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Abstract 

Over the course of evolution, proteins families undergo sequence diversification via mutation 

accumulation, with extant homologs often sharing less than 25% sequence identity. The resulting 

diversity presents a complex view of sequence-structure-function relationships, as epistasis is 

prevalent, and deleterious mutations in one protein can be tolerated in homologous sequences 

through networks of intramolecular, compensatory interactions. Understanding these epistatic 

networks is crucial for understanding and predicting protein function, yet comprehensive analysis 

of such networks across protein families is limited. In this study, we combine computational and 

experimental approaches to examine epistatic networks in the class B1 metallo-β-lactamases, a 

diverse family of antibiotic-degrading enzymes. Using Direct Coupling Analysis, we assess global 

coevolutionary signatures across the B1 family. We also obtain detailed experimental data from 

deep mutational scanning on two distant B1 homologs, NDM-1 and VIM-2. There is good agreement 

between the two approaches, revealing both family-wide and homolog specific patterns that can be 

associated with 3D structure. However, specific interactions remain complex, and strong epistasis 

in evolutionarily entrenched residues are not easily compensated for by changes in nearby 

interactions. 
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Introduction 

Proteins are a fundamental component of life, and the comprehension of their sequence-structure-

function relationship is essential to the understanding and application of a variety of fields, including 

biology, biochemistry and protein engineering. Over the course of billions of years of evolution, many 

proteins have emerged to perform a specific function. Subsequently, these proteins further 

diversified their sequences, forming protein families through accumulation of mutations, i.e., 

homologous protein sequences spread among diverse organisms. Consequently, homologs often 

share as little as <25% amino acid sequence identity1,2, suggesting evolution has navigated a vast 

sequence space while maintaining the main protein function. However, the sequence space is often 

riddled with ‘fitness valleys’3. Many recent comprehensive mutant characterization studies, such as 

deep mutational scanning (DMS), showed that most mutations (~35-70%) in a single protein are 

deleterious4–12. While variants with these deleterious mutations would have been purged out from 

the evolutionary process by natural selection, many mutations that are deleterious in a given protein 

can be observed in other homologous protein sequences, i.e., in the context of many other 

mutations13. These observations suggest that evolution finds mutational paths that go around fitness 

valleys by exploring networks of intramolecular interactions (i.e., epistatic networks) that can 

compensate and moderate the deleterious effects of some mutations. In other words, the existence 

of complex intramolecular networks and coevolution between residues can lead to differential 

mutational behavior in homologous proteins. 

The evolution of natural proteins thus prompts a number of important and unanswered 

questions. Why can mutations that destroy function in one sequence be fixed in the sequence of 

homologs? How often are such heterogeneities in mutational effect encountered in a protein family? 

Can these patterns be modeled and predicted? Knowledge of such epistatic networks within a protein 

sequence is key to the understanding of the sequence-structure-function relationships, especially in 

predicting protein sequences that encompass functional proteins. Thanks to advances in both 

genomics (sequencing)14 and biochemical (DMS)15 approaches, we can obtain information on the 

epistatic network from both: as the coevolutionary trend in sequences within an homologous family, 

or as the experimentally measured mutational behavior in each protein. Epistatic networks can be 

observed as coevolution of amino acid residues within a protein family16,17. Statistical models trained 

on multiple sequence alignments are able to capture those patterns of coevolution and even 

reproduce them by generating artificial sequences that respect the statistics of protein families16,18–

22. While such data-driven computational approaches have demonstrated to be powerful enough to 
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design functional protein sequences that do not exist in nature23–25, it is still unclear to what extent 

and accuracy such models can capture protein epistatic networks in terms of specific interactions. 

Experimentally, the influence of epistatic networks can be detected as mutational incompatibilities, 

i.e., mutations that can be tolerated in one genetic background but may be deleterious in another. 

Such experimental insight provides an in-depth understanding of specific interactions within 

proteins in terms of biochemical and biophysical mechanisms. However, the experimental study of 

functional constraints at a family-wide level by comparing residue-level mutational epistasis across 

homologous sequences remains scarce. This is because only a small number of protein families have 

been studied13, including a few large-scale datasets acquired through DMS26–31. Furthermore, most 

analyses are restricted to higher-level, broader trends between homologs with limited examinations 

of detailed mechanistic bases for epistasis. 

In this study, we combine these two complementary approaches to improve our 

understanding of epistatic networks. We apply both approaches to the same system, the class B1 

metallo-ꞵ-lactamases (MBL), which is a family of highly diversified antibiotic degrading enzymes 

with a long evolutionary history32. Using Direct Coupling Analysis (DCA)16, we analyze the 

coevolutionary signatures of the entire B1 family, arriving at a global statistical description of 

epistatic tendencies based on sequence data. At the same time, we perform DMS on two distantly 

related members of the B1 family, NDM-1 and VIM-2 (~30% sequence identity), revealing protein-

specific mutational trends and incompatibilities as experimentally measured through functional 

characterization. By employing both methods in parallel, we have the opportunity to compare the 

results between them and to learn how they can strengthen and explain each other. We find a general 

consensus between the two methods on the prevalence and strength of epistasis, and find interesting 

cases where complementary information provides insight beyond what can be discerned from either 

method individually. There appears to be trends of mutational behavior in the structure, but the exact 

intramolecular network appears much more complex upon further testing, as predicted by the DCA 

model. Overall, the combination of DCA and DMS allows us to greatly enhance our understanding of 

epistatic networks. 
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Results 

Co-evolutionary model of the B1 family reveals sequence-specific mutational heterogeneities 

 
Figure 1. Family-wide residue mutability by direct coupling analysis (DCA). (a) Schematic of computational and 
experimental workflow. The B1 ꞵ-lactamase enzyme family is isolated through sequence space exploration via a sequence 
similarity network. The entire set of sequences are used to generate a co-evolutionary model via DCA. Two highly-
diversified homologs within the family are selected for DMS to generate a large mutational dataset. (b) Each square in 
the heat map is colored by the mutational tolerance (measured as context-dependent entropy, CDE) for each position 
of the 100 aligned homologs. Blank cells represent alignment gaps. For each position the percentiles of the distribution 
of CDEs are presented as a box plot on top of the heat map: 0-100% as thin lines, 25-75% (IQR) as bars. The bars are 
colored by the median value, with the same color scale of the heatmap. The secondary structure of the homologs, as 
well as the active site residues, are depicted under the heat map. The maximum likelihood phylogenetic tree of the 100 
homologs is shown on the left of the heat map. (c) Distribution of the spread in mutational tolerance across homologs 
at each position, measured as the distance of the IQR or max - min mutational tolerance. 
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Class B1 metallo-ꞵ-lactamases are a highly diversified family of enzymes (as low as 20% identity 

within the family) that degrade ꞵ-lactam antibiotics1,33,34, a function for which there is likely a long 

evolutionary history32,35. Given the high sequence divergence, this family is an excellent model for 

epistatic networks, as different homologs likely formed different sets of intramolecular interactions 

over the course of their evolution. To create a comprehensive dataset of all B1 sequences, we 

collected ~5000 sequences that belong to B1 MBLs, from the MBL domain superfamily (Interpro ID: 

IPR001279) along with metagenomic data from the Joint Genomics Institute Integrated Microbial 

Genomes & Microbiomes (JGI IMG/M) database (see methods). Then, we inferred a global statistical 

model using DCA (methods) on these B1 MBL homologs, that were aligned in a multiple-sequence 

alignment (MSA) based on a seed multiple-structure alignment of 14 diverged homologs (methods); 

positions outside the structurally conserved region were excluded. The DCA model captures the 

coevolutionary relationships (direct couplings) between all pairs of residues in the B1 family, and the 

residue conservation (fields), that are used to assign a probability P(sequence) to any sequence. High 

probabilities indicate functional MBLs, and low probabilities dysfunctional ones. To score mutations, 

we take the difference in the model's “energy” (E) between the mutant sequence and the wild-type 

(WT), as ΔE = - log[P(mutant)/P(WT)]36. We can thus predict the effect of any amino acid 

substitutions from any WT background, with the sequence context taken into account by the 

coevolutionary couplings. 

To probe the mutational behavior across the B1 family, we calculated ΔE for all single mutants 

of 100 diverse homologs, chosen to minimize pairwise sequence identity. To gauge the effects of 

epistatic networks on each protein position, we measure the mutational tolerance at each position in 

each homolog as the Shannon Entropy of all mutant probabilities relative to the wild type, also 

referred to as the context-dependent entropy (CDE)37,38. The mutational tolerance (CDE) is the base-

2 logarithm of the effective number of tolerated mutations at a position in this specific WT 

background, such that 0 means only 1 (20) residue is tolerated (the WT, no mutations), and 4.3 means 

all 20 (24.3) amino acids are equally tolerated. The mutational tolerance at each aligned position in 

the conserved B1 family is shown for 100 homologs as a heat map in Fig. 1b. The figure reveals a 

number of interesting aspects about the B1 family and its constituent homologs. We can see that 

there are regions that are highly constrained in terms of mutations, but also others that are highly 

tolerant. Moreover, homologs closer in the phylogeny show similarity in mutation patterns, and 

different clades present different patterns.  
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We highlight substantial heterogeneity in behaviors across the 100 homologs at each 

position, by quantifying the variability in mutational tolerance at each position as the interquartile 

range (IQR), (distance from 25-75 percentile) (Fig. 1b-c). There is considerable spread of mutational 

tolerance across homologs in most positions, suggesting that positions that only allow for few 

mutations in one homolog may show substantial mutability in other homologs. We see a median IQR 

of 0.87 (20.87=1.83), meaning that half of positions have at least a 1.8-fold difference in effective 

number of tolerated amino acids between homologs. The IQR per position can be as high as 2.65, or 

a 6.3 fold difference in effective amino-acid number. Furthermore, the difference in minimum and 

maximum mutational tolerance across positions has a median of 2.67 and a max spread of 3.85 (Fig. 

1c), meaning half of the positions in the protein have a 6.3-14.4 fold difference between the most and 

the least mutationally tolerant sequences. This strong mutational heterogeneity of equivalent 

positions across homologs is a hallmark of epistasis, and is captured by the coevolutionary couplings 

in the DCA model.  
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Heterogeneity in mutational behavior is supported by DMS data of NDM-1 and VIM-2 

 

 
Figure 2. Overview of DMS for NDM-1 and structural similarity to VIM-2. (a) Workflow for DMS of NDM-1. (b) 
Correlation between replicates of the NDM-1 library selected at 256µg/mL AMP. The R2 and P-value of a linear 
regression is shown at the top. (c) Comparisons of mutational tolerance at each aligned position for the NDM-1 and 
VIM-2 experiments. The R2 and line of best fit for a linear regression are shown. (d) Distribution of differences in 
mutational tolerance in DMS or DCA between NDM-1 and VIM-2 at the same aligned position. The distribution of the 
difference in DCA mutational tolerance between 100 random pairs of homologs is also plotted. (e) Comparison of 
mutational tolerance between DMS and DCA for NDM-1 and VIM-2. The R2 and line of best fit for a linear regression 
are shown. (f) Comparison of the mutational tolerance difference between NDM-1 and VIM-2 at each position between 
DMS and DCA. The data is colored by the IQR of mutational tolerance across the 100 homologs, with the colors scaled 
to the distribution (median is the center).  The R2 and line of best fit for a linear regression are shown. 
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To gain experimental observations for differential mutational effects between homologous enzymes, 

we conducted DMS to obtain all single-mutational effects on two homologs, NDM-1 and VIM-2 (~30% 

sequence identity). A complete DMS dataset of all single amino acid mutants of VIM-2 was previously 

published by us6,39. To conduct a comparison, we performed DMS on NDM-1 in an identical manner 

to VIM-2 (Fig. 2a). Briefly, all single amino acid mutants were generated for NDM-1 and placed under 

selection under three different antibiotics: ampicillin (AMP), cefotaxime (CTX), and meropenem 

(MEM). The plasmid DNA was isolated after selection and sent for deep sequencing. The fitness 

conferred by each mutant relative to wtNDM-1 was then characterized as the fitness score in Eq. (1):   

                        𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚  = 𝑙𝑙𝑙𝑙𝑙𝑙2 ( 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣 𝑠𝑠𝑠𝑠𝑠𝑠
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

)  −𝑙𝑙𝑙𝑙𝑙𝑙2 ( 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤𝑤𝑤 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

)   (1) 

The experiments were conducted in duplicate on separate days, and replicates typically show good 

correlation (R2 of 0.77-0.95 across conditions) (Fig. 2b, Supp. Fig. 1). As was the case for VIM-2, the 

NDM-1 data shows that fitness scores of -4 or lower are below the fitness of nonsense variants. As 

such, we also limit the fitness scores to a minimum of -4 for analyses, and scores below -4 are set to 

be -4 instead. To ensure the best possible direct comparison, we use the datasets between NDM-1 

and VIM-2 with the most similar selection pressure in AMP, evidenced by the similarity in 

distribution of fitness effects (Supp. Fig. 2). 

 In a similar fashion as in the DCA analysis, we define the DMS mutational tolerance of each 

position in NDM-1 and VIM-2 as the Shannon entropy of the mutational probability of each amino 

acid (methods).  We find mutational behaviors in the same protein positions to be quite varied 

between the two homologs, where differences in certain positions can span nearly the full range of 

possible entropy values, i.e., the same position can accept only the WT amino acid in one homolog 

(entropy 0) and almost all amino acids in the other homolog (entropy >4) (Fig. 2c). We compare the 

magnitude of entropy differences between VIM-2 and NDM-1 in the DMS data to differences in CDE 

computed from DCA, and we find strikingly similar distributions (Fig. 2d). The median difference 

between two homologs across all positions is 0.45 in DMS (0.39 in DCA), meaning that half of the 

positions have more than a 1.37 fold difference in entropies, ranging up to a maximum of 4.22 (18.7 

fold). As a baseline for the expected behavior between any pair of homologs, we also computed the 

CDE difference between 100 random pairs of homologs (Fig. 2d). We found a similar distribution, 

suggesting a common statistical trend of mutational behavior between homologs where certain 

positions exhibit similar tolerance (such as conserved sites) while others can greatly vary in mutation 

tolerance.  

We further probe whether the DMS and DCA data are in agreement specifically on NDM-1 and 

VIM-2, by comparing mutational tolerance between DMS and DCA of each position within either 
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NDM-1 or VIM-2 (Fig. 2e). There is significant correlation (𝑅𝑅2~0.55) between the DMS and DCA 

values for each of NDM-1 and VIM-2, and this correlation is slightly higher than between the DMS 

mutational tolerances of NDM-1 vs. VIM-2. This observation shows that DCA captures sequence-

specific trends to a good degree. Despite the significant correlation, DCA predicts fewer variable sites 

(entropy > 3.5) compared to DMS. A possible explanation of this difference may be attributed to the 

fact that DMS experiments are limited to specific experimental conditions, i.e. a single antibiotic, 

while DCA likely reflects broader evolutionary constraints. Furthermore, the mutational tolerance 

differences between VIM-2 and NDM-1 from DCA can also capture the specific differences in DMS 

(Fig. 2f); the correlation is somewhat weakened by the abundance of positions with correctly 

predicted small differences between NDM-1 and VIM-2. When the variability across homologs (IQR 

of 100 homologs mutational tolerance distribution) is overlaid on the mutational differences 

between NDM-1 and VIM-2, we see that positions with the lowest spread in all homologs tend to 

show lower differences between NDM-1 and VIM-2 in both DMS and DCA, as expected (Fig. 2f). 

Meanwhile, positions with large differences across all homologs are spread throughout. In the case 

of positions with large differences in either DCA or DMS, the varied behaviors of NDM-1 and VIM-2 

match the variation of all homologs. Interestingly, there are also positions that have small differences 

between NDM-1 and VIM-2, but have high variability across all homologs, further underscoring the 

fact that mutational behaviors can be quite varied between different homologs. Hence, the 

combination of methods can reveal and reinforce patterns that would not be obvious from just a 

single approach. 
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Structural basis of mutational tolerance and incompatibilities 

 
Figure 3. Structural basis of tolerance classifications. (a) All homologs mutational tolerance data overlaid on the 
crystal structure of VIM-2 (5yd7), with the thickness of the backbone representing the IQR in the 100 homologs, and 
colored by the median. (b) DMS mutational tolerance data overlaid on the crystal structure of VIM-2, with the thickness 
of the backbone representing the absolute difference between NDM-1 and VIM-2, and colored by the average 
mutational tolerance. (c) DCA mutational tolerance of VIM-2 and NDM-1 overlaid on the crystal structure of VIM-2, with 
the thickness of the backbone representing the absolute difference, and colored by the average. (d) Scatter plot of the 
median mutational tolerance values of 100 homologs versus the average ASA of VIM-2 and NDM-1, with positions 
colored by the mutational tolerance IQR. (e) Scatter plot of the average DMS mutational tolerance of NDM-1 and VIM-
2 DCA CDE versus the average ASA, with the positions colored by the difference in mutational tolerance between 
NDM-1 and VIM-2. (f) Same as panel (e) but for the DCA predictions: scatter plot of the average mutational tolerance 
of VIM-2 and NDM-1 versus their average ASA, colored by the mutational tolerance differences.   
 
We investigate the relationship between mutational heterogeneity and structure, by analyzing the 

experimental datasets and the model predictions in terms of the protein structure of the B1 family, 

using the crystal structures of NDM-1 (PDB ID:3spu) and VIM-2 (PDB ID:5yd7) as representatives. 

For VIM-2 and NDM-1, we quantify the discrepancy in mutability using the absolute difference in 

mutational tolerance, computed via the DMS experiments and the DCA model, while for the 100 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.27.568921doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.27.568921
http://creativecommons.org/licenses/by-nc-nd/4.0/


homologs, the IQR of mutational tolerance serves as a DCA-based indicator of variability. It should be 

noted that points exhibiting either very high or very low average mutability obviously have 

inherently restricted variability. This is evidenced by the observation that data points in Fig.3 with a 

mean or median mutational tolerance lower than 1 or greater than 3 always have low spread. 

We first visualize the mutational tolerance of the 100 homologs superimposed on the 

structure in terms of the variability (IQR, the thickness of the backbone) and average behavior 

(median of mutational tolerance, the color scale) (Fig. 3a). To compare this global predicted trend 

with the specific behavior of NDM-1 and VIM-2, we produce equivalent figures using the DMS (Fig. 

3b) and DCA (Fig. 3c) mutational tolerances. We see similar tendencies in the three figures. Regions 

that are buried in the protein core, including the active-site metal-binding residues, tend to have both 

low mutational tolerance and spread; likely as a result of being critical to folding or activity and hence 

mutationally constrained. The most exposed positions generally have high entropy and very low 

spread according to both the DMS and the DCA, which is a result of both NDM-1 and VIM-2 being 

completely mutationally tolerant at these positions. Finally, we also observe that some of the more 

buried residues have higher entropy as computed from the DMS of NDM-1 and VIM-2 than in the DCA 

model. This observation is consistent with the fact that DCA, which predicts a Gaussian-like 

distribution of mutational effects37, typically tends to underestimate the number of neutral (or almost 

neutral) mutations that are often one peak in a bimodal distribution4,6,8. It can also possibly be due 

to specific differences in residues and spatial arrangements between the two homologs, as compared 

to the global distribution of the DCA model.  

To quantify the observations about the role of the structural position we use the average 

accessible surface area (ASA) of NDM-1 and VIM-2. The first pattern that emerges is a significant 

correlation between average ASA and the site-specific mutability, evident in both experimental data 

and model predictions (Fig. 3d-f). In particular, there is a pronounced correlation between average 

ASA and DMS derived entropies (Spearman squared = 0.67) (Fig. 3e). This observation has been 

previously reported4,8,40–42, and is possibly due to the higher prevalence of structural interactions 

among internally situated protein residues, thereby amplifying the potential for mutations with 

adverse effects and vice versa. The correlation is still large (Spearman squared 0.51-0.54) when we 

compare the ASA to the DCA derived mutability, both at the family level (Fig. 3d) and specific to NDM-

1 and VIM-2 (Fig. 3f). In this case, the capability of DCA to identify these signals is mainly attributable 

to the conservation patterns embedded within the MSA utilized to train the model.  

Furthermore, we used the ASA as a structural variable to distinguish three classes of residues: 

very buried (ASA<0.1), partially exposed (0.1<ASA<0.7) and very exposed (ASA>0.7). We analyzed 
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in detail how mutational heterogeneity is influenced by the three levels of residue burial. First of all, 

very buried residues tend to be more mutationally constrained, i.e. positions with very low ASA (ASA 

< 0.1) have low entropy and low spread (blue points in the bottom left of Fig. 3d-f). Second, the very 

exposed positions (ASA >0.7) typically display high mutational entropy and low spread, i.e. they are 

very mutable in all homologs. These first two observations are consistent with a classical picture of 

conservation due to structural constraints. Most importantly, we find an intermediate region of 

partially exposed residues (0.1<ASA<0.7) showing some residues with very high spread in 

mutational tolerance in DMS and DCA (Fig. 3d-f). We also observe that in very buried residues, some 

positions do exhibit a fairly large mutational variability between the two wildtypes VIM-2 and NDM-

1, as highlighted in panels d and e of Fig. 3. Interestingly, this contrasts with the almost total absence 

of mutational heterogeneity observed between very exposed residues of VIM-2 and NDM-1, 

especially in the DMS data.  

A possible cause of this difference is the numerous intramolecular interactions occurring 

around buried residues, suggesting that a rich intramolecular network not only reduces the 

mutability of residues, but it also leads to homolog-specific differences of such constraints. However, 

it is the intermediately exposed region that exhibits the largest variability in behaviors for all 

datasets. This ASA range corresponds to positions that have more freedom to mutate than the fully 

buried positions while still being capable of forming interactions with other residues. The possibility 

of a mutation is therefore strongly dependent on the sequence context and is, therefore, homolog-

specific. The large spread in the mutational patterns of the partially exposed region (Fig. 3d-f) is 

common to all analyses, confirming the dependence between epistatic networks and the structure. 
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Epistasis from individual variants 

 
Fig. 4. Residue level epistasis between NDM-1 and VIM-2. (a) Flowchart of the epistasis classification method. (b) 
Correlation of DMS data between NDM-1 and VIM-2 at shared and compatible positions. The regions between dashed 
lines in each axis represent the range of neutral fitness effects for each homolog (1.96 x SD of synonymous variants). 
The diagonal line shares the same neutral range as the y-axis. (c) Distribution of fitness effect differences between 
NDM-1 and VIM-2 at shared and compatible positions. The region between vertical dashed lines represents the range 
of neutral fitness, equal to 1.96xSD of synonymous variants for NDM. (d) Fraction of epistatic mutations overlaid on 
the VIM-2 structure (shared and compatible positions), and colored by the color scale to the lower right (with 
distribution). Thickness of the structure corresponds to the average ASA of the NDM-1 and VIM-2 crystal structures. 
Regions outside the classification are transparent. (e) Plot of the fraction of epistatic mutations at each position versus 
the ASA. Only positions highlighted in panel (d are included. (f) Scatter plot of fitness effects for mutations of wtVIM-2 
towards NDM-1 WT amino acids (x-axis) and wtNDM-1 towards VIM-2 WT amino acids (y-axis) for equivalent positions. 
The vertical dashed line indicates the left side of the region of neutral effects for VIM-2 based on the synonymous 
variant distribution, and the horizontal dashed line shows the right side of the region of neutral effects for NDM-1. 
Quadrants with different behavioral classes are colored as in (a. (g) Positions that are differing between NDM-1 and 
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VIM-2 that have undergone epistasis analysis of WT reversion mutations. The structure thickness corresponds to 
average ASA as in panel (d and regions outside the classification are transparent. (h) Scatter plot of ΔE for mutations 
of VIM-2 amino acids towards NDM-1 amino acids (x-axis) and NDM-1 amino acids towards VIM-2 amino acids (y-axis) 
for equivalent positions. Points are colored according to their experimental classification as in Fig 4c. The dashed line 
represents the expected behavior without epistasis. (i) Bar plot showing the relative fraction of points in each epistatic 
class at various distances from the diagonal of (h. The total number of points in each distance bin is written over the 
bar. 
 
We now turn to the study of intramolecular interactions and use both experimental and model 

information to characterize the epistatic networks and reveal the interdependencies between 

residues. For this purpose, we compare the effects of individual variants in the mutational scans of 

VIM-2 and NDM-1 as fitness differences (𝛿𝛿f = fNDM-1 - fVIM-2 ). A large number of variants can be 

compared directly for positions in which VIM-2 and NDM-1 have the same WT amino acid, which we 

refer to as 'shared' positions. However, when the WT amino acids are not identical, that is at 

‘differing’ positions, a direct comparison is not always possible. Therefore, we devise a systematic 

classification scheme to analyze mutations in ‘shared’ and ‘differing’ positions between NDM-1 and 

VIM-2 accordingly (Fig. 4a).  

At ‘differing’ positions, the effect of the starting point of each mutation may impede a 

straightforward comparison and characterization of epistasis. To accommodate this, for each of these 

positions we first examine the effect of swapping WT residues between NDM-1 and VIM-2 in both 

backgrounds. If the swap is neutral in both directions, we define the site as ‘compatible’ (44 

positions) and proceed to the comparison of all the missense variants as if the starting points at that 

position were ‘shared’ (Fig. 4a). If the swap is incompatible, that is if one of the mutations is 

deleterious in either of the two backgrounds (88 positions) we only compare the reversion mutations 

and consider the position as ‘entrenched’ (Fig. 4f, Supp. Fig 3a). We further classify the entrenched 

positions as ‘1-wt entrenched’ if the swap is incompatible in one background (48 positions) and ‘2-

wt entrenched’ if the mutation is incompatible in both directions (40 positions). Because 4 positions 

lack reversion mutants in our DMS data, we exclude them from the analysis and we label them as ‘not 

observed’. The great number of entrenched positions points to a pervasive presence of epistasis: for 

each individual WT ~50% of WT-swapping mutations (66/132 in NDM-1, 57/132 in VIM-2) lead to 

a significant loss in fitness, even though they occur naturally in another homolog. Thus, a complex set 

of compensating epistatic effects must be considered to account for the collective presence of those 

mutations. 

We then analyze ‘shared’ positions, that is positions with the same WT amino acid.  Together 

with the ‘compatible’ positions described earlier, they add up to a total of 125 residues which we 

collectively call ‘comparable’. The analysis of the DMS data for these positions allows us to compare 
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equivalent mutations across the NDM-1 and VIM-2 backgrounds and, therefore, directly quantify 

context dependence. In this case, we can compare the fitness of all mutations A->B, where A is the 

common WT amino acid and B represents one of the 19 possible mutations (18 for ‘compatible’ 

residues). Mutational effects are strikingly different between homologs, with an overall Pearson 

correlation R2 of 0.51 (Fig. 4b). For each mutation, we consider it epistatic if the fitness difference 𝛿𝛿f 

is greater than the range of neutral effects (standard deviation [SD] of the synonymous variants of 

NDM-1). A large proportion of variants (~55%) shows a statistically significant difference of 

mutational effects between homologs; differences are not strongly biased in sign or effect size toward 

a single homolog (Fig. 4c).  To evaluate the degree of epistasis, for each position we compute the 

fraction of epistatic mutations. We observe a widespread presence of epistasis (Fig. 4d) across the 

entire structure. Quantified as a distribution, we find that the median fraction of epistatic mutations 

at each position is 0.21, meaning that half of the positions have significant epistasis in at least ~4 

mutations (0.21 x 19 missense aa). The fraction of epistasis at each position can be used to compare 

site-specific epistasis of VIM-2 and NDM-1 with the spread in mutational tolerance across all 100 

homologs and ASA (Fig. 4e). Strongly epistatic positions are enriched in partially exposed positions, 

as previously noted (Fig. 3d-f).  

The subset of positions classified as entrenched is especially suited to study the influence of 

epistatic constraints in evolution.  They cannot be easily linked to site-specific features or residue 

burial, as they are scattered across the whole protein structure (Fig. 4g); though we do find a subtle 

bias for 1-wt entrenched positions to be less buried than 2-wt entrenched positions (Supp. Fig 3b). 

Using DCA, we infer the deleterious effects to be caused by the sum of many distributed negative 

interactions with the surrounding amino acids. This picture points to a model of protein evolution 

where the effect of mutations changes gradually due to the incremental accumulation of small-

magnitude interactions between residues43.  

We can exploit a DCA-based analysis at the level of individual mutations to explore the role 

and meaning of entrenched positions in VIM-2 and NDM-1. We produce a scatterplot analogous to 

that of Fig. 4f, but using ΔE instead of fitness (Fig. 4h).  Mutations mainly concentrate around the 

neutral center, or populate the lower half-plane defined by the diagonal. As expected, we see almost 

no points towards the upper half-plane, where the swap of both WTs would result in higher fitness. 

In the absence of epistasis, the effect of the mutations A->B and B->A in different backgrounds should 

have opposite signs, exhibiting a perfect anti-correlation of the reversion effects, indicated by the 

diagonal in Fig. 4h. In contrast, the further away the points are from the diagonal, the greater the 

difference in mutational effect in the two sequence contexts. We verify this idea by using the distance 
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from the diagonal as an “entrenchment metric". We compute the fraction of mutations from each 

entrenchment class at different distances from the diagonal (Fig. 4i). We see that regions far from 

the diagonal are enriched for 2-wt entrenched mutations, those near the diagonal are mostly 

compatible, while intermediate regions have mutations with mixed classifications. 

The biggest qualitative difference between the mutation reversion plots in Fig. 4f and Fig. 4h 

is that DCA predicts many WT-swapping mutations to be beneficial, in clear contrast with the DMS 

data. We believe this to be a limit of the antibiotic selection assay, where a threshold like relationship 

between resistance and fitness for a given antibiotic concentration means variants with greater than 

needed resistance do not necessarily have higher fitness6, i.e., we have limited detection for gain of 

function. As a consequence, epistatic and non-epistatic mutations could be confounded for each 

other, as illustrated in Supp. Fig. 3c. The 2-wt entrenched mutations are guaranteed by the 

experiment to be epistatic. However, for 1-wt entrenched mutations, if a reversion negative in one 

background is neutral in the other direction, it could be truly neutral (epistatic), or a beneficial effect 

that could not be detected (non-epistatic). There are a few reasons that suggest that indeed most of 

those mutations are truly neutral in one background and deleterious in the other.  

First, the interpretation is supported by the distribution of effects observed in our previous 

analysis of VIM-2 variant EC50, which unlike fitness, is not limited by the threshold effect. The rarity 

of gain-of-function mutations (constituting only 1-2% of all occurrences) makes it improbable that 

there would be sufficient data points to create the anti-correlation expected in the absence of 

epistasis. Moreover, DCA supports this interpretation as well: as we have shown in Fig. 4i many 1-

wt entrenched positions are statistically different from compatible ones, to the extent that some 

reach far away from the diagonal, just like 2-wt entrenched mutations. We argue that, once again, the 

model and the experiment complement each other: the model suggests that epistatic interactions 

identified in the experiment are sparse and pervasive and supports the interpretation of 1-wt 

entrenched mutations as being mainly neutral in one of the two directions. Moreover, DCA proves to 

be quite accurate in predicting epistasis: all of the most distant points from the diagonal are either 1- 

or 2-wt entrenched according to the experiments.  
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Probing specific epistatic interactions 

 

Fig. 5. Testing interactions of entrenched positions in NDM-1. (a) Example of potentially interacting entrenched 
WT positions in the crystal structures of NDM-1 and VIM-2. (b) Experimental scheme for testing single or combined 
mutational effects in the NDM-1 background. (c) Entrenched WT positions that were chosen for testing of epistatic 
interactions. Positions with the same color are mutated together to test for compensation of entrenchment; A204L 
overlaps 2 sets and is also tested with G192Y (red). (d) Plot of IQR in CDE across 100 homologs and the average ASA 
of NDM-1 and VIM-2 structures, with the tested positions highlighted. Tested combinations are shown as lines. (e) 
Scatterplot of DCA energy change of all selected double (1 triple) mutants, with the expected additive single mutant 
effects in the x-axis, and the observed double mutant effects in the y-axis. (f) Scatterplot of all tested double (1 triple) 
mutants, with the expected additive single mutant effects in the x-axis, and the observed double mutant effects in the 
y-axis. Effects are calculated as fold change relative to wtNDM-1.  

 

A subset of our data also gives us the opportunity to dissect specific epistatic interactions in the 

homologs. Positions that have entrenched WT provide a potential signal for residues that are 

functionally important and may participate in specific interactions. We sought to find surrounding 

interactions within the proteins by identifying pairs of positions that are in close proximity, and 
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where the pair of positions have entrenched WT residues (Supp. Fig. 4a). One example of shape 

complementarity can be found between NDM-1 positions 125 and 249 (VIM-2 positions 119 and 239) 

directly underneath the active site Zn2+ ions, where both are entrenched positions within contact 

distance to each other (Fig. 5a). In VIM-2, the Arg at position 125 is paired with Gly at position 249. 

In contrast, NDM bears a somewhat smaller, but still positively charged Lys at position 125, which is 

now paired by a larger Ser at position 249. To test if these positions possess significant interactions, 

we generated the single and double mutants of each position pair in the NDM-1 background by 

mutating to the VIM-2 WT at those positions, then measuring their phenotype (EC50 against AMP) 

(Fig. 4c). As the effect of VIM-2’s WT is deleterious in NDM-1 as single mutants, we expect that 

mutating all interacting positions may lead to compensation, generating a less negative effect. We 

also extend this experiment to pairings in the L3 active site loop (NDM-1 positions 67+68), L10 active 

site loop (218+266, 211+229) and some buried positions beneath the L10 loop (197+204, and a 

triplet of 204+246+259)  (Fig. 5c); the triplet was tested as all pairs of doubles and the full triplet. 

Combined, our selection of positions covers a variety of positions, including those with different 

biochemical properties (size, polarity, charge), different solvent accessibilities and different spread 

in mutational behaviors across the whole family (Fig. 5c, d). 

The effects of the single mutants validate the deleterious nature of the observed fitness 

scores, and we observe a sigmoidal relationship between a mutant’s EC50 and the fitness score, which 

is consistent with previous observations6 (Supp. Fig. 4b). This validates the entrenchment observed 

in DMS, as all selected mutations that are WT residues in VIM-2 are deleterious in the NDM-1 

background. It is also notable that our selected mutations evenly span a wide range of deleterious 

effects. When we tested the mutants in combination, however, we did not observe significant 

compensation in any of the mutant combinations (Fig. 5f). In fact, the log-additive effects of the single 

mutants (null model for no epistasis) show a distinctly linear correlation with the observed double 

mutant effects, with an R2 of 0.85. It appears that entrenched positions cannot be easily swapped 

simply by mutating other nearby entrenched residues. This scenario is confirmed by DCA where, as 

previously discussed, the epistatic effects can only arise as a cumulation of small contributions 

including a multitude of epistatically coupled positions. Previous experiments have also shown that 

direct compensation by nearby residues is expected to be rare13, and compensation often requires 

more than two mutational steps44. The double mutation effects are therefore basically additive in 

DCA (Fig 5e) as in the experiment (Fig 5f). It is also not the case that the positions are globally 

independent in their effect, as these same mutations are fixated in VIM-2 and the deleterious effects 

have been compensated for during evolution. Thus, these experiments suggest that the 
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intramolecular network of residue interactions is much more complex, and even entrenched WT 

residues are not themselves sufficient to dictate the epistatic networks. 

 

Discussion 

By combining the computational approach of DCA and the experimental approach of DMS, we have 

gained a global picture of the epistatic tendencies between the homologs within a protein family. In 

the B1 β-lactamase family, we find a prevalence of heterogeneity in mutational effects at both the 

level of overall mutational tolerance at each position, as well as epistasis of the same mutation across 

different backgrounds. At a global level across all homologs, over half of the positions can exhibit a 

>6 fold difference in mutational tolerance depending on the sequence background. When examined 

specifically in the NDM-1 and VIM-2 contexts, half of positions with shared WT residues have >4 

mutants that are epistatic. In particular, the complementarity of the two approaches has enabled 

better understanding than either approach alone. The global level view provided by DCA for 100 

homologs reveals the full spread in mutational behaviors, which would have been obscured for 

positions that behave similarly for the 2 specific homologs tested. In turn, while both approaches 

generally agree on the mutational behaviors of each position, the experimental results can highlight 

peculiarities that the statistical approach may not identify from just the evolved sequence data.  

To expand upon previous DMS studies involving multiple homologs, which are generally 

focused on higher-level statistical analyses26–29,31,43, we also performed deeper examination of the 

mechanisms behind the observed incompatibilities. The ASA of a protein position shows trends with 

various facets of epistasis, as global spread is more constrained in behavior at extremely low or high 

ASA, while epistatic behavior between two specific sequences seems most prevalent at intermediate 

ASA. These observations are likely underpinned by differential intramolecular networks in different 

homologs, as a result of gradually co-evolved epistatic networks over the course of evolution. 

However, directly replacing just two or three residues is not enough to compensate for evolutionarily 

entrenched residues, suggesting that a much more complex network of interactions is at play45, as 

predicted by the DCA model. 

We suspect that many of the observed behaviors are likely not limited to NDM-1 and VIM-2, 

or the B1 family. The trends with regards to structure in both DCA and DMS, which are typical of 

those observed in other systems4,46–49, suggest that the behaviors we observe can be explained 

through general mechanisms such as secondary structure formation and structural packing. 

However, more evidence from other systems would be required to distinguish the global trends from 
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system-specific trends. Overall, we provide a global view of epistatic networks at the protein family 

level that complements more detailed examinations of epistasis in specific residues29,50. 

 
Methods 

Sequence collection for the B1 MBL family 

In an effort to comprehensively isolate all B1 MBLs, we used a broad sweep approach through a 

sequence similarity network (SSN) using data from genomic (UniProt) and metagenomic (JGI) 

databases. Initially, an SSN was constructed using the EFI-EST tool using the InterPro ID IPR001279 

(MBL domain superfamily) as the input. The network was analyzed at different alignment score cut-

offs to find a cut-off where all clinically isolated B1 enzymes fell within the same isolated cluster 

(~1,800 sequences at EFI alignment score cut-off of 25). The sequences that were shorter than 220aa 

were removed, and the remainder (~1,300) were clustered by cd-hit to 60% identity to reduce 

redundancy (187 sequences final) then used to generate an HMM, i.e., sequence profile, of the B1 

family. The HMM was used to search for B1 sequences in the JGI database resulting in ~2.5Mil 

sequences from JGI, with 1,859,503 non-redundant sequences determined by cd-hit clustering at 

100%. 

To construct an initial SSN, all sequences of the MBL domain superfamily were downloaded 

from UniProt using the InterPro IPR001279 definition (434,623 sequences, accessed 2019). The 

UniProt and JGI data were combined, sequences with ambiguous characters were removed, and the 

length was restricted to between 100-1500aa. Cd-hit was used to successively cluster the sequences 

to 100%, 90%, 70% and finally 50% identity to reduce redundancy, resulting in 86,947 

representative sequences for the entire MBL superfamily. A SSN was generated by performing ‘all by 

all’ BLASTP with an e-value cutoff of 1e-5 and 1000 maximum hits per sequence, giving a raw 

network of ~90Mil pairwise bitscore values (edges) between all sequences (nodes). The network 

was processed using an inhouse SSN analysis pipeline (MetaSSN: 

https://github.com/johnchen93/MetaSSN) to identify the lowest bitscore cutoff at which all 

clinically isolated B1 sequences break off into an isolated cluster (10,252 sequences). Finally, to 

identify sequences that are most likely to be active B1 sequences, the dataset was filtered by length 

to between 200-350aa (6,828) and used to build a multiple sequence alignment (MSA) using Clustal 

Omega on default settings. The MSA was manually curated to exclude any mis-aligned sequences, 

resulting in 6308 curated sequences. Finally, to ensure the sequences were likely to have B1-like 

function, only sequences aligned with the conserved B1 active-site metal binding residues 
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(H116/H118/H196 and D120/C221/H263, BBL numbering) were kept, resulting in a final dataset of 

5035 B1 family sequences, with a roughly 50/50 split between sequences from UniProt and JGI.  

 

Direct coupling analysis of the B1 family 

To generate an alignment of conserved structure, crystal structures of 14 homologs were aligned 

using mTM-align (https://yanglab.nankai.edu.cn/mTM-align/)51. The homologs (PDB IDs) are: NDM-

1 (3spu), VIM-2 (5yd7), DIM-1 (4wd6), ECV-1 (6t5k), FIM-1 (6v3q), GIM-1 (2ynt), IMP-1(4uam), IND-

7 (3l6n), MYO-1 (6t5l), TMB-1 (5mmd), VMB-1 (6jv4), bc-II (1bc2), blaB (1m2x) and cfiA (1znb). An 

HMM sequence profile was trained on this curated dataset by using HMMER via the hmmbuild 

command. We used a -symfrac value of 0.3 to control the maximum number of gaps in each alignment 

column. The 5035 B1 sequences were then aligned to this profile via the hmmsearch command to 

produce the MSA for training the DCA model. After converting the alignment to FASTA format, all 

sequences exhibiting more than 10% gaps were removed from the alignment. Additionally, flank 

columns exhibiting more than 75% gaps were eliminated. The resulting alignment contained 222 

sites. A final refinement was achieved after removing all sequences that exhibited more than 80% 

sequence identity to NDM-1 or VIM-2, thereby ensuring the alignment was not biased toward the 

sequences used for further analysis. The resulting MSA had 3655 sequences. We then inferred on this 

alignment a DCA model by using standard settings of the adabmDCA package corresponding to 

Persistent Contrastive Divergence using 40 MC sweeps at each iteration (PCD-40)17. 

 

Library generation and deep mutational scanning of NDM-1 

The procedure for library generation and DMS on NDM-1 were conducted in an identical manner to 

VIM-2. The wtNDM-1 sequence is encoded on an inhouse pIDR5.1 plasmid, expressed under a 

constitutive AmpR promoter. To generate all single amino acid mutants, we used a PCR based method 

(restriction free cloning52) to introduce a degenerate ‘NNN’ sequence at each codon in the coding 

sequence in separate reactions. After each single position was mutated, the library was combined 

into 7 groups of 39 consecutive positions each, forming 117nt long mutated regions that can be fully 

sequenced by paired end Illumina NextSeq reads. 

The NDM libraries are then transformed into Escherichia coli (E. cloni 10G, Lucigen) and 

stored as glycerol stocks, with the number of colony forming units after transformation measured to 

be >= 100,000 to ensure complete coverage of each group. To perform selection experiments, we 
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inoculate the glycerol stocks into fresh LB (Fisher) and grow the cultures shaking overnight at 30°C 

for 16hrs. The cultures are diluted into fresh LB to an inoculum of 1.5x106 cells/mL (targeting a 

1:1000 dilution of a culture with OD600 of 1.5) and grown shaking at 37°C for 2hrs. Selection pressure 

is introduced by mixing 960uL of cell culture with 40uL of a 25x stock of each antibiotic suspended 

in LB, for a final culture volume of 1mL. We tested selection at 32, 128 and 256ug/mL AMP, 2, 16, 

32ug/mL CTX, and 0.063, 0.25 and 0.5ug/mL MEM. We also grew a sample of the library without 

selection. The culture is grown under selection while shaking at 37°C for 6hrs, then removed from 

selection via centrifugation and resuspension in 1mL of fresh LB, repeated 3 times. The post selection 

culture is grown, shaking overnight at 30°C for 16hrs and the plasmid DNA is purified using a QiaPrep 

96 column DNA purification kit (Qiagen). This procedure was conducted twice on different days to 

produce two separate replicates. 

To deep sequence the selected library, we used primers targeting unmutated regions that directly 

flank the mutated region of each of the 7 library groups to amplify the DNA and to attach Nextera 

adaptors to the amplicons. The amplicons undergo a second PCR to attach the Illumina sequencing 

indices and flowcell binding sites. All tested samples (all groups, conditions, replicates) were 

sequenced in the same Illumina NextSeq 550 run with fully overlapping paired end reads. We also 

included control samples of amplicons extracted from just wtNDM-1 using the primers for each group 

in the NextSeq run. After deep sequencing, the forward and reverse reads are merged together using 

our previously published pipeline (https://github.com/johnchen93/DMS-FastQ-processing), and we 

discard reads with greater than 20 mismatches between forward and reverse reads or with a 

posterior Q score of less than 10. We use the wtNDM-1 samples as an estimate for error rates arising 

from the deep sequencing process, and we filter the non-selected libraries to remove variants with 

frequencies less than 2x of the expected frequency from sequencing noise alone, or variants with less 

than 5 reads. We then calculate the fitness scores for each variant in all conditions according to eq 

(1).  All variants that pass filtering in the non-selected condition are considered to truly exist in the 

library, and if the same variants are not observed in conditions undergoing selection they are 

assumed to have been depleted by selection and are given a dummy count of 1 to simulate the lowest 

possible frequency. Raw sequencing data is available on the NCBI Sequence Read Archive under 

BioProject PRJNA974578. 
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Calculating mutational tolerance 

To calculate DCA mutational tolerance, we calculate the probability of each mutant at a given 

position relative to the WT (proportional to exp(-ΔE)). 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟−𝑚𝑚𝑚𝑚𝑚𝑚,𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑃𝑃(𝑚𝑚𝑚𝑚𝑚𝑚, 𝑝𝑝𝑝𝑝𝑝𝑝)/𝑃𝑃(𝑊𝑊𝑊𝑊) 
We then calculate the mutational tolerance using the probabilities of all mutants at that position 

through the Shannon Entropy. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷,𝑝𝑝𝑝𝑝𝑝𝑝 =  − �
𝑛𝑛

𝑚𝑚𝑚𝑚𝑚𝑚=1

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟−𝑚𝑚𝑚𝑚𝑚𝑚,𝑝𝑝𝑝𝑝𝑝𝑝 𝑙𝑙𝑙𝑙𝑙𝑙2�𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟−𝑚𝑚𝑚𝑚𝑚𝑚,𝑝𝑝𝑝𝑝𝑝𝑝� 

For DMS mutational tolerance, we take an analogous approach to Firnberg et al.4. First, we 

normalize our fitness scores from a range of 0 to 1 relative to WT, where beneficial mutations are >1, 

and deleterious mutations range from 0-1. Since fitness scores of -4 or lower correspond to missense 

variants, we use -4 as the minimum range of fitness scores. We add a small padding factor of 105 to 

avoid complete zeroes. 

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
(𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 − (−4) )

0 − (−4)
+ 10−5 

We use the proportion of normalized fitness relative to the sum of all normalized fitness scores as a 

measure of probability. If the position does not have synonymous mutants, WT is inserted with a 

normalized fitness of 1. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

∑𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
 

DMS mutational tolerance is then first calculated as the Shannon Entropy. 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷,𝑝𝑝𝑝𝑝𝑝𝑝 = −�
𝑛𝑛

𝑚𝑚𝑚𝑚𝑚𝑚

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙2�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑝𝑝𝑝𝑝𝑝𝑝� 

We also scale the base mutational tolerance so that the effective number of amino acids is a maximum 

of 20, to account for positions which do not observe all 20 amino acids. The result is then the final 

DMS mutational tolerance. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 2𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷,𝑝𝑝𝑝𝑝𝑝𝑝  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
20
𝑛𝑛

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷,𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑙𝑙𝑙𝑙𝑙𝑙2(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 
 

Generation and dose-response assay of NDM single and combined mutants 

The selected positions with entrenched WT behaviors were mutated in the NDM-1 background from 

the NDM-1 wt residue to the VIM-2 wt residue using Golden Gate cloning as single mutants (NDM-1 
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positions M67F, P68D, K125R, G197Y, A204L, K211Y, L218A, Y229W, I246V, I259L, A266V). Then, 

combinations of positions were generated by a second (or third for the triplet) round of mutations. 

Dose response curves were carried out to obtain the half-maximal effective concentration (EC50) 

under ampicillin (AMP) selection. For testing, mutants and wtNDM-1 were transformed into E. coli 

and grown overnight for 16 hrs at 30°C, then diluted to a target inoculum of 1.2Mil cells / mL (OD600 

of 0.0015) the next day. The diluted culture is grown for 1.5hrs at 37°C, then 180uL of culture is mixed 

with 20uL of 10x AMP stock, with final ampicillin concentrations from 1-1024 ug/mL. Growth under 

AMP selection is done for 6 hrs at 37°C, and the OD600 of each culture is measured after selection. For 

each mutant or wtNDM-1, the OD600 across all selected AMP concentrations is plotted as a dose-

response curve and fitted using a sigmoidal equation to obtain the EC50. 
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Supplementary Data 

 

 
Supplementary figure 1. Selection range and replicate correlation of NDM-1 DMS experiments. (a) Growth curves 
for wtNDM-1 and empty vector under selection with 3 different antibiotics. Vertical dashed lines indicate conditions 
explored in DMS experiments. (b) Replicate correlation for NDM-1 DMS data, conducted in the 3 antibiotics at 3 
concentrations each. 
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Supplementary figure 2. Comparison of selection pressures between NDM-1 and VIM-2 dataset. In the top 
panels, the dose-response curve shows the survival of E. coli expressing each WT or an empty vector across increasing 
selection pressures of AMP. The stars indicate the selection conditions of the datasets being compared directly in this 
study.   The bottom panels show the distribution of fitness effects of all mutants of NDM-1 or VIM-2, split into categories 
of the type of mutation. 
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Supplementary figure 3. Epistasis of entrenched residues. (a) Scatter plot of fitness effects when wtVIM-2 is 
mutated to the NDM-1 wt residue at a position (x-axis), or wtNDM-1 is mutated to the VIM-2 wt residue (y-axis). The 
dashed lines indicate the region of neutral effects based on the synonymous variant distribution (1.96 x sd), for NDM-
1 (horizontal, diagonal) or VIM-2 (vertical). The diagonal line indicates the expected behavior with no epistasis and no 
fitness plateau, i.e., each mutation has the same magnitude but opposite sign when reverted. Quadrants with different 
behavioral classes are colored. (b) Distribution of average ASA for positions that are 1-wt or 2-wt entrenched. (c) 
Hypothetical distribution of reversion mutations in an experiment capable of detecting gain of functions (left) or 
incapable of detecting gain of functions (right).  
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Supplementary figure 4. Fitness scores at positions in the NDM-1 background selected for mutation to the VIM-
2 wt. (a) Scatter plots show the fitness scores of mutants between NDM-1 and VIM-2 at aligned positions (labeled at 
top of each figure). Points with orange color in one half indicate the synonymous mutant for the background (e.g., 
orange in lower right side indicates a synonymous variant of VIM-2); some synonymous variants are not plotted (M, W 
have only one codon), but the mutation of the other background to the wt are still in the dataset. Red points are 
nonsense variants. Blue points indicate all other missense variants. Vertical and horizontal dashed lines indicate the 
regions of neutral effects based on the synonymous variant distributions of each homolog. The diagonal dashed lines 
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have the same region of neutral effects as the y-axis. (b) EC50 vs DMS fitness of the selected entrenched double and 
triple mutants. EC50 of each variant is expressed as the fold change from wtNDM-1. 
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