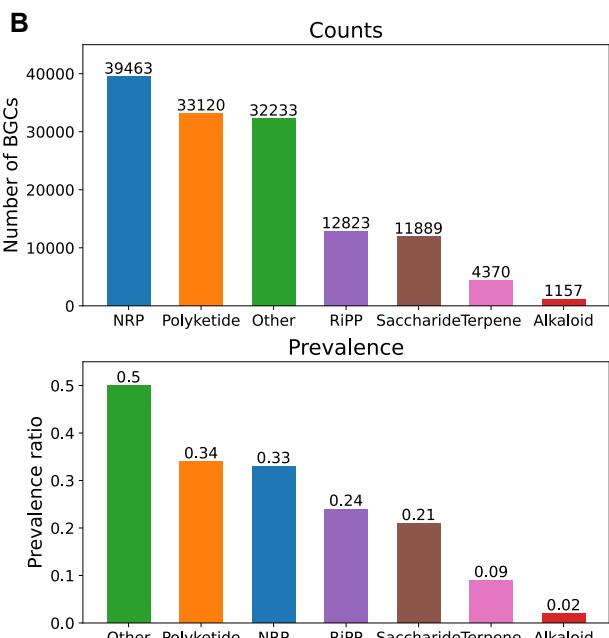
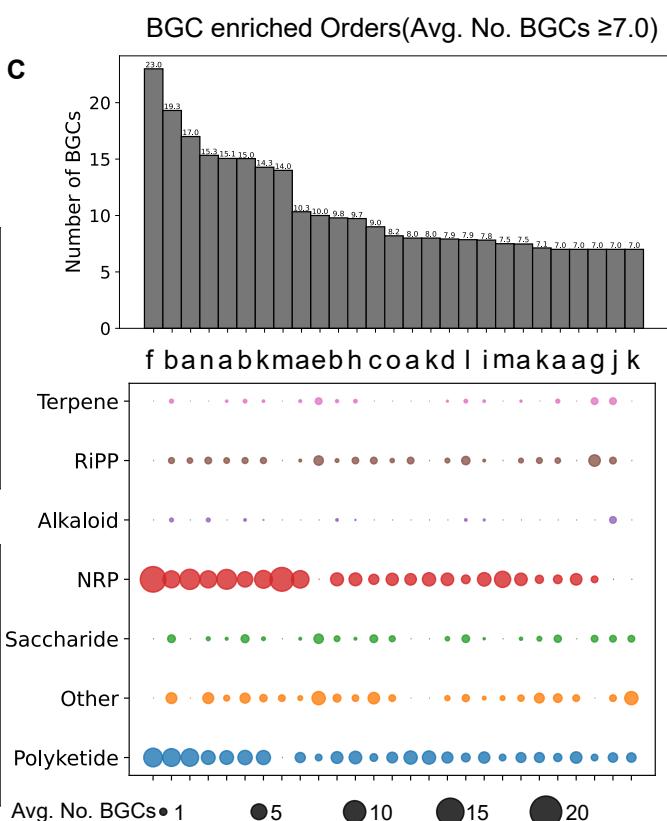
**A****B**

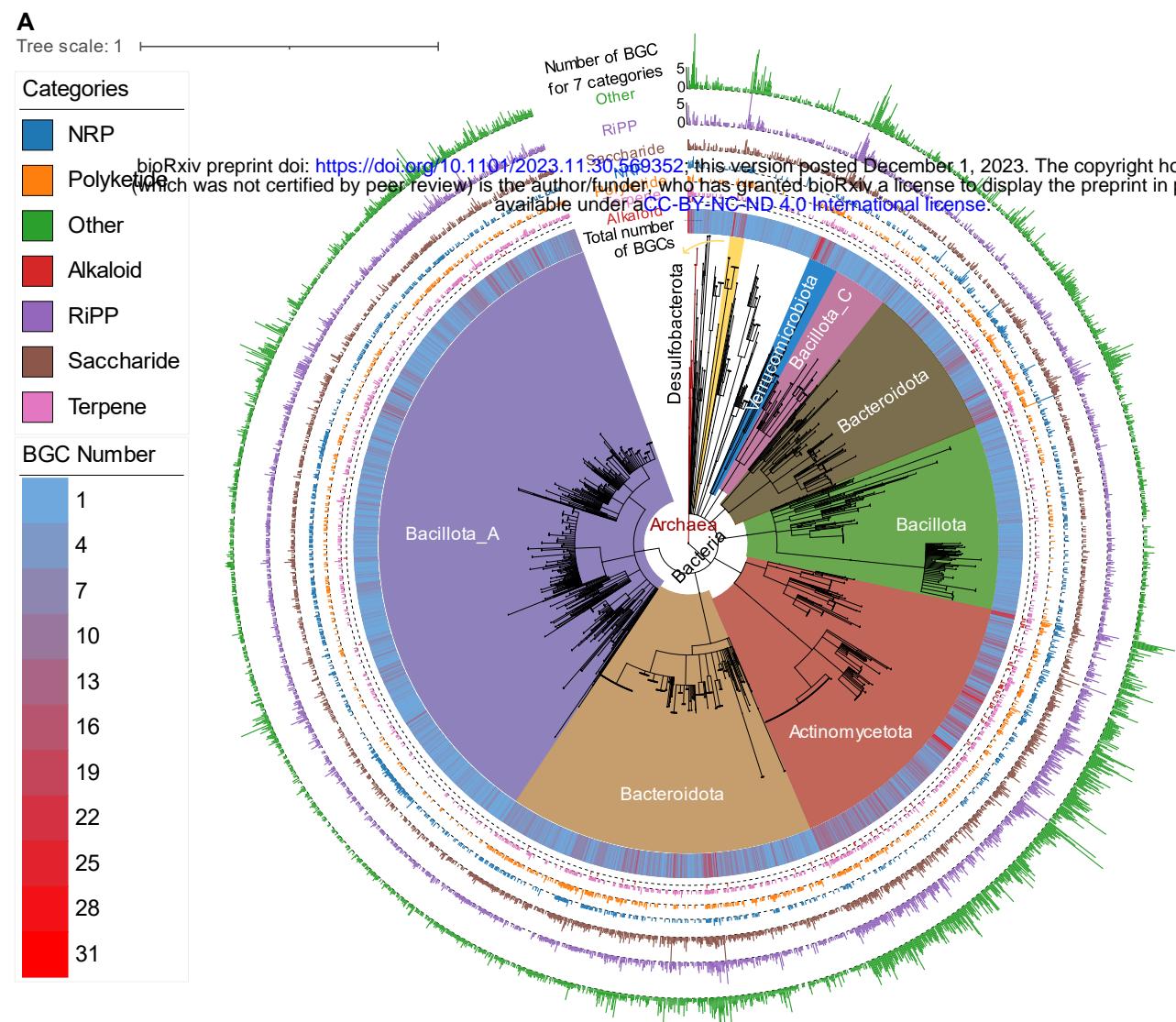
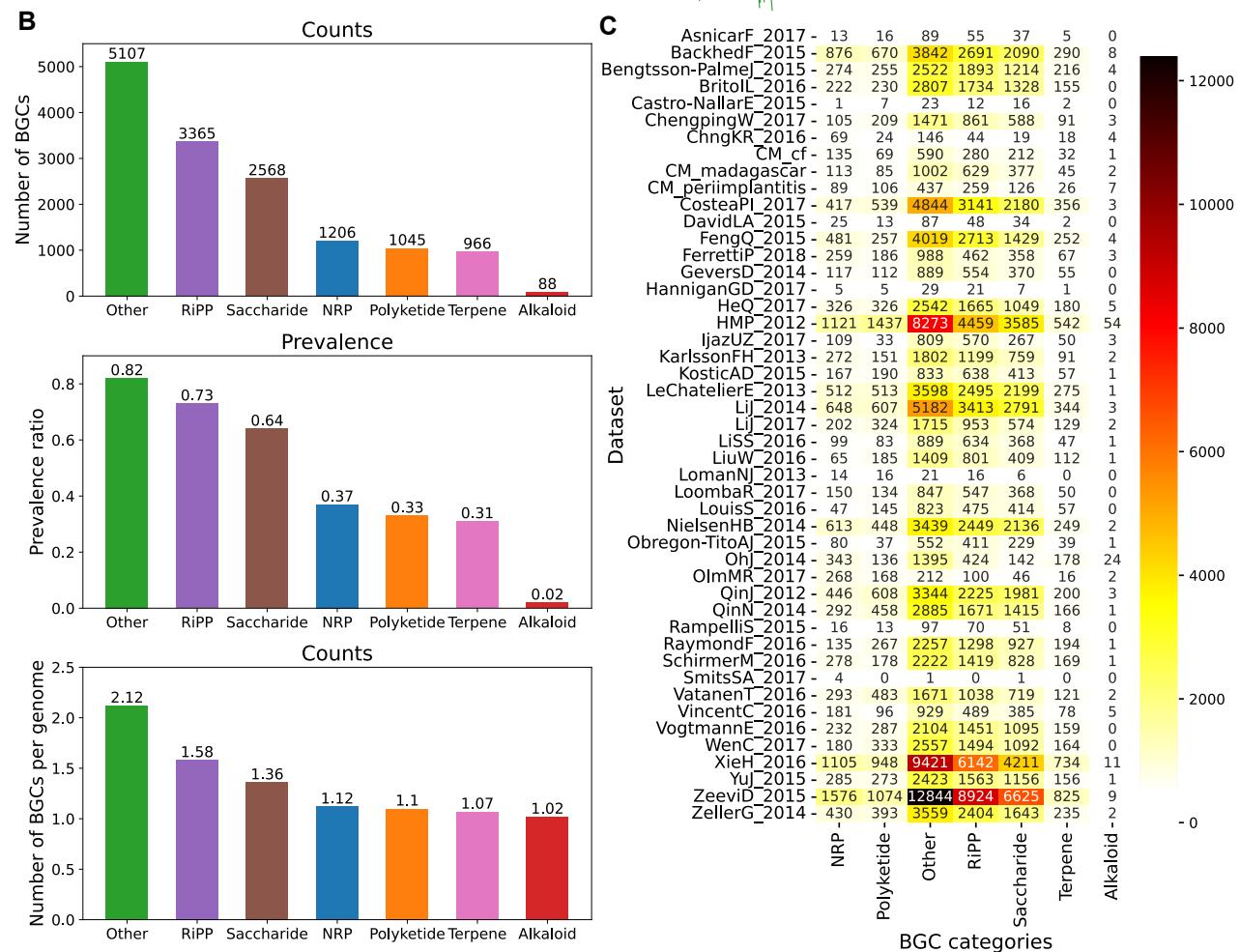
**A****B****C****D****E****F**

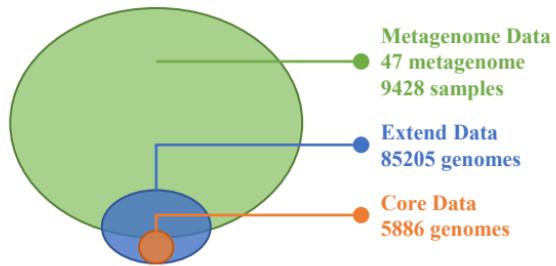
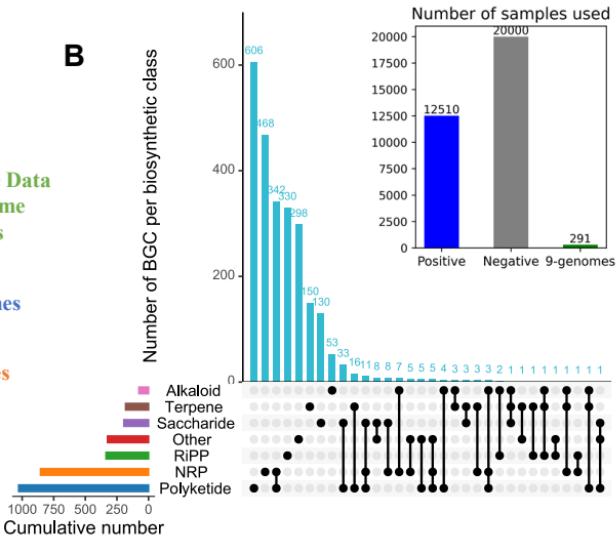
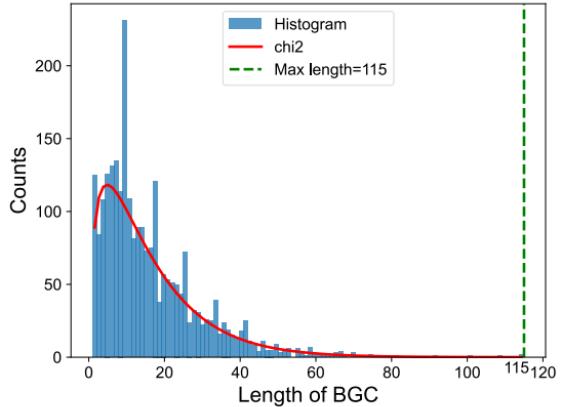
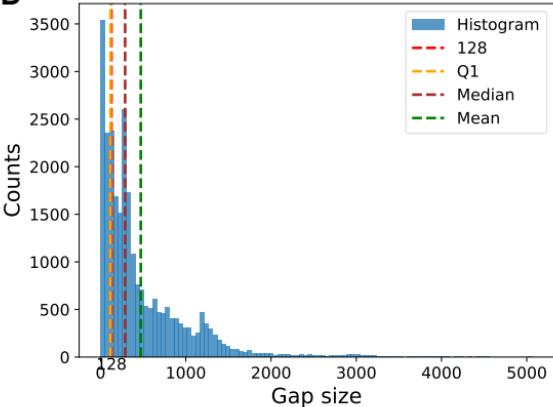


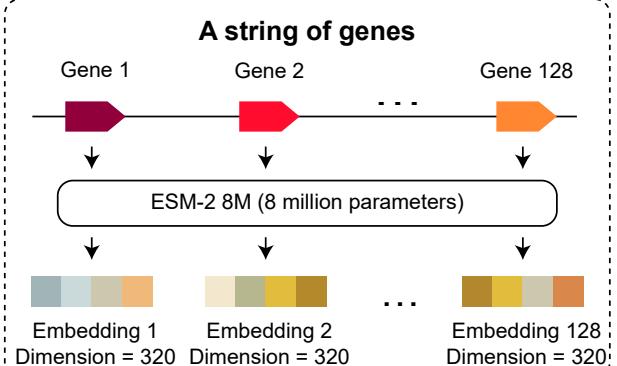
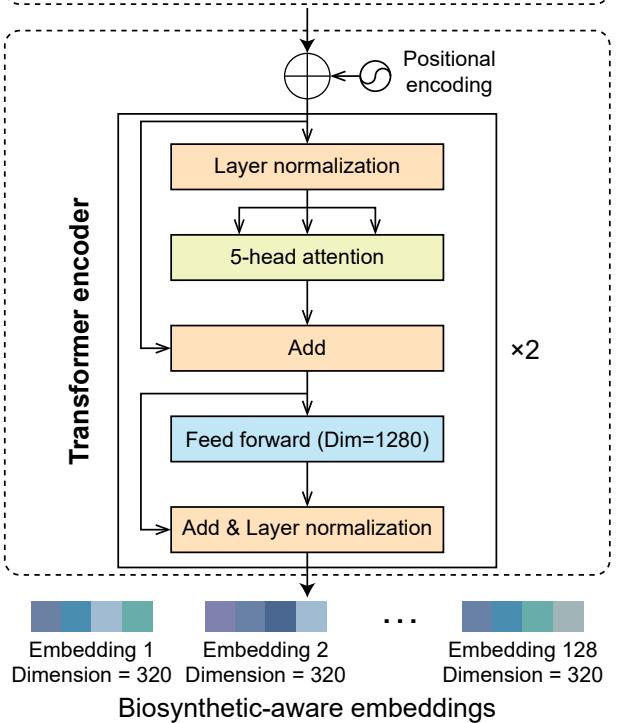
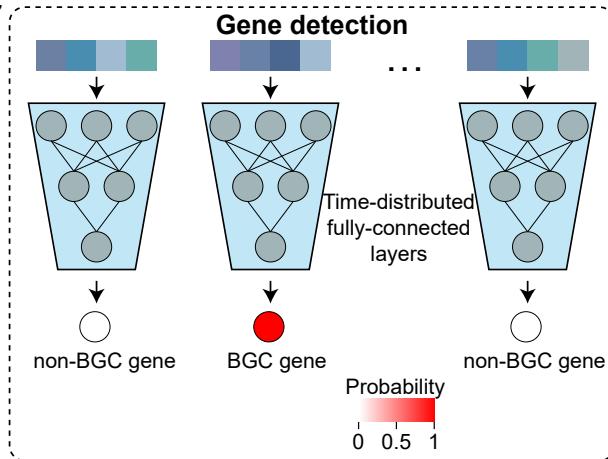
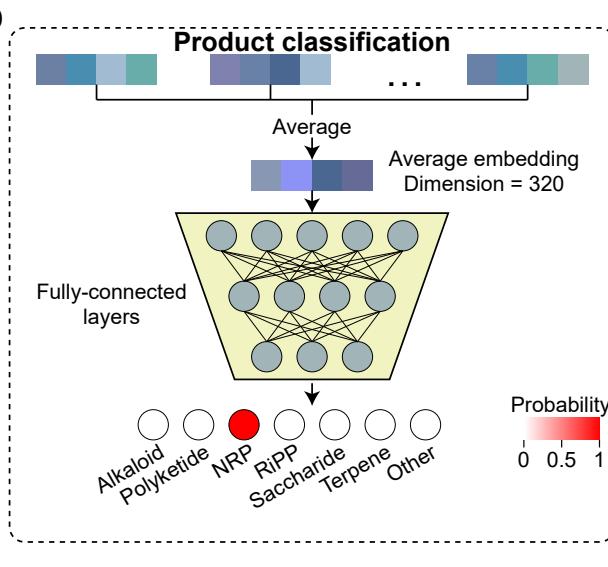


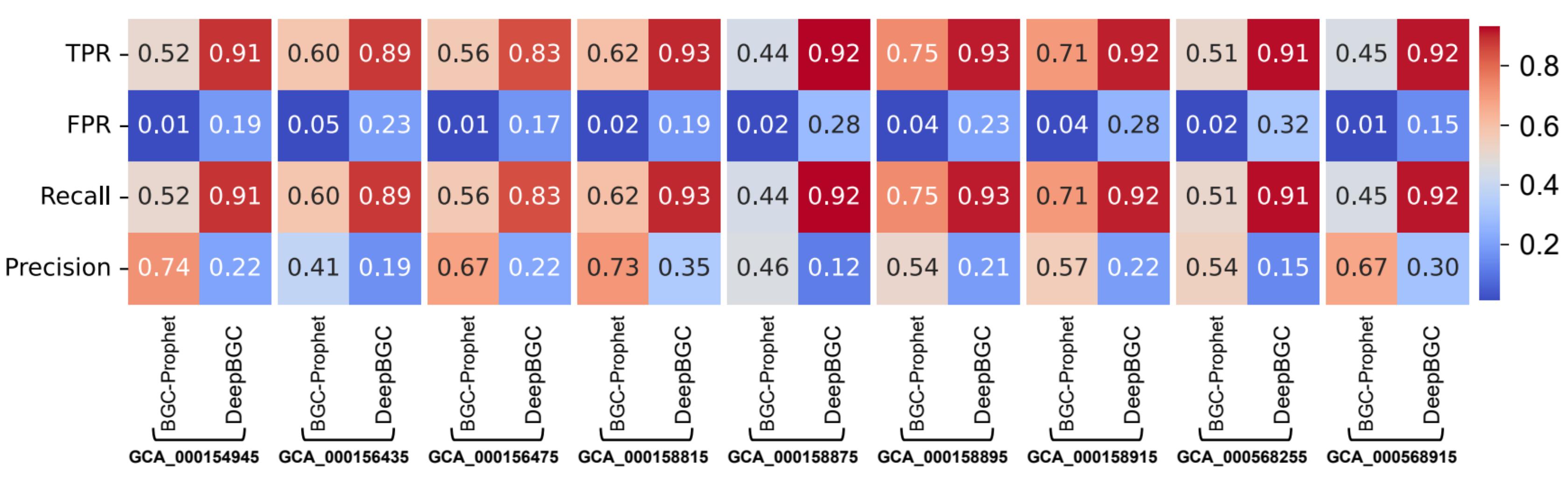
- a Acidobacteriota
- b Actinomycetota
- c Armatimonadota
- d Bacillota
- e Bacillota\_C
- f Bacillota\_F
- g Bdellovibrionota
- h Chloroflexota
- i Cyanobacteriota
- j JADJOY01
- k Myxococcota
- l Planctomycetota
- m Pseudomonadota
- n Tectomicrobia
- o Verrucomicrobiota

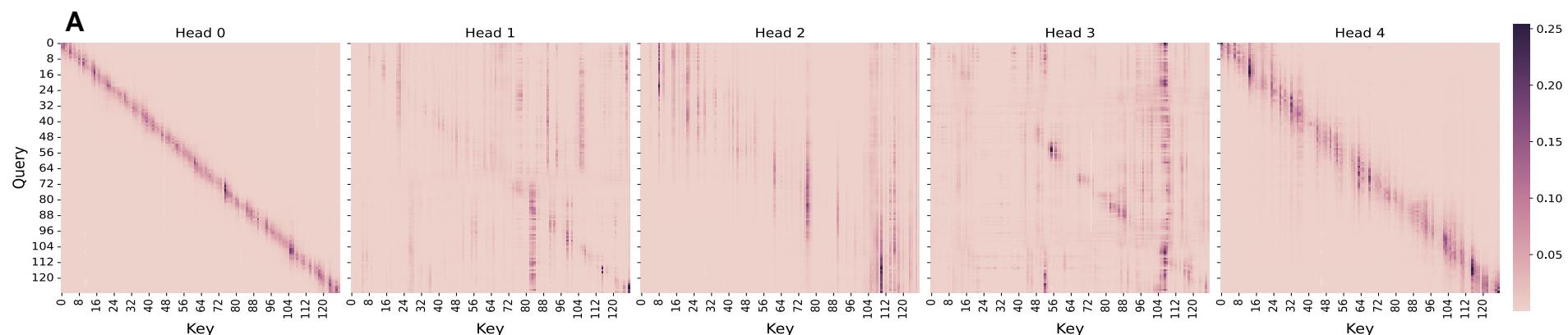
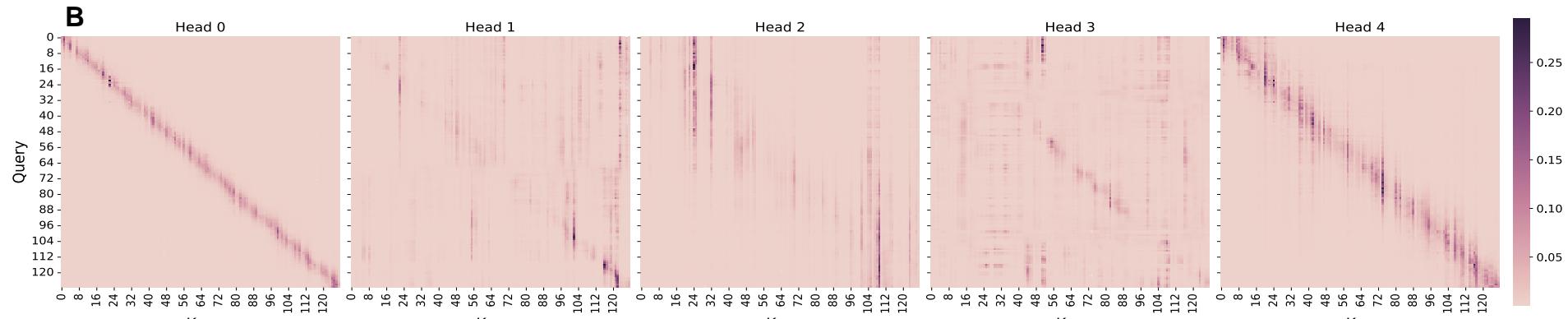
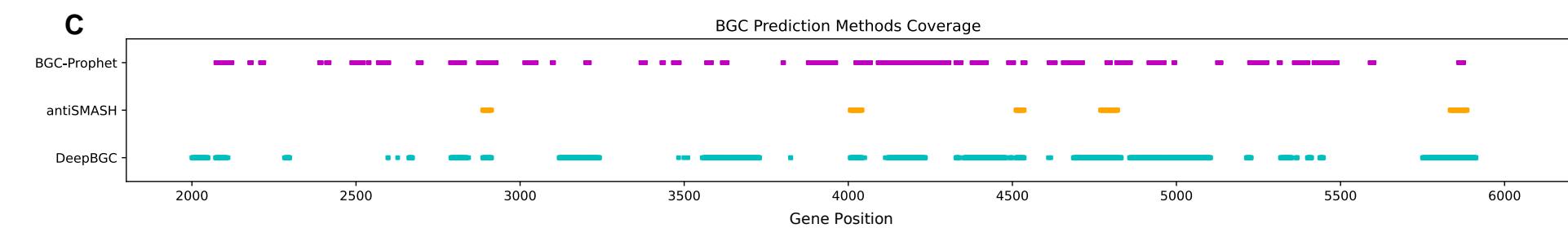




**A****B****C****D**

**A****B****C****D**





Pearson Correlation Coefficient = 0.91

