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Abstract: 

Accurate detection and quantification of mRNA isoforms from nanopore long-read sequencing 1 

remains challenged by technical noise, particularly in single cells. To address this, we introduce 2 

Isosceles, a computational toolkit that outperforms other methods in isoform detection sensitivity 3 

and quantification accuracy across single-cell, pseudo-bulk and bulk resolution levels, as 4 

demonstrated using synthetic and biologically-derived datasets. Isosceles improves the fidelity 5 

of single-cell transcriptome quantification at the isoform-level, and enables flexible downstream 6 

analysis.  As a case study, we apply Isosceles, uncovering coordinated splicing within and 7 

between neuronal differentiation lineages.  Isosceles is suitable to be applied in diverse 8 

biological systems, facilitating studies of cellular heterogeneity across biomedical research 9 

applications. 10 

 11 

Main Text: 12 

Alternative splicing (AS) contributes to the generation of multiple isoforms from nearly all human 13 

multi-exon genes, vastly expanding transcriptome and proteome complexity across healthy and 14 

disease tissues 1. However, current short-read RNA-seq technology is restricted in its ability to 15 

cover most exon-exon junctions in isoforms. Consequently, the detection and quantification of 16 

alternative isoforms is limited by expansive combinatorial possibilities inherent in short-read 17 

data 2. Short read lengths can impose additional challenges at the single-cell level.  For 18 

example, nearly all isoform information is lost with UMI-compatible high-throughput droplet-19 

based protocols which utilize short-read sequencing at the 3' or 5' ends 3. Recent advances in 20 
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long-read sequencing technologies provide an opportunity to overcome these limitations and 21 

study full-length transcripts and complex splicing events at both bulk and single-cell levels, yet 22 

downstream analysis must overcome low read depth, high base-wise error, pervasive truncation 23 

rates, and frequent alignment artifacts 4. To approach this task, computational tools have been 24 

developed for error prone spliced alignment 5 and isoform detection/quantification 6–13. However, 25 

these tools vary widely in accuracy for detection and quantification, their applicability to bulk or 26 

single-cell resolutions, and in their capabilities for downstream analysis.   27 

 28 

Here we present Isosceles (the Isoforms from single-cell, long-read expression suite); a 29 

computational toolkit for reference-guided de novo detection, accurate quantification, and 30 

downstream analysis of full-length isoforms at either single-cell, pseudo-bulk, or bulk resolution 31 

levels. In order to achieve a flexible balance between identifying de novo transcripts and filtering 32 

misalignment-induced splicing artifacts, the method utilizes acyclic splice-graphs to represent 33 

gene structure 14.  In the graph, nodes represent exons, edges denote introns, and paths 34 

through the graph correspond to whole transcripts (Fig 1a). The splice-graph and transcript set 35 

can be augmented from observed reads containing novel nodes and edges that surpass 36 

reproducibility thresholds through a de novo discovery mode, enhancing the adaptability of the 37 

analysis. In the process, sequencing reads are classified relative to the reference splice-graphs 38 

as either node-compatible (utilizing known splice-sites) or edge-compatible (utilizing known 39 

introns), and further categorized as truncated or full-length (Fig. 1a). Full-length reads can be 40 

directly assigned to known transcripts, meanwhile those representing novel transcript paths are 41 

assigned stable hash identifiers. These identifiers facilitate ease of matching de novo transcripts 42 

across data from the same genome build, irrespective of sequencing run, biological sample, or 43 

independent studies. In contrast, truncated reads may introduce ambiguity in terms of their 44 

transcript of origin, reflecting a challenge commonly found in short-read data analysis. To 45 

address this, we utilize a concept developed for short-read methods, Transcript Compatibility 46 

Counts (TCC) 15, as the intermediate quantification of all reads. TCCs are used to obtain the 47 

maximum likelihood estimate of transcript expression through the expectation-maximization 48 

(EM) algorithm (16,17; see Methods). This approach tackles another challenge: accurately 49 

quantifying transcripts at multiple single-cell resolution levels. First, transcripts can be quantified 50 

through EM within single-cells, which can be subsequently used to obtain a neighbor graph and 51 

low dimensional embedding (eg. with common tools like Seurat 18). Second, transcripts can be 52 

quantified at the pseudo-bulk level through EM on the TCCs summed within cell groupings (Fig. 53 

1b). This configuration enables versatility of quantification; pseudo-bulk can be defined by the 54 
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Figure 1– (a) Schematic of Isosceles splice-graph building and path representation of transcripts (colored lines). 
Augmentation with de novo nodes and edges (dashed).  Ambiguous reads are assigned to TCCs to be quanti-
fied using the expectation-maximization (EM) algorithm (bottom > panel b).  (b) The Isosceles approach to 
multi-resolution quantification using the EM algorithm.  Transcripts quantified from single-cell TCCs using EM 
(grey cell, right) can be used for dimensionality reduction (DimRed) with UMAP or to derive a k-nearest neigh-
bors graph (kNN). The original single-cell TCCs can be aggregated based on user-defined pseudo-bulk group-
ings and then transcripts re-quantified, either for clusters/markers, in windows along pseudotime or for each cell 
based on its neighborhood from kNN.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.30.566884doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.30.566884
http://creativecommons.org/licenses/by-nc-nd/4.0/


user in numerous ways, such as through marker labeling, clustering, windows along 55 

pseudotime, or for each cell based on its k-nearest neighbors (kNN).  Downstream statistical 56 

analysis and visualization for percent-spliced-in and alternative start and end sites is seamlessly 57 

integrated to facilitate biological interpretation of isoforms. 58 

 59 

To robustly assess Isosceles performance against a wide-array of currently available software 6–60 
13, we simulated ground-truth nanopore reads from reference transcripts proportional to the bulk 61 

expression profile of an ovarian cell line, IGROV-1, using NanoSim 19 (see Methods). In the 62 

evaluation of annotated transcript quantification against the ground-truth, Isosceles outperforms 63 

other programs, achieving a highly correlated Spearman coefficient of 0.96 (Fig. S1a). Bambu 64 

was the next best method at 0.92, while both IsoQuant and ESPRESSO were lower at 0.88.  65 

Assessing quantification error through absolute relative difference, Isosceles decreases median 66 

and mean error by 21% compared to the next most accurate method, Bambu (0.23 vs. 0.29 and 67 

0.41 vs. 0.52; Fig. 2a and S1a). Importantly, the reduction in error over other methods is even 68 

more pronounced, demonstrating ~45% lower error than the median performer ESPRESSO, 69 

and 67-85% lower error than the worst performer NanoCount due to lack of detection of many 70 

simulated transcripts (Fig. 2a and S1a).  71 

 72 

Since detection of both known and novel transcripts is a major attraction of long-read 73 

sequencing, we investigated the ability of various methods to detect 10%, 20% or 30% of 74 

transcripts when they are withheld from the annotation file (3269, 6537, 9801 transcripts 75 

respectively; 30% in Fig. 2b,c, 10% and 20% in Fig. S2a,b). Here, detection is defined as output 76 

of a transcript annotation with a splicing structure correctly matching a simulated transcript 77 

(irrespective of transcript start/end positions) and a quantification value greater than zero in 78 

transcripts per million (TPM > 0). We calculate the true-positive rate (TPR) as the number of 79 

correct transcripts detected from the total number with reads simulated and the false-discovery 80 

rate (FDR) as the percentage of incorrect transcripts out of the total detected. Notably, most 81 

methods output low TPR even for transcripts that are not withheld from the annotation file, so it 82 

is necessary to separate the TPR calculations for annotated and withheld transcripts (Fig 2b left, 83 

Isosceles=98.9% vs. median other=79.3%). Methods such as NanoCount and LIQA do not have 84 

a de novo detection mode, so we benchmark them with a pre-detection step using StringTie2 20, 85 

adding this step to other tools for consistency (eg. Bambu, FLAIR, ESPRESSO, and also 86 

include IsoQuant alongside single-method detection for Isosceles; Fig. 2b dashed lines). While 87 

ESPRESSO and IsoQuant have modestly higher single-method TPR than Isosceles (2.8 and 88 
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Figure 2– (a) Median relative difference of transcripts per million [TPM] values as defined by abs(ground_truth - 
predicted) / ((ground_truth + predicted)/2) for each method on reference transcripts. (b) Downsampling bench-
marks for 30% transcripts withheld. Transcript detection defined as TPM > 0, the TPR and FDR detection rates 
as a function of the expression percentile (primary x-axis) and TPM values (secondary x-axis) of the simulated 
transcripts for single-program (solid) or pre-detection combinations (dashed), with overall TPR and FDR plotted 
as bars below the graphs.  (c) Median relative difference of annotated and withheld transcripts (30% downsam-
pling) as a function of the simulated expression level, as defined for panel b.
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7.8 percentage points respectively), the combination of Isosceles plus a pre-detection step with 89 

IsoQuant has the highest overall TPR across any program or combination thereof (Fig. 2b 90 

middle; 13.9 percentage points above IsoQuant alone). Importantly, Isosceles exhibits this 91 

relative gain in sensitivity at lower expression levels than other methods (<10 TPM). Overall, the 92 

resulting 49.5% TPR for Isosceles is obtainable at a reasonable FDR of 4.0%, which is 93 

comparable to other programs (Fig. 2b right; median FDR of 3.0%). When further considering 94 

the relative difference of quantification for annotated and withheld transcripts, Isosceles 95 

performs at 16.7% to 76.9% decrease in median error compared to other methods on annotated 96 

transcripts and 21.3% to 81.5% when including de novo (withheld) transcripts across the range 97 

of expression levels (Fig. 2c left & right; Fig. S3a). Similar to detection sensitivity, the most 98 

pronounced improvement in quantification accuracy occurs for the lowest half of expressed 99 

transcripts. Notably, while the single-program detection TPR of withheld transcripts in the latter 100 

comparison impacts on quantification accuracy, Isosceles alone still harbors less difference to 101 

ground-truth than other methods. These data suggest that state-of-the-art de novo detection 102 

and quantification can be achieved with Isosceles. 103 

 104 

While known ground-truth values are effective for benchmarking performance, the analysis of 105 

true biological data introduces additional complexities that simulations may not fully capture. To 106 

address this, we benchmark each method’s fidelity of quantification for the same biological 107 

sample and ability to differentiate decoy samples across bulk and single-cell resolutions. We 108 

perform nanopore sequencing on 10X Genomics single-cell libraries from the pooling of three 109 

ovarian cancer cell lines, IGROV-1, SK-OV-3, and COV504, noting that the cells separate into 110 

three clusters by transcript expression and that each cluster corresponds to a separate genetic 111 

identity according to Souporcell 21 (Fig. 3a; see Methods). Conducting bulk nanopore 112 

sequencing in parallel on MinION and PromethION platforms, we investigate the consistency of 113 

those same cell lines as well as the ability to distinguish against four additional ovarian cancer 114 

cell lines sequenced as decoys, namely COV362, OVTOKO, OVKATE, and OVMANA. We find 115 

that Isosceles consistently maintains the lowest mean relative difference (24-43% less than 116 

other methods) and the highest Spearman correlation (0.87 for Isosceles vs. 0.75 for the next 117 

highest, Sicelore) amongst methods quantified on the same cell line in bulk and pseudo-bulk 118 

(Fig. 3b-c). We further find that this performance is recapitulated when comparing across 119 

technical runs, between platforms, and independent of the number of cells included or 120 

transcripts compared for IGROV-1 (Fig. S3b-c; Fig. S4b). To ensure the observed results reflect 121 

accuracy and not merely precision, we stringently consider the consistency of difference 122 
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Figure 3– (a) 2D UMAP embedding of transcript-expression level quantifications from nanopore data of pooled 
IGROV-1, SK-OV-3, and COV504 ovarian cell lines, subsequently colored by genetic identity (according to 
Souporcell). (b) Mean relative difference (color scale) of each program’s quantifications across resolutions 
(pseudo-bulk vs. bulk data) for the top 4000 most variable transcripts. (c) Mean relative difference and Spear-
man correlation across matched and decoy comparisons for the top 4000 most variable transcripts (error bars 
show std. deviation) (d) Mean relative difference (as defined for Fig. 2a) between ground truth and estimated 
TPM values from simulated reads at pseudo-bulk (solid lines) and single-cell level (dashed lines).
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between matched and decoy comparisons. Here, Isosceles exhibits a 1.4- to 2.9-fold greater 123 

absolute difference using Spearman correlation and mean relative diff. respectively as 124 

compared to other methods (lower bound of 95% confidence interval, see Methods; Fig. 3b-c; 125 

Fig. S4a,c).  To provide orthogonal support for this conclusion, we simulated a hundred cells at 126 

approximately ten thousand reads per cell using NanoSim with a single-cell error model (see 127 

Methods). While all methods show inflated error for single-cells compared to pseudo-bulk, 128 

Isosceles harbors lower average error than other methods for both, demonstrating quantification 129 

accuracy even in a data-sparse context (Fig. 3d).  130 

 131 

Isosceles' capabilities for accurate and flexible quantification also enhance downstream analysis 132 

and biological discovery. To demonstrate, we reanalyzed 951 single-cell nanopore 133 

transcriptomes from a mouse E18 brain. Investigating transcriptional markers (Fig. S5), we 134 

observe the major cell types identified in the original study using Sicelore9.  Isosceles 135 

quantifications provide greater resolution however, separating differentiating glutamatergic 136 

neurons into two distinct trajectories instead of one (annotated here as T1 and T2), in addition to 137 

the single GABAergic trajectory using Slingshot22 (Fig. 4a). We also observe separation of radial 138 

glia and glutamatergic progenitor cells, which were connected in the original study. Isosceles' 139 

versatility of pseudo-bulk quantification coupled to generalized linear models (GLM), further 140 

distinguishes downstream experimental design capabilities for biological discovery. For 141 

example, to investigate transcriptional dynamics within trajectories we apply the EM algorithm to 142 

pseudo-bulk windows, quantifying transcript expression as a function of pseudotime. To 143 

summarize individual transcript-features, Isosceles provides the inclusion levels of alternative 144 

splicing (AS) events, such as alternative exons and splice sites quantified as percent-spliced-145 

in2,23 [PSI] or counts-spliced-in [CSI] (see Methods). In order to test for differential inclusion 146 

versus exclusion as a function of pseudotime (or any other condition), Isosceles seamlessly 147 

integrates with the DEXseq package to utilize GLMs in the context of splicing (see Methods). 148 

Applying the method identifies 25 AS events changing within trajectories as well as 21 changing 149 

between trajectories respectively (Table S1).  Isosceles also implements the ‘isoform switching’ 150 

approach utilized in the original study (see Methods). However, we note that applying this 151 

method only identifies transcripts changing between major clusters, and none within 152 

glutamatergic or GABAergic neurogenesis trajectories (including the exemplar genes Clta and 153 

Myl6 presented in the original study; eg. Fig S6a).  154 

 155 
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Figure 4 – (a) 2D UMAP embedding from PCA performed jointly on variable gene and transcript features. Gradient 
coloring by pseudotime according to each trajectory. Glutamatergic progenitors are abbreviated Pro., Immature GAB-
Aergic neurons as Imm. and Mature neurons of both sub-types as Mat. T1 and T2 describe the two trajectories of 
Glutamatergic neurogenesis observed. (b) Heatmap of significant AS events colored by the ratio of observed CSI vs. 
permuted CSI. Permutations within (top) or across all (bottom) trajectories are separated. (c) UMAP density column 
from top to bottom: Celf2 gene expression, Celf2 alternative 5′ splice site (A5) in intron 12 (Celf2:i12:A5; 
chr2:6560659-6560670, row highlighted in panel b), and the juxtaposed alternative 3′ splice site (A3) for intron 12 
(Celf2:i12:A3; chr2:6553965-6553982). (d) AS event diagram on the (top) of Celf2 gene intron 12 where exons are 
shown as boxes and introns as lines (gene on the `-` strand), with the A5 event in red, the A3 event in blue, and reads 
from cells in the beginning and the end of the glutamatergic T1 trajectory shown respectively (from boxed regions 
annotated in the bottom panel). Bottom panel shows plots of CSI for windows along pseudotime for the observed data 
(A5, red) and (A3, blue) plotted over the background permutations in gray. (e) Mean PSI values with standard error as 
bars for human (left) and mouse (right) samples from the VastDB Mmu10 and Hsa38 short-read splicing databases24.
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One major challenge in the interpretation of single-cell data at the transcript-level (or event-156 

level) is that fluctuations in detection or quantification may be attributable to gene expression 157 

changes alone. To decouple splicing dynamics and visualize them independently, we utilize a 158 

permutation-based approach. We estimate a background distribution by shuffling each gene’s 159 

splicing quantification among cells expressing that gene (within and between trajectories). We 160 

then visualize log ratios of the observed CSI values versus the mean expected CSI from these 161 

permutations (Fig. 4b; see Methods). Here, we observe AS events that exhibit precise changes 162 

within specific neuronal differentiation trajectories (such as only T1 or T2), including several 163 

RNA binding proteins (eg. Celf2, Hnrnpa2b1, Luc7l3, Ythdc1).  Exemplifying a unique mode of 164 

alternative splicing in the gene Celf2, we observe a coordinated switch from one alternative 165 

donor splice site to an alternative acceptor splice site in the same intron as cells differentiate 166 

from glutamatergic progenitor to mature neurons (T1 trajectory, Fig. 4c-d). To validate the 167 

statistical significance of this event, we compare observed to permuted values using a stringent 168 

empirical test (see Methods). Here, we find the splicing-change is robustly independent of the 169 

overall changes in Celf2 expression that simultaneously occur (Fig. 4c-d & Fig. S7c; pval < 170 

3.8x10-4). Underscoring biological significance, we note the two alternative splice sites have 171 

orthologs in other mammalian species (as annotated in VastDB 24) and high sequence 172 

conservation in the intronic region surrounding both splice sites (Fig. S7a-b). We validate the 173 

conserved mutual exclusivity and switch-like splicing change in human and mouse, 174 

recapitulating the longitudinal observation across embryonic brain samples from bulk short-read 175 

datasets 24 (Fig. 4e), including an in vitro study of mouse neuronal differentiation 25 (Fig. S7d).  176 

 177 

In summary, Isosceles is a computational toolkit with favorable performance compared to other 178 

methods, as demonstrated through rigorous benchmarks on simulated and biological data from 179 

nanopore sequencing across ovarian cell lines. In these benchmarks, Isosceles performs 180 

transcript detection and quantification with accuracy, revealing improvements over existing 181 

methods that are most pronounced at lower expression levels. Notably, transcription factors and 182 

other regulatory proteins typically exhibit low gene expression levels, accompanied by rapid, 183 

fine-tuned regulation in mRNA and protein turnover rates 26.  Such regulatory genes are 184 

frequently the focus of single-cell biological investigations, underscoring the importance of 185 

precision in this range. Through multi-resolution sequencing of ovarian cancer cell lines, we 186 

benchmark fidelity of quantification, demonstrating Isosceles’ performant capacity to 187 

consistently reproduce results for the same sample, and to differentiate among related yet 188 

distinct samples. Such intrinsic differences between cell lines, even those of the same tissue 189 
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origin, may be more substantial than many biological changes typically investigated in 190 

biomedical research.  191 

 192 

We further illustrate that these performant capabilities are enabling in the context of biological 193 

discovery.  In our case study, we utilize Isosceles to uncover the dynamics of alternative splicing 194 

in differentiating neurons. Here, Isosceles provides enhanced resolution and reveals numerous 195 

AS events not reported in the original study. Importantly, these results reveal fine-tuned 196 

regulation within fate-determined trajectories and not only between major clusters (eg. radial glia 197 

vs. mature neurons). Among these events are genes encoding disease relevant RNA binding 198 

proteins that are themselves implicated in the regulation of neuronal differentiation. The Celf2 199 

gene, for instance, plays a central role in neurogenesis, as it modulates the translation of target 200 

mRNAs through its shuttling activity 27. The example in Celf2 (presented in Fig. 4) highlights a 201 

switch-like splicing event that results in a conserved substitution of five to seven amino acids 202 

within the protein's disordered region. This is akin to peptide changes introduced by 203 

microexons, which have been attributed functional roles in neurogenesis, including translational 204 

control of mRNAs through recruitment to membrane-less condensates, and dysregulation in 205 

disease 28–30. These results demonstrate that Isosceles is an effective method for hypothesis 206 

generation and biological discovery, offering insight into the splicing dynamics of a key regulator 207 

of differentiation in our case study.   208 

 209 

Taken together, Isosceles is a flexible toolkit for the analysis of long-read bulk and single-cell 210 

sequencing that outperforms existing methods in detection and quantification across biological 211 

resolution levels.  Based on its accuracy and flexibility for experimental designs, Isosceles will 212 

significantly aid researchers in transcriptomic studies across diverse biological systems. 213 

 214 

 215 

 216 

Data/Code Availability: 217 

Isosceles R package code, documentation, and vignettes are released on github 218 

(https://github.com/timbitz/Isosceles) under an open source GPL-3 license. All benchmarking 219 

code, virtual environments, and quantification data necessary to reproduce the figures/analyses 220 

in the manuscript are similarly released (analysis code: 221 

https://github.com/timbitz/Isosceles_paper, singularity containers: 222 

https://doi.org/10.5281/zenodo.8180648, benchmark quantifications: 223 
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https://doi.org/10.5281/zenodo.8180604, raw simulated data: 224 

https://doi.org/10.5281/zenodo.8180695, mouse E18 brain scRNA-Seq data: 225 

https://doi.org/10.5281/zenodo.10028908).  All biological sequencing data is deposited in the 226 

NCBI Gene Expression Omnibus (GEO) under GSE248118. 227 
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Figure S1– (a) Continued from Fig. 2a, mean relative difference of ground-truth vs. estimated TPM. (b) Scatter 
plots (with labeled Spearman coefficient) of estimated vs. ground-truth TPM values on log scale.  Estimated TPM 
values below 0.001 are manually assigned a value of 0.001 on the plot. (c) MA plots of the fold change between 
estimated and ground-truth TPM vs. ground-truth TPM values on log scale. Estimated TPM values below 0.001 
are manually assigned a value of 0.001 for the fold change calculation.
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Figure S2– (a, b) Continuation of results from Fig. 2b for 10% and 20% downsampled simulated datasets (see 
Fig. 2b for additional legend and description).
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Figure S3– (a) Median relative difference for the additional 10% and 20% downsampling (left; see Fig. 2c 
for additional legend and description). Mean relative difference for the 30% downsample shown (10% and 
20% is concordant, data not shown). (b) Mean relative difference between two runs of the same IGROV-1 
sample sequenced with a PromethION (P), MinION (M), or between the two (MP). (c) Correlations and 
relative difference of pseudo-bulk vs. bulk for top 5000 expressed transcripts in IGROV-1 cells as a 
function of the number of top ranked cells (by UMI count) included in the pseudo-bulk (left, middle right) 
and as a function of the top number of transcripts included for the top 64 cells (middle left, right). 
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Figure S4– (a) Continued from Fig. 3b, Spearman correlations for each cell line in pseudo-bulk (by genetic 
identity) vs. the seven bulk nanopore sequenced ovarian cell lines. (b) Alternative version of Fig. 3c, including all 
transcripts for each program with >=1 TPM among the three cell lines in pseudo-bulk. (c) Continued from Fig. 2c, 
overlaid scatter plots of all matched (left) and decoy (right) comparisons, where each point is a transcript from 
one of the comparisons.
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Figure S5–(a) Heatmap of marker gene signature expression along clusters colored according to Fig. 4a. (b) 
Density plots of each of the corresponding gene signatures overlaid on the UMAP (see Fig 4a). 
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Figure S6– (a) Exemplar result of ‘isoform switching’ analysis, the gene Clta is consistent with the findings 
highlighted in the original study. The two isoforms 204 and 206 show an expression difference between radial 
glia and glutamatergic neurons. (b) Expanded version of Fig. 4b plot (with the same scales), but labeled by gene 
:  short hash id : event type.  The short hash id matches the ‘psi_event_label’ column label Table S1, which 
contains the genomic coordinates and Ensembl gene ids.  The event type abbreviations are explained in the 
Methods, eg. CE = Core Exonic interval, A5 = Alternative 5’ splice site, A3 = Alternative 3’ splice site, RI = 
Retained Intron. 
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Online Methods: 244 

 245 

Isosceles Splice-graphs: 246 

Splice-graph compatibility is defined for reads using various stringency levels to match their 247 

concordance with existing knowledge. Reads are classified based on compatibility as Annotated 248 

Paths (AP), Path Compatible (PC), Edge Compatible (EC), Node Compatible (NC), De-novo 249 

Node (DN), Artifact Fusion (AF), Artifact Splice (AS), and Artifact Other (AX). AP refers to full-250 

length transcript paths that perfectly match a reference transcript from the input gene annotation 251 

and are quantified by default. PC reads follow transcript paths that are a traversal of an AP, and 252 

may be truncated or full-length or with differing transcript start or end positions. EC reads 253 

traverse annotated splice-graph edges (introns) and may be truncated or full-length. NC reads 254 

are paths that traverse only annotated splice-graph nodes (splice-sites) but contain at least one 255 

novel edge. DN reads have paths that traverse a de novo node (splice-site). AF reads traverse 256 

paths connecting at least two splice-graphs for annotated genes that do not share introns with 257 

each other. AS reads are assigned to genes, but traverse an unknown and irreproducible node 258 

(splice-site), while AX reads lack compatibility due to ambiguous strand or lack of gene 259 

assignment. 260 

 261 

Reads are also classified based on their truncation status, which includes Full-Length (FL), 5' 262 

Truncation (5T), 3' Truncation (3T), Full-Truncation (FT), and Not Applicable (NA). AP 263 

transcripts are automatically annotated as FL, and truncation status is checked only for PC, EC, 264 

NC, and DN transcripts. AF, AS, and AX transcripts are automatically labeled NA. Reference 265 

transcripts used for truncation status classification are recommended to be filtered to only the 266 

GENCODE 'basic' dataset (tag=`basic`), but also could be all transcripts in the provided 267 

annotations, as decided by the user. Full-length reads are those whose paths splice from a first 268 

exon (sharing a reference transcripts first 5' splice site) and whose paths splice to a last exon 269 

(sharing a reference transcripts final 3' splice site).  270 

 271 

To add nodes with one or more de novo splice sites to the splice-graph, each splice-site must 272 

meet two conditions: it is observed in at least the minimum number of reads (default: 2) and it is 273 

connected to a known splice site in the splice-graph with least a minimum fraction (default: 0.1) 274 

of that known splice site’s connectivity. Additionally, annotations for known transcripts and 275 

genes are merged and extended based on specific criteria. For example, any annotated genes 276 

sharing introns with each other are merged into one gene and given a new gene_id & 277 
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gene_symbol (comma-separated list of original Ensembl IDs and gene symbols). Annotated 278 

spliced (and unspliced) transcripts sharing the same intron structure, as well as transcript start 279 

and end bins (default bin size: 50 bp) are merged together and given a unique transcript 280 

identifier.  281 

 282 

The method offers three modes of extending annotations to include de novo transcripts: strict, 283 

de_novo_strict, and de_novo_loose. In the strict mode, only AP transcripts are 284 

detected/quantified. In the de_novo_strict mode, AP transcripts and filtered FL transcripts of the 285 

EC and NC classes are included in quantification. In the de_novo_loose mode, AP transcripts 286 

and filtered FL transcripts of the EC, NC, and DN classes can be included. 287 

 288 

For downstream analysis of individual transcript features, AS events are defined as the set of 289 

non-overlapping exonic intervals that differ between transcripts of the same gene. These are 290 

quantified as percent-spliced-in or counts-spliced-in according to the sum of the relative 291 

expression or the raw counts of the transcripts that include the exonic interval respectively. AS 292 

events are classified into different types similar to previous methods analyzing splicing from 293 

short-read data 2, including core exon intervals (CE), alternative donor splice sites (A5), 294 

alternative acceptor splice sites (A3), and retained introns (RI).  Isosceles can also quantify 295 

tandem untranslated regions in the first or last exons including transcription start sites (TSS) 296 

and alternative polyadenylation sites (TES). 297 

 298 

Isosceles Quantification: 299 

We use the Expectation-Maximization (EM) algorithm to obtain the maximum likelihood estimate 300 

(MLE) of transcript abundances, as used previously in transcript quantification methods for 301 

short-read data such as our prior software Whippet 2, or the approach’s conceptual precursors 302 

RSEM 16 and/or Kallisto 17. Specifically, we quantify transcript compatibility counts (TCCs) based 303 

on fully contained overlap of reads to the spliced transcript genomic intervals (including an 304 

extension [default: 100 bp] for transcript starts/ends), with strand for unspliced reads ignored by 305 

default. For computational efficiency, TCCs matching more than one gene are disallowed in the 306 

current version. The likelihood function models the probability of observing the data given the 307 

current estimates of compatible transcript abundances, and is defined as described previously 308 

for transcript estimation from short-read data with Whippet 2, with the exception of effective 309 

transcript length. Here, due to the long length of nanopore reads, we define the effective 310 

transcript length to be the maximum of the mean read length vs. the transcript's actual length, 311 
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then divided by the mean read length. This directly accommodates shorter transcripts which 312 

would be fully spanned by the average read and are thus assigned an effective length of 1.0, 313 

whereas longer transcripts are represented proportionally to that value. In contrast, the user 314 

defined parameter specifying single-cell data does not use length normalization due to the 315 

anchoring of reads to the 5' or 3' ends of transcripts which assumes read coverage irrespective 316 

of transcript length.  The EM algorithm iteratively optimizes the accuracy of transcript 317 

abundance estimates derived from TCCs, continuing until the absolute difference between 318 

transcript fractions is less than a given threshold (default:0.01) between iterations, or until the 319 

maximum number of iterations is reached (default: 250). 320 

 321 

Simulating ONT data: 322 

In this study, the Ensembl 90 genome annotation (only transcripts with the GENCODE 'basic' 323 

tag) was used for all simulations, focusing specifically on spliced transcripts of protein-coding 324 

genes to exclude single-isoform non-coding genes. In order to simulate data with realistic 325 

transcriptional profiles, we quantified the expression of reference annotations in IGROV-1 cells 326 

using publicly available short-read data ([sample, project] accession ids: [SRR8615844, 327 

PRJNA523380]; https://www.ebi.ac.uk/ena/browser/view/SRR8615844) and Whippet v1.7.3 328 

using default settings. Only transcripts with non-zero expression in IGROV-1 were retained for 329 

simulations. For detection benchmarks, the Ensembl 90 annotation file (in Gene Transfer 330 

Format [GTF]) was randomly downsampled such that the longest transcript of each gene was 331 

always retained to ensure at least one full-length major isoform for each gene (by 10%, 20%, 332 

and 30% downsampling, where 99.8-100.0% of downsampled transcripts had unique exon-333 

intron architectures).  In order to simulate Oxford Nanopore Technologies (ONT) reads using 334 

NanoSim, we trained error models on bulk nanopore RNA-Seq FASTQ files concatenated from 335 

sequencing three cell lines: SK-OV-3 (SAM24385455), COV504 (SAM24385457), and IGROV-1 336 

(SAM24385458). Nanopore single-cell RNA-Seq (nanopore scRNA-Seq) read models were also 337 

generated from the pooled set of the aforementioned cell lines (SAM24404003). A total of 100 338 

million reads were simulated from each error model and then the first 12 million reads deemed 339 

alignable by NanoSim were extracted. 340 

 341 

To align the simulated reads provided in BAM format to all benchmark programs, Minimap2 was 342 

employed, using Ensembl 90 introns given in a BED file and applying a junction bonus 343 

parameter of 15. For the scRNA-Seq ONT dataset used to create the read model, various tools 344 

detected a similar number of cells (~2460), but the median number of unique molecular 345 
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identifiers (UMIs) per cell differed. The Sicelore preprocessing of ONT scRNA-seq, identified 346 

between 3,000 and 6,000 UMIs per cell, which were provided in BAM format for biologically 347 

derived data benchmarks to Sicelore, IsoQuant, and Isosceles with cell barcode and UMI tags 348 

annotated (Fig. 3a/b). In contrast, FLAMES, with its own UMI detection and deduplication 349 

processes, detected around 13,500 UMIs per cell. To strike a balance between the varying 350 

results from different tools, a compromise of 10,000 reads per cell was chosen for this study. 351 

 352 

To simulate scRNA-Seq ONT data, a BAM file containing aligned simulated reads from the 353 

scRNA-Seq read model was randomly downsampled 100 times using samtools, with a 354 

subsampling proportion of 0.000833. This resulted in approximately 10,000 reads out of the 355 

original 12 million for each BAM file. A custom Python script (see supplemental Benchmark 356 

commands) was used to assign unique cell barcode sequences and UMI sequences for each 357 

read within the 100 BAM files. These subsampled BAM files were then merged and sorted using 358 

samtools. 359 

 360 

Biological data processing: 361 

The bulk RNA-Seq data included Promethion data (NGS3273), featuring eight sequencing 362 

libraries for seven ovarian cancer cell lines (OVMANA, OVKATE, OVTOKO, SK-OV-3, COV362, 363 

COV504, and IGROV-1), as well as two technical replicates for IGROV-1. For MinION platform 364 

data (NGS3082), two technical replicates for IGROV-1 were sequenced. Factors such as RAM 365 

performance and program speed determined the number of reads simulated in bulk simulations 366 

and downsampled in bulk data. For example, for performing cross platform correlations, the 367 

Promethion data was downsampled to 5 million reads to make it more comparable to MinION 368 

(~6-7 million raw reads) and pseudo-bulk scRNA-Seq (3.5-4.5 million UMIs per cluster, as 369 

detected by Isosceles) in terms of total read depth. This decision was also influenced by an 370 

issue with IsoQuant (https://github.com/ablab/IsoQuant/issues/69), which limited its ability to 371 

process large read files in our hands.  Notably, this issue persisted on a cluster node with 20 372 

CPUs of 2.4GHz and allocated 230 GB of RAM.  373 

 374 

The scRNA-Seq data (SAM24404003) consisted of a mix of three cell lines (SK-OV-3, COV504, 375 

and IGROV-1). The Illumina sequencing (LIB5445371_SAM24404003) was preprocessed using 376 

CellRanger (Version 6.0.1). The ONT sequencing (LIB5445493_SAM24404003) was 377 

preprocessed using the Sicelore workflow, resulting in a BAM file with cell barcode and unique 378 

molecular identifiers annotated.  379 
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 380 

All reads were aligned to the reference genome using minimap2 as discussed for simulated 381 

data. Mitochondrial transcripts common to all method’s output were removed, as they were 382 

strong outliers across methods. Additionally, three specific transcripts outliers across methods 383 

were removed: ENST00000445125 (18S ribosomal pseudogene), ENST00000536684 (MT-384 

RNR2 like 8), and ENST00000600213 (MT-RNR2 like 12).  385 

 386 

Analysis of biological data: 387 

The correlation and relative difference analyses (Fig. S3b) compared annotated transcripts 388 

between bulk RNA-Seq data from two Promethion and two MinION sequencing replicates of 389 

IGROV-1, both within each platform (using replicates) and between platforms (using averaged 390 

data for each platform). For each comparison, only transcripts with a mean expression of at 391 

least 1 TPM were used.  In Fig. S3c, scRNA-Seq and bulk RNA-Seq data were also compared, 392 

again considering only annotated transcripts. For each program, the IGROV-1 scRNA-Seq 393 

pseudo-bulk cluster (according to genetic identity from Souporcell) was compared with the 394 

averaged bulk RNA-Seq IGROV-1 expression values from two replicates for each platform. 395 

Analyses were also restricted to transcripts with an expression of at least 1 TPM in the single-396 

cell RNA-Seq results. Comparisons were made for each platform using top k cells (highest UMI 397 

count) using the top 5000 transcripts (highest mean expression) to ensure a comparable 398 

number of transcripts across software package, and top N transcripts (highest mean 399 

expression) for 64 top cells (highest UMI count) (Fig. S3c). 400 

 401 

For Fig. 3a, scRNA-Seq and bulk RNA-Seq data analysis was conducted using Bioconductor 402 

packages (scran, scater, etc.) on the transcript and gene level for cells with at least 500 genes, 403 

considering 4000 top highly variable genes/transcripts. Heatmaps were generated to show 404 

correlations and mean relative difference between scRNA-Seq pseudo-bulk results for three cell 405 

line clusters and Promethion bulk RNA-Seq results for 7 ovarian cancer cell lines, similarly only 406 

including annotated transcripts. IGROV-1 expression was averaged from two replicates.  To 407 

compare difference between matched and decoy metrics (Spearman correlation and mean 408 

relative difference), we calculate the absolute difference and compute the lower bound of the 409 

95% confidence interval from the propagated error (as |x-y| - sqrt(sd(x)^2 + sd(y)^2) * 1.96). 410 

 411 

For the case-study in Fig. 4, the raw reads were pre-processed to identify cell barcodes (CB) 412 

and unique molecular identifiers (UMI) according to the Sicelore workflow.  The reads were 413 
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subsequently aligned to the reference genome mm10/GRCm38 (with annotations derived from 414 

GENCODE M25), using Minimap2 with a junction bonus of 15, which targeted both annotated 415 

introns from Gencode M25 and those extracted from the VastDB mm10 GTF file 24.  The aligned 416 

reads with CB and UMI annotations were subsequently quantified with Isosceles. The 951-cell 417 

dataset was filtered to exclude cells that expressed fewer than 100 genes. For dimensionality 418 

reduction, we combine Isosceles gene and transcript counts, culminating in the total 419 

identification of 3,760 variable features (with a target of 4,000), comprising 1,735 genes and 420 

2,025 transcripts. We applied Principal Component Analysis (PCA), calculating 30 components 421 

using the scaled expression of the variable features. Cells were clustered using Louvain 422 

clustering (with resolution parameter of 2) on the Shared Nearest Neighbor (SNN) graph (setting 423 

a k-value of 10). The clusters' identities were determined through gene set scores, particularly 424 

the mean TPM values of markers delineated in the original study (see Fig. S5). Additional 425 

marker genes were identified via the scran::findMarkers function requiring the t-test FDR to be 426 

significant (q-value < 0.05) in at least half of the comparisons to other clusters (selecting top 5 427 

markers of each cluster). 428 

 429 

Pseudotime analysis was performed using Slingshot for differentiating glutamatergic neurons 430 

(identifying two trajectories, T1 and T2), differentiating GABAergic neurons, radial glia, cycling 431 

radial glia and Cajal-Retzius cells (with one trajectory each). To implement the original ‘isoform 432 

switching’ analysis, pairs of clusters were compared, detecting marker transcripts through the 433 

specific scran::findMarkers function (Wilcoxon test). We filter for transcripts of the same gene 434 

showing statistically significant differences in opposite directions (i.e. one upregulated in one 435 

cluster, the other in another cluster). To analyze splicing changes within each trajectory, we 436 

used Isosceles to calculate aggregated TCC values for windows along pseudotime, defining the 437 

window size as 30 cells and the step size as 15 cells. AS events from variable transcripts 438 

abiding by further criteria were selected for downstream analysis. First, mean PSI values across 439 

all cells from the trajectory were between 0.025 and lower than 0.975 to exclude constitutively 440 

included/excluded events. Second, at least 30 cells must have values not equal to 0, 1, or 0.5, 441 

and 30 cells must have a value above 0.1 to select against events with only low counts. 442 

Redundant PSI events, identical in read counts profiles within a trajectory, were excluded, and 443 

those with >0.99 spearman correlation were excluded from visualization in Fig. 4b and Fig. S6b. 444 

For comparative analysis, percent-spliced-in (PSI) count values are denoted as counts-spliced-445 

in (CSI) and defined by PSI * gene counts.  These are juxtaposed with exclusion PSI counts, 446 

calculated as [ (1 - PSI value) * gene counts ] and the inclusion/exclusion pair input into 447 
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DEXSeq31. For each intra-trajectory comparison, our experimental design encompassed 448 

`~sample + exon + pseudotime:exon`. Meanwhile, the inter-trajectory analysis included all 449 

trajectories with a design of `~sample + exon + pseudotime:exon + trajectory:exon`, compared 450 

against a null model of `~sample + exon` using the LRT test.  451 

 452 

To determine ratios of observed vs. expected CSI, we shuffle TCCs across cells with non-zero 453 

counts and apply the EM algorithm, calculating PSI for each window. To obtain expected CSI 454 

we multiply the shuffled PSI values * observed gene counts.  The permutations are conducted 455 

for each AS event across 100 bootstraps. For empirical statistical validation of changes between 456 

the first and last windows of a trajectory (eg. for Celf2), we fit a negative binomial distribution to 457 

each window using maximum likelihood estimation (`fitdistrplus` package) on the permuted CSI, 458 

and calculate high and low one-tailed p-values for the observed CSI.  Combining the high and 459 

low, and low and high p-values of the first and last windows respectively using fisher’s method, 460 

we defined an overall p-value as two times the minimum combined p-value.  Specifically for 461 

heatmap visualization, a broad window size of 100 cells for glutamatergic & GABAergic 462 

neurons, and 50 cells for glia and CR cells, with a consistent step size of 3 cells for smoothing 463 

was utilized. The heatmap values were given as the log2 ratio of observed to expected, with a 464 

pseudocount of 0.1, defining the ratio between PSI counts and the average of the corresponding 465 

permuted PSI counts. 466 

 467 

Benchmark command summary: 468 

https://github.com/timbitz/Isosceles_Paper/blob/devel/Benchmark_commands.md 469 

 470 

Software versions: 471 

Software Version 

Isosceles v0.0.3 

flair v1.7.0 

stringtie v2.2.1 

isoquant v3.0.3 

NanoCount v1.0.0.post6 
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Sicelore v2.0 

bambu v3.2.5 (R 4.3.0, Bioconductor 3.17) 

FLAMES v0.1 

ESPRESSO beta1.3.0 

nanosim v3.1.0 

minimap2 v2.24-r1122 

 472 

Cell culture 473 

All cell lines used in this study were validated by STR analysis and verified mycoplasma 474 

negative by PCR. IGROV1, SK-OV-3, OVTOKO, OVKATE and OVMANA cell lines were 475 

cultured in RPMI-1640 supplemented with 10% heat-inactivated fetal bovine serum (FBS) and 476 

2mM L-Glutamine. COV362 and COV504 cells were cultured in DMEM supplemented with 10% 477 

FBS and 2mM L-Glutamine. Cells were cultured in 37°C and 5% CO2 in a humidified incubator. 478 

Cell line source and catalogue numbers are provided in the table below. Cells were cultured in 479 

10cm2 plates until they reached ~60-80% confluency. For bulk analysis, RNA was purified using 480 

Qiagen’s RNeasy Plus Mini kit (Cat. #74134) according to manufacturer’s instructions. For 481 

single-cell analysis, IGROV1, SK-OV-3 and COV504 cells were trypsinized and pooled together 482 

at a 1:1:1 ratio at a concentration of 1000 cells / μl and submitted for single cell long read 483 

sequencing.  484 

  485 

 486 

Cell line Provider Catalog number 

IGROV-1 NCI DCTD    

SK-OV-3 ATCC HTB-77 

OVTOKO JCRB Cell Bank JCRB1048 

OVKATE JCRB Cell Bank JCRB1044 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2023. ; https://doi.org/10.1101/2023.11.30.566884doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.30.566884
http://creativecommons.org/licenses/by-nc-nd/4.0/


OVMANA JCRB Cell Bank JCRB1045 

COV362 ECACC 07071910 Lot# 07G029 

COV504 ECACC 07071902 Lot# 07I007 

 487 

Reference: 32 488 

 489 

Single-cell, long-read library preparation and nanopore sequencing 490 

Approximately 10 ng of cDNA generated from 10x was amplified using the biotinylated version 491 

of the forward primer from the ONT protocol, ([Btn]_Fwd_3580_partial_read1_defined) and 492 

reverse primer (Rev_PR2_partial_TSO_defined). To get enough cDNA for the pull-down two 493 

PCR reactions were carried out using 2X LongAmp Taq (NEB, Cat. M0287S) with the following 494 

PCR parameters 94℃ for 3 minutes, with 5 cycles of 94℃ 30 secs, 60℃ 15 secs, and 65℃ for 3 495 

mins, with a final extension of 65℃ for 5 minutes. The cDNA was pooled and cleaned up with 496 

0.8X SPRI ratio with an elution volume of 40μL. Concentration was evaluated using the QuBit 497 

HS dsDNA protocol. The amplified cDNA was then captured using 15 μL M270 streptavidin 498 

beads (Thermofisher). Beads were washed three times with SSPE buffer (150 mM NaCl,  10 499 

mM NaH2PO4, and 1 mM EDTA). Beads were then resuspended in 10μL of 5X SSPE buffer 500 

(750 mM NaCl, 50 mM NaH2PO4, and 5 mM  EDTA). Approximately 200 ng of the cDNA in 40μL 501 

were added together with the 10μL M270 beads and incubated at room temperature for 15 502 

minutes. After incubation, the sample and beads are washed twice with 1mL of 1X SSPE. A 503 

final wash is performed with 200 uL of 10 mM Tris-HCl (pH 8.0) and the beads bound to the 504 

sample are resuspended 10μL H2O. PCR was then performed on-bead using the unbiotinylated 505 

version of the primers shown above for 5 cycles according to the same PCR program shown 506 

above. A 0.8X SPRI was performed. The cDNA was eluted in 50 μL and concentration was 507 

evaluated with QuBit HS dsDNA and Tapestation D5000 DNA kit.  508 

 509 

Library preparation for nanopore sequencing was performed according to the LSK-110 kit 510 

protocol with the exception of the end-repair step time which was increased to 30 min. 125 fmol 511 

of final library was loaded on the PromethION (FLO-PRO002) and sequenced for 72 hr. Reads 512 

were basecalled using Guppy v5.0.11. 513 

   514 
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