

1 **Genome sequence and cell biological toolbox of the highly regenerative,**
2 **coenocytic green feather alga *Bryopsis***

3

4 Kanta K. Ochiai^{1,2}, Daiki Hanawa^{2,3}, Harumi A. Ogawa¹, Hiroyuki Tanaka², Kazuma
5 Uesaka³, Tomoya Edzuka¹, Maki Shirae-Kurabayashi¹, Atsushi Toyoda^{4,5}, Takehiko
6 Itoh^{2*}, Gohta Goshima^{1,6*}

7

8

9

10 1. Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya
11 University, Toba 517-0004, Japan

12 2. School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku,
13 Tokyo 152-8550, Japan

14 3. Centre for Gene Research, Nagoya University, Nagoya 464-8602, Japan

15 4. Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka
16 411-8540, Japan

17 5. Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-
18 8540, Japan

19 6. Department of Biological Science, Graduate School of Science, Nagoya University,
20 Nagoya 464-8602, Japan

21

22 #These authors contributed equally to this work.

23

24 *To whom correspondence should be addressed.

25 Email: ggoshima@gmail.com; takehiko@bio.titech.ac.jp

26

27 Author contributions: M.S-K. and G.G. conceived the project; K.K.O., M.S-K. and G.G.
28 designed the research; K.K.O., H.A.O., T.E. and M.S-K. performed the experiments; A.
29 T. performed sequencing; K.K.O., D.H., H.T., K.U., and T.I. analysed the sequence data;
30 K.K.O. and G.G. wrote the paper. All authors contributed to the writing of the
31 methodology.

32

33 **Key words:** Marine macroalgae, coenocyte, regeneration, lectin, kinesin, *Bryopsis*,
34 chloroplast transport

35 **Abstract**

36 Green feather algae (Bryopsidales) undergo a unique life cycle in which a single cell
37 repeatedly executes nuclear division without cytokinesis, resulting in the development of
38 a thallus (> 100 mm) with characteristic morphology called coenocyte. *Bryopsis* is a
39 representative coenocytic alga that has exceptionally high regeneration ability: extruded
40 cytoplasm aggregates rapidly in seawater, leading to the formation of protoplasts.
41 However, the genetic basis of the unique cell biology of *Bryopsis* remains poorly
42 understood. Here, we present a high-quality assembly and annotation of the nuclear
43 genome of *Bryopsis* sp. (90.7 Mbp, 27 contigs, N50 = 6.7 Mbp, 14,034 protein-coding
44 genes). Comparative genomic analyses indicate that the genes encoding BPL-
45 1/Bryohealin, the aggregation-promoting lectin, are heavily duplicated in *Bryopsis*,
46 whereas homologous genes are absent in other Ulvophycean algae, suggesting the basis
47 of regeneration capability of *Bryopsis*. *Bryopsis* sp. possesses >30 kinesins but only a
48 single myosin, which differs from other green algae that have multiple types of myosin
49 genes. Consistent with this biased motor toolkit, we observed that the bidirectional
50 motility of chloroplasts in the cytoplasm was dependent on microtubules but not actin in
51 *Bryopsis* sp. Unexpectedly, most genes required for cytokinesis in plants are present in
52 *Bryopsis*, including those in the SNARE or kinesin superfamily. Nevertheless, a kinesin
53 crucial for cytokinesis initiation in plants (NACK/Kinesin-7II) is hardly expressed in the
54 coenocytic part of the thallus, possibly underlying the lack of cytokinesis in this portion.
55 The present genome sequence lays the foundation for experimental biology in coenocytic
56 macroalgae.

57

58 **Significance statement**

59 The exceptionally coenocytic body and remarkable regeneration ability of *Bryopsis* have
60 attracted biologists for years. However, molecular biological tools remain
61 underdeveloped, partly due to the lack of genome information. Here, we report high-
62 quality assembly and annotation of the genome, providing a crucial resource for
63 experimental biology and genomics studies of *Bryopsis*. Furthermore, comparative
64 genomic analysis reveals a unique gene repertoire that possibly underlies the highly
65 regenerative coenocytic body.

66

67 **Introduction**

68 Eukaryotic cells are typically characterised by a single nucleus at the centre of the
69 cytoplasm. However, some exceptions exist. For example, red blood cells are anucleated.
70 Multinucleated cells have also been observed in a variety of species. In animals, the
71 syncytium in *Drosophila* embryos and muscle cells in mammals have been extensively
72 studied in cell and developmental biology, for example for the mechanisms of nuclear
73 positioning and synchronised nuclear division (Kwon and Scholey, 2004; Padilla et al.,
74 2022). In flowering plants, seed endosperm undergoes repeated mitotic nuclear divisions

75 without cytokinesis after double fertilisation, forming a large multinucleated cell called
76 ‘coenocyte’ (Ali et al., 2023). Many species of marine macroalgae (seaweeds) possess
77 multinucleated cells in their body (Graham et al., 2008). An extreme situation is seen in
78 green feather algae; the thalli of *Caulerpa* or *Bryopsis* develop and reach over 10 cm in
79 length with characteristic side branches, but strikingly, there are no cell walls to separate
80 the numerous nuclei (Mine et al., 2008). This coenocytic feature raises many evolutionary
81 and cellular biology questions, such as how the characteristic features evolve specifically
82 in this algal lineage or how intracellular components are organised in the extremely large
83 cytoplasm (Mine et al., 2008; Umen and Herron, 2021). Non-uniform distribution of
84 transcripts might partly contribute to cytoplasmic organisation in coenocytes (Ranjan et
85 al., 2015). However, the underlying mechanism remains poorly understood, partly
86 because of the lack of an experimental model system in which genetic and molecular
87 biological tools can be instantly applied. As the first step, it is critical to understand the
88 genome sequences and gene repertoires of these species.

89 Among green feather algae, *Bryopsis* has garnered special attention for its remarkable
90 regenerative capabilities in laboratory settings: cytoplasm extruded from mature thalli is
91 rapidly clustered and transformed into protoplasts, followed by thallus development
92 under the laboratory culture condition (Ikeuchi et al., 2016; Kim et al., 2001; Pak et al.,
93 1991; Tatewaki and Nagata, 1970). This amazing regeneration ability, undergoing ‘life
94 without a cell membrane’ (Kim et al., 2001), might be critical for this single-celled
95 organism when they are physically damaged, for example by predators (Zan et al., 2019).
96 Regarding the factors required for regeneration, Kim and colleagues found that the
97 aggregation of the extruded cytoplasm is facilitated by the F-type domain-containing
98 lectin termed Bryohealin (also called BPL-1) in *B. plumosa* (Kim et al., 2006). The BPL-
99 1-like protein similarly facilitates aggregation in *Bryopsis hypnoides* (Niu et al., 2009).
100 Aggregation is inhibited by N-acetyl-D-glucosamine and N-acetyl-D-galactosamine,
101 which possess high affinity to BPL-1 (Kim et al., 2006; Niu et al., 2009; Yoon et al.,
102 2008). Three other types of lectins, BPL-2 (Han et al., 2010a), BPL-3 (Han et al., 2010b),
103 and BPL-4 (Han et al., 2012), have been also identified in *Bryopsis*, which bind to the
104 above two sugars (BPL-3/4) or D-mannose (BPL-2). Since extremely high regeneration
105 ability is a unique feature of *Bryopsis*, an interesting scenario would be that some of these
106 lectins uniquely evolved in *Bryopsis*.

107 The taxon Chlorophyta, to which most green algae belong, exhibits remarkably
108 varied body plans (Del Cortona et al., 2020; Gulbrandsen et al., 2021; Hou et al., 2022;
109 Leebens-Mack et al., 2019). Green microalgae, such as the model species
110 *Chlamydomonas reinhardtii*, are generally unicellular with a single nucleus, whereas
111 Dasycladales, including the classical cell biology model organism *Acetabularia*, is
112 unicellular with a single nucleus but with extremely large cytoplasm (up to 10 cm).
113 Ulvales species have canonical multicellular bodies that are made of mono-nucleated
114 cells separated by cell walls, while Cladophorales is multicellular with multiple nuclei

115 per cell. Several genome sequences of green algae are available, including those of the
116 coenocytes *Caulerpa lentillifera* and *Ostreobium quekettii* (Arimoto et al., 2019;
117 Hanschen and Starkenburg, 2020; Iha et al., 2021). However, genomic information is
118 lacking for the family Bryopsidaceae, which includes the genus *Bryopsis*. Moreover, the
119 gene repertoire that possibly characterises coenocytic cells has not been extensively
120 investigated yet. In this study, we present the first and high-quality genome sequences of
121 *Bryopsis* species (registered as *Bryopsis* sp. KO-2023). We then report the cell biological
122 toolbox of *Bryopsis* and other green algae.

123

124 **Results and Discussion**

125

126 **Characterisation of *Bryopsis* species isolated on Sugashima Island, Japan**

127 We isolated two *Bryopsis*-like specimens from an outdoor tank at Sugashima Marine
128 Biological Laboratory (Fig. 1A). Sequencing of the rDNA ITS locus showed > 99.5%
129 identity in 437 base pairs (bp) with that of a *Bryopsis* species registered in the database
130 (line name: HIRO:HIRO-MY 77087). DNA staining showed that multiple nuclei were
131 distributed in the cytoplasm of the main axis, confirming the coenocytic feature (Fig. 1A,
132 middle). High regeneration ability was also confirmed. When the cytoplasm was
133 squeezed out, the extrusion quickly aggregated and transformed into a membrane-
134 encircling protoplast, followed by tip growth (Fig. 1B, Movie 1). Furthermore, this
135 process was suppressed by N-acetyl-D-glucosamine (Fig. S1A) (Kim et al., 2006; Niu et
136 al., 2009).

137 Next, we tested whether the obtained lines underwent a previously reported life cycle
138 (Tatewaki, 1973). The morphology of the gametes suggested that one line was male and
139 the other was female. Under conditions similar to those used in previous studies, we
140 successfully observed gamete production from both lines, mating of the gametes to
141 generate a sporophyte (diploid), and zoospore generation (Fig. 1A).

142 We also observed the microtubules and actin filaments using confocal microscopy
143 after immunostaining. They were observed only near the thallus surface, that is, in the
144 cortical cytoplasm, and ran along the main axis of the thallus (Fig. S1B, C). They
145 overlapped largely, but not entirely. The microtubules were not visible after treatment
146 with oryzalin, a microtubule-destabilising drug widely used in land plants. Colocalised
147 actin filaments were also diminished, whereas other short actin bundles remained (Fig.
148 S1D). In contrast, the commonly used actin inhibitor, latrunculin A, completely destroyed
149 actin filaments, whereas microtubule bundles remained intact (Fig. S1E). These
150 observations are largely consistent with those of previous studies using different drugs
151 and epifluorescence microscopy (Menzel and Schliwa, 1986a; Menzel and Schliwa,
152 1986b).

153 Based on these observations, we concluded that the collected lines were male and
154 female *Bryopsis*.

155

156 **Genome sequences and annotation – nucleus**

157 We extracted RNA and DNA separately from haploid thalli (female) and performed
158 sequencing. A draft nuclear genome was assembled based on the short and long reads.
159 The genome comprised 27 contigs (90.7 Mbp, N50 length 6.7 Mbp) (Table 1). The
160 average coverage was 45× (short reads) and 322× (long reads). The GC content was
161 45.9%, similar to that of *O. quekettii* (52.4%) and *C. lentillifera* (40.4%) (Table S1).

162 Several contigs had a common repeat sequence (CCCTAAA) at the end (Fig. 2A, red
163 bars at the end of contigs). This sequence was identical to the telomeric repeat sequences
164 of *Arabidopsis thaliana* (Richards and Ausubel, 1988), suggesting that they represent the
165 chromosomal end. This repeat was identified at both ends of the five contigs, suggesting
166 that complete sequences of the five chromosomes were obtained in our analysis. In the
167 other eight contigs, the repeat was observed at one end. Provided that this repeat indeed
168 represents telomeric sequences, *Bryopsis* sp. haploid would possess nine or more
169 chromosomes.

170 A total of 14,034 protein-coding genes were predicted in 27 contigs (Table 1).
171 BUSCO analysis (protein mode) using the chlorophyta lineage dataset indicated that
172 92.6% of the single-copy orthologues were recovered, which was higher than those of *O.*
173 *quekettii* (55.0%) and *C. lentillifera* (67.0%) (Table S1).

174 These analyses suggest that the nuclear genome of *Bryopsis* sp. was assembled and
175 annotated with high quality compared to many other algal genomes (Hanschen and
176 Starkenburg, 2020).

177

178 **Genome sequences and annotation – chloroplast and mitochondrion**

179 The chloroplast genome was assembled into a single circular sequence. The number
180 and identity of protein-coding genes, rRNA, and tRNA, as well as the overall genome
181 size were comparable to those of the reported sequences derived from *B. plumosa* and *B.*
182 *hypnoides* (Leliaert and Lopez-Bautista, 2015; Lu et al., 2011) (Table 2). Detailed
183 information on the genome, including unique features identified in our line, is provided
184 in the **Supplementary Document**.

185 The mitochondrial genome was assembled into a single circular sequence (Table 2).
186 Our sequence substantially diverged from the reported ‘*Bryopsis plumosa*’ sequence (Han
187 et al., 2020). However, our own analysis of the reported sequences indicated that the
188 specimen belonged to the order Ulvales, and not Bryopsidales (Fig. S2). We think that
189 ours represent the first full mitochondrial DNA sequences of *Bryopsis*. The detailed
190 description the genome feature is provided in the **Supplementary Document**.

191

192 **Overview of the *Bryopsis* sp. nuclear genome**

193 The availability of high-quality genome allowed us to conduct a high-level
194 comparative genomic study of *Bryopsis*. As comparison, we selected two land plant

195 species and 20 green algal species (5 macroalgae and 15 microalgae), which covered
196 several classes in Chlorophyta (Fig. 2B, Table S2). The genomes of most species have
197 been annotated in high quality, except for *O. quekettii* (Bryopsidales), whose BUSCO
198 value (genome mode) is less than 70% (Table S1).

199 First, the comparison of the sequences of 10 single copy genes indicated that *Bryopsis*
200 sp. was indeed phylogenetically classified into the order Bryopsidales and was closer to
201 *C. lentillifera* than *O. quekettii* (Fig. 2B) (Del Cortona et al., 2020; Gulbrandsen et al.,
202 2021; Hou et al., 2022; Leebens-Mack et al., 2019). Second, the repeat sequences were
203 surveyed, as they would reflect the phylogeny (Dodsworth et al., 2014). In all three
204 Bryopsidales species, Ty1/Copia-type long terminal repeat (LTR) retrotransposons were
205 scarcely detected (<0.01%), in contrast to their prevalence in *Ulva mutabilis*, *C.
206 reinhardtii*, and land plant (Table S1). The LINEs were also infrequently detected in
207 Bryopsidales. These results are consistent with the phylogenetic tree derived from gene
208 sequences. Third, we provided functional annotation based on KEGG (Kyoto
209 Encyclopedia of Genes and Genomes) and investigated which unigenes are over- or
210 under-represented in *Bryopsis* (Table S3). *Bryopsis* sp. had >10% more unigenes than the
211 average numbers of green algae in several categories, including signal transduction,
212 transport and catabolism, and cell motility (Table S3). This analysis, however, could not
213 be applied to other Bryopsidales species, as their relatively poor gene annotation would
214 result in underestimation of the unigene numbers. We next analysed total numbers of the
215 genes in each category, which would be less sensitive to genome quality. This analysis
216 showed that the genes in the signalling pathway including SnRK2 kinase were expanded
217 in Bryopsidales (Fig. S3, Table S4). This pathway is involved in stress response in plants
218 (Chen et al., 2021). How this expansion contributes to coenocytic life cycle remains to be
219 determined.

220 Overall, the global survey suggests that *Bryopsis* in essence possesses a similar set
221 of genetic pathways to other green algal species.

222

223 **Massive duplication of genes encoding Bryohealin, a lectin required for cytoplasmic 224 aggregation, specifically in *Bryopsis***

225 Next, we aimed to identify the specific genes (or gene families) that might
226 characterise *Bryopsis*.

227 The best-known feature of *Bryopsis* is its amazing regeneration ability, which
228 appears to be specific to this genus. We therefore focused on lectin, which facilitates
229 cytoplasmic aggregation during regeneration (Kim et al., 2006; Niu et al., 2009). We
230 searched for *BPL* lectin genes in the *Bryopsis* sp. genome and identified 12 genes highly
231 homologous to *BPL-1* (named *BPL-1A – BPL-1L*) (Fig. 3). *BPL-1* is characterised by a
232 conserved ‘F-type domain’, which is widely observed in the genome of animals but not
233 of land plants. Interestingly, the F-type domain was hardly found in other green algae
234 genome we surveyed, and could not be identified also in *C. lentillifera* or *O. quekettii*,

235 which belongs to Bryopsidales; we found them only in Volvocaceae among 26 green
236 algal species surveyed in this study (Fig. 3A, Table S4). Thus, this type of lectin was lost
237 in the majority of the green plant lineage, but dramatically expanded in *Bryopsis*.

238 BPL-2 lectin protein was also found only in *Bryopsis* (Fig. S4, Table S4). BPL-3 and
239 BPL-4 possess the H-type domain. Our survey identified three and two homologues in
240 the genome of *Bryopsis* sp., respectively. Unlike BPL-1 (F-type domain-containing), the
241 H-type domain was found in the genome of *C. lentillifera* (11 genes). However, we could
242 not identify this type of lectin in other green algae (Fig. S4, Table S4).

243 We searched for other lectin families, including R-type, L-type, and B-type lectins
244 that are found in land plants, and C-type lectin and galectin that have been extensively
245 studied in animals (Varki et al., 2022). However, we could not identify any of them. The
246 only lectin we found was calnexin/chitinase, which is commonly present in eukaryotes.

247 Thus, our analysis revealed an intriguing correlation in which key lectin genes that
248 facilitate cytoplasmic aggregation are expanded in *Bryopsis*. Lectin gene duplication
249 might endow *Bryopsis* with its exceptional regeneration ability.

250

251 **No peculiarity in gene superfamily involved in membrane trafficking, including 252 those essential for plant cytokinesis, in *Bryopsis***

253 Conceivably, the development of an extremely large cell is accompanied by a
254 sophisticated organisation of the cytoplasm. Genes involved in membrane trafficking,
255 which is required for cellular organisation and cytokinesis, are possibly increased or
256 decreased in Bryopsidales.

257 Conserved gene families regulating membrane trafficking include the Rab GTPase,
258 which is crucial for vesicle trafficking, and SNARE, which is required for the final step
259 in vesicular trafficking, namely membrane fusion (Lipka et al., 2007). Previous study
260 suggested that the increase in the number of SNARE genes parallels the rise of
261 multicellularity among the green plants (Viridiplantae) and also Opisthokonta, based on
262 the genome-wide survey of model species, such as *A. thaliana*, *P. patens*, *C. reinhardtii*,
263 *Ostreococcus tauri*, *Saccharomyces cerevisiae*, and *Homo sapiens* (Sanderfoot, 2007).
264 Similarly, the number of Rab GTPase is dramatically increased in land plants and animals
265 compared to unicellular yeast, leading to the notion that multicellular organisms have
266 more complex systems of internal membranous organelles than unicellular organisms
267 (Saito and Ueda, 2009). Notably, land plants harbour a large number of Rabs and
268 SNAREs that diverge in a manner unique to plant lineage (Saito and Ueda, 2009).

269 We searched for genes encoding Rab GTPase and SNARE based on BLAST and
270 confirmed their massive increases in land plants compared to *Chlamydomonas* (Table S4).
271 However, further survey in coenocytic Bryopsidales (*Bryopsis* sp., *C. lentillifera*, *O.*
272 *quekettii*) and multicellular *Ulva*, and *Chara* (closest relative of land plants) indicated that
273 the gene number was comparable to *Chlamydomonas*, regardless of the body form.

274 Among SNARE genes, *KNOLLE* is specifically required for the final step of

275 cytokinesis, namely vesicle fusion to the cell plate; the loss of KNOLLE proteins
276 produces multinucleated cells in land plant cells (Lauber et al., 1997; Saito and Ueda,
277 2009). However, this type of SNARE was present in Bryopsidales (Table S4). These
278 results suggest that the lack of cytokinesis in *Bryopsis*'s main axis cannot be attributed to
279 the lack of vesicle trafficking machinery.

280

281 **Cytoskeletal motor toolbox**

282 Cytoskeleton and the associated motor proteins, which are categorised into 'cell
283 motility' in KEGG database, are also key elements to cellular organisation. Microtubules
284 and actin filaments serve as tracks for motor proteins (kinesin/dynein and myosin,
285 respectively) to carry various cargo such as organelles. Although α/β -tubulin and G-actin,
286 the building blocks of microtubules and actin filaments, respectively, are highly
287 conserved molecules, different organisms have remarkably different motor repertoires
288 (Reddy and Day, 2001; Vale, 2003). The motor repertoire reflects the cellular dynamics
289 and lifecycle of a species. For example, the development and function of sperm flagella
290 requires the dynein motor as the force generator and driver of intraflagellar transport, and
291 the loss of flagellated sperm during plant evolution coincides with the loss of dynein
292 genes (Lucas and Geisler, 2022). Long-range transport in filamentous fungi is driven by
293 fast and processive motor Kinesin-3, which is lost in short budding yeast (Siddiqui and
294 Straube, 2017). Spatial distribution of mRNA encoding motor proteins may also be
295 indicative of spatially regulated cellular activity (Andresen et al., 2021b).

296 We analysed cytoskeletal motor proteins based on the conserved motor domains of
297 myosin, dynein heavy chain (DHC), and kinesin. The targeted genome sequences were
298 of two land plant and nine green algal species (Table S2). In addition, we obtained the
299 raw data on RNA-seq from the database for three species from Dasycladales
300 (*Acetabularia acetabulum*, *Polyphysa clavata*, *Chlorocladus australasicus*), and two
301 from Cladophorales (*Chlorocladia pisiiformis* and *Chlorocladia medogensis*)
302 (Andresen et al., 2021b; Hou et al., 2022). We assembled those sequences and annotated
303 the genes (BUSCO values in Table S5). Dasycladales has a unique life cycle, in which a
304 giant cytoplasm develops without nuclear division. Cladophorales is multicellular but
305 each cell has multiple nuclei; cytokinesis is not coupled with nuclear division (Del
306 Cortona et al., 2020; Shirae-Kurabayashi et al., 2022). For some motors, BLAST search
307 was conducted for those species.

308

309 **Myosin**

310 Three classes of myosin have been identified in green plants. Myosin-XI drives
311 cytoplasmic streaming and organelle/vesicle transport in *Arabidopsis* and moss (Tamura
312 et al., 2013; Vidali et al., 2010). Closely-related Myosin-XIII is also likely involved in
313 intracellular transport as well as cell growth in green algae, based on localisation study in
314 *Acetabularia* (Andresen et al., 2021b; Vugrek et al., 2003). Cytoplasmic streaming is

315 dependent on actin filaments in the extremely large cytoplasm of *Acetabularia* (Nagai
316 and Fukui, 1981). Myosin-VIII regulates microtubule-actin crosslinking and is required
317 for cell tip growth, branching, and cytokinesis in moss (Wu and Bezanilla, 2014; Wu and
318 Bezanilla, 2018; Wu et al., 2011). We anticipated that myosin genes would be conserved
319 and the numbers possibly increased in organisms with giant cytoplasm.

320 This was indeed the case for Dasycladales: we identified at least five Myosin-XI/XIII
321 in all three species examined. In surprising contrast, we identified only one myosin gene
322 (Myosin-XI) in *Bryopsis* sp. (Fig. 4A, S5, Table S4). Other Bryopsidales species had two
323 Myosin-XI genes, but no Myosin-VIII or -XIII. This contrasted with Cladophorales,
324 which had multiple Myosin-XI and Myosin-XIII genes, or *U. mutabilis* and *C. reinhardtii*,
325 where Myosin-VIII was present (Fig. 4A, B, S5, Table S4).

326 The lack of Myosin VIII in Bryopsidales and Cladophorales might be consistent with
327 the lack of nuclear division-coupled cytokinesis in these organisms. In contrast, the
328 underdevelopment of Myosin-XI/XIII suggests that actomyosin system is unexpectedly
329 not prevalent in the intracellular transport of Bryopsidales.
330

331 **Dynein**

332 Dynein is the major minus-end-directed (or ‘retrograde’) transporter in many species,
333 except for seed plants, which lack dynein genes. Our analysis identified 13 dynein heavy
334 chain (*DHC*) genes in *Bryopsis* sp. (Table S4). Each belongs to one of the 16 subfamilies
335 of *C. reinhardtii* DHC (Hom et al., 2011), which consists of either the inner arm, outer
336 arm, or intraflagellar transport (IFT) dynein complex. This was an expected finding, as
337 flagella were present in the gametes and zoospores of *Bryopsis* sp. (Fig. 1A). We analysed
338 the expression level of *DHC* genes based on RNA-seq. We observed that the expression
339 of each *DHC* gene was extremely low in the main axis or rhizoid and elevated in the side
340 branch where flagella were later developed (Table S6, $p < 0.05$ for 8 out of 13 genes,
341 Likelihood ratio test). Similar *DHC* repertoire was identified in other green algal species
342 (some genes were not identifiable either because they are absent or genome assembly is
343 incomplete).

344 In the Opisthokonta lineage, ‘cytoplasmic dynein’ was evolved and acts as the major
345 retrograde transporter in the cytoplasm of animal and fungal cells. However, we could
346 not see the development of new types of dynein (i.e. non-flagellar dynein) in any green
347 algal species, including *Bryopsis* sp.
348

349 **Kinesin**

350 The kinesin superfamily has been further classified into 14 subfamilies (Lawrence et
351 al., 2004; Shen et al., 2012). We identified a total of 34 kinesin genes in *Bryopsis* (Fig.
352 S6.1–6.3, Table S4). Several notable features are as follows:

353 Kinesin-G4. The phylogenetic tree indicated that 20 genes belong to the canonical
354 kinesin subfamily. Their functions can be deduced from the rich research history on

355 kinesins in animal and plant models. However, 14 kinesins form clades that are apparently
356 green algae-specific and do not contain plant kinesins (termed GA1–10 clades). GAs
357 represent 40% of the total kinesins of *Bryopsis* sp.; the function of each kinesin-GA is
358 unknown. We suggest the addition of these new subfamilies to the kinesin superfamily.

359 ***Kinesin-14***. Land plants duplicated Kinesin-14 genes and utilise them as retrograde
360 transporters. In *P. patens*, Kinesin-14II (KCH) is responsible for nuclear migration,
361 whereas Kinesin-14VI (KCBP) transports the chloroplasts and others (Yamada and
362 Goshima, 2018; Yamada et al., 2017; Yoshida et al., 2019). We identified in *Bryopsis* sp.
363 two Kinesin-14II and three Kinesin-14VI genes, which may act as transporters (Fig. 4A,
364 Table S4); the expression level of Kinesin-14VI is high (Table S6). Three or more
365 Kinesin-14VI genes were found in Bryopsidales and Cladophorales, whereas
366 Dasycladales and *Ulva* have one or two. The increase in kinesin-14VI genes and their
367 high expression are consistent with the notion that Bryopsidales heavily utilises a
368 microtubule-based system for cargo transport.

369 ***Kinesin-ARK***. Animals use Kinesin-1 (also called ‘conventional kinesin’) as the
370 versatile plus-end-directed (or ‘anterograde’) transporter, whereas ARK kinesin has
371 recently been identified as the plant counterpart (Kanda et al., 2023; Yoshida et al., 2023).
372 Some algal species possess a kinesin whose motor domain is similar to ARK but lacks
373 their characteristic tail (here termed Kinesin-ARK). These are candidate anterograde
374 transporters. However, the orthologous genes are missing in Bryopsidales. Instead, they
375 encode an algae-specific kinesin (kinesin-GA1) that is phylogenetically close to Kinesin-
376 ARK (Fig. 4A, C). This kinesin subfamily possibly participates in anterograde transport;
377 however, our RNA-seq analysis suggested that the expression level of GA1 was
378 extremely low throughout the haploid thallus (Table S6). Therefore, it remains unclear
379 which genes drive anterograde transport in *Bryopsis*. Intriguingly, an algae-specific
380 Kinesin-GA9 gene (GMH32198.1) showed the highest expression level among
381 cytoskeletal motors throughout the thallus, comparable to a sum of three Kinesin-14VIs
382 (Table S6: total reads of this GA9 and 14VI were 535 and 498 [Deseq2]). We speculate
383 that this novel kinesin subfamily plays an important role in *Bryopsis*, possibly as
384 anterograde transporters.

385 ***Kinesin-12***. Kinesin-12 genes are expanded in plants; six and 18 genes have been
386 identified in the genomes of *A. thaliana* and *P. patens*, respectively (Shen et al., 2012).
387 The majority of plant Kinesin-12 genes studied thus far are involved in cytokinesis. For
388 example, plant Kinesin-12II (PAKRP) is localised in the midzone of phragmoplasts (a
389 microtubule-based apparatus assembled in late mitosis) and is required for cytokinesis
390 (Lee et al., 2007). Kinesin-12I (POK) is essential for the directed expansion of
391 phragmoplasts and for division plane orientation (Livanos and Muller, 2019). In our
392 survey, Kinesin-12II was found only in *Chara braunii* and land plants. This coincides
393 with the development of phragmoplasts in plant evolution (Buschmann and Zachgo,
394 2016). However, multiple other Kinesin-12 genes, including POK-like kinesin and

395 unclassified ones, were present in coenocytic *Bryopsis* sp. or *C. lentillifera* (Fig. 4A).
396 They were highly expressed throughout the haploid thallus (Table S6). The result
397 suggests that Kinesin-12I has a hitherto unknown, non-cytokinetic function in cells.

398 Kinesin-7. Mutants of Kinesin-7II (also known as NACK) fail to form the cell plate,
399 resulting in multinucleate cells in tobacco and *Arabidopsis* (Nishihama et al., 2002;
400 Tanaka et al., 2004). Upon sister chromatid separation in mitotic anaphase, Kinesin-7II
401 recruits MAP kinase to the phragmoplast, by which conserved microtubule-binding
402 protein MAP65 is phosphorylated (Sasabe and Machida, 2012). MAP65 then recruits
403 proteins involved in vesicle trafficking for cell plate formation (Steiner et al., 2016). Thus,
404 this kinesin acts at cytokinesis initiation. In this context, the presence of kinesin-7II in
405 *Bryopsis* and *C. lentillifera* was unexpected (Fig. 4A). However, gamete formation in the
406 side branch involves cellularisation in *Bryopsis*. RNA-seq analysis indicated that kinesin-
407 7II is hardly expressed in the main axis (1.5 ± 0.49 reads, $\pm SD$, $n = 4$, normalised by
408 DESeq2) or rhizoid (0.0 ± 0.0) but is expressed at higher levels in the side branch ($7.7 \pm$
409 2.6). Thus, it is tempting to speculate that the lack of cell separation in the cytoplasm in
410 the *Bryopsis* is partly attributed to the reduced presence of this kinesin protein.

411

412 **Chloroplast motility depends on cytoplasmic microtubules, but not actin filaments**

413 Cytoplasmic streaming in the giant cytoplasm of *Acetabularia* or in the internodal
414 cell of *Chara* is inhibited by actin filament disassembly (Nagai and Fukui, 1981; Nagai
415 and Kamiya, 1977). Consistent with this, multiple myosin-XIs, one of which is the fastest
416 cytoskeletal motor (Haraguchi et al., 2022), are encoded by *C. braunii* (Fig. 4A, Table
417 S4). Similarly, the addition of an actin polymerisation inhibitor suppressed chloroplast
418 motility in the *Bryopsis* thallus (Menzel and Schliwa, 1986b). However, this observation
419 was hard to reconcile with the genomics data where only one myosin gene was identified
420 in *Bryopsis*. Therefore, we empirically revisited the contribution of microtubules and
421 actin in intracellular transport (Fig. 5).

422 We focused on chloroplasts because they are autofluorescent and can be traced
423 unambiguously using live confocal imaging. A previous study indicated that motility is
424 dependent on both actin filaments and microtubules (Menzel and Schliwa, 1986b). We
425 observed that chloroplasts moved along the long axis at 339 ± 131 nm/s ($\pm SD$, $n = 50$).
426 The movement was bidirectional and a directional switch was occasionally observed (Fig.
427 5B, red arrowhead; 5C, arrow; Movie 2). Motility was dependent on microtubules;
428 oryzalin treatment almost completely abolished motility (Fig. 5C, D). Surprisingly,
429 motility was not affected by latrunculin A treatment, although the concentration and
430 incubation time were identical to those used when actin disappearance was confirmed by
431 immunofluorescence microscopy (Fig. 5C, D, S1E). We presumed that cytochalasin D,
432 which was used in a previous study to disrupt the actin cytoskeleton, has an off-target
433 effect in *Bryopsis*. The presence of only one myosin in *Bryopsis* sp. is consistent with the
434 notion that bidirectional transport is not driven by actomyosin. We conclude that

435 chloroplast motility is dependent on microtubules, but not on actin filaments. The
436 bidirectional nature of motility suggests the involvement of both retrograde and
437 anterograde transporters. Multiplicated kinesin-14VI genes are strong candidates
438 responsible for retrograde motility.

439

440 **Conclusions**

441 This study provides the first information on the nuclear genome of the family
442 Bryopsidaceae. Small contig numbers (27) and the detection of probable telomere
443 sequences at both ends of the five contigs suggested a high-level assembly. These
444 sequences allowed comparative genomic analyses, as illustrated here for several gene
445 families. In addition, specialised chromosomal DNA sequences such as centromeres may
446 be analysable. Male and female lines have been cultured in the laboratory for a few years
447 and could, therefore, be excellent targets for developing tools for genetics and the cell
448 and developmental biology of *Bryopsis*.

449

450 **Materials and methods**

451

452 ***Bryopsis* isolation and culture**

453 Two *Bryopsis*-like macroalgal thalli were collected on 7th November 2019 from an
454 outside tank at the Sugashima Marine Biological Laboratory. In addition to having
455 relevant morphology and life cycle, they were confirmed to be *Bryopsis* by PCR, using
456 primers designed for the rDNA ITS region (Shirae-Kurabayashi et al., 2022). Daily
457 cultivation of haploid thalli was conducted at 15 °C (90 $\mu\text{mol m}^{-2}\text{s}^{-1}$, light: 16 h, dark: 8
458 h) in ocean surface water (salt concentration 2.8–3.4%), which was filtered using a 0.22-
459 μm Millipore Stericup, autoclaved, and supplied with Daigo's IMK medium (252 mg/L,
460 Shiotani M.S.). Male and female gametes were obtained by culturing severed haploid
461 thalli for 1–2 weeks at 15 °C (90 $\mu\text{mol m}^{-2}\text{s}^{-1}$, light: 16 h, dark: 8 h). They were mixed
462 and cultured under the same conditions for ~1 week. Once sporophyte (diploid)
463 germination was detected, the culture condition was changed (25 °C, 20 $\mu\text{mol m}^{-2}\text{s}^{-1}$,
464 light: 10 h, dark: 14 h). After six months, the cells darkened. Culture conditions were
465 changed (15 °C, 90 $\mu\text{mol m}^{-2}\text{s}^{-1}$, light: 16 h, dark: 8 h). Zoospores (haploids) were
466 released under these conditions, followed by germination in ~1 week.

467

468 **Protoplast formation from extruded cytoplasm**

469 The thallus was cut with a scalpel, and sandwiched and crushed with two slide glasses.
470 The extruded cytoplasm was slowly dripped into autoclaved seawater in the presence or
471 absence of N-acetyl-D-glucosamine (40 mM) or the control glucose (40 mM).

472

473 **RNA sequencing (RNA-seq)**

474 For genome assembly and gene annotation The *Bryopsis* sample (female line, *Bryopsis*

475 sp. KO-2023) was crushed in liquid nitrogen, and the total RNA was purified using the
476 RNeasy Plant Mini Kit (#74904; Qiagen, Hilden, Germany) with DNase treatment,
477 according to the manufacturer's instructions. The RNA yield was quantified using a
478 NanoVue microplate reader (GE Healthcare, Chicago, IL, USA). The sample volume was
479 adjusted to 2 µg/100 µL for subsequent RNA-seq analysis. RNA-seq analysis was
480 performed at the core facility of Nagoya University following the protocol described by
481 (Matsumura et al., 2022). Briefly, 1 µg total RNA was used for mRNA purification with
482 NEBNext Oligo d(T)₂₅ (NEBNext poly(A) mRNA Magnetic Isolation Module; New
483 England Biolabs, Ipswich, MA, USA), followed by first-strand cDNA synthesis with the
484 NEBNext Ultra II RNA Library Prep Kit for Illumina (New England Biolabs) and
485 NEBNext Multiplex Oligo for Illumina (New England Biolabs) according to the
486 manufacturer's protocols. The amount of cDNA was determined using an Agilent 4150
487 TapeStation System (Agilent, Santa Clara, CA, USA). The cDNA libraries were
488 sequenced as paired-end reads of 81 nucleotides using an Illumina NextSeq 550
489 (Illumina, San Diego, CA, USA).

490

491 ***Spatial dissection*** Fragments of < 1 mm from the tip of the main axis of *Bryopsis* sp. were
492 cut and cultured in autoclaved seawater supplemented with Daigo's IMK medium for 10
493 –14 days at 15 °C (90 µmol m⁻²s⁻¹, light: 16 h, dark: 8 h). The thalli that developed side
494 branches were cut into three parts; 'side branch', 'main axis' (central stalk), and 'rhizoid'.
495 After removing water, each sample was separately crushed with mortar and pestle that
496 had been prechilled at -80 °C, and the total RNA was purified using the RNeasy Plant
497 Mini Kit. This manipulation was independently performed four times on different days.
498 RIN values for all samples were greater than 8.0. The samples were sequenced with
499 Illumina NovaSeq6000 platform, which produced 150 bp paired-end reads. The amount
500 of reads for each gene was calculated using RSEM v1.2.28 (Li and Dewey, 2011) with
501 STAR v2.7.10b (Dobin et al., 2012) for mapping. Normalisation was performed using
502 TPM and DESeq2 (Love et al., 2014).

503

504 **Genome sequencing**

505 Whole-genome shotgun sequencing was performed using the PacBio and Illumina
506 sequencing platforms. Genomic DNA from *Bryopsis* sp. KO-2023 (female) was isolated
507 using a CTAB/Genomic-tip Kit (QIAGEN). A SMRTbell library for continuous long-
508 read (CLR) sequencing was prepared using a SMRTbell Express Template Prep Kit 2.0
509 (Pacific Bioscience, CA, USA) according to the manufacturer's instructions. The CLR
510 library was size-selected using the BluePippin system (Sage Science, Beverly, MA, USA)
511 with a lower cutoff of 30 kb. One SMRT Cell 8M was sequenced on the PacBio Sequel
512 II system with Binding Kit 2.0 and Sequencing Kit 2.0 (20 h collection times). In addition,
513 genomic DNA was fragmented to an average size of 500 bp using an M220 Focused-
514 ultrasonicator M220 (Covaris Inc., Woburn, MA. USA). A paired-end library with insert

515 sizes ranging from 450 to 550 bp was constructed using the TruSeq DNA PCR-Free
516 Library Prep kit (Illumina) and was size-selected on an agarose gel using a Zymoclean
517 Large Fragment DNA Recovery Kit (Zymo Research, Irvine, CA. USA). The final library
518 was sequenced using a 2×150 bp paired-end protocol on the NovaSeq 6000 system
519 (Illumina).

520

521 **Genome assembly**

522 *Chloroplast* *De novo* assembly of the chloroplast genome was performed using a
523 combination of 150 bp \times 2 short reads and Get-organelle v 1.7.6.1 (Jin et al., 2020) with
524 the options -k 21, 45, 65, 85, 105, -P 1000000, and -R 50. Two complete *Bryopsis*
525 chloroplast sequences (NC_026795.1 and NC_013359.1) were used as seeds. This
526 provided two closed circular sequences of identical length (91,672 nt). The two sequences
527 were nearly identical except for the central region (~11 kb). One sequence was discarded
528 because structural errors were found near the central region when it was aligned with long
529 reads. The other sequences showed no structural errors across the entire sequence length.
530 The error check was repeated at different starting positions. Finally, the downstream of
531 *psbA* was set at +1 position.

532

533 *Mitochondrion* Highly fragmented contigs with a total length of ~150 kb were obtained
534 using Get-organelle v 1.7.6.1 assembly (Jin et al., 2020) with the seed references of green
535 algal species (NC_045361.1, KU161104.1, and NC_001638.1) (Repetti et al., 2020;
536 Vahrenholz et al., 1993; Zhou et al., 2016). These putative mitochondrial sequences had
537 a sequencing depth ~200 times higher than that of the nuclear genome. The high copy
538 number of the mitochondrial genome enabled assembly based on random selection of a
539 small portion of PacBio long reads (≥ 20 kb). One percent of the long reads was sufficient
540 for the assembly of the mitochondrial genome. Flye (Kolmogorov et al., 2019; Lin et al.,
541 2016) with ‘--pacbio-raw’ option produced one circular sequence (356,161 bp) that had
542 global synteny with other algal mitochondrial sequences. To check if there was mis-
543 assembly in this sequence, full long and short reads were aligned using minimap2 (Li,
544 2021) with the ‘map-pb’ and ‘sr’ presets, respectively. This revealed six indel errors at
545 the homopolymer sites but did not identify any large sequence gaps or structural errors.
546 Small indels were corrected using bwa (mapping) and Pilon (Walker et al., 2014). To
547 confirm the completeness of the mitochondrial genome assembly, the +1 position was
548 changed by 20,000 bp and the long reads were aligned using minimap2. No sequence
549 gaps were found during this operation, indicating that no structural errors existed in the
550 mitochondrial assembly. Finally, the +1 position was reset downstream of *rrnL3b*.

551

552 *Nuclear genome* The assembly of long-read data was used to determine the nuclear
553 genome. However, the genome sequences of symbiotic bacteria, commonly detected in
554 marine macroalgae, inevitably contaminate *Bryopsis* genome sequences. Therefore, a

555 provisional genome assembly was first performed, in which the obtained genome
556 sequences were clustered into groups which were thought to originate from the same
557 species. Based on the sequence characteristics and mapping results of the RNA-seq data,
558 grouped sequences considered to be derived from *Bryopsis* were identified. Sequences
559 were extracted from clustered groups.

560 Illumina reads were used for K-mer analysis and genome size estimation. The 21-
561 mer frequencies were calculated using Jellyfish v2.3.0 (Marcais and Kingsford, 2011),
562 and the genome size was estimated using GenomeScope 2.0 (Ranallo-Benavidez et al.,
563 2020). The estimated genome size was used as the input parameter for *de novo* pre-
564 assembly. Pre-*de novo* assembly of the nuclear genome was performed based on the
565 PacBio reads using Canu v2.1.1 (Koren et al., 2017) with the following options:
566 genomeSize = 500M, corOutCoverage = 200, and ‘batOptions = -dg 3 -db 3 -dr 1 -ca 500
567 -cp 50’. Pre-assembled contigs were polished using long and short reads. They were
568 polished through three rounds of Arrow v2.3.3, and three rounds of Pilon v1.23 (Walker
569 et al., 2014). In these steps, PacBio reads were mapped using pbmm2 v1.3.0
570 (<https://github.com/PacificBiosciences/pbmm2>), and trimmed Illumina reads were
571 mapped using BWA v0.7.17 (Li, 2013). Then, binning was performed using MetaBAT2
572 v2.15 (Kang et al., 2019) to group contigs derived from the same species, and each cluster
573 was named ‘bin’. As input for MetaBat2, read coverage information was calculated from
574 the Illumina read mapping results against polished pre-assembled contigs using BWA
575 v0.7.17.

576 Raw RNA-seq data were trimmed and filtered using Platanus_trim v1.0.7. *De novo*
577 transcriptome assembly was performed based on the trimmed RNA-seq reads using
578 Trinity v2.8.5 (Grabherr et al., 2011). Transcriptome assembly contigs were splice-
579 mapped to polished, pre-assembled genomic contigs using GMAP v.2018-08-25 (Wu and
580 Watanabe, 2005). The bin containing the most-mapped transcriptome assembly contigs
581 was designated as the main nuclear bin. In addition, other bins and contigs derived from
582 *Bryopsis* were manually selected based on the overall information, such as the
583 transcriptome assembly contig mapping rate, GC rate, and Illumina read coverage.

584 PacBio and Illumina reads derived from *Bryopsis* were extracted for the final *de*
585 *novo* assembly. PacBio reads were extracted from Canu intermediate files used in the pre-
586 *de novo* assembly. Illumina reads were extracted by mapping the trimmed Illumina reads
587 to contigs derived from *Bryopsis* using BWA v0.7.17. The extracted trimmed Illumina
588 reads were used for K-mer analysis and genome size estimation, as described above. The
589 estimated genome size was used as an input parameter for the final *de novo* assembly.
590 Final *de novo* assembly of the nuclear genome was performed based on the PacBio reads
591 derived from *Bryopsis* using Canu v2.2 with the following options: genomeSize = 100M,
592 corOutCoverage = 200, and ‘batOptions= -dg 3 -db 3 -dr 1 -ca 500 -cp 50’. The final
593 assembled contigs were polished using long and short reads. The final assembly contigs
594 were polished through three rounds of Arrow v2.3.3 and three rounds of NextPolish

595 v1.4.0 (Hu et al., 2019). Next, the arrow-identified variants were filtered via Merfin v1.0
596 (Formenti et al., 2022) using the trimmed Illumina reads derived from *Bryopsis*. In the
597 long-read-based polish, PacBio reads derived from *Bryopsis* were mapped using pbmm2
598 v1.3.0. Haplotype were then removed using Purge_dups v1.2.3 (Guan et al., 2020) to
599 reduce sequence redundancy and increase assembly continuity.

600 These analyses yielded the assembly and selection of 49 contigs. Finally, to verify the
601 origin of each contig, BLASTx searches were conducted for a portion of the sequence of
602 each contig. The sequences derived from 22 contigs were highly homologous to bacterial
603 and fungal sequences, whereas those of the other 27 contigs were not. Thus, 27 contigs
604 were considered derived from *Bryopsis*.

605

606 **Gene annotation**

607 Chloroplast ncRNAs were annotated using the GeSeq web server. ‘DNA search identity’
608 was set at 85. Four reference sequences (NC_013359.1, NC_026795.1, NC_037363.1,
609 and NC_030629.1) were used as ‘3rd Party References.’ The CDS was manually
610 annotated using a combination of GeSeq annotation, protein alignment with *B. plumosa*
611 (NC_026795.1), and RNA-seq alignment. This collaborative annotation was further
612 curated using a homology-based approach against the proteomes of closely related
613 species to verify the completeness of each CDS. In total, 83 predicted protein-coding
614 genes, three rRNAs, and 26 tRNAs were identified.

615

616 Mitochondrion Annotation of the mitochondrial genome using GeSeq predicted virtually
617 no protein-coding genes. This suggests that no closely related protein-coding genes were
618 annotated. To overcome this limitation, open reading frames (ORFs) were searched using
619 the NCBI ORF finder (<https://www.ncbi.nlm.nih.gov/orffinder/>). The predicted ORFs of
620 all six frames were manually aligned with the mitochondrial proteins of *Ostreobium*
621 *quekettii* (Repetti et al., 2020) and the putative CDS coding frame of the RNA-seq was
622 constructed with TransDecoder. To verify the obtained CDS, promising coding frames
623 were manually searched for homology to proteins of closely related species using
624 BLASTx. This procedure identified 40 protein-coding genes with complete CDS
625 sequences. In addition, a tBLASTn search using publicly available green algal
626 mitochondrial protein sequences identified 14 small genes encoded in the introns of
627 already annotated genes. ncRNAs were annotated using the GeSeq web server. tRNAs
628 were identified with GeSeq, where the following ‘3rd Party References’ were used:
629 NC_045361.1, NC_001638.1, NC_028538.1, NC_035722.1, NC_029701.1,
630 NC_035809.1, NC_28081.1, NC_040163.1, and NC_041082.1. This resulted in 17
631 annotated tRNAs. rRNAs were searched against the mitochondrial genome using
632 BLASTn with the following queries: NC_045361.1, NC_001638.1, NC_028538.1,
633 NC_035722.1, NC_029701.1, NC_035809.1, NC_28081.1, NC_040163.1, and
634 NC_041082.1. Candidate genes were manually compared with the RNA-seq alignment

635 data. This procedure identified three rRNA genes in the mitochondrial genome. Intron
636 length is defined as the length of the region between exons within a gene (protein-coding
637 or non-coding). When other genes were present within the introns of a host gene, the
638 length of the internal gene was not excluded from the intron length of the host gene.
639 Domains of genes present in introns were searched using NCBI's Conserved Domains
640 database (<https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi>) with default settings.
641

642 *Nucleus* Protein-coding genes were predicted by combining the results of RNA-seq-,
643 homology-, and *ab initio*-based prediction methods. RNA-seq-based prediction utilises
644 both assembly-first and mapping-first methods. For the assembly-first method, RNA-seq
645 data were assembled using Trinity v2.12.0 (Grabherr et al., 2011) and Oases v2.0.9
646 (Schulz et al., 2012). The redundant assembled RNA contigs were removed using CD-
647 HIT v4.8.1 (Fu et al., 2012), and then splice-mapped to the genome sequences using
648 GMAP v2018-07-04 (Wu and Watanabe, 2005). For the mapping-first method, RNA-seq
649 data were mapped to genome scaffolds using HISAT2 v2.2.1 (Kim et al., 2019), and gene
650 sets were predicted with StringTie v2.2.0 (Pertea et al., 2016) from mapped results. The
651 ORF regions were estimated using TransDecoder v5.5.0
652 (<https://github.com/TransDecoder/TransDecoder>) from both the assembly-first and
653 mapping-first method results. Regarding homology-based prediction, amino acid
654 sequences of *O. quekettii* (NCBI accession No: GCA_905146915.1), *C. reinhardtii*
655 (NCBI accession No: GCF_000002595.2), *Volvox carteri* (NCBI accession No:
656 GCF_000143455.1), and *Monoraphidium neglectum* (NCBI accession No:
657 GCF_000611645.1), were splice-mapped to genome scaffolds using Spaln v2.3.3f
658 (Gotoh, 2008), and gene sets were predicted. For *ab initio* prediction, training sets were
659 first selected from the RNA-seq-based prediction results. Then, AUGUSTUS v3.3.3
660 (Stanke and Waack, 2003) was trained using this set. The SNAP v2006-07-28 (Korf,
661 2004) was used in this study. All predicted genes were combined using an in-house
662 merging tool. However, the ORF of some genes did not start with ATG (methionine),
663 which was manually fixed. In some cases, the start codon was manually identified, and
664 the amino acid sequences were corrected. In other cases (~700), the ORF assignment was
665 rejected as the start codon and transcript could not be identified. Finally, 14,034 genes
666 encoding proteins were identified.
667

668 ***De novo* transcriptome assembly and annotation**

669 *De novo* transcriptome assembly and gene annotation were conducted based on the
670 published RNA-seq raw data, following the methods described in (Andresen et al., 2021b)
671 and (Hou et al., 2022) for the following species: [Dasycladales] *Acetabularia acetabulum*,
672 *Chlorocladus australasicus* and *Polyphysa clavata*; [Cladophorales] *Chlorocladella*
673 *pisiformis* and *Chlorocladella medogensis* (Supplementary Data). The raw sequence data

674 were obtained from the European Nucleotide Archive under the accession No.
675 PRJEB40460 and PRJNA726747.

676

677 **Genome information used in this study**

678 The genomes primarily used in each analysis were *Bryopsis* sp. KO-2023 (this study), *C.*
679 *lentillifera* (Arimoto et al., 2019), *O. quekettii* (Iha et al., 2021), *U. mutabilis* (De Clerck
680 et al., 2018), *C. reinhardtii* (Merchant et al., 2007), *Dunaliella salina* (Polle et al., 2017),
681 *Pleodorina starrii* (Takahashi et al., 2023), *V. carteri* (Prochnik et al., 2010),
682 *Raphidocelis subcapitata* (Suzuki et al., 2018), *Monoraphidium neglectum* (Bogen et al.,
683 2013), *Auxenochlorella protothecoides* (Gao et al., 2014), *Coccomyxa subellipsoidea* C-
684 169 (Blanc et al., 2012), *Chlorella vulgaris* (Cecchin et al., 2019), *Pedinophyceae* sp.
685 YPF-701 (Repetti et al., 2022), *Chloropicon primus* (GCA_023205875.1), *Micromonas*
686 *pusilla* (Worden et al., 2009), *O. tauri* (Blanc-Mathieu et al., 2014), and *Bathycoccus*
687 *prasinos* (Yau et al., 2020) for Chlorophyta and *Klebsormidium nitens* (Hori et al., 2014),
688 *C. braunii* (Nishiyama et al., 2018), *P. patens* (Lang et al., 2018) and *A. thaliana* (Lin et
689 al., 1999; Mayer et al., 1999; Salanoubat et al., 2000; Tabata et al., 2000; Theologis et al.,
690 2000) for Streptophyta (Table S2). Note that the available *A. acetabulum* genome
691 sequences were not amenable to comparative genomics due to low quality (BUSCO
692 <11%) (Andresen et al., 2021a).

693

694 **Circular visualization of the genome assembly (Circos plot)**

695 The genomic features of the 27 contigs were plotted in a circular genome plot using
696 shinyCircus V2.0 hosted in a local server (Wang et al., 2023). GC content was calculated
697 as the ratio of the average of AT and GC per 10,000 bp. For repetitive sequences plot, all
698 types of repeats were used from the result of repeatmasker (see below). All information
699 used for the circus-plot is available (https://github.com/KantaOchiai/Bryopsis_sp._KO-2023_genome_sequence_Information).

700

702 **Comparative genomics analysis**

703 Repetitive sequences Repetitive sequences were identified using a combination of *de novo*
704 and homology-based methods. First, Repeat sequences were *de novo* searched using
705 RepeatModeler v2.0.1 (<http://www.repeatmasker.org/RepeatModeler/>) with "--
706 LTRstruct". Then, identified repetitive sequences, including transposable elements, were
707 counted using RepeatMasker v4.1.1 (<http://www.repeatmasker.org/>) based on the repeat
708 model created by RepeatModeler (Table S1).

709

710 Evaluation of assembly quality BUSCO metrics were used to assess the integrity of the
711 genome assembly and the completeness of the gene prediction (Waterhouse et al., 2017).
712 BUSCO v5.5.0 was run with genome or protein mode on 18 published genomes of
713 Chlorophyta, including *Bryopsis* sp. with Chlorophyta dataset (chlorophyta_odb10), and

714 four published genomes of Streptophyta with the Viridiplantae (viridiplantae_odb10) or
715 Brassicales (brassicales_odb10) dataset (Table S1). The transcriptome mode was applied
716 for transcriptomes of two Cladophorales and three Dasycladales with Chlorophyta dataset
717 (chlorophyta_odb10) (Table S5).

718

719 *Functional annotation with KEGG database* Functional annotation was performed based
720 on KEGG (Kyoto Encyclopedia of Genes and Genomes) using GhostKoala (Kanehisa et
721 al., 2016). The unigenes of each pathway in each genome were counted with KEGG
722 mapper (<https://www.genome.jp/kegg/mapper/>) (Table S3). Subsequently, ‘MAPK
723 signaling pathway-plants’ in the ‘Signal transduction’ category was analysed with
724 BLASTp searches using the representative *A. thaliana* proteins as queries, as extremely
725 high number of genes were identified in this category for Bryopsidales including *Bryopsis*
726 sp. (accession No: PYR/PYL/RCARs (NP_180174.1, O49686.1, NP_563626.1),
727 PP2C_GroupA (P49598.1), HOS15 (Q9FN19.1), RBOH (O48538.1, Q9FIJ0.1), KAT1
728 (Q39128.1), QUAC1 (O49696.1), SLAC1 (Q9LD83.1), ABFs/ABI (Q9M7Q3.1,
729 Q9SJN0.1, Q9M7Q5.1), SOD (AEE74978.1, AEE85010.1), CAT1 (Q96528.3)). SnRK2
730 annotated with KEGG was confirmed by KEGG BLASTp web server (Fig. S3, Table S4).

731

732 Phylogenetic inference

733 *Chlorophyta species* 10 highly conserved single-copy OGs were selected from 63 single
734 copy ortholog genes (OGs) obtained using Orthofinder v2.3.14 (Emms and Kelly, 2019)
735 in 18 published genomes of Chlorophyta including *Bryopsis* sp. and three Streptophyta
736 (Table S2). 10 single-copy OGs list is available in Supplementary Data. Each OG
737 sequences were aligned using MAFFT v7.505 (Katoh and Standley, 2013) with FFT-NE-
738 2 strategy. All gaps were removed using MEGAX (Kumar et al., 2018), and the individual
739 OGs were combined to obtain a sequence of 2,713 amino acids (Supplementary Data).
740 Finally, ML tree was inferred using IQ-TREE v1.6.12 (Nguyen et al., 2015) with
741 LG+F+R4 selected as the best-fit model and branch support estimated with ultrafast 1,000
742 bootstrap.

743

744 *Mitochondrial genome* Seven mitochondrial housekeeping genes, including *nad1*, *nad2*,
745 *nad4*, *nad5*, *nad6*, *cob*, *cox1*) were retrieved from 17 species, including *Bryopsis* sp. and
746 registered *B. plumosa* (MN853874.1) (Fig. S2). The same procedure as for chloroplasts
747 was used for the subsequent analysis.

748

749 *Lectin* BLASTp/tBLASTn searches were conducted for published *Bryopsis* BPL-1, -2, -
750 3, and -4 proteins. For all possible hit sequences (Supplementary Data), the presence of
751 characteristic domains of each BPL protein was confirmed with the NCBI conserved
752 domain search (<https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi>).
753 BLASTp/tBLASTn searches were also conducted against *Bryopsis* sp. for R-, L-, B- and

754 C-type lectins (accession No: P06750.1, PWZ39448.1, AAL09432.1, Q9FVA1.1,
755 Q9FV99.1, Q9NNX6.1), malectin (accession No: AEE78805.1), calnexin (accession No:
756 KAB1259615.1), calreticulin (accession No: CAA55890.1), chitinase (accession No:
757 AEC10291.1), and galectin (accession No: KAJ0248405.1) as queries. Amino acid
758 sequences of each gene were aligned by MAFFT v7.505 with FFT-NE-2 strategy. All
759 gaps were removed using MEGAX, and sequences of 116 amino acids (BPL-1), 132
760 amino acids (BPL-2), and 102 amino acids (BPL-3/4) were obtained (Supplementary
761 Data). ML tree was drawn using IQ-TREE v1.6.12 with WAG+G4 (BPL-1, -2) or LG+G4
762 (BPL-3/4) selected as the best-fit model and branch support was estimated with 1,000
763 ultrafast bootstrap.

764

765 Rab GTPase and SNARE Genes were searched with BLASTp/tBLASTn using the
766 representative *A. thaliana* proteins as queries (Rab GTPase accession No: NP_568678.1,
767 SNARE: (Lipka et al., 2007)).

768

769 Myosin Genes were searched with BLASTp/tBLASTn in nine genomes of Chlorophyta,
770 including *Bryopsis* sp., three genomes of Streptophyta, and five transcriptomes of
771 Cladophorales and Dasycladales (Fig. 4A, Table S2), using the following queries:
772 Myosin-VIII (accession No: F4JIU4.1), Myosin-XI (accession No: F4HXP9.1,
773 GMH40817.1), and Myosin-XIII (accession No: AAB53061.1, AAB53062.1). All hit
774 sequences with the e-value $\leq e^{-10}$ were subjected to the NCBI conserved domain search,
775 and the sequences in which conserved motor domains could not be identified were
776 removed from the list (Supplementary Data). Some myosin proteins, for which long
777 amino acid sequences could be retrieved, were shown as schematic diagrams (Fig. 4B)
778 and/or subjected to phylogenetic tree construction (Fig. S5). For tree construction, the
779 amino acid sequences were aligned by MAFFT v7.505 with FFT-NE-2 strategy and all
780 gaps were removed using MEGAX, and a sequence of 184 amino acids was obtained
781 (Supplementary Data). ML tree was drawn using IQ-TREE v1.6.12 with LG+I+G4
782 selected as the best-fit model and branch support was estimated with 1,000 ultrafast
783 bootstrap (Fig. S5).

784

785 Dynein heavy chain (DHC) Genes were searched with BLASTp/tBLASTn using
786 previously reported *C. reinhardtii* DHC1–16 proteins (Hom et al., 2011) as queries (Table
787 S4).

788

789 Kinesin Genes were searched with BLASTp/tBLASTn using the amino acid sequences
790 of 1–350 aa of the human kinesin heavy chain (KIF5B/kinesin-1: accession No:
791 P33176.1) and *Arabidopsis thaliana* KIN4C (accession No: F4K0J3.2) as queries.
792 Additional BLASTp/tBLASTn searches were conducted for several kinesins: Kinesin-
793 ARK and Kinesin-GA1 (ARK-like) in 10 genomes of Chlorophyta, seven genomes of

794 Streptophyta, and five transcriptomes of Cladophorales and Dasycladales; Kinesin-7II,
795 Kinesin-12, Kinesin-14II, and Kinesin-14VI in five transcriptomes of Cladophorales and
796 Dasycladales (Table S2). All hit sequences with the e-value $\leq e^{-10}$ were subjected to the
797 NCBI conserved domain search, and the sequences in which conserved motor domains
798 could not be identified were removed from the list (Supplementary Data). The kinesin
799 amino acid sequences in nine published genomes of Chlorophyta, including *Bryopsis* sp.,
800 and three Streptophyta were aligned by MAFFT v7.505 with FFT-NE-2 strategy and all
801 gaps were removed using MEGAX, followed by ML tree construction (IQ-TREE v1.6.12
802 with LG+I+G4 and branch support was estimated with 1000 ultrafast bootstrap) (Fig. S6).
803

804 **Immunostaining**

805 A three-week-old thallus after cytoplasm extrusion was fixed with 4% paraformaldehyde
806 in modified PHEM buffer (Sobue et al., 1988) (60 mM Pipes, 25 mM Hepes, 0.5 M NaCl,
807 10 mM EGTA, 2 mM MgCl₂; pH 6.9) for 1 h at 25 °C, followed by permeabilisation
808 with 1% Triton X-100 in PBS for 1 h at 25°C. After washing twice with PBST (0.1%
809 Triton X-100 in PBS), the specimen was incubated with blocking solution (1% BSA in
810 PBST) for 1 h at 25 °C, followed by addition of primary antibodies at 4 °C overnight with
811 rotation (mouse anti-β-actin [Proteintech, 66009-1-Ig], 1:1000, and rat anti-α-tubulin
812 [YOL1/34, MCA78G, Bio-Rad], 1:1000). The specimen was washed three times with
813 PBST and incubated with secondary antibodies (anti-mouse, Jackson ImmunoResearch,
814 715-545-151, 1:1000, and anti-rat, Jackson ImmunoResearch, 712-165-153, 1:1000) and
815 DAPI (final 1 µg/ml) overnight at 4 °C with rotation. After washing twice with PBST,
816 the specimen was mounted on a glass slide with a mounting medium (FluoromountTM;
817 Diagnostic BioSystems).

818

819 **Microscopy**

820 *Bryopsis* sp. thalli were imaged using a Nikon SMZ800N stereo microscope, Plan Apo
821 1x/WF lens, and NY1S-EA camera (SONY). The gametes and zoospores were imaged
822 using an ECLIPSE E200 microscope (Nikon) and NY1-EA2. Fluorescent images of DNA
823 (DAPI), chloroplasts, microtubules, and actin were acquired using a Nikon Ti2 inverted
824 microscope equipped with a CSU-10 spinning-disc confocal scanner unit (Yokogawa), a
825 Zyla CMOS camera (Andor), and four laser lines (637, 561, 488, and 405 nm). 40× 0.95
826 NA lens or a 100× 1.40 NA lens was used to image live or fixed cells, respectively. To
827 obtain the chloroplast motility rate, a 35-mm glass-bottom dish was prepared, on which
828 a piece of kitchen garbage net (~10 × 20 mm) was attached with double-sided tape. After
829 cytoplasmic extrusion, a 3-week-old thallus and a coverslip were laid over the net,
830 followed by the addition of 1-mL of autoclaved seawater. This net prevented thallus
831 movement during imaging. Autofluorescent chloroplasts were imaged every 10 s using a
832 spinning-disc confocal microscope and a 40× 0.95 NA lens. At 2 min during imaging of
833 untreated specimen, oryzalin (10 µM), latrunculin A (10 µM), or control DMSO was

834 added (3 mL volume each). The unidirectional motility rate of randomly selected
835 chloroplasts 5–6 min after drug addition was manually measured after obtaining
836 kymograph images using Fiji.

837

838 **Data availability**

839 The genome sequence of *Bryopsis* sp. is available at the DNA Data Bank of Japan
840 (DDBJ) under project PRJDB15746
841 (<https://ddbj.nig.ac.jp/resource/bioproject/PRJDB15746>) and sample accession
842 SAMD00599708 (<https://ddbj.nig.ac.jp/resource/biosample/SAMD00599708>) with
843 accession numbers BSYQ01000001.1–BSYQ01000027.1 (nuclear genome), LC768901
844 (chloroplast), and LC768902 (mitochondria). The raw sequence data for NextSeq 550,
845 NovaSeq 6000, and Sequel II are available under accession numbers DRA016305,
846 DRA016314, and DRA016315, respectively. The assembled genome and annotation are
847 also available from NCBI with GenBank accession ID: GCA_030272585.1. The IDs of
848 the genes used for the phylogenetic tree construction are shown in the figures.
849 Gene and protein sequences used for phylogenetic tree construction and comparative
850 genomic analyses are summarised in Supplementary data
851 (https://github.com/KantaOchiai/Bryopsis_sp._KO-2023_genome_sequence_Information).
852

853

854 **Acknowledgements**

855 We are grateful to the staff of the Comparative Genomics Laboratory at NIG for
856 supporting genome sequencing. This work was funded by the Japan Society for the
857 Promotion of Science KAKENHI (16H06279 (PAGS) for whole-genome sequencing and
858 22K19308, 22H04717, and 22H02644 for experimental biology). The authors declare no
859 conflict of interest.

860 **Table 1. Information of the nuclear genome of *Bryopsis* sp. KO-2023**
861

		<i>Bryopsis</i> sp. KO-2023
Accession number of genome		BSYQ01000001.1– BSYQ01000027.1
Assembly statistics	Genome size (Mbp)	90.7
	Assembly level	Contig
	Number of chromosomes/scaffolds/contigs	27
	scaffolds/contigs N50 (Mbp)	6.7
	GC percent (%)	46
	Predicted protein coding genes	14,034
BUSCO_protein	Dataset	Cholophyta
	Complete (%)	95.5
	Complete and single-copy (%)	92.6
	Complete and duplicated (%)	2.9
	Fragmented (%)	0.2
	Missing (%)	4.3
	Total BUSCO groups searched	1,519
Repeat	Total repeat (%)	30.02
	Retroelements	11.87
	SINEs	0.00
	LINEs:	0.76
	LTR elements:	11.10
	Ty1/Copia	0.01
	Gypsy/DIRS1	10.94
	Retroviral	0.03
	DNA transposons:	0.57
	Unclassified:	15.70
	Total interspersed repeats:	28.15

862

863 **Table 2. Comparison of the chloroplast and mitochondrial genome**

864

	<i>Bryopsis</i> sp.	<i>Caulerpa</i> <i>lentillifera</i>	<i>Ostreobium</i> <i>quekettii</i>	<i>Ulva</i> sp.	<i>Chlamydomonas</i> <i>reinhardtii</i>	<i>Physcomitrium</i> <i>patens</i>	<i>Arabidopsis</i> <i>thaliana</i>
Genome	Chloroplast	Chloroplast	Chloroplast	Chloroplast	Chloroplast	Chloroplast	Chloroplast
Accession number of genome	LC76890 1.1	NC_0393 77.1	NC_0306 29.1	KP72061 6.1	NC_0053 53.1	NC_0050 87.2	NC_0009 32.1
Genome size (Kbp)	91.7	119.4	82.0	100.0	203.8	122.8	154.4
GC percent (%)	30.4	32.6	31.9	25.3	34.5	28.5	36.3
Predicted protein coding genes*	83	91	78	79	65	85	79
rRNA genes*	3	3	3	3	5	3	4
tRNA genes*	26	28	31	28	29	32	30
Coding DNA (%) **	85.4	86.0	84.0	81.8	49.9	72.3	72.0
Large inverted repeat (>5 kb)	absent	absent	absent	absent	present	present	present
Genome	Mitochondrion	Mitochondrion	Mitochondrion	Mitochondrion	Mitochondrion	Mitochondrion	Mitochondrion
Accession number of genome	LC76890 2.1	KX76157 7.1	NC_0453 61.1	KP72061 7.1	NC_0016 38.1	NC_0079 45.1	NC_0373 04.1
Genome size (Kbp)	356.2	209	241.7	73.5	15.8	105.3	367.8
GC percent (%)	54.4	50.9	48.3	32.4	45.2	40.6	44.8
Predicted protein coding genes*	54	76	54	50	8	42	122
rRNA genes*	3	3	3	2	14	3	3
tRNA genes*	17	20	28	25	3	24	22
Intron number	72	29	47	10	0	26	18
Intronic DNA (%) **	54.1	43.4	39.3	21.7	0	28.4	8.14

865 * Duplicate genes were counted as single genes.

866 ** Total gene length, which includes introns, was divided by the entire genome length.

867

868 **Supplementary document**

869

870 **Overview of the chloroplast genome**

871 In this study, the chloroplast genome was assembled into a single closed sequence of
872 91,672 base pairs (bp). This length was close to the size of previously reported chloroplast
873 genomes of *Bryopsis plumosa* (106,859 bp) (Leliaert and Lopez-Bautista, 2015) and
874 *Bryopsis hypnoides* (153,429 bp) (Lu et al., 2011). No long reverse repeat sequences were
875 identified, consistent with other green algae of the order Bryopsidales of the family
876 Ulvophyceae, and genus *Ulva* (Turmel and Lemieux, 2018; Turmel et al., 2017). The GC
877 content was 30.4%, which was similar to the reported chloroplast genomes of *B. plumosa*
878 (30.8%) (Leliaert and Lopez-Bautista, 2015) and *B. hypnoides* (33.1%) (Lu et al., 2011).
879 The coding DNA sequences occupied 85.4% of the chloroplast genome, which was much
880 higher than that of the mitochondria (66.1%) (Table 2, Table S7, S9). Drastic expansion
881 of introns, which was evident in the mitochondrial genome, was not observed in either
882 *Bryopsis* lines.

883 GeSeq-based annotation revealed that the chloroplast genome contained 83 protein-
884 coding genes, 79 of which were identical to the previously annotated *bona fide* or
885 hypothetical protein-coding genes of *B. plumosa* (NC_026795.1) and were conserved in
886 other green algae (Table S8). The remaining four protein-coding genes included two open
887 reading frames (ORFs) found within the introns of *psaA* and *psbB*, one previously
888 reported ORF, and one novel ORF. The two ORFs in the introns showed high homology
889 with the previously reported *orf1* and *orf2* of *B. plumosa* (NC_026795.1). ORF480 (i.e.
890 480 a.a.) in the intron of *psaA* encodes a protein that has a reverse transcriptase-like
891 superfamily and RVT_N superfamily domains, suggesting that it functions as a reverse
892 transcriptase. In contrast, ORF300 in the intron of *psbB* did not contain any characteristic
893 domains, suggesting that it might not represent a protein.

894 One of the two isolated ORFs, termed ORF92, is a 281 bp reading frame (i.e. 92 a.a.)
895 found in a ~2.5 kb flanking region between *chlN* and *trnL*. RNA-seq analysis indicated
896 that this gene was transcribed *in vivo*. However, the translated sequences showed no
897 homology to known proteins in the database. Thus, this might be specifically encoded in
898 the chloroplast genome of our line. The other orphan ORF, termed ORF431, showed weak
899 sequence identity with GIIM superfamily proteins (group II intron, maturase-specific
900 domain) according to a domain search (CD-search). ORFs with the GIIM superfamily
901 domain were also present in other orders of Bryopsidales, except *O. quekettii*, suggesting
902 that they are widely conserved in Bryopsidales. A portion of the amino acid sequence
903 also showed weak homology with reverse transcriptases of the order Bryopsidales,
904 suggesting that it may function as a reverse transcriptase.

905 In addition to protein-coding genes, 26 tRNAs and 3 rRNAs were annotated,
906 consistent with a previous report on *B. plumosa* (NC_026795.1). The anticodons of all
907 the 26 tRNA genes were identical (Table S8).

908 The chloroplast genome of our line was ~15 kb shorter than the registered genome
909 (NC_026795.1). This was largely because our line had smaller intergenic regions and
910 fewer introns. For example, the intergenic region between *trnG* (*ucc*) and *rrnF* in our line
911 was 1,362 bp, which was much shorter than that of the other line (13,011 bp).
912 NC_026795.1 had an intron and an intronic ORF in the *rrnL* gene, while neither was
913 present in our line.

914

915 Overview of the mitochondrial genome

916 The mitochondrial genome of our *Bryopsis* sp. line was assembled as a single closed
917 sequence of 356,152 bp, which was much longer than the hitherto-reported longest
918 sequence in green algae (*O. quekettii*: 241,739 bp) (Repetti et al., 2020). There is one
919 report on the mitochondrial genome of *B. plumosa* (Han et al., 2020). However, our
920 sequences were substantially different from registered sequences. Our own survey of the
921 sequences reported by Han et al. strongly suggested that their specimen belong to Ulvales,
922 and not *Bryopsis* (Fig. S2).

923 We compared the obtained sequences with those of other green algae (Table S9). The
924 size of the genome (356,152 bp) was much larger than that of any other mitochondrial
925 genome of green algae (second longest was that of *O. quekettii* at 241,739 bp (Repetti et
926 al., 2020)). This was partly attributed to an increase of introns: we identified 72 introns
927 in 17 genes, which was more than in *O. quekettii* (47 introns in 18 genes) or *C. lentillifera*
928 (29 introns in 13 genes). In extreme cases, 17 introns and 18 exons were present in *cox1*,
929 whereas only 11, 5, and 4 introns were found in *cox1* of *O. quekettii*, *C. lentillifera*, and
930 *Ulva* sp., respectively (Melton et al., 2015; Repetti et al., 2020; Zheng et al., 2018). In
931 total, introns occupied 54.1% of the genome, which was higher than that in *O. quekettii*
932 (39.3%) or *C. lentillifera* (43.4%).

933 Manual annotation revealed 54 protein-coding genes, 17 tRNAs, and 3 rRNAs. The
934 rRNA numbers were similar to those of most other green algae (Table S9). tRNAs
935 corresponding to 15 amino acids were identified, whereas those corresponding to Ala,
936 Cys, Glu, Lys, and Asn were not.

937 Of the 54 protein-coding genes, seven were not unambiguously assigned as real
938 ORFs because the encoded amino acid sequences did not show homology to proteins with
939 known functions. In contrast, 47 genes encoded proteins that have conserved domains,
940 many of which are required for mitochondrial function, such as NADH:ubiquinone
941 oxidoreductase (complex I; *nad* genes) or ATP synthase (complex V; *atp* genes) (Table
942 S10). The number of *nad* and *atp* genes encoded in the mitochondrial genome varies
943 among green algae; our *Bryopsis* line often had more than the average number. For
944 example, *nad10* and *tatC* have been found in the mitochondrial genome but not in many
945 other green algae species. However, there was also a reverse case: the mitochondrial
946 genome of *O. quekettii*, but not ours, had *atp4* gene (Table S10).

947

Manual annotation revealed 72 introns in 17 genes. Introns were more prevalent than

948 those in *O. quekettii* (47 introns in 18 genes) or *C. lentillifera* (29 introns in 13 genes)
949 (Table S9). The number of introns was particularly high in *nad5*, *cob*, *cox1* and *atp1*. In
950 extreme cases, 17 introns and 18 exons were identified in *cox1*, whereas only 11, 5, and
951 4 introns were found in *cox1* of *O. quekettii*, *C. lentillifera*, and *Ulva* sp., respectively
952 (Fig. S7) (Melton et al., 2015; Repetti et al., 2020; Zheng et al., 2018). The mean intron
953 length was 2,676 bp, which was comparable to that of the two Bryopsodales *O. quekettii*
954 (2,022 bp) and *C. lentillifera* (3,126 bp) (Fig. S8). Introns accounted for 54.1% of the
955 mitochondrial genome, which was higher than that in *O. quekettii* (39.3%) and *C.*
956 *lentillifera* (43.4%) (Table S9).

957 Interestingly, 14 protein-coding genes were found in the introns of other genes. A
958 tBLASTn search for published green algal mitochondrial proteins
959 (<https://ftp.ncbi.nlm.nih.gov/refseq/release/mitochondrion/>) identified three ORFs
960 showing homology to the putative LAGLIDADG endonuclease, ten ORFs showing
961 homology to the putative group II intron reverse transcriptase/maturase, and one ORF
962 encoding a putative protein in the introns of *cox1*, *atp1*, and *rnl* (six in *cox1*, five in *atp1*,
963 and three in *rnl*). The introns of *cox1* contain one gene encoding a LAGLIDADG
964 endonuclease and five genes encoding putative group II intron reverse
965 transcriptases/maturases. The encoded LAGLIDADG endonuclease is likely functional
966 because it possesses LAGLIDADG domains at the N- and C-termini that are required for
967 endonuclease activity (Hausner, 2012; Lambowitz and Belfort, 1993). Four ORFs of the
968 putative group II intron reverse transcriptase/maturase contained one or more RT_G2
969 introns or RT_like superfamily domains, and three of them possessed the
970 Intron_maturas2 superfamily domain, suggesting that these reverse transcriptases are
971 functional (Table S11).

972 *O. quekettii* also has endonuclease-like protein ORFs and a putative group II intron
973 reverse transcriptase/maturase on the introns of *cox1*, *atp1*, *rns*, and *rnl*. Thus, the
974 mitochondrial genome size of green algae belonging to the order Bryopsidales, including
975 *Bryopsis*, may have increased in accordance with the increased number and size of introns
976 compared with the mitochondrial genomes of other green algae.

977 The alignment of *nad2*, *nad7*, *nad5*, *nad9* genes with several green algae, including
978 *O. quekettii* and land plants (*A. thaliana* and *P. patens*), suggested that UGA encodes Trp
979 rather than a termination codon (Fig. S9). This is consistent with other green algae,
980 including *O. quekettii*, *Pedinomonas minor*, and *Pycnococcus provasolii* (Noutahi et al.,
981 2019; Repetti et al., 2020).

982
983

984 **References**

- 985
- 986 Ali, M.F., J.M. Shin, U. Fatema, D. Kurihara, F. Berger, L. Yuan, and T. Kawashima.
987 2023. Cellular dynamics of coenocytic endosperm development in *Arabidopsis*
988 *thaliana*. *Nat Plants*. 9:330-342.
- 989 Andresen, I.J., R.J.S. Orr, A.K. Krabberød, K. Shalchian-Tabrizi, and J. Bråte. 2021a.
990 Genome sequencing and de novo assembly of the giant unicellular alga
991 *Acetabularia acetabulum* using droplet MDA. *Scientific Reports*. 11:12820.
- 992 Andresen, I.J., R.J.S. Orr, K. Shalchian-Tabrizi, and J. Bråte. 2021b.
993 Compartmentalization of mRNAs in the giant, unicellular green alga *Acetabularia*
994 *acetabulum*. *Algal Research*. 59:102440.
- 995 Arimoto, A., K. Nishitsuji, Y. Higa, N. Arakaki, K. Hisata, C. Shinzato, N. Satoh, and E.
996 Shoguchi. 2019. A siphonous macroalgal genome suggests convergent functions
997 of homeobox genes in algae and land plants. *DNA Res*. 26:183-192.
- 998 Blanc, G., I. Agarkova, J. Grimwood, A. Kuo, A. Brueggeman, D.D. Dunigan, J. Gurnon,
999 I. Ladunga, E. Lindquist, S. Lucas, J. Pangilinan, T. Proschold, A. Salamov, J.
1000 Schmutz, D. Weeks, T. Yamada, A. Lomsadze, M. Borodovsky, J.M. Claverie,
1001 I.V. Grigoriev, and J.L. Van Etten. 2012. The genome of the polar eukaryotic
1002 microalga *Coccomyxa subellipsoidea* reveals traits of cold adaptation. *Genome*
1003 *Biol*. 13:R39.
- 1004 Blanc-Mathieu, R., B. Verhelst, E. Derelle, S. Rombauts, F.Y. Bouget, I. Carre, A.
1005 Chateau, A. Eyre-Walker, N. Grimsley, H. Moreau, B. Piegu, E. Rivals, W.
1006 Schackwitz, Y. Van de Peer, and G. Piganeau. 2014. An improved genome of the
1007 model marine alga *Ostreococcus tauri* unfolds by assessing Illumina de novo
1008 assemblies. *BMC Genomics*. 15:1103.
- 1009 Bogen, C., A. Al-Dilaimi, A. Albersmeier, J. Wichmann, M. Grundmann, O. Rupp, K.J.
1010 Lauersen, O. Blifernez-Klassen, J. Kalinowski, A. Goesmann, J.H. Mussgnug,
1011 and O. Kruse. 2013. Reconstruction of the lipid metabolism for the microalga
1012 *Monoraphidium neglectum* from its genome sequence reveals characteristics
1013 suitable for biofuel production. *BMC Genomics*. 14:926.
- 1014 Buschmann, H., and S. Zachgo. 2016. The Evolution of Cell Division: From Streptophyte
1015 Algae to Land Plants. *Trends Plant Sci*. 21:872-883.
- 1016 Cecchin, M., L. Marcolungo, M. Rossato, L. Girolomoni, E. Cosentino, S. Cuine, Y. Li-
1017 Beisson, M. Delledonne, and M. Ballottari. 2019. *Chlorella vulgaris* genome
1018 assembly and annotation reveals the molecular basis for metabolic acclimation to
1019 high light conditions. *Plant J*. 100:1289-1305.
- 1020 Chen, X., Y. Ding, Y. Yang, C. Song, B. Wang, S. Yang, Y. Guo, and Z. Gong. 2021.
1021 Protein kinases in plant responses to drought, salt, and cold stress. *Journal of*
1022 *Integrative Plant Biology*. 63:53-78.
- 1023 De Clerck, O., S.M. Kao, K.A. Bogaert, J. Blomme, F. Foflonker, M. Kwanten, E.
1024 Vancaester, L. Vanderstraeten, E. Aydogdu, J. Boesger, G. Califano, B. Charrier,
1025 R. Clewes, A. Del Cortona, S. D'Hondt, N. Fernandez-Pozo, C.M. Gachon, M.
1026 Hanikenne, L. Lattermann, F. Leliaert, X. Liu, C.A. Maggs, Z.A. Popper, J.A.
1027 Raven, M. Van Bel, P.K.I. Wilhelmsson, D. Bhattacharya, J.C. Coates, S.A.
1028 Rensing, D. Van Der Straeten, A. Vardi, L. Sterck, K. Vandepoele, Y. Van de
1029 Peer, T. Wichard, and J.H. Bothwell. 2018. Insights into the Evolution of
1030 Multicellularity from the Sea Lettuce Genome. *Curr Biol*. 28:2921-2933 e2925.

- 1031 Del Cortona, A., C.J. Jackson, F. Bucchini, M. Van Bel, S. D'Hondt, P. Skaloud, C.F.
1032 Delwiche, A.H. Knoll, J.A. Raven, H. Verbruggen, K. Vandepoele, O. De Clerck,
1033 and F. Leliaert. 2020. Neoproterozoic origin and multiple transitions to
1034 macroscopic growth in green seaweeds. *Proc Natl Acad Sci U S A.* 117:2551-2559.
- 1035 Dobin, A., C.A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M.
1036 Chaisson, and T.R. Gingeras. 2012. STAR: ultrafast universal RNA-seq aligner.
1037 *Bioinformatics.* 29:15-21.
- 1038 Dodsworth, S., M.W. Chase, L.J. Kelly, I.J. Leitch, J. Macas, P. Novák, M. Piednoël, H.
1039 Weiss-Schneeweiss, and A.R. Leitch. 2014. Genomic Repeat Abundances
1040 Contain Phylogenetic Signal. *Systematic Biology.* 64:112-126.
- 1041 Emms, D.M., and S. Kelly. 2019. OrthoFinder: phylogenetic orthology inference for
1042 comparative genomics. *Genome Biology.* 20:238.
- 1043 Formenti, G., A. Rhie, B.P. Walenz, F. Thibaud-Nissen, K. Shafin, S. Koren, E.W. Myers,
1044 E.D. Jarvis, and A.M. Phillippy. 2022. Merfin: improved variant filtering,
1045 assembly evaluation and polishing via k-mer validation. *Nature Methods.* 19:696-
1046 704.
- 1047 Fu, L., B. Niu, Z. Zhu, S. Wu, and W. Li. 2012. CD-HIT: accelerated for clustering the
1048 next-generation sequencing data. *Bioinformatics.* 28:3150-3152.
- 1049 Gao, C., Y. Wang, Y. Shen, D. Yan, X. He, J. Dai, and Q. Wu. 2014. Oil accumulation
1050 mechanisms of the oleaginous microalga Chlorella protothecoides revealed
1051 through its genome, transcriptomes, and proteomes. *BMC Genomics.* 15:582.
- 1052 Gotoh, O. 2008. Direct mapping and alignment of protein sequences onto genomic
1053 sequence. *Bioinformatics.* 24:2438-2444.
- 1054 Grabherr, M.G., B.J. Haas, M. Yassour, J.Z. Levin, D.A. Thompson, I. Amit, X. Adiconis,
1055 L. Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen, A. Gnirke,
1056 N. Rhind, F. di Palma, B.W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman,
1057 and A. Regev. 2011. Full-length transcriptome assembly from RNA-Seq data
1058 without a reference genome. *Nature Biotechnology.* 29:644-652.
- 1059 Graham, J.E., L.W. Wilcox, and L.E. Graham. 2008. Algae (2nd Edition). Benjamin
1060 Cummings.
- 1061 Guan, D., S.A. McCarthy, J. Wood, K. Howe, Y. Wang, and R. Durbin. 2020. Identifying
1062 and removing haplotypic duplication in primary genome assemblies.
1063 *Bioinformatics.* 36:2896-2898.
- 1064 Gulbrandsen, Ø.S., I.J. Andresen, A.K. Krabberød, J. Bråte, and K. Shalchian-Tabrizi.
1065 2021. Phylogenomic analysis restructures the ulvophyceae. *Journal of Phycology.*
1066 57:1223-1233.
- 1067 Han, H., Y. Li, S. Wei, Z. Wang, and X. Zhang. 2020. The complete mitochondrial
1068 genome sequence of Bryopsis plumosa. *Mitochondrial DNA B Resour.* 5:1067-
1069 1068.
- 1070 Han, J.-W., K.-S. Yoon, M.-G. Jung, K.-H. Chah, and G.-H. Kim. 2012. Molecular
1071 characterization of a lectin, BPL-4, from the marine green alga Bryopsis plumosa
1072 (Chlorophyta). *Algae.* 27:55-62.
- 1073 Han, J.W., M.G. Jung, M.J. Kim, K.S. Yoon, K.P. Lee, and G.H. Kim. 2010a. Purification
1074 and characterization of a D-mannose specific lectin from the green marine alga,
1075 Bryopsis plumosa. *Phycological Research.* 58:143-150.
- 1076 Han, J.W., K.S. Yoon, T.A. Klochkova, M.-S. Hwang, and G.H. Kim. 2010b. Purification
1077 and characterization of a lectin, BPL-3, from the marine green alga Bryopsis

- 1078 plumosa. *Journal of Applied Phycology*. 23:745-753.

1079 Hanschen, E.R., and S.R. Starkenburg. 2020. The state of algal genome quality and
1080 diversity. *Algal Research*. 50:101968.

1081 Haraguchi, T., M. Tamanaha, K. Suzuki, K. Yoshimura, T. Imi, M. Tominaga, H.
1082 Sakayama, T. Nishiyama, T. Murata, and K. Ito. 2022. Discovery of ultrafast
1083 myosin, its amino acid sequence, and structural features. *Proc Natl Acad Sci U S
1084 A*. 119.

1085 Hausner, G. 2012. Introns, Mobile Elements, and Plasmids. In *Organelle Genetics:
1086 Evolution of Organelle Genomes and Gene Expression*. C.E. Bullerwell, editor.
1087 Springer Berlin Heidelberg, Berlin, Heidelberg. 329-357.

1088 Hom, E.F., G.B. Witman, E.H. Harris, S.K. Dutcher, R. Kamiya, D.R. Mitchell, G.J.
1089 Pazour, M.E. Porter, W.S. Sale, M. Wirschell, T. Yagi, and S.M. King. 2011. A
1090 unified taxonomy for ciliary dyneins. *Cytoskeleton (Hoboken)*. 68:555-565.

1091 Hori, K., F. Maruyama, T. Fujisawa, T. Togashi, N. Yamamoto, M. Seo, S. Sato, T.
1092 Yamada, H. Mori, N. Tajima, T. Moriyama, M. Ikeuchi, M. Watanabe, H. Wada,
1093 K. Kobayashi, M. Saito, T. Masuda, Y. Sasaki-Sekimoto, K. Mashiguchi, K. Awai,
1094 M. Shimojima, S. Masuda, M. Iwai, T. Nobusawa, T. Narise, S. Kondo, H. Saito,
1095 R. Sato, M. Murakawa, Y. Ihara, Y. Oshima-Yamada, K. Ohtaka, M. Satoh, K.
1096 Sonobe, M. Ishii, R. Ohtani, M. Kanamori-Sato, R. Honoki, D. Miyazaki, H.
1097 Mochizuki, J. Umetsu, K. Higashi, D. Shibata, Y. Kamiya, N. Sato, Y. Nakamura,
1098 S. Tabata, S. Ida, K. Kurokawa, and H. Ohta. 2014. Klebsormidium flaccidum
1099 genome reveals primary factors for plant terrestrial adaptation. *Nat Commun.*
1100 5:3978.

1101 Hou, Z., X. Ma, X. Shi, X. Li, L. Yang, S. Xiao, O. De Clerck, F. Leliaert, and B. Zhong.
1102 2022. Phylogenomic insights into a Mesoproterozoic–Neoproterozoic
1103 origin and early radiation of green seaweeds (Ulvophyceae). *Nature
1104 Communications*. 13:1610.

1105 Hu, J., J. Fan, Z. Sun, and S. Liu. 2019. NextPolish: a fast and efficient genome polishing
1106 tool for long-read assembly. *Bioinformatics*. 36:2253-2255.

1107 Iha, C., K.E. Dougan, J.A. Varela, V. Avila, C.J. Jackson, K.A. Bogaert, Y. Chen, L.M.
1108 Judd, R. Wick, K.E. Holt, M.M. Pasella, F. Ricci, S.I. Repetti, M. Medina, V.R.
1109 Marcelino, C.X. Chan, and H. Verbruggen. 2021. Genomic adaptations to an
1110 endolithic lifestyle in the coral-associated alga *Ostreobium*. *Curr Biol.* 31:1393-
1111 1402 e1395.

1112 Ikeuchi, M., Y. Ogawa, A. Iwase, and K. Sugimoto. 2016. Plant regeneration: cellular
1113 origins and molecular mechanisms. *Development*. 143:1442-1451.

1114 Jin, J.J., W.B. Yu, J.B. Yang, Y. Song, C.W. dePamphilis, T.S. Yi, and D.Z. Li. 2020.
1115 GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of
1116 organelle genomes. *Genome Biol.* 21:241.

1117 Kanda, A., K. Otani, T. Ueda, T. Takahashi, and H. Motose. 2023. Plant specific
1118 armadillo repeat kinesin directs organelle transport and microtubule convergence
1119 to promote tip growth. *bioRxiv*:2022.2007.2008.499237.

1120 Kanehisa, M., Y. Sato, and K. Morishima. 2016. BlastKOALA and GhostKOALA:
1121 KEGG Tools for Functional Characterization of Genome and Metagenome
1122 Sequences. *Journal of Molecular Biology*. 428:726-731.

1123 Kang, D.D., F. Li, E. Kirton, A. Thomas, R. Egan, H. An, and Z. Wang. 2019. MetaBAT
1124 2: an adaptive binning algorithm for robust and efficient genome reconstruction

- 1125 from metagenome assemblies. *PeerJ*. 7:e7359.
- 1126 Katoh, K., and D.M. Standley. 2013. MAFFT multiple sequence alignment software
1127 version 7: improvements in performance and usability. *Mol Biol Evol*. 30:772-
1128 780.
- 1129 Kim, D., J.M. Paggi, C. Park, C. Bennett, and S.L. Salzberg. 2019. Graph-based genome
1130 alignment and genotyping with HISAT2 and HISAT-genotype. *Nature
1131 Biotechnology*. 37:907-915.
- 1132 Kim, G.H., T.A. Klochkova, K.-S. Yoon, Y.-S. Song, and K.P. Lee. 2006. Purification
1133 and Characterization of a Lectin, Bryohealin, Involved in the Protoplast
1134 Formation of a Marine Green Alga *Bryopsis Plumosa* (Chlorophyta) 1. *Journal of
1135 Phycology*. 0:060609080250009-???
- 1136 Kim, G.H., T.A. Klochkova, and Y.M. Kang. 2001. Life without a cell membrane:
1137 regeneration of protoplasts from disintegrated cells of the marine green alga
1138 *Bryopsis plumosa*. *Journal of Cell Science*. 114:2009-2014.
- 1139 Kolmogorov, M., J. Yuan, Y. Lin, and P.A. Pevzner. 2019. Assembly of long, error-prone
1140 reads using repeat graphs. *Nat Biotechnol*. 37:540-546.
- 1141 Koren, S., B.P. Walenz, K. Berlin, J.R. Miller, N.H. Bergman, and A.M. Phillippy. 2017.
1142 Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and
1143 repeat separation. *Genome Res*. 27:722-736.
- 1144 Korf, I. 2004. Gene finding in novel genomes. *BMC Bioinformatics*. 5:59.
- 1145 Kumar, S., G. Stecher, M. Li, C. Knyaz, and K. Tamura. 2018. MEGA X: Molecular
1146 Evolutionary Genetics Analysis across Computing Platforms. *Molecular Biology
1147 and Evolution*. 35:1547-1549.
- 1148 Kwon, M., and J.M. Scholey. 2004. Spindle mechanics and dynamics during mitosis in
1149 *Drosophila*. *Trends Cell Biol*. 14:194-205.
- 1150 Lambowitz, A.M., and M. Belfort. 1993. Introns as mobile genetic elements. *Annu Rev
1151 Biochem*. 62:587-622.
- 1152 Lang, D., K.K. Ullrich, F. Murat, J. Fuchs, J. Jenkins, F.B. Haas, M. Piednoel, H.
1153 Gundlach, M. Van Bel, R. Meyberg, C. Vives, J. Morata, A. Symeonidi, M. Hiss,
1154 W. Muchero, Y. Kamisugi, O. Saleh, G. Blanc, E.L. Decker, N. van Gessel, J.
1155 Grimwood, R.D. Hayes, S.W. Graham, L.E. Gunter, S.F. McDaniel, S.N.W.
1156 Hoernstein, A. Larsson, F.W. Li, P.F. Perroud, J. Phillips, P. Ranjan, D.S. Rokshar,
1157 C.J. Rothfels, L. Schneider, S. Shu, D.W. Stevenson, F. Thummel, M. Tillich,
1158 J.C. Villarreal Aguilar, T. Widiez, G.K. Wong, A. Wymore, Y. Zhang, A.D.
1159 Zimmer, R.S. Quatrano, K.F.X. Mayer, D. Goodstein, J.M. Casacuberta, K.
1160 Vandepoele, R. Reski, A.C. Cuming, G.A. Tuskan, F. Maumus, J. Salse, J.
1161 Schmutz, and S.A. Rensing. 2018. The *Physcomitrella patens* chromosome-scale
1162 assembly reveals moss genome structure and evolution. *Plant J*. 93:515-533.
- 1163 Lauber, M.H., I. Waizenegger, T. Steinmann, H. Schwarz, U. Mayer, I. Hwang, W.
1164 Lukowitz, and G. Jurgens. 1997. The *Arabidopsis* KNOLLE protein is a
1165 cytokinesis-specific syntaxin. *J Cell Biol*. 139:1485-1493.
- 1166 Lawrence, C.J., R.K. Dawe, K.R. Christie, D.W. Cleveland, S.C. Dawson, S.A. Endow,
1167 L.S. Goldstein, H.V. Goodson, N. Hirokawa, J. Howard, R.L. Malmberg, J.R.
1168 McIntosh, H. Miki, T.J. Mitchison, Y. Okada, A.S. Reddy, W.M. Saxton, M.
1169 Schliwa, J.M. Scholey, R.D. Vale, C.E. Walczak, and L. Wordeman. 2004. A
1170 standardized kinesin nomenclature. *J Cell Biol*. 167:19-22.
- 1171 Lee, Y.R., Y. Li, and B. Liu. 2007. Two *Arabidopsis* phragmoplast-associated kinesins

- 1172 play a critical role in cytokinesis during male gametogenesis. *Plant Cell*. 19:2595-
1173 2605.
- 1174 Leebens-Mack, J.H., M.S. Barker, E.J. Carpenter, M.K. Deyholos, M.A. Gitzendanner,
1175 S.W. Graham, I. Grosse, Z. Li, M. Melkonian, S. Mirarab, M. Porsch, M. Quint,
1176 S.A. Rensing, D.E. Soltis, P.S. Soltis, D.W. Stevenson, K.K. Ullrich, N.J. Wickett,
1177 L. DeGironimo, P.P. Edger, I.E. Jordon-Thaden, S. Joya, T. Liu, B. Melkonian,
1178 N.W. Miles, L. Pokorny, C. Quigley, P. Thomas, J.C. Villarreal, M.M. Augustin,
1179 M.D. Barrett, R.S. Baucom, D.J. Beerling, R.M. Benstein, E. Biffin, S.F.
1180 Brockington, D.O. Burge, J.N. Burris, K.P. Burris, V. Burtet-Sarramegna, A.L.
1181 Caicedo, S.B. Cannon, Z. Çebi, Y. Chang, C. Chater, J.M. Cheeseman, T. Chen,
1182 N.D. Clarke, H. Clayton, S. Covshoff, B.J. Crandall-Stotler, H. Cross, C.W.
1183 dePamphilis, J.P. Der, R. Determann, R.C. Dickson, V.S. Di Stilio, S. Ellis, E.
1184 Fast, N. Feja, K.J. Field, D.A. Filatov, P.M. Finnegan, S.K. Floyd, B. Fogliani, N.
1185 García, G. Gâteblé, G.T. Godden, F. Goh, S. Greiner, A. Harkess, J.M. Heaney,
1186 K.E. Helliwell, K. Heyduk, J.M. Hibberd, R.G.J. Hodel, P.M. Hollingsworth,
1187 M.T.J. Johnson, R. Jost, B. Joyce, M.V. Kapralov, E. Kazamia, E.A. Kellogg,
1188 M.A. Koch, M. Von Konrat, K. Könyves, T.M. Kutchan, V. Lam, A. Larsson,
1189 A.R. Leitch, R. Lentz, F.-W. Li, A.J. Lowe, M. Ludwig, P.S. Manos, E.
1190 Mavrodiev, M.K. McCormick, M. McKain, T. McLellan, J.R. McNeal, et al. 2019.
1191 One thousand plant transcriptomes and the phylogenomics of green plants. *Nature*.
1192 574:679-685.
- 1193 Leliaert, F., and J.M. Lopez-Bautista. 2015. The chloroplast genomes of Bryopsis
1194 plumosa and Tydemania expediciones (Bryopsidales, Chlorophyta): compact
1195 genomes and genes of bacterial origin. *BMC Genomics*. 16:204.
- 1196 Li, B., and C.N. Dewey. 2011. RSEM: accurate transcript quantification from RNA-Seq
1197 data with or without a reference genome. *BMC Bioinformatics*. 12:323.
- 1198 Li, H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-
1199 MEM. *arXiv*. doi: 10.48550/arXiv.1303.3997.
- 1200 Li, H. 2021. New strategies to improve minimap2 alignment accuracy. *Bioinformatics*.
1201 37:4572-4574.
- 1202 Lin, X., S. Kaul, S. Rounsley, T.P. Shea, M.I. Benito, C.D. Town, C.Y. Fujii, T. Mason,
1203 C.L. Bowman, M. Barnstead, T.V. Feldblyum, C.R. Buell, K.A. Ketchum, J. Lee,
1204 C.M. Ronning, H.L. Koo, K.S. Moffat, L.A. Cronin, M. Shen, G. Pai, S. Van Aken,
1205 L. Umayam, L.J. Tallon, J.E. Gill, M.D. Adams, A.J. Carrera, T.H. Creasy, H.M.
1206 Goodman, C.R. Somerville, G.P. Copenhaver, D. Preuss, W.C. Nierman, O.
1207 White, J.A. Eisen, S.L. Salzberg, C.M. Fraser, and J.C. Venter. 1999. Sequence
1208 and analysis of chromosome 2 of the plant *Arabidopsis thaliana*. *Nature*. 402:761-
1209 768.
- 1210 Lin, Y., J. Yuan, M. Kolmogorov, M.W. Shen, M. Chaisson, and P.A. Pevzner. 2016.
1211 Assembly of long error-prone reads using de Bruijn graphs. *Proc Natl Acad Sci
1212 U.S.A.* 113:E8396-E8405.
- 1213 Lipka, V., C. Kwon, and R. Panstruga. 2007. SNARE-Ware: The Role of SNARE-
1214 Domain Proteins in Plant Biology. *Annual Review of Cell and Developmental
1215 Biology*. 23:147-174.
- 1216 Livanos, P., and S. Muller. 2019. Division Plane Establishment and Cytokinesis. *Annu
1217 Rev Plant Biol.* 70:239-267.
- 1218 Love, M.I., W. Huber, and S. Anders. 2014. Moderated estimation of fold change and

- 1219 dispersion for RNA-seq data with DESeq2. *Genome Biology*. 15:550.
- 1220 Lu, F., W. Xu, C. Tian, G. Wang, J. Niu, G. Pan, and S. Hu. 2011. The Bryopsis hypnoides
1221 plastid genome: multimeric forms and complete nucleotide sequence. *PLoS One*.
1222 6:e14663.
- 1223 Lucas, J., and M. Geisler. 2022. Sequential loss of dynein sequences precedes complete
1224 loss in land plants. *Plant Physiology*. 189:1237-1240.
- 1225 Marcais, G., and C. Kingsford. 2011. A fast, lock-free approach for efficient parallel
1226 counting of occurrences of k-mers. *Bioinformatics*. 27:764-770.
- 1227 Matsumura, M., M. Nomoto, T. Itaya, Y. Aratani, M. Iwamoto, T. Matsuura, Y. Hayashi,
1228 T. Mori, M.J. Skelly, Y.Y. Yamamoto, T. Kinoshita, I.C. Mori, T. Suzuki, S.
1229 Betsuyaku, S.H. Spoel, M. Toyota, and Y. Tada. 2022. Mechanosensory trichome
1230 cells evoke a mechanical stimuli-induced immune response in *Arabidopsis*
1231 *thaliana*. *Nat Commun*. 13:1216.
- 1232 Mayer, K., C. Schuller, R. Wambutt, G. Murphy, G. Volckaert, T. Pohl, A. Dusterhoft,
1233 W. Stiekema, K.D. Entian, N. Terryn, B. Harris, W. Ansorge, P. Brandt, L. Grivell,
1234 M. Rieger, M. Weichselgartner, V. de Simone, B. Obermaier, R. Mache, M.
1235 Muller, M. Kreis, M. Delseny, P. Puigdomenech, M. Watson, T. Schmidtheini, B.
1236 Reichert, D. Portatelle, M. Perez-Alonso, M. Boutry, I. Bancroft, P. Vos, J.
1237 Hoheisel, W. Zimmermann, H. Wedler, P. Ridley, S.A. Langham, B. McCullagh,
1238 L. Bilham, J. Robben, J. Van der Schueren, B. Grymonprez, Y.J. Chuang, F.
1239 Vandenbussche, M. Braeken, I. Weltjens, M. Voet, I. Bastiaens, R. Aert, E.
1240 Defoor, T. Weitzenerger, G. Bothe, U. Ramsperger, H. Hilbert, M. Braun, E.
1241 Holzer, A. Brandt, S. Peters, M. van Staveren, W. Dirske, P. Mooijman, R. Klein
1242 Lankhorst, M. Rose, J. Hauf, P. Kotter, S. Berneiser, S. Hempel, M. Feldpausch,
1243 S. Lamberth, H. Van den Daele, A. De Keyser, C. Buysschaert, J. Gielen, R.
1244 Villarroel, R. De Clercq, M. Van Montagu, J. Rogers, A. Cronin, M. Quail, S.
1245 Bray-Allen, L. Clark, J. Doggett, S. Hall, M. Kay, N. Lennard, K. McLay, R.
1246 Mayes, A. Pettett, M.A. Rajandream, M. Lyne, V. Benes, S. Rechmann, D.
1247 Borkova, H. Blocker, M. Scharfe, M. Grimm, T.H. Lohnert, S. Dose, M. de Haan,
1248 A. Maarse, M. Schafer, et al. 1999. Sequence and analysis of chromosome 4 of
1249 the plant *Arabidopsis thaliana*. *Nature*. 402:769-777.
- 1250 Melton, J.T., 3rd, F. Leliaert, A. Tronholm, and J.M. Lopez-Bautista. 2015. The complete
1251 chloroplast and mitochondrial genomes of the green macroalga *Ulva* sp.
1252 UNA00071828 (Ulvophyceae, Chlorophyta). *PLoS One*. 10:e0121020.
- 1253 Menzel, D., and M. Schliwa. 1986a. Motility in the siphonous green alga *Bryopsis*. I.
1254 Spatial organization of the cytoskeleton and organelle movements. *Eur J Cell Biol*.
1255 40:275-285.
- 1256 Menzel, D., and M. Schliwa. 1986b. Motility in the siphonous green alga *Bryopsis*. II.
1257 Chloroplast movement requires organized arrays of both microtubules and actin
1258 filaments. *Eur J Cell Biol*. 40:286-295.
- 1259 Merchant, S.S., S.E. Prochnik, O. Vallon, E.H. Harris, S.J. Karpowicz, G.B. Witman, A.
1260 Terry, A. Salamov, L.K. Fritz-Laylin, L. Marechal-Drouard, W.F. Marshall, L.H.
1261 Qu, D.R. Nelson, A.A. Sanderfoot, M.H. Spalding, V.V. Kapitonov, Q. Ren, P.
1262 Ferris, E. Lindquist, H. Shapiro, S.M. Lucas, J. Grimwood, J. Schmutz, P. Cardol,
1263 H. Cerutti, G. Chanfreau, C.L. Chen, V. Cognat, M.T. Croft, R. Dent, S. Dutcher,
1264 E. Fernandez, H. Fukuzawa, D. Gonzalez-Ballester, D. Gonzalez-Halphen, A.
1265 Hallmann, M. Hanikenne, M. Hippler, W. Inwood, K. Jabbari, M. Kalanon, R.

- 1266 Kuras, P.A. Lefebvre, S.D. Lemaire, A.V. Lobanov, M. Lohr, A. Manuell, I.
1267 Meier, L. Mets, M. Mittag, T. Mittelmeier, J.V. Moroney, J. Moseley, C. Napoli,
1268 A.M. Nedelcu, K. Niyogi, S.V. Novoselov, I.T. Paulsen, G. Pazour, S. Purton, J.P.
1269 Ral, D.M. Riano-Pachon, W. Riekhof, L. Rymarquis, M. Schroda, D. Stern, J.
1270 Umen, R. Willows, N. Wilson, S.L. Zimmer, J. Allmer, J. Balk, K. Bisova, C.J.
1271 Chen, M. Elias, K. Gandler, C. Hauser, M.R. Lamb, H. Ledford, J.C. Long, J.
1272 Minagawa, M.D. Page, J. Pan, W. Pootakham, S. Roje, A. Rose, E. Stahlberg,
1273 A.M. Terauchi, P. Yang, S. Ball, C. Bowler, C.L. Dieckmann, V.N. Gladyshev,
1274 P. Green, R. Jorgensen, S. Mayfield, B. Mueller-Roeber, S. Rajamani, R.T. Sayre,
1275 P. Brokstein, et al. 2007. The Chlamydomonas genome reveals the evolution of
1276 key animal and plant functions. *Science*. 318:245-250.
- 1277 Mine, I., D. Menzel, and K. Okuda. 2008. Morphogenesis in giant-celled algae. *Int Rev
1278 Cell Mol Biol*. 266:37-83.
- 1279 Nagai, R., and S. Fukui. 1981. Differential treatment of Acetabularia with cytochalasin B
1280 and N-Ethylmaleimide with special reference to their effects on cytoplasmic
1281 streaming. *Protoplasma*. 109:79-89.
- 1282 Nagai, R., and N. Kamiya. 1977. Differential treatment of Chara cells with cytochalasin
1283 B with special reference to its effect on cytoplasmic streaming. *Experimental Cell
1284 Research*. 108:231-237.
- 1285 Nguyen, L.T., H.A. Schmidt, A. von Haeseler, and B.Q. Minh. 2015. IQ-TREE: a fast
1286 and effective stochastic algorithm for estimating maximum-likelihood
1287 phylogenies. *Mol Biol Evol*. 32:268-274.
- 1288 Nishihama, R., T. Soyano, M. Ishikawa, S. Araki, H. Tanaka, T. Asada, K. Irie, M. Ito,
1289 M. Terada, H. Banno, Y. Yamazaki, and Y. Machida. 2002. Expansion of the cell
1290 plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. *Cell*.
1291 109:87-99.
- 1292 Nishiyama, T., H. Sakayama, J. de Vries, H. Buschmann, D. Saint-Marcoux, K.K. Ullrich,
1293 F.B. Haas, L. Vanderstraeten, D. Becker, D. Lang, S. Vosolsobe, S. Rombauts,
1294 P.K.I. Wilhelmsson, P. Janitza, R. Kern, A. Heyl, F. Rumpler, L. Villalobos, J.M.
1295 Clay, R. Skokan, A. Toyoda, Y. Suzuki, H. Kagoshima, E. Schijlen, N. Tajeshwar,
1296 B. Catarino, A.J. Hetherington, A. Saltykova, C. Bonnot, H. Breuninger, A.
1297 Symeonidi, G.V. Radhakrishnan, F. Van Nieuwerburgh, D. Deforce, C. Chang,
1298 K.G. Karol, R. Hedrich, P. Ulvskov, G. Glockner, C.F. Delwiche, J. Petrasek, Y.
1299 Van de Peer, J. Friml, M. Beilby, L. Dolan, Y. Kohara, S. Sugano, A. Fujiyama,
1300 P.M. Delaux, M. Quint, G. Theissen, M. Hagemann, J. Harholt, C. Dunand, S.
1301 Zachgo, J. Langdale, F. Maumus, D. Van Der Straeten, S.B. Gould, and S.A.
1302 Rensing. 2018. The Chara Genome: Secondary Complexity and Implications for
1303 Plant Terrestrialization. *Cell*. 174:448-464 e424.
- 1304 Niu, J., G. Wang, F. Lü, B. Zhou, and G. Peng. 2009. Characterization of a new lectin
1305 involved in the protoplast regeneration of *Bryopsis hypnoides*. *Chinese Journal
1306 of Oceanology and Limnology*. 27:502-512.
- 1307 Noutahi, E., V. Calderon, M. Blanchette, N. El-Mabrouk, and B.F. Lang. 2019. Rapid
1308 Genetic Code Evolution in Green Algal Mitochondrial Genomes. *Molecular
1309 Biology and Evolution*. 36:766-783.
- 1310 Padilla, J.R., L.M. Ferreira, and E.S. Folker. 2022. Nuclear movement in multinucleated
1311 cells. *Development*. 149.
- 1312 Pak, J.Y., C. Solorzano, M. Arai, and T. Nitta. 1991. Two distinct steps for spontaneous

- 1313 generation of subprotoplasts from a disintegrated bryopsis cell. *Plant Physiol.* 96:819-825.
- 1314
- 1315 Pertea, M., D. Kim, G.M. Pertea, J.T. Leek, and S.L. Salzberg. 2016. Transcript-level
1316 expression analysis of RNA-seq experiments with HISAT, StringTie and
1317 Ballgown. *Nat Protoc.* 11:1650-1667.
- 1318 Polle, J.E.W., K. Barry, J. Cushman, J. Schmutz, D. Tran, L.T. Hathwaik, W.C. Yim, J.
1319 Jenkins, Z. McKie-Krisberg, S. Prochnik, E. Lindquist, R.B. Dockter, C. Adam,
1320 H. Molina, J. Bunkenborg, E. Jin, M. Buchheim, and J. Magnuson. 2017. Draft
1321 Nuclear Genome Sequence of the Halophilic and Beta-Carotene-Accumulating
1322 Green Alga Dunaliella salina Strain CCAP19/18. *Genome Announc.* 5.
- 1323 Prochnik, S.E., J. Umen, A.M. Nedelcu, A. Hallmann, S.M. Miller, I. Nishii, P. Ferris, A.
1324 Kuo, T. Mitros, L.K. Fritz-Laylin, U. Hellsten, J. Chapman, O. Simakov, S.A.
1325 Rensing, A. Terry, J. Pangilinan, V. Kapitonov, J. Jurka, A. Salamov, H. Shapiro,
1326 J. Schmutz, J. Grimwood, E. Lindquist, S. Lucas, I.V. Grigoriev, R. Schmitt, D.
1327 Kirk, and D.S. Rokhsar. 2010. Genomic analysis of organismal complexity in the
1328 multicellular green alga Volvox carteri. *Science.* 329:223-226.
- 1329 Ranallo-Benavidez, T.R., K.S. Jaron, and M.C. Schatz. 2020. GenomeScope 2.0 and
1330 Smudgeplot for reference-free profiling of polyploid genomes. *Nat Commun.*
1331 11:1432.
- 1332 Ranjan, A., B.T. Townsley, Y. Ichihashi, N.R. Sinha, and D.H. Chitwood. 2015. An
1333 intracellular transcriptomic atlas of the giant coenocyte Caulerpa taxifolia. *PLoS
1334 Genet.* 11:e1004900.
- 1335 Reddy, A.S., and I.S. Day. 2001. Kinesins in the Arabidopsis genome: a comparative
1336 analysis among eukaryotes. *BMC Genomics.* 2:2.
- 1337 Repetti, S.I., C. Iha, K. Uthanumallian, C.J. Jackson, Y. Chen, C.X. Chan, and H.
1338 Verbruggen. 2022. Nuclear genome of a pedinophyte pinpoints genomic
1339 innovation and streamlining in the green algae. *New Phytol.* 233:2144-2154.
- 1340 Repetti, S.I., C.J. Jackson, L.M. Judd, R.R. Wick, K.E. Holt, and H. Verbruggen. 2020.
1341 The inflated mitochondrial genomes of siphonous green algae reflect processes
1342 driving expansion of noncoding DNA and proliferation of introns. *PeerJ.* 8:e8273.
- 1343 Richards, E.J., and F.M. Ausubel. 1988. Isolation of a higher eukaryotic telomere from
1344 *Arabidopsis thaliana*. *Cell.* 53:127-136.
- 1345 Saito, C., and T. Ueda. 2009. Chapter 4 Functions of RAB and SNARE Proteins in Plant
1346 Life. In *International Review of Cell and Molecular Biology*. Vol. 274. Academic
1347 Press. 183-233.
- 1348 Salanoubat, M., K. Lemcke, M. Rieger, W. Ansorge, M. Unseld, B. Fartmann, G. Valle,
1349 H. Blocker, M. Perez-Alonso, B. Obermaier, M. Delseny, M. Boutry, L.A. Grivell,
1350 R. Mache, P. Puigdomenech, V. De Simone, N. Choisne, F. Artiguenave, C.
1351 Robert, P. Brottier, P. Wincker, L. Cattolico, J. Weissenbach, W. Saurin, F.
1352 Quetier, M. Schafer, S. Muller-Auer, C. Gabel, M. Fuchs, V. Benes, E. Wurmbach,
1353 H. Drzonek, H. Erfle, N. Jordan, S. Bangert, R. Wiedemann, H. Kranz, H. Voss,
1354 R. Holland, P. Brandt, G. Nyakatura, A. Vezzi, M. D'Angelo, A. Pallavicini, S.
1355 Toppo, B. Simionati, A. Conrad, K. Hornischer, G. Kauer, T.H. Lohnert, G.
1356 Nordsiek, J. Reichelt, M. Scharfe, O. Schon, M. Bargues, J. Terol, J. Climent, P.
1357 Navarro, C. Collado, A. Perez-Perez, B. Ottenwalder, D. Duchemin, R. Cooke,
1358 M. Laudie, C. Berger-Llauro, B. Purnelle, D. Masuy, M. de Haan, A.C. Maarse,
1359 J.P. Alcaraz, A. Cottet, E. Casacuberta, A. Monfort, A. Argiriou, M. flores, R.

- 1360 Liguori, D. Vitale, G. Mannhaupt, D. Haase, H. Schoof, S. Rudd, P. Zaccaria,
1361 H.W. Mewes, K.F. Mayer, S. Kaul, C.D. Town, H.L. Koo, L.J. Tallon, J. Jenkins,
1362 T. Rooney, M. Rizzo, A. Walts, T. Utterback, C.Y. Fujii, T.P. Shea, T.H. Creasy,
1363 B. Haas, R. Maiti, D. Wu, J. Peterson, et al. 2000. Sequence and analysis of
1364 chromosome 3 of the plant *Arabidopsis thaliana*. *Nature*. 408:820-822.
- 1365 Sanderfoot, A. 2007. Increases in the Number of SNARE Genes Parallels the Rise of
1366 Multicellularity among the Green Plants. *Plant Physiology*. 144:6-17.
- 1367 Sasabe, M., and Y. Machida. 2012. Regulation of organization and function of
1368 microtubules by the mitogen-activated protein kinase cascade during plant
1369 cytokinesis. *Cytoskeleton (Hoboken)*. 69:913-918.
- 1370 Schulz, M.H., D.R. Zerbino, M. Vingron, and E. Birney. 2012. Oases: robust de novo
1371 RNA-seq assembly across the dynamic range of expression levels. *Bioinformatics*.
1372 28:1086-1092.
- 1373 Shen, Z., A.R. Collatos, J.P. Bibeau, F. Furt, and L. Vidali. 2012. Phylogenetic analysis
1374 of the Kinesin superfamily from *physcomitrella*. *Front Plant Sci*. 3:230.
- 1375 Shirae-Kurabayashi, M., T. Edzuka, M. Suzuki, and G. Goshima. 2022. Cell tip growth
1376 underlies injury response of marine macroalgae. *PLoS One*. 17:e0264827.
- 1377 Siddiqui, N., and A. Straube. 2017. Intracellular cargo transport by kinesin-3 motors.
1378 *Biochemistry (Moscow)*. 82:803-815.
- 1379 Sobue, K., Y. Fujio, and K. Kanda. 1988. Tumor promoter induces reorganization of actin
1380 filaments and calspectin (fodrin or nonerythroid spectrin) in 3T3 cells.
1381 *Proceedings of the National Academy of Sciences*. 85:482-486.
- 1382 Stanke, M., and S. Waack. 2003. Gene prediction with a hidden Markov model and a new
1383 intron submodel. *Bioinformatics*. 19 Suppl 2:ii215-225.
- 1384 Steiner, A., K. Rybak, M. Altmann, H.E. McFarlane, S. Klaeger, N. Nguyen, E. Facher,
1385 A. Ivakov, G. Wanner, B. Kuster, S. Persson, P. Braun, M.T. Hauser, and F.F.
1386 Assaad. 2016. Cell cycle-regulated PLEIADE/AtMAP65-3 links membrane and
1387 microtubule dynamics during plant cytokinesis. *Plant J*. 88:531-541.
- 1388 Suzuki, S., H. Yamaguchi, N. Nakajima, and M. Kawachi. 2018. Raphidocelis
1389 subcapitata (=Pseudokirchneriella subcapitata) provides an insight into genome
1390 evolution and environmental adaptations in the Sphaeropleales. *Sci Rep*. 8:8058.
- 1391 Tabata, S., T. Kaneko, Y. Nakamura, H. Kotani, T. Kato, E. Asamizu, N. Miyajima, S.
1392 Sasamoto, T. Kimura, T. Hosouchi, K. Kawashima, M. Kohara, M. Matsumoto,
1393 A. Matsuno, A. Muraki, S. Nakayama, N. Nakazaki, K. Naruo, S. Okumura, S.
1394 Shinpo, C. Takeuchi, T. Wada, A. Watanabe, M. Yamada, M. Yasuda, S. Sato, M.
1395 de la Bastide, E. Huang, L. Spiegel, L. Gnoj, A. O'Shaughnessy, R. Preston, K.
1396 Habermann, J. Murray, D. Johnson, T. Rohlffing, J. Nelson, T. Stoneking, K. Pepin,
1397 J. Spieth, M. Sekhon, J. Armstrong, M. Becker, E. Belter, H. Cordum, M. Cordes,
1398 L. Courtney, W. Courtney, M. Dante, H. Du, J. Edwards, J. Fryman, B. Haakensen,
1399 E. Lamar, P. Latreille, S. Leonard, R. Meyer, E. Mulvaney, P. Ozersky, A. Riley,
1400 C. Strowmatt, C. Wagner-McPherson, A. Wollam, M. Yoakum, M. Bell, N.
1401 Dedhia, L. Parnell, R. Shah, M. Rodriguez, L.H. See, D. Vil, J. Baker, K. Kirchoff,
1402 K. Toth, L. King, A. Bahret, B. Miller, M. Marra, R. Martienssen, W.R.
1403 McCombie, R.K. Wilson, G. Murphy, I. Bancroft, G. Volckaert, R. Wambutt, A.
1404 Dusterhoff, W. Stiekema, T. Pohl, K.D. Entian, N. Terryn, N. Hartley, E. Bent, S.
1405 Johnson, S.A. Langham, B. McCullagh, J. Robben, B. Grymonprez, W.
1406 Zimmermann, U. Ramsperger, H. Wedler, et al. 2000. Sequence and analysis of

- 1407 chromosome 5 of the plant *Arabidopsis thaliana*. *Nature*. 408:823-826.

1408 Takahashi, K., S. Suzuki, H. Kawai-Toyooka, K. Yamamoto, T. Hamaji, R. Ootsuki, H.

1409 Yamaguchi, M. Kawachi, T. Higashiyama, and H. Nozaki. 2023. Reorganization

1410 of the ancestral sex-determining regions during the evolution of trioecy in

1411 *Pleodorina starrii*. *Commun Biol.* 6:590.

1412 Tamura, K., K. Iwabuchi, Y. Fukao, M. Kondo, K. Okamoto, H. Ueda, M. Nishimura,

1413 and I. Hara-Nishimura. 2013. Myosin XI-i links the nuclear membrane to the

1414 cytoskeleton to control nuclear movement and shape in *Arabidopsis*. *Curr Biol.*

1415 23:1776-1781.

1416 Tanaka, H., M. Ishikawa, S. Kitamura, Y. Takahashi, T. Soyano, C. Machida, and Y.

1417 Machida. 2004. The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2

1418 genes, which encode functionally redundant kinesins, are essential for cytokinesis

1419 in *Arabidopsis*. *Genes Cells*. 9:1199-1211.

1420 Tatewaki, M. 1973. Life cycle of *Bryopsis* (緑藻ハネモ及びオオハネモの生活史). *Japanese Journal of Phycology (Japanese)*. 21:125-129.

1421 Tatewaki, M., and K. Nagata. 1970. Surviving Protoplasts in Vitro and Their

1422 Development in *Bryopsis*. *Journal of Phycology*. 6:401-403.

1423 Theologis, A., J.R. Ecker, C.J. Palm, N.A. Federspiel, S. Kaul, O. White, J. Alonso, H.

1424 Altafi, R. Araujo, C.L. Bowman, S.Y. Brooks, E. Buehler, A. Chan, Q. Chao, H.

1425 Chen, R.F. Cheuk, C.W. Chin, M.K. Chung, L. Conn, A.B. Conway, A.R.

1426 Conway, T.H. Creasy, K. Dewar, P. Dunn, P. Etgu, T.V. Feldblyum, J. Feng, B.

1427 Fong, C.Y. Fujii, J.E. Gill, A.D. Goldsmith, B. Haas, N.F. Hansen, B. Hughes, L.

1428 Huizar, J.L. Hunter, J. Jenkins, C. Johnson-Hopson, S. Khan, E. Khaykin, C.J.

1429 Kim, H.L. Koo, I. Kremenetskaia, D.B. Kurtz, A. Kwan, B. Lam, S. Langin-

1430 Hooper, A. Lee, J.M. Lee, C.A. Lenz, J.H. Li, Y. Li, X. Lin, S.X. Liu, Z.A. Liu,

1431 J.S. Luros, R. Maiti, A. Marziali, J. Millscher, M. Miranda, M. Nguyen, W.C.

1432 Nierman, B.I. Osborne, G. Pai, J. Peterson, P.K. Pham, M. Rizzo, T. Rooney, D.

1433 Rowley, H. Sakano, S.L. Salzberg, J.R. Schwartz, P. Shinn, A.M. Southwick, H.

1434 Sun, L.J. Tallon, G. Tambunga, M.J. Toriumi, C.D. Town, T. Utterback, S. Van

1435 Aken, M. Vaysberg, V.S. Vysotskaia, M. Walker, D. Wu, G. Yu, C.M. Fraser,

1436 J.C. Venter, and R.W. Davis. 2000. Sequence and analysis of chromosome 1 of

1437 the plant *Arabidopsis thaliana*. *Nature*. 408:816-820.

1438 Turmel, M., and C. Lemieux. 2018. Chapter Six - Evolution of the Plastid Genome in

1439 Green Algae. *In Advances in Botanical Research*. Vol. 85. S.-M. Chaw and R.K.

1440 Jansen, editors. Academic Press. 157-193.

1441 Turmel, M., C. Otis, and C. Lemieux. 2017. Divergent copies of the large inverted repeat

1442 in the chloroplast genomes of ulvophycean green algae. *Scientific Reports*. 7:994.

1443 Umen, J., and M.D. Herron. 2021. Green Algal Models for Multicellularity. *Annual*

1444 *Review of Genetics*. 55:603-632.

1445 Vahrenholz, C., G. Riemen, E. Pratje, B. Dujon, and G. Michaelis. 1993. Mitochondrial

1446 DNA of *Chlamydomonas reinhardtii*: the structure of the ends of the linear 15.8-

1447 kb genome suggests mechanisms for DNA replication. *Curr Genet.* 24:241-247.

1448 Vale, R.D. 2003. The molecular motor toolbox for intracellular transport. *Cell*. 112:467-

1449 480.

1450 Varki, A., R.D. Cummings, J.D. Esko, P. Stanley, G.W. Hart, M. Aebi, D. Mohnen, T.

1451 Kinoshita, N.H. Packer, J.H. Prestegard, R.L. Schnaar, and P.H. Seeberger. 2022.

1452 *In Essentials of Glycobiology*, 4th Edition. Cold Spring Harbor Laboratory Press

1453

- 1454 Copyright © 2022 by the Consortium of Glycobiology Editors, La Jolla, California.
1455 Published by Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New
1456 York. All rights reserved., Cold Spring Harbor (NY).
- 1457 Vidali, L., G.M. Burkart, R.C. Augustine, E. Kerdavid, E. Tuzel, and M. Bezanilla. 2010.
1458 Myosin XI is essential for tip growth in *Physcomitrella patens*. *Plant Cell*.
1459 22:1868-1882.
- 1460 Vugrek, O., H. Sawitzky, and D. Menzel. 2003. Class XIII myosins from the green alga
1461 *Acetabularia*: driving force in organelle transport and tip growth? *J Muscle Res*
1462 *Cell Motil.* 24:87-97.
- 1463 Walker, B.J., T. Abeel, T. Shea, M. Priest, A. Abouelli, S. Sakthikumar, C.A. Cuomo,
1464 Q. Zeng, J. Wortman, S.K. Young, and A.M. Earl. 2014. Pilon: an integrated tool
1465 for comprehensive microbial variant detection and genome assembly
1466 improvement. *PLoS One*. 9:e112963.
- 1467 Wang, Y., L. Jia, G. Tian, Y. Dong, X. Zhang, Z. Zhou, X. Luo, Y. Li, and W. Yao. 2023.
1468 shinyCircos-V2.0: Leveraging the creation of Circos plot with enhanced usability
1469 and advanced features. *iMeta*. 2:e109.
- 1470 Waterhouse, R.M., M. Seppey, F.A. Simão, M. Manni, P. Ioannidis, G. Klioutchnikov,
1471 E.V. Kriventseva, and E.M. Zdobnov. 2017. BUSCO Applications from Quality
1472 Assessments to Gene Prediction and Phylogenomics. *Molecular Biology and*
1473 *Evolution*. 35:543-548.
- 1474 Worden, A.Z., J.H. Lee, T. Mock, P. Rouze, M.P. Simmons, A.L. Aerts, A.E. Allen, M.L.
1475 Cuvelier, E. Derelle, M.V. Everett, E. Foulon, J. Grimwood, H. Gundlach, B.
1476 Henrissat, C. Napoli, S.M. McDonald, M.S. Parker, S. Rombauts, A. Salamov, P.
1477 Von Dassow, J.H. Badger, P.M. Coutinho, E. Demir, I. Dubchak, C. Gentemann,
1478 W. Eikrem, J.E. Gready, U. John, W. Lanier, E.A. Lindquist, S. Lucas, K.F.
1479 Mayer, H. Moreau, F. Not, R. Otilar, O. Panaud, J. Pangilinan, I. Paulsen, B.
1480 Piegu, A. Poliakov, S. Robbens, J. Schmutz, E. Toulza, T. Wyss, A. Zelensky, K.
1481 Zhou, E.V. Armbrust, D. Bhattacharya, U.W. Goodenough, Y. Van de Peer, and
1482 I.V. Grigoriev. 2009. Green evolution and dynamic adaptations revealed by
1483 genomes of the marine picoeukaryotes *Micromonas*. *Science*. 324:268-272.
- 1484 Wu, S.Z., and M. Bezanilla. 2014. Myosin VIII associates with microtubule ends and
1485 together with actin plays a role in guiding plant cell division. *Elife*. 3.
- 1486 Wu, S.Z., and M. Bezanilla. 2018. Actin and microtubule cross talk mediates persistent
1487 polarized growth. *J Cell Biol*. 217:3531-3544.
- 1488 Wu, S.Z., J.A. Ritchie, A.H. Pan, R.S. Quatrano, and M. Bezanilla. 2011. Myosin VIII
1489 regulates protonemal patterning and developmental timing in the moss
1490 *Physcomitrella patens*. *Mol Plant*. 4:909-921.
- 1491 Wu, T.D., and C.K. Watanabe. 2005. GMAP: a genomic mapping and alignment program
1492 for mRNA and EST sequences. *Bioinformatics*. 21:1859-1875.
- 1493 Yamada, M., and G. Goshima. 2018. The KCH Kinesin Drives Nuclear Transport and
1494 Cytoskeletal Coalescence to Promote Tip Cell Growth in *Physcomitrella patens*.
1495 *Plant Cell*. 30:1496-1510.
- 1496 Yamada, M., Y. Tanaka-Takiguchi, M. Hayashi, M. Nishina, and G. Goshima. 2017.
1497 Multiple kinesin-14 family members drive microtubule minus end-directed
1498 transport in plant cells. *J Cell Biol*. 216:1705-1714.
- 1499 Yau, S., M. Krasovec, L.F. Benites, S. Rombauts, M. Groussin, E. Vancaester, J.M. Aury,
1500 E. Derelle, Y. Desdevives, M.L. Escande, N. Grimsley, J. Guy, H. Moreau, S.

- 1501 Sanchez-Brosseau, Y. Van de Peer, K. Vandepoele, S. Gourbiere, and G.
1502 Piganeau. 2020. Virus-host coexistence in phytoplankton through the genomic
1503 lens. *Sci Adv.* 6:eaay2587.
- 1504 Yoon, K.S., K.P. Lee, T.A. Klochko, and G.H. Kim. 2008. Molecular Characterization
1505 of the Lectin, Bryohealin, Involved in Protoplast Regeneration of the Marine Alga
1506 *Bryopsis Plumosa* (Chlorophyta)(1). *J Phycol.* 44:103-112.
- 1507 Yoshida, M.W., M. Hakozaki, and G. Goshima. 2023. Armadillo repeat-containing
1508 kinesin represents the versatile plus-end-directed transporter in *Physcomitrella*.
1509 *Nat Plants.* 9:733-748.
- 1510 Yoshida, M.W., M. Yamada, and G. Goshima. 2019. Moss Kinesin-14 KCBP Accelerates
1511 Chromatid Motility in Anaphase. *Cell Struct Funct.* 44:95-104.
- 1512 Zan, J., Z. Li, M.D. Tianero, J. Davis, R.T. Hill, and M.S. Donia. 2019. A microbial
1513 factory for defensive kahalalides in a tripartite marine symbiosis. *Science.* 364.
- 1514 Zheng, F., H. Liu, M. Jiang, Z. Xu, Z. Wang, C. Wang, F. Du, Z. Shen, and B. Wang.
1515 2018. The complete mitochondrial genome of the *Caulerpa lentillifera*
1516 (Ulvophyceae, Chlorophyta): Sequence, genome content, organization structure
1517 and phylogenetic consideration. *Gene.* 673:225-238.
- 1518 Zhou, L., L. Wang, J. Zhang, C. Cai, and P. He. 2016. Complete mitochondrial genome
1519 of *Ulva prolifera*, the dominant species of green macroalgal blooms in Yellow Sea,
1520 China. *Mitochondrial DNA B Resour.* 1:76-78.
- 1521

1522 Figure legends

1524 **Figure 1. Life cycle and regeneration of *Bryopsis* collected on Sugashima Island**

1525 (A) Life cycle of *Bryopsis*. Images are derived from *Bryopsis* sp. analysed in this study.
1526 Sequencing indicates a SNP in male and female lines (contig 3: nt 4124748–4124766).
1527 Note that both A and G were detected in the sporophyte (diploid). DAPI-stained
1528 (magenta) nuclei are shown in the middle. (B) Regeneration of *Bryopsis* sp. after
1529 extrusion of the cytoplasm into autoclaved seawater. See also Movie 1. Arrowheads
1530 indicate polarised tip growth of regenerated cells.

1532 **Figure 2. Nuclear and organelle genome assembly**

1533 (A) Circos plot of the 27 contigs and organelles assembled from *Bryopsis* sp. (From
1534 outmost to innermost lanes) (1) Contigs (cyan) and putative telomeric repeats (red bar,
1535 CCCTAAA) are shown. When the repeat was identified in both ends of the contig, the
1536 contig number was indicated in red. When just one end had the repeat, the contig was
1537 highlighted with a black bold letter. Blue bars indicate organelles of circular genome
1538 (mitochondrion: Mt, chloroplast: Cp). (2) Purple lines indicate G/C content per 10,000
1539 bp. Two grey lines indicate 25% and 75%. (3) Black bars present non-telomeric repeat
1540 sequences. (4) Red and blue bars indicate genes from Watson and Crick strands,
1541 respectively. (5) Genes analysed in this study. (B) Phylogenetic tree of green algal species
1542 subjected to KEGG analysis in this study. Maximum Likelihood (ML) tree was
1543 constructed with LG+F+R4 selected as the best-fit model and the branch support was

1544 estimated with 1,000 ultrafast bootstrap. The bar indicates 0.1 amino acid substitutions
1545 per site.

1546

1547 **Figure 3. Massive duplication of BPL-1/Bryohealin in *Bryopsis* sp.**

1548 (A) Phylogenetic tree of BPL-1 proteins in green algae. Only partial sequences were
1549 available for *Bryopsis hypnoides* ACB47462.1 and *Pleodorina starrii* GCL49965.1, and
1550 therefore these were not included in the tree. ML tree was constructed with WAG+G4
1551 selected as the best-fit model and the branch support was estimated with 1,000 ultrafast
1552 bootstrap. The bar indicates 0.1 amino acids substitutions per site. (B) Alignment of
1553 amino acid sequences of BPL-1/Bryohealin of *Bryopsis* species. Asterisks indicate highly
1554 conserved residues.

1555

1556 **Figure 4. Myosin and kinesin motors in *Bryopsis* sp.**

1557 (A) Repertoire of motors potentially involved in cargo transport and cytokinesis. Note
1558 that the number might be underestimated in some species, as the genome (RNA) coverage
1559 is not complete. (B) Schematic presentation of myosin motors. (C) Divergence of ARK-
1560 type motors in green plants. In case some species possess the motor but others in the same
1561 family do not, dotted lines were used.

1562

1563 **Figure 5. Microtubule-dependent, but actin-independent, bidirectional motility of**
1564 **chloroplasts in *Bryopsis* sp.**

1565 (A) (Left) Device used for time-lapse imaging. (Right) Magnified view of the specimen
1566 (thalli) and a piece of net on the glass. (B) Time-lapse imaging of autofluorescent
1567 chloroplasts in the control DMSO-treated cell. Yellow and red arrowheads indicate
1568 unidirectional and bidirectional movement, respectively. Time is shown as min:sec. (C)
1569 Kymograph images of chloroplast motility in the presence or absence of microtubules or
1570 actin. Arrow indicates a point of directional switch. Horizontal bar, 10 μ m; vertical bar,
1571 120 s. (D) Rate of chloroplast motility. The mean rate was 339 ± 18 nm/s (control DMSO,
1572 \pm SEM, $n = 50$), 45 ± 5 nm/s (+ oryzalin, \pm SEM, $n = 50$), 369 ± 28 nm/s (+ latrunculin
1573 A [LatA], \pm SEM, $n = 50$). P-values were calculated using a two-sided ART ANOVA; P
1574 < 0.0001 (control [DMSO] – oryzalin), P < 0.0001 (oryzalin – latrunculin A), P = 0.7790
1575 (control [DMSO] – latrunculin A).

1576

1577

1578 **Figure S1. Microtubule and actin organisation in the cytoplasm**

1579 (A) Suppression of aggregation of the cytoplasmic extract by N-acetyl-D-glucosamine.
1580 Glucose was used as the control. (B) (Top) Schematic representation of the focal plane in
1581 microscopy. (Bottom) Three images acquired with 637 nm laser, each representing top,
1582 middle, or bottom section of the main axis. Autofluorescent chloroplasts are visualised.
1583 A large vacuole occupies the majority of the middle section. (C–E) Immunostaining of

1584 microtubules and actin filaments in the main axis of thalli in the presence or absence of
1585 oryzalin (10 μ M) or latrunculin A (LatA, 10 μ M). The control sample was treated with
1586 DMSO. Boxed regions are magnified on the right.

1587

1588 **Figure S2. Phylogenetic tree based on mitochondrial genes**

1589 *Bryopsis* sp. formed a clade with other Bryopsidales species, whereas the registered
1590 ‘*Bryopsis pulmosa*’ sequences (MN853874.1) were most similar to Ulvales sequences.
1591 ML gene tree was drawn using IQ-TREE v1.6.12 with LG+F+R4 selected as the best-fit
1592 model and branch support was estimated with 1,000 ultrafast bootstrap. The bar indicates
1593 0.1 amino acid substitutions per site.

1594

1595 **Figure S3. Overrepresenting gene pathway in Bryopsidales**

1596 (A) Number of the genes in ‘MAPK signaling pathway - plant (KO04016)’. (B) Signal
1597 transduction pathway known in land plants. Figures are derived from ‘MAPK signaling
1598 pathway - plant (KO04016)’ in KEGG.

1599

1600 **Figure S4. Phylogenetic tree of BPL-2, 3, 4 genes**

1601 ML tree was drawn using IQ-TREE v1.6.12 with WAG+G4 (BPL-2) or LG+G4 (BPL-
1602 3/4) selected as the best-fit model and branch support was estimated with 1,000 ultrafast
1603 bootstrap. The bar indicates 0.1 amino acid substitutions per site.

1604

1605 **Figure S5. Phylogenetic tree of myosin of green algae**

1606 ML tree was also drawn using IQ-TREE v1.6.12 with LG+I+G4 selected as the best-fit
1607 model and branch support was estimated with 1,000 ultrafast bootstrap. The bar indicates
1608 0.1 amino acid substitutions per site.

1609

1610 **Figure S6. Phylogenetic tree of the kinesin superfamily of green algae**

1611 Each page contains trees of a few kinesin subfamilies. Kinesin-GA is alga-specific
1612 subfamily. ML tree was also drawn using IQ-TREE v1.6.12 with LG+I+G4 and branch
1613 support was estimated with 1,000 ultrafast bootstrap. The bar indicates 0.1 amino acid
1614 substitutions per site.

1615

1616 **Figure S7. Structure of *cox1* gene encoded in the mitochondrial genome**

1617 Several ORFs were identified in the intron of *cox1* gene in *Bryopsis* sp. .

1618

1619 **Figure S8. Length of intron in the mitochondrial genome**

1620 N = 72, 47, 29, 10, 18, 18, 26 (from left to right).

1621

1622 **Figure S9. UGA codon likely encodes tryptophan in the mitochondrial genome**

1623 Based on the amino acid sequences of the Nad5 protein (this figure) and other conserved

1624 proteins in green algae, the UGA of *Bryopsis* sp. likely represents a tryptophan codon,
1625 not a termination codon, in the mitochondrial genome.

1626

1627 **Movie legends**

1628

1629 **Movie 1. Protoplast formation from extruded cytoplasm**

1630 Images were acquired using a stereomicroscope every 20 s immediately after the
1631 extrusion of the cytoplasm into seawater.

1632

1633 **Movie 2. Chloroplast motility in the presence or absence of oryzalin or latrunculin**

1634 **A**

1635 Images were acquired every 10 s using a spinning-disc confocal microscope and a 40×
1636 0.95 NA objective lens. Drugs or control DMSO were added at 2 min.

1637

1638 **Supplementary tables**

1639

1640 **Table S1. Comparison of the genomes of green algae and land plant species.**

1641

1642 **Table S2. Genome and transcriptome data used in the comparative analysis.**

1643

1644 **Table S3. Number of unigenes based on KEGG pathway annotation.**

1645

1646 **Table S4. Number of genes in each species.**

1647

1648 **Table S5. BUSCO values after transcriptome assembly for Dasycladales and**
1649 **Cladophorales.**

1650

1651 **Table S6. Transcriptome results in the side branch, main axis and rhizoid.**

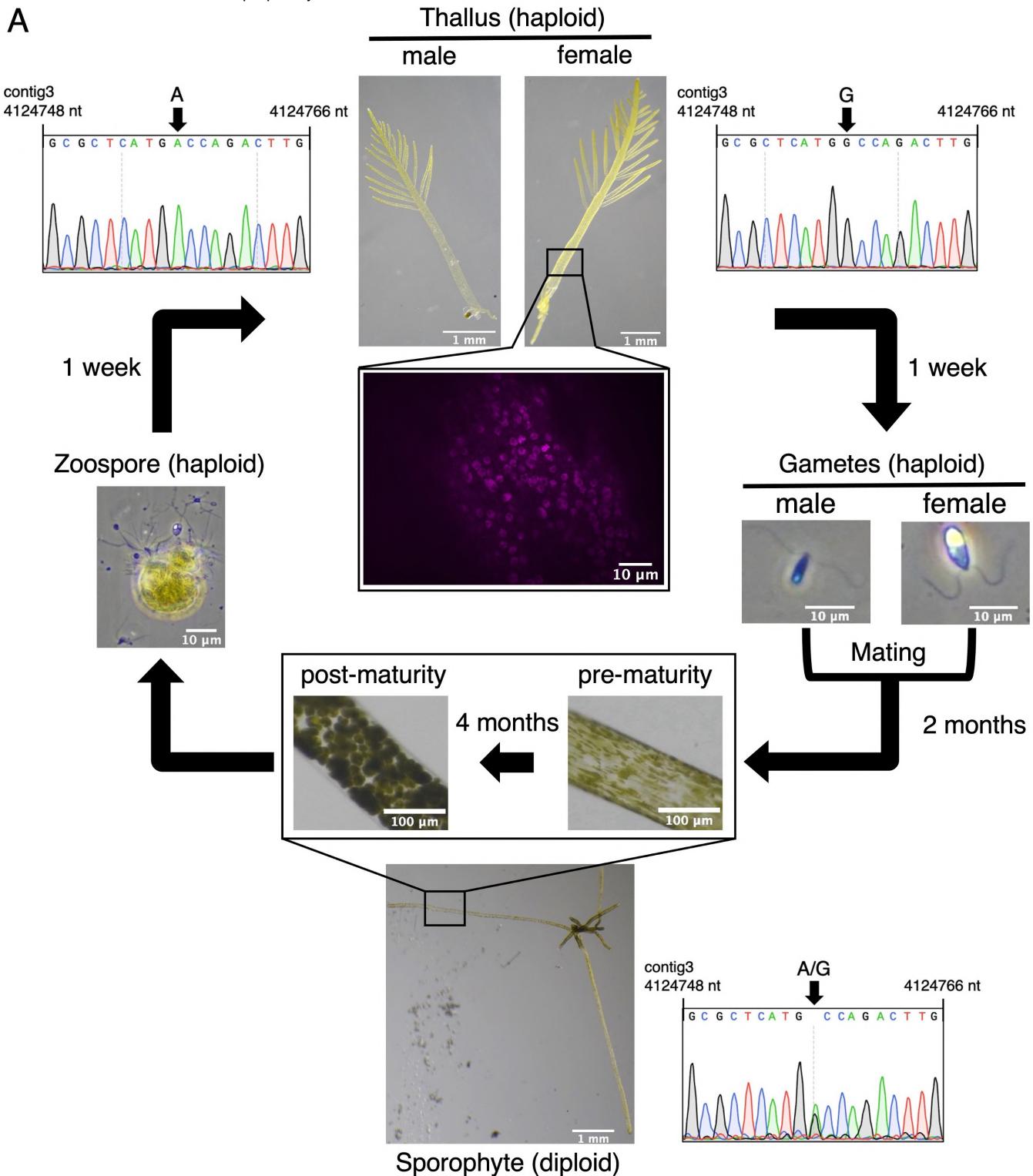
1652

1653 **Table S7. Comparison of the chloroplast genome of Chloroplastida including**
1654 ***Bryopsis*.**

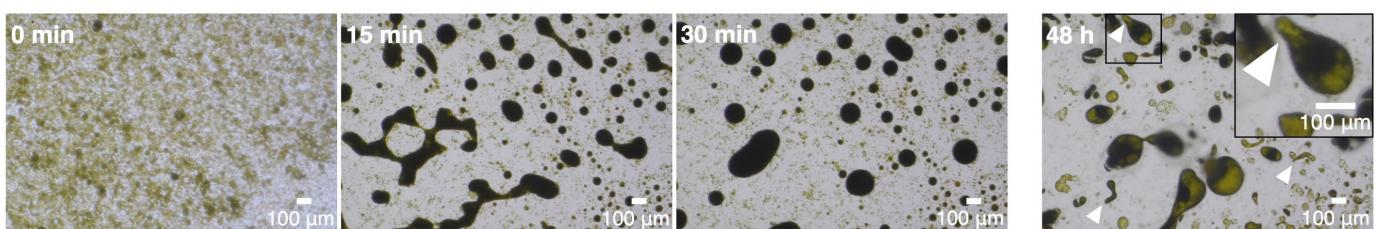
1655

1656 **Table S8. Comparison of protein coding and ribosomal RNA genes encoded in the**
1657 **chloroplast genomes of Chloroplastida including *Bryopsis*.**

1658

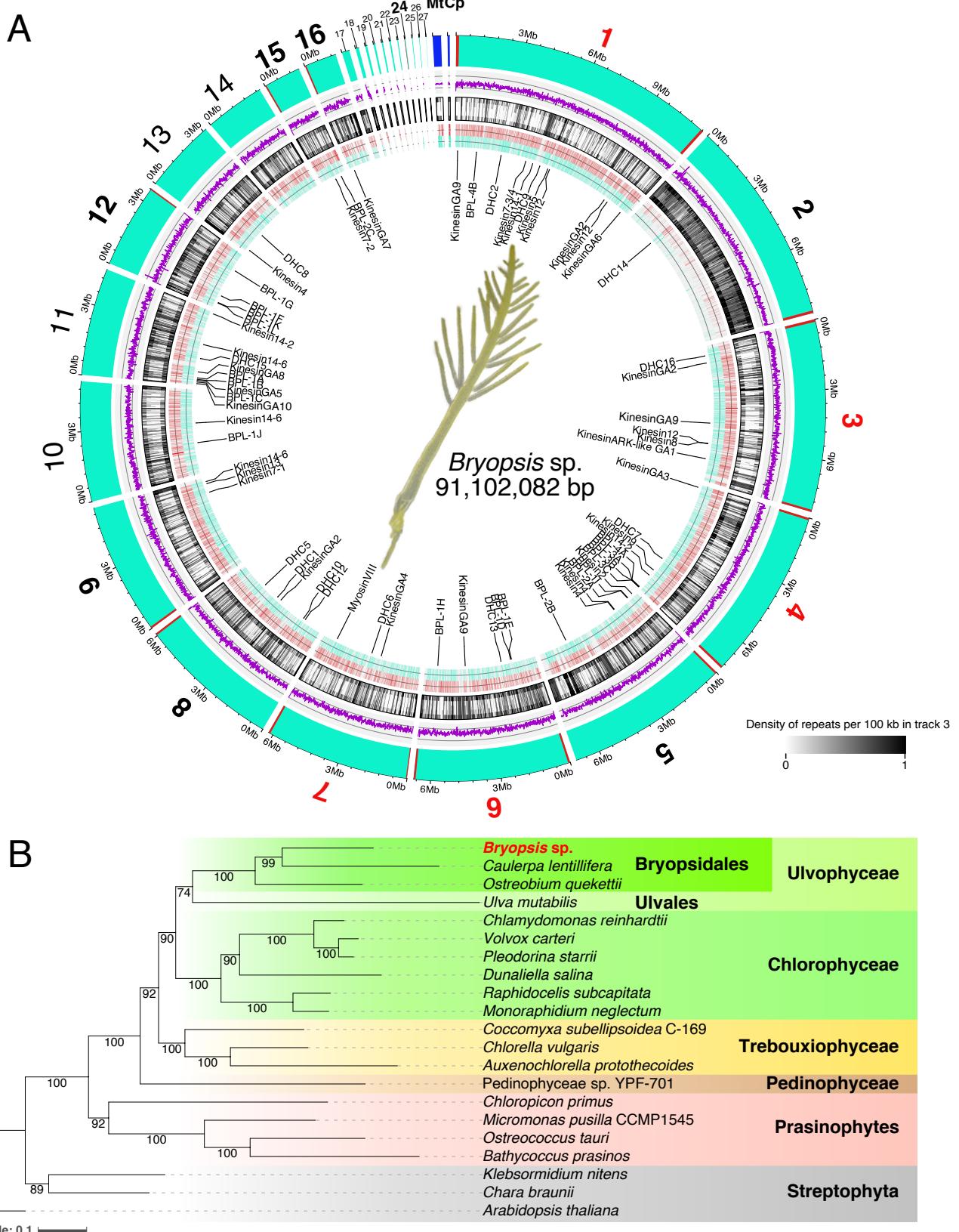

1659 **Table S9. Comparison of the mitochondrial genome of Chloroplastida including**
1660 ***Bryopsis*.**

1661


1662 **Table S10. Genes encoded in the mitochondrial genome of Chloroplastida including**
1663 ***Bryopsis*.**

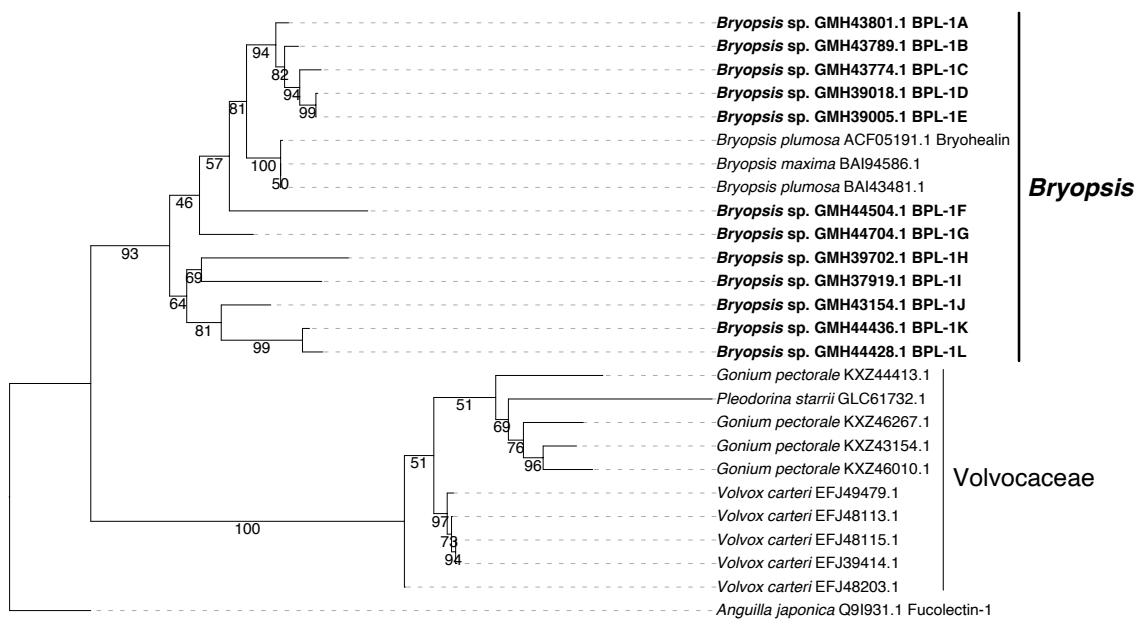
1664

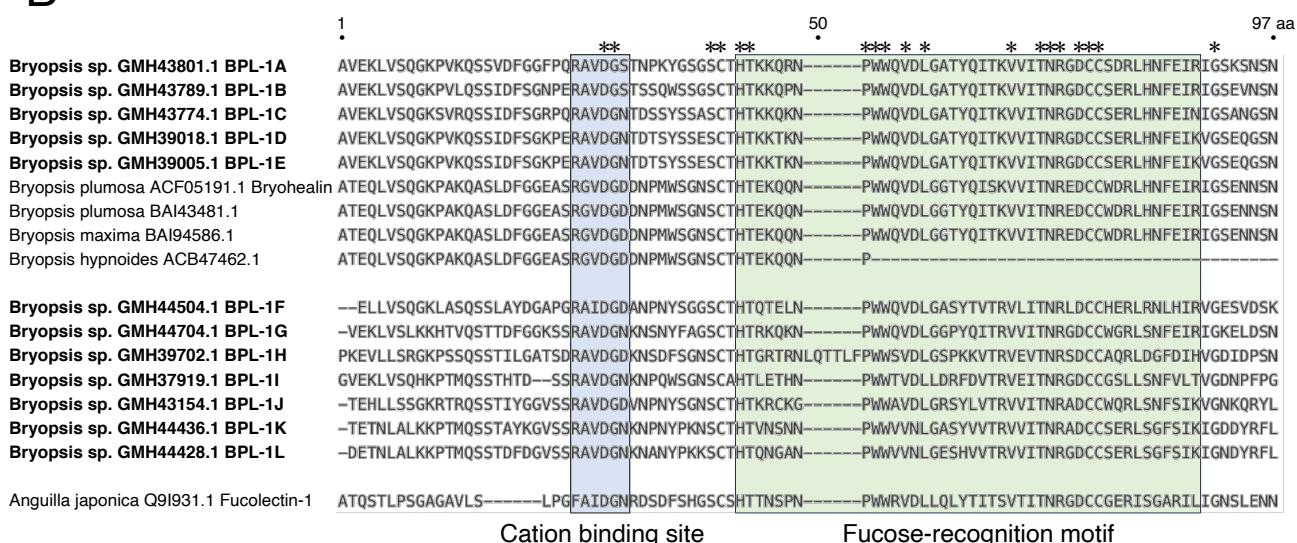
1665 **Table S11. Protein-coding genes found on the intron of other genes in the**
1666 **mitochondrial genome.**



B

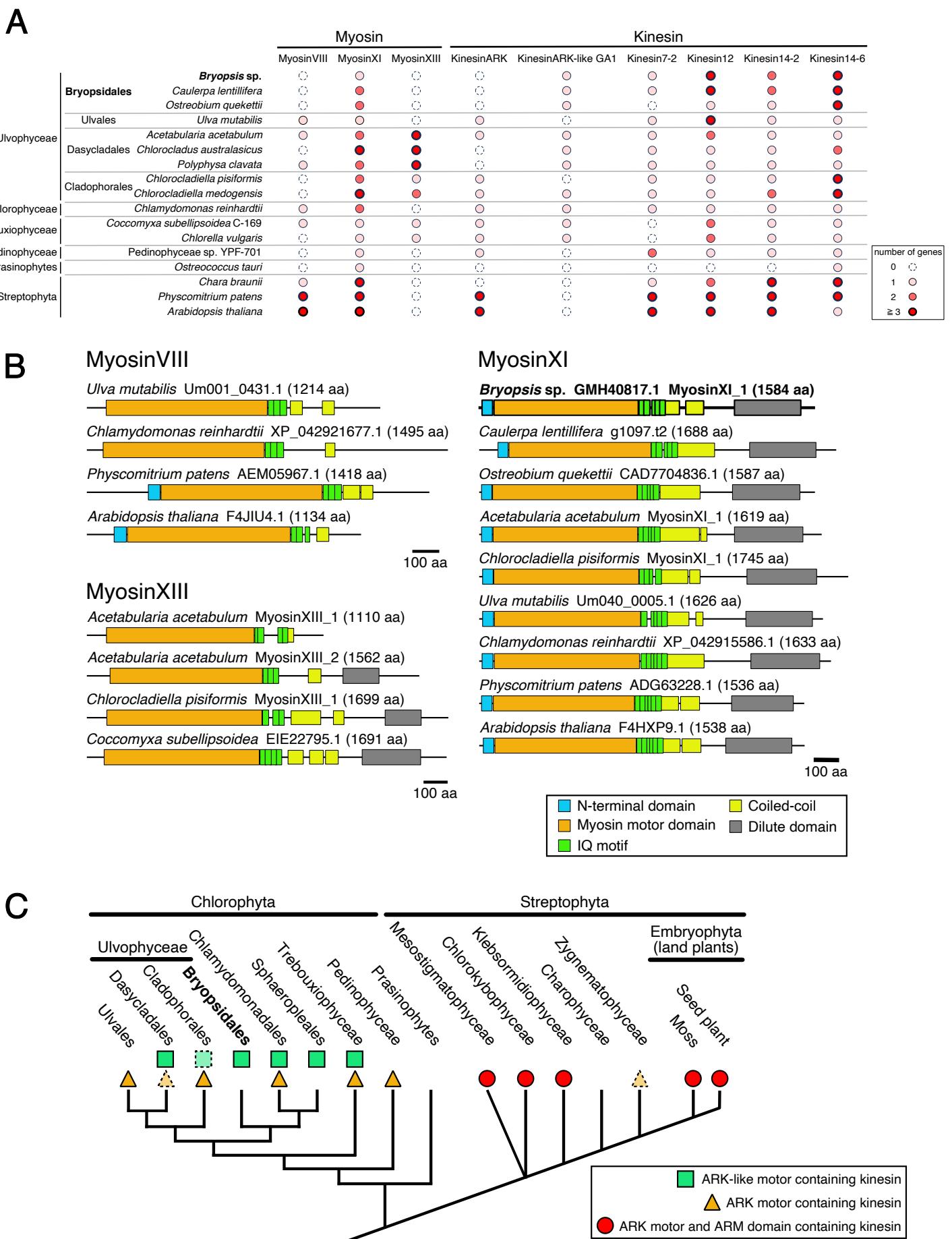
Figure 1. Life cycle and regeneration of *Bryopsis* collected on Sugashima Island


(A) Life cycle of *Bryopsis*. Images are derived from *Bryopsis* sp. analysed in this study. Sequencing indicates a SNP in male and female lines (contig 3: nt 4124748–4124766). Note that both A and G were detected in the sporophyte (diploid). DAPI-stained (magenta) nuclei are shown in the middle. (B) Regeneration of *Bryopsis* sp. after extrusion of the cytoplasm into autoclaved seawater. See also Movie 1. Arrowheads indicate polarised tip growth of regenerated cells.

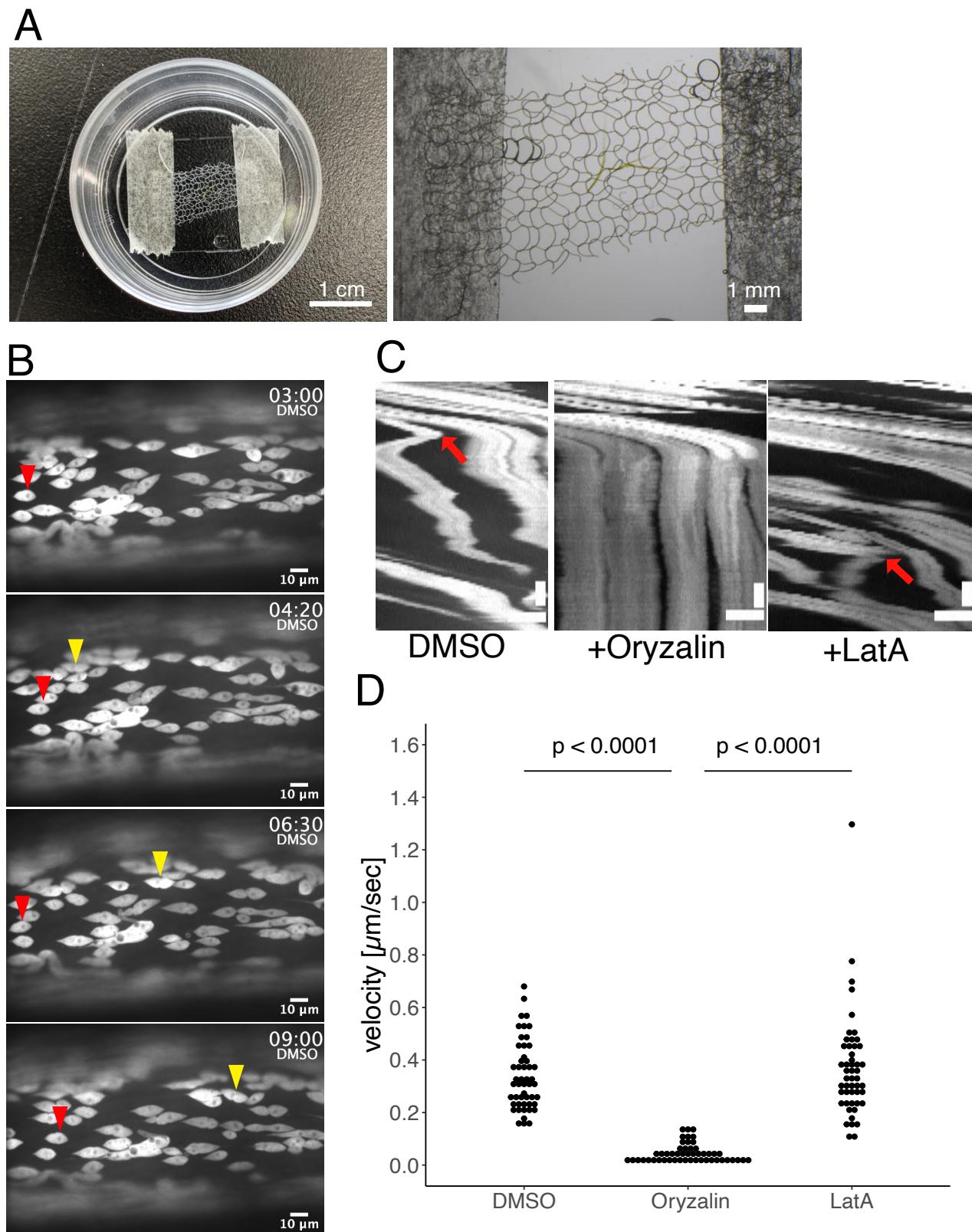

Figure 2. Nuclear and organelle genome assembly

(A) Circos plot of the 27 contigs and organelles assembled from *Bryopsis* sp. (From outmost to innermost lanes) (1) Contigs (cyan) and putative telomeric repeats (red bar, CCCTAAA) are shown. When the repeat was identified in both ends of the contig, the contig number was indicated in red. When just one end had the repeat, the contig was highlighted with a black bold letter. Blue bars indicate organelles of circular genome (mitochondrion: Mt, chloroplast: Cp). (2) Purple lines indicate G/C content per 10,000 bp. Two grey lines indicate 25% and 75%. (3) Black bars present non-telomeric repeat sequences. (4) Red and blue bars indicate genes from Watson and Crick strands, respectively. (5) Genes analysed in this study. (B) Phylogenetic tree of green algal species subjected to KEGG analysis in this study. Maximum Likelihood (ML) tree was constructed with LG+F+R4 selected as the best-fit model and the branch support was estimated with 1,000 ultrafast bootstrap. The bar indicates 0.1 amino acid substitutions per site.

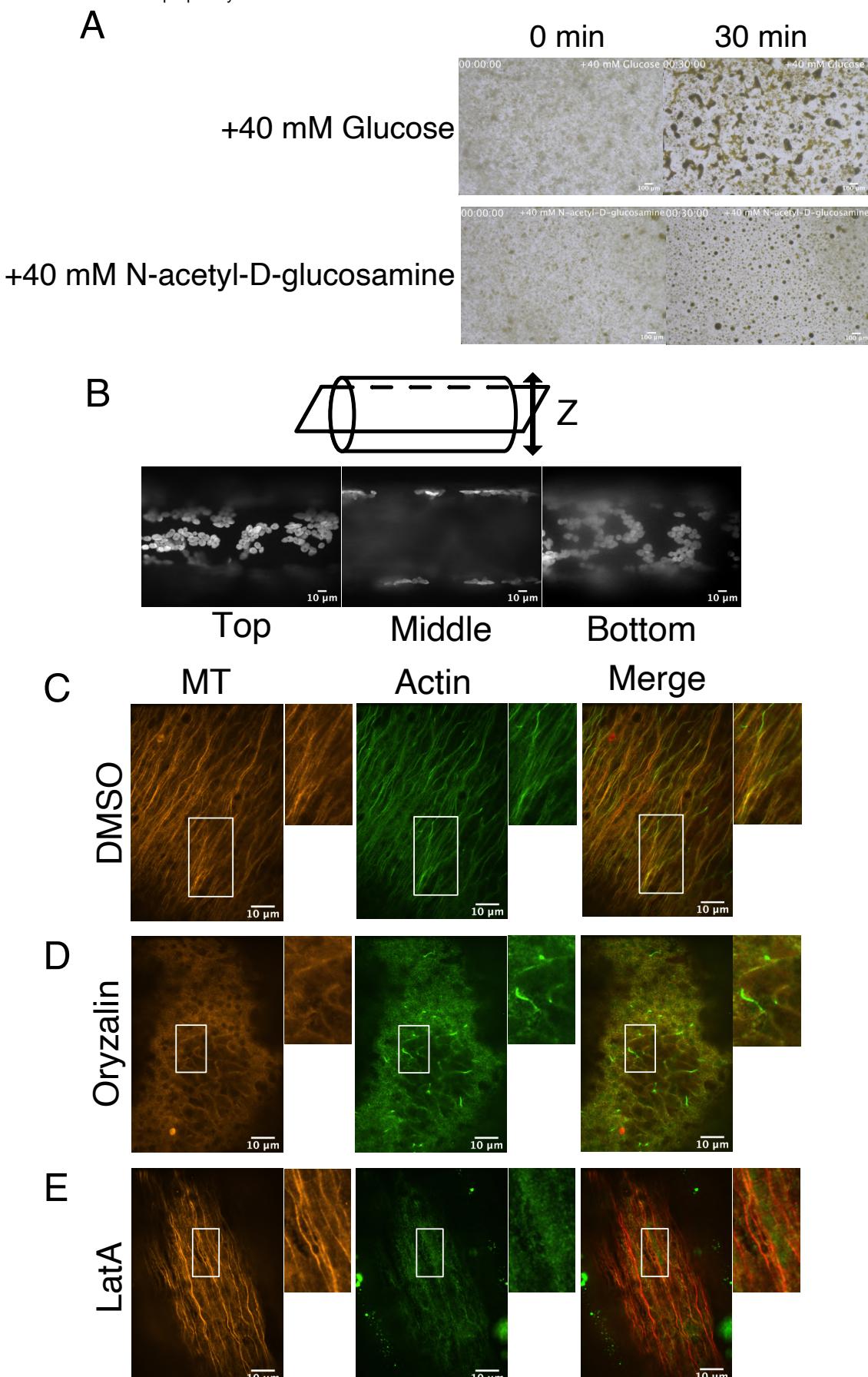
A



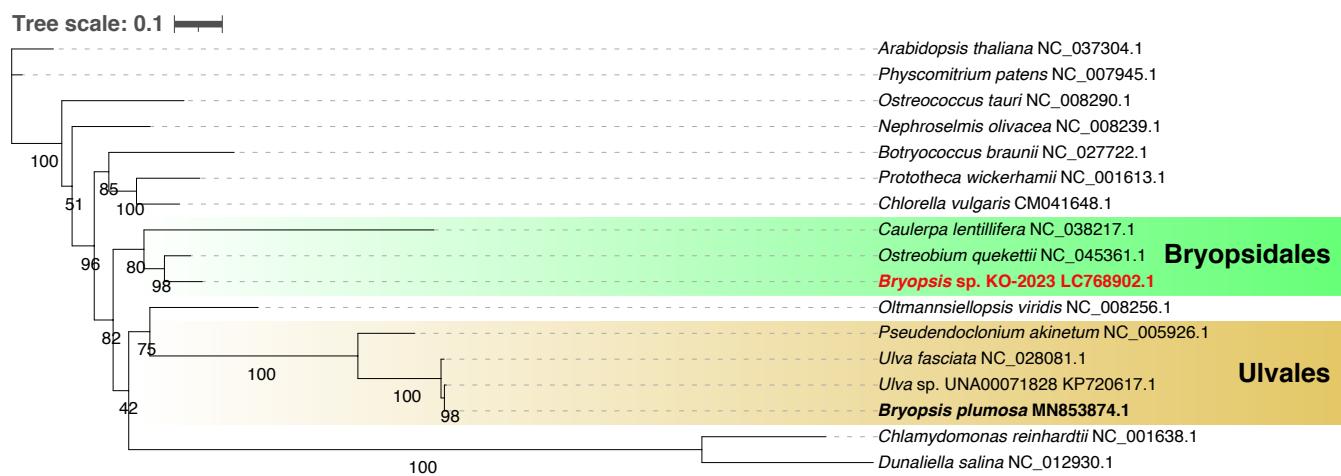
B


Figure 3. Massive duplication of BPL-1/Bryohealin in *Bryopsis* sp.

(A) Phylogenetic tree of BPL-1 proteins in green algae. Only partial sequences were available for *Bryopsis hypnoides* ACB47462.1 and *Pleodorina starrii* GCL49965.1, and therefore these were not included in the tree. ML tree was constructed with WAG+G4 selected as the best-fit model and the branch support was estimated with 1,000 ultrafast bootstrap. The bar indicates 0.1 amino acids substitutions per site. (B) Alignment of amino acid sequences of BPL-1/Bryohealin of *Bryopsis* species. Asterisks indicate highly conserved residues.

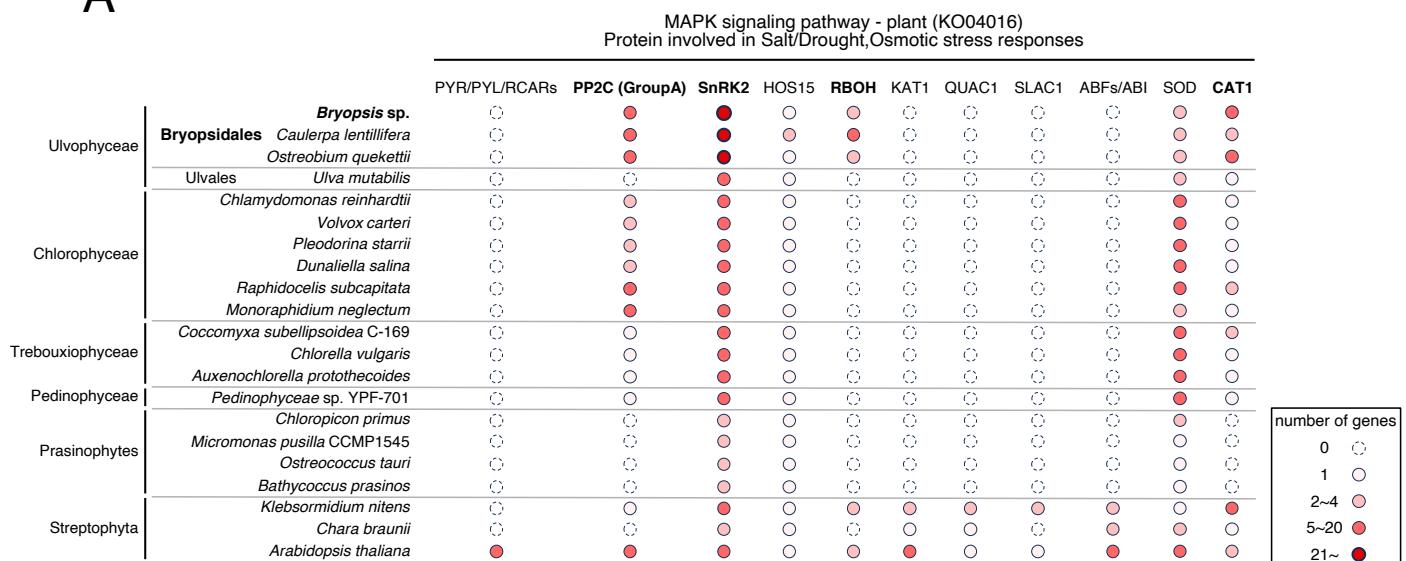

Figure 4. Myosin and kinesin motors in *Bryopsis* sp.

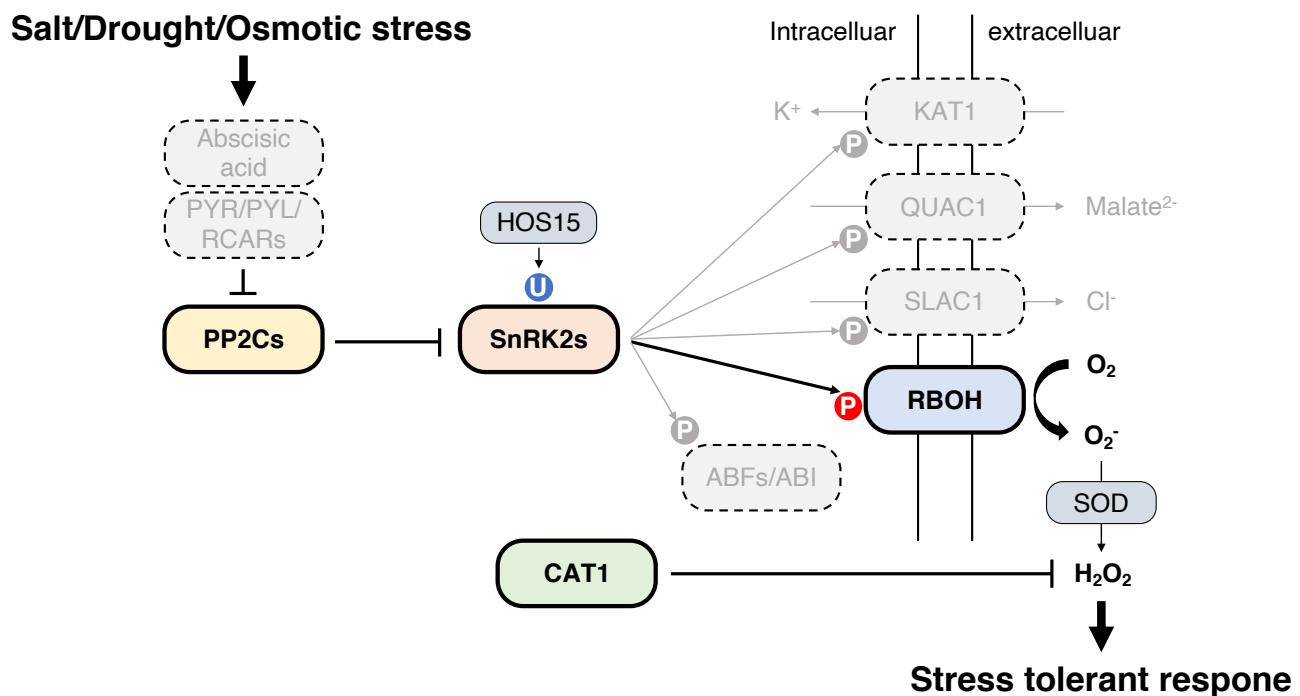
(A) Repertoire of motors potentially involved in cargo transport and cytokinesis. Note that the number might be underestimated in some species, as the genome (RNA) coverage is not complete. (B) Schematic presentation of myosin motors. (C) Divergence of ARK-type motors in green plants. In case some species possess the motor but others in the same family do not, dotted lines were used.


Figure 5. Microtubule-dependent, but actin-independent, bidirectional motility of chloroplasts in *Bryopsis* sp.

(A) (Left) Device used for time-lapse imaging. (Right) Magnified view of the specimen (thalli) and a piece of net on the glass. (B) Time-lapse imaging of autofluorescent chloroplasts in the control DMSO-treated cell. Yellow and red arrowheads indicate unidirectional and bidirectional movement, respectively. Time is shown as min:sec. (C) Kymograph images of chloroplast motility in the presence or absence of microtubules or actin. Arrow indicates a point of directional switch. Horizontal bar, 10 μ m; vertical bar, 120 s. (D) Rate of chloroplast motility. The mean rate was 339 ± 18 nm/s (control DMSO, \pm SEM, $n = 50$), 45 ± 5 nm/s (+ oryzalin, \pm SEM, $n = 50$), 369 ± 28 nm/s (+ latrunculin A [LatA], \pm SEM, $n = 50$). P-values were calculated using a two-sided ART ANOVA; $P < 0.0001$ (control [DMSO] – oryzalin), $P < 0.0001$ (oryzalin – latrunculin A), $P = 0.7790$ (control [DMSO] – latrunculin A).

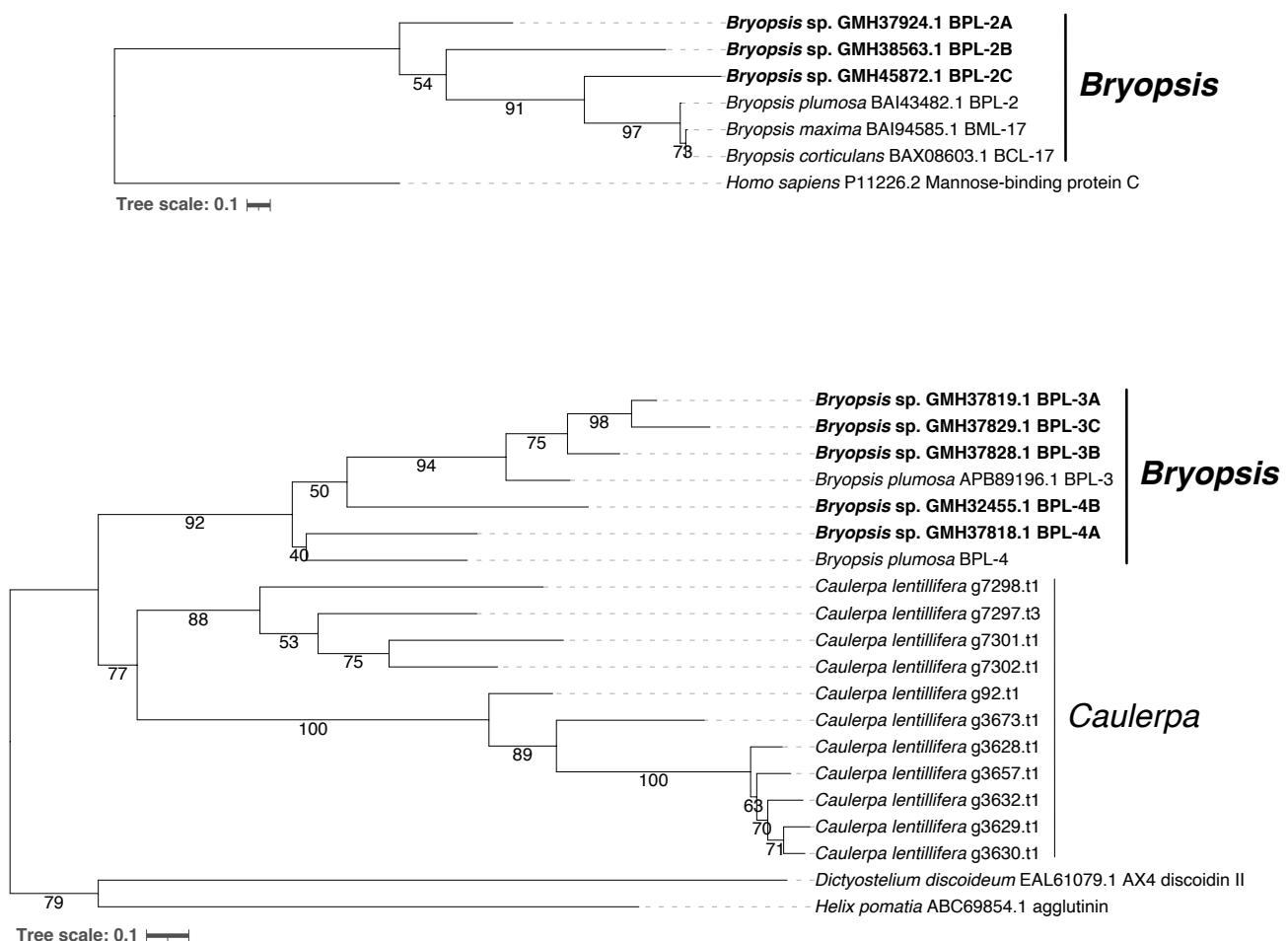
Figure S1. Microtubule and actin organisation in the cytoplasm


(A) Suppression of aggregation of the cytoplasmic extract by N-acetyl-D-glucosamine. Glucose was used as the control. (B) (Top) Schematic representation of the focal plane in microscopy. (Bottom) Three images acquired with 637 nm laser, each representing top, middle, or bottom section of the main axis. Autofluorescent chloroplasts are visualised. A large vacuole occupies the majority of the middle section. (C–E) Immunostaining of microtubules and actin filaments in the main axis of thalli in the presence or absence of oryzalin (10 μ M) or latrunculin A (LatA, 10 μ M). The control sample was treated with DMSO. Boxed regions are magnified on the right.


Figure S2. Phylogenetic tree based on mitochondrial genes

Bryopsis sp. formed a clade with other Bryopsidales species, whereas the registered '*Bryopsis pulmosa*' sequences (MN853874.1) were most similar to Ulvales sequences. ML gene tree was drawn using IQ-TREE v1.6.12 with LG+F+R4 selected as the best-fit model and branch support was estimated with 1,000 ultrafast bootstrap. The bar indicates 0.1 amino acid substitutions per site.

A



B

Figure S3. Overrepresenting gene pathway in Bryopsidales

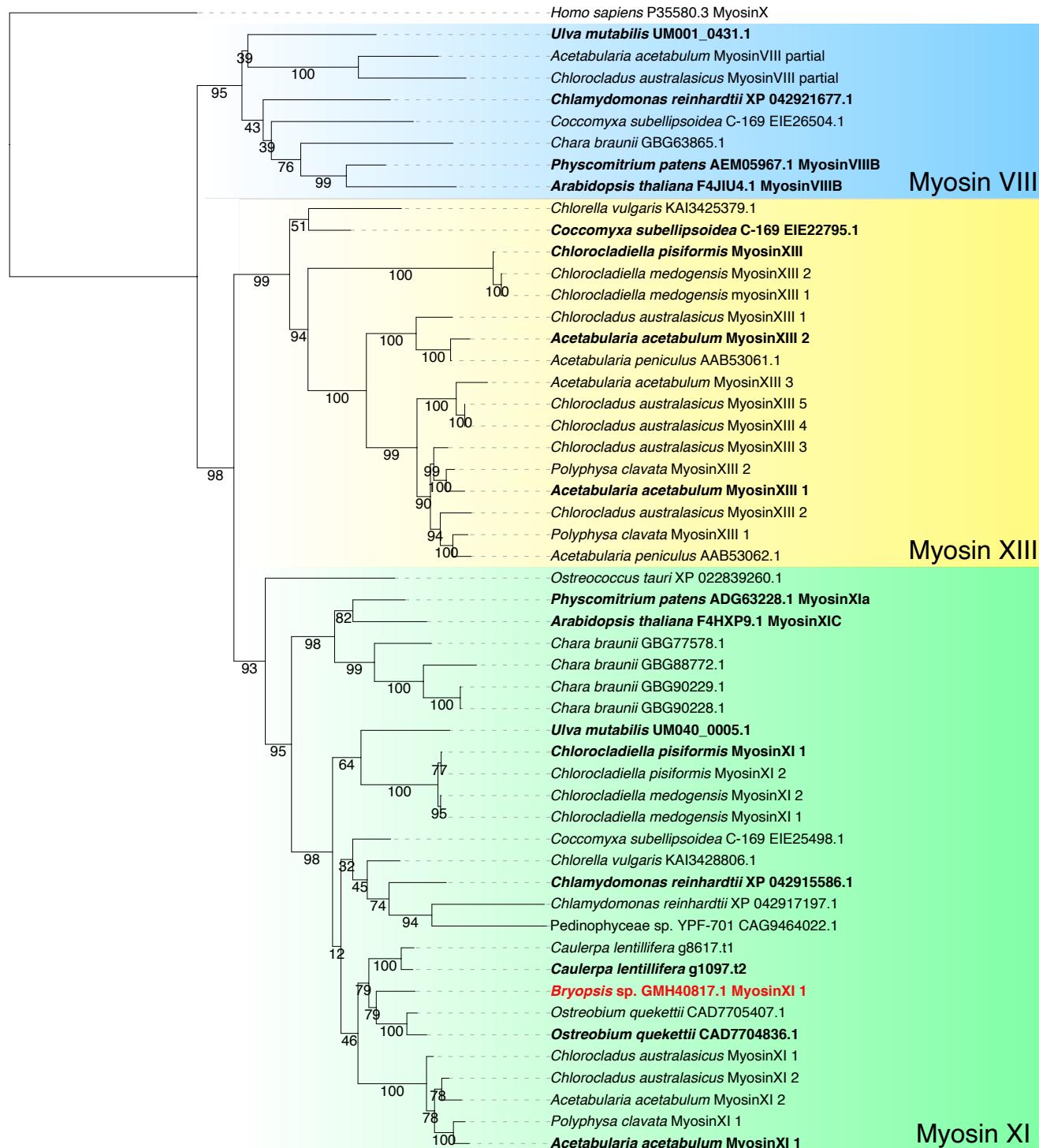
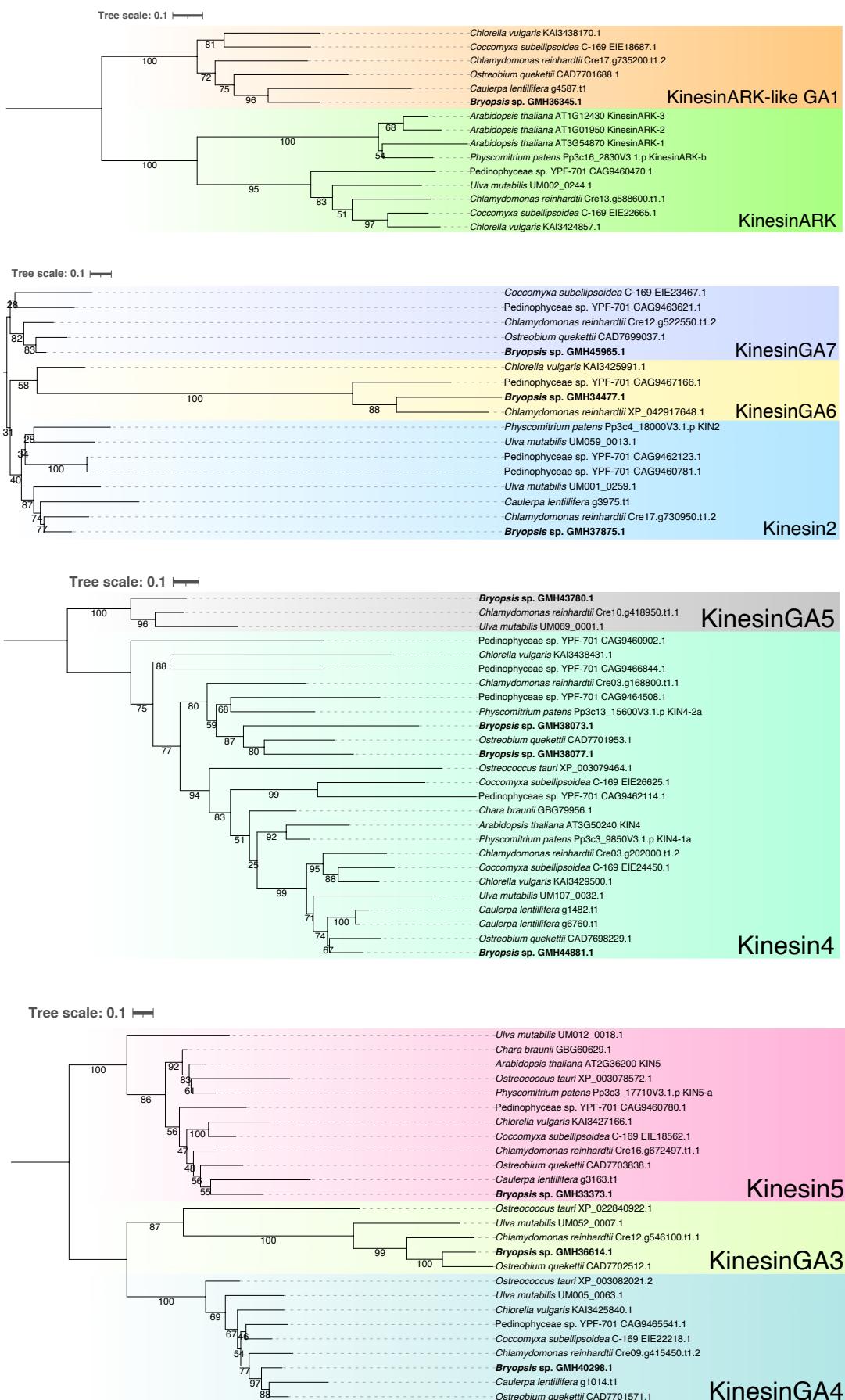
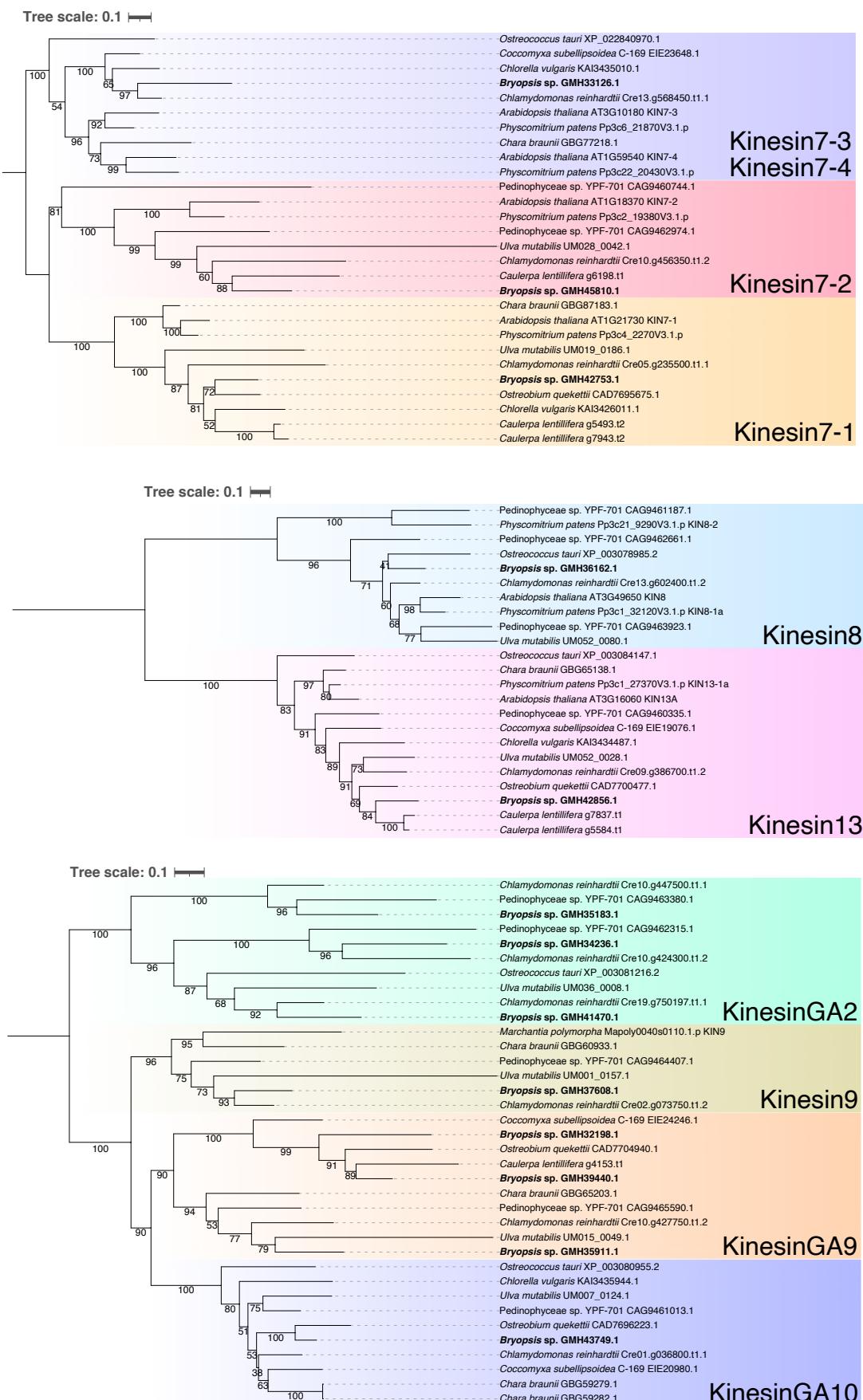

(A) Number of the genes in ‘MAPK signaling pathway - plant (KO04016)’. (B) Signal transduction pathway known in land plants. Figures are derived from ‘MAPK signaling pathway - plant (KO04016)’ in KEGG.

Figure S4. Phylogenetic tree of *BPL-2, 3, 4* genes


ML tree was drawn using IQ-TREE v1.6.12 with WAG+G4 (BPL-2) or LG+G4 (BPL-3/4) selected as the best-fit model and branch support was estimated with 1,000 ultrafast bootstrap. The bar indicates 0.1 amino acid substitutions per site.

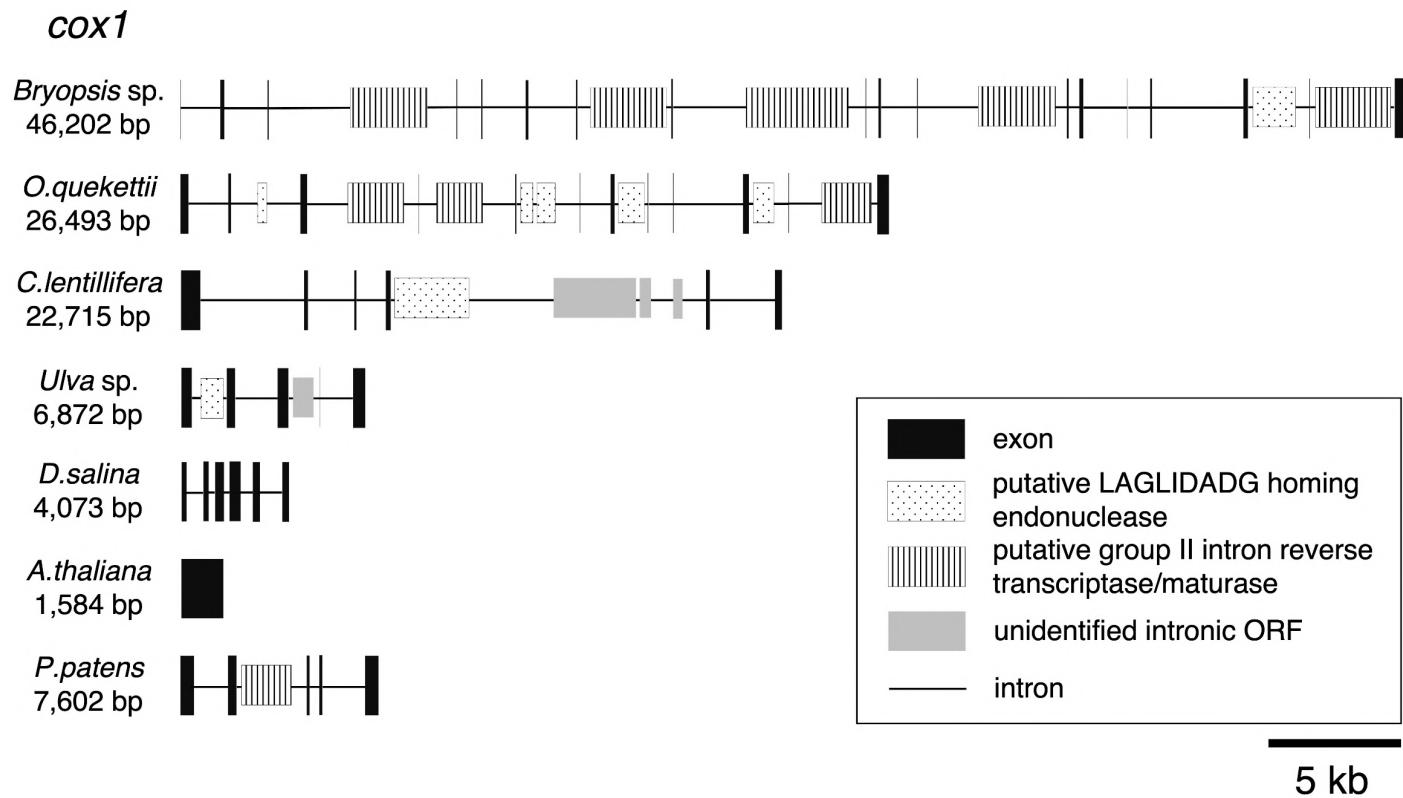
Tree scale: 0.1


Figure S5. Phylogenetic tree of myosin of green algae

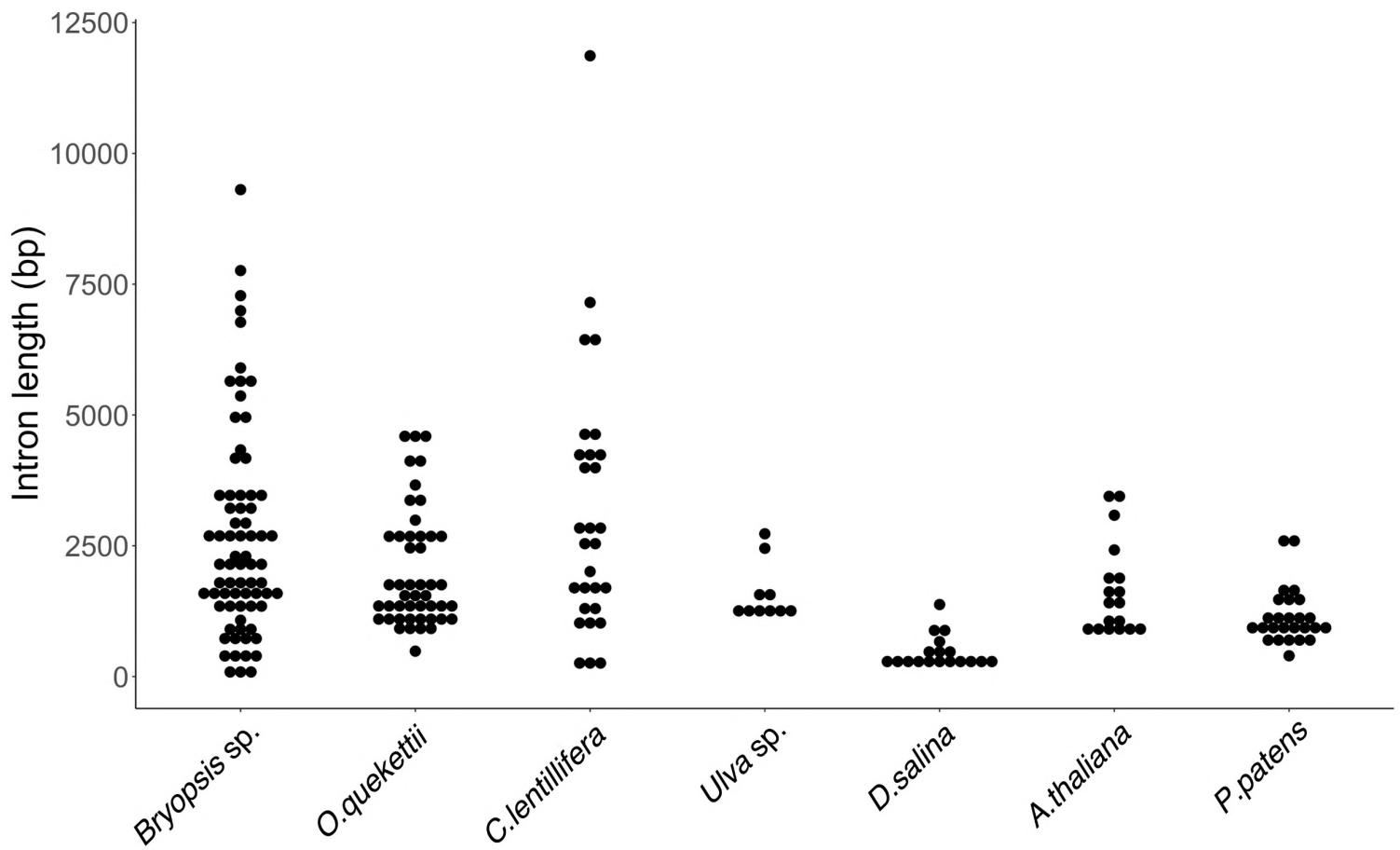
ML tree was also drawn using IQ-TREE v1.6.12 with LG+I+G4 selected as the best-fit model and branch support was estimated with 1,000 ultrafast bootstrap. The bar indicates 0.1 amino acid substitutions per site.


Figure S6.1 Phylogenetic tree of the kinesin superfamily of green algae

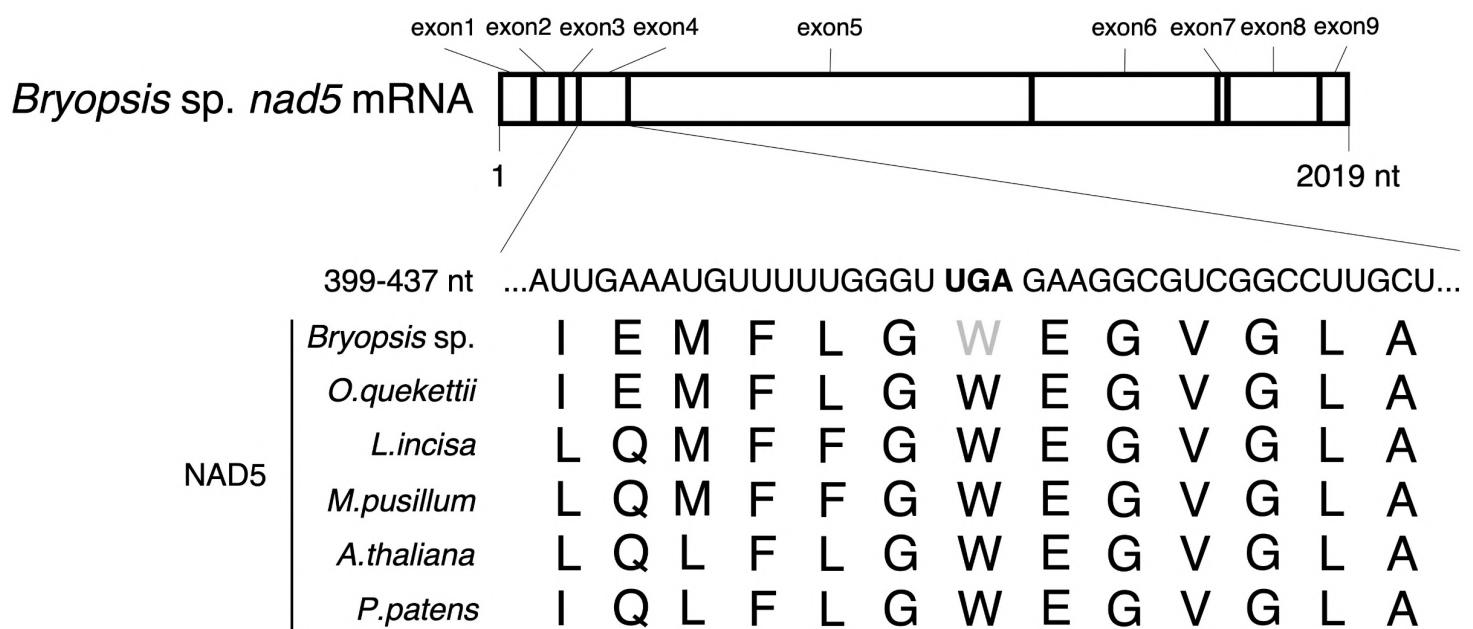
Each page contains trees of a few kinesin subfamilies. Kinesin-GA is alga-specific subfamily. ML tree was also drawn using IQ-TREE v1.6.12 with LG+I+G4 and branch support was estimated with 1,000 ultrafast bootstrap. The bar indicates 0.1 amino acid substitutions per site.


Figure S6.2 Phylogenetic tree of the kinesin superfamily of green algae

Each page contains trees of a few kinesin subfamilies. Kinesin-GA is alga-specific subfamily. ML tree was also drawn using IQ-TREE v1.6.12 with LG+I+G4 and branch support was estimated with 1,000 ultrafast bootstrap. The bar indicates 0.1 amino acid substitutions per site.


Figure S6.3 Phylogenetic tree of the kinesin superfamily of green algae

Each page contains trees of a few kinesin subfamilies. Kinesin-GA is alga-specific subfamily. ML tree was also drawn using IQ-TREE v1.6.12 with LG+I+G4 and branch support was estimated with 1,000 ultrafast bootstrap. The bar indicates 0.1 amino acid substitutions per site.


Figure S7. Structure of *cox1* gene encoded in the mitochondrial genome

Several ORFs were identified in the intron of *cox1* gene in *Bryopsis* sp..

Figure S8. Length of intron in the mitochondrial genome

N = 72, 47, 29, 10, 18, 18, 26 (from left to right).

Figure S9. UGA codon likely encodes tryptophan in the mitochondrial genome

Based on the amino acid sequences of the Nad5 protein (this figure) and other conserved proteins in green algae, the UGA of *Bryopsis* sp. likely represents a tryptophan codon, not a termination codon, in the mitochondrial genome.