

1 **Title: Pyroptosis leads to loss of centrosomal integrity in macrophages.**

2

3 Authors: Siyi Bai^{1,3}, Fatima Martin-Sanchez^{1,3}, David Brough^{2,3,4}, Gloria Lopez-Castejon^{1,3}.

4 Affiliations:

5 ¹*Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences,*

6 *Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre,*

7 *University of Manchester, Manchester, M13 9PT, UK.*

8 ²*Division of Neuroscience and Experimental Psychology, School of Biological Sciences,*

9 *Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic*

10 *Health Science Centre, Manchester, UK.*

11 ³*The Lydia Becker Institute of Immunology and Inflammation, University of Manchester,*

12 *Manchester, M13 9PT, UK.*

13 ⁴*Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science*

14 *Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK.*

15 Corresponding author: Gloria.lopez-castejon@manchester.ac.uk

16

17 **Abstract**

18 NLRP3 forms a multiprotein inflammasome complex to initiate the inflammatory response

19 when macrophages sense infection or tissue damage, which leads to caspase-1 activation

20 and maturation and release of the inflammatory cytokines interleukin-1 β (IL-1 β) and IL-18,

21 and Gasdermin-D (GSDMD) mediated pyroptosis. NLRP3 inflammasome activity must be

22 controlled as unregulated and chronic inflammation underlies inflammatory and autoimmune

23 diseases. Several findings uncovered that NLRP3 inflammasome activity is under the

24 regulation of centrosome localized proteins such as NEK7 and HDAC6, however, whether

25 the centrosome composition or structure is altered during the inflammasome activation is not

26 known. Our data show that levels of the centrosomal scaffold protein pericentrin (PCNT) are

27 reduced upon NLRP3 inflammasome activation via different activators in human and murine

28 macrophages. PCNT loss occurs in the presence of membrane stabilizer punicalagin,

29 suggesting this is not a consequence of membrane rupture. We found that PCNT loss is
30 dependent on NLRP3 and active caspases as MCC950 and pan caspase inhibitor ZVAD
31 prevent its degradation. Moreover, caspase-1 and GSDMD are both required for this
32 NLRP3-mediated PCNT loss because absence of caspase-1 or GSDMD triggers an
33 alternative regulation of PCNT via its cleavage by caspase-3 in response to nigericin
34 stimulation. PCNT degradation occurs in response to nigericin, but also other NLRP3
35 activators including lysomotropic agent L-Leucyl-L-Leucine methyl ester (LLOMe) and
36 hypotonicity. Our work reveals that the NLRP3 inflammasome activation affects centrosome
37 composition and structure which may deepen our understandings of how activated NLRP3
38 inflammasomes are involved in the pathogenesis of inflammatory diseases.

39 Key words: Centrosome, NLRP3 Inflammasome, Pyroptosis, Caspases

40

41 **Introduction**

42 Inflammasome activation in macrophages is an early event occurring at the initiation of an
43 inflammatory response. Inflammasomes, formed by sensor proteins such as NLRP3,
44 assemble in response to pathogenic or damage signals leading to the activation of caspase-
45 1 which is responsible for the cleavage of pro-IL1 β and pro-IL18 into their active forms [1, 2]
46 as well as for the cleavage of GSDMD, which N-terminal domain forms pores in the
47 membrane required for IL-1 β and IL-18 release [3]. GSDMD cleavage is also required for the
48 induction of pyroptosis, a programmed lytic cell death induced upon inflammasome-
49 caspase-1 activation [4].

50

51 Subcellular localization of NLRP3 inflammasome is important for its function. Several
52 organelles contribute to NLRP3 regulation and activation either by acting as assembly
53 platforms or as sensors of NLRP3 activating stimuli that mediate inflammasome assembly
54 [5]. The centrosome is one of such organelles. Centrosome associated proteins MARK4,
55 HDAC6, NEK7, PLK1 and PLK4 contribute to either the trafficking of NLRP3 to the
56 centrosome or to regulation of NLRP3, mediating its activation [6,7,8,9,10]. However, little is

57 known about how changes to the centrosome composition and integrity are related to
58 inflammasome activation.

59

60 The centrosome is a dynamic organelle which plays important roles in microtubule
61 organisation and in cell cycle but also in stress and damage responses [11, 12].
62 Centrosomes are formed by the centrioles and a cloud of proteins around them called the
63 pericentriolar material (PCM) [13]. Pericentrin (PCNT) is one of the main components of the
64 PCM of the centrosome. In humans it presents two main isoforms PCNT-A (220 kDa) and
65 PCNT-B (also known as kendrin, 340 kDa) and that shares its N-terminal end with PCNT-A
66 [14]. The composition of the centrosome is altered during the cell cycle [15] as well as in
67 response to stresses such as DNA damage [16] or heat shock [17]. Sensing of pro-
68 inflammatory stimuli including the bacterial component LPS induces cell cycle arrest in G1
69 [18]. Moreover, LPS increases the accumulation of pericentriolar components at the PCM
70 including PCNT and γ -tubulin reflecting an alteration of the PCM [19]. Interestingly
71 monocytes from febrile patients with a fever or subjected to heat stress present a reversible
72 loss of integrity of the centrosome [17].

73

74 Pyroptosis and apoptosis are different forms of programmed cell death. Pyroptosis, unlike
75 apoptosis, does not depend on apoptotic caspases (caspase-3, -9, etc.) activation [20] but
76 on proinflammatory caspases (e.g., caspase-1) and the assembly of the GSDMD pore at the
77 plasma membrane [21]. Pyroptosis is a lytic cell death where contents are released to the
78 extracellular environment and contribute to inflammation [22]. It is become clear however,
79 that in the absence of GSDMD and hence pyroptosis, caspase-1 activation triggered by
80 NLRP3 inflammasome leads to caspase-3 activation and consequently apoptosis [23, 24].
81 This process is followed by caspase-3 mediated cleavage of Gasdermin E, that eventually
82 also leads to a pyroptotic event [23, 24]. Moreover, cells lacking caspase-1 are also able to
83 trigger incomplete pyroptosis via caspase-3, highlighting a tight cross-regulation between
84 these two types of cell death and caspases [25].

85

86 The centrosome can assemble and disassemble in response to specific stimuli and this is
87 essential for appropriate cell division. Here, PCNT is cleaved by separase, a member of the
88 Cell Death family of cysteine proteases, which also includes caspases [26]. PCNT cleavage
89 by separase occurs at R2231 (leading to a 275kDa fragment), and mutations in this site
90 suppresses centriole disengagement and subsequent centriole duplication [27]. Cleavage of
91 PCNT can also be mediated by caspase-3 in response to apoptotic stimuli. Seo and Rhee
92 (2018) demonstrated that treatment of HeLa cells with apoptotic agents led to the cleavage
93 of PCNT while no cleavage of γ -tubulin was detected [28]. The specific PCNT cleavage sites
94 targeted by caspase-3 remain to be identified. However, it remains unclear whether the
95 centrosome is targeted by caspase-1 in pyroptotic cells and how this is governed.

96

97 Here, we investigated the relationship between centrosome and inflammasome activation in
98 macrophages. We found that centrosome structure and PCNT protein are lost in response to
99 NLRP3 activators nigericin, LLOMe, and hyptonicity and that this is dependent on the
100 NLRP3/caspase-1/GSDMD signalling axis. This work highlights that the centrosome is
101 altered and dysfunctional in the pyroptotic environment formed by NLRP3 inflammasome
102 activation.

103

104 **Materials and Methods**

105 **Reagents and antibodies**

106 LPS (*Escherichia coli* 026:B6); Nigericin (N7143); protease inhibitor cocktail (P8340);
107 phorbol 12-myristate 13-acetate (PMA, P8139); penicillin–streptomycin (Pen/Strep, P4333);
108 Punicalagin (P0023); Caspase-1 Inhibitor IV (YVAD, 400015); MG-132 (M7449); Bovine
109 Serum Albumin (A7906) and Formaldehyde solution (50-00-0) were from Sigma. Dulbecco's
110 Phosphate Buffered Saline (PBS, D8537); DAPI (28718-90-3); Pepstatin A Methyl Ester
111 (Pepstatin A, 516485) and MCC950 (256373-96-3) were purchased from Merck. UltrapureTM
112 DNase/RNase-Free Distilled Water (10977035) was from Invitrogen. Zeocin (J67140-8) and

113 MeOH (67-56-1) was sourced from Thermo Scientific. Foetal bovine serum (FBS, S181H-
114 500) was from Gibco. Fluorescence Mounting Medium (S3023) was obtained from Agilent.
115 CA-074 methyl ester (CA-074, S7420) was from Selleckchem. Z-VAD-FMK (ZVAD, 001)
116 was from R&D Systems. Z-DEVD-FMK was obtained from APExBIO. E-64-D (BML-PI107)
117 was sourced from Enzo Life Sciences. L-Leucyl-L-Leucine methyl ester (LLOMe, 16008)
118 was from Cayman. DMSO (7726) was from Bio-Techne.

119 Primary antibodies used for Western blot assays were as follows: anti-pericentrin (1:500,
120 rabbit polyclonal, Abcam, ab4448), anti-pericentrin (1:200, rabbit polyclonal, Invitrogen, PA5-
121 115736), anti- γ -tubulin (1:1000, mouse monoclonal, Merck, T6557), anti-caspase-1 p20
122 (1:500, rabbit monoclonal, Cell Signalling Technology, 3866), anti-caspase-3 (1:500, rabbit
123 monoclonal, Abcam, ab32351), anti-NLRP3 (1 μ g/ml, mouse monoclonal, Adipogen, AG-
124 20B-0014) and anti- β -actin-HRP (0.2 μ g/ml, mouse monoclonal, Sigma, A3854). HRP
125 conjugated secondary antibodies used for Western blot were anti-rabbit-HRP (0.25 μ g/ml,
126 goat polyclonal, Dako, P0448) and anti-mouse-HRP (1.3 μ g/ml, rabbit polyclonal, Dako,
127 P0260).

128 Primary antibodies used for immunofluorescence were: anti-pericentrin (rabbit polyclonal,
129 Abcam, ab4448), anti-pericentrin (rabbit polyclonal, Invitrogen, PA5-115736), anti-ASC
130 (mouse, Biolegend, 676502), anti-ASC (rabbit polyclonal, AdipoGen Life Science, AG-25B-
131 0006-C100), anti-ninein (mouse monoclonal, Santa Cruz, sc-376420), Anti-NLRP3 (mouse
132 monoclonal, AdipoGen Life Science, AG-20B-0014) at 1:1000 dilution or anti- γ -tubulin
133 (mouse monoclonal, Merck, T6557) at 1:500 dilution.

134 **Cell Culture and treatments**

135 THP1^{ATCC}, THP1^{Caspase1^{-/-}}

136 and THP1^{GSDMD^{-/-}}

137 cells were maintained in complete RPMI-1640
138 (with 2 mM L-glutamine, 10% FBS and Pen/Strep (100 U/ml)). THP1^{Null²}

139 and THP1^{NLRP3 PYD^{-/-}}

140 deficient cells (THP1<sup>NLRP3^{-/-}) were also cultured in complete RPMI-1640 plus Zeocin (100
141 μ g/mL). THP1^{ATCC} cell line was sourced from ATCC. THP1<sup>Null² and THP1<sup>NLRP3^{-/-} cell lines
142 were purchased from Invivogen. THP1<sup>Caspase1^{-/-} cells were a gift from Prof Veit Hornung
143 (Ludwig Maximilian University of Munich). THP1^{GFP-NLRP3} and THP1^{GSDMD^{-/-} cells were}</sup></sup></sup></sup>

141 generated in the Lopez-Castejon's lab as previously described [29, 35]. All cultures were
142 maintained in humidified incubators at 37°C, 5% CO₂.

143 For Bone Marrow Derived macrophages (BMDMs) isolation, femur and tibia from 6-8 months
144 old C57BL/6J mice were removed. Bone marrow was flushed out, resuspended in DMEM
145 supplemented with 20% L929 supernatant, 10% FBS and 1% Pen/Strep (100 U/ml), then
146 cultured for 6 days until differentiation into macrophages. The resulting BMDMs were
147 detached with cold PBS and seeded on cell culture plates for use next day.

148 THP1 cells were plated at a density of 1×10⁶ cells/ml and differentiated with 0.05 µM PMA.
149 After 24 h, media were removed and replaced with fresh media. Experiments were carried
150 out the following day. During stimulation, cells were kept in E-total buffer (147 mM NaCl, 10
151 mM Hepes, 10 mM D-glucose, 2 mM KCl, 2 mM CaCl₂, 1 mM MgCl₂, buffered to pH 7.4).

152 **Cell death Assay**

153 Cell death was measured using quantitative assessment for the release of lactate
154 dehydrogenase (LDH) into cell supernatants, after a centrifugation step of 1 min at 13,000
155 ×g at 4°C, to remove any dead/floating cells. CytoTox 96® Non-Radioactive Cytotoxicity
156 Assay (Promega, G1780) was used according to the manufacturer's instructions.
157 Absorbance values were recorded at 490 nm and the results were expressed as a
158 percentage of LDH release relative to the total cells lysed.

159 **Caspase-1 activity Assay**

160 Caspase-1 activity was measured in the supernatants using Caspase-Glo® 1 Inflammasome
161 Assay (Promega G9951). Briefly, cell supernatants were combined with Z-WEHD
162 aminoluciferin substrate for 0.5 h before recording luminescence. The results were
163 expressed as a fold change relative to untreated cells.

164 **Cathepsins activity Assay**

165 The activity of cathepsin B and cathepsin D was measured using Abcam Fluorometric
166 Activity Assay Kits (ab65300 and ab65302 for cathepsin B and cathepsin D, respectively).
167 Briefly, cell lysates were incubated with reaction mix including reaction substrate and buffer

168 at 37 °C for 90 min following the manufacturer's instructions. Fold change from the untreated
169 cells control was calculated for all experimental groups.

170 **Proteasome activity Assay**

171 Proteasome activity was measured in cell lysates using the Proteasome-Glo™ 3 Substrate
172 System (Promega, G8531). Corresponding reagents for testing as chymotrypsin-like,
173 trypsin-like, and caspase-like activity of the proteasome are included in this kit.
174 Manufacturer's instructions were followed. 30 min after adding the individual Proteasome-
175 Glo™ Reagents separately, luminescence was recorded as relative light units (RLU) on a
176 GloMax® 96 Microplate Luminometer.

177 **Enzyme-Linked Immunosorbent Assay (ELISA)**

178 Levels of human IL-18 and mouse IL-1 β were measured in the cell supernatants using
179 ELISA kits from R&D Systems (DY318) and (DY401-05), respectively. ELISAs were
180 performed following the manufacturer's instructions.

181 **Western Blot**

182 Cells were lysed for at least 20 min on ice using a RIPA lysis buffer (50 mM Tris-HCl, pH 8,
183 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate and 0.1% sodium dodecyl sulphate,
184 SDS), supplemented with a protease inhibitor cocktail (1:100). Lysates were then
185 centrifuged at 13,000 xg for 10 min to remove the insoluble fraction. Protein concentration
186 was measured by BCA assays (Thermo Scientific Pierce, 23225), following the
187 manufacturer's guidelines, and an equal amount of protein was loaded for each sample. Cell
188 supernatants were centrifuged at 500 xg for 5 min to remove dead cells and concentrated
189 with 10 kDa MW cut-off filters (Amicon, Merck Millipore), as described by the manufacturer.
190 In cases where the whole well lysate was assayed, the cells were directly lysed in the well
191 by the addition of 1% (vol/vol) Triton X100 with a protease inhibitor cocktail (1:100). Whole
192 well lysates were then centrifuged at 21,000 xg for 10 min to remove the insoluble fraction.
193 Lysates, supernatants and whole well lysates were diluted in Laemmli buffer containing 1%
194 2-mercaptoethanol, heated at 95°C for 10 min and resolved by SDS-PAGE.

195 Separated proteins were transferred onto nitrocellulose membranes and blocked in 5% Milk
196 PBS-Tween (0.1%) for 1 h at room temperature (RT). Membranes were then incubated with
197 the specific primary antibody in blocking buffer for 1 h at RT. Then, membranes were
198 washed three times in PBS-Tween (PBS-T, 0.1%) for 10 min per wash and subsequently
199 incubated for 1 h at RT with a horseradish peroxidase-conjugated secondary antibody.
200 Membranes were then washed as before and visualised using Clarity™ Western ECL
201 Blotting Substrate (Bio-Rad, 1705061) in a ChemiDoc™ MP Imager (Bio-Rad).
202 Semiquantitative densitometry analysis of the western blot for PCNT were performed using
203 ImageJ.

204 **Immunofluorescence**

205 PMA-differentiated THP1 seeded and stimulated on coverslips were fixed with 4%
206 formaldehyde for 10 min at RT, and followed by ice-cold 100% MeOH permeabilization at -
207 20°C for 10 min. Cells were blocked for 30 min with 1% BSA previous 1h incubation at RT
208 with the primary antibody rabbit anti-pericentrin (Abcam, ab4448), rabbit anti-pericentrin
209 (Invitrogen, PA5-115736), mouse anti-ASC (Biolegend, 676502), rabbit anti-ASC (AdipoGen
210 Life Science, AG-25B-0006-C100), mouse anti-ninein (Santa Cruz, sc-376420) and mouse
211 anti NLRP3 (AdipoGen Life Science, AG-20B-0014) at 1:1000 dilution or mouse anti- γ -
212 tubulin (Merck, T6557) at 1:500 dilution. Coverslips were then incubated for 1h at RT with
213 the appropriate Alexa Fluor conjugated secondary antibody (Invitrogen, 1:300 dilution),
214 incubated for 10 min with DAPI at 1 μ g/mL in PBS and mounted on slides using Dako
215 Fluorescence Mounting Media.

216 For quantification, images were acquired on an Olympus IX83 inverted microscope using UV
217 (395 nm), Cyan (470 nm) and red (640 nm) Lumencor LED excitation, a 20x UPlanSApo
218 (oil) objective and the Sedat QUAD filter set (Chroma [89000]). The images were collected
219 using a R6 (Qimaging) CCD camera with a Z optical spacing of [0.2 μ m]. Maximum intensity
220 projections are shown in the results. Four different fields per image (200-300 total cells per
221 condition) were used in quantification. Number of cells positive for the protein of interest (in

222 ImageJ was counted and expressed relative to total number of nuclei as an indication of
223 total number of cells.

224 **Statistical Analysis**

225 GraphPad Prism 9 software was used to carry out all statistical analysis. One-way ANOVA
226 with the Dunnett's test or two-way ANOVA with the Tukey's test were applied in multiple
227 comparisons. Data are shown as mean +/- standard deviation (S.D.). ns is considered as not
228 statistically significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.001.

229

230 **Results**

231

232 **Nigericin treatment of THP-1 cells results in loss of centrosomal integrity.**

233 To investigate whether NLRP3 activation influences the integrity of the centrosome we used
234 PMA-differentiated THP1 cells and treated them with the well-known NLRP3 activator
235 nigericin [30] at time points as indicated. We have previously shown that LPS priming has
236 minimal effect on NLRP3 inflammasome activation in THP1 cells and to reduce complexity in
237 the experimental system, we did not LPS-prime THP1 cells here. We found that nigericin
238 induced cell death, caspase-1 activation as well as IL-18 release overtime (Fig. 1A-C). We
239 then looked at the expression of PCNT in cell lysates by Western blot. We detected three
240 main different bands for PCNT; PCNT-A (220 kDa) and PCNT-B (340 kDa) as well as a
241 band corresponding to the separase-cleaved PCNT-B (275kDa) in untreated cells. We found
242 that levels of PCNT started decreasing after 15 min of nigericin treatment (Fig. 1D).
243 Expression of another PCM component, γ -tubulin was however unchanged as was β -actin
244 which was used as loading control (Fig. 1D). To determine if the decrease in PCNT levels
245 were due to its release we concentrated the supernatants from those cells and ran western
246 blots for the same three proteins. We could not detect PCNT in these supernatants however
247 γ -tubulin and β -actin were present after 30 min of treatment corresponding to an increase in
248 cell death and protein release (Fig. 1E). To further examine that this reduction in PCNT

249 levels was not due to the release of this protein we performed the same nigericin time-
250 response experiment but collected lysates and supernatants together (whole well lysate).
251 Here we found again that PCNT levels decreased over time after nigericin treatment while γ -
252 tubulin and β -actin levels remained unchanged (Fig. 1F).

253

254 To further investigate the effect of nigericin on centrosomal integrity we performed
255 immunofluorescence on PMA differentiated THP1 cells, in response to nigericin treatment
256 for 45 and 90 min, for the PCM proteins PCNT, γ -tubulin, and the centriole distal appendix
257 protein ninein [31] and ASC, to determine inflammasome activation (Fig. 1G-K). In line with
258 our western blot data, we found that PCNT centrosomal signal was lost after nigericin
259 treatment (Fig. 1G, J). A decrease in centrosomal γ -tubulin and ninein stain was also
260 observed (Fig. 1H, I, J). We found that centrosomal loss was mainly observed in cells that
261 presented ASC specks, indicating that the ASC-speck remains intact in cells despite loss of
262 centrosome integrity (Fig. 1K). This indicates that nigericin treatment and inflammasome
263 activation leads to loss of centrosomal integrity in macrophages.

264

265 **Centrosomal disorganization triggered by nigericin is NLRP3 dependent.**

266 To determine if this PCNT loss was dependent on NLRP3 we treated PMA-differentiated
267 THP1 cells either WT (parental THP1^{Null2}) or expressing an endogenous PYD-deficient
268 NLRP3 (THP1^{NLRP3^{-/-}}) with nigericin (10 μ M, 45 min). We found that PCNT protein level was
269 reduced in response to nigericin in the parental THP1 cell line and that this did not occur in
270 THP1^{NLRP3^{-/-}} (Fig. 2A-C). Nigericin treatment of THP1^{NLRP3^{-/-}} cells did not result in increased
271 cell death, caspase1 activation or IL-18 release (Fig. 2D, Fig. S1A, B) after nigericin
272 treatment unlike WT cells, confirming deficient function of NLRP3 inflammasome. These
273 results suggest that centrosome is perturbed after the NLRP3 inflammasome is activated.

274

275 To further discount that our observation on PCNT downregulation was due to its release due
276 to pyroptosis, we used punicalagin (50 μ M, 15 min) to inhibit membrane permeability as
277 punicalagin allows for NLRP3 inflammasome activation but not IL-18 release [29]. We also
278 pre-treated THP1 cells with ZVAD a pan caspase inhibitor to prevent consequences of
279 NLRP3 activation (caspase activation and IL-18 release). We found that, while ZVAD
280 prevented loss of PCNT in response to nigericin, punicalagin treatment did not prevent loss
281 of PCNT in response to NLRP3 activation (Fig. 2E-G). This is despite of punicalagin and
282 ZVAD inducing a reduction in cell death (Fig. 2H) as well as in active caspase-1 and IL-18
283 release in response to nigericin (Fig. S1C, D). We further confirmed these results by
284 measuring PCNT signal and ASC-speck formation by immunofluorescence after nigericin
285 treatment in the presence of ZVAD, punicalagin and the NLRP3 inhibitor MCC950 (Fig. 2I-
286 K). As before we found that centrosomal loss after nigericin treatment was mainly observed
287 in cells that presented ASC specks. We found that punicalagin treatment did not alter PCNT
288 loss induced by nigericin (Fig. 2I, J). We also found that in cells treated with ZVAD, and
289 where ASC specks were able to form, no loss of PCNT occurred (Fig. 2I-K). Finally,
290 treatment with MCC950 prevented assembly of the inflammasome indicated by the absence
291 of ASC specks and no loss of PCNT stain was observed here (Fig. 2I, J).

292

293 We next tested if other NLRP3 inflammasome activators also triggered PCNT loss. First, we
294 established that LPS priming of PMA-differentiated THP1 cells did not alter PCNT loss
295 described in unprimed cells (Fig. S2). We found that LPS-primed THP1 cells still lost PCNT
296 signal after 45 min nigericin treatment and this was prevented by the NLRP3 inhibitor
297 MCC950 (Fig. S2). We then assessed the effect of LLOMe on PCNT loss. LLOMe mediates
298 NLRP3-inflammasome activation by destabilizing the lysosomal membrane [32, 33]. We
299 treated PMA-differentiated LPS-primed THP1 cells with LLOMe (1 mM, 1 h) and observed
300 increased cell death and caspase-1 activity as expected. While ZVAD blocked caspase-1
301 activity it only partially blocked cell death (Fig. S3D, E). Like nigericin, LLOMe triggered
302 PCNT loss, however, that was not prevented by treatment with ZVAD (Fig. S3A-C). Next, we

303 tested the effect of NLRP3 activation via cell volume regulation [34] in PCNT regulation. For
304 this we treated PMA-differentiated LPS-primed THP1 cells with a hypotonic solution for 1
305 and 3 h. We found that, as previously described, hypotonic shock led to caspase-1 activation
306 and cell death at these time points (Fig. S3I, J). This was matched by loss of PCNT levels in
307 the cell lysates at both time points (Fig. S3F-H).

308

309 In order to determine if PCNT loss occurred in a different cell type, we used murine BMDMs.
310 As BMDMs require priming for appropriate NLRP3 inflammasome activation we treated
311 these cells with LPS 1 μ g/ml for 4 h prior to nigericin treatment. We observed that as in THP1
312 cells, treatment of BMDMs with nigericin led to reduced PCNT expression and this was
313 prevented by MCC950. However, unlike un-primed THP1 cells ZVAD failed to rescue the
314 induced cell death and in these conditions PCNT levels were not recovered (Fig. S4). All of
315 this suggests that PCNT loss is a general response when the NLRP3 inflammasome is
316 activated.

317

318 **Nigericin leads to NLRP3 localization at centrosomal and non-centrosomal locations.**

319 As we had observed that nigericin triggered PCNT disruption in cells with an active
320 inflammasome and given that the centrosome could be a place of assembly for the NLRP3
321 inflammasome, we next studied the relationship between the centrosome and NLRP3-
322 location using a THP1 cell line stably expressing GFP-NLRP3 in an NLRP3 deficient
323 background (THP1^{GFP-NLRP3}) [35]. Upon NLRP3-activation with nigericin 30 min, to minimise
324 centrosomal loss, we found that GFP-NLRP3 formed NLRP3-ASC-specks indicating active
325 inflammasome platforms as expected, mainly at non-centrosomal locations. We also
326 observed NLRP3 accumulation at the centrosome as GFP-NLRP3 co-localised with the
327 pericentriolar material component PCNT, however these NLRP3-structures did not co-
328 localise with ASC, suggesting this NLRP3 is non active. Both types of NLRP3-structures
329 could be found simultaneously within the same cell (Fig. 3A). Nigericin treatment of THP1
330 cells expressing GFP alone in a WT background (GFP-THP1) did not lead to GFP re-

331 location to the centrosome demonstrating that the observed effect is very likely driven by
332 NLRP3 (Fig. S5). We next treated THP1^{GFP-NLRP3} cells with nigericin in the presence of the
333 NLRP3 inhibitor MCC950 and ZVAD. We found that MCC950 prevented assembly of non-
334 centrosomal NLRP3-ASC specks however did not alter the ability of NLRP3 to move to the
335 centrosome (Fig. 3A). Pan-caspase inhibitor ZVAD did not prevent assembly of NLRP3-
336 ASC-specks or NLRP3-association to the centrosome (Fig. 3A). In this experimental system
337 we also detected PCNT loss after inflammasome activation as shown by quantification (Fig.
338 3B-D). Quantification of a time course of nigericin treatment in this cellular system showed
339 similar results to those obtained in wild type THP1 cells indicating an increase in PCNT loss
340 proportional to NLRP3-ASC-speck formation that was prevented by MCC950 (Fig. 3E). In
341 these conditions, accumulation of NLRP3 at the centrosome occurred in the presence and
342 absence of MCC950 (Fig. 3E, F). These data confirm that NLRP3 can be directed to the
343 centrosome although in apparently a non-functional state, and that this directed localization
344 occurs in parallel to inflammasome activation.

345

346 **PCNT loss induced by NLRP3 inflammasome is dependent on caspase-1 activation.**

347 Having shown that PCNT loss depends upon NLRP3 activation and that it can be prevented
348 by pan caspase inhibitor ZVAD in THP1 cells we next considered the specific effect of
349 caspase-1 in PCNT loss, initially using the caspase-1 inhibitor YVAD (36). YVAD pre-
350 treatment blocked caspase-1 activity and IL-18 release but only partially decreased cell
351 death (Fig. 4D-F) induced by nigericin. This is reflected in YVAD treatment partially rescuing
352 the downregulation of PCNT induced by nigericin in vehicle treated cells (Fig. 4A-C). To
353 further confirm the contribution of caspase-1 to PCNT degradation we used THP1 cells
354 deficient for caspase-1 (THP1^{Caspase1^{-/-}} cells). We found that nigericin treatment of these cells
355 did not induce pyroptosis or IL-18 release (Fig. 4H-J). When looking at PCNT expression we
356 found that in the absence of caspase-1 PCNT levels were not reduced in response to
357 nigericin. However, we detected a cleaved band of around 200kDa that would correspond to
358 the size of caspase-3 mediated cleavage of PCNT previously described [36] since nigericin

359 triggered activation of caspase-3 in these cells (Fig. 4G). Our data suggest that caspase-1
360 activation contributes to PCNT degradation when NLRP3 inflammasome is activated by
361 nigericin in THP1 cells.

362

363 **Proteasomal and lysosomal activity does not affect NLRP3-induced PCNT loss.**

364 We next wanted to understand what controlled the described loss of PCNT. As proteasome
365 inhibition regulates levels of PCM proteins including PCNT [36] we first tested the role of the
366 proteasome in PCNT loss. For this we treated THP1 PMA differentiated cells with
367 proteasome inhibitor MG132 (10 μ M) for 2 h prior to nigericin treatment. We found that
368 nigericin treatment increased proteasome activity, and that this was blocked by MG132
369 treatment (Fig. S6A). We found that total PCNT levels were increased when cells were
370 treated with MG132 alone, indicating PCNT regulation by the proteasome (Fig. 5A).
371 However, when treated with nigericin, these cells still lost PCNT in the presence of MG132
372 (Fig. 5A). Overall, these data suggest that PCNT degradation induced by nigericin is not
373 mediated by proteasomal regulation.

374

375 We next explored the links between lysosome and PCNT loss. Lysosomal cathepsins have
376 been linked to inflammasome activation mediated by nigericin [32]. We tested the role of
377 cathepsins by using the cathepsin inhibitor E-64-D (20 μ M) for 2 h, the cathepsin B inhibitor
378 CA-074 (50 μ M) for 15 min, or the cathepsin D inhibitor pepstatin A (10 μ M) for 15 min
379 before nigericin stimulation. We confirmed activity of these inhibitors as we found that E-64-
380 D and CA-074 decreased cathepsin B activity, and pepstatin A reduced cathepsin D activity
381 in THP1 cells (Fig. S6B-D). We found that these inhibitors did not affect cell death, caspase1
382 activity or IL-18 release levels induced by nigericin (Fig. 5F-H, J-L, N-P). Similar to what was
383 observed with MG132 treatment, nigericin stimulation resulted in PCNT degradation even in
384 the presence of these inhibitors (Fig. 5E, I, M) suggesting that cathepsins are not required
385 for the PCNT degradation.

386

387 **GSDMD is required for PCNT disruption triggered by pyroptosis but not by apoptosis.**

388 Caspase-1 activation triggered by NLRP3 inflammasome results in GSDMD cleavage and

389 consequently assembly of GSDMD pores in the plasma membrane triggering pyroptosis

390 [37]. These pores have also been described as conduits for release of IL-1 β . To examine the

391 link between GSDMD and pyroptosis in PCNT loss we compared expression of PCNT in

392 THP1^{WT} and THP1^{GSDMD-/-} cells pre-treated with vehicle or ZVAD and followed by nigericin

393 activation (10 μ M, 45 min). GSDMD deficiency led to reduced cell death (Fig. 6A) and

394 extracellular caspase-1 activity (Fig. 6B) compared to WT cells, as caspase-1 release was

395 prevented in these cells. Despite the presence of active caspase-1, nigericin treatment of

396 THP1^{GSDMD-/-} did not lead to PCNT loss as in WT cells, but to PCNT processing indicative of

397 caspase-3 mediated cleavage (Fig. 6C) (as in caspase-1 deficient THP1 cells) given that

398 GSDMD deficiency leads to a switch from pyroptosis to apoptosis in response to nigericin

399 with activation of caspase-3 [23, 24]. Activation of caspase-3 and caspase-1 was confirmed

400 in the lysates of WT and GSDMD deficient cells (Fig. 6D). We confirmed that the observed

401 caspase-3 mediated PCNT cleavage was prevented by ZVAD (Fig. 6C) and that was also

402 blocked by caspase-3 inhibitor Z-DVED confirming this processing is caspase-3 dependent

403 (Fig. 6E-G). Furthermore, nigericin treatment in the presence of Z-DVED not only prevented

404 caspase-3 mediated PCNT cleavage, but partially recovered the PCNT loss as observed in

405 WT cells.

406

407 **Discussion**

408 In recent years the centrosome has been proposed as an important player in NLRP3

409 inflammasome activation by acting as a cellular location for inflammasome assembly [6, 7]

410 as well as for regulating activation via centrosomal proteins like PLK1 [9] and PLK4 [10]. Our

411 data adds to this knowledge by showing that the centrosome is disrupted after

412 inflammasome activation. Here we have found that NLRP3 inflammasome activation by

413 different triggers, nigericin, LLOMe and hypotonicity, leads to loss of centrosomal proteins

414 and centrosomal disorganization. This disruption is dependent on caspase-1 and GSDMD

415 and we show that pyroptosis, but not membrane rupture, is driving this centrosomal loss in
416 human and murine macrophages.

417

418 Pyroptosis is a characteristic type of cell death driven by inflammasome activation [22].
419 GSDMD and ninjurin-1 are two important mediators in this cellular mode of cell death.
420 GSDMD cleavage and pore formation in response to inflammasome activation are required
421 for IL-1 β and IL-18 release [38, 39], as well as driving pyroptotic cell death, while ninjurin-1 is
422 responsible for the plasma membrane rupture that follows GSDMD pore formation [40, 41].
423 Our observation that treatment with the membrane stabiliser punicalagin did not prevent
424 centrosomal loss or inflammasome activation, but just cytokine release, suggests that this
425 PCNT loss is intrinsically associated to the pyroptotic process and not membrane rupture.
426 GSDMD deficient cells treated with nigericin, are still able to form an active inflammasome,
427 like cells treated with punicalagin. However, GSDMD deficient cells do not die of pyroptosis
428 but apoptosis mediated by caspase-3 despite caspase-1 still being active. In these
429 conditions, PCNT was prevalently cleaved by caspase-3 suggesting that although caspase-1
430 is involved in centrosomal disruption, this is not directly mediating PCNT loss.

431

432 We observed that, except in the case of punicalagin or GSDMD deficient cells, PCNT-loss
433 was proportional to the release of LDH that occurred after activation. This was more obvious
434 after the use of ZVAD or YVAD. We found that in LPS-treated cells (THP1 and BMDMs)
435 ZVAD was active and able to block IL-18 and IL-1 β release, however, had no major effect on
436 LDH release. This differential effect of YVAD and ZVAD has been previously described [42].
437 Here the authors showed that these compounds fail to block the cleavage of the effector
438 molecule GSDMD by caspase-1 and hence prevent LDH release [42] while still able to block
439 cleavage of IL-1 β and IL-18. This provides yet another link between the pyroptotic process
440 and PCNT loss. Why we mainly observed this in LPS treated cells we still do not understand
441 and would require further studies.

442

443 We have found that nigericin treatment leads to the accumulation of non-active GFP-NLRP3
444 at the centrosome and active NLRP3-GFP at non-centrosomal locations. These
445 observations agree with a recent report showing that NLRP3 tagged with neon Green
446 (NLRP3-mNG) aggregate at both centrosomal and non-centrosomal localizations in THP1
447 cells [43]. The centrosome acts as a signalling hub where proteins come in and out to tightly
448 regulate cellular processes such as DNA damage [15] or cell cycle entry [16]. Hence one
449 could think that NLRP3 accumulates at the centrosome before becoming fully functional as a
450 way of controlling unwanted excessive activation. Whether NLRP3 is then degraded or
451 released to form an active inflammasome is currently unknown. When we looked at
452 endogenous ASC-speck formation we found that the centrosome was not the predominant
453 ASC-speck localization, although could be observed in some cells. Although this differs from
454 the reports of Li [6] and Magupalli [7], this is consistent with our data using GFP-NLRP3 as
455 well as recent work from Liu Y, et al. (2023), which found that although ASC-specks are
456 closer to the microtubule organizing centre (MTOC), they do not co-localize with this
457 organelle markers [44]. It is possible that localization of ASC-specks at the centrosome is
458 very transient and considering the disruption of the centrosome described here it might be
459 difficult to detect such cellular positioning.

460
461 Centrosome plasticity is manifested during inflammation. LPS priming of macrophages
462 induces recruitment of PCM components such as PCNT and γ -tubulin to the centrosome and
463 is important for cytokine secretion [19]. This process reminds of centrosome amplification
464 but occurs during interphase and independently of PLK1 [19]. Similarly in microglia LPS
465 leads to the recruitment of microtubule nucleating material to the centrosome [45]. This
466 might be linked to the ability of LPS to arrest cells in G0/1 state, altering cell cycle [18, 46]
467 and hence centrosomal composition [19]. Centrosomal restructuring has also been reported
468 in monocytes from febrile patients. This occurred by proteasomal mediated degradation at
469 the centrosome induced by heat shock. Interestingly, this process mediated by Hsp70, was

470 reversible [17]. Although authors propose that this is a process important for the immune
471 response, whether macrophages function during inflammation is affected when centrosome
472 is re-structured remains to be assessed. Heat shock induced centrosomal disruption
473 resembles what we have observed in macrophages after inflammasome activation. Our
474 study adds to the evidence that alterations on centrosomal composition occur during the
475 inflammatory response. In our experimental conditions we observed an increase in
476 proteasome activity after nigericin treatment that was prevented by proteasome inhibitor
477 MG132. However, this did not prevent centrosomal disruption indicating that the
478 mechanisms of regulation between these two processes are different. Proteasomal proteins
479 can traffic in and out of the centrosome and can be degraded via other pathways such as
480 autophagy and lysosomal degradation [47]. However, we failed to impair centrosomal loss or
481 inflammasome activation by blocking either proteasome or lysosomal cathepsins. This
482 suggests that there must be an alternative mechanism of degradation or compensatory
483 pathways.

484

485 Microtubules are important for inflammasome function. Trafficking along microtubules to
486 different locations in the cells, including the centrosome, is important for inflammasome
487 activation [6, 7]. Microtubule remodelling is also an important event in cell death. During
488 apoptosis, microtubules are reformed organizing an apoptotic microtubule network important
489 for maintaining plasma membrane integrity and cell morphology during the execution phase
490 of apoptosis. Disruption of this network is however linked to secondary necrosis [48].
491 Disorganization of the cytoskeleton also occur during pyroptosis. Infection with *Salmonella*
492 *typhimurium* induced loss of cytoskeletal marker α -tubulin, which was prevented in caspase-
493 1 knock out cells [49]. Calcium entry triggered by inflammasome activation leads to calpain-
494 mediated vimentin cleavage and release and disruption of intermediate filaments
495 contributing to loss of cytoskeleton stability in THP-1 cells [38]. However, neither calpain
496 inhibition nor EGTA treatment to chelate calcium prevented loss of actin filaments,
497 microtubules, or nuclear lamina indicating that these proteins are regulated by a different

498 mechanism that occurs in parallel to vimentin cleavage. Our data add to this showing that
499 not only microtubules, but also the main microtubule organising centre is disrupted upon
500 pyroptosis, suggesting that maybe centrosome disruption is the first step leading to
501 cytoskeletal disassembly and rupture. This centrosomal disorganization could facilitate
502 release of ASC-speck to the extracellular environment to propagate inflammation to
503 neighbouring cells [50, 51].

504

505 Despite the importance of the centrosome in cell homeostasis and recent advances around
506 inflammasome activation and the centrosome, little is known about the role of this organelle
507 in macrophage function during inflammation. Here we have reported the disruption of the
508 centrosome upon NLRP3-inflammasome activation. However, when does this centrosome
509 remodelling commences and how this is regulated, we still do not understand. Additionally,
510 how LPS, or other priming signals, alter centrosomal composition and how this contributes to
511 different priming events, have not yet been explored. Moreover, the implications for NLRP3
512 presence at the centrosome after sensing NLRP3-activators are not understood and this
513 deserves further studies.

514

515 **Contributions**

516 Performed experiments and sample collection: S.B. and F.M.S.

517 Experimental design: D.B. and GLC

518 Supervision: D.B. GLC

519 Writing of manuscript: SB, FMS, DB and GLC.

520

521 **Acknowledgments**

522 This work was supported by a Presidents Doctoral Scholarship (The University of
523 Manchester) to Siyi Bai, a Wellcome Trust and Royal Society Henry Dale Fellowship to G. L-
524 C. (104192/Z/14/Z), a Medical Research Council grant (MR/T016043/1) awarded to G.L.C.
525 and by a Medical Council Research grant awarded to DB (MR/T016515/1). The Bioimaging

526 Facility microscopes used in this study were purchased with grants from BBSRC, Wellcome,
527 and the University of Manchester Strategic Fund.

528

529 **Conflict of Interest**

530 The authors declare that they have no conflicts of interest regarding this study.

531

532 **References**

- 533 1. Swanson K V., Deng M, Ting JPY. The NLRP3 inflammasome: molecular activation
534 and regulation to therapeutics. *Nat Rev Immunol.* 2019;19(8):477–89.
- 535 2. He Y, Hara H, Núñez G. Mechanism and Regulation of NLRP3 Inflammasome
536 Activation. *Trends Biochem Sci.* 2016;41(12):1012–21.
- 537 3. Xia S, Zhang Z, Magupalli VG, Pablo JL, Dong Y, Vora SM, et al. Gasdermin D pore
538 structure reveals preferential release of mature interleukin-1. *Nature.*
539 2021;593(7860):607–11.
- 540 4. Shi J, Gao W, Shao F. Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell
541 Death. *Trends Biochem Sci.* 2017;42(4):245–54.
- 542 5. Seoane PI, Lee B, Hoyle C, Yu S, Lopez-Castejon G, Lowe M, et al. The NLRP3-
543 inflammasome as a sensor of organelle dysfunction. *J Cell Biol.* 2020;219(12):1–12.
- 544 6. Li X, Thome S, Ma X, Amrute-Nayak M, Finigan A, Kitt L, et al. MARK4 regulates
545 NLRP3 positioning and inflammasome activation through a microtubule-dependent
546 mechanism. *Nat Commun.* 2017 Jun 28;8.
- 547 7. Magupalli VG, Negro R, Tian Y, Hauenstein A V., Caprio G Di, Skillern W, et al.
548 HDAC6 mediates an aggresome-like mechanism for NLRP3 and pyrin inflammasome
549 activation. *Science.* 2020;369(6509).
- 550 8. He Y, Zeng MY, Yang D, Motro B, Núñez G. NEK7 is an essential mediator of NLRP3
551 activation downstream of potassium efflux. *Nature.* 2016 Feb 18;530(7590):354–7.
- 552 9. Baldighi M, Doreth C, Li Y, Zhao X, Warner EF, Chenoweth H, et al. PLK1 inhibition
553 dampens NLRP3 inflammasome-elicited response in inflammatory disease models. *J*

554 Clin Invest. 2023;133(21).

555 10. Yang X, Li W, Zhang S, Wu D, Jiang X, Tan R, et al. PLK 4 deubiquitination by
556 Spata2-CYLD suppresses NEK7-mediated NLRP3 inflammasome activation at the
557 centrosome . EMBO J. 2020 Jan 15;39(2).

558 11. Conduit PT, Wainman A, Raff JW. Centrosome function and assembly in animal cells.
559 Nat Rev Mol Cell Biol. 2015 Oct 25;16(10):611–24.

560 12. Bodo MH Lange. Integration of the centrosome in cell cycle control, stress response
561 and signal transduction pathways. Current Opinion in Cell Biology. 2002;14(1):35-43.

562 13. Doxsey S. Re-evaluating centrosome function. Nat Rev Mol Cell Biol. 2001;2(9):688–
563 98.

564 14. Lee K, Rhee K. PLK1 phosphorylation of pericentrin initiates centrosome maturation
565 at the onset of mitosis. J Cell Biol. 2011;195(7):1093–101.

566 15. Woodruff JB, Wueseke O, Hyman AA. Pericentriolar material structure and dynamics.
567 Philos Trans R Soc B Biol Sci. 2014;369(1650).

568 16. Mullee LI, Morrison CG. Centrosomes in the DNA damage response—the hub outside
569 the centre. Chromosom Res. 2016;24(1):35–51.

570 17. Vertii A, Zimmerman W, Ivshina M, Doxsey S. Centrosome-intrinsic mechanisms
571 modulate centrosome integrity during fever. Mol Biol Cell. 2015 Oct 1;26(19):3451–
572 63.

573 18. Xaus J, Cardó M, Valledor AF, Soler C, Lloberas J, Celada A. Interferon γ induces the
574 expression of p21(waf-1) and arrests macrophage cell cycle, preventing induction of
575 apoptosis. Immunity. 1999;11(1):103–13.

576 19. Vertii A, Ivshina M, Zimmerman W, Hehnly H, Kant S, Doxsey S. The Centrosome
577 Undergoes Plk1-Independent Interphase Maturation during Inflammation and
578 Mediates Cytokine Release. Dev Cell. 2016;37(4):377–86.

579 20. Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH. Caspase-9,
580 caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol.
581 2013;14(32):1471-2121.

582 21. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by
583 inflammatory caspases determines pyroptotic cell death. *Nature*. 2015 Oct
584 29;526(7575):660–5.

585 22. Vande Walle L, Lamkanfi M. Pyroptosis. *Curr Biol*. 2016;26(13):R568–72.

586 23. Tsuchiya K, Nakajima S, Hosojima S, Thi Nguyen D, Hattori T, Manh Le T, et al.
587 Caspase-1 initiates apoptosis in the absence of gasdermin D. *Nat Commun*. 2019
588 Dec 1;10(1).

589 24. Wang C, Yang T, Xiao J, Xu C, Alippe Y, Sun K, et al. NLRP3 inflammasome
590 activation triggers gasdermin D–independent inflammation. *Sci Immunol*. 2021;6(64).

591 25. Aizawa E, Karasawa T, Watanabe S, Komada T, Kimura H, Kamata R, et al. GSDME-
592 Dependent Incomplete Pyroptosis Permits Selective IL-1 α Release under Caspase-1
593 Inhibition. *iScience*. 2020;23(5):101070.

594 26. Jeong Y, Kumar A, Joshi M, Rothman JH. Intertwined functions of Separase and
595 caspase in cell Division and programmed cell Death. *Sci Rep*. 2020;10(6159).

596 27. Matsuo K, Ohsumi K, Iwabuchi M, Kawamata T, Ono Y, Takahashi M. Kendrin is a
597 novel substrate for separase involved in the licensing of centriole duplication. *Curr
598 Biol*. 2012;22(10):915–21.

599 28. Seo MY, Rhee K. Caspase-mediated cleavage of the centrosomal proteins during
600 apoptosis. *Cell Death Dis*. 2018 May 1;9(5).

601 29. Gritsenko A, Yu S, Martin-Sánchez F, Diaz-del-Olmo I, Nichols EM, Davis DM, et al.
602 Priming Is Dispensable for NLRP3 Inflammasome Activation in Human Monocytes In
603 Vitro. *Front Immunol*. 2020 Sep 30;11.

604 30. Muñoz-Planillo R, Kuffa P, Martínez-Colón G, Smith BL, Rajendiran TM, Núñez G. K+
605 Efflux Is the Common Trigger of NLRP3 Inflammasome Activation by Bacterial Toxins
606 and Particulate Matter. *Immunity*. 2013;38(6):1142–53.

607 31. Mogensen MM, Malik A, Piel M, Boukson-Castaing V, Bornens M. Microtubule minus-
608 end anchorage at Centrosomal and non-centrosomal sites: The role of ninein. *J Cell
609 Sci*. 2000;113(17):3013–23.

610 32. Campden RI, Zhang Y. The role of lysosomal cysteine cathepsins in NLRP3
611 inflammasome activation. *Arch Biochem Biophys* [Internet]. 2019;670(October
612 2018):32–42.

613 33. Hari A, Zhang Y, Tu Z, Detampel P, Stenner M, Ganguly A, et al. Activation of NLRP3
614 inflammasome by crystalline structures via cell surface contact. *Sci Rep*. 2014;4:1–8.

615 34. Compan V, Baroja-Mazo A, López-Castejón G, Gomez AI, Martínez CM, Angosto D,
616 et al. Cell Volume Regulation Modulates NLRP3 Inflammasome Activation. *Immunity*.
617 2012 Sep 21;37(3):487–500.

618 35. Diaz-del-olmo I, Worboys J, Martin-sanchez F, Gritsenko A, Ambrose AR, Tannahill
619 GM, et al. Internalization of the Membrane Attack Complex Triggers NLRP3 Infl
620 ammasome Activation and IL-1 β Secretion in Human Macrophages.
621 2021;12(September):1–14.

622 36. Baroja-Mazo A, Compan V, Martín-Sánchez F, Tapia-Abellán A, Couillin I, Pelegrín P.
623 Early endosome autoantigen 1 regulates IL-1 β release upon caspase-1 activation
624 independently of gasdermin D membrane permeabilization. *Sci Rep*. 2019;9(1):1–10.

625 37. Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and
626 diseases. *Signal Transduct Target Ther*. 2021;6(1).

627 38. Davis MA, Fairgrieve MR, Den Hartigh A, Yakovenko O, Duvvuri B, Lood C, et al.
628 Calpain drives pyroptotic vimentin cleavage, intermediate filament loss, and cell
629 rupture that mediates immunostimulation. *Proc Natl Acad Sci U S A*.
630 2019;116(11):5061–70.

631 39. Heilig R, Dick MS, Sborgi L, Meunier E, Hiller S, Broz P. The Gasdermin-D pore acts
632 as a conduit for IL-1 β secretion in mice. *Eur J Immunol*. 2018;48(4):584–92.

633 40. Kayagaki N, Kornfeld OS, Lee BL, Stowe IB, O'Rourke K, Li Q, et al. NINJ1 mediates
634 plasma membrane rupture during lytic cell death. *Nature*. 2021;591(7848):131–6.

635 41. Degen M, Santos JC, Pluhackova K, Cebrero G, Ramos S, Jankevicius G, et al.
636 Structural basis of NINJ1-mediated plasma membrane rupture in cell death. *Nature*.
637 2023;618(7967):1065–71.

638 42. Schneider KS, Groß CJ, Dreier RF, Saller BS, Mishra R, Gorka O, et al. The
639 Inflammasome Drives GSDMD-Independent Secondary Pyroptosis and IL-1 Release
640 in the Absence of Caspase-1 Protease Activity. *Cell Rep.* 2017;21(13):3846–59.

641 43. Mateo-Tórtola M, Hochheiser I V., Grga J, Mueller JS, Geyer M, Weber ANR, et al.
642 Non-decameric NLRP3 forms an MTOC-independent inflammasome. *bioRxiv*
643 [Internet]. 2023;2023.07.07.548075. Available from:
644 <https://www.biorxiv.org/content/10.1101/2023.07.07.548075v1>
645 <https://www.biorxiv.org/content/10.1101/2023.07.07.548075v1.abstract>

646 44. Liu Y, Zhai H, Alemayehu H, Boulanger J, Hopkins LJ, Borgeaud AC, et al. Cryo-
647 electron tomography of NLRP3-activated ASC complexes reveals organelle co-
648 localization. *Nat Commun.* 2023;14(7246).

649 45. Rosito M, Sanchini C, Gosti G, Moreno M, De Panfilis S, Giubettini M, et al. Microglia
650 reactivity entails microtubule remodeling from acentrosomal to centrosomal arrays.
651 *Cell Rep.* 2023;42(2):112104.

652 46. Sangaran PG, Ibrahim ZA, Chik Z, Mohamed Z, Ahmadiani A. Lipopolysaccharide
653 Pre-conditioning Attenuates Pro-inflammatory Responses and Promotes
654 Cytoprotective Effect in Differentiated PC12 Cell Lines via Pre-activation of Toll-Like
655 Receptor-4 Signaling Pathway Leading to the Inhibition of Caspase-3/Nuclear Factor-
656 kappa B Pathway. *Front Cell Neurosci.* 2021;22(14):598453.

657 47. Wu Q, Yu X, Liu L, Sun S, Sun S. Centrosome-phagy: implications for human
658 diseases. *Cell Biosci.* 2021;11(1):1–13.

659 48. Oropesa Ávila M, Fernández Vega A, Garrido Maraver J, Villanueva Paz M, De
660 Lavera I, De La Mata M, et al. Emerging roles of apoptotic microtubules during the
661 execution phase of apoptosis. *Cytoskeleton.* 2015;72(9):435–46.

662 49. Salinas RE, Ogohara C, Thomas MI, Shukla KP, Miller SI, Ko DC. A cellular genome-
663 wide association study reveals human variation in microtubule stability and a role in
664 inflammatory cell death. *Mol Biol Cell.* 2014;25(1):76–86.

665 50. Baroja-Mazo A, Martin-Sánchez F, Gómez AI, Martínez CM, Amores-Iniesta J,

666 Compan V, et al. The NLRP3 inflammasome is released as a particulate danger
667 signal that amplifies the inflammatory response. *Nat Immunol.* 2014/06/24.
668 2014;15(8):738–48.
669 51. Franklin BS, Bossaller L, De Nardo D, Ratter JM, Stutz A, Engels G, et al. The
670 adaptor ASC has extracellular and “prionoid” activities that propagate inflammation.
671 *Nat Immunol.* 2014/06/24. 2014;15(8):727–37.

672

673

674 **Figure Legends**

675

676 **Fig.1 Nigericin treatment of THP-1 cells results in loss of centrosomal integrity.**

677 THP1^{ATCC} cells were left untreated or treated with nigericin (10 μ M) at the indicated time
678 points to activate the NLRP3 inflammasome, then cell lysates and supernatants were
679 analyzed for PCNT, γ -tubulin, and β -actin expression by western blot (A-F, N=3). Lysates
680 were analyzed for PCNT and γ -tubulin as well as loading control β -actin (42 kDa) (D), and
681 supernatants (E) and whole well lysates (F) were also analyzed for those proteins. Cell
682 death was measured by LDH assay and shown as percentage relative to total cell death (A).
683 Caspase-1 activity in supernatants was measured and shown as fold change relative to
684 control (B). IL-18 in the supernatants was measured by ELISA (C). THP1^{ATCC} cells were
685 stimulated with nigericin (10 μ M) for 45 min or 90 min. (G-K, N=3). Immunofluorescence was
686 used to analyze the centrosomal proteins including PCNT (G), γ -tubulin (H) and ninein (I) as
687 well as ASC to determine the NLRP3 inflammasome activation. Percentages of ASC speck,
688 PCNT, γ -tubulin or ninein positive cells relative to total cells (J) and PCNT, γ -tubulin or ninein
689 positive cells in ASC positive cells (K) were quantified by the Image J. Independent
690 experiments. For multiple comparisons, one-way ANOVA with the Dunnett’s test for time
691 response in THP1^{ATCC} cells was applied. Data was shown as mean \pm S.D., *p < 0.05, **p <
692 0.01, ***p < 0.001, ****p < 0.001 were considered statistically significant.

693

694 **Fig.2 Centrosomal disorganization triggered by nigericin is NLRP3 dependent.**

695 THP1^{Null2} and THP1^{NLRP3^{-/-}} cells were stimulated with nigericin (10 μ M, 45 min) (A-D, N=4).
696 Lysates were analyzed for PCNT as well as loading control β -actin by western blot (A).
697 Densitometry analysis of relative expression of full length PCNT-B (340 kDa) (B) and
698 cleaved PCNT-B (275kDa)/PCNT-A (220kDa) (C) compared to the control (β -actin) by the
699 Image Lab 6.0. Cell death was measured as described above and shown as percentage
700 relative to total cell death (D). THP1^{Null2} (E-H) or THP1^{ATCC} (I-K) cells were left untreated or
701 treated with punicalagin (50 μ M, 15 min) prior to treatment with ZVAD (50 μ M, 40 min), after
702 which cells were stimulated with nigericin (10 μ M, 45 min) to activate the NLRP3
703 inflammasome (N=3). Lysates were analyzed for PCNT expression as well as loading
704 control β -actin (E). Relative expression of full length PCNT-B (F) and cleaved PCNT-
705 B/PCNT-A (G) compared to the control were quantified as described above. Cell death was
706 measured and shown (H). Immunofluorescence was used to analyze PCNT and ASC (I).
707 Percentages of PCNT or ASC speck positive cells relative to total cells (J) and both PCNT
708 and ASC positive cells or only ASC speck positive cells in total cells (K) were quantified by
709 the Image J. Independent experiments. For multiple comparisons, one-way ANOVA with the
710 Dunnett's test in THP1^{Null2} (E-H) and two-way ANOVA with the Tukey's test for comparing
711 nigericin treated THP1^{Null2} and THP1^{NLRP3^{-/-}} were applied. Data was shown as mean \pm S.D.,
712 *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.001 were considered statistically significant.

713

714 **Fig.3 Nigericin leads to NLRP3 localisation at centrosomal and non-centrosomal
715 locations.**

716 THP1^{GFP-NLRP3} cells were left untreated or treated with ZVAD (50 μ M, 40 min) or MCC950 (10
717 μ M, 15 min) prior to treatment with nigericin (10 μ M, 45 min) to activate the NLRP3
718 inflammasome (A-D). Images show NLRP3 (green), ASC (Red) and PCNT (purple). Nuclei
719 are shown in blue. ASC speck positive cells were quantified and plotted as percentages
720 versus total number of cells (B). Percentages of cells with NLRP3 at centrosome relative to

721 cells with centrosome and cells with no PCNT in total cells were calculated respectively (C,
722 D). THP1^{GFP-NLRP3} cells were left untreated or treated with MCC950 (10 μ M, 15 min) before in
723 response to nigericin (10 μ M) at different time points as indicated (E, F). Percentages of
724 cells with ASC specks, or with NLRP3 and PCNT, or no PCNT in total cells were calculated.
725 300 cells were counted and analyzed per experiment, N=3, Independent experiments.

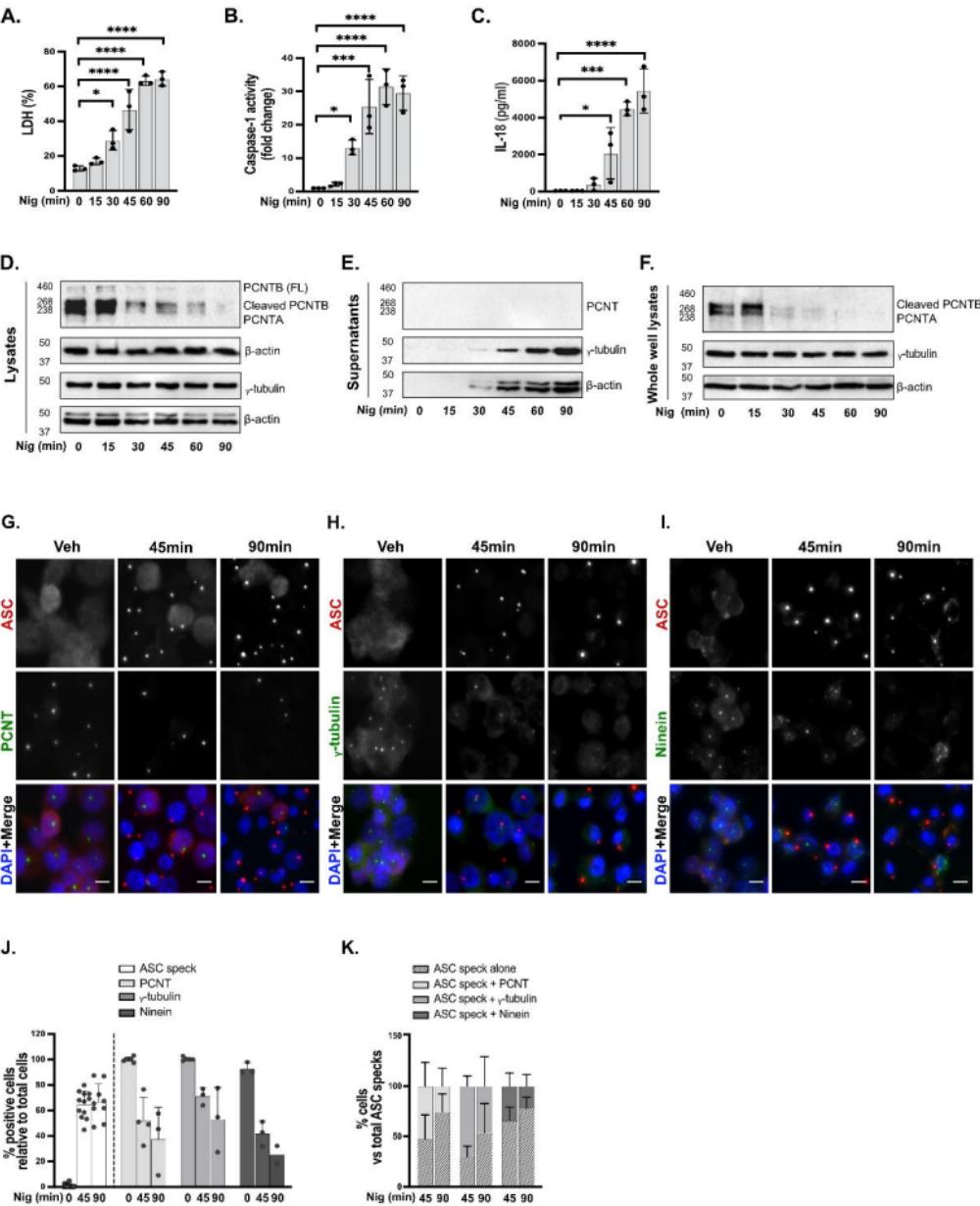
726

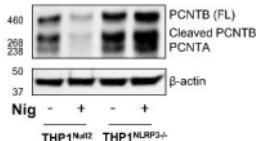
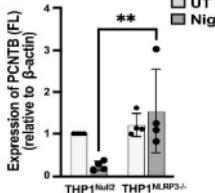
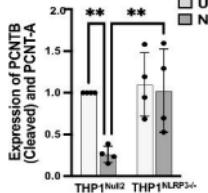
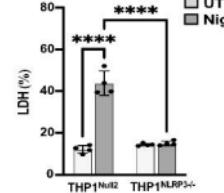
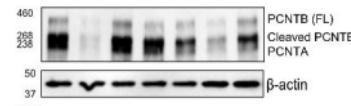
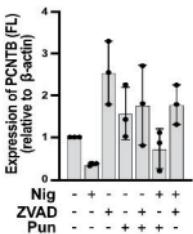
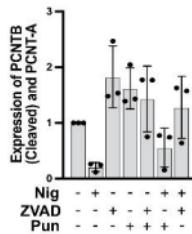
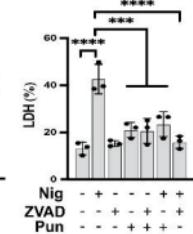
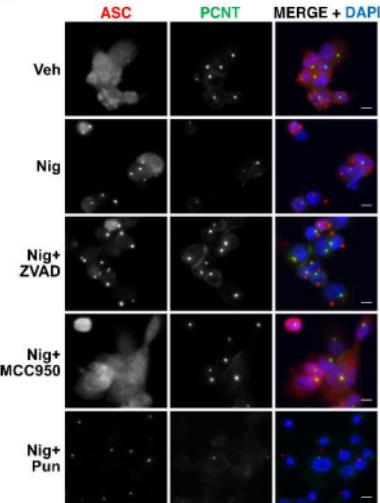
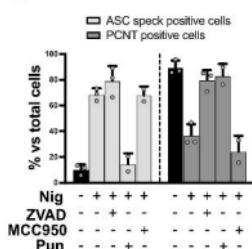
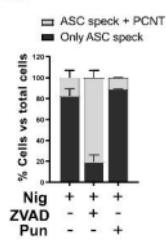
727 **Fig.4 PCNT loss induced by NLRP3 inflammasome is dependent on caspase-1
728 activation.**

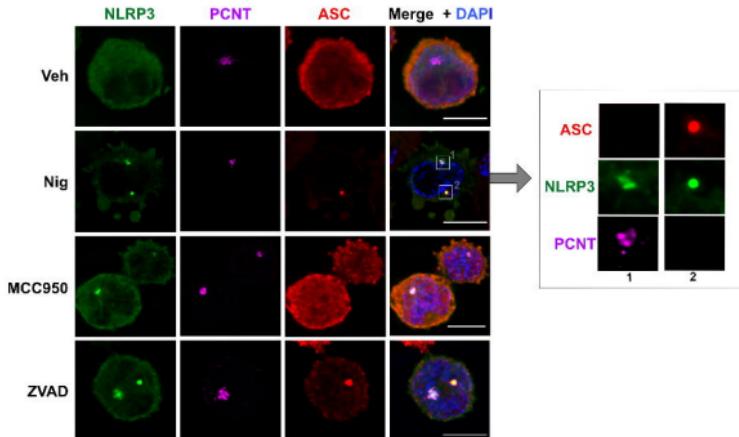
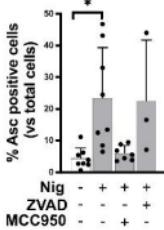
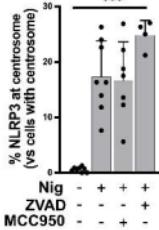
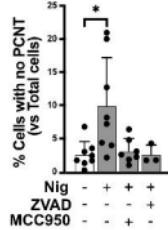
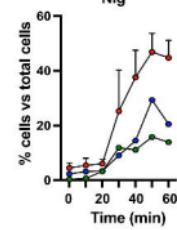
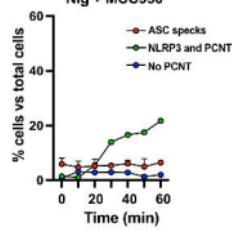
729 THP1^{Null2} cells were left untreated or treated with YVAD (50 μ M, 40 min), then stimulated with
730 nigericin (10 μ M, 45 min) (A-F, N=3). Lysates were analyzed for PCNT as well as loading
731 control β -actin by western blot (A). Relative expression of full length PCNT-B and cleaved
732 PCNT-B/PCNT-A compared to the β -actin was quantified respectively (B, C). Cell death (D),
733 caspase-1 activity (E) and IL-18 (F) were measured as described above. THP1^{ATCC} and
734 THP1<sup>Caspase-1^{-/-} cells were directly stimulated with nigericin (10 μ M, 45 min) (G-J, N=4).
735 Lysates were analyzed for PCNT, caspase-1 and caspase-3 as well as loading control β -
736 actin (G). Cell death (H), caspase-1 activity (I) and IL-18 (J) were measured as described
737 above. Independent experiments. For multiple comparisons, one-way ANOVA with the
738 Dunnett's test for YVAD in THP1^{Null2} cells and two-way ANOVA with the Tukey's test for
739 comparing nigericin treated THP1^{ATCC} and THP1<sup>Caspase-1^{-/-} cells were applied. Data was
740 shown as mean \pm S.D., *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.001 were considered
741 statistically significant.</sup></sup>

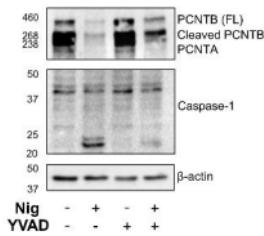
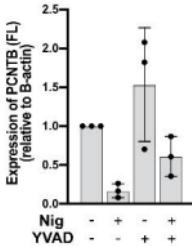
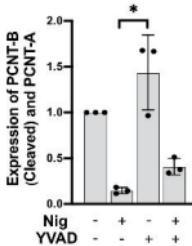
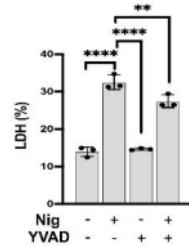
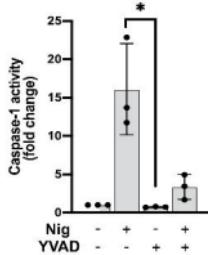
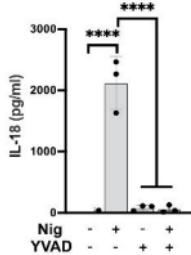
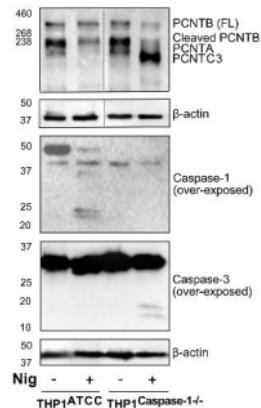
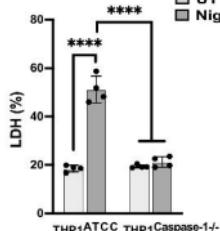
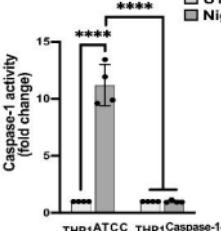
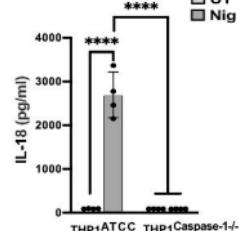
742

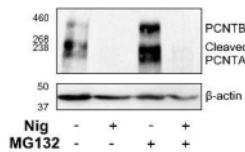
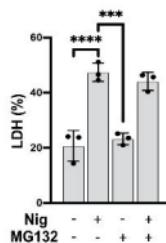
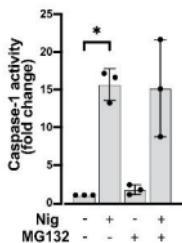
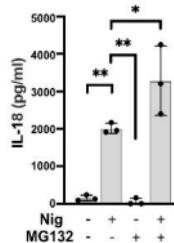
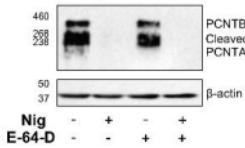
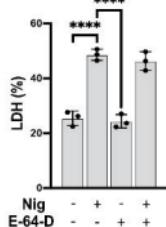
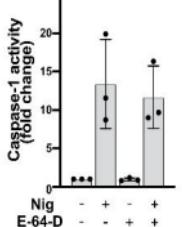
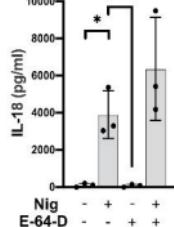
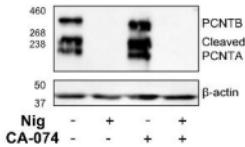
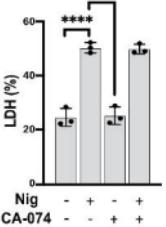
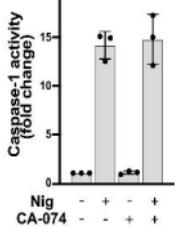
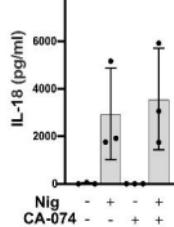
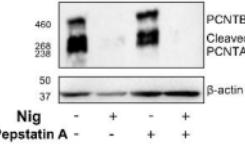
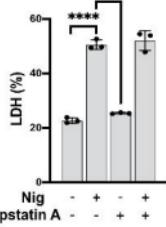
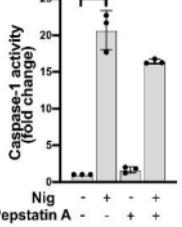
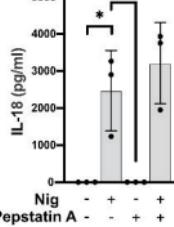
743 **Fig.5 Inhibition of proteasomal and lysosomal activity does not affect NLRP3-induced
744 PCNT loss.**

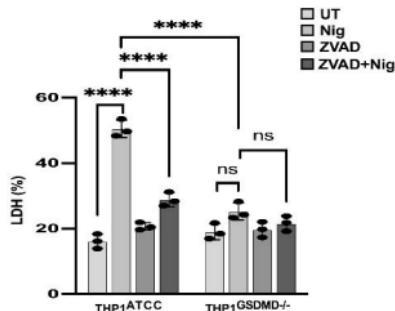
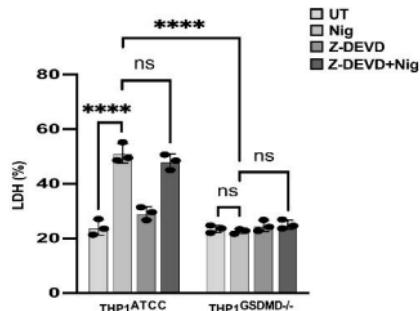
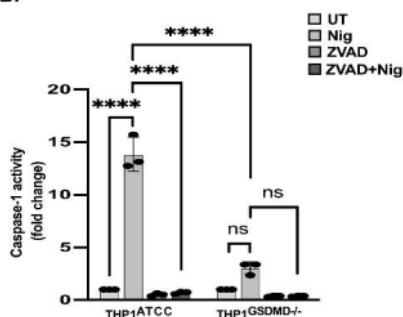
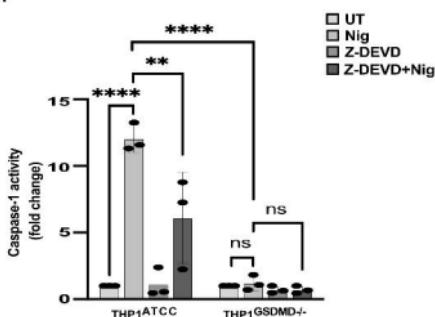
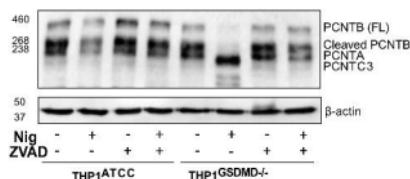
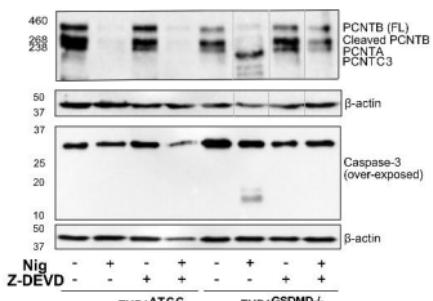
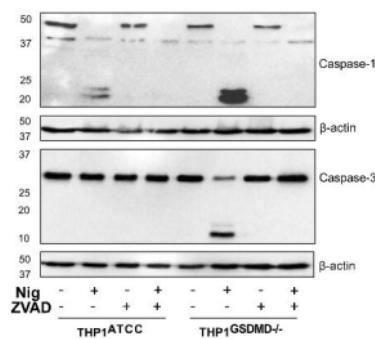

745 PMA differentiated THP1^{ATCC} cells were left untreated or treated with MG132 (10 μ M, 2 h), or
746 E-64-D (20 μ M, 2 h), or Ca-074Me (50 μ M, 15 min), or pepstatin A (10 μ M, 15 min) before
747 stimulation with nigericin (10 μ M, 45 min) (A-P). Lysates were analyzed for PCNT as well as
748 loading control β -actin by western blot (A, E, I, M). Cell death (B, F, J, N), caspase-1 activity












749 (C, G, K, O) and IL-18 (D, H, L, P) were measured as described above. Data was shown as
750 mean \pm S.D., *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.001 were considered statistically
751 significant.







752











753 **Fig.6 GSDMD is required for PCNT disruption triggered by pyroptosis but not by**
754 **apoptosis.**

















755 THP1^{ATCC} and THP1^{GSDMD^{-/-}} cells were left untreated or treated with ZVAD (50 μ M, 40 min) or
756 Z-DEVD (20 μ M, 2 h), after which cells were stimulated with nigericin (10 μ M, 45 min) to
757 activate the NLRP3 inflammasome (A-G). Caspase-1 activity was measured by caspase-1
758 assay and shown as fold change relative to control (A, E). Cell death was measured as
759 described above and shown as percentage relative to total cell death (B, G). Lysates were
760 analyzed for PCNT, caspase-1 and caspase-3 as well as loading control β -actin (C, D, G).
761 Data was shown as mean \pm S.D., *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.001 were
762 considered statistically significant.

A.**B.****C.****D.****E.****F.****G.****H.****I.****J.****K.**

A.**B.****C.****D.****E.****F.**

A.**B.****C.****D.****E.****F.****G.****H.****I.****J.**

A.**B.****C.****D.****E.****F.****G.****H.****I.****J.****K.****L.****M.****N.****O.****P.**

A.**E.****B.****F.****C.****G.****D.**