

Accurate long-read transcript discovery and quantification at single-cell resolution with Isosceles

Michal Kabza³, Alexander Ritter¹, Ashley Byrne⁴, Kostianna Sereti², Daniel Le⁴, William Stephenson⁴, Timothy Sterne-Weiler^{1,2,*}

¹ Department of Oncology Bioinformatics, Genentech Inc., South San Francisco, USA.

² Department of Discovery Oncology, Genentech Inc., South San Francisco, USA.

³ Roche Informatics, F. Hoffmann-La Roche Ltd., Poznań, Poland.

⁴ Department of Next Generation Sequencing and Microchemistry, Proteomics and Lipidomics, Genentech Inc., South San Francisco, USA.

* Correspondence should be addressed to: sternewt@gene.com

Abstract:

1 Accurate detection and quantification of mRNA isoforms from nanopore long-read sequencing
2 remains challenged by technical noise, particularly in single cells. To address this, we introduce
3 Isosceles, a computational toolkit that outperforms other methods in isoform detection sensitivity
4 and quantification accuracy across single-cell, pseudo-bulk and bulk resolution levels, as
5 demonstrated using synthetic and biologically-derived datasets. Isosceles improves the fidelity
6 of single-cell transcriptome quantification at the isoform-level, and enables flexible downstream
7 analysis. As a case study, we apply Isosceles, uncovering coordinated splicing within and
8 between neuronal differentiation lineages. Isosceles is suitable to be applied in diverse
9 biological systems, facilitating studies of cellular heterogeneity across biomedical research
10 applications.

11

Main Text:

13 Alternative splicing (AS) contributes to the generation of multiple isoforms from nearly all human
14 multi-exon genes, vastly expanding transcriptome and proteome complexity across healthy and
15 disease tissues ¹. However, current short-read RNA-seq technology is restricted in its ability to
16 cover most exon-exon junctions in isoforms. Consequently, the detection and quantification of
17 alternative isoforms is limited by expansive combinatorial possibilities inherent in short-read
18 data ². Short read lengths can impose additional challenges at the single-cell level. For
19 example, nearly all isoform information is lost with UMI-compatible high-throughput droplet-
20 based protocols which utilize short-read sequencing at the 3' or 5' ends ³. Recent advances in

21 long-read sequencing technologies provide an opportunity to overcome these limitations and
22 study full-length transcripts and complex splicing events at both bulk and single-cell levels, yet
23 downstream analysis must overcome low read depth, high base-wise error, pervasive truncation
24 rates, and frequent alignment artifacts ⁴. To approach this task, computational tools have been
25 developed for error prone spliced alignment ⁵ and isoform detection/quantification ⁶⁻¹³. However,
26 these tools vary widely in accuracy for detection and quantification, their applicability to bulk or
27 single-cell resolutions, and in their capabilities for downstream analysis.

28
29 Here we present Isosceles (the *Iso*forms from **single-cell**, **long-read** **expression** **suite**); a
30 computational toolkit for reference-guided *de novo* detection, accurate quantification, and
31 downstream analysis of full-length isoforms at either single-cell, pseudo-bulk, or bulk resolution
32 levels. In order to achieve a flexible balance between identifying *de novo* transcripts and filtering
33 misalignment-induced splicing artifacts, the method utilizes acyclic splice-graphs to represent
34 gene structure ¹⁴. In the graph, nodes represent exons, edges denote introns, and paths
35 through the graph correspond to whole transcripts (Fig 1a). The splice-graph and transcript set
36 can be augmented from observed reads containing novel nodes and edges that surpass
37 reproducibility thresholds through a *de novo* discovery mode, enhancing the adaptability of the
38 analysis. In the process, sequencing reads are classified relative to the reference splice-graphs
39 as either node-compatible (utilizing known splice-sites) or edge-compatible (utilizing known
40 introns), and further categorized as truncated or full-length (Fig. 1a). Full-length reads can be
41 directly assigned to known transcripts, meanwhile those representing novel transcript paths are
42 assigned stable hash identifiers. These identifiers facilitate ease of matching *de novo* transcripts
43 across data from the same genome build, irrespective of sequencing run, biological sample, or
44 independent studies. In contrast, truncated reads may introduce ambiguity in terms of their
45 transcript of origin, reflecting a challenge commonly found in short-read data analysis. To
46 address this, we utilize a concept developed for short-read methods, Transcript Compatibility
47 Counts (TCC) ¹⁵, as the intermediate quantification of all reads. TCCs are used to obtain the
48 maximum likelihood estimate of transcript expression through the expectation-maximization
49 (EM) algorithm (^{16,17}; see Methods). This approach tackles another challenge: accurately
50 quantifying transcripts at multiple single-cell resolution levels. First, transcripts can be quantified
51 through EM within single-cells, which can be subsequently used to obtain a neighbor graph and
52 low dimensional embedding (eg. with common tools like Seurat ¹⁸). Second, transcripts can be
53 quantified at the pseudo-bulk level through EM on the TCCs summed within cell groupings (Fig.
54 1b). This configuration enables versatility of quantification; pseudo-bulk can be defined by the

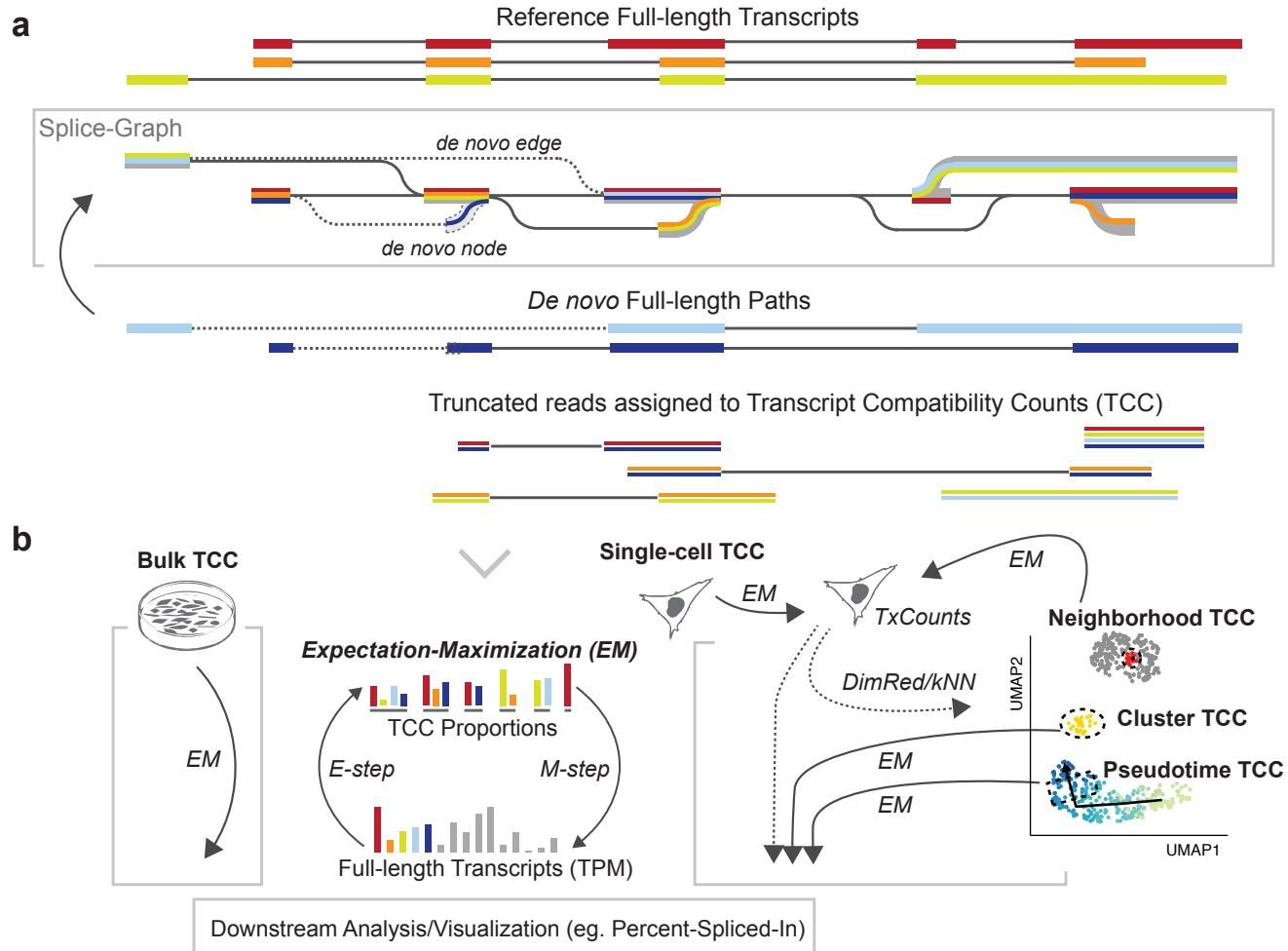


Figure 1— (a) Schematic of Isosceles splice-graph building and path representation of transcripts (colored lines). Augmentation with de novo nodes and edges (dashed). Ambiguous reads are assigned to TCCs to be quantified using the expectation-maximization (EM) algorithm (bottom > panel b). (b) The Isosceles approach to multi-resolution quantification using the EM algorithm. Transcripts quantified from single-cell TCCs using EM (grey cell, right) can be used for dimensionality reduction (DimRed) with UMAP or to derive a k-nearest neighbors graph (kNN). The original single-cell TCCs can be aggregated based on user-defined pseudo-bulk groupings and then transcripts re-quantified, either for clusters/markers, in windows along pseudotime or for each cell based on its neighborhood from kNN.

55 user in numerous ways, such as through marker labeling, clustering, windows along
56 pseudotime, or for each cell based on its k-nearest neighbors (kNN). Downstream statistical
57 analysis and visualization for percent-spliced-in and alternative start and end sites is seamlessly
58 integrated to facilitate biological interpretation of isoforms.

59
60 To robustly assess Isosceles performance against a wide-array of currently available software^{6–13}, we simulated ground-truth nanopore reads from reference transcripts proportional to the bulk
61 expression profile of an ovarian cell line, IGROV-1, using NanoSim¹⁹ (see Methods). In the
62 evaluation of annotated transcript quantification against the ground-truth, Isosceles outperforms
63 other programs, achieving a highly correlated Spearman coefficient of 0.96 (Fig. S1a). Bambu
64 was the next best method at 0.92, while both IsoQuant and ESPRESSO were lower at 0.88.
65 Assessing quantification error through absolute relative difference, Isosceles decreases median
66 and mean error by 21% compared to the next most accurate method, Bambu (0.23 vs. 0.29 and
67 0.41 vs. 0.52; Fig. 2a and S1a). Importantly, the reduction in error over other methods is even
68 more pronounced, demonstrating ~45% lower error than the median performer ESPRESSO,
69 and 67–85% lower error than the worst performer NanoCount due to lack of detection of many
70 simulated transcripts (Fig. 2a and S1a).

71
72
73 Since detection of both known and novel transcripts is a major attraction of long-read
74 sequencing, we investigated the ability of various methods to detect 10%, 20% or 30% of
75 transcripts when they are withheld from the annotation file (3269, 6537, 9801 transcripts
76 respectively; 30% in Fig. 2b,c, 10% and 20% in Fig. S2a,b). Here, detection is defined as output
77 of a transcript annotation with a splicing structure correctly matching a simulated transcript
78 (irrespective of transcript start/end positions) and a quantification value greater than zero in
79 transcripts per million (TPM > 0). We calculate the true-positive rate (TPR) as the number of
80 correct transcripts detected from the total number with reads simulated and the false-discovery
81 rate (FDR) as the percentage of incorrect transcripts out of the total detected. Notably, most
82 methods output low TPR even for transcripts that are not withheld from the annotation file, so it
83 is necessary to separate the TPR calculations for annotated and withheld transcripts (Fig 2b *left*,
84 Isosceles=98.9% vs. median other=79.3%). Methods such as NanoCount and LIQA do not have
85 a *de novo* detection mode, so we benchmark them with a pre-detection step using StringTie2²⁰,
86 adding this step to other tools for consistency (eg. Bambu, FLAIR, ESPRESSO, and also
87 include IsoQuant alongside single-method detection for Isosceles; Fig. 2b *dashed lines*). While
88 ESPRESSO and IsoQuant have modestly higher single-method TPR than Isosceles (2.8 and

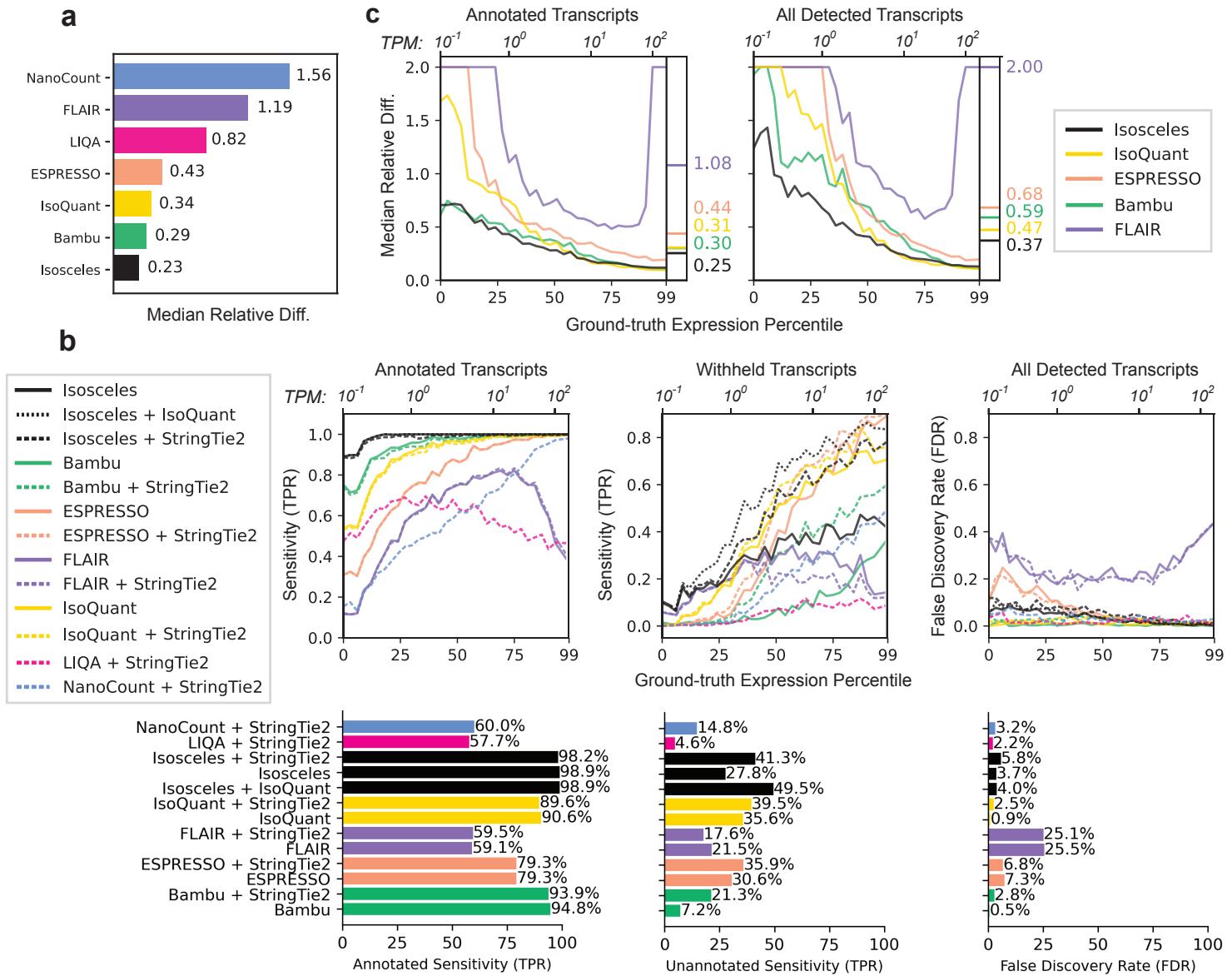


Figure 2– (a) Median relative difference of transcripts per million [TPM] values as defined by $\text{abs}(\text{ground_truth} - \text{predicted}) / ((\text{ground_truth} + \text{predicted})/2)$ for each method on reference transcripts. (b) Downsampling benchmarks for 30% transcripts withheld. Transcript detection defined as $\text{TPM} > 0$, the TPR and FDR detection rates as a function of the expression percentile (primary x-axis) and TPM values (secondary x-axis) of the simulated transcripts for single-program (solid) or pre-detection combinations (dashed), with overall TPR and FDR plotted as bars below the graphs. (c) Median relative difference of annotated and withheld transcripts (30% downsampling) as a function of the simulated expression level, as defined for panel b.

89 7.8 percentage points respectively), the combination of Isosceles plus a pre-detection step with
90 IsoQuant has the highest overall TPR across any program or combination thereof (Fig. 2b
91 *middle*; 13.9 percentage points above IsoQuant alone). Importantly, Isosceles exhibits this
92 relative gain in sensitivity at lower expression levels than other methods (<10 TPM). Overall, the
93 resulting 49.5% TPR for Isosceles is obtainable at a reasonable FDR of 4.0%, which is
94 comparable to other programs (Fig. 2b *right*; median FDR of 3.0%). When further considering
95 the relative difference of quantification for annotated and withheld transcripts, Isosceles
96 performs at 16.7% to 76.9% decrease in median error compared to other methods on annotated
97 transcripts and 21.3% to 81.5% when including *de novo* (withheld) transcripts across the range
98 of expression levels (Fig. 2c *left & right*; Fig. S3a). Similar to detection sensitivity, the most
99 pronounced improvement in quantification accuracy occurs for the lowest half of expressed
100 transcripts. Notably, while the single-program detection TPR of withheld transcripts in the latter
101 comparison impacts on quantification accuracy, Isosceles alone still harbors less difference to
102 ground-truth than other methods. These data suggest that state-of-the-art *de novo* detection
103 and quantification can be achieved with Isosceles.

104
105 While known ground-truth values are effective for benchmarking performance, the analysis of
106 true biological data introduces additional complexities that simulations may not fully capture. To
107 address this, we benchmark each method's fidelity of quantification for the same biological
108 sample and ability to differentiate decoy samples across bulk and single-cell resolutions. We
109 perform nanopore sequencing on 10X Genomics single-cell libraries from the pooling of three
110 ovarian cancer cell lines, IGROV-1, SK-OV-3, and COV504, noting that the cells separate into
111 three clusters by transcript expression and that each cluster corresponds to a separate genetic
112 identity according to Souporcell²¹ (Fig. 3a; see Methods). Conducting bulk nanopore
113 sequencing in parallel on MinION and PromethION platforms, we investigate the consistency of
114 those same cell lines as well as the ability to distinguish against four additional ovarian cancer
115 cell lines sequenced as decoys, namely COV362, OVTOKO, OVKATE, and OVMANA. We find
116 that Isosceles consistently maintains the lowest mean relative difference (24-43% less than
117 other methods) and the highest Spearman correlation (0.87 for Isosceles vs. 0.75 for the next
118 highest, Sicelore) amongst methods quantified on the same cell line in bulk and pseudo-bulk
119 (Fig. 3b-c). We further find that this performance is recapitulated when comparing across
120 technical runs, between platforms, and independent of the number of cells included or
121 transcripts compared for IGROV-1 (Fig. S3b-c; Fig. S4b). To ensure the observed results reflect
122 accuracy and not merely precision, we stringently consider the consistency of difference

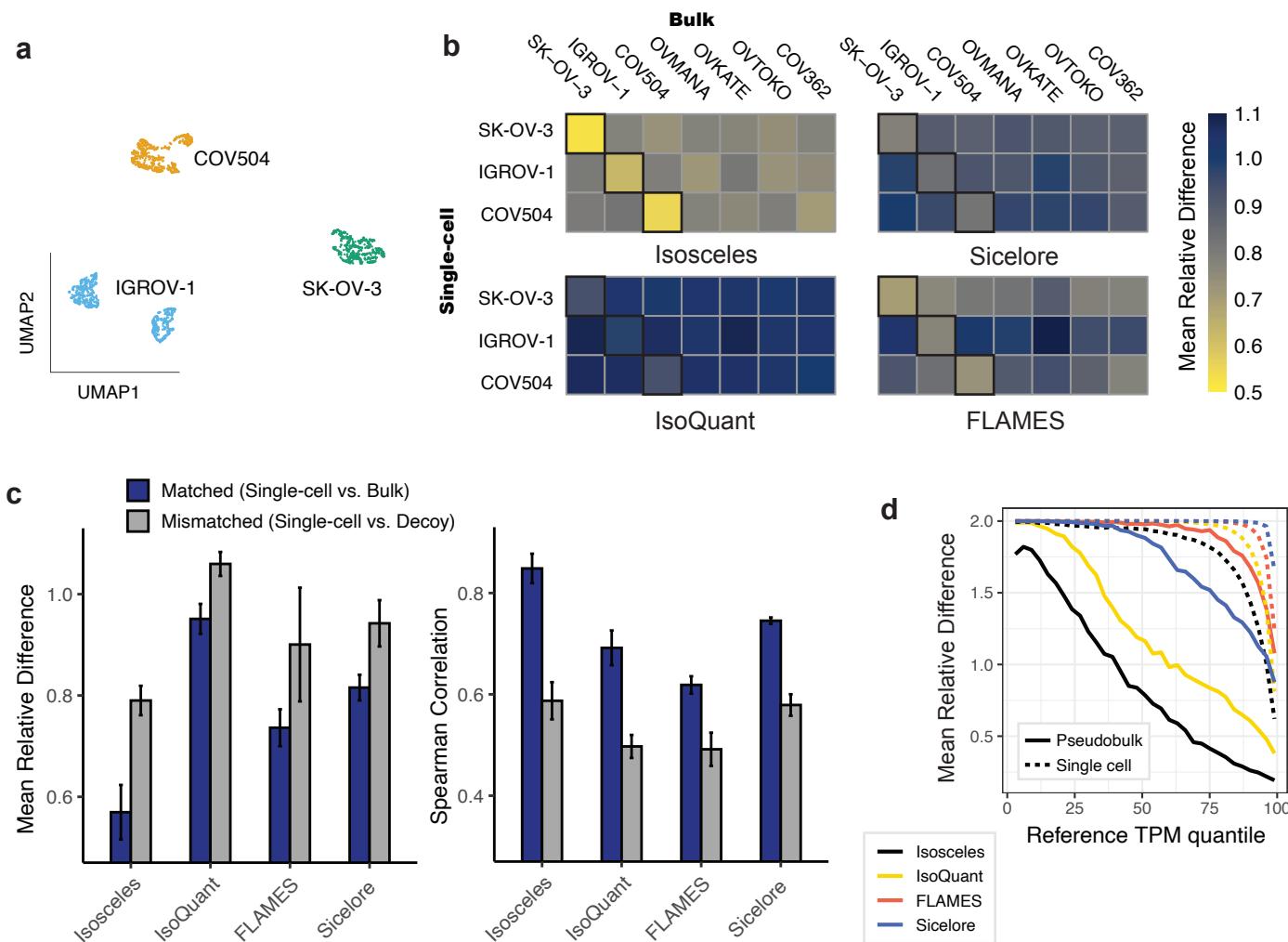


Figure 3— (a) 2D UMAP embedding of transcript-expression level quantifications from nanopore data of pooled IGROV-1, SK-OV-3, and COV504 ovarian cell lines, subsequently colored by genetic identity (according to Souporcell). (b) Mean relative difference (color scale) of each program's quantifications across resolutions (pseudo-bulk vs. bulk data) for the top 4000 most variable transcripts. (c) Mean relative difference and Spearman correlation across matched and decoy comparisons for the top 4000 most variable transcripts (error bars show std. deviation) (d) Mean relative difference (as defined for Fig. 2a) between ground truth and estimated TPM values from simulated reads at pseudo-bulk (solid lines) and single-cell level (dashed lines).

123 between matched and decoy comparisons. Here, Isosceles exhibits a 1.4- to 2.9-fold greater
124 absolute difference using Spearman correlation and mean relative diff. respectively as
125 compared to other methods (lower bound of 95% confidence interval, see Methods; Fig. 3b-c;
126 Fig. S4a,c). To provide orthogonal support for this conclusion, we simulated a hundred cells at
127 approximately ten thousand reads per cell using NanoSim with a single-cell error model (see
128 Methods). While all methods show inflated error for single-cells compared to pseudo-bulk,
129 Isosceles harbors lower average error than other methods for both, demonstrating quantification
130 accuracy even in a data-sparse context (Fig. 3d).

131

132 Isosceles' capabilities for accurate and flexible quantification also enhance downstream analysis
133 and biological discovery. To demonstrate, we reanalyzed 951 single-cell nanopore
134 transcriptomes from a mouse E18 brain. Investigating transcriptional markers (Fig. S5), we
135 observe the major cell types identified in the original study using Sicelore⁹. Isosceles
136 quantifications provide greater resolution however, separating differentiating glutamatergic
137 neurons into two distinct trajectories instead of one (annotated here as T1 and T2), in addition to
138 the single GABAergic trajectory using Slingshot²² (Fig. 4a). We also observe separation of radial
139 glia and glutamatergic progenitor cells, which were connected in the original study. Isosceles'
140 versatility of pseudo-bulk quantification coupled to generalized linear models (GLM), further
141 distinguishes downstream experimental design capabilities for biological discovery. For
142 example, to investigate transcriptional dynamics within trajectories we apply the EM algorithm to
143 pseudo-bulk windows, quantifying transcript expression as a function of pseudotime. To
144 summarize individual transcript-features, Isosceles provides the inclusion levels of alternative
145 splicing (AS) events, such as alternative exons and splice sites quantified as percent-spliced-
146 in^{2,23} [PSI] or counts-spliced-in [CSI] (see Methods). In order to test for differential inclusion
147 versus exclusion as a function of pseudotime (or any other condition), Isosceles seamlessly
148 integrates with the DEXseq package to utilize GLMs in the context of splicing (see Methods).
149 Applying the method identifies 25 AS events changing within trajectories as well as 21 changing
150 between trajectories respectively (Table S1). Isosceles also implements the 'isoform switching'
151 approach utilized in the original study (see Methods). However, we note that applying this
152 method only identifies transcripts changing between major clusters, and none within
153 glutamatergic or GABAergic neurogenesis trajectories (including the exemplar genes Clta and
154 Myl6 presented in the original study; eg. Fig S6a).

155

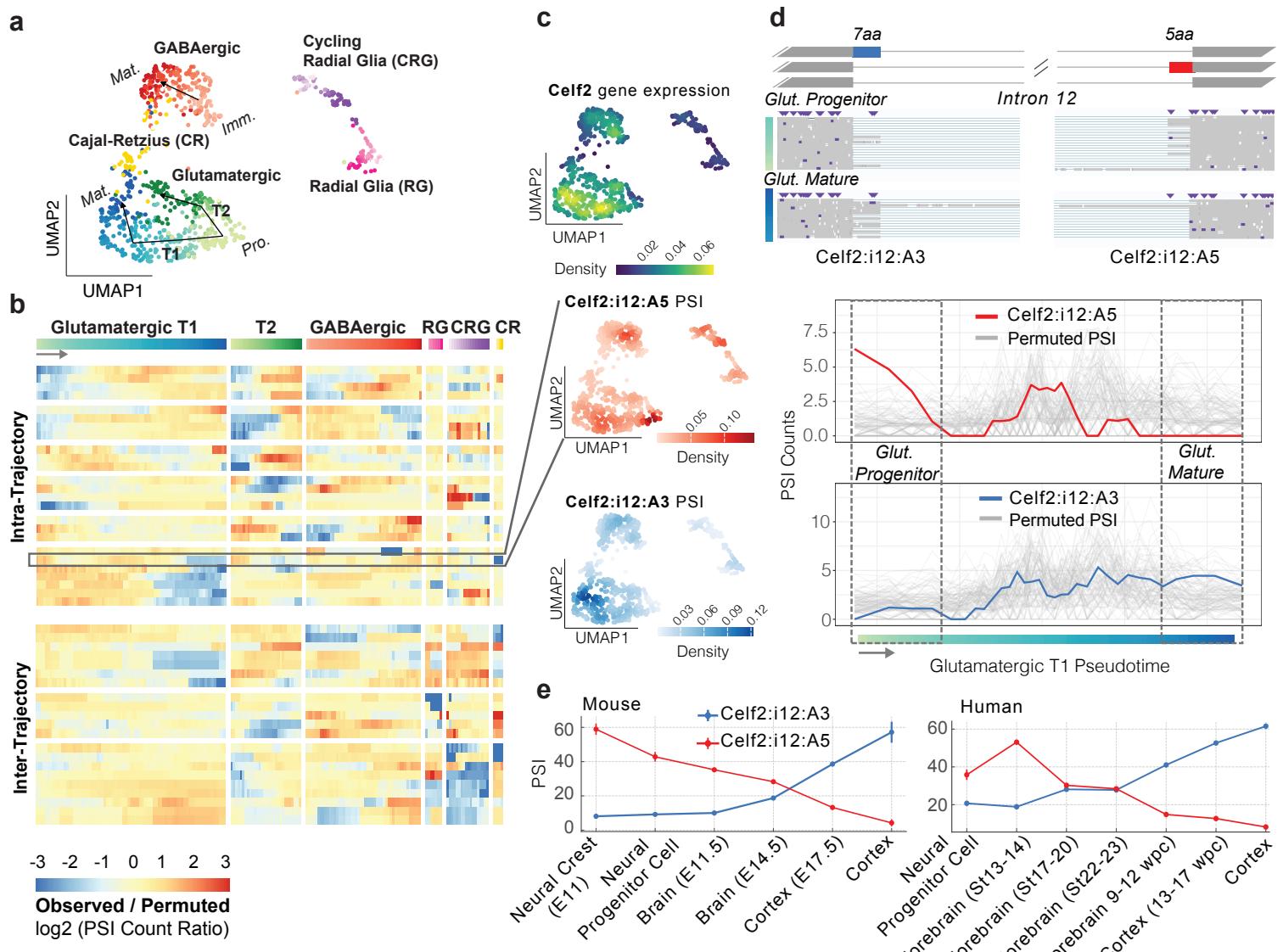


Figure 4 – (a) 2D UMAP embedding from PCA performed jointly on variable gene and transcript features. Gradient coloring by pseudotime according to each trajectory. Glutamatergic progenitors are abbreviated Pro., Immature GABAergic neurons as Imm. and Mature neurons of both sub-types as Mat. T1 and T2 describe the two trajectories of Glutamatergic neurogenesis observed. (b) Heatmap of significant AS events colored by the ratio of observed CSI vs. permuted CSI. Permutations within (top) or across all (bottom) trajectories are separated. (c) UMAP density column from top to bottom: Celf2 gene expression, Celf2 alternative 5' splice site (A5) in intron 12 (Celf2:i12:A5; chr2:6560659-6560670, row highlighted in panel b), and the juxtaposed alternative 3' splice site (A3) for intron 12 (Celf2:i12:A3; chr2:6553965-6553982). (d) AS event diagram on the (top) of Celf2 gene intron 12 where exons are shown as boxes and introns as lines (gene on the '-' strand), with the A5 event in red, the A3 event in blue, and reads from cells in the beginning and the end of the glutamatergic T1 trajectory shown respectively (from boxed regions annotated in the bottom panel). Bottom panel shows plots of CSI for windows along pseudotime for the observed data (A5, red) and (A3, blue) plotted over the background permutations in gray. (e) Mean PSI values with standard error as bars for human (left) and mouse (right) samples from the VastDB Mmu10 and Hsa38 short-read splicing databases²⁴.

156 One major challenge in the interpretation of single-cell data at the transcript-level (or event-
157 level) is that fluctuations in detection or quantification may be attributable to gene expression
158 changes alone. To decouple splicing dynamics and visualize them independently, we utilize a
159 permutation-based approach. We estimate a background distribution by shuffling each gene's
160 splicing quantification among cells expressing that gene (within and between trajectories). We
161 then visualize log ratios of the observed CSI values versus the mean expected CSI from these
162 permutations (Fig. 4b; see Methods). Here, we observe AS events that exhibit precise changes
163 within specific neuronal differentiation trajectories (such as only T1 or T2), including several
164 RNA binding proteins (eg. Celf2, Hnrnpa2b1, Luc7l3, Ythdc1). Exemplifying a unique mode of
165 alternative splicing in the gene Celf2, we observe a coordinated switch from one alternative
166 donor splice site to an alternative acceptor splice site in the same intron as cells differentiate
167 from glutamatergic progenitor to mature neurons (T1 trajectory, Fig. 4c-d). To validate the
168 statistical significance of this event, we compare observed to permuted values using a stringent
169 empirical test (see Methods). Here, we find the splicing-change is robustly independent of the
170 overall changes in Celf2 expression that simultaneously occur (Fig. 4c-d & Fig. S7c; $pval <$
171 3.8×10^{-4}). Underscoring biological significance, we note the two alternative splice sites have
172 orthologs in other mammalian species (as annotated in VastDB ²⁴) and high sequence
173 conservation in the intronic region surrounding both splice sites (Fig. S7a-b). We validate the
174 conserved mutual exclusivity and switch-like splicing change in human and mouse,
175 recapitulating the longitudinal observation across embryonic brain samples from bulk short-read
176 datasets ²⁴ (Fig. 4e), including an *in vitro* study of mouse neuronal differentiation ²⁵ (Fig. S7d).
177
178 In summary, Isosceles is a computational toolkit with favorable performance compared to other
179 methods, as demonstrated through rigorous benchmarks on simulated and biological data from
180 nanopore sequencing across ovarian cell lines. In these benchmarks, Isosceles performs
181 transcript detection and quantification with accuracy, revealing improvements over existing
182 methods that are most pronounced at lower expression levels. Notably, transcription factors and
183 other regulatory proteins typically exhibit low gene expression levels, accompanied by rapid,
184 fine-tuned regulation in mRNA and protein turnover rates ²⁶. Such regulatory genes are
185 frequently the focus of single-cell biological investigations, underscoring the importance of
186 precision in this range. Through multi-resolution sequencing of ovarian cancer cell lines, we
187 benchmark fidelity of quantification, demonstrating Isosceles' performant capacity to
188 consistently reproduce results for the same sample, and to differentiate among related yet
189 distinct samples. Such intrinsic differences between cell lines, even those of the same tissue

190 origin, may be more substantial than many biological changes typically investigated in
191 biomedical research.

192
193 We further illustrate that these performant capabilities are enabling in the context of biological
194 discovery. In our case study, we utilize Isosceles to uncover the dynamics of alternative splicing
195 in differentiating neurons. Here, Isosceles provides enhanced resolution and reveals numerous
196 AS events not reported in the original study. Importantly, these results reveal fine-tuned
197 regulation within fate-determined trajectories and not only between major clusters (eg. radial glia
198 vs. mature neurons). Among these events are genes encoding disease relevant RNA binding
199 proteins that are themselves implicated in the regulation of neuronal differentiation. The Celf2
200 gene, for instance, plays a central role in neurogenesis, as it modulates the translation of target
201 mRNAs through its shuttling activity²⁷. The example in Celf2 (presented in Fig. 4) highlights a
202 switch-like splicing event that results in a conserved substitution of five to seven amino acids
203 within the protein's disordered region. This is akin to peptide changes introduced by
204 microexons, which have been attributed functional roles in neurogenesis, including translational
205 control of mRNAs through recruitment to membrane-less condensates, and dysregulation in
206 disease²⁸⁻³⁰. These results demonstrate that Isosceles is an effective method for hypothesis
207 generation and biological discovery, offering insight into the splicing dynamics of a key regulator
208 of differentiation in our case study.

209
210 Taken together, Isosceles is a flexible toolkit for the analysis of long-read bulk and single-cell
211 sequencing that outperforms existing methods in detection and quantification across biological
212 resolution levels. Based on its accuracy and flexibility for experimental designs, Isosceles will
213 significantly aid researchers in transcriptomic studies across diverse biological systems.

214

215

216

217 Data/Code Availability:

218 Isosceles R package code, documentation, and vignettes are released on github
219 (<https://github.com/timbitz/Isosceles>) under an open source GPL-3 license. All benchmarking
220 code, virtual environments, and quantification data necessary to reproduce the figures/analyses
221 in the manuscript are similarly released (analysis code:
222 https://github.com/timbitz/Isosceles_paper, singularity containers:
223 <https://doi.org/10.5281/zenodo.8180648>, benchmark quantifications:

224 <https://doi.org/10.5281/zenodo.8180604>, raw simulated data:
225 <https://doi.org/10.5281/zenodo.8180695>, mouse E18 brain scRNA-Seq data:
226 <https://doi.org/10.5281/zenodo.10028908>). All biological sequencing data is deposited in the
227 NCBI Gene Expression Omnibus (GEO) under GSE248118.

228

229 Author Contributions:

230 TSW and MK conceived of and designed the software methodology and computational
231 experiments with contributions from the other authors. MK implemented the Isosceles package
232 and both MK and AR performed benchmarking analyses. MK and TSW designed and
233 performed the case study. KS performed the cell culture and AB and WS performed the
234 sequencing protocols with preliminary analyses from DL. TSW wrote the manuscript with
235 contributions from MK and all other authors.

236

237 Competing Interests:

238 All authors are shareholders of Genentech/Roche.

239

240 Acknowledgements:

241 We would like to thank Bo Li, Hector Corrada-Bravo, William Forrest, John Marioni, Luca
242 Gerosa, Marc Hafner, and Robert Piskol for helpful suggestions and feedback.

243

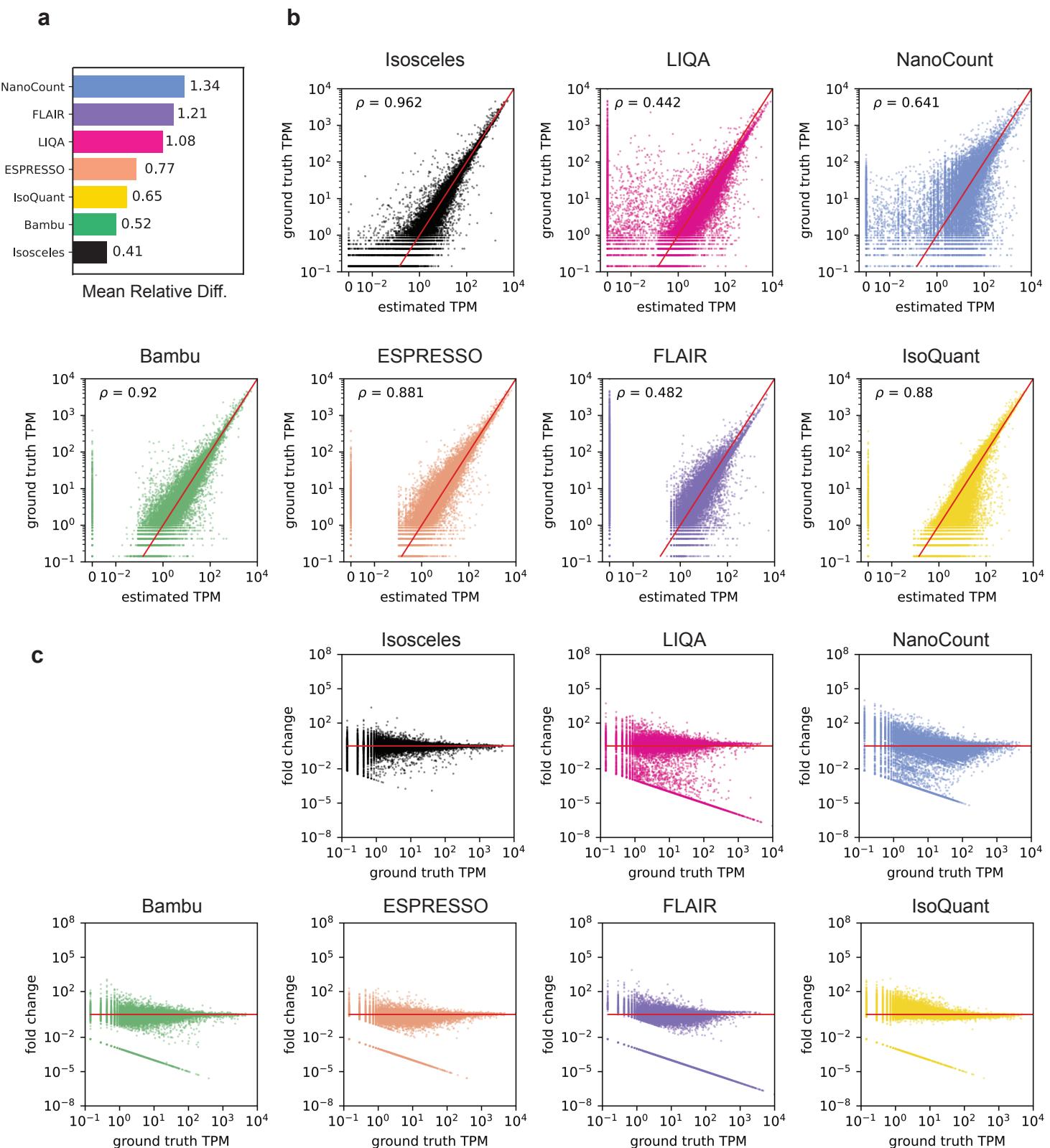
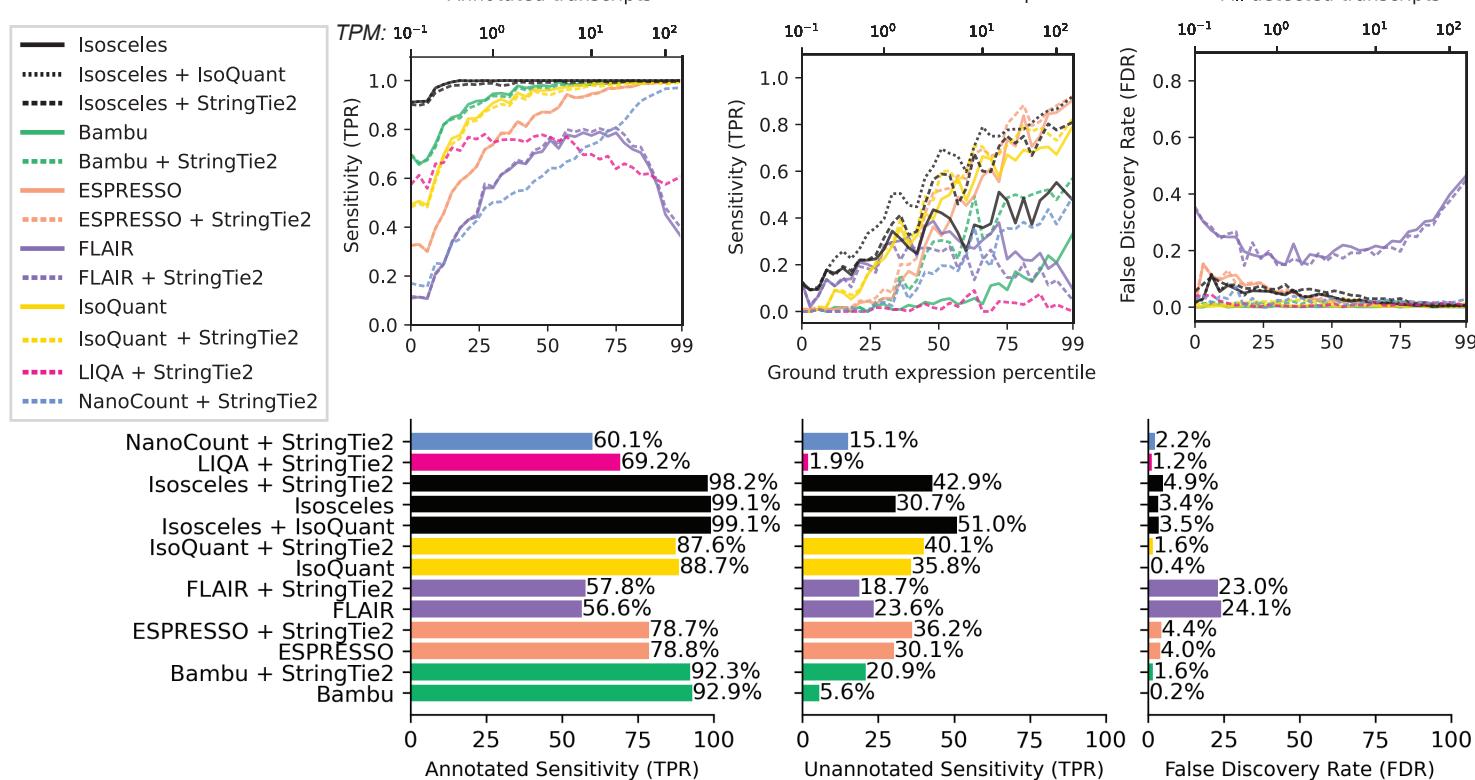


Figure S1– (a) Continued from Fig. 2a, mean relative difference of ground-truth vs. estimated TPM. (b) Scatter plots (with labeled Spearman coefficient) of estimated vs. ground-truth TPM values on log scale. Estimated TPM values below 0.001 are manually assigned a value of 0.001 on the plot. (c) MA plots of the fold change between estimated and ground-truth TPM vs. ground-truth TPM values on log scale. Estimated TPM values below 0.001 are manually assigned a value of 0.001 for the fold change calculation.

a 10% Downsampled



b 20% Downsampled

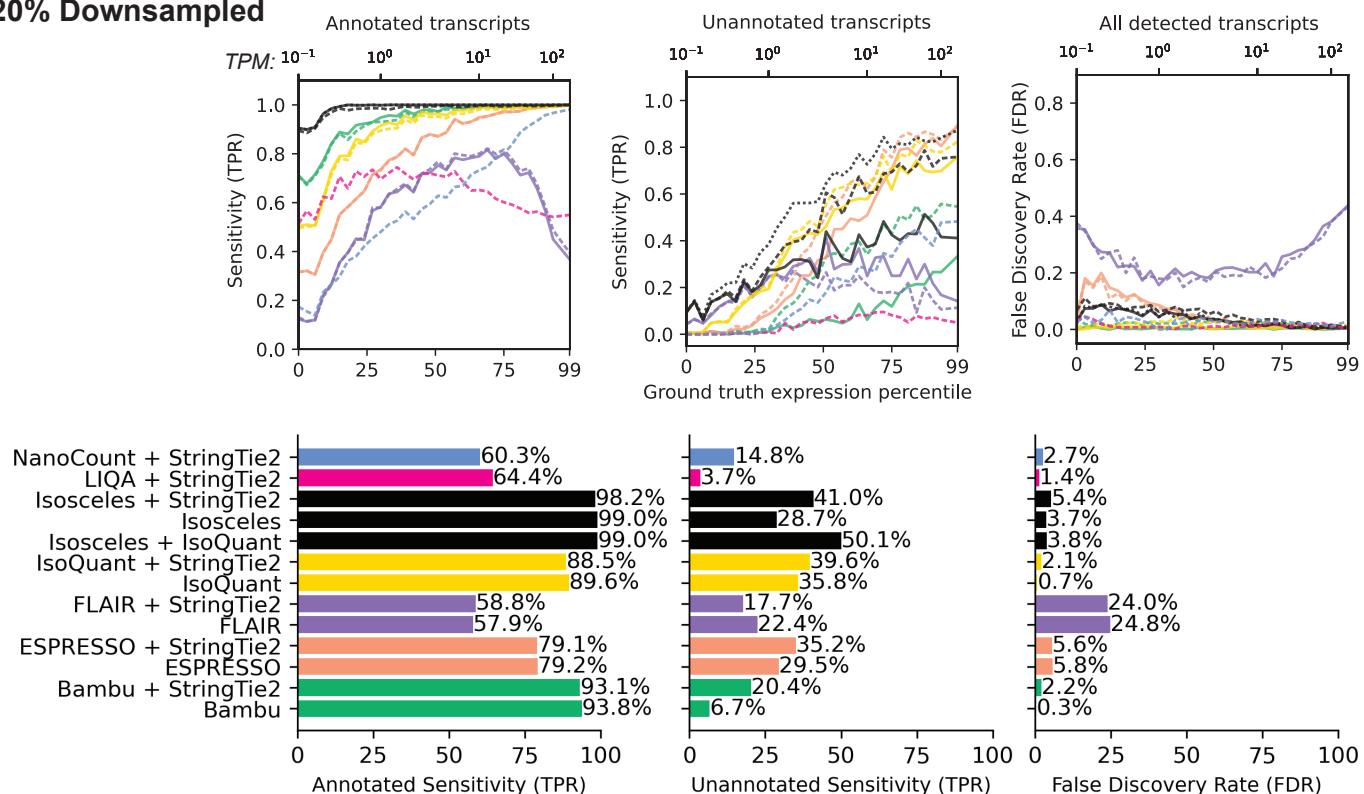


Figure S2– (a, b) Continuation of results from Fig. 2b for 10% and 20% downsampled simulated datasets (see Fig. 2b for additional legend and description).

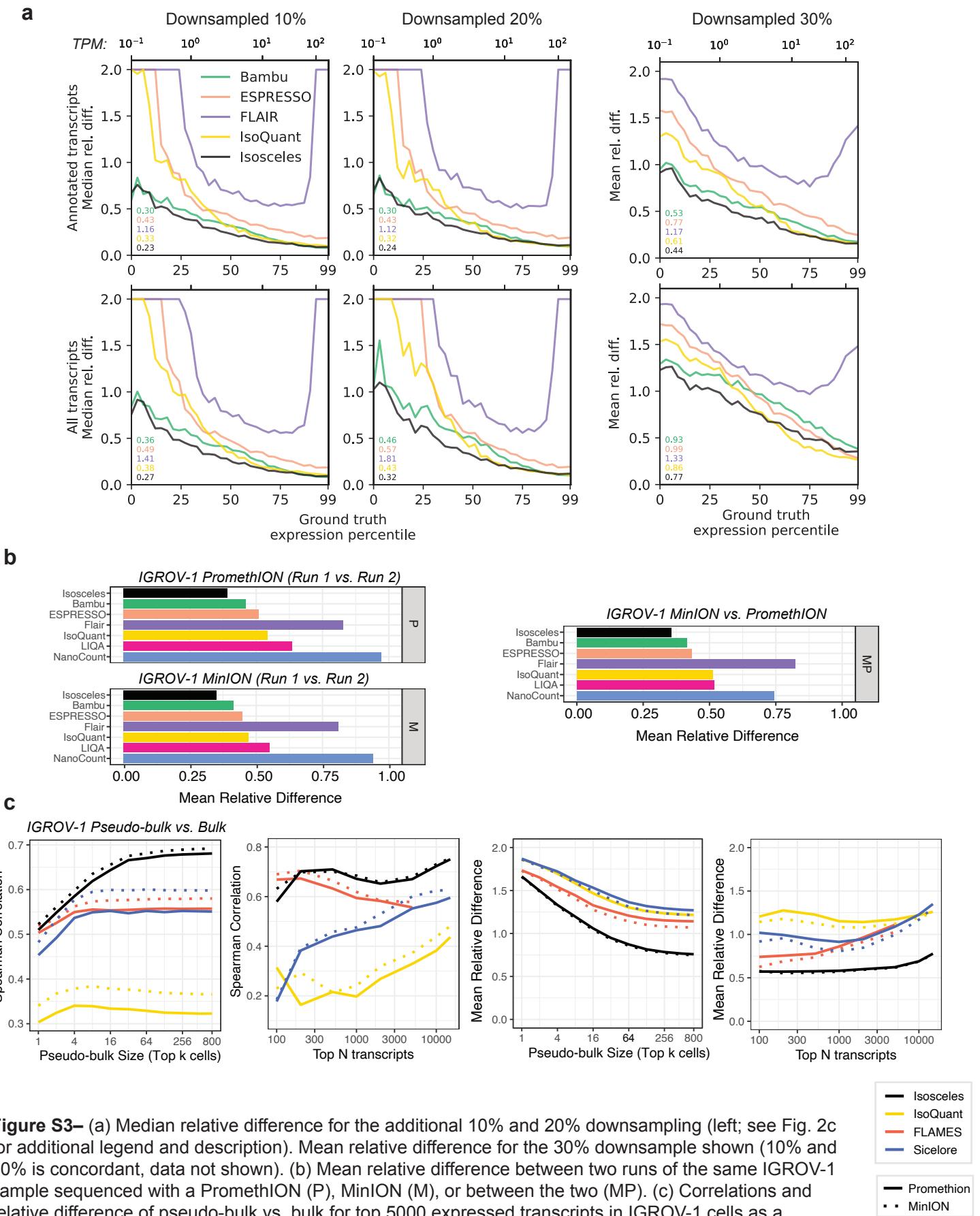


Figure S3– (a) Median relative difference for the additional 10% and 20% downsampling (left; see Fig. 2c for additional legend and description). Mean relative difference for the 30% downsample shown (10% and 20% is concordant, data not shown). (b) Mean relative difference between two runs of the same IGROV-1 sample sequenced with a PromethION (P), MinION (M), or between the two (MP). (c) Correlations and relative difference of pseudo-bulk vs. bulk for top 5000 expressed transcripts in IGROV-1 cells as a function of the number of top ranked cells (by UMI count) included in the pseudo-bulk (left, middle right) and as a function of the top number of transcripts included for the top 64 cells (middle left, right).

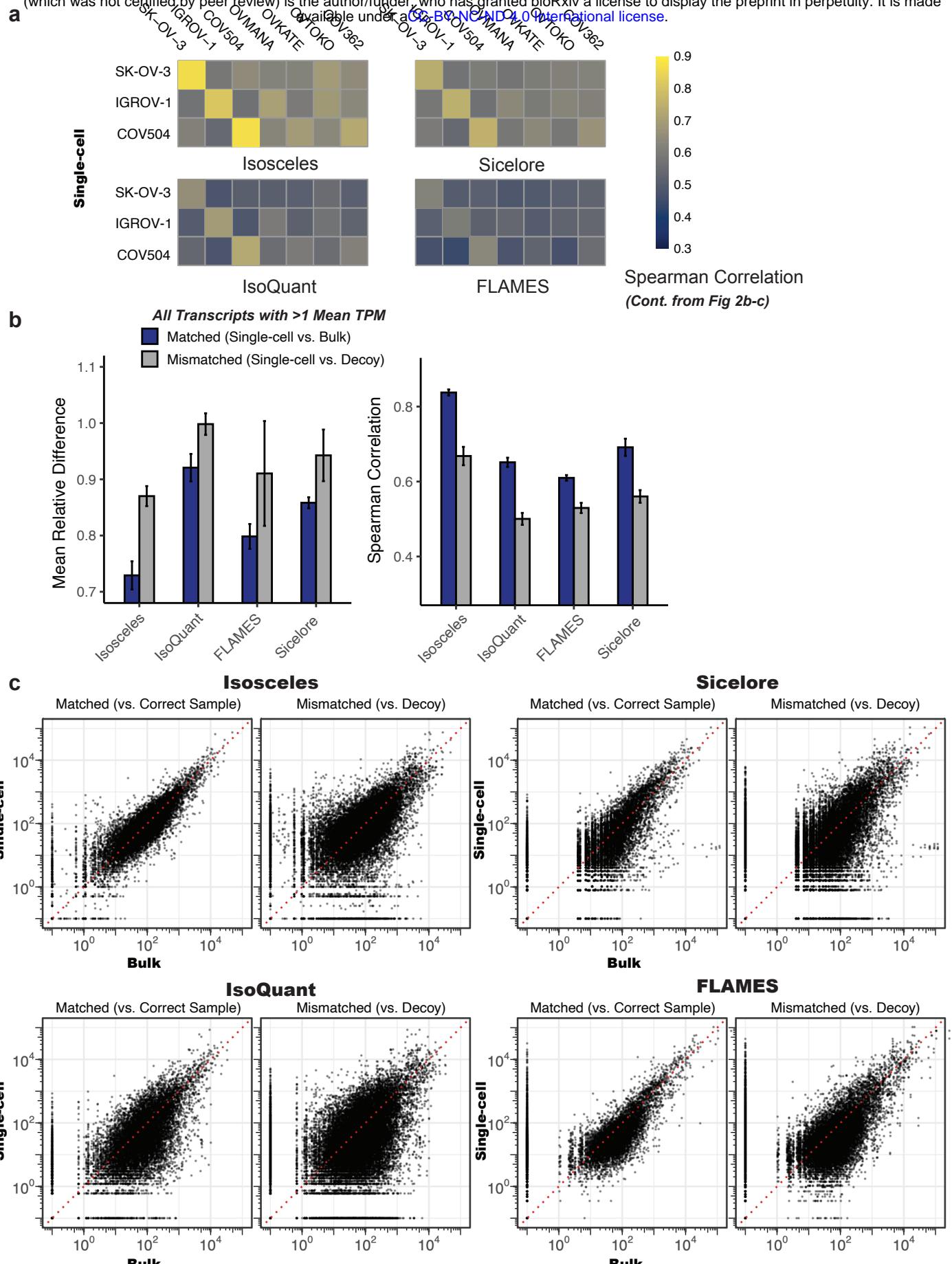


Figure S4—(a) Continued from Fig. 3b, Spearman correlations for each cell line in pseudo-bulk (by genetic identity) vs. the seven bulk nanopore sequenced ovarian cell lines. (b) Alternative version of Fig. 3c, including all transcripts for each program with ≥ 1 TPM among the three cell lines in pseudo-bulk. (c) Continued from Fig. 2c, overlaid scatter plots of all matched (left) and decoy (right) comparisons, where each point is a transcript from one of the comparisons.

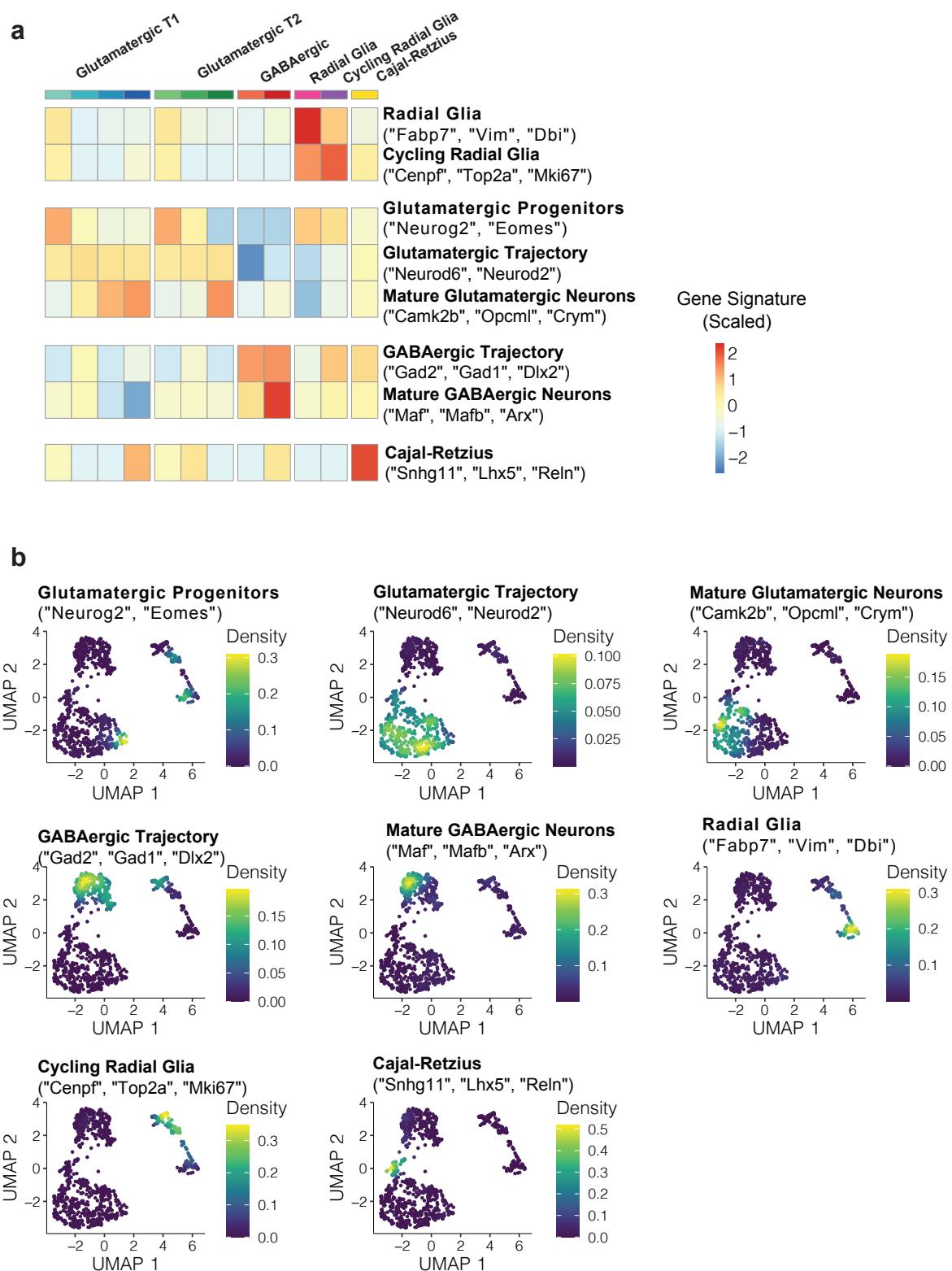


Figure S5—(a) Heatmap of marker gene signature expression along clusters colored according to Fig. 4a. (b) Density plots of each of the corresponding gene signatures overlaid on the UMAP (see Fig 4a).

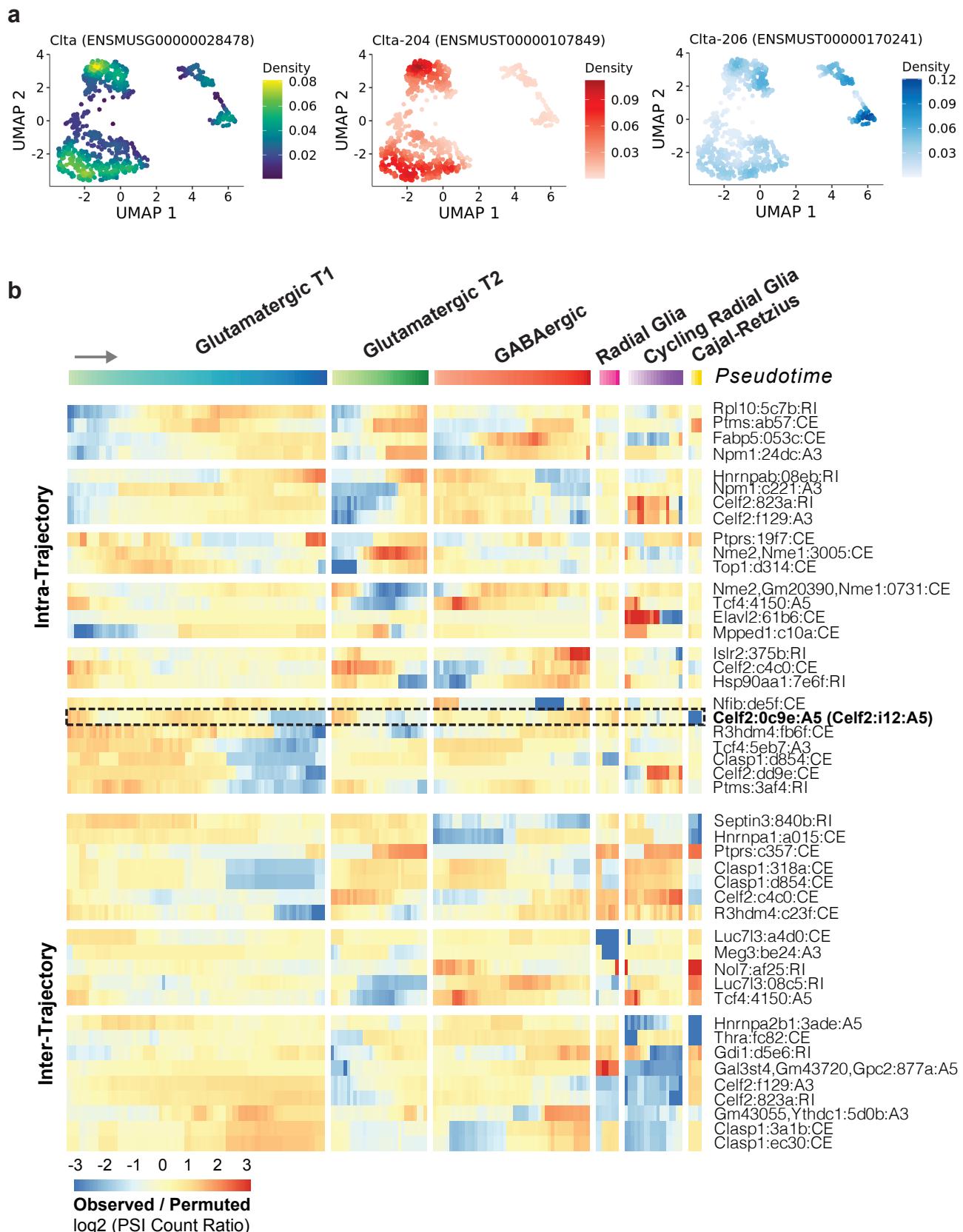
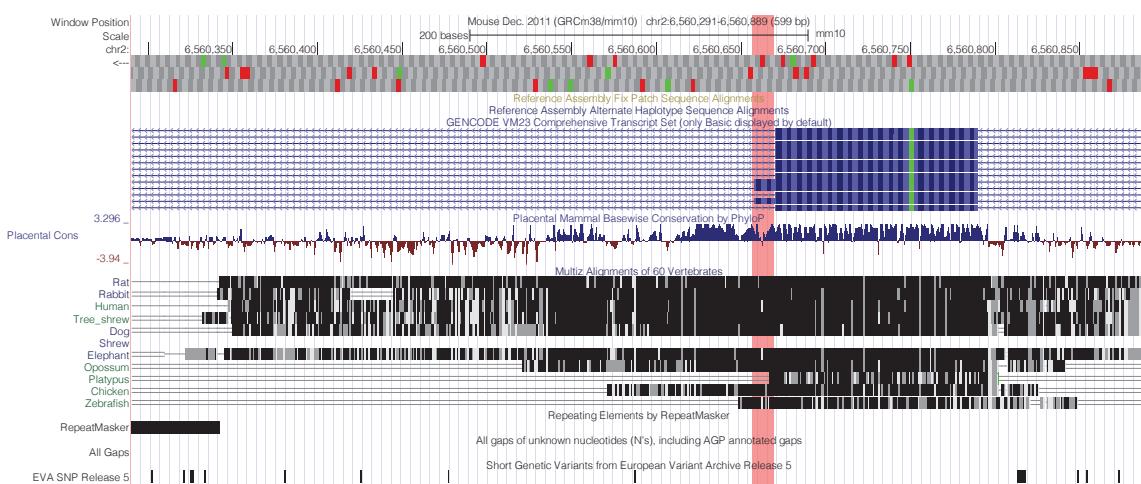
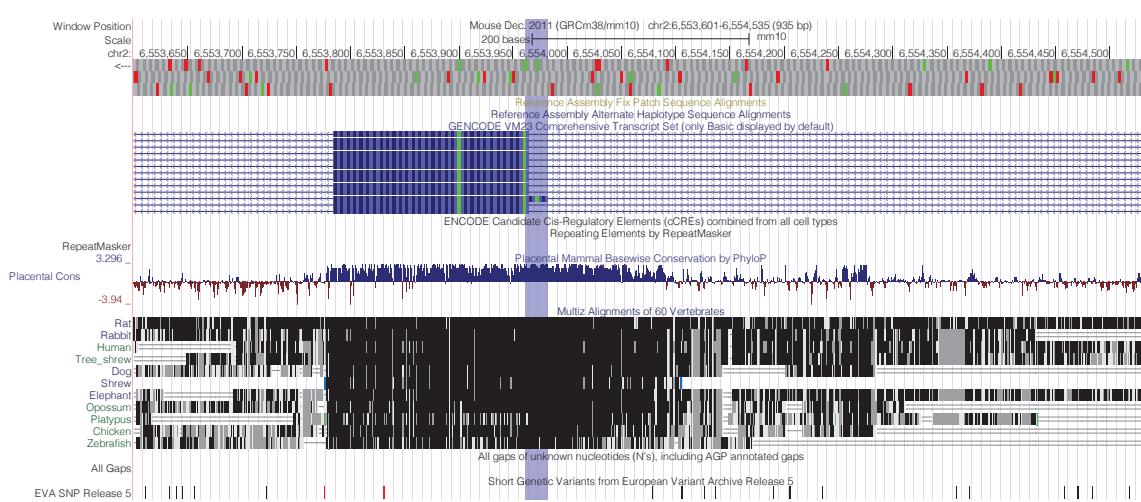


Figure S6— (a) Exemplar result of ‘isoform switching’ analysis, the gene Clta is consistent with the findings highlighted in the original study. The two isoforms 204 and 206 show an expression difference between radial glia and glutamatergic neurons. (b) Expanded version of Fig. 4b plot (with the same scales), but labeled by gene : short hash id : event type. The short hash id matches the ‘psi_event_label’ column label Table S1, which contains the genomic coordinates and Ensembl gene ids. The event type abbreviations are explained in the Methods, eg. CE = Core Exonic interval, A5 = Alternative 5’ splice site, A3 = Alternative 3’ splice site, RI = Retained Intron.

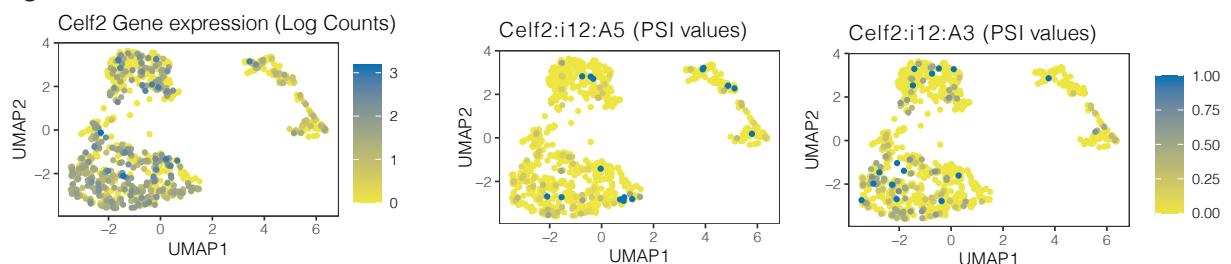
a Celf2:i12:A5 (chr2:6560659-6560670)



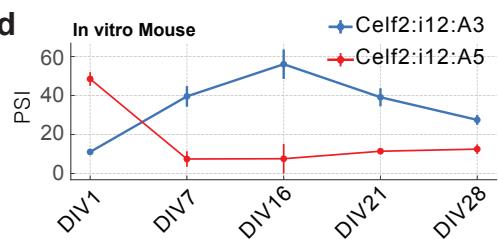
b Celf2:i12:A3 (chr2:6553965-6553982)



c



d In vitro Mouse



e

Figure S7- (a) UCSC Genome Browser snapshot of Celf2 intron 12 for the A5 event. Red bar marks the alternative region included by the A5 event, and matches the region marked in red from Fig 4d. (b) Same as panel a but for the A3 event, which matches the blue region in Fig 4d. (c) Extended set of plots matching Fig 4c, but raw gene expression counts, and raw PSI values. (d) PSI values for Celf2:i12:A5 and Celf2:i12:A3 across a mouse in vitro longitudinal glutamatergic neuron differentiation time series^{24,25}.

244 Online Methods:

245

246 *Isosceles Splice-graphs:*

247 Splice-graph compatibility is defined for reads using various stringency levels to match their

248 concordance with existing knowledge. Reads are classified based on compatibility as Annotated

249 Paths (AP), Path Compatible (PC), Edge Compatible (EC), Node Compatible (NC), De-novo

250 Node (DN), Artifact Fusion (AF), Artifact Splice (AS), and Artifact Other (AX). AP refers to full-

251 length transcript paths that perfectly match a reference transcript from the input gene annotation

252 and are quantified by default. PC reads follow transcript paths that are a traversal of an AP, and

253 may be truncated or full-length or with differing transcript start or end positions. EC reads

254 traverse annotated splice-graph edges (introns) and may be truncated or full-length. NC reads

255 are paths that traverse only annotated splice-graph nodes (splice-sites) but contain at least one

256 novel edge. DN reads have paths that traverse a *de novo* node (splice-site). AF reads traverse

257 paths connecting at least two splice-graphs for annotated genes that do not share introns with

258 each other. AS reads are assigned to genes, but traverse an unknown and irreproducible node

259 (splice-site), while AX reads lack compatibility due to ambiguous strand or lack of gene

260 assignment.

261

262 Reads are also classified based on their truncation status, which includes Full-Length (FL), 5'

263 Truncation (5T), 3' Truncation (3T), Full-Truncation (FT), and Not Applicable (NA). AP

264 transcripts are automatically annotated as FL, and truncation status is checked only for PC, EC,

265 NC, and DN transcripts. AF, AS, and AX transcripts are automatically labeled NA. Reference

266 transcripts used for truncation status classification are recommended to be filtered to only the

267 GENCODE 'basic' dataset (tag='basic'), but also could be all transcripts in the provided

268 annotations, as decided by the user. Full-length reads are those whose paths splice from a first

269 exon (sharing a reference transcripts first 5' splice site) and whose paths splice to a last exon

270 (sharing a reference transcripts final 3' splice site).

271

272 To add nodes with one or more *de novo* splice sites to the splice-graph, each splice-site must

273 meet two conditions: it is observed in at least the minimum number of reads (default: 2) and it is

274 connected to a known splice site in the splice-graph with least a minimum fraction (default: 0.1)

275 of that known splice site's connectivity. Additionally, annotations for known transcripts and

276 genes are merged and extended based on specific criteria. For example, any annotated genes

277 sharing introns with each other are merged into one gene and given a new gene_id &

278 gene_symbol (comma-separated list of original Ensembl IDs and gene symbols). Annotated
279 spliced (and unspliced) transcripts sharing the same intron structure, as well as transcript start
280 and end bins (default bin size: 50 bp) are merged together and given a unique transcript
281 identifier.

282

283 The method offers three modes of extending annotations to include *de novo* transcripts: *strict*,
284 *de_novo_strict*, and *de_novo_loose*. In the *strict* mode, only AP transcripts are
285 detected/quantified. In the *de_novo_strict* mode, AP transcripts and filtered FL transcripts of the
286 EC and NC classes are included in quantification. In the *de_novo_loose* mode, AP transcripts
287 and filtered FL transcripts of the EC, NC, and DN classes can be included.

288

289 For downstream analysis of individual transcript features, AS events are defined as the set of
290 non-overlapping exonic intervals that differ between transcripts of the same gene. These are
291 quantified as percent-spliced-in or counts-spliced-in according to the sum of the relative
292 expression or the raw counts of the transcripts that include the exonic interval respectively. AS
293 events are classified into different types similar to previous methods analyzing splicing from
294 short-read data ², including core exon intervals (CE), alternative donor splice sites (A5),
295 alternative acceptor splice sites (A3), and retained introns (RI). Isosceles can also quantify
296 tandem untranslated regions in the first or last exons including transcription start sites (TSS)
297 and alternative polyadenylation sites (TES).

298

299 *Isosceles Quantification:*

300 We use the Expectation-Maximization (EM) algorithm to obtain the maximum likelihood estimate
301 (MLE) of transcript abundances, as used previously in transcript quantification methods for
302 short-read data such as our prior software Whippet ², or the approach's conceptual precursors
303 RSEM ¹⁶ and/or Kallisto ¹⁷. Specifically, we quantify transcript compatibility counts (TCCs) based
304 on fully contained overlap of reads to the spliced transcript genomic intervals (including an
305 extension [default: 100 bp] for transcript starts/ends), with strand for unspliced reads ignored by
306 default. For computational efficiency, TCCs matching more than one gene are disallowed in the
307 current version. The likelihood function models the probability of observing the data given the
308 current estimates of compatible transcript abundances, and is defined as described previously
309 for transcript estimation from short-read data with Whippet ², with the exception of effective
310 transcript length. Here, due to the long length of nanopore reads, we define the effective
311 transcript length to be the maximum of the mean read length vs. the transcript's actual length,

312 then divided by the mean read length. This directly accommodates shorter transcripts which
313 would be fully spanned by the average read and are thus assigned an effective length of 1.0,
314 whereas longer transcripts are represented proportionally to that value. In contrast, the user
315 defined parameter specifying single-cell data does not use length normalization due to the
316 anchoring of reads to the 5' or 3' ends of transcripts which assumes read coverage irrespective
317 of transcript length. The EM algorithm iteratively optimizes the accuracy of transcript
318 abundance estimates derived from TCCs, continuing until the absolute difference between
319 transcript fractions is less than a given threshold (default:0.01) between iterations, or until the
320 maximum number of iterations is reached (default: 250).

321

322 *Simulating ONT data:*

323 In this study, the Ensembl 90 genome annotation (only transcripts with the GENCODE 'basic'
324 tag) was used for all simulations, focusing specifically on spliced transcripts of protein-coding
325 genes to exclude single-isoform non-coding genes. In order to simulate data with realistic
326 transcriptional profiles, we quantified the expression of reference annotations in IGROV-1 cells
327 using publicly available short-read data ([sample, project] accession ids: [SRR8615844,
328 PRJNA523380]; <https://www.ebi.ac.uk/ena/browser/view/SRR8615844>) and Whippet v1.7.3
329 using default settings. Only transcripts with non-zero expression in IGROV-1 were retained for
330 simulations. For detection benchmarks, the Ensembl 90 annotation file (in Gene Transfer
331 Format [GTF]) was randomly downsampled such that the longest transcript of each gene was
332 always retained to ensure at least one full-length major isoform for each gene (by 10%, 20%,
333 and 30% downsampling, where 99.8-100.0% of downsampled transcripts had unique exon-
334 intron architectures). In order to simulate Oxford Nanopore Technologies (ONT) reads using
335 NanoSim, we trained error models on bulk nanopore RNA-Seq FASTQ files concatenated from
336 sequencing three cell lines: SK-OV-3 (SAM24385455), COV504 (SAM24385457), and IGROV-1
337 (SAM24385458). Nanopore single-cell RNA-Seq (nanopore scRNA-Seq) read models were also
338 generated from the pooled set of the aforementioned cell lines (SAM24404003). A total of 100
339 million reads were simulated from each error model and then the first 12 million reads deemed
340 alignable by NanoSim were extracted.

341

342 To align the simulated reads provided in BAM format to all benchmark programs, Minimap2 was
343 employed, using Ensembl 90 introns given in a BED file and applying a junction bonus
344 parameter of 15. For the scRNA-Seq ONT dataset used to create the read model, various tools
345 detected a similar number of cells (~2460), but the median number of unique molecular

346 identifiers (UMIs) per cell differed. The Sicelore preprocessing of ONT scRNA-seq, identified
347 between 3,000 and 6,000 UMIs per cell, which were provided in BAM format for biologically
348 derived data benchmarks to Sicelore, IsoQuant, and Isosceles with cell barcode and UMI tags
349 annotated (Fig. 3a/b). In contrast, FLAMES, with its own UMI detection and deduplication
350 processes, detected around 13,500 UMIs per cell. To strike a balance between the varying
351 results from different tools, a compromise of 10,000 reads per cell was chosen for this study.

352

353 To simulate scRNA-Seq ONT data, a BAM file containing aligned simulated reads from the
354 scRNA-Seq read model was randomly downsampled 100 times using samtools, with a
355 subsampling proportion of 0.000833. This resulted in approximately 10,000 reads out of the
356 original 12 million for each BAM file. A custom Python script (see supplemental Benchmark
357 commands) was used to assign unique cell barcode sequences and UMI sequences for each
358 read within the 100 BAM files. These subsampled BAM files were then merged and sorted using
359 samtools.

360

361 *Biological data processing:*

362 The bulk RNA-Seq data included Promethion data (NGS3273), featuring eight sequencing
363 libraries for seven ovarian cancer cell lines (OVMANA, OVKATE, OVTOKO, SK-OV-3, COV362,
364 COV504, and IGROV-1), as well as two technical replicates for IGROV-1. For MinION platform
365 data (NGS3082), two technical replicates for IGROV-1 were sequenced. Factors such as RAM
366 performance and program speed determined the number of reads simulated in bulk simulations
367 and downsampled in bulk data. For example, for performing cross platform correlations, the
368 Promethion data was downsampled to 5 million reads to make it more comparable to MinION
369 (~6-7 million raw reads) and pseudo-bulk scRNA-Seq (3.5-4.5 million UMIs per cluster, as
370 detected by Isosceles) in terms of total read depth. This decision was also influenced by an
371 issue with IsoQuant (<https://github.com/ablab/IsoQuant/issues/69>), which limited its ability to
372 process large read files in our hands. Notably, this issue persisted on a cluster node with 20
373 CPUs of 2.4GHz and allocated 230 GB of RAM.

374

375 The scRNA-Seq data (SAM24404003) consisted of a mix of three cell lines (SK-OV-3, COV504,
376 and IGROV-1). The Illumina sequencing (LIB5445371_SAM24404003) was preprocessed using
377 CellRanger (Version 6.0.1). The ONT sequencing (LIB5445493_SAM24404003) was
378 preprocessed using the Sicelore workflow, resulting in a BAM file with cell barcode and unique
379 molecular identifiers annotated.

380

381 All reads were aligned to the reference genome using minimap2 as discussed for simulated
382 data. Mitochondrial transcripts common to all method's output were removed, as they were
383 strong outliers across methods. Additionally, three specific transcripts outliers across methods
384 were removed: ENST00000445125 (18S ribosomal pseudogene), ENST00000536684 (MT-
385 RNR2 like 8), and ENST00000600213 (MT-RNR2 like 12).

386

387 *Analysis of biological data:*

388 The correlation and relative difference analyses (Fig. S3b) compared annotated transcripts
389 between bulk RNA-Seq data from two Promethion and two MinION sequencing replicates of
390 IGROV-1, both within each platform (using replicates) and between platforms (using averaged
391 data for each platform). For each comparison, only transcripts with a mean expression of at
392 least 1 TPM were used. In Fig. S3c, scRNA-Seq and bulk RNA-Seq data were also compared,
393 again considering only annotated transcripts. For each program, the IGROV-1 scRNA-Seq
394 pseudo-bulk cluster (according to genetic identity from Souporcell) was compared with the
395 averaged bulk RNA-Seq IGROV-1 expression values from two replicates for each platform.
396 Analyses were also restricted to transcripts with an expression of at least 1 TPM in the single-
397 cell RNA-Seq results. Comparisons were made for each platform using top k cells (highest UMI
398 count) using the top 5000 transcripts (highest mean expression) to ensure a comparable
399 number of transcripts across software package, and top N transcripts (highest mean
400 expression) for 64 top cells (highest UMI count) (Fig. S3c).

401

402 For Fig. 3a, scRNA-Seq and bulk RNA-Seq data analysis was conducted using Bioconductor
403 packages (scran, scater, etc.) on the transcript and gene level for cells with at least 500 genes,
404 considering 4000 top highly variable genes/transcripts. Heatmaps were generated to show
405 correlations and mean relative difference between scRNA-Seq pseudo-bulk results for three cell
406 line clusters and Promethion bulk RNA-Seq results for 7 ovarian cancer cell lines, similarly only
407 including annotated transcripts. IGROV-1 expression was averaged from two replicates. To
408 compare difference between matched and decoy metrics (Spearman correlation and mean
409 relative difference), we calculate the absolute difference and compute the lower bound of the
410 95% confidence interval from the propagated error (as $|x-y| - \sqrt{sd(x)^2 + sd(y)^2} * 1.96$).

411

412 For the case-study in Fig. 4, the raw reads were pre-processed to identify cell barcodes (CB)
413 and unique molecular identifiers (UMI) according to the Sicelore workflow. The reads were

414 subsequently aligned to the reference genome mm10/GRCm38 (with annotations derived from
415 GENCODE M25), using Minimap2 with a junction bonus of 15, which targeted both annotated
416 introns from Gencode M25 and those extracted from the VastDB mm10 GTF file ²⁴. The aligned
417 reads with CB and UMI annotations were subsequently quantified with Isosceles. The 951-cell
418 dataset was filtered to exclude cells that expressed fewer than 100 genes. For dimensionality
419 reduction, we combine Isosceles gene and transcript counts, culminating in the total
420 identification of 3,760 variable features (with a target of 4,000), comprising 1,735 genes and
421 2,025 transcripts. We applied Principal Component Analysis (PCA), calculating 30 components
422 using the scaled expression of the variable features. Cells were clustered using Louvain
423 clustering (with resolution parameter of 2) on the Shared Nearest Neighbor (SNN) graph (setting
424 a k-value of 10). The clusters' identities were determined through gene set scores, particularly
425 the mean TPM values of markers delineated in the original study (see Fig. S5). Additional
426 marker genes were identified via the scran::findMarkers function requiring the t-test FDR to be
427 significant (q-value < 0.05) in at least half of the comparisons to other clusters (selecting top 5
428 markers of each cluster).

429

430 Pseudotime analysis was performed using Slingshot for differentiating glutamatergic neurons
431 (identifying two trajectories, T1 and T2), differentiating GABAergic neurons, radial glia, cycling
432 radial glia and Cajal-Retzius cells (with one trajectory each). To implement the original 'isoform
433 switching' analysis, pairs of clusters were compared, detecting marker transcripts through the
434 specific scran::findMarkers function (Wilcoxon test). We filter for transcripts of the same gene
435 showing statistically significant differences in opposite directions (i.e. one upregulated in one
436 cluster, the other in another cluster). To analyze splicing changes within each trajectory, we
437 used Isosceles to calculate aggregated TCC values for windows along pseudotime, defining the
438 window size as 30 cells and the step size as 15 cells. AS events from variable transcripts
439 abiding by further criteria were selected for downstream analysis. First, mean PSI values across
440 all cells from the trajectory were between 0.025 and lower than 0.975 to exclude constitutively
441 included/excluded events. Second, at least 30 cells must have values not equal to 0, 1, or 0.5,
442 and 30 cells must have a value above 0.1 to select against events with only low counts.
443 Redundant PSI events, identical in read counts profiles within a trajectory, were excluded, and
444 those with >0.99 spearman correlation were excluded from visualization in Fig. 4b and Fig. S6b.
445 For comparative analysis, percent-spliced-in (PSI) count values are denoted as counts-spliced-
446 in (CSI) and defined by PSI * gene counts. These are juxtaposed with exclusion PSI counts,
447 calculated as [(1 - PSI value) * gene counts] and the inclusion/exclusion pair input into

448 DEXSeq³¹. For each intra-trajectory comparison, our experimental design encompassed
449 `~sample + exon + pseudotime:exon`. Meanwhile, the inter-trajectory analysis included all
450 trajectories with a design of `~sample + exon + pseudotime:exon + trajectory:exon`, compared
451 against a null model of `~sample + exon` using the LRT test.

452
453 To determine ratios of observed vs. expected CSI, we shuffle TCCs across cells with non-zero
454 counts and apply the EM algorithm, calculating PSI for each window. To obtain expected CSI
455 we multiply the shuffled PSI values * observed gene counts. The permutations are conducted
456 for each AS event across 100 bootstraps. For empirical statistical validation of changes between
457 the first and last windows of a trajectory (eg. for Celf2), we fit a negative binomial distribution to
458 each window using maximum likelihood estimation ('fitdistrplus' package) on the permuted CSI,
459 and calculate high and low one-tailed p-values for the observed CSI. Combining the high and
460 low, and low and high p-values of the first and last windows respectively using fisher's method,
461 we defined an overall p-value as two times the minimum combined p-value. Specifically for
462 heatmap visualization, a broad window size of 100 cells for glutamatergic & GABAergic
463 neurons, and 50 cells for glia and CR cells, with a consistent step size of 3 cells for smoothing
464 was utilized. The heatmap values were given as the log2 ratio of observed to expected, with a
465 pseudocount of 0.1, defining the ratio between PSI counts and the average of the corresponding
466 permuted PSI counts.

467

468 Benchmark command summary:

469 https://github.com/timbitz/Isosceles_Paper/blob/devel/Benchmark_commands.md

470

471 Software versions:

Software	Version
Isosceles	v0.0.3
flair	v1.7.0
stringtie	v2.2.1
isoquant	v3.0.3
NanoCount	v1.0.0.post6

Sicelore	v2.0
bambu	v3.2.5 (R 4.3.0, Bioconductor 3.17)
FLAMES	v0.1
ESPRESSO	beta1.3.0
nanosim	v3.1.0
minimap2	v2.24-r1122

472

473 *Cell culture*

474 All cell lines used in this study were validated by STR analysis and verified mycoplasma
475 negative by PCR. IGROV1, SK-OV-3, OVTOKO, OVKATE and OVMANA cell lines were
476 cultured in RPMI-1640 supplemented with 10% heat-inactivated fetal bovine serum (FBS) and
477 2mM L-Glutamine. COV362 and COV504 cells were cultured in DMEM supplemented with 10%
478 FBS and 2mM L-Glutamine. Cells were cultured in 37°C and 5% CO₂ in a humidified incubator.
479 Cell line source and catalogue numbers are provided in the table below. Cells were cultured in
480 10cm² plates until they reached ~60-80% confluence. For bulk analysis, RNA was purified using
481 Qiagen's RNeasy Plus Mini kit (Cat. #74134) according to manufacturer's instructions. For
482 single-cell analysis, IGROV1, SK-OV-3 and COV504 cells were trypsinized and pooled together
483 at a 1:1:1 ratio at a concentration of 1000 cells / µl and submitted for single cell long read
484 sequencing.

485

486

Cell line	Provider	Catalog number
IGROV-1	NCI DCTD	
SK-OV-3	ATCC	HTB-77
OVTOKO	JCRB Cell Bank	JCRB1048
OVKATE	JCRB Cell Bank	JCRB1044

OVMANA	JCRB Cell Bank	JCRB1045
COV362	ECACC	07071910 Lot# 07G029
COV504	ECACC	07071902 Lot# 07I007

487

488 Reference: ³²

489

490 *Single-cell, long-read library preparation and nanopore sequencing*

491 Approximately 10 ng of cDNA generated from 10x was amplified using the biotinylated version
492 of the forward primer from the ONT protocol, ([Btn]_Fwd_3580_partial_read1_defined) and
493 reverse primer (Rev_PR2_partial_TSO_defined). To get enough cDNA for the pull-down two
494 PCR reactions were carried out using 2X LongAmp Taq (NEB, Cat. M0287S) with the following
495 PCR parameters 94°C for 3 minutes, with 5 cycles of 94°C 30 secs, 60°C 15 secs, and 65°C for 3
496 mins, with a final extension of 65°C for 5 minutes. The cDNA was pooled and cleaned up with
497 0.8X SPRI ratio with an elution volume of 40µL. Concentration was evaluated using the QuBit
498 HS dsDNA protocol. The amplified cDNA was then captured using 15 µL M270 streptavidin
499 beads (Thermofisher). Beads were washed three times with SSPE buffer (150 mM NaCl, 10
500 mM NaH₂PO₄, and 1 mM EDTA). Beads were then resuspended in 10µL of 5X SSPE buffer
501 (750 mM NaCl, 50 mM NaH₂PO₄, and 5 mM EDTA). Approximately 200 ng of the cDNA in 40µL
502 were added together with the 10µL M270 beads and incubated at room temperature for 15
503 minutes. After incubation, the sample and beads are washed twice with 1mL of 1X SSPE. A
504 final wash is performed with 200 uL of 10 mM Tris-HCl (pH 8.0) and the beads bound to the
505 sample are resuspended 10µL H₂O. PCR was then performed on-bead using the unbiotinylated
506 version of the primers shown above for 5 cycles according to the same PCR program shown
507 above. A 0.8X SPRI was performed. The cDNA was eluted in 50 µL and concentration was
508 evaluated with QuBit HS dsDNA and Tapestation D5000 DNA kit.

509

510 Library preparation for nanopore sequencing was performed according to the LSK-110 kit
511 protocol with the exception of the end-repair step time which was increased to 30 min. 125 fmol
512 of final library was loaded on the PromethION (FLO-PRO002) and sequenced for 72 hr. Reads
513 were basecalled using Guppy v5.0.11.

514

1. Pan, Q., Shai, O., Lee, L.J., Frey, B.J. & Blencowe, B.J. *Nat Genet* **40**, 1413–5 (2008).
2. Sterne-Weiler, T., Weatheritt, R.J., Best, A.J., Ha, K.C.H. & Blencowe, B.J. *Mol Cell* **72**, 187–200.e6 (2018).
3. Ziegenhain, C. et al. *Mol Cell* **65**, 631–643.e4 (2017).
4. Wang, Y., Zhao, Y., Bollas, A., Wang, Y. & Au, K.F. *Nat Biotechnol* **39**, 1348–1365 (2021).
5. Li, H. *Bioinformatics* **37**, 4572–4574 (2021).
6. Gao, Y. et al. *Sci Adv* **9**, eabq5072 (2023).
7. Tang, A.D. et al. *Nat Commun* **11**, 1438 (2020).
8. Tian, L. et al. *Genome Biol* **22**, 310 (2021).
9. Lebrigand, K., Magnone, V., Barbry, P. & Waldmann, R. *Nat Commun* **11**, 4025 (2020).
10. Prjibelski, A.D. et al. *Nat Biotechnol* **1–4** (2023).doi:10.1038/s41587-022-01565-y
11. Hu, Y. et al. *Genome Biol* **22**, 182 (2021).
12. Gleeson, J. et al. *Nucleic Acids Res* **50**, e19–e19 (2021).
13. Chen, Y. et al. *Biorxiv* **2022.11.14.516358** (2022).doi:10.1101/2022.11.14.516358
14. Heber, S., Alekseyev, M., Sze, S.-H., Tang, H. & Pevzner, P.A. *Bioinformatics* **18**, S181–S188 (2002).
15. Ntranos, V., Kamath, G.M., Zhang, J.M., Pachter, L. & Tse, D.N. *Genome Biol* **17**, 112 (2016).
16. Li, B. & Dewey, C.N. *Bmc Bioinformatics* **12**, 323–323 (2011).
17. Bray, N.L., Pimentel, H., Melsted, P. & Pachter, L. *Nat Biotechnol* **34**, 525–527 (2016).
18. Satija, R., Farrell, J.A., Gennert, D., Schier, A.F. & Regev, A. *Nat Biotechnol* **33**, 495–502 (2015).
19. Yang, C., Chu, J., Warren, R.L. & Birol, I. *Gigascience* **6**, gix010- (2017).
20. Kovaka, S. et al. *Genome Biol* **20**, 278 (2019).
21. Heaton, H. et al. *Nat Methods* **17**, 615–620 (2020).
22. Street, K. et al. *BMC Genom.* **19**, 477 (2018).
23. Katz, Y., Wang, E.T., Airoldi, E.M. & Burge, C.B. *Nat. Methods* **7**, 1009–1015 (2010).
24. Tapial, J. et al. *Genome Res.* **27**, 1759–1768 (2017).
25. Hubbard, K.S., Gut, I.M., Lyman, M.E. & McNutt, P.M. *F1000Research* **2**, 35 (2013).
26. Buccitelli, C. & Selbach, M. *Nat. Rev. Genet.* **21**, 630–644 (2020).
27. MacPherson, M.J. et al. *Cell Rep.* **35**, 109226 (2021).
28. Irimia, M. et al. *Cell* **159**, 1511–23 (2014).
29. Garcia-Cabau, C. et al. *bioRxiv* **2023.03.19.532587** (2023).doi:10.1101/2023.03.19.532587
30. Gonatopoulos-Pournatzis, T. et al. *Mol. Cell* **77**, 1176–1192.e16 (2020).
31. Anders, S., Reyes, A. & Huber, W. *Genome Res.* **22**, 2008–2017 (2012).
32. Yu, M. et al. *Nature* **520**, 307–311 (2015).