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Abstract

Understanding the spatial heterogeneity of tumors and its links to disease is a
cornerstone of cancer biology. Emerging spatial technologies offer unprecedented
capabilities towards this goal, but several limitations hinder their clinical adop-
tion. To date, histopathology workflows still heavily depend on hematoxylin &
eosin (H&E) and serial immunohistochemistry (IHC) staining, a cumbersome
and tissue-exhaustive process that yields unaligned tissue images. We propose
the VirtualMultiplexer, a generative AI toolkit that translates real H&E images
to matching THC images for several markers based on contrastive learning. The
VirtualMultiplexer learns from unpaired H&E and IHC images and introduces a
novel multi-scale loss to ensure consistent and biologically reliable stainings. The
virtually multiplexed images enabled training a Graph Transformer that simul-
taneously learns from the joint spatial distribution of several markers to predict
clinically relevant endpoints. Our results indicate that the VirtualMultiplexer
achieves rapid, robust and precise generation of virtually multiplexed imaging
datasets of high staining quality that are indistinguishable from the real ones.
We successfully employed transfer learning to generate realistic virtual stainings
across tissue scales, patient cohorts, and cancer types with no need for model fine-
tuning. Crucially, the generated images are not only realistic but also clinically
relevant, as they greatly improved the prediction of different clinical endpoints
across patient cohorts and cancer types, speeding up histopathology workflows
and accelerating spatial biology.

Keywords: virtual staining, stain-to-stain translation, multiplexed imaging,
generative modeling

Introduction

Tissues are spatially organized ecosystems, where cells of diverse phenotypes, mor-
phologies and molecular profiles coexist with non-cellular compounds and interact
to maintain homeostasis [1]. Several tissue staining technologies are used to inter-
rogate this intricate tissue architecture and identify morphological and molecular
patterns linked to disease. Among these technologies, H&E staining is the undisputed
workhorse, routinely used to assess aberrations in tissue morphology in histopathol-
ogy workflows across diseases [2]. A notable example is cancer, where H&E staining
is routinely used to reveal abnormal cell proliferation, nuclear shape, lymphovascular
invasion and immune cell infiltration, among others. Complementary to the morpho-
logical information available via H&E staining, THC [3], another staining technique
routinely applied in histopathology laboratories, exploits antigen-antibody binding to
detect and quantify the abundance of a single protein marker in situ. IHC visualizes the
distribution and localization of specific markers within cell compartments (membra-
nous, cytoplasmic and/or nuclear) and within their proper histological context, which
is crucial for tumor subtyping, prognosis, and personalized treatment selection. As tis-
sue re-staining in conventional IHC is limited, repeated serial tissue sections stained
with different antibodies are required for in-depth tumor profiling. However, this is
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a time-consuming and tissue-exhaustive process, prohibitive in cases of limited tissue
availability. At the same time, serial IHC staining yields unaligned, non-multiplexed
tissue images occasionally of suboptimal quality in terms of tissue artifacts, and tissue
unavailability may lead to missing stainings (Figure 1A). Recently, multiplexed imag-
ing technologies (e.g., imaging mass cytometry - IMC [4], co-detection by indexing
- CODEX [5], multiplexed ion beam imaging - MIBI [6]) have enabled the simulta-
neous quantification of dozens of markers on the same tissue, revolutionizing spatial
biology [7]. Still, their high cost, cumbersome experimental process, tissue destruc-
tive nature, long turnaround time, and need for specialized personnel and equipment
severely limit their clinical adoption.

Virtual staining, i.e., the generation of artificially stained tissue images using gen-
erative Al models, has emerged as a promising cost-effective, easily accessible and
rapid alternative that addresses above limitations [8, 9]. A virtual staining model
exploits two sets of images - a source set and a target set - to learn the source-to-target
appearance mapping [10, 11]. During inference, the trained model takes as input a
source image and produces a virtually stained target image by simulating the target
staining on the source. Initial virtual staining models were based on different flavors
of generative adversarial networks (GANs) and operated under a paired setting, i.e.,
precisely aligned source and target images, which allowed them to directly optimize a
pixel-wise loss between the virtual and real images [12]. Successful examples of paired
models include translating label-free microscopy tissue images to H&E and specific
stainings [13-16], H&E to special stains [17, 18], H&E to IHC [19, 20], and IHC to mul-
tiplex immunofluorescence [21]. However, as tissue re-staining is not routinely done in
most cases, training paired models depends on aligning tissue slices via image registra-
tion, a time-consuming and error-prone process, which is often infeasible in practice
because of substantial discrepancies even between consecutive slices. Additionally, as
tissue architecture largely alters after the first set of slices, retrospective addition
of new markers or multiplexing of several markers on a specific area/focal plane of
interest is impossible. To circumvent these limitations, unpaired stain-to-stain (S2S)
translation models have recently emerged, with early applications in translating from
H&E to THC [22-26] and special staining [27, 28] and from cryosections to Formalin-
Fixed Paraffin-Embedded (FFPE) sections [29]. The vast majority of unpaired S2S
translation models are inspired by CycleGAN [30]; they depend on an adversarial loss
to preserve the source content (tissue architecture), and a cycle consistency loss to
preserve the target style (staining pattern). Some employ additional constraints, e.g.,
domain-invariant content and domain-variant style [22], perceptual embeddings [24]
or structural similarity [25].

However, an important limitation of CycleGAN-based models is that cycle con-
sistency assumes a bijective mapping between the source and target domains [30],
which does not necessarily hold for many S2S translation tasks. As a result, a persis-
tent problem is staining unreliability, observed as incorrect mappings across domains,
e.g., a positive signal from the source domain can get mapped to a negative signal
from the target domain. To account for staining unreliability, recent works exploit
expert annotations in the source and target domains to guide the translation. For
example, Boyd et al. [26] translated H&E to Cytokeratin (CK) stained THC using a
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region-based CycleGAN and expert annotations of positive and negative metastatic
regions on the H&E images. Similarly, Liu et al. [25] translated H&E to Ki67 stained
THC by leveraging cancer or normal region annotations in both the H&E and THC
images. Although these approaches show promising results for these specific transla-
tion problems, acquiring such annotations is impractical when translating to several
THC markers, and infeasible even for experienced pathologists for more specialized
translation tasks (e.g., identifying p53+ cells in H&E images). To circumvent the anno-
tation challenge, Zheng et al. [31] recently introduced a semi-supervised approach,
which however, again, depends on consecutive tissue sections and image registration.
Consequently, there is a great need for S2S translation models that can learn from
unpaired source and target images and preserve staining consistency without the need
for consecutive tissue sections, image registration or extensive expert annotations on
the source domain.

Regardless of the underlying modeling assumptions, an important limitation of the
above S2S translation studies concerns model evaluation. As ground truth and virtu-
ally generated images are not pixel-wise aligned, S2S translation quality is typically
quantified at a high-feature-level using inception-based scores [32]. However, these
scores do not guarantee that the generated images accurately preserve complex and
biologically meaningful spatial patterns [9]. To alleviate these concerns, a step in the
right direction is expert qualitative assessment though pathological examination of
the virtual images, employed by some studies [22, 24]. Still, as with all generative Al
approaches, a persistent concern is the presence of hallucinations in virtually stained
images that might otherwise appear realistic even to experienced pathologists. Ulti-
mately, to ensure that virtually stained images do not only appear visually realistic
but are also useful and relevant from a clinical standpoint, using them as input to
downstream deep learning models to predict diagnostic or prognostic endpoints could
provide an unbiased and convincing validation [9].

Here, we propose the VirtualMultiplexer, a generative toolkit that translates H&E
images (source) to matching IHC images (target) for a variety of molecular markers,
generating virtually multiplexed tissue images (Figure 1B). The VirtualMultiplexer
is inspired by contrastive unpaired translation (CUT) [33], an appealing contrastive
learning alternative to CycleGAN that achieves content preservation by maximiz-
ing the mutual information between target and source domains. Our toolkit does
not depend on pixel-wise aligned H&E and THC images during training and, in con-
trast to existing approaches, requires minimal expert annotations only on the target
THC domain. To ensure consistent and biologically relevant virtual stainings, Virtual-
Multiplexer introduces a novel architecture based on multi-scale constraints at the
single-cell, cell-neighborhood and whole-image level that closely mimic human expert
evaluation. Specifically, our multi-scale approach is designed to accurately capture the
staining specificity at the individual cell level, while also ensuring content and style
preservation at a cell neighborhood level and a global image level. We trained the
VirtualMultiplexer on a prostate cancer tissue microarray (TMA) dataset contain-
ing unpaired H&E and THC stainings for six clinically relevant nuclear, cytoplasmic,
and membrane-targeted markers, and evaluated the generated images using quanti-
tative image fidelity metrics, expert pathological assessment and visual Turing tests.
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Fig. 1 VirtualMultiplexer: a generative toolkit for synthesizing virtual multiplexed
staining. (A) In a typical histopathology workflow, serial tissue sections from a tumor resection
are stained with H&E and ITHC to highlight tissue morphology and molecular expression of several
markers of interest. This time-consuming and tissue-exhaustive process yields unpaired tissue slides
that bear the technical risk of suboptimal quality in terms of missing stainings, tissue artifacts, and
unaligned tissues. (B) To mitigate these issues, the VirtualMultiplexer uses generative Al to rapidly
render, from a real input H&E image, consistent, reliable and pixel-wise aligned THC stainings. (C)
As the generated images are now virtually multiplexed, they are further exploited to train early-fusion
Graph Transformers able to predict several clinically relevant endpoints. (D) The VirtualMultiplexer
is transferable across image scales, patient cohorts and tissue types, accelerating clinical applications
and discovery.
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Importantly, to evaluate the clinical relevance of the generated images, we devised
a Graph Transformer model that combined a Graph Neural Network and Vision
Transformer (ViT) to simultaneously learn from the joint spatial distribution of sev-
eral markers and predict clinically relevant endpoints (Figure 1C). As our toolkit is
not limited by tissue availability or time constraints, we successfully transferred it
across tissue image scales (TMAs to whole slide images (WSIs)), across two addi-
tional out-of-distribution large prostate cancer patient cohorts, and across tissue types
(from prostate to pancreatic, breast and colorectal tissue) (Figure 1C). Our results
suggest that the VirtualMultiplexer generates realistic multiplexed THC stainings of
high staining quality which are indistinguishable from real IHC stainings, outperform-
ing existing methods. Importantly, using the generated datasets to train early fusion
Graph Transformers surpassed in performance models trained with real unaligned
data when predicting clinically relevant endpoints (e.g., survival status, tumor grade
and stage) not only in the training cohort, but also in two independent prostate can-
cer patient cohorts and a pancreatic ductal adenocarcinoma (PDAC) cohort. Overall,
the VirtualMultiplexer is a cost-effective, rapid, and easily accessible toolkit that can
be readily used to generate virtual multiplexed imaging datasets of high quality, alle-
viate issues caused by missing modalities and tissue artifacts, improve the prediction
of clinical endpoints and generalize across image scales, patient cohorts, and cancer
types, with important implications in histopathology.

Results

VirtualMultiplexer: a generative toolkit for virtually
multiplexed staining

The VirtualMultiplexer is a generative toolkit for unpaired S2S translation, trained
on unpaired real H&E (source) and THC (target) images. An overview of the model
is presented in Figure 2 and a detailed description of its architecture and objective
functions is provided in the Methods (Section 8). During training, each image is split
into patches of size 256 X256 pixels at 10x resolution, which are in turn fed into a gen-
erator network G that conditions on input H&E and THC and learns to transfer the
staining pattern, as captured from IHC images, to the tissue morphology, as captured
by the H&E images. The generated IHC patches are then stitched together to create a
final virtually stained THC image (Figure 2A). During the S2S translation, we aim to
ensure that the virtually stained IHC images are consistent with the real IHC images
in terms of appearance, from the macroscopic to the microscopic scale. This implies
that the generated IHC images should preserve the staining distribution of real IHC
at a patch and tile scale, but also accurately learn the staining specificity of the dif-
ferent markers at the cellular scale. To achieve this, the model jointly optimizes three
distinct loss functions, each one designed to preserve image consistency across differ-
ent scales (Figure 2B). The neighborhood loss (1) ensures that the generated THC
patches are indistinguishable from real IHC patches and consists of an adversarial and
a multilayer contrastive loss (Figure 2B), adopted from CUT [33]. The adversarial loss
Lagv (1a) is a standard GAN loss [34], where real and virtual IHC patches are used
as input to a convolutional neural network (CNN) patch discriminator network D
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Fig. 2 Overview of VirtualMultiplexer architecture. (A) The VirtualMultiplexer consists of
a generator G that takes as input real unpaired H&E and THC images and is trained to perform
S2S translation by mapping the staining distribution of IHC onto H&E while preserving tissue mor-
phology, ultimately generating virtually multiplexed synthetic IHC images only from input H&E
images. (B) During training, the VirtualMultiplexer optimizes several losses that enforce consistent
S2S translation at multiple scales, including a neighborhood consistency loss (1) that ensures indis-
tinguishable translations at a neighborhood (patch) level, a global consistency loss (2) that ensures
that the model accurately captures content and style constraints at a global tile-level, and a local
consistency loss (3) that encodes biological priors on cell type classification and discriminator con-
straints at a cellular level.

which attempts to classify them as either real or virtual, eliminating style differences
between real and virtual patches. The multilayer contrastive loss (1b) is based on a
patch-level noise contrastive estimation 1oss [33] Lecontrastive that aims to ensure that
the content of corresponding real H&E and virtual IHC patches is preserved across
multiple layers of Gy, i.e., the encoder of the generator G. The VirtualMultiplexer
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introduces two novel losses, namely a global and a local consistency loss (Figure 2B).
The global consistency loss (2) uses a feature extractor F', a pre-trained VGG net-
work [35], and enforces content consistency between the real H&E and the virtual
THC image (Lcontent), and style consistency between the real and virtual IHC images
(Lstyle) at a tile level across multiple layers of F. In this way the model leverages
a high-level sample information, i.e., the correspondence between real H&E and real
THC pairs, to ensure global tissue composition consistency and mitigate the macro-
scopic appearance variability. Finally, the local consistency loss (3) consists of a cell
discriminator loss Leenpisc and a cell classification loss (Lcenclass) that together enable
the model to capture a realistic appearance and staining pattern at the cellular level
while alleviating the multi sub-domain mapping issue. This is achieved by leveraging
prior knowledge on staining status via expert annotations, and training two separate
networks: a cell discriminator D, that attempts to eliminate differences in the style
of real and virtual cells, and a cell classifier F.); that predicts the staining status and
thus enforces staining consistency at a cell-level.

Performance assessment of the VirtualMultiplexer

We first assessed the performance of VirtualMultiplexer in terms of the quality of
the generated THC stainings. We trained the model on a cohort of prostate cancer
TMAs from the European Multicenter Prostate Cancer Clinical and Translational
Research Group (EMPaCT) [36-38] (Methods). The cohort contained unpaired H&E
and THC stainings from 210 patients with 4 cores per patient for six clinically relevant
markers, namely androgen receptor (AR), NK3 Homeobox 1 (NKX3.1), CD44, CD146,
p53 and ERG. The VirtualMultiplexer was used to generate a series of virtual IHC
stainings (Figure 3C) that preserved the tissue morphology as seen in the real H&E
image (Figure 3A) and the staining pattern as seen in the real IHC image (Figure 3B).
Additional examples for two more TMA cores and all ITHC markers are presented in the
Appendix Figure A1l. We quantitatively compared the results of the VirtualMultiplexer
with four state-of-the-art unpaired S2S translation methods, namely CycleGAN [30],
CUT [33], CUT with kernel instance normalization (KIN) [39], and AI-FFPE [29]
using the Fréchet Inception Distance (FID), an established metric used to assess the
proximity of images created by a generative model to a set of target domain images [40].
The VirtualMultiplexer resulted in the lowest FID score across all markers (Figure 3D),
with an average value of 29.2 (£3), which was consistently lower than the competing
methods CycleGAN (49 + 6), CUT (35.8 £+ 4.5), CUT with KIN (37.8 £ 2.3), and
AI-FFPE (35.9 + 2.6). This result indicated that virtual stainings generated by the
VirtualMultiplexer were the closest to the real IHC stainings in terms of distribution
than any of the competing methods.

To further quantify the indistinguishability of real and synthetically stained images,
we conducted a visual Turing test as follows: three independent evaluators with exper-
tise in prostate tissue histopathology and one board-certified pathologist were shown
100 randomly selected patches per marker, with 50 of them originating from real and
50 from virtually stained IHC images, and were asked to classify each patch as virtual
or real. We observed that our model was able to trick the experts, as it achieved an
average sensitivity of 52.1% and specificity of 54.1% across all six markers (Figure 3E)
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(note that a random classification into real or virtual would correspond to a sensitivity
and specificity of 50%). Last, we performed a staining quality assessment: we provided
the pathologist 50 real and 50 virtual images from 50 TMA cores per IHC marker,
revealing which are real and which are virtual, who in turn performed a qualitative
assessment of the staining, as judged by overall expression levels, overall background,
staining pattern, cell type specificity and subcellular localization (Figure 3F). Across
all six markers, on average 70.7% of the virtually stained images reached an acceptable
staining quality, as opposed to 78.3% of the real images. The results varied depend-
ing on the marker, with cores virtually stained for NKX3.1 and CD146 achieving the
highest staining quality of 96%, surpassing even the real images. Conversely, virtually
stained AR images had the lowest score of 46%, with an additional 10% exhibiting
accurate staining but high background, and the remaining 42% rejected due to mostly
heterogeneous staining, or falsely unstained cells. Background staining presented a
challenge with CD44 and p53; the latter appeared to be further affected by border
artifacts, i.e., presence of abnormally highly stained cells only in the border of the core,
an artifact also occasionally present in real images. ERG achieved a higher staining
quality assessment in virtual than in the real images, which both appeared to often
face background issues. We concluded that, for most of the markers, the staining qual-
ity scores and the number of cores with staining artefacts (high background and/or
border artefacts) were comparable in virtual versus real images.

Following these observations, we carefully examined the virtually generated images
and assessed to which extend the VirtualMultiplexer captured the staining patterns
of the real ones. The virtual images showed similar pattern and signal distribution
to the real images for all six markers, with correct cell type and subcellular distri-
bution (Figure 4A). For instance, AR+ and NKX3.1+ cells were evaluated as having
correct distribution in the luminal epithelial compartment of the prostatic glands
and nuclear localization. Furthermore, a few NKX3.1+ cells in stromal regions (pos-
sibly stroma-invading tumor cells) were correctly predicted in the virtually stained
cores. Similarities in specific, matched areas between virtual and real IHC images were
also assessed mainly for staining pattern and overall intensity levels. To this end, we
specifically assessed that the virtual expression of markers indicative of tumor-specific
molecular profile, such as loss of TP53 and ERG overexpression, did not largely devi-
ate from the real IHC at the overall TMA core level (Figure 4A), which would be
crucial for diagnostic applicability. Certain discrepancies in virtual versus real images
were also found, such as non-specific signal in extra-cellular-matrix/stroma regions
(NKX3.1, p53, ERG), false nuclear expression (CD44), and systematic lack of recogni-
tion of CD146+ vascular structures (Figure 4B). Nonetheless, the more pathologically
relevant staining patterns were correctly reconstructed, as described in Figure 4A. We
also performed an ablation study demonstrating the effects of training with different
components of the objective function of the VirtualMultiplexer (Appendix Figure A2).
Indeed, we observe that incorporating multi-scale loss terms, from the whole image
to the cellular level, allows us to capture biologically consistent staining patterns that
resemble the real IHC stainings. The mere imposition of the neighborhood consistency,
the primary objective employed in competing methods, produces virtually stained tis-
sue regions mimicking the overall staining distribution of real target IHC stainings,
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Fig. 3 Performance evaluation of VirtualMultiplexer. (A) Example H&E core from the
EMPaCT TMA. (B) Real, unpaired IHC-stained cores for different antibody markers corresponding
to the H&E core in (A). (C) Virtually stained IHC cores, now paired with the H&E core in (A).
(D) Comparison of the VirtualMultiplexer with state-of-the-art S2S models. Barplots and errorbars
indicate the mean and standard deviation of the FID score from 3 independent runs of each model.
Number of test samples used varies per marker and is reported in each subplot. (E) Results of the
visual Turing test, where circles indicate the guess of each one of the four experts, and barplots and
errorbars indicate the corresponding mean and standard variation. (F) Assessment of staining quality
of the virtual and real stainings, performed on 50 real and 50 virtual images.
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Fig. 4 Visual quality assessment of virtually stained IHC images of the EMPaCT
prostate cancer TMA. (A) Example virtual TMA cores across all 6 markers (left column) and
selected zoomed in regions (middle column) that highlight accurate staining patterns. Real reference
stainings for each markers are given on the right column. (B) Same as (A) but highlighting regions
with inaccurate or inconclusive staining.

but clearly leads to staining unreliability, e.g., swapping of staining patterns between
positive and negative cells. The introduction of the global consistency clearly miti-
gates this issue, and the further addition of the local consistency further optimizes the
virtual staining at the cell-level.

Transfer learning from TMAs to WSIs

To assess how well the model can be transferred across imaging scales, we fed the TMA-
trained VirtualMultiplexer with five out-of-distribution prostate tissue WSIs stained
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with H&E, and generated virtually stained THC images for the NKX3.1, AR, and
CD146 markers, as before. We then stained for the same markers by THC on the direct
serial sections, thus generating a real stained WSI that can be directly used to visu-
ally validate the model predictions. For marker NKX3.1 (Figure 5), we observed that
the virtually stained images largely captured the staining appearance of the real ones,
both in terms of specific glandular luminal cell identification (positive signal) (exam-
ples 1 and 2 in Figure 5 and Appendix Figure A3) and accurate non-annotation of
stromal or vascular structures (absence of signal) (example 3 in Figure 5 and Appendix
Figure A3). In minority, virtual images did not highlight the rarer NKX3.1+ cell
population that are not part of the epithelial gland, but rather in the periglandular
stroma (example 4 in Figure 5 and Appendix Figure A3). For both CD146 and AR, we
observed staining intensity discrepancies between virtual and real images, which were
more striking in the case of CD146 where the overall signal intensity and background
is higher in the virtual versus the real images (Figure 5 and Appendix Figure A3).
These discrepancies can be reasoned to the fact that the VirtualMultiplexer has been
trained on TMA images that have a different staining distribution than the WSIs.
This might lead to false interpretation of the marker expression levels at a first visual
inspection. However, when evaluating at higher magnification, the staining pattern in
the matching regions of real and virtual stainings was effectively correct, e.g., no glan-
dular signal (example 5 in Figure 5) and appropriate stromal localization of CD146
(examples 6 and 7 in Figure 5) and nuclear localization of AR in luminal epithelial
cells (example 1 in Appendix Figure A3). Lack of detection of vascular structures for
CD146 was evident in both TMA cores and WSI (example 8 in Figure 5).

The VirtualMultiplexer leads to improved clinical predictions

We further substantiated the utility of the generated virtual IHC stainings in aug-
menting the performance of AI models when predicting clinically relevant endpoints.
To this end, we benchmarked the classification performance of AI models that were
trained using real H&E, real IHC, or virtual THC images. Specifically, we encoded the
images as tissue-graph representations and employed a Graph-Transformer (GT) [41]
to map the representations to downstream class labels. First, we extracted patches
from the images and used a pretrained ResNet-50 network [42] to encode patch fea-
tures (Figure 6A and Methods). The patches and their features formed the nodes and
node representations of the tissue-graph, and the edges were formed using the spa-
tial distribution of the patches (Figure 6B and Methods). The graph representation
underwent graph convolutions to contextualize the node features of the local tissue
neighborhood. Afterwards, the node features were pooled and fed to a transformer
layer, trained to predict clinical endpoints. Depending on how the patch features were
combined, we trained the GT model under the following three settings (Figure 6C):
(i) a unimodal setting, where independent GT models were trained for each H&E
and THC marker, (i) a multimodal late fusion setting, where the outputs of indepen-
dent GT models were fused at the last embedding stage, and (iii) a multimodal early
fusion setting, where the patch features were combined early in the tissue-graph and
fed into the GT model. While the unimodal setting resulted in a separate prediction
per marker, in both multimodal settings the patch features were combined, resulting
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Fig. 5 Transfer learning from TMA to WSIs of prostate cancer tissue. Example of H&E (left
image), virtual IHC (middle image), and real IHC (right image) staining for NKX3.1 (top) and CD146
(bottom) of prostate cancer tissue WSIs. Blue-framed zoomed-in regions display accurate staining
pattern. Red-framed zoomed-in regions display examples of virtual staining mis-predictions.

in one prediction across all markers. However, in contrast to the late fusion multi-
modal setting that necessitated the training of several GT models, in the early fusion
case only one model that learned from the joint spatial distribution across all mark-
ers was trained, mimicking a multiplexed imaging scenario. With the exception of the
early fusion setting that was only feasible for virtual images, we tested all three set-
tings with both real and virtual images as input, resulting in a total of five different
combinations (Figure 6D, legend).

We applied these settings to the EMPaCT dataset to predict two clinically relevant
endpoints, namely the overall survival status and the disease progression of patients
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Fig. 6 Prediction of clinically relevant downstream tasks with virtually multiplexed
data. (A) Patch extraction and computation of patch features with a frozen ResNet-50 model (blue
trapezoid). (B) Overview of the Graph-Transformer model, implemented by first constructing a
patch-level graph representation, followed by a transformer that processes the graph representation
to predict clinically relevant endpoints. (C) Training of Graph-Transformer models (green trapezoid)
under three different settings, depending on the integration strategy. (D) Prediction results of overall
survival status (left, 0: alive/censored, 1: prostate cancer related death) and disease progression (right,
0: no recurrence, 1: recurrence). Barplot colors indicate one of the five combinations of training setting
and input data used (see legend). For each combination, barplot heights and errorbars indicate the
mean and standard deviation of the weighted F1 score, as computed in the held-out test set from 3
independent runs with different initializations. The exact number of training samples used in each
cases is given on the top of the barplots. * For all multimodal models, the reported number refers to
the union across all markers.

(Figure 6D). We note that in the EMPaCT dataset few IHC marker stainings are miss-
ing, leading to small discrepancies in the number of real IHC images available across
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all six markers. To ensure a fair comparison between real and virtual unimodal mod-
els, we matched the number of virtual IHC images to the number of available real IHC
images, which implies that the dark and light blue barplots in Figure 6D are directly
comparable. However, as H&E images were available for all patients, this issue did
not affect the unimodal model trained on H&E images, which has a slight advantage
over all other models in terms of number of samples used. Importantly, to compare
all multimodal models, we again followed the same strategy of matching the number
of virtual images used to the ones available in real data, and thus the last 3 bars in
Figure 6D are also directly comparable. More details of the dataset distribution and
the GT training are presented in Methods (Section 8). We observed that the unimodal
models trained with virtual images are on par with unimodal ones trained with real
images for both tasks, and the predictive performance of the unimodal models trained
with virtual IHC images varied depending on the marker’s predictive ability towards
the downstream task. In the case of overall survival status prediction, two interest-
ing exceptions concern CD146 and p53: for CD146 the unimodal models trained on
virtual data outperformed the ones trained on real data, which is in accordance to
the previous observation that virtual CD146 images achieved a higher quality assess-
ment than real CD146 images (Figure 3F). The opposite is true for p53: virtual p53
images were of lower quality than real p53 images, and the corresponding unimodal
- virtual prediction models achieved a lower performance than the unimodal - real
ones. However, these observations were not replicated for disease progression predic-
tion, which appeared to be an overall harder prediction task. In both prediction tasks,
the multimodal settings outperformed the unimodal H&E results, indicating the util-
ity of combining information from complementary markers over individual stainings.
Furthermore, the multimodal early fusion model trained with virtual images achieved
the best weighted F1 score of 82.9% and 74.8% for overall survival status and dis-
ease progression, respectively, establishing the potential of multiplexed analysis via
virtual staining for augmenting the efficacy of AI models. Overall, we concluded that
using virtual images generated by the VirtualMultiplexer can boost the performance
of state-of-the-art Al models for clinically relevant endpoints.

Transferring the VirtualMultiplexer across patient cohorts and
cancer types

We assessed the ability of the VirtualMultiplexer model to generalize to out-of-
distribution data by employing two independent prostate cancer patient cohorts,
namely SICAP [43] and PANDA [44], each one containing H&E stained needle biop-
sies with associated Gleason scores (details in Methods). We virtually stained the
H&E images for four THC markers, namely NKX3.1, CD146, AR and ERG, using the
pre-trained VirtualMultiplexer on the EMPaCT dataset (example needle biopsy for
SICAP in Figure 7A, additional examples for both SICAP and PANDA in Appendix
Figure A4). The THC markers were chosen due to their possible relevance towards Glea-
son score prediction. We observed that the virtual staining patterns of the IHC markers
were overall correct and specific for each marker in terms of cell type and subcellular
localization, with the only exception the occasional aspecific AR signal in the extracel-
lular matrix areas. Other inconsistencies include the weak staining of interstitial tissue
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Fig. 7 Transfer learning across scales, cohorts, and cancer types. (A) Real H&E needle
biopsy of the SICAP dataset (top) and matching virtual IHC stainings across 4 IHC markers (bottom),
as generated from the EMPaCT-trained VirtualMultiplexer. (B) Prediction results of Gleason grading
for the SICAP test set in terms of weighted F1 score and confusion matrix. Barplots and errorbars
as in Figure 3, confusion matrices correspond to the Multimodal - Virtual Early fusion model. Note
that the setting unimodal - real (dark blue barplot) only includes training the model on H&E, as no
real IHC data are available here. (C) Same as in (B) but for the PANDA dataset. (D) Virtual IHC
staining of a PDAC TMA dataset with corresponding prediction of TNM staging.
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for CD146, and the heterogeneous staining of the glands for ERG. We also observed
some recurring issues as in the quality assessment of the EMPaCT TMA (Figure 3),
namely background (e.g., stromal background occasionally present in NKX3.1 and
ERG), border and tiling artifacts (e.g., for CD146). Subsequently, we trained GT
models under the previously described settings to predict the Gleason grade for both
SICAP and PANDA datasets, shown in Figure 7B and C, respectively. We observe
that the predictive performance of the unimodal models trained on virtual IHC stain-
ings was close to or superior to the model using standalone H&E stainings for both
the SICAP and PANDA datasets. Further improvement in Gleason score prediction
was attained by the multimodal models built on the virtual IHC stainings. The early
fusion model trained with the virtually multiplexed data achieved the best weighted
F1 score of 61.4% and 72.3% for Gleason scoring on SICAP and PANDA, respectively,
which significantly outperformed the H&E unimodal counterpart by 11.9% and 6.6%
on SICAP and PANDA, respectively.

Finally, we evaluated the generalization ability of the VirtualMultiplexer to images
of other cancer types. To this end, we first applied the pre-trained VirtualMultiplexer
on the EMPaCT dataset to a PDAC TMA that was unseen by the model and used
the available H&E images to generate virtual IHC stainings for CD44, CD146 and
pb3 (Figure 7D), three markers with expected expression in pancreatic tissue. The
generated images appeared overall realistic, with no means of discriminating whether
they were virtually or actually stained. We observed that the CD44 and CD146 staining
pattern in the virtual images was allocated, as expected, to the extracellular matrix
of presented tissue spots, without major staining in the epithelial tissue part. For
p53, we again observed overall proper staining allocation to the nuclei of epithelial
cells with expected distribution, with no major staining of other compartments. To
quantify the utility of the virtual stainings for downstream applications, we followed
the same process as before to predict PDAC tumor, node and metastasis (TNM) stage,
leading, again, to increased performance of models trained with virtually multiplexed
data, concluding that virtually multiplexed data offers a performance advantage to
prediction models.

We also applied the pre-trained VirtualMultiplexer to generate virtual IHC stain-
ings for CD44 and CD146 from colorectal [45] and breast cancer [46] H&E-stained
WSIs from The Cancer Genome Atlas (TCGA) [47]. Although the lack of normal tis-
sue limited our ability to evaluate the staining quality in the generated images, we
again observed an overall realistic virtual staining (Appendix Figure A5).

The VirtualMultiplexer can greatly accelerate histopathology
workflows

Lastly, we performed a runtime estimation of all components of the VirtualMul-
tiplexer framework across imaging datasets of different scales, i.e., TMAs, needle
biopsies and WSIs (Appendix Figure A6). We calculated that applying the trained
VirtualMultiplexer on a single EMPaCT TMA core (6000x6000 pixels at 20X
magnification-0.24pm/pixel), an in-distribution sample, for one marker resulted in a
total runtime of 2.81 seconds, and the same process for an out-of-distribution TMA
core resulted in a runtime of 10.88 seconds, with the increase attributed to stain
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normalization. However, the stain normalization step is crucial as it alleviates the
appearance disparity between the training EMPaCT H&E TMAs and the out-of-
distribution samples, and allows for a faithful application of the VirtualMultiplexer
to unseen datasets. The above result implies that virtual staining of a hypothetical
TMA slide containing 250 out-of-distribution TMA cores for 6 markers would be fea-
sible in ~65.8 minutes (preprocessing: ~9.9 seconds per core, virtual staining and
post-processing: ~0.98 seconds per core and marker). Conversely, performing the IHC
staining experiment for the same hypothetical TMA for 6 THC markers could take
an estimated time of approximately 1 day, when applied in a cutting-edge pathology
laboratory using the latest protocols [48]. When applied in a biology lab that does
not specialize in pathology, however, IHC staining could take up to 5 days per marker
(sectioning: 1 day, staining: 2 days, slide drying: 1 day, imaging: 1 day), leading to a
minimum of 5 days, if done simultaneously for all 6 markers, and more than 10 days,
if performed mostly sequentially. Importantly, as our method scales linearly with the
size of the tissue (TMA to WSI) and with the number of markers, similar time gains
would be feasible for virtually staining needle biopsies and WSIs. We conclude that
the VirtualMultiplexer leads to significant time gains when compared to a typical IHC
staining, and can greatly accelerate histopathology workflows.

Discussion

Virtual staining has emerged as a promising direction in histopathology, with early
attempts to apply GAN-based approaches on unpaired datasets across different stain-
to-stain translation tasks. However, staining inconsistency issues limit its applications
in translating marker-specific stains such as IHC. In this work, we proposed the Vir-
tualMultiplexer, a generative toolkit that can effectively translate H&E to IHC images
for several markers, and is able to preserve staining consistency across image scales
without requiring access to consecutive tissue sections, image registration or exten-
sive expert annotations. This was achieved by proposing a novel architecture that
includes the joint optimization of multi-scale loss functions that encode different bio-
logical priors to ensure biological consistency on a cellular, neighborhood, and global,
whole-image scale. Our results indicated that the VirtualMultiplexer consistently out-
performed in image fidelity state-of-the-art S2S translation methods and generated
THC images that were indistinguishable from the real ones to the expert human eye.
Detailed histopathological evaluation suggested that the staining quality of the gener-
ated images was on par or even exceeded that of the real images in terms of staining
pattern and distribution, with staining artifacts (e.g., high background, border effects)
largely comparable in virtual versus real images for most markers. A thorough abla-
tion study demonstrated that our novel local and global loss terms allowed us to
mitigate staining unreliability and capture biologically consistent staining patterns, as
opposed to solely using the adversarial and contrastive objectives employed in com-
peting methods. When transferring the TMA-trained VirtualMultiplexer on prostate
cancer WSIs and two unseen prostate cancer cohorts containing needle biopsies, we
found that it generalized well to unseen prostate cancer images of different scales with-
out any retraining or fine-tuning. Similar observations were made when generalizing
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on tissues of different origins, namely a PDAC TMA and TCGA breast and colorectal
cancer WSIs.

While our results demonstrate a clear potential for the use of virtual multiplexed
staining in histopathology, several limitations remain and can be addressed in future
extensions of the model. Firstly, in some cases we observed elevated background lev-
els in the EMPaCT TMA. Although this issue was also present in the real data, it
appeared more pronounced for markers that had an overall more faint staining pat-
tern (e.g., p53). More prominent background issues were present when we transferred
the EMPaCT-trained model to the prostate cancer WSIs, which was expected consid-
ering that the EMPaCT THC images and the prostate cancer WSIs were generated in
two different institutions using different staining protocols and/or at different exper-
iments and time points. Secondly, the patch-wise processing of the images induced
tiling artifact in some cases, which is a well-known limitation of stain-to-stain trans-
lation approaches for large histopathology images [24, 39, 49]. In our algorithm, the
tiling artifact was more pronounced at the border of a core, visible as patches of high
staining intensity. One possible underlying cause of this effect is that, when the model
receives as input an H&E patch at the border that contains very little tissue, the
staining consistency losses “force” the model to stain the limited tissue with an overall
higher intensity so as to match the staining distribution of the tissue-full patches that
it has seen during training. Previous works [24, 39] have tried to address the tiling
artifact, but it has been suggested that this caused less efficient translations [50]. As in
our case the tiling artifact is observed in isolated, edge cases in the border, a straight-
forward solution would be to simply discard a narrow border surrounding the tissue,
as empirically done in regular IHC when border artifacts are present. Thirdly, certain
discrepancies in staining specificity were occasionally observed, such as failing to stain
CD146+ vascular structures and glandular NKX3.1+ cells that invaded periglandular
stroma. This can be partially attributed to the fact that these patterns were observed
more rarely in the training images, and can be mitigated by ensuring the inclusion of
adequate representative examples in the labeling of the IHC images of the training set.

Crucially, despite their limitations, the generated virtual images enabled the train-
ing of early fusion Graph-Transformer (GT) models, which consistently outperformed
models trained on real data in the prediction on clinically relevant endpoints. This
improvement was not only observed in the training TMA dataset across two predic-
tion tasks, but also further confirmed on both independent prostate cancer cohorts,
and the PDAC TMA cohort. In our experiments, we ensured that the multimodal
early fusion GT models did not have an advantage in terms of number of samples used
over the models trained with real data. At the same time, multimodal early fusion
models had a much smaller parameter space in comparison to late fusion ones, as late
fusion necessitated the training of as many GT models as the number of markers. This
suggests that the higher model complexity of late fusion methods does not guaran-
tee a performance improvement. A potential explanation of the observed performance
improvement could be the quality of the generated images that are not affected by
partially missing tumor areas or other artifacts occasionally found in real images. This
explanation is corroborated by the fact that, for markers where virtual images were
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of higher quality than real images, the corresponding unimodal - virtual models out-
performed the unimodal - real ones, and vice versa. A more likely explanation could
be that, as early fusion models were able to learn from the joint spatial distribution
of several markers on the same tissue at once, they were able to pick up multimodal
spatial relationships at the cellular level, mimicking data generated by advanced mul-
tiplexed imaging technologies. This explanation is further supported by the fact that
in the early fusion case, a single GT model proved to have more learning capacity than
the integration of several equivalently potent ones.

In conclusion, the current work establishes the potential of virtual multiplexed
staining across images of different scales, patient cohorts and tissue types, with
important implications towards Al-assisted histopathology. For example, the Virtual-
Multiplexer could be directly used for data inpainting, i.e., filling out missing regions
in a tissue image, or for sample imputation, i.e., generating from scratch missing sam-
ples in large patient cohorts. As IHC marker panels are not always standardized across
labs, filling out the gaps via virtual multiplexed staining could open the door towards
harmonizing datasets within or across research labs, which is particularly important
in cases of archival tissue samples with limited availability [51, 52]. As a result, the
VirtualMultiplexer could enable the generation of comprehensive patient cohorts that
could be used for clinically relevant predictions. An equally important application of
our work is the use of virtual multiplexed staining for pre-histopathological experimen-
tal design: generating a large collection of IHC stains in silico and training AT models
could support marker selection for actual experimentation, significantly reducing costs
and preserving precious tissue. To reach its full potential, future work will be crucial
to establish the use of the VirtualMultiplexer in real-world settings. From a technical
standpoint, the generated virtual multiplexed stainings can enable the development of
foundational models for ITHC, as they have been successfully developed for brightfield
H&E images [563-55]. However, developing such models requires high volumes of data,
which is potentially challenging to acquire for IHC. Virtual stainings can be beneficial
to this end and can pave the way for multimodal foundational tissue characterization.
Interestingly, the virtual multiplexed stainings can also be exploited as biologically
conditioned data augmentations to boost the development and in turn the predictive
performance of foundational models in histopathology applications. From an applica-
tions standpoint, although here we presented a first proof-of-concept for transferring
the model across tissue types, more thorough evaluations are needed to solidify our
encouraging results. Finally, although here we focused on H&E-to-IHC translation, as
our method is stain-agnostic, straight-forward adaptations of our work for S2S transla-
tion across cutting-edge multiplexed imaging technologies (e.g., IMC, CODEX, MIBI)
could significantly reduce their costs and find important applications in dataset har-
monization or antibody panel selection and optimization. Our vision is that future
extensions of our work could lead to the generation of an ever-growing and readily
available dictionary of virtual stainers for IHC and beyond, that would be essentially
limitless with respect to how many markers could be incorporated, surpassing in mul-
tiplexing ability even the most cutting-edge technologies and significantly accelerating
spatial biology.
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Methods

Datasets

The VirtualMultiplexer was trained using the European Multicenter High Risk
Prostate Cancer Clinical and Translational research group (EMPaCT) TMA dataset;
an independent subset of EMPaCT was used for internal testing. The VirtualMul-
tiplexer was further evaluated in a zero-shot fashion, i.e., without any retraining or
fine-tuning, on three external prostate cancer datasets, namely prostate cancer WSIs,
SICAP [43] and PANDA [44] needle biopsies, on an independent PDAC dataset (PDAC
TMAs) and on TCGA data from breast and colorectal cancer. In all cases, indepen-
dent Graph-Transformers are trained and tested for individual datasets, by using both
real and virtually stained samples, to address various downstream classification tasks.
Details on all datasets used follow.

EMPaCT: The dataset contains TMAs from 210 primary prostate tissues, as part
of the Furopean Multicenter High Risk Prostate Cancer Clinical and Translational
research group (EMPaCT) and the Institute of Tissue Pathology in Bern. The study
followed the guidelines of the World Medical Association Declaration of Helsinki 1964,
updated in October 2013, and was conducted after approval by the Ethics Committees
of Bern (CEC ID2015-00128). For each patient, four cores were selected, with two of
them representing a low Gleason pattern and the other two a high Gleason pattern.
Consecutive slices from each core were stained with H&E and IHC using multiple anti-
bodies against nuclear markers NK3 Homeobox 1 (NKX3.1) and Androgen receptor
(AR), tumor markers Tumor Protein p53 (p53) and Erythroblast transformation-
specific related gene (ERG) and membrane markers Cell Surface Glycoprotein (CD44)
and Melanoma Cell Adhesion molecule (CD146/MCAM). TMA FFPE sections of 4
um were deparaffinized and used for heat-mediated antigen retrieval (citrate buffer,
pH 6, Vector Labs or Tris-HCI pH 9). Sections were blocked for 10 min in 3% H5Os,
followed by 30 minute room temperature incubation in 1% BSA in PBS-0.1%Tween
20. The following antibodies were used: anti-AR (Dako Agilent, M3562, 1:100 dilu-
tion), anti-NKX3.1 (Athena Enzyme Systems, 314, 1:200), anti-p53 (Dako Agilent,
M7001, 1:800), anti-CD44 (Abcam, ab16728, 1:2000), anti-ERG (Abcam, ab133264,
1:500) and anti-CD146 (Abcam, ab75769 EPR3208, 1:500). Images were acquired
using a 3D Histech Panoramic Flash IT 250 scanner at 20x magnification (resolution
0.24pm/pixel). The cores were annotated at patient-level by expert uro-pathologists
with binary labels for overall survival status (0: alive/censored, 1: prostate cancer
related death) and disease progression status (0: no recurrence, 1: recurrence). Clin-
ical follow-up was recorded at a per-patient basis, with a maximum follow-up time
of up to 12 years. For both the survival and disease progression clinical endpoints,
the available data were imbalanced in terms of class distributions. Access information
is possible upon request to the corresponding authors. The distribution of cores per
clinical endpoint for the EMPaCT dataset is summarized in Table 1.

Prostate cancer WSIs: Primary stage prostate cancer FFPE tissue sections (4
pum) were deparaffinized and used for heat-mediated antigen retrieval (citrate buffer,
pH 6, Vector Labs). Sections were blocked for 10 minutes in 3% H202, followed by 30
minute room temperature incubation in 1% BSA in PBS-0.1%Tween 20. The following
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Overall survival status prediction

#cores 0: Alive/censored  #cores 1: Prostate-cancer related death — #total cores

472 205 677

Disease progression prediction

#cores 0: No recurrence #£cores 1: Recurrence #total cores

568 109 677

Table 1 Distribution of cores per clinical endpoint for the EMPaCT dataset.

primary antibodies were used: anti-CD146 (Abcam, ab75769 EPR3208, 1:500), anti-
AR (Abcam, ab133273, EPR1535, 1:100) and anti-NKX3.1 (Cell Signaling, 83700T,
1:200). Secondary anti-rabbit antibody Envision HRP (DAKO, Agilent Technolo-
gies, Basel, Switzerland) for 30 minutes was used and signal detection was done
using AEC substrate (DAKO, Agilent Technologies, Basel, Switzerland). Sections were
counterstained with Hematoxylin and mounted with Aquatex). Images were acquired
using a 3D Histech Panoramic Flash IT 250 scanner at 20x magnification (resolution
0.24pm/pixel).

SICAP: The dataset contains 155 H&E-stained WSIs from needle biopsies taken
from 95 patients, split in 18,783 patches of size 512x512 [43]. The WSIs were recon-
structed by stitching the patches. The WSIs were scanned at 40x magnification by
Ventana iScan Coreo scanner and downsampled to 10x magnification. The WSIs were
annotated by expert uro-pathologists for Gleason grades at the Hospital Clinico of
Valencia, Spain.

PANDA: The dataset includes 5,759 H&E-stained needle biopsies from 1,243
patients at the Radboud University Medical Center, Netherlands [56], and 5,662 H&E
stained needle biopsies from 1,222 patients at various hospitals in Stockholm, Swe-
den [57]. The slides from Radboud were scanned with a 3D Histech Panoramic Flash
IT 250 scanner at 20x magnification (resolution 0.24pm/pixel) and were downsam-
pled to 10x. The slides from Sweden were scanned with a Hamamatsu C9600-12 and
an Aperio Scan Scope AT2 scanner at 10x magnification with a pixel resolution of
0.45202um and 0.5032um, respectively. The Gleason grades of the biopsies were anno-
tated by expert uro-pathologists and were released as part of the Prostate cANcer
graDe Assessment (PANDA) challenge [44]. We removed the noisy and inconspicu-
ously labeled biopsies from the dataset, resulting in 4,564 and 4,988 biopsies from the
Radboud and the Swedish cohorts, respectively (9,552 biopsies in total). The distribu-
tion of WSIs across Gleason grades for both SICAP and PANDA datasets are shown
in Table 2.

PDAC: The PDAC TMA contained cancer tissue of 117 (50 female, 67 male)
PDAC cases resected in a curative setting at the Department of Visceral Surgery of
Inselspital Bern and diagnosed at Institute of Tissue Medicine and Pathology (ITMP)
of the University of Bern between the years 2014 and 2020. The study followed the
guidelines of the World Medical Association Declaration of Helsinki 1964, updated in
October 2013, and was conducted after approval by the Ethics Committees of Bern
(CEC 1D2020-00498). All participants provided written general consent. The TMA
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Benign  Grade 6 Grade 7 Grade 8 Grade 9 Grade 10 | Total
0+0 3+3 34+4/443 345/444/54+3 4+5/5+4 545
SICAP | 36 31 29 36 16 7 | 155
Benign  Grade 6 Grade 7 Grade 8 Grade 9 Grade 10 | Total
0+0 3+3 3+4/44+3  3+5/44+4/5+3  445/5+4 5+5
PANDA | 2603 2397 2327 1124 996 105 | 9552

Table 2 Distribution of WSIs across Gleason grades for both SICAP and PANDA datasets.

contained three spots from each case (tumor front, tumor center, tumor stroma),
leading to a total number of 351 tissue spots. Thirteen of these 117 cases were treated
by neoadjuvant chemotherapy followed by surgical resection and adjuvant therapy,
and the majority of the cases (104) were resected curatively and received adjuvant
therapy. All cases were characterized comprehensively clinico-pathologically, including
Tumour, Node, and Metastasis (TNM) stage during a master thesis of student Jessica
Lisa Rohrbach at ITMP, supervised by Martin Wartenberg. All cases were UICC
tumor stage I, stage II or stage III cases on pathologic examination, according to
the Union for International Cancer Control (UICC) TNM Classification of Malignant
Tumours, 8th edition [58]; the TMA did not comprise of UICC tumor stage IV cases.
In all our analysis including the TNM prediction (Figure 7D), we excluded the thirteen
neoadjuvant cases and considered only the 104 cases that received adjuvant therapy.
The distribution of cores across the three TNM stages is reported in Table 3.

Stage I ~ Stage II  Stage III | Total

24 121 115 | 260

Table 3 Distribution of cores per TNM
stage for the PDAC dataset.

TCGA: The dataset includes example H&E WSIs from breast (BRCA) and col-
orectal cancer (CRC) from The Cancer Genome Atlas (TCGA), available at the GDC
data portal (https://portal.gdc.cancer.gov).

Data Preprocessing

For all datasets used, we followed a tissue region detection and patch extraction
preprocessing procedure. Specifically, the tissue region was segmented using the pre-
processing tools in the HistoCartography library [59]. A binary tissue mask denoting
the tissue and non-tissue regions was computed for each downsampled input image
by iteratively applying Gaussian smoothing and Otsu thresholding until the mean of
non-tissue pixels was below a threshold. The estimated contours of the denoted tissue
and the cavities of tissue were then filtered depending on their area to generate the
final segmentation mask. Subsequently, non-overlapping patches of size 256 x 256 were
extracted from 10x magnification using the segmentation contours. The extracted
H&E and THC patches of the EMPaCT dataset were used for training and internal
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validation of the VirtualMultiplexer. The extracted H&E patches of all other unseen
datasets (prostate cancer WSIs, SICAP, PANDA, PDAC, TCGA) were additionally
first stain-normalized to mitigate the staining appearance variability with respect to
the EMPaCT TMAs [60].

VirtualMultiplexer Architecture

The VirtualMultiplexer is a generative Al toolkit that performs unpaired H&E-to-
THC translation. An overview of the model’s architecture is shown in Figure 2A.
The VirtualMultiplexer is trained using two sets of images: source H&E images,
denoted as Ximg = {2z € X}, and target ITHC images, denoted as Yin, = {y € V}.
Ximg and Yjn, are unpaired images that originate from different sections of the
same TMA core and thus belong to the same patient, but are pixel-wise unaligned,
and thus unpaired. We train an independent one-to-one VirtualMultiplexer model
for each THC marker at a time. To train the VirtualMultiplexer, we use patches
X, = {xp € Xing} and Y, = {y, € Yimg} extracted from a pair of images Xin, and
Yimg, respectively. The backbone of the VirtualMultiplexer is a GAN-based generator
G, specifically a Contrastive Unpaired Translation (CUT) [33] model, that consists
of two sequential components, an encoder G,. and a decoder Gge.. Upon train-
ing, the generator takes as input a patch x, and generates a virtual patch y;,, i.€e.,
Yy = G(2p) = Gaec(Genc(zp)). Finally, the virtually generated patches are stitched
together to produce a final virtual image Y;,, = {y' € V'}. The VirtualMultiplexer
is trained under the supervision of three levels of consistency objectives, namely
local, neighborhood and global consistency (Figure 2B). The neighborhood consis-
tency enforces effective staining translation at a patch-level, where a patch captures
the neighborhood of a cell. We introduce additional global and local consistency objec-
tives, operating at an image-level and cell-level, respectively, to further constrain the
unpaired S2S translation and alleviate the stain-specific inconsistencies.

Neighborhood consistency: The neighborhood objective is a combination of an
adversarial loss and a patch-wise multilayer contrastive loss, implemented as previously
described in CUT [33] (Figure 2B, panel 1). Briefly, the adversarial loss dictates the
model to learn to eliminate style differences between real and virtual patches, and the
multilayer contrastive loss guarantees the content preservation at patch-level [61]. The
adversarial loss is a standard GAN min-max loss [34], where the discriminator D takes
as input real IHC patches Y}, and IHC patches Yp' virtually generated by generator
G and attempts to classify them as either real or virtual (Figure 2B, panel 1a). It is
calculated as follows:

Loav(G, D, X,,Yy) = Ey ~y, log D(yp) + Eq,~x, log(1 — D(G(zp))). (1)

The patch-wise multilayer contrastive loss follows a noise contrastive estimation
(NCE) concept as presented in [61, 62] and reused in [29, 33]. Specifically, it aims
to maximize the resemblance between input H&E patch z, € X, and corresponding
virtually synthesized THC patch y, € Y, (Figure 2B, panel 1b). We first extract a
query sub-patch y , of size 64x64 from the target IHC domain patch y;, (purple square
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in panel 1b, Figure 2B) and match it to the corresponding sub-patch z,, i.e., a sub-
patch at the same spatial location as y;p but from the H&E source domain patch
zp (black square in panel 1b, Figure 2B). Since both sub-patches originate from the
exact same tissue neighborhood, we expect that z,, and y;p form a positive pair. We
also sample N sub-patches {z,} at different spatial locations from z,, (red squares in
panel 1b, Figure 2B), and expect that they form dissimilar, negative pairs with xp,.
In a standard contrastive learning scheme, we would map ysp, zsp, and {z, } to a d-
dimensional embedding space R? via G, and project them to a unit sphere, resulting
in v,vt and {v= € RY respectively, and then estimate the probability of a positive
pair (v,v™) selected over negative pairs (v,v,, ),¥n € N as a cross-entropy loss with a
temperature scaling parameter 7:

exp(v-vt/7)

L(v,vT,v7)=—1o
( ) & exp(v-vt/T)+ Zﬁle exp(v - vy /7)

(2)

Here, we use a variation of the loss in Eq. (2), specifically a patch-wise multilayer
contrastive loss that extends £(v,v™,v™) by computing it for feature maps extracted
from L-layers of Gepc [29, 33]. This is achieved by passing the L feature maps of x,, and
y; through a two-layer multilayer perceptron (MLP) H;, resulting in a stack of features
{Zl}L - {Hl( enc( ))}L and {ZI}L - {Hl( enc( ))}L - {Hl( enc( (xp))}La VZ €
{1,2, ..., L}, respectively. We also iterate over each spatlal location s € {1,---,.5;} and
we leverage all S;\s patches as negatives, ultimately resulting in Zz ) Zls and ;5\ for
the query, positive and negative sub-patches, respectively (purple, black and red boxes
in Figure 2B, panel 1b). The final patch-wise multilayer contrastive loss is computed

as:
L S

Econtrastlvc(G H X = xpr Z Z ‘C Zl )89 Zl,s5 21 SL\S) (3)
=1 s=1
We also employ contrastive loss Leontrastive (G, H, Yp) on patches y, € Y),, a domain-
specific version of the identity loss [63, 64] that prevents the generator G from making
unnecessary changes as proposed in [33]. Finally, the overall neighborhood consistency
objective is computed as a weighted sum of the adversarial loss (1) and the multilayer
contrastive loss (3) with regularization hyperparameter Ancg:

Lneighborhood = Eadv(Ga D; Xp; Yp) + >\NCE X (Econtrastive(Ga H, Xp)"’
Econtrastive(Ga H, }/p)) (4)

Global consistency: Inspired by seminal work in neural style transfer [65], this
objective consists of two loss functions, a content loss Leontent and a style loss Lggyle
that together enforce biological consistency both in terms of tissue composition and
staining pattern at the image (tile) level (Figure 2B, panel 2). Since the generated IHC
images should be virtually paired to their corresponding input H&E image in terms of
tissue composition, the content loss aims to penalize the loss in content between H&E
and ITHC images at a tile-level. First, real-patches X, and synthesized patches Yp’ are
stitched to create images Ximg and Yj, ,, respectively, and corresponding tiles of size

img>
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1024 x 1024 are extracted (boxes in Figure 2B, panel 2), denoted as X; = {2 € Ximg}
and Y/ = {y; € Yj,,}, respectively. Then, the tiles are encoded by a pretrained
feature extractor F, specifically VGG16 [35] pretrained on ImageNet [66]. The tile-level
content loss at layer [ of F' is calculated as:

1 NP
! 2 () — Fo(yi)ll

‘Ccontent(Fv va Yp/) = Wl - (5)
where, h,w and ¢ are height, width, and channel dimensions of the feature map at [*"
layer, respectively.

The style loss utilizes the synthesized image Yiing and the available real image Yin,g
to match the style or overall staining distribution between real and virtual THC images.
Since Yj,,, and Yimg do not have pixel-wise correspondence, large tiles Y/ = {y; €
Yimg} and Y; = {y; € Yimg} are extracted at random such that each tile incorporates
sufficient staining distribution. Next, ¥/ and Y; are processed by F to produce feature

maps across multiple layers. The style loss is computed as:

_ 2 GoF'(y) —Go Fl(yy)”
1G o F(y)ll* + 119 o F' (y)[?

Liie(F. Yy, Yy) (6)

style

where G is the Gram matrix that measures the correlation between all the style in
a feature map. The denominator is a normalization term which compensates for the
under- or over-stylization of the tiles in a batch [67]. The overall global consistency
loss is computed as:

Lcontent Lstyte

Eglobal = Acontent X Z ‘Cf:ontent (F7 Xps Yp/) + Astyle x Z ‘Clstyle(Fv Yy, Yp/) (7)
l l

where Leontent and Lgiyle are the lists of the content and style layers of F, respec-
tively, used to extract the feature matrices, and Acontent and Agtyle are regularization
hyperparameters for the respective loss terms.

Local comnsistency: The local consistency objective aims to enforce biological
consistency at a local, cell-level and consists of two loss terms, namely a cell discrim-
inator loss (Leenpise) and a cell classification loss (Leenclass) (Figure 2B, panel 3).
The cell discriminator loss is inspired by [26], and uses the cell discriminator Degep
to identify whether a cell is real or virtual, in the same way that the patch dis-
criminator of Eq.(1) attempts to classify patches as real or virtual. Leenpisc takes as
input a real (Y},) and a virtual (Y) target patch and their corresponding cell masks
(My, and Myp/, respectively), which include bounding box demarcation around the
cells (Figure 2B, panel 3). D comprises a feature extractor followed by a RoIAlign
layer [68], and a final discriminator. The goal of Deen is to output, Deen(Yy, My,) — 1
and Dceu(Yp’ ,Mx,) — 0, where 1 and 0 indicate real and virtual cells (indicated in
black and purple, respectively, in Figure 2B, panel 3). The cell discriminator loss is
defined as:

26


https://doi.org/10.1101/2023.11.29.568996
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.29.568996; this version posted December 1, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Leenpise(Deett, Yp, Yy, My, My;) = %Eypey,, (Deent (Yp, My,) — 1)2+
% Ey cv; (Deen(y) My;))* (8)
Although D.e aims to enforce the generation of realistically looking cells, it is
agnostic to their marker expression, as it does not explicitly capture which cells have a
positive or a negative staining status. To account for this, we introduce an additional
loss via a classifier Fip that is trained to explicitly predict the cell staining status. This
is achieved with the help of cell labels C’yp/ and Cl,, i.e., binary variables depicting the
positive or negative staining status of a cell (indicated as 1: yellow and 0: blue boxes
in Figure 2B, panel 3). The computation of cell masks and labels is described in detail
in section Cell masking and labeling of THC images. The cell-level classification
loss can be easily computed as cross-entropy loss, calculated as:

!/
Leenclass(Feen, Yp, Yy, My, , My;, Cy,, Cy;) =

|Cyp‘ ‘leﬁ;l
—1 . -1 )
G 2 Log— ¥ g0, x )ty 3o oy xlog(p(My, x3})
JP =1 Ip i—1 P

iej{o,l} iEJ{O,l}

9)

where, |Cy,| and |Cy | are the number of cells in y, and y,, respectively, 1) is the
indicator function and p(.) is the cell-level probabilities predicted by Feen.
The overall local consistency loss is computed as:

’
Liocal = Acenbise X Leenbise(Deelt; Yp, Yy, My, , My/)+
’
AccllClass X LccllClass(Fcclla Ypa Y;w MYpa MYzjv CYpa CY;) (10)

where Acelipise and Aceliclass are the regularization hyperparameteres for the cell dis-
criminator and classification loss terms, respectively. Importantly, the local consistency
loss can be easily generalized to any other cellular or tissue component (e.g., nuclei,
glands) that might be relevant to other S2S translation problems, provided that
corresponding masks and labels are available.

The complete objective function for optimizing VirtualMultiplexer is given as,

EVirtualMultiplexer = ‘Cneighborhood + Eglobal + AClocal (11)

Cell masking and labeling of THC images: As already discussed, the local
consistency loss of Eq.11 needs as input cell masks Mx , My, and cell labels Cx,, Cy,.
However, acquiring these inputs manually for all patches across all antibodies is
practically prohibitive, even for relatively small datasets. Automatic nuclei segmen-
tation/detection using pretrained models (e.g., HoVerNet [69]) is a standard task for
H&E images, but no such model exists for IHC images. To circumvent this challenge,
we use an attractive property of the VirtualMultiplexer, i.e., its ability to synthesize
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virtual images that are pixel-wise aligned in any direction between the source and tar-
get domain. Specifically, we train a separate instance of the VirtualMultiplexer that
performs IHC — H&E translation. The VirtualMultiplexer;yo_, e is trained using
neighborhood consistency and global consistency objectives, as previously described.
Once trained, it is used to synthesize a virtual H&E image Xj . from a real IHC
image Yimg. At this point, we can leverage HoVerNet [69] to detect cell nuclei on
real and virtual H&E images (Ximg and leg) and simply transfer the correspond-

ing cell masks (Mx,,,, and Mx; ) to their pixel-wise aligned THC counterparts (Y}

img img
and Ying, respectively) to acqulre My . and My, __. This "trick” eliminates the need
to train individual cell detection models for each IHC antibody, and fully automates
the cell masking process in the IHC domain. To acquire cell labels Cy, —and Cy,,,,
we use only region annotations in Ying, where the experts partially annotated areas
as positive or negative stainings in a few representative images. Since IHC stainings
are specialized in delineating positive or negative staining status, the annotation was
easy and fast, and required approximately 2-3 minutes per image and per antibody
marker. We also train cell detectors for the source and target domain, i.e., D377

cell
and D"™#" respectively. Provided the annotations, D" is trained as a CNN patch-

classlﬁceer11 The classifier predictions on Yjmg Combinec({elévith My, results in Cy,. The
above region predictions on Yjng are transferred on to Xj .. Afterwards, Xi , and
the transferred annotations are used to train Di)"® as a CNN patch-classifier. The
classifier predictions on Xjyg combined with Mx  results in Cy,.

Implementation and training details: The architectural choices of the Vir-
tualMultiplexer were set as follows: G is a ResNet [42] with 9 residual blocks; D is
a PatchGAN discriminator [12]; Dcep includes four stride-2 feature convolutions fol-
lowed by a RolAlign layer and a discrimination layer; and Fiop includes four stride-2
feature convolutions and a 2-layer MLP. We use Xavier weight initialization [70],
instance normalization [71], and a batch size of 1 image. We use Least Square GAN
loss [72] for L,4v. The model hyperparameters for the loss terms of the VirtualMulti-
plexer are set as: Axcg is 1 with temperature 7 equal to 0.08, Acontent € {0.01,0.1},
Astyle € {5,10}, Acenpise € {0.5,1}, and Acenciass € {0.1,0.5}. VirtualMultiplexer
is optimized for 125 epochs using Adam optimizer [73] with momentum parameters
B1 = 0.5 and B2 = 0.999. Different learning rates Ir are employed for different con-
sistency objectives, i.e., for neighborhood consistency lrg and Irp is set to 0.0002,
for global consistency learning rate lrg is chosen from {0.0001, 0.0002}, and for local
consistency learning rates lIrp_, and Irg,, are chosen from {0.00001, 0.0001, 0.0002}.
Among other hyperparameters, the number of tiles extracted per image to compute
Leontent and Lgyle is set to 8, the content layer in F' is relu2_2, the style layers
are relul_2, relu2_2, relud_3, relud_3, and the number of cells per patch to compute

LcelDisc 18 set to 8.

Graph-Transformer Architecture

The Graph-Transformer (GT) architecture, proposed by [41], fuses a Graph Neural
Network and a vision transformer (ViT) to process histopathology images. The GNN
first operates on a graph-structured representation of a histopathology image, where
the nodes and edges of the graph denote patches and inter-patch spatial connectivity,
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and the nodes encode patch features extracted from a pre-trained deep learning model.
Specifically, GT employs a graph convolution layer [74] to learn contextualized node
embeddings through propagating and aggregating neighborhood node information.
Subsequently, a ViT layer operates on the contextualized node features, leverages self-
attention to weigh the significance of the nodes and aggregates the node information
to render an image-level feature representation. Finally, an MLP maps the image-
level features to a downstream image label. To note, histopathology images can have
different spatial dimensions, therefore their graph-representations can have varying
number of nodes. Also, the number of nodes can be very high when operating on
giga-pixel sized WSIs. These two factors can potentially hinder the integration of the
graph convolution layer to the ViT layer. To address these challenges, GT introduces
a mincut pooling layer [75], which reduces the number of nodes into a fixed number
of tokens while preserving the local neighborhood information of the nodes.

Implementation and training details: The architecture of GT follows the offi-
cial implementation on github'. Each input image was cropped to create a bag of
256 %256 non-overlapping patches at 10x magnification and background patches with
non-tissue area {10% were discarded. The patches were encoded using ResNet50 [42]
model pretrained on ImageNet dataset [66]. A graph representation was constructed
using the patches with a 8-node connectivity pattern. The GT network consisted of
one graph convolutional layer, and set the ViT layer configurations as, number of ViT
blocks = 3, MLP size = 128, embedding dimension of each patch = 32, and number of
multi-head attention = 8. The model hyperparameters were set as: number of clusters
in mincut pooling = {50, 100}, Adam optimizer with initial learning rate of {0.0001,
0.00001}, a cosine annealing scheme for scheduling, and a mini-batch size of 8. The
GT models were trained for 400 epochs with early stopping.

Method Evaluation

Patch-level evaluation: We use the FID score [76] to compare the distribution of
the virtual IHC patches with the distribution of the real IHC patches, as shown in
Figure 3. The computation begins with projecting the virtual and the real THC patches
to an embedding space using InceptionV3 [76] model, pretrained on ImageNet [66].
The extracted embeddings are used to estimate multivariate normal distributions
N(pr, X)) for real data and N (us, Xs) for virtual data. Finally, the FID score is
computed as:

FID = ||ty — o[ + Tr (S + By — 2(,5,)7) (12)
where, u, and pu, are the feature-wise mean of the real and virtual patches, >, and
¥, are co-variance matrices for the real and virtual embeddings, and T'r is the trace
function. A lower FID score indicates a lower disparity between the two distributions,
thereby a higher staining efficacy of the VirtualMultiplexer. To ensure reproducibility,
we ran each model three times with three independent initializations, and computed
the mean and standard deviation for each model (barplot height and errorbar in
Figure 3). We used a 70%-30% ratio to split the data in train and test sets, respectively.
As for each marker a different number of IHC stainings were available in the EMPaCT
data, the exact number of cores used per marker are given in Table 4:

LA Graph-Transformer for Whole Slide Image Classification: https://github.com/vkola-lab/tmi2022
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| NKX3.1 AR CD44 CD146 p53 ERG

Train 248 359 426 390 389 251
Test 114 153 183 159 178 122
Total ‘ 362 512 609 549 567 373

Table 4 Distribution of cores per marker for training and
testing the VirtualMultiplexer for the EMPaCT dataset.

Image-level evaluation: We used a number of downstream classification tasks to
assess the discriminative ability of the virtually stained IHC images on the EMPaCT,
SICAP, PANDA and PDAC datasets. We further used these tasks to depict the utility
of leveraging virtually multiplexed staining in comparison to standalone real H&E,
real THC, and virtual THC staining. Specifically, provided the aforementioned images,
we constructed graph representations as described in Section 8. Subsequently, Graph-
Transformers [41] were trained under uni-modal and multi-modal settings using both
real and virtually stained images, and evaluated on held-out independent test dataset.
The final classification scores were reported using a weighted F1-metric, where a higher
score depicts a better classification performance, thereby a higher discriminative power
of the utilized images. As before, we ran each model three times with three independent
initializations, and computed the mean and standard deviation for each model (barplot
heights and errorbars in Figures 6 and 7). In all cases, we used a 60%-20%-20% ratio
to split the data in train, validation and test sets, respectively. The exact number of
train, validation and test samples used per task, marker and training setting in the
EMPaCT dataset are given in Table 5.

Task: Overall survival status prediction

‘ NKX3.1 AR CD44 CD146 p53 ERG H&E Multimodal*

Train 232 333 397 343 377 230 407 407
Validation 74 110 133 123 120 82 134 134
Test 85 120 141 131 126 84 136 136
Task: Disease progression prediction
‘ NKX3.1 AR CD44 CD146 p53 ERG H&E Multimodal*
Train 223 341 405 348 384 225 408 408
Validation 87 107 127 121 121 86 135 135
Test 81 115 139 128 128 85 134 134

Table 5 Distribution of cores for training, validation, and testing of Graph-Transformers per
downstream task on the EMPaCT dataset, for all unimodal (first 7 columns) and multimodal

models.

* The number of cores reported under multimodal setting refers to the union across all

markers used.

For

the SICAP, PANDA and PDAC datasets, the exact number of samples used in

the train, validation and test splits coincide for all unimodal and multimodal models
of Figure 7 and are reported in Table 6.
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SICAP PANDA PDAC

Training 95 5736 161
Validation 29 1913 48
Test 31 1903 51
Total 155 9552 260

Table 6 Number of available training,
validation and test samples for the SICAP,
PANDA and PDAC datasets.

Computational Hardware and Software

The image datasets were preprocessed on POWER9 CPUs (Central Processing Units)
and one NVIDIA Tesla A100 GPU (Graphics Processing Unit) using the Histocar-
tography library [59]. The deep learning models were trained on NVIDIA Tesla P100
GPUs using PyTorch (version 1.13.1) [77] and PyTorch Geometric (version 2.3.0) [78].
The entire pipeline was implemented in Python (version 3.9.1).

Data Availability

The main dataset used to support this study (EMPaCT) has been deposited in
Zenodo, together with the prostate cancer WSIs (doi: 10.5281/zenodo.10066853).
The SICAP dataset is available at Mendeley data (doi: 10.17632/9xxmb58dvs3.1).
The PANDA dataset is available at the Kaggle website (https://www.kaggle.com/
c¢/prostate-cancer-grade-assessment /data). The TCGA WSIs (BRCA and CRC) are
available at the GDC data portal (https://portal.gdc.cancer.gov). The PDAC dataset
is available upon reasonable request from the authors. All clinical data associ-
ated with the EMPaCT and PDAC patient cohorts cannot be shared owing to
patient-confidentiality obligations.
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Code Availability

All source code of the VirtualMultiplexer is available under an open-source license in
https://github.com/AI4SCR/VirtualMultiplexer.
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