

1 Co-exposure to Polyethylene Fiber and *Salmonella*
2 *enterica* Typhimurium Alters Microbiome and Metabolome
3 of *in vitro* Chicken Cecal Mesocosms

4

5 Chamia C. Chatman¹, Elena G. Olson², Allison J. Freedman¹, Dana K. Dittoe⁴, Steven C. Ricke
6^{2,3}, and Erica L-W. Majumder¹

7

8

9¹Department of Bacteriology, University of Wisconsin-Madison

10²Department of Animal and Dairy Sciences, University of Wisconsin-Madison

11³Meat Science and Animal Biologics Discovery Program, University of Wisconsin-Madison

12⁴Department of Animal Science, University of Wyoming

13

14 ABSTRACT

15
16 Humans and animals encounter a summation of exposures during their lifetime (the
17 exposome). In recent years, the scope of the exposome has begun to include
18 microplastics. Microplastics (MPs) have increasingly been found in locations where
19 there could be an interaction with *Salmonella enterica* Typhimurium, one of the
20 commonly isolated serovars from processed chicken. In this study, the microbiota
21 response to a 24-hour co-exposure to *Salmonella enterica* Typhimurium and/or low-
22 density polyethylene (PE) microplastics in an *in vitro* broiler cecal model was
23 determined using 16S rRNA amplicon sequencing (Illumina) and untargeted
24 metabolomics. Community sequencing results indicated that PE fiber with and without
25 *S. Typhimurium* yielded a lower *Firmicutes/Bacteroides* ratio compared to other
26 treatment groups, which is associated with poor gut health, and overall had greater
27 changes to the cecal microbial community composition. However, changes in the total
28 metabolome were primarily driven by the presence of *S. Typhimurium*. Additionally, the
29 co-exposure to PE Fiber and *S. Typhimurium* caused greater cecal microbial community
30 and metabolome changes than either exposure alone. Our results indicate that polymer
31 shape is an important factor in effects resulting from exposure. It also demonstrates that
32 microplastic-pathogen interactions cause metabolic alterations to the chicken cecal
33 microbiome in an *in vitro* chicken cecal model.

34 35 IMPORTANCE

36 Researching the exposome, a summation of exposure of one's lifespan, will aid in
37 determining the environmental factors that contribute to disease states. There is an
38 emerging concern that microplastic-pathogen interactions in the gastrointestinal tract of
39 broiler chickens may lead to an increase in *Salmonella* infection across flocks and
40 eventually increased incidence of human salmonellosis cases. In this research article,
41 we elucidated the effects of co-exposure to polyethylene microplastics and *Salmonella*
42 *enterica* serovar Typhimurium on the ceca microbial community. *Salmonella* presence
43 caused strong shifts in the cecal metabolome but not the microbiome. The inverse was
44 true for polyethylene fiber. Polyethylene powder had almost no effect. The co-exposure

45 had worse effects than either alone. This demonstrates that exposure effects to the gut
46 microbial community are contaminant specific. When combined, the interactions
47 between exposures exacerbate changes to the gut environment. The results herein
48 support current *Salmonella* mitigation efforts and understanding microplastics-pathogen
49 interactions.

50

51

52

53

54

55

56 **Key words:** microbiome, metabolome, microplastics, *Salmonella enterica* Typhimurium
57 in vitro chicken cecal incubation, co-exposure

58

59

60 INTRODUCTION

61
62 Plastic production has steadily increased in the United States while recycling
63 rates have remained small (1, 2). As a result, non-recycled plastics are disposed of into
64 landfills or as litter in the environment where weathering and biodegradation will break
65 down plastics into smaller plastic fragments called microplastics (3). Microplastics (MPs)
66 are defined as plastic fragments less than 5 mm in diameter (3-5). As MP contamination
67 increases in the environment, the amount of animal and human MP exposure also
68 increases. Interaction with MPs is most likely to occur through food systems, as
69 ingestion and inhalation are common routes of exposure (4, 5). This is evidenced by the
70 detection of MPs in food products like seafood, prepared meats, salt, beer, sugar, and
71 honey (6-8).

72 Several studies have implicated MPs exposure to reproductive toxicity, increased
73 reactive oxygen species, gut dysbiosis and inflammation in various species . With
74 global plastic pollution to terrestrial environments estimated to be 13 to 25 million metric
75 tons per year (13), terrestrial animals including livestock have increased risk of
76 exposure. However, evaluation of health effects resulting from microplastic exposure
77 must also account for interaction with factors such as microorganisms. In aquatic
78 environments, microbial utilization of MPs or their degradation products as carbon
79 sources has resulted in biogeochemical changes to the system (14). For example, Chen
80 *et al.* (2020) reported that when microorganisms colonized polypropylene MPs there
81 were alterations to the nitrogen and phosphorous cycles in an aquatic system (14,15).
82 MPs-microbe interaction also leads to microbial colonization on MPs and MPs
83 degradation (16). As such, adverse outcomes associated with MP exposure greatly

84 depend on the foreign materials or microorganisms consumed simultaneously and how
85 these factors interact.

86 Lwanga et. al. (2017) was among the first to demonstrate that plastic pollution
87 could move along the terrestrial food chain and enter the digestive tract of broiler
88 chickens (17). Broiler chickens are the most common breed of meat-producing chicken
89 in the United States (18). Interactions between MPs and pathogens such as *S.*
90 *Typhimurium* are becoming an emerging concern in poultry production facilities as both
91 contaminants have been detected in processed poultry (6, 7, 19). *Salmonella enterica*
92 serovar *Typhimurium* (*S. Typhimurium*) is one of the more commonly isolated foodborne
93 pathogens from broiler meat (20, 21). *S. Typhimurium*, a Gram-negative, enteric
94 pathogen, invades intestinal epithelial and is commonly responsible for salmonellosis in
95 human cases (19, 22). Salmonellosis in humans typically occurs after consumption of
96 undercooked meat and results in gastroenteritis, vomiting, and diarrhea (20). Chickens
97 can acquire *S. Typhimurium* from feed, water, air, rodents, or insects (23). In broilers,
98 salmonellosis presents as weakness, ruffled feathers, and weight loss (19, 22).
99 Systemic infection is usually isolated to broilers less than 3 days old and older birds (≥ 3
100 weeks post-hatch) experience subclinical infection (22, 24). In addition, *Salmonella*
101 infection does not typically present clinical manifestations in chickens unless newly-
102 hatched (24). Overall, the age of the broiler, *Salmonella* serotype, and physiological
103 state of the *Salmonella* spp. influence *Salmonella* persistence in broilers (23).

104 There are two main routes of transmission of *Salmonella* spp. among flocks. The
105 first is via vertical transmission (i.e., hens to offspring) whereby *Salmonella* invades the
106 reproductive organs and results in infection to the eggs prior to hatch (25). The second

107 is horizontal transmission across flocks due to fecal shedding. Both routes of
108 transmission result in widespread infection and cross-contamination as *S. Typhimurium*
109 can form biofilms (20). Biofilms are defined as cell clusters that are enclosed in a
110 complex matrix of extracellular polymeric substances or EPS (26, 27). The EPS matrix
111 is primarily composed of polysaccharides, extracellular DNA, and proteins which allow
112 fixed bacteria to be protected from environmental stressors within meat processing
113 facilities (26, 28).

114 Biofilms are an important aspect of food safety as *S. Typhimurium* biofilms are
115 more resistant to antimicrobials commonly used in meat processing facilities
116 (20). Likewise, co-exposure to MPs and this pathogen would provide more surface area
117 and potentially seed *S. Typhimurium* biofilm growth in the gastrointestinal tract of
118 broilers. As a result, there is concern that biofilm formation in the gastrointestinal tract
119 of broilers will result in an increased prevalence of *S. Typhimurium* in flocks and
120 therefore increased incidence of human salmonellosis cases. Therefore, understanding
121 the interaction of MPs and *S. Typhimurium* is of the upmost importance.

122 Despite research indicating the public health risk of MPs-microbe interactions,
123 there are limited studies on the effect of such co-exposure on the gastrointestinal tract.
124 The objective of this study was to elucidate the effects of co-exposure of low-density
125 polyethylene microplastics and *S. Typhimurium* on the chicken cecal microbiome and
126 metabolome. This study focused on low-density polyethylene (PE) because it is one of
127 the most abundant plastics found in the environment and in food packaging materials
128 (8). Low-density PE comes in two common forms: powder and fiber. Using *in vitro* cecal
129 mesocosms for pathogen and MPs co-exposure assessment, it was hypothesized that

130 simultaneous exposure to PE MPs and *S. Typhimurium* would lead to greater disruption
131 in the cecal microbiome and metabolome compared to either contaminant singularly.
132 Effects of PE fiber and PE powder with or without *S. Typhimurium* were first assessed
133 by observing overall taxonomic composition using 16S rRNA gene amplicon sequencing
134 targeting the V4 region. Based on this, the fold change of genera was calculated to
135 quantify changes in relative abundance. Global untargeted metabolomics was
136 conducted and assessed with functional and statistical analyses. The data presented
137 indicates that polyethylene fiber, but not powder leads to altered taxonomic composition,
138 while *Salmonella* dominates small metabolite presence. The results presented here will
139 aid in ameliorating risk assessment standards for livestock and contribute to our general
140 knowledge on MPs-pathogen interactions.

141

142 **MATERIALS AND METHODS**

143 **Preparation of Polyethylene Microplastics**

145 Low density polyethylene (LDPE) fibers (GoodFellow, LS554234) were cut to 50
146 µm using a cryotome (Leica biosystem 1950 cryotome) protocol for preparing
147 microplastic fibers (29). Polyethylene fiber sizes were verified using scanning electron
148 microscopy (Zeiss GeminiSEM 450) (Figure S5). Low density polyethylene powder
149 (Thermo Fisher Scientific, Lot: Z05D030) and polyethylene fiber were weighed (50 mg)
150 and aliquoted into designated glass serum bottles.

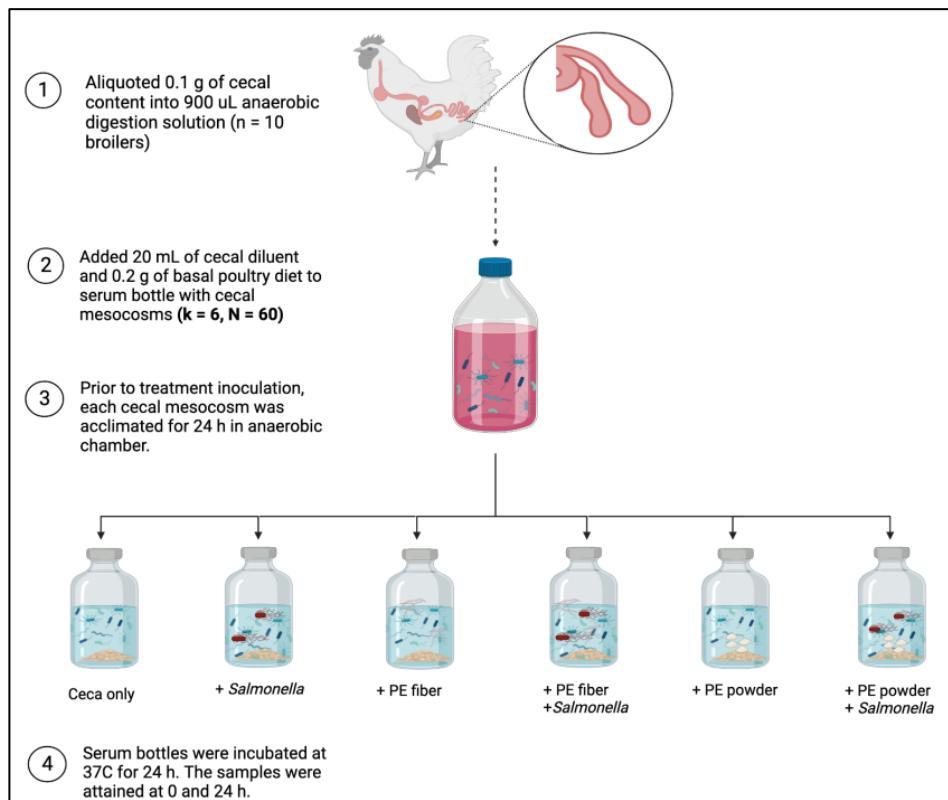
151

152 **Preparation of Nalidixic acid-resistant *Salmonella***

153 A frozen, pure culture of *Salmonella enterica* Typhimurium (ATCC 14028) was
154 streaked for isolation on XLT-4 agar (BD Difco; Lot: 1216783) and incubated at 37°C for
155 24 h. After, one colony was inoculated in 10 mL of Tryptic Soy Broth (TSB) (Bacto;
156 Lot:1131384) and incubated for 24 h at 37°C. A 1:2 nalidixic acid serial dilution was
157 used to produce a nalidixic acid-resistant (NA-resistant) strain of *S. Typhimurium*. Each
158 dilution was inoculated with 1 mL of *S. Typhimurium* and incubated for 24 h at 37°C.
159 Following which the dilution with the highest growth of NA-resistant *S. Typhimurium* was
160 used to continue the serial dilution. This process continued until the *S. Typhimurium*
161 was able to grow in TSB containing 64 µg/mL nalidixic acid. The inoculum was then
162 streaked onto XLT-4 containing 64 µg/mL nalidixic acid (VWR; Lot:21J285302) and
163 incubated overnight at 37°C. Following this one colony was selected and inoculated into
164 40 mL of TSB and incubated for 24 h at 37°C. The day of the study 200 µL of the NA-
165 resistant *S. Typhimurium* culture was inoculated into designated glass serum bottles.

166

167 **Cecal culture preparation and treatment**


168 The *in vitro* cecal microbiome model utilized ceca from 4-week-old Aviagen Ross
169 308 Broiler chickens from Whelps Hatchery in Bancroft, Iowa. All birds were housed at
170 the University of Wisconsin's Poultry Research Facility in floor pens and fed commercial
171 grade corn and soybean double pelleted chicken diet prepared onsite at the University
172 of Wisconsin-Madison (Table S7). This study was conducted in accordance with the
173 recommendations from the Guide for the Care and Use of Laboratory Animals. All
174 protocols were reviewed and approved by the University of Wisconsin-Madison's
175 Institutional Animal Care and Use Committee (IACUC ID: A006627). The 10 broiler

176 chickens selected for this study were humanely euthanized with carbon dioxide
177 asphyxiation. Ceca from each bird were separated at the ileal-cecal junction with
178 alcohol-dipped and flame-sterilized tools and placed in sterile samples bags which were
179 then placed in anaerobic boxes for immediate transport to the anaerobic chamber.

180 Under anaerobic conditions in a Coy (Coy Laboratory Products, Grass Lake,
181 Michigan, USA) anaerobic chamber with atmosphere containing 5% O₂, 10% CO₂,
182 85% N₂, 0.1 g of cecal content from the proximal end of each cecum was collected into
183 sterile 2 mL centrifuge tubes and resuspended in 900 μ L of anaerobic dilution solution
184 (0.45 g/L K₂HPO₄, 0.45 g/L KH₂PO₄, 0.45 g/L (NH₄)₂SO₄, 0.9 g/L NaCl, 0.1875 g/L
185 MgSO₄·7H₂O, 0.12 g/L CaCl₂·2H₂O, 0.0001% resazurin, 0.05% cysteine-HCl, and 0.2%
186 NaCO₃) (30, 31) (Figure 1). The resuspended cecal samples from each bird were then
187 diluted 1:3,000 in ADS and aliquoted in 20 mL portions 6 times into serum bottles (6
188 treatments). In addition, 0.2 g of the chicken feed was added to the digesta diluent as a
189 nutrient source. Serum bottles were then capped and crimped to maintain anaerobic
190 conditions and placed in a stationary incubator at 37°C. The digesta diluent containing
191 poultry basal diet were incubated at 37°C for a 24 h acclimation period prior to treatment
192 inoculation (30-32) (Table S1).

193 Following the 24 h acclimation, designated polyethylene treatments were poured
194 into the serum bottle containing cecal mesocosms. The *S. Typhimurium* was inoculated
195 into the serum bottle containing cecal mesocosms using a pipette. The treatment
196 groups were as follows: ceca only, *S. Typhimurium* only, polyethylene fiber (PE fiber),
197 polyethylene fiber with *S. Typhimurium* (PE fiber + *Salmonella*), polyethene powder (PE
198 powder) and polyethene powder with *S. Typhimurium* (PE powder + *Salmonella*). There

199 were ten biological replicates per treatment group (six treatment groups; n= 10; N = 60).
200 For the 0-hour time point, 1 mL of total contents was removed via serological pipette in
201 duplicate and aliquoted into sterile microcentrifuge tubes, flash frozen in liquid nitrogen,
202 and stored at -80°C. The serum bottle cecal mesocosms containing controls or
203 treatments were incubated at 37°C for an exposure period of 24 h. At 24 hours, a
204 second 1 mL sample was collected in duplicate and immediately stored in the same
205 manner.

217

218 **Library Preparation for 16S rRNA Gene Amplicon Sequencing**

219 Collected cecal mesocosm samples from each treatment group and each
220 timepoint were stored in -80°C until genomic DNA extractions were performed. For
221 gDNA extractions, 1 mL from each sample at both 0 h and 24 h timepoints were

222 centrifuged for 5 min x 14000 rcf (N=120). The supernatant was then discarded, and
223 DNA extraction was performed using the standard protocol for the DNeasy Blood and
224 Tissue kit (Qiagen, Cat 69506). Total genomic DNA quality and concentration were
225 verified using an Infinite 200Pro spectrophotometer (Tecan Nano Quant Plate™). The
226 DNA extracts were diluted to 10 ng/µL in Buffer AE and stored at - 80°C until further
227 analysis.

228 To initiate amplicon library preparation for microbiome sequencing, DNA extracts
229 were PCR-amplified with primers targeting the V4 region of the 16S rRNA gene. The
230 primers were dual-indexed primers designed using high-fidelity polymerase, Pfx,
231 according to the protocol by Kozich et al (33). Gel electrophoresis was performed to
232 verify amplified PCR products. The amplified PCR products were then normalized to 20
233 µL using a SequalPrep Normalization kit (Life Technologies). Aliquots of 5 µL from each
234 normalized sample were subsequently pooled into the final library. Final concentrations
235 were verified using a KAPA library quantification kit (Kapa Biosystems) and a Qubit 2.0
236 Fluorometer (Invitrogen). Next, the final library was diluted to 20 nM with HT1 buffer and
237 PhiX control v3 (20%, v/v) and 600 µL was loaded onto a MiSeq v2 (500 cycles) reagent
238 cartridge (Illumina). The resulting sequences were uploaded to Illumina Sequence Hub
239 and downloaded using BaseSpace Sequence Hub Downloader (Illumina).

240

241 **Microbiome Community Analyses**

242 Quantitative Insights Into Microbial Ecology (QIIME) 2 (version 2022.2) (34) was
243 utilized to perform microbiome bioinformatics. The raw Illumina amplicon sequence data
244 was uploaded to BaseSapce Website (Illumina, San Diego, CA, United States) to

245 assess sequence run quality and completion. The demultiplexed data was downloaded
246 from the Illumina Basespace website and uploaded to QIIME2 using Casava 1.8 paired-
247 end demultiplexed format (via QIIME import tools). Demultiplexed reads were then
248 denoised with DADA2 (35) (via q2-dada2) and quality filtered using the chimera
249 consensus pipeline. Next, the amplicon sequence variants (ASVs) were aligned using
250 mafft (36) (via q2-alignment) and fasttree2 (37) to produce the phylogenetic tree (via q2-
251 phylogeny). Taxonomy was assigned to the ASVs in the feature table using (via q2-
252 classifier sklearn) provided by QIIME2 with a confidence limit of 97% (38). The classifier
253 was trained with SILVA 138 99% OTUs reference sequences (39). Alpha and Beta
254 diversity analyses were then performed (via q2-diversity) for each time point.

255 Main effects and interactions were evaluated with ANOVA (via q2-longitudinal)
256 (P-value ≤ 0.05 ;Q-value ≤ 0.05) (40) and ADONIS ($R^2 \geq 0.50$; P-value ≤ 0.05) (41).
257 Pairwise comparisons using Kruskal-Wallis) was conducted for α -diversity metrics
258 (Shannon's Diversity index, Observed Features, Faith's Phylogenetic Diversity, and
259 Pielou's Evenness) (P-value ≤ 0.05 ;Q-value ≤ 0.05) (42). In addition, pairwise
260 comparisons using analysis of similarity analysis (ANOSIM) was performed for β -
261 diversity metrics (Jaccard distance, Bray-Curtis distance, unweighted UniFrac distance
262 and weighted UniFrac distance) (via q2-composition) (P-value ≤ 0.05 ;Q-value ≤ 0.05)
263 (43, 44). Additional microbiome analyses (i.e., core microbiota and abundance-
264 prevalence relationship) and data visualization (i.e., relative abundance bar plot and
265 composition boxplots) in R (version 2022.12) were performed using an adapted protocol
266 based on Sudakaran's microbiome analysis tutorial (45). β -diversity metrics, Bray-Curtis
267 and weighted UniFrac were visualized with principal component analysis plots in R.

268

269 **Metabolite Extraction**

270 An aliquot of cecal mesocosm contents from each treatment and timepoint was
271 used to determine protein concentration by a Bradford assay (46). Metabolites
272 extraction was performed using 0.5 mL of from each cecal mesocosm sample (N =
273 105). Cells were lysed by three freeze-thaw and sonication cycles which consisted of
274 thawing at room temperature for 10 min followed by a 30 second sonication on ice in a
275 water bath sonicator (Branson 2800). A 1 mL aliquot of 2:2:1 (v/v) mixture of \geq 99.9%
276 purity acetonitrile (Fisher Scientific; Cat.A998-4) \geq 99.8% purity methanol (Fisher
277 Scientific; Cat. A412-4) and water was added to cell extracts and sonicated for 30 s and
278 stored at -20°C overnight to allow cellular debris and protein to precipitate. The next day
279 samples were centrifuged for 15 min at 20,784 x g at 4°C. The supernatant was
280 transferred to new microcentrifuge tubes and dried for 4 h on a SpeedVac Concentrator
281 (Thermo Scientific Savant DNA 120). Dried samples were then reconstituted in an
282 acetonitrile: water (1:1 v/v) solvent mixture based on the normalized protein
283 concentration of all samples, where the highest protein concentration sample had 100
284 μ L of resuspension volume. Samples were vortexed for 30 s, sonicated on ice for 10
285 min and centrifuged for 15 min at 13,000 rpm at 4°C to remove any residual debris. The
286 metabolite extracts were transferred into 0.3 mL HPLC autosampler vials with inserts
287 (VWR International LLC, Cat. 9532S-1CP-RS) and stored in -80°C until analysis.

288

289 **Untargeted Metabolomics**

290 Metabolite extracts were analyzed with ultra-high-performance liquid orbitrap
291 chromatography mass spectrometry (UHPLC-MS) (Thermo Scientific Orbitrap Exploris
292 240 mass spectrometer). A Kinetex Core-Shell 100 Å column C-18 column (1 x 150
293 mm, 1.7 µm, Phenomenex) was used for separation of metabolites. Sample injection
294 volume was 3 µL/min at a flow rate of 0.250 mL/min. Mobile phase A was composed of
295 water with 0.1% formic acid, and mobile phase B was 0.1% in acetonitrile. The gradient
296 began with 5% B from 0-3 min, then an increase and hold to 95% B until 18 min,
297 followed by a decrease to 5% B at 18.50 min and hold at 5% B until 22 min. Data-
298 dependent acquisition was used for the tandem MS workflow in positive ion mode.
299

300 **Untargeted Metabolomics Data Analysis**

301 MetaboAnalyst 5.0 was used for statistical analysis and functional analysis of the
302 MS1 data as described in Pang *et al.* (2022) (47). The raw files were converted to
303 mzXML files and centroided (MS-1, orbitrap, positive mode) using ProteoWizard version
304 3.0 (48). Pairwise comparisons were performed to investigate potential differences of
305 metabolite features between each treatment group at 0 h and 24 h and between the
306 ceca only group and each treatment group. Then functional analysis (p-value = 1.0E-5,
307 KEGG *E. Coli* library) was conducted to assess pathway-level changes to the cecal
308 metabolome. Putative identification of metabolites was first carried out using
309 MetaboAnalyst 5.0 which matches MS1 data compounds in Human Metabolome
310 Database. Annotation and putative identification of metabolites was also performed on
311 the raw MS/MS files in Compound Discoverer (version 3.3, Thermo Fisher Scientific)
312 against mzCloud, mzVault, Metabolika and ChemSpider databases.

313
314
315

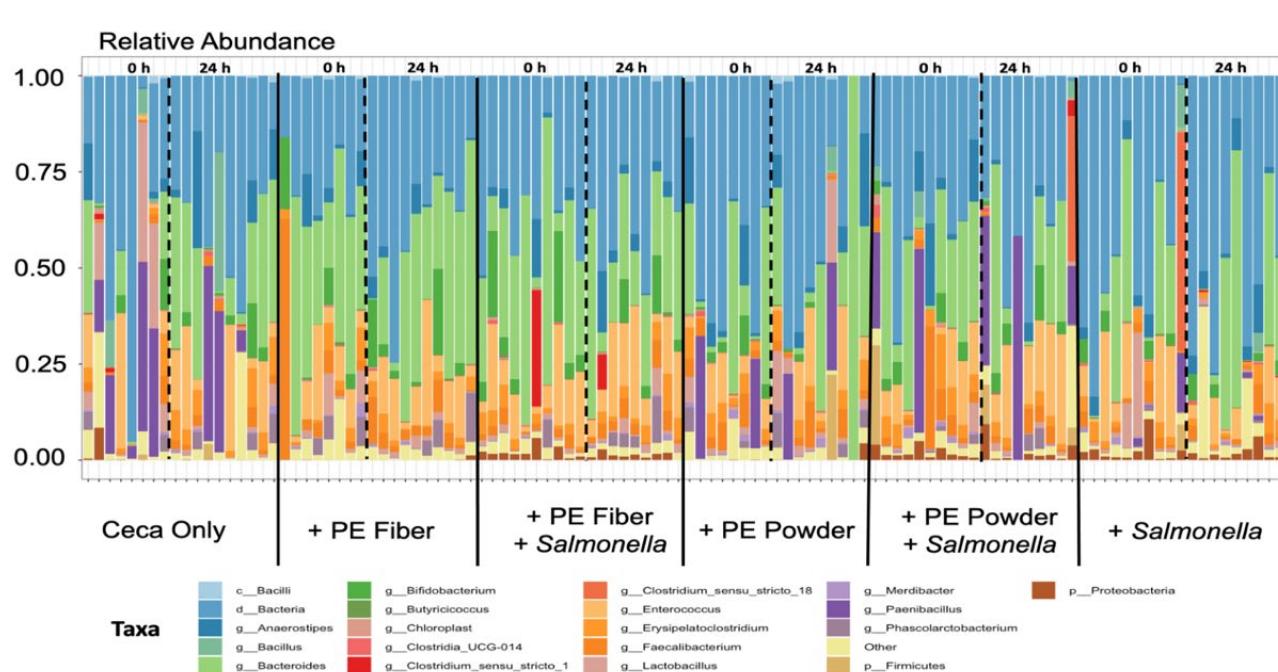
Data Availability

316 Sequencing data were uploaded to NCBI's Short Read Archive as BioProject ID
317 PRJNA1043229 (<http://www.ncbi.nlm.nih.gov/bioproject/1043229>), and untargeted
318 metabolomics data was uploaded to MetaboLights as project MTBLS9001
319 (www.ebi.ac.uk/metabolights/MTBLS9001).

320
321

RESULTS

322 To determine the effects of plastic and pathogen co-exposure on the microbiome,
323 ceca from 10 broiler chickens were harvested, diluted, aliquoted and grown overnight
324 anaerobically. The 6 treatment groups were subsequently established containing ceca
325 only (untreated), PE Fiber, PE powder, *S. Typhimurium* or a combination of each plastic
326 with the pathogen. Cecal mesocosms were incubated for 24 hours. Samples were
327 collected at 0 and 24 hours and analyzed for cecal microbial community composition
328 and metabolome (Figure 1).


329
330

331 **Untreated cecal microbiome and metabolome were not significantly
332 altered over 24-hour incubation**

333 The ceca only group evaluated had the typical taxonomic composition and small
334 molecule presence found within the ceca of broiler chickens. 16S rRNA gene amplicon
335 sequencing targeting the V4 region was conducted, and the taxa were annotated to the

336 genera level (Figure 2). The microbial composition detected in this study was found to
337 be similar in membership to published 16S rRNA sequencing of cecal microbiomes from
338 broiler chickens (49-51).

339 To assess the effect of time on the cecal microbiome composition and
340 metabolome, the untreated groups were compared at the 0- and 24-hour time points.
341 The main effect "time" was significant for overall α -diversity metrics indicating
342 phylogenetic diversity was altered over time (Table 1). However, when the 16S rRNA
343 data was analyzed by time point (i.e., at 0 h and 24 h separately) there were no
344 significant differences detected for α -diversity or β -diversity metrics for the untreated
345 groups at the two timepoints (P -value ≥ 0.05) (Tables S4-S6). The relative abundance of
346 the top 40 microbial taxa in individual samples was compared at the 0 h and 24 h
347 timepoints (Figure 2) and found to have little variation with only four of 36 genera having
348 a fold change (FC) in the relative of abundance greater than two: *Bacteroides*,
349 *Enterococcus*, *Lactobacillus*, and an unclassified genus from the class Clostridia (Table
350 S2). Similarly, untargeted metabolomics was used to assess the metabolome of the
351 ceca. Pairwise comparison of metabolite features in ceca only samples at 0 h versus 24
352 h did not show any significantly dysregulated metabolites (P -value ≥ 0.05) among the
353 2,096 detected (Table S14). Overall, there were no significant changes in the cecal
354 microbiome or metabolome of the ceca only group after 24 hours of incubation. This
355 indicates that any observed changes in the treated conditions will be associated with the
356 treatment and not normal fluctuation within the ceca.

357 Figure 2. Taxa Bar Plot showing the Relative Abundance of the top 25 phyla by bird at 0 h and 24 h, separated
358 by dashed line, for all treatment groups, separated by solid black line. The *Salmonella* added to the
mesocosms is in the genus *Enterobacteri*a and phylum *Proteobacteri*a (brown bars).

359 ***Salmonella enterica* Typhimurium influences the cecal metabolome**

360 To assess the effect of *Salmonella* presence on chicken cecal microbiome and
361 metabolome, groups containing *Salmonella* were compared to their respective no
362 *Salmonella* group both at the 0-hour and then at the 24-hour timepoint (Ceca only vs +
363 *Salmonella*; + PE Fiber vs + PE Fiber + *Salmonella*; and + PE Powder vs + PE Powder
364 + *Salmonella*). For the microbial community composition, comparisons of α -diversity
365 metrics were not found to be significant when analyzed at 0 h and 24 h (Kruskal-Wallis
366 pairwise, Q-value ≥ 0.05) (Table S4a-d). Similar to α -diversity metrics, β -diversity
367 metrics also showed insignificant results as determined by ANOSIM for each pairwise
368 comparison (P-value ≥ 0.05 ; Q-value ≥ 0.05) (Table S5-6). Evaluation of the main
369 effects and interactions as determined by ADONIS were also not significant (Table 7)
370 (P-value ≥ 0.05 ; Q-value ≥ 0.05).

371 *Salmonella enterica* Typhimurium was inoculated into assigned cecal
372 mesocosms to elucidate the effects of the enteric pathogen singularly and in conjunction
373 with polyethylene. To verify the presence or absence of *S. Typhimurium* within
374 inoculated cecal microbiome mesocosms, we analyzed the relative abundance of taxa
375 for each treatment group. Comparing the relative abundance of bacterial phyla, we
376 observed that the relative abundance of *Proteobacteria* is highest in *Salmonella*-
377 containing groups (Figure 2, brown bars). As *Salmonella* is a member of the
378 *Proteobacteria* phylum, this indicates that the pathogen inoculation was successful
379 within our *Salmonella*-containing mesocosms. Furthermore, differential abundance
380 testing using ANCOM at the genus level further confirmed this finding as
381 *Enterobacterales* was the significant feature detected at 0 h between 24 h in
382 *Salmonella*-containing groups (Table S3), indicating that *Salmonella* grew within the
383 cecal mesocosms. To quantify the microbial composition changes over the time series,
384 we analyzed the fold change in the relative abundance of all genera but evaluated the
385 top 40 within the +*Salmonella* treatment group (Table S2). Within the +*Salmonella*
386 group, the only two genera that exhibited fold change above two were *Enterococcus*
387 and *Oscillibacter* with a fold change of 3.2 and 2.2, respectively (Table S2).

388 Although the microbial community composition was not significantly altered by
389 the presence of *Salmonella* over a 24-hour period, activity of the microbiome, as
390 measured by metabolome changes, was significantly altered. Global untargeted
391 metabolomics was performed on all 6 treatment groups at both 0 h and 24 h timepoints.
392 A multiple group comparison of the total metabolomes detected at 24 hours is plotted in
393 Figure 2. Two clusters are observed which correspond to the presence or absence of

394 *Salmonella*. This indicates that *Salmonella* substantially alters the metabolic activity of
395 the cecal microbiome.

396

397 To determine metabolome similarities and dissimilarities between ceca only
398 (untreated) and +*Salmonella* treatments, statistical analysis of the total metabolomes
399 using pairwise comparisons was conducted (ceca only metabolome at 24 h vs
400 +*Salmonella* metabolome at 24 h). We determined that 113 metabolites were
401 significantly downregulated and 1 was significantly upregulated and 2,002 were not
402 significantly dysregulated (Table S8). To ensure that significantly dysregulated
403 metabolites were in fact correlated to *Salmonella* inoculation and activity, a comparison
404 of the +*Salmonella* samples collected at 0 h and 24 h was analyzed. The result
405 highlighted that 15 metabolites were significantly down-dysregulated, 139 metabolites
406 significantly up-dysregulated and 1,971 were insignificant (Table S10). Significantly
407 dysregulated metabolites associated with *Salmonella* inoculation putatively identified
408 with MetaboAnalyst included Simulanoquinoline, Asparaginyl-tryptophan, and
409 Pyridoxamine (Figure 4a-c). Simulanoquinoline expression increased at 24 h for +PE
410 fiber + *Salmonella*, +PE powder + *Salmonella* and +*Salmonella* groups (Figure 4a). In
411 contrast, Asparaginyl-tryptophan expression decreased at 24 h within the +PE fiber +
412 *Salmonella*, +PE powder + *Salmonella* and +*Salmonella* groups (Figure 4b). In addition,
413 Pyridoxamine as identified by Compound Discoverer showed a maintained expression
414 in *Salmonella*-containing groups (Figure 4c).

415

416 Following statistical analysis, we performed functional analysis to determine
417 pathway-level changes that occurred within the metabolome. The Functional analysis
418 module in MetaboAnalyst utilizes a modified Gene Set Enrichment Analysis and
419 Mummichog algorithm (P-value = 1.0E-5, KEGG *E. coli* library) to map *m/z* features to
420 metabolic pathways. The results demonstrated that the total metabolome of
421 +*Salmonella* groups at 0 h and 24 h maintained a high expression of metabolites
422 associated with arginine metabolism and porphyrin and chlorophyll metabolism but
423 showed a decreased expression of biotin metabolism (213.1239_412.94 *m/z*_RT, where
424 *m/z* is mass to charge ratio and RT is retention time in seconds for that metabolite
425 feature) over the time course (Figure S4). There was also a noticeable increase in the
426 feature 152.0347_371.77 which is associated with tryptophan metabolism (Figure S4).
427 As expected, the ceca only metabolome at 24 h varied greatly from the +*Salmonella*
428 metabolome at 24 h. For example, in the ceca only metabolome at 24h there was a low
429 expression of features 259.1084_407.15 (porphyrin and chlorophyll metabolism),
430 155.0819_120.36 (Arginine metabolism), 213.1239_412.94 (biotin metabolism),
431 155.0818_91.01 (arginine metabolism) and 155.082_375.78 (arginine metabolism).

432

Scores Plot – 24 h

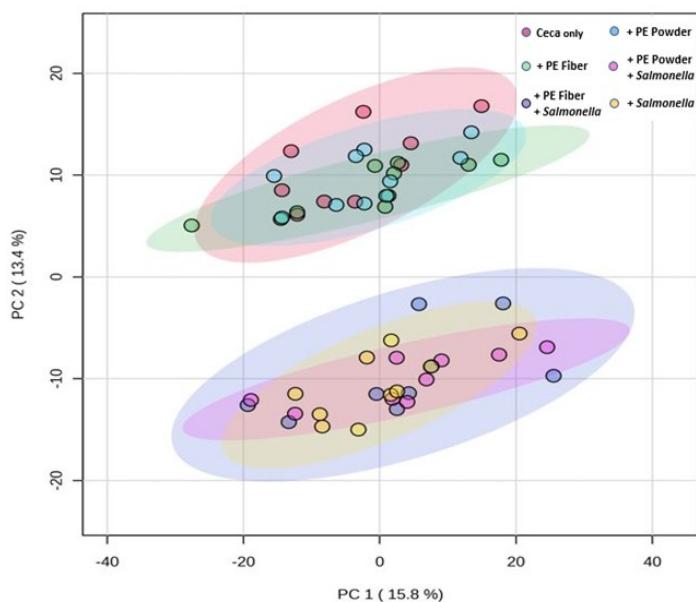
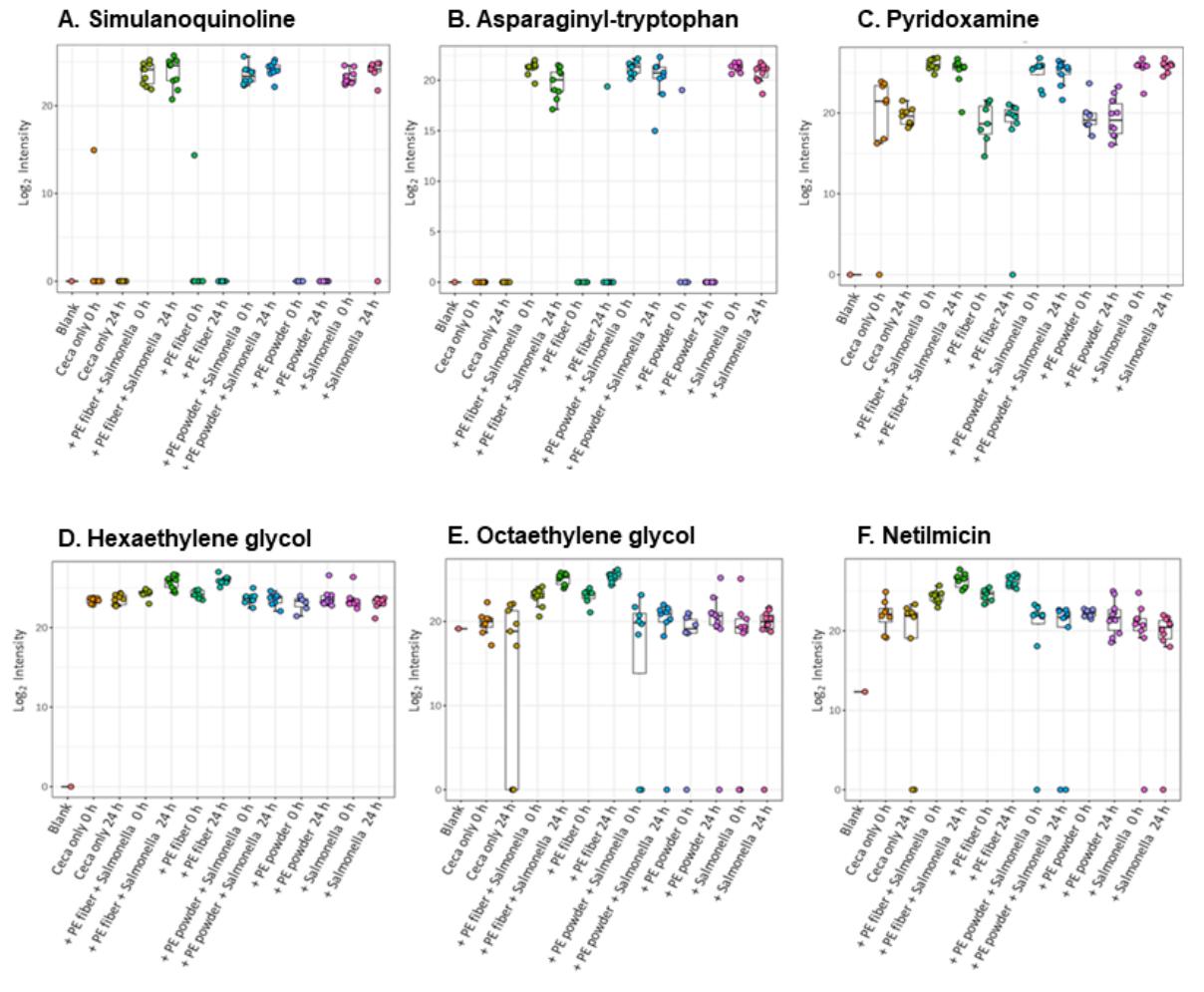



Figure 3. Principal component analysis of the metabolome at 24 h. Distinct clustering of treatment groups without *Salmonella* in upper portion of plot. The bottom portion shows a close relationship of *Salmonella*-containing treatment groups. This indicates that the presence of *Salmonella* has a greater influence on small molecule dysregulation than polyethylene fiber or polyethylene powder, singularly.

443

444

445 Figure 4. Significantly dysregulated metabolites associated with *Salmonella* inoculation or polyethylene
446 fiber presence as determined by putative identification within MetaboAnalyst. Significantly dysregulated
447 metabolites associated with the presence of *Salmonella* included A) Simulanoquinoline, B) Asparaginyl-
448 tryptophan, and C) Pyridoxamine, Metabolites associated with PE fiber presence included D)
449 Hexaethylene glycol, E) Octaethylene glycol and F) Netilmicin.

450

451

452

453

454 **The cecal microbiome is altered more by the PE fiber treatment than**

455 **PE powder**

456

457 To assess the effects of PE presence and polymer type on the cecal microbiome and
458 metabolome, PE-containing groups were compared to the untreated ceca and the
459 opposing PE treatment group (ceca only vs +PE powder; ceca only vs +PE fiber; +PE
460 fiber vs +PE powder). Microbial community composition was analyzed by comparisons
461 of α -diversity metrics using Kruskal-Wallis pairwise comparison in QIIME2. The results
462 were not found to be significant for any treatment comparison at 0 h and 24 h (Q-value
463 ≥ 0.05) (Table S4a-d). β -diversity metrics as measured by ANOSIM (P-value ≥ 0.05 ; Q-
464 value ≥ 0.05) (Table S5-6) were also insignificant for each pairwise comparison.

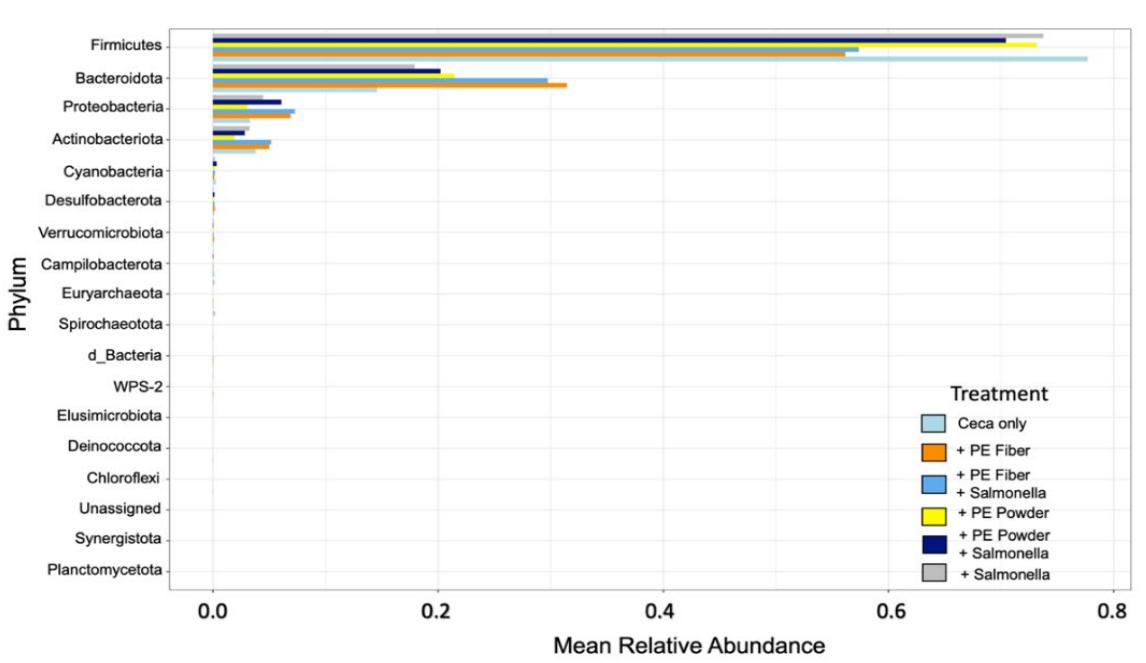
465 Evaluation of the main effects and interactions as determined by ADONIS were also not
466 significant (Table S7) (P-value ≥ 0.05 ; Q-value ≥ 0.05). First, we assessed microbial
467 composition variability among +PE fiber and +PE powder treatment groups.

468 Interestingly, microbial composition of PE-containing groups as determined by
469 calculating the mean relative abundance of phyla revealed that the composition of both
470 +PE fiber and +PE powder consists of more *Firmicutes* than *Bacteroidetes* (Figure 5).
471 Yet, at the genera level, the +PE fiber group had higher relative abundance of the genus
472 *Bacteroides* (Figure 2).

473 The effects of +PE powder on the cecal microbiome and metabolome were
474 conducted by evaluating microbial composition over the time series. This was
475 determined by calculating fold change in the relative abundance of genera for this
476 treatment group. The top 40 genera were then analyzed. The largest fold change for the

477 +PE powder group was for the genera *Bacteroides* and an uncultured bacterium (FC \geq
478 2) (Table S2). The ceca only group also had a similar FC >2 for *Bacteroides* over the
479 24-hour time course. To determine the effects of PE powder on the total metabolome, a
480 multigroup comparison was performed on the untargeted metabolomics data. Figure 3
481 highlights the similarities between +PE powder and +PE fiber as determined by principal
482 component analysis. Further comparison of the ceca only metabolome at 24 h to the
483 +PE powder total metabolome at 24 yielded no significantly dysregulated metabolites
484 (P-value ≥ 0.05) (Table S14). To confirm this finding, comparison of +PE powder 0 h
485 metabolome versus +PE powder 24 h metabolome was evaluated and also yielded no
486 significantly dysregulated metabolites (P-value ≥ 0.05) (Table S14). Pathway-level
487 changes, however, were comparable to +PE fiber and ceca only (Figure S4). In all,
488 these results indicate the +PE powder treatment group did not significantly alter the
489 cecal microbiome or metabolome.

490 To determine the effect of +PE fiber on the cecal microbiome and metabolome,
491 +PE fiber containing samples were analyzed with the same workflow as +PE Powder
492 groups. Despite insignificant results for microbial composition analysis, assessment of
493 abundance level changes of genera indicated distinct changes in the microbial
494 composition for the +PE fiber treatment groups. *Bifidobacterium* and *Sellimonas*
495 increased at least 2-fold over the time course for the +PE fiber group, but not +PE
496 powder (Table S2). Likewise, as mentioned above, +PE fiber groups had higher
497 abundance of *Bacteroides* than other groups.


498

499 To assess the effects of PE fiber on the cecal metabolome, multigroup analysis
500 and pairwise comparison (ceca only vs PE fiber; PE fiber at 0 h vs PE fiber at 24 h) was
501 evaluated. Multiple group analysis of the total metabolome as determined with principal
502 component analysis highlighted no distinct clustering of the total metabolome of +PE
503 fiber at 24 h (Figure 3). Yet pairwise comparison of +PE fiber metabolome at 0 h to +PE
504 fiber metabolome at 24 h yielded 49 significantly down-dysregulated metabolites, 4
505 significantly up-dysregulated and 1,998 insignificant metabolites (Table S9). Notably,
506 Hexaethylene glycol, Octaethylene glycol and Netilmicin were metabolites associated
507 with the presence of PE fiber as determined by putative identification within
508 MetaboAnalyst (Figure 4). The same metabolites were significantly dysregulated for
509 +PE fiber when comparing the ceca only metabolome at 24 h to the PE Fiber
510 metabolome at 24 h (Table S9). Netilmicin, as annotated by Compound Discoverer, had
511 an increased expression at 24 h for only +PE fiber and +PE fiber +*Salmonella* (Figure
512 4f). A similar trend was also detected for both hexaethylene glycol and octaethylene
513 glycol (Figure 4d-e). This data suggests that PE fiber, but not powder leads to distinct
514 changes in metabolic activity in the cecal microbiome.

515
516 As previously described, pathway-level changes were also assessed through
517 utilization of the functional analysis module in MetaboAnalyst (P-value = 1.0E-5, KEGG
518 *E. Coli* library). Comparison of the +PE fiber 0 h and 24 h metabolomes revealed that
519 feature 259.1084_407.15 which is associated with porphyrin and chlorophyll metabolism
520 was relatively lower within the total metabolome of +PE Fiber at 24 h (Figure S4).
521 However, some individual +PE fiber samples show an increase in this feature. The +PE

522 fiber metabolome at 24 h also had a low intensity of features 155.0819_120.36,
523 155.0818_91.01 and 155.082_375.78 which are associated with arginine metabolism
524 (Figure S4). Surprisingly, comparison of ceca only at 24 h to +PE fiber at 24 h revealed
525 similar metabolite levels among the treatment groups for the following features:
526 259.1084_407.15 (porphyrin and chlorophyll metabolism), 155.0819_120.36 (arginine
527 metabolism), 155.0818_91.01 (arginine metabolism) and 155.082_375.78 (arginine
528 metabolism) (Figure S4). Despite these similarities, the feature 165.0551_425.03
529 (phenylalanine metabolism) showed higher intensity levels in +PE fiber at 24h when
530 compared to ceca only metabolome at 24 h (Figure S4). These results indicate that the
531 presence of PE fiber more than PE powder has an effect on the cecal metabolome and
532 microbiome. However, unlike *Salmonella*-containing treatments, the presence of PE
533 fiber affected the microbiome more than metabolome.

534

535

536 Figure 5. Mean relative abundance of phylum in each treatment group. Firmicutes, Bacteroidota,
537 Proteobacteria, and Actinobacteria were the highest in mean relative abundance. Groups
538 containing PE fiber have a lower mean relative abundance of Firmicutes and higher mean
539 relative abundance of Bacteroidota compared to other treatment groups.

Table 1. ANOVA results for alpha diversity metrics.

	Shannon	Pielou's Evenness	Faith*	Observed Features*
PE	0.071	0.057	0.717	0.717
<i>Salmonella</i>	0.701	0.823	0.449	0.449
PE × <i>Salmonella</i>	0.725	0.881	0.709	0.709
Time	0.243	0.798	0.042	0.042
PE × Time	0.800	0.782	0.974	0.974
Time × <i>Salmonella</i>	0.567	0.597	0.836	0.836
PE × Time × <i>Salmonella</i>	0.950	0.574	0.660	0.660

*Bolded values indicate significant p-values. (N = 110; P-value ≤ 0.05)

540

541

Table 2. Firmicutes/Bacteroides Ratio for each treatment group overall.

	Ceca Only (n=17)	+PE fiber (n=18)	+PE fiber + <i>Salmonella</i> (n=19)	+PE powder (n=17)	+PE powder + <i>Salmonella</i> (n=19)	+ <i>Salmonella</i> (n=20)
F/B Ratio	5.30	1.76	1.93	3.45	3.50	4.12

542

543 **Co-exposure to PE fiber & *Salmonella enterica* Typhimurium caused**
544 **greater dysregulation in the cecal microbiome and metabolome**

545 Groups containing both *Salmonella* and PE were compared to the untreated ceca
546 and their respective no *Salmonella* group both at the 0 hour and 24-hour timepoint
547 (Ceca only vs +PE fiber + *Salmonella*; Ceca only vs +PE powder + *Salmonella*; + PE
548 Fiber vs + PE Fiber + *Salmonella*; and + PE Powder vs + PE Powder + *Salmonella*) to
549 assess the effect of both PE and *Salmonella* presence on chicken cecal microbiome
550 and metabolome. Microbial composition analysis as determined by Kruskal-Wallis
551 pairwise analysis of α -diversity metrics was not significant at 0 h and 24 h for any
552 comparison (Q-value ≥ 0.5) (Table S4a-d). β -diversity metrics were evaluated with at 0 h
553 and 24 h, and the results were also insignificant for each pairwise comparison ($R^2 \geq 0.5$;
554 Q-value ≥ 0.5) (Table S5-6). In addition, overall assessment of dissimilarities among the
555 treatment groups as determined by Bray-Curtis and Weighted UniFrac PCoA plots did
556 not demonstrate any distinct clustering (Figure S1). Although α -diversity and β -diversity
557 metrics were insignificant, overall microbial composition did vary slightly among co-
558 exposed +PE fiber + *Salmonella* and +PE powder + *Salmonella* treatment groups
559 compared to individual exposure treatments. For instance, there was a lower relative
560 abundance of *Paenibacillus* in the +PE fiber + *Salmonella* but not in the +PE powder +
561 *Salmonella* group (Figure S2).

562
563 To quantify abundance level changes in the cecal microbiome resulting from +PE
564 fiber + *Salmonella* exposure, we calculated the fold change (FC) in relative abundance
565 of genera. FC in the relative abundance of the top 40 genera revealed that *Lactobacillus*
566 was the only genera within the +PE fiber + *Salmonella* group which increased greatly
567 (FC >2) (Table S2). Remarkably, the only other treatment groups that had a FC > 2 for

568 *Lactobacillus* was the ceca only treatment group (Table S1). In addition, the
569 *Firmicutes/Bacteroidetes* ratio (F/B ratio) was evaluated to determine if the +PE fiber +
570 *Salmonella* treatment led to dysbiosis of the cecal microbiome. Table 2 highlights that
571 the presence +PE fiber + *Salmonella* results in an F/B ratio of 1.93. Conversely, the F/B
572 ratio was 5.30 for the ceca only group, which indicates that +PE fiber + *Salmonella*
573 exposure resulted in greater disruption to the cecal microbiome (Table 2).

574

575 Next, we evaluated the presence of +PE fiber + *Salmonella* on the cecal
576 metabolome using multiple group analysis and pairwise comparison (ceca only vs +PE
577 fiber + *Salmonella*; +PE fiber + *Salmonella* at 0 h vs +PE fiber + *Salmonella* at 24 h).
578 Activity of the microbiome, as measured by metabolome changes, was significantly
579 altered by the presence of +PE fiber + *Salmonella* but not +PE powder + *Salmonella*. As
580 mentioned previously, multiple group analysis as determined principal component
581 analysis showed distinct clustering of *Salmonella*-containing groups (Figure 3). Pairwise
582 comparison of the ceca only vs +PE fiber + *Salmonella* at 0 h and 24 h revealed
583 significantly dysregulated metabolites associated with the presence of both PE fiber and
584 *Salmonella*. Pairwise comparison of ceca only at 24 h to +PE fiber + *Salmonella*
585 metabolome at 24 h yielded 131 significantly down-dysregulated metabolites, 9
586 significantly up-dysregulated metabolites and 1,973 insignificant metabolites (Table
587 S12). In addition, a pairwise comparison of +PE fiber + *Salmonella* at 0 h vs +PE fiber
588 + *Salmonella* at 24 h yielded 19 significantly down-dysregulated metabolites, 130
589 significantly up-dysregulated metabolites and 1,976 insignificant metabolites (Table
590 S12).

591 Functional analysis was then performed to assess pathway-level changes that
592 occurred within the metabolome of +PE fiber +*Salmonella* (P-value = 1.0E-5, KEGG *E.*
593 *Coli* library). Pathway analysis results for +PE fiber + *Salmonella* treatment groups were
594 comparable to the +*Salmonella* group. For instance, there was also a decrease in
595 feature 213.1239_412.94 at 24 h which is associated with biotin metabolism (Figure
596 S4). Furthermore, there was a consistently higher level of metabolites 155.0819_120.36
597 (arginine metabolism), 155.0818_91.01 (arginine metabolism), 155.082_375.78
598 (arginine metabolism), and 259.1084_407.15 (porphyrin metabolism) (Figure S4).

599

600 The same analyses were performed as above to assess overall microbial
601 composition and abundance level changes in the +PE powder +*Salmonella* treatment
602 group. Unlike the +PE fiber +*Salmonella* treatment group, *Enterococcus*,
603 *Phascolarctobacterium*, *Lactobacillus*, and two unassigned bacteria had a FC >2 (Table
604 S2). Additionally, +PE powder +*Salmonella* had F/B ratio of 3.50 which is lower than
605 ceca only and +*Salmonella* treatment groups but higher than +PE fiber +*Salmonella*
606 (Table 2). Therefore, demonstrating that +PE powder +*Salmonella* results in minimal
607 disruption of the cecal microbiome compared to its counterpart, +PE fiber +*Salmonella*.

608

609 To assess the effects of +PE powder +*Salmonella* on the cecal metabolome,
610 multigroup analysis and pairwise comparison (ceca only vs +PE powder +*Salmonella*;
611 +PE powder +*Salmonella* at 0 h vs +PE powder +*Salmonella* at 24 h; +PE fiber
612 +*Salmonella* at 0 h vs +PE fiber +*Salmonella* at 24 h) was evaluated. Again, multiple
613 group analysis as determined principal component analysis showed distinct clustering of

614 +PE powder +*Salmonella*, +PE fiber +*Salmonella* and +*Salmonella* (Figure 3). Pairwise
615 comparison of ceca only to co-exposed +PE powder +*Salmonella* at 24 h detected 112
616 significantly down-dysregulated metabolites, 1 significantly up-dysregulated metabolite
617 and 1,993 insignificant metabolites (Table S13). While pairwise comparison of the +PE
618 powder +*Salmonella* metabolomes at 0 h vs 24 h resulted in 14 significantly down-
619 dysregulated metabolites, 148 significantly up-dysregulated metabolites and 1,963
620 insignificant metabolites (Table S13). Following statistical analysis, we performed
621 functional analysis to more accurately determine pathway-level changes that occurred
622 within the +PE powder +*Salmonella* metabolome (P-value = 1.0E-5, KEGG *E. Coli*
623 library). Metabolite levels were similar to the +PE fiber +*Salmonella* and +*Salmonella*
624 total metabolomes where features such as 155.0819_120.36 (arginine metabolism), and
625 259.1084_407.15 (porphyrin metabolism) had persistent high levels over the time series
626 (Figure S4). Due to the lack of microbial activity changes detected in the +PE powder
627 metabolome, pathway-level changes observed in the +PE powder +*Salmonella*
628 metabolome are likely due to *Salmonella* causing greater disruption in the cecal
629 microbiome and metabolome.

630

631 **DISCUSSION**

632 This study focused on determining the effects of a 24 h co-exposure of low-
633 density PE MPs and *S. Typhimurium*. Several analyses were conducted to establish if
634 the main effects of “time,” “polyethylene” and “*Salmonella*” resulted in significant
635 disruption to taxonomic composition and metabolic activity within the cecal microbiome.

636 The results indicated that for α -diversity and β -diversity metrics there was no significant
637 effect on community composition, richness, or diversity by the main effects: "time,"
638 "polyethylene" and "*Salmonella*."

639 Although α -diversity and β -diversity metrics were insignificant for the community
640 overall, there were treatment specific responses in the relative abundance of a few taxa.
641 In the +*Salmonella* treatment group, the only genera that responded were *Enterococcus*
642 and *Oscillibacter* (Table S2). Previous research by Khan and Chousalkar (2020)
643 reported that *Salmonella* infection in chickens resulted in a significant increase in
644 abundance for several genera including *Oscillibacter*, which resulted in the birds
645 experiencing gut dysbiosis (52). Our results are consistent with this finding and suggest
646 that *Salmonella* inoculation may lead to dysbiosis.

647 +PE fiber induced changes to the cecal microbiome were in *Bifidobacterium* and
648 *Sellimonas* (Table S2). *Bifidobacterium* has been reported to be increased in abundance
649 following oral ingestion of the dietary fiber, *Inulin*, which prevented *Salmonella*
650 colonization in chickens (53). Interestingly, in our findings, plastic fiber exposure also
651 increased the presence of beneficial bacteria even though we assume that PE fiber is
652 non-fermentable by cecal microorganisms. This suggests that fiber presence,
653 regardless of material, stimulates beneficial microbial activity. In the co-exposure
654 treatment with PE fiber and *Salmonella*, both *Oscillibacter* and *Bifidobacterium* had
655 decreased abundance over the 24 hours. This suggests that there are interactions
656 between the pathogen and the microplastic and that these interactions are changing
657 how the exposures affect the cecal microbial community. In this case, both beneficial
658 and harmful species were inhibited in growth, highlighting the complexity of the

659 multifaceted interactions between contaminants and gut microbial communities. The
660 health outcomes from this co-exposure then depend on which factor induces stronger
661 changes.

662 +PE powder did not elicit any significant responses. However, in this study, the
663 ceca only and +PE powder groups were the only treatments with a FC > 2 for
664 *Bacteroides*. Jacobson *et. al* (2018) reported that propionate produced by *Bacteroides*
665 prevented *Salmonella* colonization in mice (60). Assuming propionate is being produced
666 by the *Bacteroides* within the +PE powder group, this would explain the less drastic
667 effect of PE powder on cecal taxonomic composition. In addition, the surface texture of
668 PE powder may not allow for microbial colonization which would prevent changes to
669 cecal microbial composition (60). This is an indication that polymer type, surface
670 morphology and size affect the growth and abundance of microbial communities. As a
671 result, intestinal homeostasis was affected by +PE fiber and +PE fiber + *Salmonella*
672 treatments, but not +PE powder and +PE powder + *Salmonella* treatments. Therefore,
673 despite insignificant microbiome community analyses, microorganisms were greatly
674 altered by the presence of +PE fiber and +PE fiber + *Salmonella*, but not +PE power
675 and +PE power + *Salmonella*.

676 In addition to the response of specific genera to treatment, the
677 *Firmicutes/Bacteroides* ratio is an important metric commonly used with other health
678 markers to determine the presence of gut dysbiosis or gastrointestinal disorders.
679 Specifically, an increased *Firmicutes/Bacteroides* ratios is correlated to obesity while a
680 decreased *Firmicutes/Bacteroides* ratio is associated with Irritable Bowel Disease and
681 other chronic inflammatory disorders (54, 55). This trend has been reported in several

682 studies profiling the microbiota of Chron's and colitis samples (54, 56-58). In contrast,
683 there are studies which have reported no inverse relationship of *Firmicutes* and
684 *Bacteroides* (55, 59). Despite this contradiction, the *Firmicutes/Bacteroides* ratio has
685 long served as an acceptable way to assess gut health as these are the dominant
686 bacterial phyla in many species including chickens (45, 50). In this study, *Firmicutes*,
687 *Bacteroidota* and *Actinobacteriota* were confirmed as the prevalent phyla (Figure S3).
688 The *Firmicutes/Bacteroides* ratio for each treatment group was calculated and revealed
689 that the mean relative abundance of phyla was greatly affected by the presence of PE
690 fiber with and without *Salmonella* (Table 2). +PE fiber and co-exposure +PE fiber +
691 *Salmonella* treatment groups had *Firmicutes/Bacteroides* ratios much lower than ceca
692 only, +PE powder, +PE powder +*Salmonella* and +*Salmonella*. The lower
693 *Firmicutes/Bacteroides* ratio in PE fiber containing groups was from a decrease in
694 *Firmicutes* and an increase in *Bacteroides* over the 24-hour exposure. Similar to our
695 observations, Sun et al. (2021) also reported a decrease in *Firmicutes* and increase in
696 *Bacteroides* in the gut microbiome of mice following oral exposure to PE microplastics,
697 although the plastic shape was not reported (4). We further speculate that the
698 continued growth of *Firmicutes* within the +PE powder and +PE powder + *Salmonella*
699 groups (higher *Firmicutes/Bacteroides* ratios) but not the +PE fiber and +PE fiber +
700 *Salmonella* groups is a result of increased interference to microbial interactions both
701 synergistic, and antagonistic by +PE fiber + *Salmonella*. Therefore, our findings and
702 those from studies in mammals indicate that the presence of PE fiber and *Salmonella*
703 may result in animal gut dysbiosis. These observations also highlight the complexity of
704 determining exposure effects because of the large number of factors and their

705 interactions. This suggests that studies of individual exposures or studies conducted in
706 highly controlled settings may not reflect the actual health outcomes from environmental
707 exposures.

708 Untargeted metabolomics analyses used to determine metabolic activity in the
709 cecal microbiome revealed *Salmonella* had a greater influence on the cecal
710 metabolome than other treatments. Furthermore, assessment of metabolic activity was
711 an important factor in understanding the interaction of PE fiber and PE powder with and
712 without *S. Typhimurium*. Distinct metabolites associated with the presence of +PE fiber
713 and +*Salmonella* treatments were observed. Significantly dysregulated compounds
714 associated with *Salmonella* presence included simulanoquinoline, asparaginyl-
715 tryptophan and pyridoxamine (Figure 3a-c). The first, simulanoquinoline, has been
716 reported as a cytochrome P450 3A4 (CYP3A4) inhibitor and an α -glucosidase inhibitor
717 (38, 39). CYP3A4 has been detected in human and chicken gastrointestinal tracts and
718 livers and is known to be responsible for phase 1 metabolism of xenobiotics, bile acids,
719 antibiotics, and dietary compounds (38, 40). Within this study, simulanoquinoline levels
720 increased over the time course for +PE fiber +*Salmonella*, +PE powder +*Salmonella*
721 and +*Salmonella* treatment groups (Figure 3a), suggesting that *Salmonella* produced
722 this metabolite, stimulated production of it or induced the release of the molecule from
723 the feed particles that were in the mesocosm. Daou et al (2022) reported detecting
724 simulanoquinoline in abundance in the crude extracts of the shrub *Tamarix nilotica* (61).
725 Given that the basal diet incorporated into the cecal mesocosms contains plant
726 compounds, it is plausible that interactions among the PE fiber, *S. Typhimurium*, and

727 ingredients such as soybean meal in the basal diet results in generation of this
728 metabolite.

729

730 Asparaginyl-tryptophan was another metabolite that was significantly
731 dysregulated when *Salmonella* was present. Genes associated with tryptophan
732 biosynthesis and transport have been reported to be essential for *Salmonella* biofilm
733 formation and attachment (62). *Salmonella enterica* Typhimurium, specifically, has been
734 documented to attach and thrive on abiotic and biotic surfaces (26, 63, 64). As such, the
735 upregulation of asparaginyl-tryptophan in *Salmonella*-containing groups is likely a result
736 of *S. Typhimurium* biofilm formation and attachment to either PE fiber, PE powder or the
737 serum bottles used for the cecal mesocosms. Unfortunately, we were unable to recover
738 the PE fiber or powder from the cecal mesocosm to confirm presence or absence of
739 biofilms. We did perform a separate *in vitro* experiment where we grew *S. Typhimurium*
740 without the cecal community in the presence of the same PE fiber and PE powder and
741 stained for biofilm formation (Figure S6). This quantitative biofilm formation assay
742 revealed that *Salmonella* formed more biofilms on our 50 μ m PE fibers compared to PE
743 powder, consistent with literature reports of *Salmonella* forming biofilms on different
744 plastic surfaces (63, 64). Considering the increased relative abundance of *S.*
745 *Typhimurium* in the presence of PE fiber, the significantly dysregulated metabolites
746 associated with *Salmonella* and the higher biofilm presence on PE fiber microplastics, it
747 suggests that PE fiber presence and *S. Typhimurium* biofilm formation potential are
748 essential factors mediating the effects of this co-exposure. In addition, biofilm formation
749 on PE MPs may explain why the co-exposure had a greater disruption, as seen with the

750 mean relative abundance of phyla, than the simple sum of the individual exposures
751 (Figure 2).

752

753 Pyridoxamine, a form of vitamin B6 (65) was detected in this study at the highest
754 levels in *Salmonella*-containing groups: +PE fiber + *Salmonella*, +PE powder +
755 *Salmonella* and + *Salmonella* (Figure 3c). However, the concentration of pyridoxamine
756 was maintained indicating an accumulation of this compound within these groups. The
757 presence of this compound is likely due to the premix added in the poultry basal diet
758 which contained 4 mg/kg of vitamin B6 (Table S7). Pyridoxamine accumulation within
759 *Salmonella*-containing groups is likely a result of *S. Typhimurium* lacking a periplasmic
760 binding protein essential for vitamin B6 synthesis (58, 65). Therefore, higher
761 concentrations of pyridoxamine are detected in *Salmonella*-containing treatment groups
762 because *Salmonella* cannot consume it whereas without the presence of *Salmonella*
763 other members of the cecal community appear to metabolize it. In all, each of the
764 metabolites highlighted were upregulated in the presence of *S. Typhimurium*, thus,
765 providing evidence that *Salmonella* greatly influences the cecal metabolome.

766

767 In addition to metabolites linked to *Salmonella*, there were significantly
768 dysregulated metabolites associated with +PE fiber presence, namely hexaethylene
769 glycol and octaethylene glycol (Figure 3d-3f). These molecules are a part of a class of
770 organic compounds called polyethylene glycols (65). Hexaethylene glycol and
771 octaethylene glycol were also significantly down-regulated in a pairwise comparison of
772 the +PE fiber samples collected at 0 h and 24 h (Table S9). The same metabolites were

773 also significantly up-regulated in pairwise comparison of +PE fiber at 24 h to +PE
774 powder at 24h (Table S9). This indicates that the metabolites were not present in high
775 quantities at the initial time of exposure and may be the result of chemicals or other
776 unknown compounds leaching from PE fiber. Since our exposure was commercial
777 plastics and not pure polyethene polymer, water soluble additives and plasticizers in the
778 plastic will leach into the cecal matrix. While these molecules could be at least partially
779 metabolized by cecal microbiome members, we did not detect degradation products of
780 these compounds over the 24-hour exposure, likely because the microbiome is replete
781 with preferential nutrients from the poultry basal diet.

782

783 Netilmicin was also upregulated in the +PE fiber treatment group. Netilmicin is a
784 compound known to have bactericidal effects in vulnerable organisms (65). We suspect
785 that netilmicin originated from the commercial poultry basal diet that was added into the
786 cecal mesocosm as a nutrient source during the acclimation period, however, the feed
787 was not characterized prior to its use in the cecal mesocosms. It may also have
788 originated from the cecal microbial community during the acclimation phase as antibiotic
789 production is part of typical microbial interactions in a complex community. The
790 metabolite is highest in the presence of PE fiber with and without *Salmonella* but not PE
791 powder with and without *Salmonella*. This could suggest that the presence of PE fiber
792 induced microbial interactions that led to the production of this antibiotic. This further
793 indicates that treatment type influences how microbes within the cecal mesocosms
794 utilize metabolites, especially those derived from the commercial poultry basal diet.

795 In all, statistical analyses of the total metabolome of each treatment group
796 highlight that greater dysregulation occurs in the presence of co-exposure to +PE fiber +
797 *Salmonella* (Table S7-13). To better assess this co-exposure future evaluation should
798 incorporate a longer exposure duration, analysis of *Salmonella* biofilm formation pre-
799 and post-inoculation and characterization of nutritional sources such as the poultry
800 basal diet utilized in this study. Regardless of these limitations, the results of this study
801 provided evidence that co-exposure to +PE fiber and *S. Typhimurium* but not PE
802 powder, leads to greater dysregulation of the cecal microbiome and metabolome of
803 broiler chickens.

804

805 CONCLUSION

806 By integrating 16S rRNA gene amplicon microbial community sequencing and
807 untargeted metabolomics, we investigated the response of the ceca microbiota and its
808 related metabolites following exposure to low-density PE and *S. Typhimurium* in
809 mesocosms. PE in the fiber but not powder form caused disruption to microbial
810 community membership with both positive and negative indicators of gut health. The
811 presence of *Salmonella* altered the metabolome with very few changes in microbial
812 community member relative abundance suggesting that *Salmonella* excretes unique
813 metabolites or that the cecal community metabolism is responding to *Salmonella*
814 inoculation. We determined that the co-exposure of +PE fiber + *Salmonella* yielded
815 greater disruption to the cecal metabolome and microbiome than either individual
816 treatment. This indicates that polymer shape and size affect the growth, metabolism,
817 and abundance of microbial communities in chicken ceca. Additionally, effects of

818 individual exposures were contaminant specific. In all, co-exposure to PE fiber and *S.*
819 *Typhimurium* appears to modulate the cecal microbiome through MPs-microbial
820 interactions which led to microbial composition imbalance and altered metabolic activity.

821

822

823

824

825

826

827 **Acknowledgements**

828 The authors gratefully acknowledge use of facilities and instrumentation at the UW-
829 Madison Wisconsin Centers for Nanoscale Technology (wcnt.wisc.edu) partially
830 supported by the NSF through the University of Wisconsin Materials Research Science
831 and Engineering Center (DMR-1720415). We would also like to thank Dr. Bradley
832 Bolling and Klay Liu for providing access to the mass spectrometer and the helpful
833 discussions on untargeted metabolomics. In addition, we thank the University of
834 Wisconsin Madison's Poultry Research Facility and staff members for managing the
835 husbandry of the broilers acquired for this study. The author CC would like to
836 acknowledge the University of Wisconsin-Madison's Molecular and Environmental
837 Toxicology graduate program for its financial support through the Molecular and
838 Environmental Toxicology Training Award (T32 ES007015) as well as Fuad Shatara for
839 preparing the polyethylene fiber utilized in this study. The author EGO would like to
840 acknowledge the USDA Hatch Grant (project # AAI9572; award: MSN248836) for its
841 financial support.

842

843

844

845

846

847

848

849

850
851
852
853
854
855
856
857
858
859
860

861 **References**

862
863
864
865
866

- 867 1. Agency EP. 2022. Plastics: Material-Specific Data.
- 868 2. Agency EP. 2022. National Overview: Facts and Figures on Materials, Wastes and Recycling.
- 869 3. Xie XM, Deng T, Duan JF, Xie J, Yuan JL, Chen MQ. 2020. Exposure to polystyrene microplastics
870 causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling
871 pathway. *Ecotoxicology and Environmental Safety* 190:8.
- 872 4. Sun HQ, Chen N, Yang XN, Xia YK, Wu D. 2021. Effects induced by polyethylene microplastics oral
873 exposure on colon mucin release, inflammation, gut microflora composition and metabolism in
874 mice. *Ecotoxicology and Environmental Safety* 220:9.
- 875 5. Fournier E, Etienne-Mesmin L, Grootaert C, Jelsbak L, Syberg K, Blanquet-Diot S, Mercier-Bonin
876 M. 2021. Microplastics in the human digestive environment: A focus on the potential and
877 challenges facing in vitro gut model development. *Journal of Hazardous Materials* 415:15.
- 878 6. FSIS U. 2022. FSIS Issues Public Health Alert for Chicken Salad Products Containing FDA-
879 Regulated Dressing that has been Recalled due to Foreign Material Contamination.
- 880 7. Service UFSal. 2022. FSIS Issues Public Health Alert for Perdue Frozen Ready-To-Eat Chicken
881 Tender Products Due to Foreign Material Contamination.
- 882 8. Agency EP. 2021. Emerging Issues in Food Waste Management: Plastic Contamination.
- 883 9. Hou BL, Wang FY, Liu T, Wang ZP. 2021. Reproductive toxicity of polystyrene microplastics: In vivo
884 experimental study on testicular toxicity in mice. *Journal of Hazardous Materials* 405:11.
- 885 10. Luo T, Zhang Y, Wang CY, Wang XY, Zhou JJ, Shen ML, Zhao Y, Fu ZW, Jin YX. 2019. Maternal
886 exposure to different sizes of polystyrene microplastics during gestation causes metabolic
887 disorders in their offspring. *Environmental Pollution* 255:9.
- 888 11. Park EJ, Han JS, Seong E, Lee GH, Kim DW, Son HY, Han HY, Lee BS. 2020. Repeated-oral dose
889 toxicity of polyethylene microplastics and the possible implications on reproduction and
890 development of the next generation. *Toxicology Letters* 324:75-85.

891 12. Kurchaba N, Cassone BJ, Northam C, Ardelli BF, LeMoine CMR. 2020. Effects of MP Polyethylene
892 Microparticles on Microbiome and Inflammatory Response of Larval Zebrafish. *Toxics* 8:15.

893 13. MacLeo M, Arp HPH, Tekman MB, Jahnke A. 2021. The global threat from plastic pollution.
894 *Science* 373:61-65.

895 14. Wang J, Peng C, Li HY, Zhang PP, Liu XH. 2021. The impact of microplastic-microbe interactions on
896 animal health and biogeochemical cycles: A mini-review. *Science of the Total Environment*
897 773:12.

898 15. Chen XC, Chen XF, Zhao YH, Zhou H, Xiong X, Wu CX. 2020. Effects of microplastic biofilms on
899 nutrient cycling in simulated freshwater systems. *Science of the Total Environment* 719:7.

900 16. Rogers KL, Carreres-Calabuig JA, Gorokh E, Posth NR. 2020. Micro-by-micro interactions: How
901 microorganisms influence the fate of marine microplastics. *Limnology and Oceanography Letters*
902 5:18-36.

903 17. Lwanga EH, Vega JM, Quej VK, Chi JD, del Cid LS, Chi C, Segura GE, Gertsen H, Salanki T, van der
904 Ploeg M, Koelmans AA, Geissen V. 2017. Field evidence for transfer of plastic debris along a
905 terrestrial food chain. *Scientific Reports* 7:7.

906 18. Service UER. 2023. Poultry Sector at a Glance. <https://www.ers.usda.gov/topics/animal-products/poultry-eggs/sector-at-a-glance/#:~:text=During%202013%20%80%9322%2C%20broiler%20chickens,of%20all%20poultry%20sector%20sales>. Accessed

907 19. Service UFSal. 2011. Potential Public Health Impact of *Salmonella* and *Campylobacter*
908 Performance Guidance for Young Chickens and Turkeys.

912 20. Thames HT, Sukumaran AT. 2020. A Review of *Salmonella* and *Campylobacter* in Broiler Meat:
913 Emerging Challenges and Food Safety Measures. *Foods* 9:22.

914 21. Finstad S, O'Bryan CA, Marcy JA, Crandall PG, Ricke SC. 2012. *< i>Salmonella</i>* and broiler
915 processing in the United States: Relationship to foodborne salmonellosis. *Food Research*
916 International 45:789-794.

917 22. Fasina YO, Holt PS, Moran ET, Moore RW, Conner DE, McKee SR. 2008. Intestinal cytokine
918 response of commercial source broiler chicks to *Salmonella typhimurium* infection. *Poultry*
919 *Science* 87:1335-1346.

920 23. O'Bryan CA, Ricke SC, Marcy JA. 2022. Public health impact of *< i>Salmonella</i>* spp. on raw
921 poultry: Current concepts and future prospects in the United States. *Food Control* 132:10.

922 24. Barrow P, Simpson JM, Lovell MA. 1988. Intestinal colonisation in the chicken by food-poisoning
923 *salmonella* serotypes; Microbial characteristics associated with faecal excretion, *Avian Pathology*,
924 17(3), 571-588.

925 25. Obe T, Boltz T, Kogut M, Ricke SC, Brooks LA, Macklin K, Peterson A. 2023. Controlling *Salmonella*
926 : strategies for feed, the farm, and the processing plant, vol 102, Issue 12, *Poultry Science*.

927 26. Giaouris E, Heir E, Hebraud M, Chorianopoulos N, Langsrud S, Moretro T, Habimana O, Desvaux
928 M, Renier S, Nychas GJ. 2014. Attachment and biofilm formation by foodborne bacteria in meat
929 processing environments: Causes, implications, role of bacterial interactions and control by
930 alternative novel methods. *Meat Science* 97:298-309.

931 27. Ozdemir FN, Buzrul S, Ozdemir C, Akcelik N, Akcelik M. 2022. Determination of an effective agent
932 combination using nisin against *Salmonella* biofilm. *Archives of Microbiology* 204:11.

933 28. Di Martino P. 2018. Extracellular polymeric substances, a key element in understanding biofilm
934 phenotype. *Aims Microbiology* 4:274-288.

935 29. Cole M. 2016. A novel method for preparing microplastic fibers. *Scientific Reports* 6:7.

936 30. Rubinelli PM, Kim SA, Park SH, Roto SM, Nealon NJ, Ryan EP, Ricke SC. 2017. Differential effects
937 of rice bran cultivars to limit *< i>Salmonella Typhimurium</i>* in chicken cecal *< i>in vitro</i>*
938 incubations and impact on the cecal microbiome and metabolome. *Plos One* 12:20.

939 31. Feye KM, Rubinelli PM, Chaney WE, Pavlidis HO, Kogut MH, Ricke SC. 2020. The Preliminary
940 Development of an *in vitro* Poultry Cecal Culture Model to Evaluate the Effects of Original
941 XPCTM for the Reduction of *Campylobacter jejuni* and Its Potential Effects
942 on the Microbiota. *Frontiers in Microbiology* 10:14.

943 32. Feye KM, Dittoe DK, Rubinelli PM, Olson EG, Ricke SC. 2021. Yeast Fermentate-Mediated
944 Reduction of *Salmonella* Reading and Typhimurium in an *in vitro* Turkey Cecal
945 Culture Model. *Frontiers in Microbiology* 12:12.

946 33. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a Dual-Index
947 Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq
948 Illumina Sequencing Platform. *Applied and Environmental Microbiology* 79:5112-5120.

949 34. Bolyen E, Rideout JR, Dillon MR, Bokulich N, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ,
950 Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan
951 BJ, Caraballo-Rodriguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM,
952 Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM,
953 Gibson DL, Gonzalez A, Gorlick K, Guo JR, Hillmann B, Holmes S, Holste H, Huttenhower C,
954 Huttley GA, Janssen S, Jarmusch AK, Jiang LJ, Kaehler BD, Bin Kang K, Keefe CR, Keim P, Kelley ST,
955 Knights D, et al. 2019. Reproducible, interactive, scalable and extensible microbiome data
956 science using QIIME 2. *Nature Biotechnology* 37:852-857.

957 35. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: High-
958 resolution sample inference from Illumina amplicon data. *Nature Methods* 13:581-+.

959 36. Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence
960 alignment based on fast Fourier transform. *Nucleic Acids Research* 30:3059-3066.

961 37. Price MN, Dehal PS, Arkin AP. 2010. FastTree 2-Approximately Maximum-Likelihood Trees for
962 Large Alignments. *Plos One* 5:10.

963 38. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Caporaso JG.
964 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's
965 q2-feature-classifier plugin. *Microbiome* 6:17.

966 39. Robeson MS, O'Rourke DR, Kaehler BD, Ziemska M, Dillon MR, Foster JT, Bokulich NA. 2021.
967 RESCRIPt: Reproducible sequence taxonomy reference database management. *Plos
968 Computational Biology* 17:37.

969 40. Bokulich NA, Dillon MR, Zhang YL, Rideout JR, Bolyen E, Li HL, Albert PS, Caporaso JG. 2018. q2-
970 longitudinal: Longitudinal and Paired-Sample Analyses of Microbiome Data. *Msystems* 3:9.

971 41. Anderson MJ. 2001. A new method for non-parametric multivariate analysis of variance. *Austral
972 Ecology* 26:32-46.

973 42. Faith DP. 1992. CONSERVATION EVALUATION AND PHYLOGENETIC DIVERSITY. *Biological
974 Conservation* 61:1-10.

975 43. Lozupone CA, Hamady M, Kelley ST, Knight R. 2007. Quantitative and qualitative beta diversity
976 measures lead to different insights into factors that structure microbial communities. *Applied
977 and Environmental Microbiology* 73:1576-1585.

978 44. Lozupone C, Knight R. 2005. UniFrac: a new phylogenetic method for comparing microbial
979 communities. *Applied and Environmental Microbiology* 71:8228-8235.

980 45. Sudakaran S. 2022. Microbiome analysis in R - November 2022.

981 46. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities
982 of protein utilizing the principle of protein-dye binding. *Anal Biochem* 72:248-54.

983 47. Pang ZQ, Zhou GY, Ewald J, Chang L, Hacariz O, Basu N, Xia JG. 2022. Using MetaboAnalyst 5.0 for
984 LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global
985 metabolomics data. *Nature Protocols* 17:1735-1761.

986 48. Adusumilli R, Mallick P. 2017. Data Conversion with ProteoWizard msConvert, p 339-368. In
987 Comai L, Katz JE, Mallick P (ed), Proteomics: Methods and Protocols, vol 1550. Springer,
988 Dordrecht.

989 49. Wei S, Morrison M, Yu Z. 2013. Bacterial census of poultry intestinal microbiome. Poult Sci
990 92:671-83.

991 50. Ma XX, Wang Q, Li HM, Xu CT, Cui N, Zhao XM. 2017. 16S rRNA genes Illumina sequencing
992 revealed differential cecal microbiome in specific pathogen free chickens infected with different
993 subgroup of avian leukosis viruses. Veterinary Microbiology 207:195-204.

994 51. Park SH, Kim SA, Rubinelli PM, Roto SM, Ricke SC. 2017. Microbial compositional changes in
995 broiler chicken cecal contents from birds challenged with different *Salmonella* vaccine candidate
996 strains. Vaccine 35:3204-3208.

997 52. Khan S, Chousalkar KK. 2020. <i>Salmonella</i> Typhimurium infection disrupts but continuous
998 feeding of <i>Bacillus</i> based probiotic restores gut microbiota in infected hens. Journal of
999 Animal Science and Biotechnology 11:16.

1000 53. Song J, Li QH, Everaert N, Liu RR, Zheng MQ, Zhao GP, Wen J. 2020. Effects of inulin
1001 supplementation on intestinal barrier function and immunity in specific pathogen-free chickens
1002 with <i>Salmonella</i> infection. Journal of Animal Science 98:10.

1003 54. Stojanov S, Berlec A, Strukelj B. 2020. The Influence of Probiotics on the
1004 Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease.
1005 Microorganisms 8:16.

1006 55. Frank DN, Amand ALS, Feldman RA, Boedeker EC, Harpaz N, Pace NR. 2007. Molecular-
1007 phylogenetic characterization of microbial community imbalances in human inflammatory bowel
1008 diseases. Proceedings of the National Academy of Sciences of the United States of America
1009 104:13780-13785.

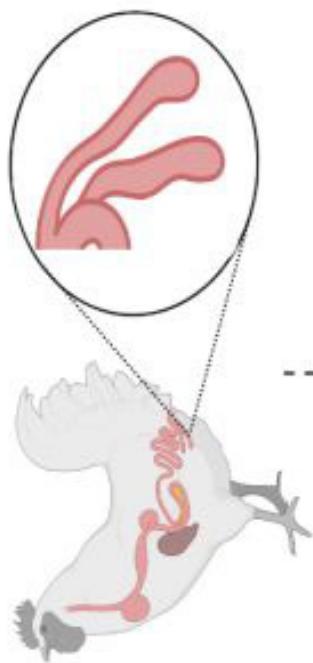
1010 56. Gophna U, Sommerfeld K, Gophna S, Doolittle WF, van Zanten S. 2006. Inferences between
1011 tissue-associated intestinal microfloras of patients with Crohn's disease and ulcerative colitis.
1012 Journal of Clinical Microbiology 44:4136-4141.

1013 57. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C,
1014 Chardon P, Marteau P, Roca J, Dore J. 2006. Reduced diversity of faecal microbiota in Crohn's
1015 disease revealed by a metagenomic approach. Gut 55:205-211.

1016 58. Mulligan JH, Snell EE. 1976. Transport and metabolism of vitamin B6 in *Salmonella typhimurium*
1017 LT2. J Biol Chem 251:1052-6.

1018 59. Houtman TA, Eckermann HA, Smidt H, de Weerth C. 2022. Gut microbiota and BMI throughout
1019 childhood: the role of firmicutes, bacteroidetes, and short-chain fatty acid producers. Scientific
1020 Reports 12:13.

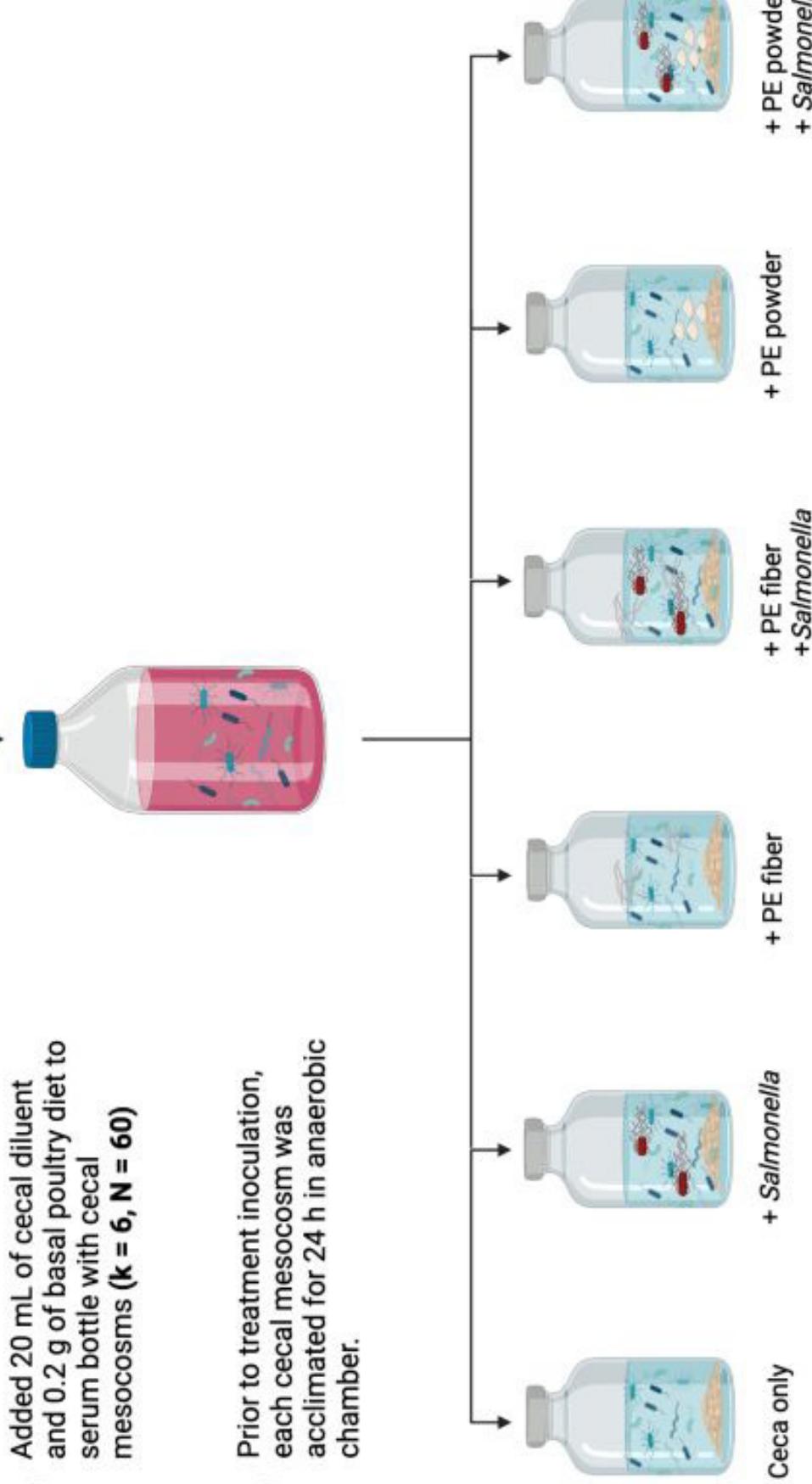
1021 60. Jacobson A, Lam L, Rajendram M, Tamburini F, Honeycutt J, Pham T, Van Treuren W, Pruss K,
1022 Stabler SR, Lugo K, Bouley DM, Vilches-Moure JG, Smith M, Sonnenburg JL, Bhatt AS, Huang KC,
1023 Monack D. 2018. A Gut Commensal-Produced Metabolite Mediates Colonization Resistance to
1024 <i>Salmonella</i> Infection. Cell Host & Microbe 24:296-+.

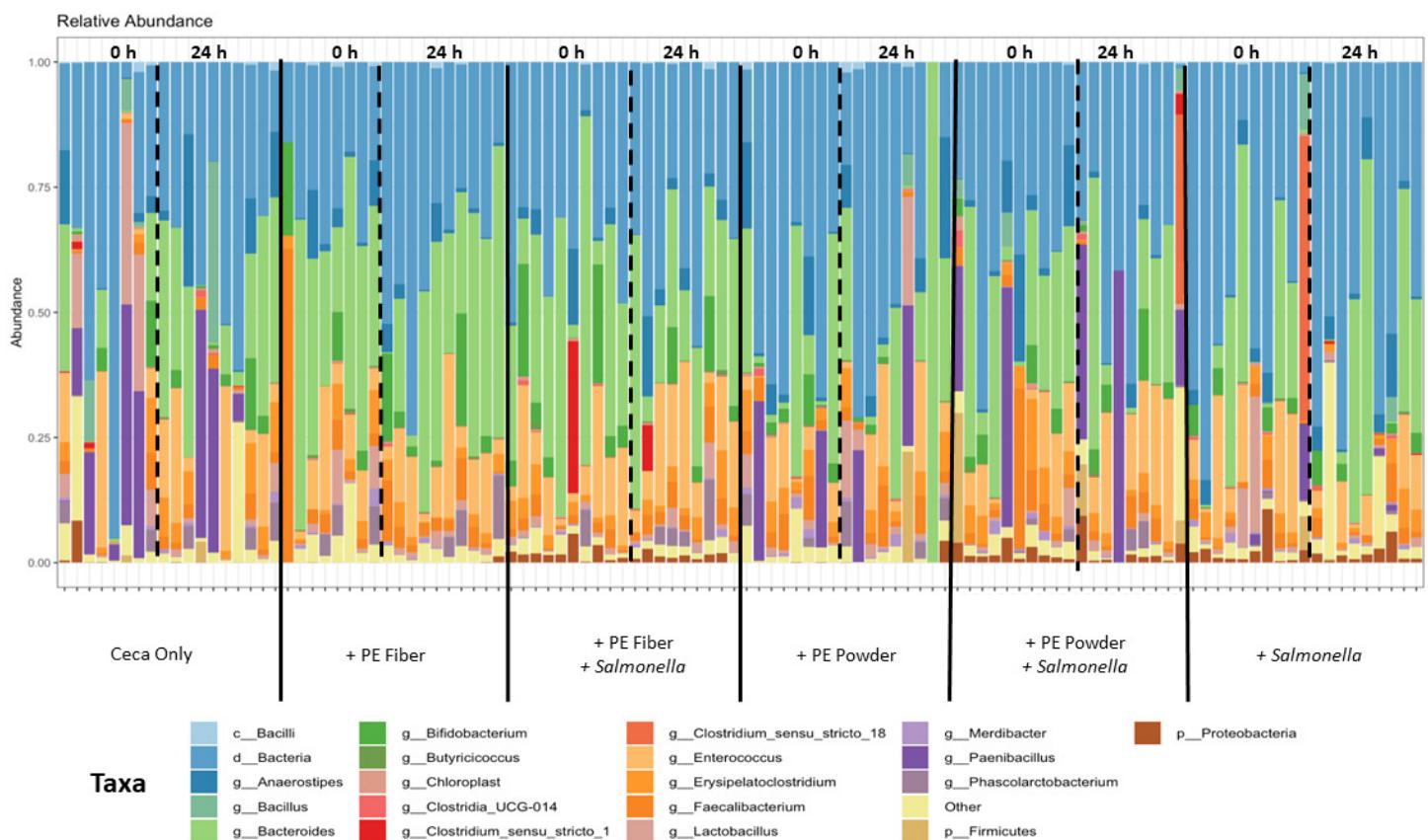

1025 61. Daou M, Elnaker NA, Ochsenkühn MA, Amin SA, Yousef AF, Yousef LF. 2022. In vitro α -
1026 glucosidase inhibitory activity of <i>Tamarix nilotica</i> shoot extracts and fractions. Plos One
1027 17:23.

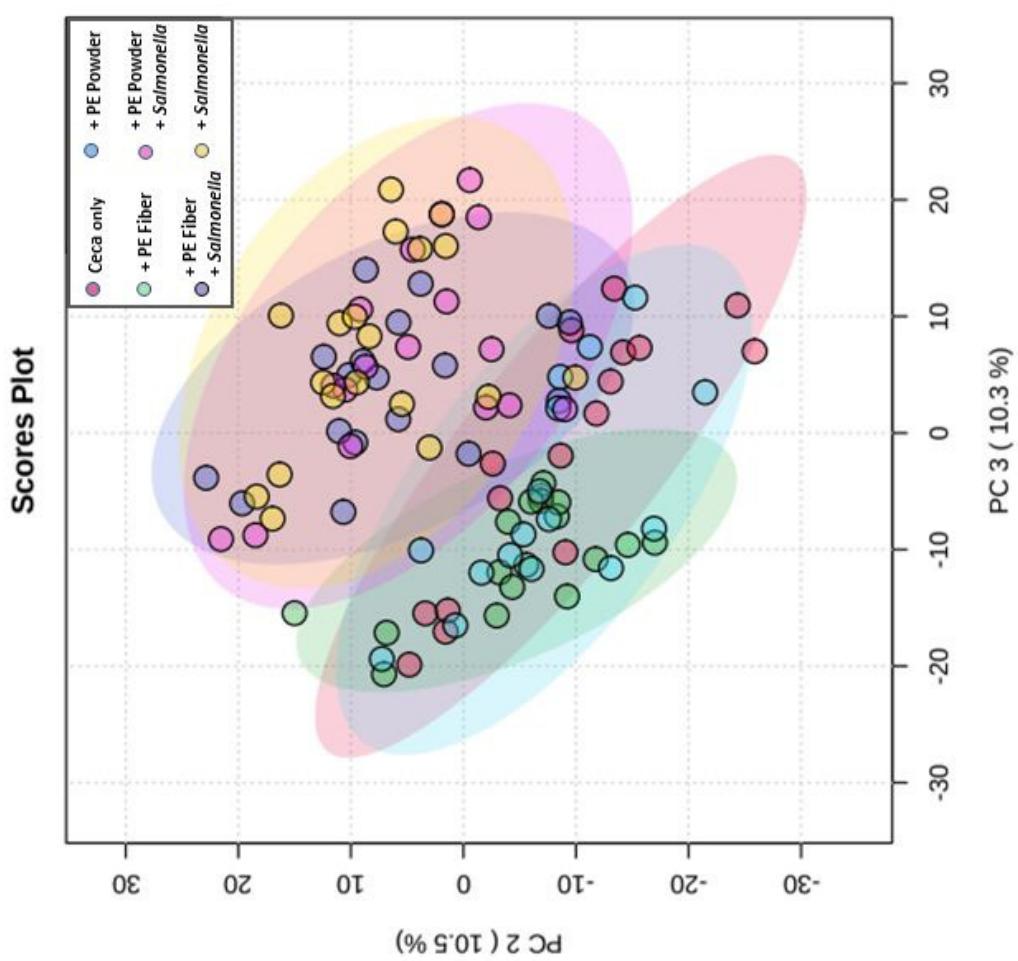
1028 62. Hamilton S, Bongaerts RJ, Mulholland F, Cochrane B, Porter J, Lucchini S, Lappin-Scott HM,
1029 Hinton JC. 2009. The transcriptional programme of *Salmonella enterica* serovar Typhimurium
1030 reveals a key role for tryptophan metabolism in biofilms. BMC Genomics 10:599.

1031 63. Stepanovic S, Cirkovic I, Mijac V, Svabic-Vlahovic M. 2003. Influence of the incubation
1032 temperature, atmosphere and dynamic conditions on biofilm formation by *Salmonella* spp. Food
1033 Microbiology 20:339-343.

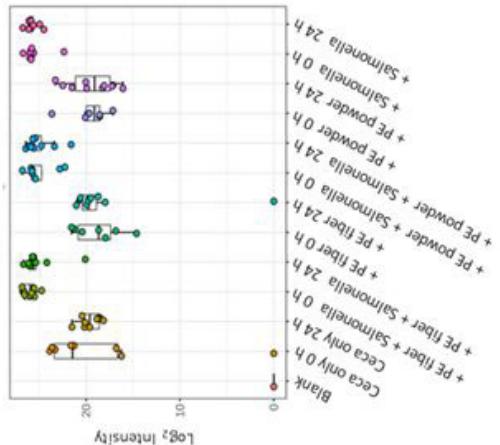
1034 64. Stepanovic S, Cirkovic I, Ranin L, Svabic-Vlahovic M. 2004. Biofilm formation by *Salmonella* spp.
1035 and *Listeria monocytogenes* on plastic surface. *Letters in Applied Microbiology* 38:428-432.
1036 65. Wishart DS, Guo A, Oler E, Wang F, Anjum A, Peters H, Dizon R, Sayeeda Z, Tian S, Lee BL,
1037 Berjanskii M, Mah R, Yamamoto M, Jovel J, Torres-Calzada C, Hiebert-Giesbrecht M, Lui VW,
1038 Varshavi D, Allen D, Arndt D, Khetarpal N, Sivakumaran A, Harford K, Sanford S, Yee K, Cao X,
1039 Budinski Z, Liigand J, Zhang L, Zheng J, Mandal R, Karu N, Dambrova M, Schiöth HB, Greiner R,
1040 Gautam V. 2022. HMDB 5.0: the Human Metabolome Database for 2022. *Nucleic Acids Res*
1041 50:D622-D631.


1042

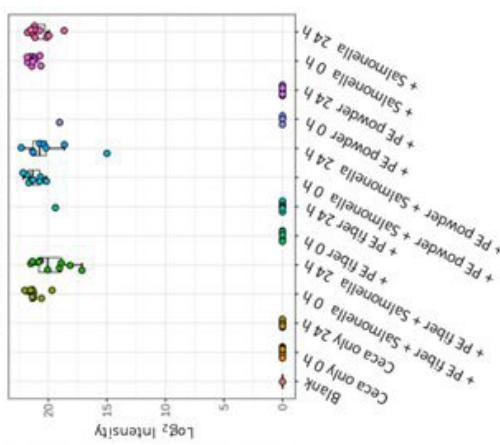

1 Aliquoted 0.1 g of cecal content into 900 μ L anaerobic digestion solution ($n = 10$ broilers)

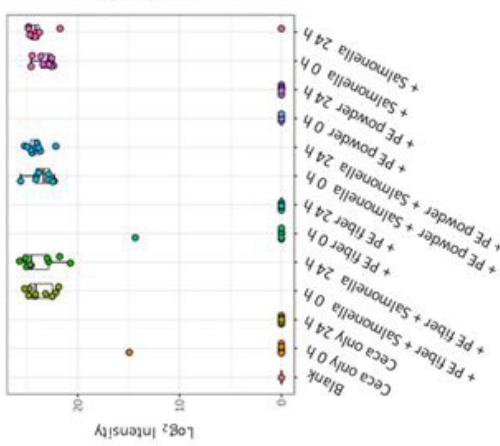

2 Added 20 mL of cecal diluent and 0.2 g of basal poultry diet to serum bottle with cecal mesocosms ($k = 6, N = 60$)

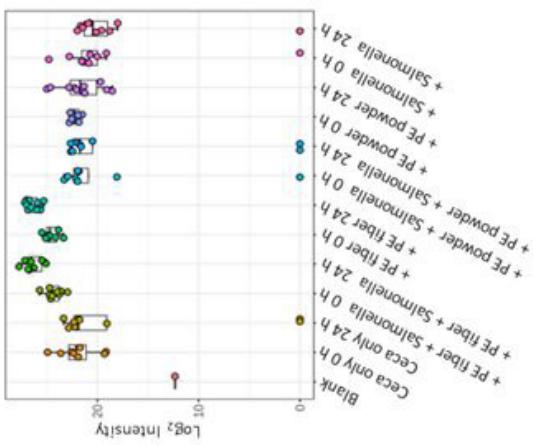
3 Prior to treatment inoculation, each cecal mesocosm was acclimated for 24 h in anaerobic chamber.

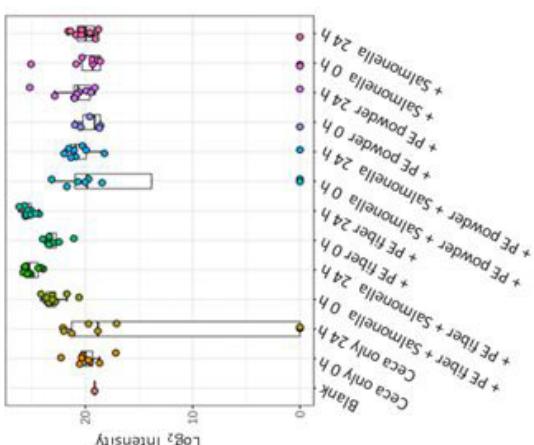


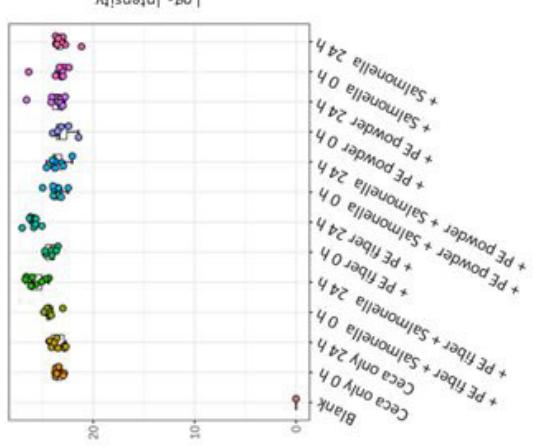
4 Serum bottles were incubated at 37C for 24 h. The samples were attained at 0 and 24 h.

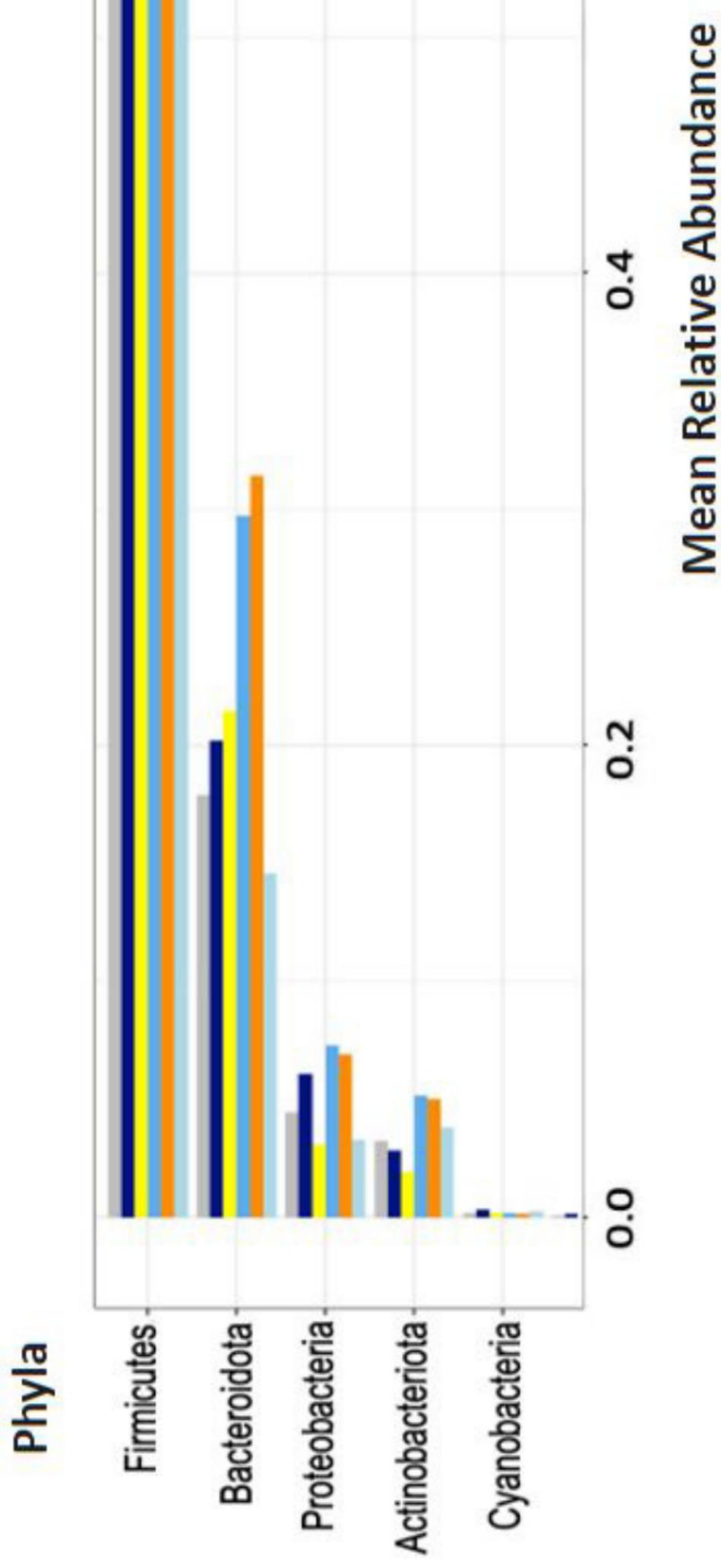



C. Pyridoxamine


B. Asparaginyl-tryptophan


A. Simulananoquinoline


F. Netilmicin



E. Octaethylene glycol

D. Hexaethylene glycol

