
The contribution of diverse and stable functional connectivity edges to

brain-behavior associations
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Abstract

Resting-state functional connectivity (FC) has received considerable attention in the study of brain-behavior associa-

tions. However, the low generalizability of brain-behavior studies is a common challenge due to the limited sample-

to-feature ratio. In this study, we aimed to improve the generalizability of brain-behavior associations in resting-state

FC by focusing on diverse and stable edges, i.e., edges that show both high between-subject and low within-subject

variability. We used resting-state data from 1003 participants with multiple fMRI sessions from the Human Connec-

tome Project to group FC edges in terms of between-subject and within-subject variability. We found that resting-state

FC variability was dominated by stable individual factors. Furthermore, diverse and stable edges were primarily part

of heteromodal associative networks, and we showed that diverse stable regions are associated with a domain-general

cognitive core. We used canonical correlation analysis (CCA) combined with feature selection and principal compo-

nent analysis (PCA) to investigate the impact of edge selection on the strength and generalizability of brain-behavior

associations. Surprisingly, selection based on edge stability did not significantly affect the results, but diverse edges

were more informative than uniform edges in two of the three parcellations tested. Regardless, using all edges resulted

in the highest strength and generalizability of canonical correlations. Our simulations suggest that under certain cir-

cumstances a combination of feature selection and PCA could improve the generalizability of the results, depending

on the sample size and the information value of the features. The lack of improvement in generalizability with selec-

tion of stable edges may be due to unreliable estimation of within-subject edge variability or because within-subject

edge variability is not related to the information value of the edges for brain-behavior associations. In other words,

unstable edges may be equally informative as stable ones.

Keywords: functional connectivity, within-subject variability, between-subject variability, brain-behavior

association, canonical correlation analysis

1. Introduction1

The study of the neurobiological basis of interindividual differences in behavior and neuropsychiatric diagnoses2

is a particularly active area of research in neuroscience. In recent years the study of brain-behavior associations3

has focused on resting-state functional connectivity (RSFC). Functional connectivity (FC) is defined as a statistical4

dependence between time series of neurophysiological signals, and reflects causal relationships between brain regions5

[1]. The study of resting-state functional connectivity is of particular interest for the investigation of interindividual6

differences because it can be easily used with any group of people (e.g. patients, children) and the results are not7

affected by task difficulty, task performance, or task learning effect [2].8
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Recently, several studies [e.g. 3, 4, 5, 6] have warned that the generalizability of brain-behavior studies linking9

brain structure or function to behavior is low. The generalizability of brain-behavior studies depends on numerous10

factors such as sample size (or, more specifically, the number of samples per feature), effect size, type of data (e.g.,11

functional or structural MRI; cognitive tests or questionnaires), type of statistical method (multivariate or univariate),12

quality and length of individual-level data [4, 3, 7, 8]. The general recommendation for improving generalizability13

is to increase sample size. Other recommendations include increasing the signal-to-noise ratio (SNR) and reliability14

of individual-level data, using feature selection or feature reduction, regularization, and comparing in-sample and15

out-of-sample effect sizes through cross-validation [3, 9, 4, 10, 7, 11].16

The aim of this study was to explore the possibility of improving the generalizability of brain-behavior associations17

by exploiting information about between-subject and within-subject variability in FC. Both brain and behavior can18

vary between and within individuals. Traditionally, neuroscience and personality psychology have focused on the19

study of between-subject differences, treating within-subject differences as measurement error or noise [12, 13]. In20

recent years, however, studies have begun to focus on within-subject differences.21

Most of the variation in FC can be explained by group and individual effects, followed by individual × task22

interaction [14]. Regions in associative networks (frontoparietal, cingulo-opercular, dorsal and ventral attentional23

networks, salience network) show greater between-subject variance and lower within-subject variance compared to24

unimodal/sensory regions (auditory, visual, somatomotor network) [14, 15, 16]. Mueller et al. [15] have provided25

indirect (meta-analytic) evidence that regions with high between-subject variance (which we termed diverse vs. uni-26

form) and low within-subject variance (which we termed stable, i.e., regions in associative networks) correspond to27

regions associated with individual differences in behavioral and cognitive domains.28

Because measures of personality and cognition largely reflect stable traits, we hypothesized that the brain fea-29

tures that are most useful for predicting behavior would also be those with the highest interindividual and lowest30

intraindividual variability. Two lines of research are relevant to this hypothesis. First, ”fingerprinting” research aims31

to optimize fMRI preprocessing and analysis methods with respect to individual identification. Early research has32

shown that the frontoparietal regions that contribute most to identifiability also have the greatest predictive power for33

intelligence [17]. However, recent research has challenged these findings, showing that fingerprinting and behavioral34

prediction involve very different parts of the functional connectome [18]. The second line of research focuses on im-35

proving test-retest reliability. Noble et al. [19] examined the relationship between test-retest reliability and behavioral36

utility. They found that (1) the predictive value of edges does not correlate with test-retest reliability and (2) that37

including the most reliable edges in the models does not improve the behavioral prediction compared to models based38

on edges with low reliability. Similarly, Shirer et al. [20] have shown that optimizing for group discriminability can39

actually decrease test-retest reliability in some cases. Therefore, optimizing for a particular measure (discriminability40

or test-retest reliability) does not guarantee improved behavioral prediction [12, 20, 19, 18].41

While the study by Noble et al. [19] is informative for our research question, it conflates between-subject and42

within-subject variability into a single dimension (i.e., test-retest reliability). The intraclass coefficient (form ICC(2,1)),43

often used in studies of test-retest reliability, is defined as the ratio of between-subject variance to total variance [21].44

Thus, it depends not only on the between-subject variance, but also on the total variance. Therefore, edges with a high45

ICC are not necessarily the edges with the lowest within-subject variance. For example, holding the within-subject46

variance and the residual variance constant, edges with higher between-subject variance will have a higher ICC.47

Therefore, examining edges on two separate dimensions (between-subject variance and within-subject variance), may48

provide better insight into the relationship between sources of FC variability and brain-behavior associations.49

Our research is divided into three parts. In the first part, we examined patterns of FC variability across participants50

and over different time points, from run-to-run variability to variability over six months. Similar research has been51

conducted previously [14, 15], but these studies used small samples of extensively sampled individuals (10 participants52

with 10 sessions in Gratton et al. [14]; 25 participants with 5 sessions in Mueller et al. [15]). Thus, data from these53

studies are more suitable for detecting within-subject than between-subject variation. We complemented this research54

by using data from the Human Connectome Project, which included data from 1200 subjects with four sessions on55

two consecutive days[22]. Because the datasets differ in the time scales over which the fMRI was recorded (e.g., on56

consecutive days, over weeks, or over months), we compared the results with two smaller datasets in which the data57

were collected over different time periods (week, month).58

In the second part, we tested the hypothesis that the brain features most useful for predicting behavior are also59

those with the highest between-subject variability and lowest within-subject variability by using canonical correlation60
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analysis (CCA) to estimate brain-behavior associations. Specifically, we tested whether selecting edges based on61

their within-subject and between-subject variability can improve the generalizability of CCA. In order to improve62

readability, we refer to the dimensions of between-subject variability and within-subject variability as uniform-diverse63

and stable-unstable, respectively. Thus, edges with low between-subject variability are also called uniform edges, and64

edges with high between-subject variability are called diverse edges. Similarly, the edges with low within-subject65

variability are called stable edges, and the edges with high within-subject variability are called unstable edges. We66

compared CCA models based on all edges with CCA models based on selected edges. We made two predictions.67

First, models based on diverse stable edges will outperform models based on all edges. Second, models based on68

diverse stable edges will outperform models based on diverse unstable edges.69

In the third part, we used simulations to further investigate the feasibility of our feature selection procedure and70

to examine how factors such as the ratio of informative to non-informative features and the number of samples per71

feature affect the in-sample and out-of-sample effect sizes.72

2. Method73

2.1. Datasets74

We were interested in the reproducibility of edge variability patterns across different datasets. To address the75

research question related to edge variability, we used four different resting-state fMRI datasets whose characteristics76

are summarized in Table 1. All datasets consist of at least two sessions and at least two runs per session. The HCP and77

YaleTRT datasets have been described in detail elsewhere [see 19, 22], so we only describe the Multimodal Imaging78

(MMI) Ljubljana dataset in detail here.79

The MMI Ljubljana dataset consists of simultaneous EEG-fMRI recordings acquired in three sessions. In each80

session, participants underwent two resting state runs, one with eyes open and one with eyes closed, always in that81

order. Participants also underwent a spatial working memory task inside the scanner and behavioral tests outside the82

scanner. In this paper we focus only on the resting-state fMRI data. We acquired the MRI data using the Philips83

Achieva 3.0T TX scanner. For each participant, we acquired T1- and T2-weighted structural images (T1 and T2: 23684

slices acquired in the saggital plane, field of view = 224 × 235 mm, matrix = 320 × 336, voxel size = 0.7 × 0.7 × 0.785

mm; T1: TE = 5.8 ms, TR = 12 ms, flip angle = 8◦; T2: TE = 394 ms, TR = 2500 ms, flip angle = 90◦). Brain86

activity was recorded using BOLD images with T2*-weighted echo-planar imaging sequence (56 slices in the axial87

plane, field of view = 240× 240 mm, voxel size = 2.5× 2.5× 2.5 mm, matrix = 96× 95, TR = 1000 ms, TE = 48 ms,88

flip angle = 62◦, MultiBand SENSE factor 8). The study was approved by the institutional Ethics Committee of the89

Faculty of Arts, University of Ljubljana and by the National Medical Ethics Committee, Ministry of Health, Republic90

of Slovenia.91
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Figure 1: A schematic of the main steps of analysis. A. First, we examined patterns of within-subject and between-subject variability in functional

connectivity. We defined groups of edges based on within-subject and between-subject variability. B. In the second part, we estimated brain-

behavior associations using canonical correlation analysis (CCA). To test the hypothesis that the brain features most useful for predicting behavior

are also those that are most diverse and stable, we compared models based on diverse stable edges with models based on all edges and with a model

based on diverse unstable edges. C. In the third part, we performed a simulation in which we generated matrices X and Y with known canonical

correlation. We compared feature (edge) selection, feature reduction (PCA), and a combined feature selection and feature reduction (edge selection

followed by PCA). We also varied the number of features, the sample size, and the ratio of informative to non-informative features.
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Table 1: Overview of datasets.

Dataset name Wu-Minn HCP (1200 Subject

Release)

Wu-Minn HCP Retest MMI Ljubljana Yale Test-Retest

Original sample size 1096 45 48 12

Sample size after exclusion criteria

(participants with at least 1 run)

1003 41 33 (EO), 34 (EC) 10

Age in years (SD) 28.8 (3.7) 30.2 (3.3) 21.6 (2.6) 40.2 (10.9)

Number of females 596 31 26 6

Acquisition time (1 run) 14’ 33” 14’ 33” 18’ 20” 6’

TR (ms) 720 720 1000 1000

Number of volumes 1200 1200 1100 360

Recordings per session 2 × EO 2 × EO 1 × EO + 1 × EC 6 × EO

Sessions 2 4 3 3

Mean time between sessions in days

(SD)

1 (0) 1 (0) and 139.3 (69.0)* 31.8 (14.1) 9.4 (5.3)

Reference Van Essen et al. [22] Van Essen et al. [22] Noble et al. [19]

Note. EO: eyes open, EC: eyes closed, * 1 day difference between 1st and 2nd / 3rd and 4th session, 139.3 days difference between 2nd and 3rd session
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2.2. fMRI data preprocessing92

All datasets were preprocessed in the same way, unless otherwise noted. First, the data were preprocessed using93

the HCP minimal preprocessing pipelines [23]. The HCP dataset was additionally cleaned using ICAFIX [24, 25],94

followed by MSMAll registration [26].95

To prepare the data for functional connectivity analyses, we performed additional cleaning steps using QuNex [27].96

To identify frames with excessive motion, we marked any frame that was characterized by frame displacement (FD)97

greater than 0.3 mm or for which the frame-to-frame signal change, calculated as the intensity normalized root mean98

squared difference (DVARS) across all voxels, exceeded 1.2 times the DVARS median over the entire time series,99

including one frame before and two frames after them. We excluded runs with less than 50 % of useful frames. In the100

YaleTRT dataset, this criteria resulted in 9 subjects, 3 of whom had only 1–2 useful runs. Since we were interested in101

variability between and within subjects, we wanted to keep as many subjects and runs as possible. Therefore, for this102

dataset, we adjusted the criteria, such that we included frames with FC > 0.5 mm, but we kept only runs with at least103

80 % (300 total) useful frames per run. This resulted in 12 subjects with at least 8 runs.104

We then used linear regression to remove nuisance signals, including 6 motion correction parameters, their squared105

values, signals from the ventricles, white matter, whole brain, and first derivatives of the listed signals. Previously106

marked frames were not included in the regression but were removed before calculating functional connectivity.107

Next, we parcellated the data. Because the choice of parcellation can affect the final results [e.g. 28], we used108

three functional parcellations to ensure the generalizability of our results: Glasser’s multimodal parcellation with 360109

regions (MMP1.0) [26], Yeo’s 17-network parcellation with 224 regions [29], and Schaefer’s local-global parcellation110

with 400 regions [30]. Only the results of Glasser’s parcellation are presented in the main text; the other results can111

be found in the Supplement. Finally, functional connectivity was calculated using Pearson correlation for each run112

separately, and the correlation values were Fisher z-transformed for all subsequent analyses.113

2.3. Estimation of edge variability patterns114

We estimated edge variability using linear mixed models (LMM) [31, 32] for each edge separately. The advantage115

of using LMM is that parameter estimates are improved by partial pooling, i.e., in the case of incomplete data, esti-116

mates are partially estimated from observations with complete data [33]. Each timescale of variation (e.g., runs within117

days, sessions on consecutive days, sessions separated by weeks/months) was modeled as a separate factor. Note118

that variation over consecutive days and variation over longer time periods (weeks/months) were modeled separately.119

In addition to time periods, we also included between-subject variation and all possible interactions in each model.120

All factors were modeled as random effects. To obtain unbiased parameter estimates, models were fitted using the121

restricted maximum likelihood procedure (ReML) [33].122

An example model for HCP data written in lme4 [31] notation:123

edge ∼ 1 + (1|sub ject) + (1|day) + (1|run) + (1|sub ject : day) + (1|sub ject : run) + (1|day : run) (1)

To facilitate interpretation, we averaged the edge variability results over the rows of the connectivity matrix and124

mapped them to the cortex. The connectivity matrices before averaging over the rows can be found in the Supplement.125

The HCP Retest dataset consists of participants who were also part of the HCP dataset (1200 Subjects Release),126

but we analyzed these two datasets separately to avoid partial pooling effects from the larger to the smaller dataset.127

Similarly, for the MMI Ljubljana dataset, we estimated variance components separately for eyes open and eyes closed128

runs. This allowed a direct comparison of the edge variability patterns between the eyes closed and eyes open con-129

ditions. If both conditions were analyzed within a single model, differences in edge variability patterns could not be130

detected. For example, the eyes open and eyes closed conditions could be the same in terms of fixed effects (i.e., no131

difference in means), but the variances (random effects) could be different.132

We estimated the similarities between the edge variability patterns belonging to the different sources of variance133

by calculating the correlations between the patterns within each dataset.134

2.3.1. Similarities of edge variability patterns across studies135

To estimate the reproducibility of edge variability patterns across studies, we computed the Pearson’s correlation136

between the variability patterns across studies for each source of variance separately.137
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2.3.2. Similarities of edge variability patterns across sources of variability138

We estimated the similarities of edge variability patterns between different sources of variance by computing the139

Pearson’s correlation between the variability patterns across sources of variability for each study separately.140

2.3.3. Stability of edge variability patterns as a function of sample size141

Given the low correlations between studies for all variance sources except subjects (Figure 3), we decided to test142

whether the stability of edge variability patterns depends on sample size. To answer this question, we calculated the143

bootstrap split-half correlations at different sizes of the HCP dataset. First, we estimated the variance components for144

each edge on two random independent subsamples of different sizes (15, 30, 60, 125, 250, 500). Then, we correlated145

the edge variability patterns separately for each source of variance. We ran 500 permutations for each sample size.146

2.3.4. How much variance in edge variability can be explained by each source?147

To estimate how much variance in edge variability can be explained by each source on average, we averaged the148

variances across all edges for each dataset separately (Figure 3C, Figure S15A). To facilitate comparison between149

datasets, the variances were normalized so that the total variance was equal to 1.150

Next, to test the possibility that the variance explained by different sources might be affected by the run length151

or the number of runs within a session, we performed two additional analyses. First, we estimated the edge variance152

explained for reduced run lengths, from 14.4 minutes to 0.9 minutes (Figure 3D, Figure S15B). Second, we split the153

runs into 2 or 4 segments (Figure 3E, Figure S15C). In the same analysis, we also combined runs within a single day.154

We also tried to split the runs into 8 or more segments, but the analyses did not finish in a reasonable time.155

2.4. Grouping of edges according to between-subject and within-subject variability156

To identify the diverse stable edges (i.e., the edges with the lowest within-subject variability and the highest157

between-subject variability), we first calculated the total between-subject variance and the total within-subject vari-158

ance for each edge. We defined between-subject variability as the sum of all subject-related variance components,159

excluding interactions. Within-subject variability was defined as the sum of all time-related variance components,160

excluding residual variance and subject × time interactions. We then divided the between-subject and within-subject161

variability into three groups for each dataset based on terciles. Based on this division, we defined 9 groups of edges162

(i.e., combinations of low, medium, or high within-subject variability and low, medium, or high between-subject vari-163

ability). For visualization and analysis in the section External validation (subsection 2.5) we averaged these binary164

matrices across rows, resulting in a surface map of regions. These maps can be interpreted as the proportion of edges165

in a group that are associated with a particular region. Note that this procedure is based on ranks and therefore does166

not depend on the shape and location of the distribution of the edge variability.167

In addition, to better understand the relationship between within-subject variability, between-subject variability,168

and test-retest reliability we calculated the intraclass coefficient (ICC) for each edge and plotted the ICC as a function169

of edge group. The ICC was estimated as the ratio of between-subject variance to total variance.170

2.5. Similarity between edge variance maps and domain general cognitive core171

When examining the surface maps of within-subject and between-subject variance, we noticed a similarity of the172

map of different stable regions with the map of regions of the multiple demand (MD) system [34]. This system in-173

cludes regions that are co-activated during different demanding cognitive tasks, such as working memory, selective174

attention, and task switching [34]. Although the comparison of these maps wasn’t explicitly tied to any of the hy-175

potheses outlined in the Introduction, their similarity implies the importance of within-subject and between-subject176

variability in functional connectivity for cognitive control and behavior. To quantify the similarity between the maps,177

we correlated the patterns of regions associated with different levels of between-subject and within-subject variability178

with the domain-general cognitive core defined by Assem et al. [34] (available at https://balsa.wustl.edu/study/B4nkg).179

In this study, the domain-general cognitive core was determined as the average of three fMRI task contrasts (2-back vs.180

0-back, hard vs. easy relational reasoning, and math vs. story). MD regions were distributed across frontal, parietal,181

and temporal lobes.182
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2.6. Brain-behavior correlations183

To test the hypothesis that the diverse stable brain features are more useful for predicting behavior than all other184

features, we performed a canonical correlation analysis (CCA) on the HCP dataset (1200 Subjects Release).185

CCA is a multivariate statistical technique used to discover the latent structure of the shared variability between186

the two sets of variables. Let XN×P and YN×Q be the data matrices with N observations and P or Q features. The goal187

of CCA is to solve the system of equations U = XA and V = YB, where AP×K and BQ×K are canonical weight matrices188

(K = min(P,Q)) and UN×K and VN×K are matrices of canonical scores. Canonical scores represent the position of each189

observation in the latent space, while canonical weights represent the contribution of each feature to the canonical190

component. The matrices of canonical scores are orthogonal, U′U = V ′V = I. Canonical correlations are correlations191

between the columns of U and V .192

CCA was performed (1) on all edges and (2) on edges selected on the basis of edge variability in groups with low,193

medium, or high within-subject and between-subject variability (as described in subsection 2.4).194

We used 158 behavioral variables associated with stable traits (demographic and behavioral data) [same or similar195

to previous studies, e.g. 35, 10, 36, 4]. Functional connectivity and behavioral data were preprocessed in the same196

manner as in Smith et al. [35]. This included regression of 9 confounders (mean frame displacement, weight, height,197

systolic blood pressure, diastolic blood pressure, hemoglobin A1C, the cube- root of total brain volume, the cube- root198

of total intracranial volume) and their demeaned and squared versions where possible. We also deconfounded age and199

gender.200

Smith et al. [35] reduced the dimensionality of the behavioral and FC data to 100 components using PCA. Because201

canonical correlation and its generalizability depend on the number of samples per feature [4, 3], we included the202

number of principal components (PCs) as an additional variable in model comparison. We performed CCA for models203

containing between 10 and 100 PCs in increments of 10 PCs. Each model was evaluated using 5-fold cross-validation.204

CCA and data preprocessing for CCA were performed using the GEMRR package in Python [4] (https://205

github.com/murraylab/gemmr).206

We focused our analysis on the first canonical component. To estimate the generalizability of the models, we207

calculated the difference between the in-sample and out-of-sample canonical correlations. We made two comparisons,208

one for each prediction based on our hypothesis. First, we compared partial models (i.e., models based on selected209

edges) to full models (i.e., models based on all edges). Second, we compared models based on diverse stable edges210

with models based on diverse unstable edges. We compared the models in terms of their generalizability by calculating211

the difference between the in-sample and out-of-sample canonical correlations. We only directly compared models212

that had the same number of PCs in terms of FC and behavior.213

In addition, we examined the similarity of behavioral weights between partial models based on diverse stable214

edges and full models, and between partial models based on diverse stable edges and partial models based on diverse215

unstable edges. The similarity between the weights was estimated using Pearson’s correlation. For visualization, we216

aggregated these correlations separately for FC and behavior.217

2.6.1. Control analysis218

We performed a control analysis for the CCA. Since the number of edges was different in each group based on219

within-subject and between-subject variability, we repeated CCA on 2500 randomly selected edges in each group.220

The results of the control analyses are reported in the Supplement.221

2.7. Simulation222

We conducted a simulation to test the feasibility of our combined feature selection and feature reduction procedure223

and to examine how factors such as the ratio of informative to noninformative features and the number of samples224

per feature affect the in-sample and out-of-sample effect sizes. Both feature selection and feature reduction are used225

to reduce the feature space with the goal of improving the generalizability of a model. The difference between the226

procedures is that in feature selection we reduce the feature space by including only the relevant features in the model227

without any feature transformation, whereas in feature reduction we transform the original set of features into a lower228

dimensional space using techniques such as PCA.229

For the simulation, we used a procedure developed by Helmer et al. [4] and implemented in the GEMMR package.230

Briefly, the procedure involves generating matrices X and Y with an assumed first canonical correlation. The weight231
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matrices A and B are chosen randomly, but constrained to satisfy A′ΣXXA = B′ΣYY B = I (ΣXX and ΣYY are covariance232

matrices). Depending on the simulation, we created the matrix X with a sparse signal so that only a certain proportion233

of the features were informative. We achieved this by concatenating a matrix of informative features and a matrix234

of non-informative features. The informative features matrix was created using the Helmer’s procedure, while the235

non-informative features matrix was created by sampling from a multivariate normal distribution with uncorrelated236

features. Next, depending on the simulation, we performed PCA for feature reduction. Finally, we performed CCA237

and computed the in-sample and out-of-sample canonical correlations. The out-of-sample canonicals correlations238

were estimated by 5-fold cross-validation. Note that the feature selection/reduction was performed only for the matrix239

X.240

We performed two simulations. In the first simulation, we generated X and Y matrices such that each contained 100241

features and from 500 to 8000 observations. We set the simulated canonical correlation 0.3. The simulated canonical242

correlation was set at 0.3, based on a study by Helmer et al. [4] that examined 100 brain-behavior CCA analyses in243

31 publications and concluded that most true canonical correlations in such studies are probably not greater than this244

value. We designed the X matrix such that 50% of the features were informative.245

To evaluate the impact of feature selection and reduction, we compared three methods: feature selection, feature246

reduction (PCA) only, and feature selection followed by feature reduction. For feature selection, we considered three247

scenarios: selecting only informative features, selecting only uninformative features, or selecting an equal number of248

informative and uninformative features. We varied the number of selected features and principal components from 10249

to 50 in increments of 10. We repeated the simulation 1000 times for each combination of manipulated variables.250

In the second simulation, we generated matrices X and Y such that matrix X contained 1000 features, while matrix251

Y contained 100 features. The difference in the number of features between matrix X and matrix Y reflected the252

difference in the number of brain features (functional connectivity edges) and the number of behavioral variables.253

The number of observations ranged from 500 to 4000, and the canonical correlation was set to 0.3. We varied the254

number of informative features in X from 250 to 1000 in increments of 250. In the feature reduction step we selected255

from 100 to 500 informative features in increments of 100, followed by PCA dimensionality reduction from 10 to 50256

components in increments of 10. Each simulation was repeated 100 times.257

For brevity, the results of the second simulation are presented in the Supplement.258

3. Results259

3.1. Edge variability patterns260

In this section, we focus on the results from the HCP dataset (1200 Subjects Release) parcellated using Glasser’s261

MMP1.0 parcellation [26]. Figures of the results on the edge variability patterns of other datasets and parcellations262

can be found in the Supplement.263

The variability of connectivity (Figure 2) with respect to subjects was high in the associative networks, especially264

in the frontoparietal network (FPN), the language network, the default mode network (DMN), and the dorsal attention265

network (DAN). It was also high in edges within the sensory networks (visual, somatomotor), but it was low in the266

edges connecting the heteromodal and sensory networks (Figure S1).267

Variability related to day was high in somatomotor and visual areas. Variability related to subject × day interaction268

resembled a similar pattern but was more widespread across the visual cortex. Variability related to run and subject ×269

run interaction was highest in the DMN and FPN, including the edges connecting these networks.270

The pattern of variability associated with the interaction between day and run was most complex, with high271

variability in the DMN, DAN, language, and cingulo-opercular (CON) networks, but also in the edges connecting272

associative and sensory cortices, particularly the connections between CON and the visual network, and between the273

language and the visual network.274

The results were similar for all parcellations (Figure S2, Figure S4). However, in the case of Yeo’s parcellation,275

the clusters with high variability were generally larger, probably due to the smaller number of regions and the resulting276

larger average size of the regions.277
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Figure 2: Variability of connectivity by source of variation in the HCP dataset parcellated with Glasser’s MMP1.0. Bottom right panel:

Networks of Glasser’s multimodal parcellation [26] as defined by Ji et al. [37]. CON: cingulo-opercular network, DAN: dorsal attention net-

work, DMN: default mode network, FPN: frontoparietal network, LAN: language network, VMM: ventral multimodal network, PMM: posterior

multimodal network, ORA: orbito-affective network, AUD: auditory network, SMN: somatomotor network, VIS: visual network.
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3.1.1. Similarities of edge variability patterns across studies278

The datasets were very similar (Figure 3) only with respect to subject variability (r = .63–.90) and with respect279

to residual variability (r = .50–.93). Among the other sources of variability, only between the HCP (1200 Subjects280

Release) and HCP Retest datasets were there large similarities in terms of run, subject × run, and day × run variability.281

The similarities between the other datasets in terms of subject × run, week/month, and run variability were very low282

(r < .10). There was a moderate (r = .36) similarity in variability across subject × week/month between the Yale TRT283

and the HCP Retest datasets.284

Results were similar for all parcellations used (Figure S10, Figure S11).285

3.1.2. Similarities of edge variability patterns across sources of variability286

The correlations of the edge variability patterns across different variability sources were generally low, with a few287

exceptions (Figure S12, Figure S13, Figure S14). There was moderate to high correlation between the residual and288

subject variance, and between the residual and subject × day or subject × week/month variance, depending on the289

dataset. There were also moderate to high correlations between some terms referring to the same source of variance290

(e.g., subject and subject × day or subject × week/month, run and subject × run, day × run, and subject × day). The291

differences between parcellations were generally small, but the correlations between the sources of variance were292

slightly larger in the case of Yeo’s parcellation.293

3.1.3. Stability of edge variability patterns as a function of sample size294

To explore how edge variability is affected by sample size, we performed split-half correlation analyses on sub-295

samples of different sizes (Figure 3B). The mean bootstrap split-half correlation of edge variability patterns between296

pairs of subsamples increased as a function of sample size for all sources of variance. The correlations were most297

stable for subject variability, reaching r = .75 at a sample size of about 45. The patterns were most stable for run and298

residual variability; the correlation reached r = .75 at a sample size of 100. Of the other sources of variability, only299

the day × run variability reached r = .75 at N = 350, while the other sources did not reach r = .75 even at a sample300

size of 500. Of the remaining sources, the interaction between subject × and day was the most stable, followed by the301

variability between days and the variability between subject × and run.302

3.1.4. How much variance can be explained with each source?303

For all datasets, the largest proportion of the variance across edges was explained by subject variability (32–43%,304

Figure 3C). This was followed by the interaction of subject with run, day, or week/month, which explained 1–10% of305

the variance. All other sources individually explained less than 1% of the variance.306

The proportion of variance explained decreased linearly with decreasing run length for all sources of variance,307

from 50% for the 14.4 minute run to 15% for the 0.9 minute run (Figure 3D, Figure S15B).308

The amount of variance explained was also related to the number of segments per run. When the run was split into309

2 or 4 runs, the proportion of between-subject variance and total variance decreased linearly (Figure 3E). Similarly,310

the proportion of between-subject variance increased to 60% when runs within a single day were concatenated. On311

the other hand, the between-subject × within-subject interaction variance was larger when the run was split into 2 or312

4 segments. However, this change was almost entirely due to subject × day or subject × run variance and not the313

variance between segments (Figure S15C).314

3.2. Grouping of edges according to between-subject and within-subject variability315

We classified cortical regions into nine groups according to their relative position with respect to between-subject316

and within-subject variability (Figure 4, Figure S16). The diverse unstable regions were distributed across the asso-317

ciative networks, especially DMN and CON, but also included FPN, DAN, and the language network. Diverse stable318

regions were located in the FPN and the posterior multimodal network. Uniform unstable regions included the FPN319

and the CON network. Uniform stable regions were located in the auditory network and the DMN.320

The analyses showed that the Glasser and Schaefer parcellations yielded similar results, while Yeo’s parcellation321

showed uneven distribution of edges across its nine groups. Specifically, the group of diverse stable edges had only322

234 edges, and the group of uniform unstable edges had only 42 edges. Further investigation revealed that this pattern323

was due to a high correlation between between-subject and within-subject variance in Yeo’s parcellation (Spearman’s324
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Figure 3: Properties of edge variability in Glasser’s multimodal parcellation. A. Correlations between edge variability patterns across datasets

for each source of variability. B. Bootstrap split-half correlations between edge variability patterns as a function of sample size. The analysis was

performed on the HCP dataset (1200 Subjects Release). Correlations between edge variability patterns across datasets are highest for sources of

variance that are most stable at smaller sample sizes. C. Mean edge variance explained by each source of variability for every dataset. D. Mean

edge variance explained as a function of run length. E. Mean edge variance as a function of segments per run. Note that for plots C–E, the sources

of variance have been collapsed into between-subject variance, within-subject variance or interaction between these two sources. See Figure S15

for detailed plots.
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Figure 4: Variability of connectivity by region as a function of within-subject and between-subject variability in the HCP dataset parcellated

using Glasser’s multimodal parcellation.

ρ = .82). On the other hand, the Glasser and Schaefer parcellations had much lower correlations between these325

measures (ρ = .47 and ρ = .45, respectively), resulting in a more uniform distribution of edges across groups (with a326

minimum of 2753 and 3753 edges in a group, respectively).327

The examination of the ICC with respect to the edge grouping showed that there was a significant variability in328

the ICC due to the between-subject variance, while the differences due to the within-subject variance were relatively329

small (Figure 5, Figure S21, Figure S22). We observed the same pattern regardless of the parcellation.330

3.3. Similarity between edge variance maps and domain general cognitive core331

We computed the correlations between the map of domain-general cognitive core regions [34] (shown in Fig-332

ure 6A) and the surface maps of regional variability in connectivity (i.e., maps from Figure 4). The correlation was333

largest for diverse stable edges (r = .45, Figure 6B) and for medium diverse stable edges (r = .42). Correlations for334

all other groups of edges were below .10 and were negative for uniform edges (r = −.19 for uniform stable edges;335

Figure S23) The results were consistent across parcellations, but the correlations were generally lower for Yeo’s336

parcellation (Figure S24, Figure S25).337

3.4. Brain-behavior correlations338

In the second part, we examined canonical correlations as a function of edge group and the number of principal339

components retained in the model. The in-sample canonical correlations increased as a function of the number of340
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Figure 6: Relationship between domain-general cognitive core regions and regional variability in functional connectivity. A. Domain-general

cognitive core regions as defined by Assem et al. [34]. B. Correlation between the domain-general cognitive core regions and the proportion of

diverse stable edges per region (the top right map in the Figure 4). Each point represents a region. Results for other groups of regions are available

in the Supplement.
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retained principal components related to either behavioral or functional connectivity (Figure 7A,D). The maximum341

canonical correlation reached about .70. We observed the same pattern regardless of the group of edges included in342

the model.343

The out-of-sample canonical correlations were lower, reaching .50 (Figure 7B,E). On average, out-of-sample344

canonical correlations were higher for models with a larger (70–100) number of functional connectivity components345

and for a medium (20–50) number of behavioral components. Out-of-sample canonical correlations were also higher346

for models based on diverse edges compared to models based on uniform edges.347

We computed the difference between in-sample and out-of-sample canonical correlations. The differences were348

largest for models based on uniform edges and smallest for models based on diverse edges (Figure 7C). Among models349

based on diverse edges, the difference between in-sample and out-of-sample canonical correlations was smallest for350

models based on stable edges. For full models (i.e. models based on all edges), the difference between in-sample and351

out-of-sample canonical correlations was smallest when the number of functional connectivity PCs was small (< 30)352

and the number of behavioral PCs was medium-to-high (50–100) (Figure 7G).353

Finally, we were interested in whether information about between-subject and within-subject edge variability354

could be used to inform models of brain-behavior correlations and to improve prediction and generalizability. We355

compared out-of-sample canonical correlations on full and partial models (Figure 7F). Full models outperformed356

partial models in most cases, especially when compared to models based on uniform edges. However, when we357

compared full models with partial models based on diverse stable edges, the latter had better generalizability when358

the number of functional connectivity PCs was small (< 30) and the number of behavioral PCs was large (50–100)359

(Figure 7F, top right subplot). The differences in out-of-sample canonical correlations estimates were up to .10.360

We observed a similar pattern when comparing models based on diverse stable edges with models based on diverse361

unstable edges (Figure 7H). Models based on diverse stable edges had higher out-of-sample canonical correlations362

when the number of behavioral PCs was high (> 60) and the number of functional connectivity PCs was low (< 40).363

There were differences between the parcellations. On Schaefer’s parcellation (Figure S26), the out-of-sample364

canonical correlations were less dependent on the number of PCs and there were no practically important differences365

between partial models based on different groups of edges. In contrast, for Yeo’s parcellation (Figure S26), out-of-366

sample canonical correlations were highest for the partial models based on diverse unstable edges. Note, however,367

that in Yeo’s parcellation, the distribution of edges across groups was very uneven. We identified only 234 diverse368

stable edges and 42 uniform unstable edges (out of a total of 24976 edges).369

3.4.1. Comparison of canonical weights between the models370

Next, we compared the models in terms of behavioral weight similarity. Partial models based on diverse stable371

edges and full models were highly similar when the number of behavioral PCs was above 30 (Figure 8A). In contrast,372

there was no clear relationship between the number of FC components and the similarity of the weights (Figure 8B).373

When comparing partial models based on uniform stable and diverse stable edges, the results were similar, except374

that the similarity of weights was reduced when the number of behavioral PCs was above 80 (Figure S28A). For375

Schaefer’s and Yeo’s parcellation, the patterns of results were generally similar, the similarity of weights plateaued at376

20 behavioral PCs, but for the connectivity PCs we again observed no clear pattern (Figure S29, Figure S30).377

3.5. Simulation378

In the simulation, we examined the relationship between different feature selection or feature reduction procedures379

and different data properties: sample size, number of features, and proportion of informative features.380

In general, in-sample canonical correlations increased as a function of the proportion of features retained, and ap-381

proached true canonical correlations with increasing sample size (Figure 9A). The out-of-sample canonical correlation382

also increased with sample size, but only when at least some of the selected features were informative (Figure 9B).383

In the first simulation, we compared three variants of feature selection/reduction: feature selection only, feature384

reduction (PCA) only, and feature selection followed by feature reduction. Compared to PCA, feature selection385

only was better in terms of generalizability (Figure 9B). When informative features were selected, the out-of-sample386

canonical correlations approached their true values as the proportion of retained features and the sample size increased.387

On the other hand, when only uninformative features were selected, the out-of-sample canonical correlations remained388

close to zero. When PCA was used for feature reduction, the out-of-sample canonical correlations remained close to389
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Figure 7: Results of CCA on Glasser’s parcellation. A. In-sample canonical correlations for the partial models based on groups of edges

according to their between-subject and within-subject variability. B. Out-of-sample canonical correlations for the partial models. C. Difference

between in-sample and out-of-sample canonical correlations for the partial models. D. In-sample canonical correlations for the full models. E.

Out-of-sample canonical correlations for the full models. F. Difference in out-of-sample canonical correlations between full and partial models.

Red color indicates higher canonical correlations for partial models. G. Difference between in-sample and out-of-sample canonical correlations for

full models. H. Difference in out-of-sample canonical correlations between models based on diverse unstable edges and models based on diverse

stable edges. Blue color indicates higher canonical correlations for models based on diverse stable edges.
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Figure 8: Similarity of CCA weights between full models and partial models based on diverse stable edges as a function of the number

of principal components (PCs) included in the model. A. Similarity as a function of behavioral PCs. B. Similarity as a function of functional

connectivity PCs. Results refer to Glasser’s parcellation.

zero regardless of the sample size and the number of retained PCs. When feature selection was followed by PCA, the390

out-of-sample canonical correlations improved compared to feature selection alone, but this improvement was only391

observed under certain conditions: smaller sample size, small proportion of retained features (i.e., number of PCs),392

and when the selected features were informative.393

In the second simulation (Figure S33), we again combined feature selection and PCA, but with a larger number394

of features. We also varied the proportion of informative features. Feature selection and reduction improved the395

generalizability of CCA only when the proportion of informative features was 50%, but not when it was higher (note396

that we have no data for the case where the proportion of informative features was set to 25% because the simulation397

did not finish in time). The number of retained PCs had a negligible effect on the out-of-sample canonical correlations.398

The out-of-sample canonical correlations increased with the proportion of features selected before PCA.399

In summary, sample size and the proportion of features retained had the greatest effect on the generalizability400

of CCA. Feature selection (without PCA) had a more positive effect on generalizability than PCA alone. Feature401

selection combined with PCA outperformed feature selection alone or PCA alone only in certain cases (small samples,402

small proportion of retained features, selection of informative features). Models with informative features had larger403

out-of-sample canonical correlations than models with uninformative features. On the other hand, the information404

value of the features had little effect on the in-sample canonical correlations.405

4. Discussion406

In this study, we examined the relationship between variability in functional connectivity and its relation to brain-407

behavior associations. FC variability across subjects was highest in associative (heteromodal) networks, whereas408

variability across time points was higher in unimodal networks. Regions with stable and diverse connectivity were409

distributed across the associative networks, particularly the frontoparietal network. Further, we showed that when410

comparing patterns of FC variability across subjects and across time points, edge variability patterns across subjects411

17

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.27.568848doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.27.568848
http://creativecommons.org/licenses/by-nc-nd/4.0/


A In-sample canonical correlations

500 1000 2000 4000 8000

in
fo

rm
a

tiv
e

 o
n

ly
h

a
lf in

fo
rm

a
tiv

e
,

h
a

lf u
n

in
fo

rm
a

tiv
e

u
n

in
fo

rm
a

tiv
e

 o
n

ly
P

C
A

 o
n

ly

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

Sample size

Proportion of features retained after selection / reduction out of all features

R

F
e
a
tu

re
 s

e
le

c
tio

n
 / re

d
u
c
tio

n
 ty

p
e

feature selection only PCA only feature selection + PCAB Out-of-sample canonical correlations

500 1000 2000 4000 8000

in
fo

rm
a

tiv
e

 o
n

ly
h

a
lf in

fo
rm

a
tiv

e
,

h
a

lf u
n

in
fo

rm
a

tiv
e

u
n

in
fo

rm
a

tiv
e

 o
n

ly
P

C
A

 o
n

ly

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

-0.1

0.0

0.1

0.2

0.3

-0.1

0.0

0.1

0.2

0.3

-0.1

0.0

0.1

0.2

0.3

-0.1

0.0

0.1

0.2

0.3

Sample size

Proportion of features retained after selection / reduction out of all features

R

F
e
a
tu

re
 s

e
le

c
tio

n
 / re

d
u
c
tio

n
 ty

p
e

feature selection only PCA only feature selection + PCA

Figure 9: Results of the first CCA simulation. Briefly, we generated two matrices, X and Y (corresponding to functional connectivity and

behavior), such that 50% of the features in X were informative. We varied the sample size, the proportion of features retained, and the type of feature

selection/reduction. We used three types of feature selection/reduction: feature selection only, feature reduction (PCA only), and feature selection

followed by feature reduction (feature selection + PCA). We used three schemes of feature selection, either selecting only informative features,

selecting half informative and half uninformative features, and selecting only uninformative features. A. The in-sample canonical correlation

increased with the proportion of features retained and approached the true canonical correlation with increasing sample size. B. Out-of-sample

canonical correlations were highest when feature selection was followed by PCA, but only when the proportion of retained features was low and

only informative features were selected. Some data are missing because the simulation could not be completed in time. The dashed line represents

the true canonical correlation of the informative features.
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are stable across datasets and can be well estimated with relatively small samples. In contrast, patterns of FC vari-412

ability across time points were less stable and required larger sample sizes for accurate estimation. Next, we tested413

the hypothesis that stable and diverse edges (i.e., edges with the lowest within-subject variability and the highest414

between-subject variability) would be more informative about brain-behavior associations than either edges with low415

between-subject variability or edges with high within-subject variability . Whereas our results indeed showed that in416

some parcellations diverse edges can be more informative for brain-behavior associations, in contrast to our expec-417

tations, selecting edges based on within-subject variability did not improve the generalizability of CCA. Finally, we418

used simulations to explore the question whether edge selection can at all improve CCA. The results indicated that419

appropriate selection of edges before using PCA as a dimensionality reduction step in CCA may outperform using420

PCA alone.421

4.1. Associative regions exhibit variability across subjects, while unimodal regions exhibit variability across time422

In the first part of the study, we examined patterns of FC variability across subjects and across different time423

points.424

Between-subject variability in functional connectivity was highest in associative networks (fronto-parietal, lan-425

guage, default mode, dorsal attention network). These observed patterns of variability are consistent with previous426

findings [14, 15, 38] and have been linked to evolutionary cortical expansion, variations in cortical folding, and indi-427

rectly to behavioral performance [15]. They have also been associated with stable subject factors such as personality428

[35] and genotype [39].429

Subject × time interactions were mainly influenced by variation in unimodal networks (sensorimotor, visual net-430

work). This is in contrast to Gratton et al. [14], who examined subject × session variability in a smaller dataset431

(Midnight Scan Club, MSC), but found no clear patterns of differences [see Figure 6 in 14]. Our results suggest that432

connectivity in unimodal regions, unlike connectivity in associative networks, is specific to each subject and may be433

more influenced by transient factors such as time in the scanner (drowsiness) [40], mood [41], amount of sleep [42],434

menstrual cycle phase [43], caffeine intake [44], and fasting [38].435

4.2. The largest proportion of variance in functional connectivity can be attributed to between-subject effects436

The largest amount of variability in FC (30–40% on average) was explained by between-subject effects, followed437

by the between subject × within-subject interaction, which explained 5–15% of the total variance. Within-subject438

variance was negligible. These results confirm previous findings that FC is dominated by stable group and individual439

factors [14, 45, 46]. In a comparable study by Gratton et al. [14], individual × session variability accounted for a440

very small fraction (< 5%) of total variability, while individual × task variability accounted for nearly 20% of total441

variability. The difference between our study and that of Gratton et al. [14] may be due to differences in the terms442

included in the model (time points and task). Namely, while our analysis focused solely on resting-state data, Gratton443

et al. [14] incorporated task-related data.444

The relative variance explained by each term may also be affected by study-specific factors such as time scale (tem-445

poral distance between sessions), run length, or number of runs. By estimating variances on truncated recordings, we446

showed that the amount of variance explained decreases with decreasing run length. The amount of variance explained447

also depended on the number of segments per run – the between-subject variance decreased, but the between-subject448

× within-subject interaction increased when the run was divided into 2 or 4 segments. Similarly, in the YaleTRT449

and HCP Retest datasets, less variance was explained by between-subject variability than in the HCP (1200 Subjects450

Release) dataset. However, in the YaleTRT dataset, more variability was explained by the subject × day interaction451

compared to all other datasets. The YaleTRT dataset consists of six sessions per subject compared to 2-4 in the other452

datasets. In the HCP Retest dataset, the subject × day interaction explained less variance than in the HCP (1200453

subjects release) dataset. The difference was likely due to more data per subject and additional terms in the model454

for the HCP Retest dataset (i.e., subject × day, subject × month, subject × week × day). While the exact amount of455

variance associated with each term depends on the particular dataset, the relative differences between terms within456

datasets were comparable across datasets.457
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4.3. The most stable patterns of functional connectivity are patterns of variability across subjects458

Next, we showed that the pattern of between-subject FC variance is reproducible across different datasets and can459

be accurately estimated with sample sizes of around 50 subjects (at least when subject-level data are of similar quality460

as in the HCP dataset). In contrast, patterns of variability over different time points were generally less similar across461

studies. In the HCP dataset, these patterns also required several hundred subjects to reach stable estimates (except for462

variability over runs), suggesting that differences in edge variability patterns between studies are at least partly due to463

differences in sample size. Note that these results may be specific to the HCP dataset – with more data per subject,464

fewer subjects may be required to obtain stable estimates of variability over different time points.465

The similarity of FC variability patterns between different time points was low. This suggests that variability over466

different time points is associated with different regions and may be related to different external factors. For example,467

variability over runs within the same day might be related to factors that change rapidly over a single session, such468

as fatigue [47], whereas variability over sessions recorded over weeks might be related to effects that differ between469

sessions, such as time of day [48, 40], affective or physiological states, recent physical activity, intake of food, liquids470

and psychoactive substances (nicotine, caffeine) [38], familiarity with the MR environment, etc. The low correlation471

between the variance patterns may also be due, at least in part, to the low stability of the variance estimates.472

4.4. Intraclass coefficient primarily reflects between-subject variability473

Studies of test-retest reliability often focus exclusively on the intraclass coefficient (ICC). We have shown that474

there is a large variation in the ICC as a function of the between-subject variance, while the within-subject variance475

has a small effect on the ICC. This is because the within-subject variance is a small proportion of the total variance476

compared to the between-subject variance. In other words, while the ICC combines both sources of variation into a477

single dimension, it predominantly reflects the between-subject variability. The within-subject variability cannot be478

separated from the between-subject variability when using ICC alone.479

4.5. Diverse and stable edges are located in associative networks480

We grouped the edges according to their within-subject and between-subject variability. We were particularly in-481

terested in diverse stable regions (i.e., regions with high interindividual variability and low intraindividual variability),482

because we expected these regions to be most informative about brain-behavior correlations. Diverse stable regions483

were predominantly located in heteromodal associative networks: DMN, CON, FPN, and the language network. In484

contrast, diverse unstable edges included both associative and unimodal networks (somatomotor, visual), whereas uni-485

form edges (edges with low between-subject variability) included mostly auditory/limbic networks and connections486

between somatomotor regions and regions in heteromodal cortices.487

We showed that diverse stable regions overlap with regions implicated in the domain-general cognitive core [34].488

Other groups of regions showed much less overlap with the domain-general core. This is consistent with our hy-489

pothesis that these diverse stable regions are most predictive of interindividual differences in behavior. These results490

confirm previous findings in smaller samples [15].491

These results were partially parcellation specific. While the results were similar between the Glasser and Schaefer492

parcellations, there were relatively few diverse stable edges when Yeo’s parcellation was used. This was due to493

the relatively high correlation between patterns of between-subject and within-subject variability compared to the494

other two parcellations. Yeo’s parcellation has fewer regions, so the parcels are on average larger and possibly more495

heterogeneous in terms of within-subject and between-subject variability in FC. Our results highlight the need to496

repeat the analysis on different parcellations, as suggested by recent reports [e.g. 28, 49, 50].497

4.6. Brain-behavior correlations498

In the second part, we tested the hypothesis that diverse and stable brain features are most useful for predicting499

behavior. We performed CCA on selected edges (so-called partial models) and on all edges (so-called full models).500
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4.6.1. Data-driven approach should be used to determine the optimal number of principal components before CCA501

First, we compared in-sample and out-of-sample canonical correlations. In-sample canonical correlations in-502

creased as a function of the number of features included in the models, while the relationship for out-of-sample503

correlations was more complex. Out-of-sample canonical correlations plateaued at about 60 principal components for504

FC and about 10–20 components for behavior. These results are consistent with previous reports showing that the505

shared variance between behavior and FC is contained in a relatively small number of PCs for behavior and a larger506

number of PCs for FC [4, 3]. The differences between in-sample and out-of-sample canonical correlations ranged507

from 0.1 to 0.4. Thus, we observed large overfitting, consistent with other similar studies [3, 4, 10]. Our results show508

that the optimal number of PCs for behavior or FC depends not only on the sample-to-feature ratio, but also on the509

information content of the features. More components would explain more variance, but including more features in510

the model also contributes to overfitting.511

In previous studies, the number of PCs before CCA was often defined in an arbitrary way. For example, the512

same number of PCs was chosen for both brain traits or behaviors [35, 51, 52], or the number of PCs was chosen to513

explain the same proportion of variance for each modality [36]. Alternatively, the number of ”significant” PCs can514

be determined by permutation testing for each modality separately [53, 37]. The problem with these approaches is515

that they do not guarantee joint variance maximization. Our and previous studies suggest that a data-driven approach516

should be used to select the optimal number of features when using PCA for feature reduction for CCA [10, 4, 54].517

4.6.2. Diverse edges may be more informative compared to uniform edges518

We then compared models based on different sets of edges. Our results show that brain-behavior CCA models519

based on diverse and stable edges are (on average) as good as, but not better than, models based on all edges or models520

based on diverse unstable edges. Models based on diverse stable edges were better than full models or models based521

on diverse unstable edges in terms of out-of-sample canonical correlations only in very specific cases, namely for522

models based on a high number of behavioral PCs and a low number of connectivity PCs. Moreover, these results523

were specific to Glasser’s parcellation. For Schaefer’s parcellation, there were only small differences between models524

based on different edges. For both Glasser’s and Yeo’s parcellations, models based on different edges outperformed525

models based on uniform edges.526

Interestingly, while we identified only 234 diverse and stable edges using Yeo’s parcellation (i.e., 0.9% out of527

24976 total edges), the out-of-sample canonical correlations for this set of edges reached 0.25–0.30 (compared to 0.40528

for the best model using diverse unstable edges). This suggests that even a few edges can contain a lot of behavioral529

information.530

Including different numbers of features could also affect the content of the CCA behavioral weights. To better531

understand the differences and similarities between the CCA models, we correlated the behavioral weights. For532

behavioral PCs, the weights were very similar across models when the number of PCs was above 30 for Glasser’s533

parcellation and above 20 for Schaefer and Yeo’s parcellation. As before, this suggests that most of the relevant534

behavioral variance is captured at relatively low numbers of PCs [4]. In contrast, there was no clear pattern of weight535

similarity between the number of connectivity PCs for different models.536

In summary, on average, full models showed equal or better out-of-sample canonical correlations than partial537

models. As this could be due to the fact that full models contain all the information already contained in partial538

models, we also compared models based on diverse stable and diverse unstable edges. Our results suggest that the539

information content of diverse stable edges is similar to that of diverse unstable edges. On the other hand, diverse540

edges were more informative than uniform edges. This effect was pronounced for the Glasser and Yeo parcellations,541

but not for the Schaefer parcellation. Thus, while we did not confirm our hypothesis that models based on diverse542

stable edges outperform full models or models based on diverse unstable edges, we did show that diverse edges have543

higher behavioral utility than uniform edges in some parcellations.544

4.7. PCA alone does not necessarily select the most informative features545

The inability to confirm our hypothesis does not necessarily mean that our combined feature selection and feature546

reduction procedure does not work in general. For example, the efficiency of our procedure may be related sample-to-547

feature ratio. If the sample-to-feature ratio is too low, generalizability may not be improved by any feature selection548

procedure, but only by increasing the sample size. On the other hand, for cases with a high sample-to-feature ratio,549
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feature selection may not be necessary and will show comparable generalizability to models without feature selection.550

The feasibility of our feature selection procedure may also be affected by the ratio of informative to non-informative551

features. If the ratio of informative features is high, overly aggressive feature selection may exclude features that are552

actually informative. To address these issues, we performed a simulation in which we manipulated the sample size,553

the number of features, and the ratio of informative to non-informative features, as well as different combinations of554

feature reduction (PCA) and feature selection procedures. We reproduced the well-known finding about the overfitting555

of CCA at small sample sizes or small sample-to-feature ratios [4, 10]. Next, we examined the different combinations556

of feature selection and feature reduction procedures.557

Feature selection procedure alone (without PCA) improved the generalizability of CCA when at least some of558

the selected features were informative. On the other hand, when PCA alone (without feature selection) was used559

for feature reduction, the out-of-sample canonical correlations were close to zero. The goal of PCA is to reduce560

the dimensionality of a dataset by exploiting correlations between variables. PCA transforms the data into a new561

coordinate system, and dimensionality can be reduced by keeping only the dimensions with the highest variance.562

However, as our simulation shows, this does not necessarily ensure that the features with the highest predictive power563

are retained. Importantly, using PCA, we can reduce dimensionality by removing informative components (i.e., the564

components that are correlated between sets) if they are not the components with the highest variance.565

Next, we tested the feasibility of combining feature selection and feature reduction. This procedure improved566

generalizability compared to feature selection alone when the sample size was ”small” (< 2000), when we retained567

a small proportion of features, and when the selected features were informative. Thus, when PCA is preceded by568

appropriate feature selection, PCA cannot retain uninformative features because they have already been removed from569

the data. Our procedure improved generalizability only at smaller sample sizes – as sample sizes increase, feature570

selection becomes less important because the sample-to-feature ratio increases and there is less room to improve571

generalizability. Similarly, our procedure worked best when a small proportion of features were retained. As more572

features are included in the model, the sample-to-feature ratio decreases and, consequently, the generalizability of the573

model decreases.574

Our second simulation showed that feature selection and reduction improved the generalizability of CCA only575

when the proportion of informative features was 0.50, but not when it was higher. Thus, when a high proportion of576

features is informative, selecting too few features would remove the relevant information from the model.577

In their simulations, Helmer et al. [4] found that the average of the in-sample and out-of-sample canonical corre-578

lations was a much better estimate of the true association strength than either the in-sample or out-of-sample corre-579

lations. Our simulations show that this is rarely the case. Even when the features are largely uninformative and the580

true canonical correlation is around zero, the in-sample canonical correlation can remain high even for relatively large581

sample sizes (e.g. up to .30 for sample size 4000 in our simulations, Figure 9). Thus, while out-of-sample canoni-582

cal correlations may underestimate the true strength of the association, they still provide a more reliable measure of583

canonical correlations than either the in-sample canonical correlation or the average of both.584

In summary, we have shown that feature reduction does not necessarily extract the most informative features,585

but also that the model can be improved by appropriate feature selection prior to feature reduction. However, this586

combination is only useful in certain circumstances. At low sample-to-feature ratios, neither feature selection nor587

feature reduction may improve generalizability, whereas at high sample-to-feature ratios, these procedures may not588

be needed.589

4.8. Limitations and future directions590

Our work has several limitations. Although we have shown by simulation that a combined feature selection and591

feature reduction procedure works in principle, there are several reasons why it did not work in practice. First, the592

patterns of variability associated with within-subject variability required large sample sizes to obtain stable estimates.593

Therefore, the estimated patterns of within-subject variability may not have been accurate enough, and consequently,594

the selection of edges based on within-subject variability may not have been accurate either. On the other hand, we595

have shown that the pattern of diverse stable regions correlates with the pattern of domain-general cognitive core596

regions, which indirectly shows that our grouping of edges based on within-subject and between-subject variability597

was valid. Regardless, the stability of within-subject variability patterns could be improved with more sessions per598

subject.599
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Second, we calculated within-subject variability at the group level. However, the patterns of within-subject vari-600

ability may differ between subjects, and different edges may have been informative for different people. This is also601

indicated by the proportion of variance explained: the between-subject × within-subject interaction explained more602

variance than the within-subject factors alone. It would be possible to select different edges for different subjects, e.g.603

by first selecting a set of edges with the highest between-subject variability, and then selecting a predefined number604

of edges with the lowest within-subject variability for each subject separately. However, this would introduce addi-605

tional complexity into the procedure, and the subsequent PCA and CCA results may not be interpretable. In addition,606

reliable estimates of within-subject variability at the subject level would likely require more recordings per subject.607

We used PCA for dimensionality reduction prior to CCA to improve the sample-to-feature ratio. As explained608

earlier, this procedure does not necessarily maximize the correlation between sets. Alternatively, we could have used609

regularized or sparse CCA, which reduces overfitting by shrinking the weights (or forcing some weights to zero in610

the case of sparse CCA) [55, 56]. Regularization reduces the variance of the parameters and improves the prediction611

accuracy at the cost of introducing bias into the parameter estimates. The amount of shrinkage is controlled by hyper-612

parameters, which are typically optimized by cross-validation to maximize the out-of-sample canonical correlation.613

Regularized CCA has already been compared to combined PCA-CCA in the context of brain-behavior correlations,614

and the results between the two methods were very similar [10]. This is to be expected, since the ridge penalty tends615

to shrink the coefficients of the low variance components more than those of the high variance components [57]. The616

main difference is that the ridge penalty gradually shrinks the regression coefficients of the principal components,617

whereas PCA truncates them after some components.618

4.9. Conclusions619

In conclusion, we showed that FC variability across subjects is highest in associative networks, whereas FC620

variability across time points is highest in unimodal networks. Furthermore, the variability of FC across subjects621

could be estimated more reliably with fewer data points than the variability across time points. FC variability across622

subjects was also more stable across different datasets. Diverse and stable edges were primarily located in heteromodal623

associative networks, and we showed that diverse stable regions are associated with a domain-general cognitive core.624

However, contrary to our hypothesis, diverse stable edges did not consistently outperform other edges in predicting625

brain-behavior associations.626

Furthermore, our results suggest that resting-state functional networks are largely influenced by stable individual627

factors, followed by between-subject ×within-subject interaction. Different time points were associated with different628

edges. Further studies are needed to investigate whether patterns of variability over different time points are associated629

with different internal (homeostatic) and external factors.630

In addition, we showed that the optimal number of principal components for behavior and FC in CCA depends631

not only on the sample-to-feature ratio, but also on the information content of the features, suggesting that a data-632

driven approach should be used to optimize the number of features in CCA. Although models based on diverse stable633

edges performed similarly to models based on all edges, edges with higher between-subject variability were more634

informative than edges with lower between-subject variability in two of the three parcellations tested.635

Finally, our simulations showed that combining feature selection and feature reduction can improve the general-636

izability of CCA under certain circumstances. The results open a new avenue for further research that could focus637

on other feature selection methods to improve the assessment of brain-behavior associations. More generally, these638

results provide valuable insights into the relationship between FC variability, brain-behavior associations, and the639

optimization of CCA models.640

5. Data and code availability641

The HCP raw data are available at https://www.humanconnectome.org/. The Yale Test-Retest dataset is avail-642

able at http://fcon_1000.projects.nitrc.org/indi/retro/yale_trt.html. The map of general cognitive643

core regions [34] is available at https://balsa.wustl.edu/study/B4nkg. For CCA and simulations we used the644

GEMMR package: https://github.com/murraylab/gemmr. Preprocessed and parcellated data and relevant code645

are available in the Open Science Framework repository https://dx.doi.org/10.17605/OSF.IO/EPG6K.646
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10. Supplement809

10.1. Variability of functional connectivity810
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Figure S1: Edge connectivity on the HCP dataset parcellated with Glasser’s parcellation by source of variation. Same as in Figure 2 but not

averaged by rows.
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Figure S2: Variability of connectivity on the HCP dataset parcellated with Schaefer’s Local-Global parcellation by source of variation.

Right bottom inset: Networks of Schaefer’s Local Global parcellation [30]. VisCent: visual central network, VisPeri: visual peripheral network,

SomMot: somatomotor network, DorsAttn: dorsal attention network, SalVentAttn: salience / ventral attention network, Cont: control network,

TempPar: temporal parietal network.
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Figure S3: Edge connectivity on HCP dataset parcellated with Schaefer’s parcellation by source of variation. Same as in Figure S2 but not

averaged by rows.
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Figure S4: Variability of connectivity on the HCP dataset parcellated with Yeo’s 17-network parcellation by source of variation. Right

bottom inset: Networks of Yeo’s 17-network parcellation [29]. VisCent: visual central network, VisPeri: visual peripheral network, SomMot:

somatomotor network, DorsAttn: dorsal attention network, SalVentAttn: salience / ventral attention network, Cont: control network, TempPar:

temporal parietal network.
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Figure S5: Edge connectivity on the HCP dataset parcellated with Yeo’s parcellation by source of variation. Same as in Figure S4 but not

averaged by rows.
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Figure S6: Variability of connectivity on the HCP Retest dataset parcellated with Glasser’s multimodal parcellation by source of variation.
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subject day residual
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Figure S7: Variability of connectivity on the MMI Ljubljana dataset (eyes open condition) parcellated with Glasser’s multimodal parcella-

tion by source of variation.

subject day residual

total

Figure S8: Variability of connectivity on the MMI Ljubljana dataset (eyes closed condition) parcellated with Glasser’s multimodal parcel-

lation by source of variation.
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Figure S9: Variability of connectivity on the YaleTRT dataset parcellated with Glasser’s multimodal parcellation by source of variation.
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10.2. Similarity of FC variability patterns across datasets811
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Figure S10: Correlations between edge variability patterns across datasets for each source of variability on Schaefer’s Local Global parcel-

lation.
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Figure S11: Correlations between edge variability patterns across datasets for each source of variability source on Yeo’s 17 network

parcellation.
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Figure S12: Correlations between edge variability patterns across sources of variability for each dataset on Glasser’s multimodal parcella-

tion.
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Figure S13: Correlations between edge variability patterns across sources of variability for each dataset on Schaefer’s Local Global parcel-

lation.
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Figure S14: Correlations between edge variability patterns across sources of variability for each dataset on Yeo’s 17-networks parcellation.
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Figure S15: Mean edge variance as a function of dataset, run length and number of segments per run. A. Mean edge variance explained by

each source of variance for each dataset. B. Mean edge variance explained as a function of run length. C. Mean edge variance as a function of

segments per run.
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10.4. Grouping of edges according to between-subject and within-subject variability813
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Figure S16: Variability of connectivity by edge as a function of within-subject and between-subject variability in the HCP dataset parcel-

lated with Schaefer’s Local Global parcellation.
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Figure S17: Variability of connectivity by region as a function of within-subject and between-subject variability in the HCP dataset parcel-

lated with Schaefer’s Local Global parcellation. Same as in Figure S18 but averaged across rows of matrices.
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Figure S18: Variability of connectivity by edge as a function of within-subject and between-subject variability in HCP dataset parcellated

with Schaefer’s Local Global parcellation.
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Figure S19: Variability of connectivity by region as a function of within-subject and between-subject variability in HCP dataset parcellated

with Yeo’s 17 network parcellation.
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Figure S20: Variability of connectivity by edge as a function of within-subject and between-subject variability in HCP dataset parcellated

with Schaefer’s Local Global parcellation.
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10.5. Intraclass coefficient with respect to to between-subject and within-subject variance814
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Figure S21: Intraclass coefficient as a function of between-subject and within-subject variability on Schaefer’s parcellation.
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Figure S22: Intraclass coefficient as a function of between-subject and within-subject variability on Yeo’s parcellation.
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10.6. External validation815

r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19r = -.19 r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06r = .06 r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45r = .45

r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22r = -.22 r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03r = -.03 r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42r = .42

r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04r = -.04 r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17r = -.17 r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10r = .10

low medium high

lo
w

m
e

d
iu

m
h

ig
h

0.0 0.2 0.4 0.6 0.0 0.1 0.2 0.3 0.0 0.2 0.4 0.6

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 0.0 0.1 0.2

0.00 0.25 0.50 0.75 1.00 0.0 0.1 0.2 0.3 0.00 0.05 0.10 0.15 0.20

-0.2

0.0

0.2

-0.2

0.0

0.2

-0.2

0.0

0.2

-0.2

0.0

0.2

-0.2

0.0

0.2

-0.2

0.0

0.2

-0.2

0.0

0.2

-0.2

0.0

0.2

-0.2

0.0

0.2

between-subject variability

normalized proportion of edges

b
e

ta
 e

s
ti
m

a
te

w
ith

in
-s

u
b

je
c
t v

a
ria

b
ility

Figure S23: Correlations between the map of domain-general cognitive core regions and the proportion of edges in each region by groups

of edges. Parcellated using Glasser’s parcellation.
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Figure S24: Correlations between the map of domain-general cognitive core regions and the proportion of edges in each region by groups

of edges. Parcellated using Schaefer’s parcellation.
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Figure S25: Correlations between the map of domain-general cognitive core regions and the proportion of edges in each region by groups

of edges. Parcellated using Yeo’s parcellation.
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10.7. Brain-behavior correlations816
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Figure S26: Results of CCA on Schaefer’s parcellation. A. In-sample canonical correlations for the partial models based on groups of edges

according to their between-subject and within-subject variability. B. Out-of-sample canonical correlations for the partial models. C. Difference

between in-sample and out-of-sample canonical correlations for the partial models. D. In-sample canonical correlations for the full models. E.

Out-of-sample canonical correlations for the full models. F. Difference in out-of-sample canonical correlations between full and partial models.

Red color indicates higher canonical correlations for partial models. G. Difference between in-sample and out-of-sample canonical correlations for

full models. H. Difference in out-of-sample canonical correlations between models based on diverse unstable edges and models based on diverse

stable edges. Blue color indicates higher canonical correlations for models based on diverse stable edges.
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Figure S27: Results of CCA on Yeo’s parcellation. A. In-sample canonical correlations for the partial models based on groups of edges according

to their between-subject and within-subject variability. B. Out-of-sample canonical correlations for the partial models. C. Difference between

in-sample and out-of-sample canonical correlations for the partial models. D. In-sample canonical correlations for the full models. E. Out-of-

sample canonical correlations for the full models. F. Difference in out-of-sample canonical correlations between full and partial models. Red

color indicates higher canonical correlations for partial models. G. Difference between in-sample and out-of-sample canonical correlations for full

models. H. Difference in out-of-sample canonical correlations between models based on diverse unstable edges and models based on diverse stable

edges. Blue color indicates higher canonical correlations for models based on diverse stable edges.
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Figure S28: Similarity of CCA weights between partial models based on diverse and uniform stable edges as a function of the number of

principal components (PCs) included in the model. A. Similarity as a function of behavioral PCs. B. Similarity as a function of functional

connectivity PCs. Results refer to Glasser’s parcellation.
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Figure S29: Similarity of weights between CCA models as a function of the number of principal components (PCs) included in the model.

Results refer to Schaefer’s parcellation. A. Similarity between models based on diverse stable edges and the full model as a function of behavioral

PCs. B. Similarity between models based on diverse stable edges and full model as a function of functional connectivity PCs. C. Similarity between

models based on diverse and uniform stable edges as a function of behavioral PCs. D. Similarity between models based on diverse and uniform

stable edges as a function of functional connectivity PCs.
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Figure S30: Similarity of weights between CCA models as a function of the number of principal components (PCs) included in the model.

Results refer to Yeo’s parcellation. A. Similarity between models based on diverse stable edges and the full model as a function of behavioral PCs.

B. Similarity between models based on diverse stable edges and full model as a function of functional connectivity PCs. C. Similarity between

models based on diverse and uniform stable edges as a function of behavioral PCs. D. Similarity between models based on diverse and uniform

stable edges as a function of functional connectivity PCs.
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10.7.1. Control analysis817
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Figure S31: Results of CCA on Glasser’s parcellation. Same as Figure 7, but based on the same number of edges (randomly selected) from each

group of edges.
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Figure S32: Results of CCA on Schaefer’s parcellation. Same as Figure S26, but based on the same number of edges (randomly selected) from

each group of edges.
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10.8. Simulation818
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C 1000 informative features
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Figure S33: Results of the second simulation of canonical correlation. In this simulation we generated 1000 features with various amounts of

informative features (A: 500, B: 750, C: 1000). We combined feature selection with feature reduction (PCA). Note that we also tried to simulate data

with 250 informative features, but the simulation could not be completed in time. Dashed line represents true canonical correlation of informative

features.
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