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Abstract 
 Melanoma response to immune-modulating therapy remains incompletely 
characterized at the molecular level. In this study, we assess melanoma immunotherapy 
response using a multi-scale network approach to identify gene modules with 
coordinated gene expression in response to treatment. Using gene expression data of 
melanoma before and after treatment with nivolumab, we modeled gene expression 
changes in a correlation network and measured a key network geometric property, 
dynamic Ollivier-Ricci curvature, to distinguish critical edges within the network and 
reveal multi-scale treatment-response gene communities. Analysis identified six distinct 
gene modules corresponding to sets of genes interacting in response to 
immunotherapy. One module alone, overlapping with the nuclear factor kappa-B 
pathway (NFKB), was associated with improved patient survival and a positive clinical 
response to immunotherapy. This analysis demonstrates the usefulness of dynamic 
Ollivier-Ricci curvature as a general method for identifying information-sharing gene 
modules in cancer. 
 
Introduction 
 Melanoma is an aggressive cancer which arises due to dysregulation of 
melanocytes, typically in the skin1. This dysregulation generally involves mutational, 
epigenetic and transcriptional changes that affect multiple proteins and molecular 
subsystems in the cancer cell, driving tumorigenesis and growth2-6. Although numerous 
studies have examined the expression profiles of melanoma, the mechanisms of 
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therapeutic response and resistance are not thoroughly characterized7-9. In this study, 
we focus on transcriptomic responses to the immunotherapy drug nivolumab, a 
monoclonal antibody that functions via anti-PD1 immune checkpoint blockade10. 
 Given the complex interplay of molecular components involved in the therapeutic 
response to immunotherapy in cancer cells, network models offer a method to study 
cancer from a systems perspective. In a network model, individual genes and pairwise 
relationships between genes can be represented as vertices and edges, respectively. 
Previous studies have demonstrated that network geometric properties including 
network curvature and entropy can, for example, distinguish melanoma cells from 
normal cells, suggesting network geometry may be useful to classify cancer and non-
cancer cells and investigate molecular changes that occur during tumorigenesis or in 
response to treatment11-14. 
 By considering correlations among experimentally-measured gene expression 
data, one can construct a weighted network that can identify key modules of genes with 
correlated expression patterns that may be implicated in cancer therapeutic response15, 

16. Such gene modules might indicate coordinated transcriptomic programs related to 
certain cellular responses, for example cancer signaling or metabolic pathways that may 
contribute to treatment success or failure. Commonly, gene correlation network 
analyses involve potentially arbitrary cutoffs of inter-gene correlation values or, 
alternatively, principal component analysis to identify such gene modules15, 17. However, 
few methods incorporate distance information on the network in a natural way. One 
method that does this is Ollivier-Ricci curvature, a network geometric measure of the 
connectedness of neighborhoods, which has been shown to distinguish within-cluster 
(positive) and between-cluster (negative) connections, and thereby can be used to 
define interconnected gene modules in a robust way18-20. In fact, previous research 
utilized such network geometric approach to study pediatric sarcoma and identify novel 
functional gene associations including the EWSR1-FLI1-ETV621. 
 In this study, we applied a multi-scale geometric network analysis approach to 
study the transcriptomic response of melanoma tumors treated with the immunotherapy 
drug nivolumab. We modeled changes in gene expression as a weighted correlation 
network and assessed network geometry at multiple diffused scales in order to 
determine which network edges (correlations) correspond to ‘critical’ connectivity 
bridges of the network. This allowed us to identify several distinct gene modules, which 
we subsequently assess in terms of differential regulation in response to treatment and 
consider clinical associations including mutational subtype and overall survival. Using 
this approach, we compared pathway analysis of the gene modules to known 
mechanisms and identified a potential key marker of melanoma immunotherapeutic 
response. 
 
Results 
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Multi-Scale Network Analysis Identifies Gene Modules in Melanoma Differential Gene 
Correlation Network 
 We focus this study on a publicly available melanoma transcriptomic dataset 
measuring gene expression (by RNA-seq) in melanoma patient tumors before and 
during treatment with the immunotherapy drug nivolumab, a PD-1 immune checkpoint 
inhibitor10. In 43 patients, gene expression was measured in both pre- and on-treatment 
conditions, allowing analysis of the matched expression changes (on-treatment minus 
pre-treatment) in response to therapy for each patient. We considered only genes 
relevant to immunotherapy response by narrowing our focus to 912 genes, including 18 
genes with known involvement in immunotherapy response to PD1 blockade and 894 
genes sharing pairwise interactions with those 18 core genes in a known protein-protein 
interaction database (STRINGdb)22-25. To model co-expression relationships among 
these genes, we constructed a correlation network based on the Pearson correlation of 
each pair of genes that shared a protein-protein interaction, for a total of 50,518 edges. 
 We applied a multi-scale geometric assessment of the correlation network to 
identify, in an unsupervised manner, clusters of correlated gene modules of melanoma 
immunotherapeutic response. We first applied a diffusion process to simulate diffusion 
of information across the network on increasing scales according to a pseudotime/scale 
parameter � (Fig. 1A). This diffusion allowed us to examine the network through a ‘lens’ 
of various scales to observe multi-scale properties of the network. We then measured 
Ollivier-Ricci curvature (ORC) �, a key network geometric property that represents the 
closeness of two neighboring distributions of connected genes in the network. Larger 
values of � indicate that information is more closely related between the neighborhoods 
around two genes of a given edge in the network. ORC is thus valuable to identify which 
gene correlations are likely within-cluster (defined as � positive) and which are likely 
between-cluster (defined as � negative).  
 Importantly, measuring the curvature of the correlation network at various 
information diffusion scales allowed us to determine a ����� threshold at which to best 
partition the network into correlated gene modules (Fig. 1A; Table 1). At ����� � 1.58, we 
extracted ����� as the curvature of each edge at ����� and additionally defined ������ as a 
‘smoothed’ estimate of curvature integrated over all diffusion steps up to �����. We then 
applied a weighted Louvain clustering algorithm to partition the network while 
maximizing average ������   (high shared information) within clusters while minimizing 
average ������ (low shared information) between clusters, resulting in six distinct modules 
of correlated genes (Fig. 1B,C). With the defined clusters, we observed greater ������ 
(Fig. 1D; unpaired t-test: p<0.001) among within-cluster edges (n=20,289 edges, mean 
������=0.451) as compared to between-cluster edges (n=4,970 edges, mean 
������=0.054), suggesting that ORC can effectively separate correlated gene modules 
based on network geometry. 
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Figure 1: Identification of Correlated Gene Modules in Melanoma Immunotherapy 
Response with Multi-scale Geometric Network Analysis. A: Line plots of gene-gene 
edge curvature � over diffusion for �, including vertical line critical �����=1.58, a point of 
high discrimination, whereby lines are colored by ������. B: Correlation heatmap of 6 
gene modules identified with weighted Louvain clustering. C: Graph network with edges 
colored by ������ and layout partitioned by cluster. D: Average ������ of edges within or 
crossing between each pair of gene clusters, where color indicates average ������ and 
area of each circle is proportional to number of edges.  
 
Table 1: Top five highest and lowest curvature edges at �����: 

Gene A Gene B ������ 
FRK ARMC8 0.804 

CDC27 CBX8 0.791 
CD3D CD274 0.777 
CUL1 PSMA4 0.768 

CLTC1 SYNJ2 0.764 
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LDLR APOB -0.921 
MAPK10 TP53 -0.842 
CDKN1A ABL1 -0.826 

LDLR APOA1 -0.822 
AP2S1 SH3GL3 -0.796 

 
 
 Next, in order  to highlight relevant biological pathways involving the genes of 
each module, we performed pathway analysis (Fig. 2A, Supp. Table 1). Gene Ontology 
(GO) enrichment analysis indicated that each module was associated with distinct 
pathways (Fig. 2B), which we summarize as follows: Module 1 enriched for endocytosis 
and vesicle transport. Module 2 enriched for leukocyte chemotaxis and migration. 
Module 3 enriched for histone modification and chromatin remodeling. Module 4 
enriched for cell adhesion and leukocyte proliferation. Module 5 enriched for 
proteasomal catabolism and ubiquitination. Module 6 enriched for nuclear factor kappa-
B (NF-kB) signaling, transcription factor activity, and cytokine production and signaling. 
These gene modules thus represent distinct biological processes that may be 
fundamentally modulated by melanoma tumors in response to immunotherapy. 
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Figure 2: Correlated Gene Modules Enrich for Distinct Biological Functions. A:
Heatmap of scaled gene expression difference (on-treatment minus pre-treatment) for
each patient, including annotation for clinical response and mutational subtype. B:
Enrichment dotplots of top 8 most significant pathways for each gene module. 
 
 We next hypothesized that these gene modules, when differentially regulated in
response to immunotherapy, may directly affect clinical outcomes. To assess the
biological and clinical relevance of each module, we estimated the relative change in
expression of each gene cluster in response to therapy by defining a module score as
the scaled expression difference (on-treatment minus pre-treatment) averaged over all
genes within each module (Fig. 3A). We assessed the relationship between these
scores and patient survival by multiple Cox regression, finding that module 6 indicated a
significant association with reduced risk and hence improved survival (Fig. 3B,C). 
 

 
Figure 3: Correlated Gene Modules Associate with Survival and Clinical Response. A:
Heatmap of module scores (as average scaled expression change of module genes) for
each patient, including annotation for clinical response and mutational subtype. B:
Forest plot of multiple Cox regression of survival with each module score. C: Kaplan-
Meier survival curves with groups split by module 6 score median. P-value indicates log-
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rank test according to median high/low group. D: Waterfall plot of module 6 scores 
colored by clinical therapy response (CR/PR=complete response/partial response, 
SD=stable disease, PD=progressive disease). 
 
 Additionally, we observed a borderline-significant association of module 6 scores 
with observed clinical response to therapy (response, stable disease, or progression), 
whereby the module 6 score exhibited greater change on average for patients with 
complete or partial response and lower on average for patients with progressive disease 
(average module 6 score: CR/PR=0.267, SD=0.195, PD=0.019; Kruskal-Wallis test: 
p=0.061; Fig. 4A). We further examined the average expression change of each gene 
with respect to clinical treatment response, observing differential patterns for each 
response group wherein genes with greatest change in CR/PR responders had 
relatively little change in PD non-responders (Fig. 4B). Of the 58 genes in module 6, two 
genes exhibited significant differences (after multiple testing correction) in expression 
change between responders (CR/PR) and non-responders (PD); IL18R1 showed a 
greater positive change in responders (IL18R1 average expression change: 
CR/PR=0.540, PD=–0.160; FDR<0.001) while IL1RAP showed a greater negative 
change (IL1RAP average expression change: CR/PR=–0.781, PD=0.259; FDR<0.005). 
Together, these results suggest that at least one of the identified gene modules (module 
6) can be associated with prognostic clinical outcomes including survival and treatment 
response. 
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Figure 4: Module 6 Gene Expression Changes are Associated with Clinical Response.
A: Waterfall plot of module 6 scores colored by clinical therapy response
(CR/PR=complete response/partial response, SD=stable disease, PD=progressive
disease). B: Heatmaps of expression change (on- minus pre- treatment) of module 6
genes in each clinical response group, including left annotation for each response group
of each gene’s average expression change within the group (avg_diff). 
 
 
Discussion 
 In this study, we applied a network analysis approach to study correlated
changes in gene expression of melanoma tumors in response to immunotherapy
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treatment. Using this network analysis approach, we aimed to study the complex 
changes that arise in genes with shared biological interactions that are dynamically 
regulated upon treatment induction. We considered a multi-scale geometric aspect of 
the gene correlation network in order to identify modules of correlated genes18, 21. 
Crucially, Ollivier-Ricci curvature (ORC), a measure that indicates how close two 
distributions in a network are, allowed us to distinguish within-cluster (positive curvature, 
more similarity) edges from between-cluster (negative curvature, less similarity) edges 
and accordingly classify six distinct gene modules. 
 The approach we applied here was similar to previous gene correlation network 
algorithms, including Weighted Gene Co-expression Network Analysis (WGCNA), but 
does not require any potentially arbitrary correlation threshold and instead directly 
utilizes geometric properties of the correlation network15. It is important to note that the 
Wasserstein (earth-mover’s) distance computation, which was applied to compute ORC, 
is effective for studying small or medium gene networks (less than about 1,000 genes) 
but does exhibit increasing computational time with network size. Larger gene networks 
on the order of several thousands or tens of thousands genes (for example, the entire 
set of ~20,000 genes typically measured by RNA-seq) may become computationally 
burdensome or infeasible, but this might be circumvented with approximate solutions 
such as the entropy-regularized Sinkhorn algorithm26. 
 In terms of melanoma biology, our approach identified six distinct gene modules 
that represented sets of genes with shared protein interactions and correlated 
expression changes in response to nivolumab immunotherapy. Pathway analysis 
highlighted biological processes represented by the genes of each module, where we 
found enrichment of diverse biological processes encompassing endocytosis, 
chemokine signaling, histone modification, leukocyte proliferation, proteosomal 
catabolism, and nuclear factor kappa-B (NFkB) signaling. 
 We further hypothesized that these modules might be directly involved in 
melanoma response to immunotherapy, whereupon we identified one key module 
(module 6) in which a positive expression change was associated with improved patient 
survival and clinical treatment response. This relevant module was enriched for cytokine 
production and signaling but enriched even more for NFkB signaling, a pathway with 
known involvement in cancer immune signaling27. Biologically, NFkB is known as a 
complex of proteins which regulates inflammatory response and apoptosis in a complex 
manner, and thus has been implicated in cancer promoting tumorigenesis (when 
expressed within cancer cells) as well as anti-tumor immune response (when expressed 
within immune cells)28. Recent literature has furthermore indicated NFkB as a biomarker 
of clinical benefit to nivolumab in renal carcinoma29. 
 Thus, these results may be considered confirmatory of biologically relevant 
markers of immunotherapy and might further suggest potentially unstudied genes and 
mechanisms involved in melanoma immunotherapy response. In summary, we believe 
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this study demonstrates the relevance of network curvature as a practical means of 
identifying gene modules in correlated biological gene expression data, and we expect 
this approach may be a valuable tool to study other types of cancers or other biological 
contexts. 
 
Methods 
Melanoma immunotherapy dataset 
 Publicly available gene expression data of 109 melanoma tumors in response to 
nivolumab treatment was accessed at NCBI GEO, accession code: GSE91061. Of the 
samples, 51 samples correspond to pre-treatment and 58 samples to on-treatment with 
nivolumab, with 65 patients total including 43 patients matched in both pre- and on-
treatment conditions. RNA-seq data was provided both as raw gene read counts and 
data normalized by regularized-log normalization30. Entrez gene IDs were mapped to 
HGNC gene symbols with the org.Hs.eg.db annotation package31. Before downstream 
analysis, lowly expressed genes were removed if the gene had than less than 10 raw 
RNA counts in more than 90% of samples, and then rlog values of each sample were 
quantile-normalized to make the distribution of expression values comparable between 
samples. 
 Additional patient metadata (including therapy response and overall survival) was 
downloaded from the Supplemental Information of the same study10. Therapy 
responses were reported in the metadata as RECIST v1.1 categories: CR (complete 
response), PR (partial response), SD (stable disease), PD (progressive disease), or NE 
(not evaluated)32. 
 
Gene Correlation Network Construction 
 We constructed a weighted network model beginning with the human protein-
protein interaction (PPI) network topology that represents the system of molecular 
interactions possible in human cells, encompassing signaling and metabolic pathways 
which may be modulated in various cancers. We accessed PPI topology data from 
STRINGdb (version 11), a database of known PPIs25. We incorporated a cutoff filter 
using the STRINGdb-provided confidence scores and a sparsification procedure based 
on gene ontology labels of adjacent cellular compartments to remove likely false 
positive edges, as previously described13, 33. To remove the influence of unreliable low-
degree vertices, we excluded all genes with corresponding interaction degree initially 
less than 5. To focus our analysis, we additionally selected known immunotherapy-
relevant genes involved in PD1 blockade therapies, according to the Molecular 
Signatures Database (MSigDB) C2 Curated Collection gene set: MsigDB C2: 
WP_CANCER_IMMUNOTHERAPY_BY_PD_1_BLOCKADE22-24. This gene set 
contained 23 genes (which we refer to as ‘core’ immunotherapy genes), 20 of which 
were contained in the expression data and STRINGdb network. We then extended the 
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core immunotherapy gene set by including all genes with neighboring PPI edges to the 
core genes, for a total of 928 neighbors. Finally, we took the largest maximally 
connected component of the network containing these selected genes, of which 18 
belonged to the core immunotherapy gene set and the remainder were PPI neighbors. 
These criteria resulted in an undirected network topology with 912 vertices (genes) and 
50,518 edges. 
 Using the difference of (rlog) normalized gene expression in on-treatment minus 
pre-treatment, a weighted correlation matrix 
 was computed representing the Pearson 
correlation of all patients’ expression change for each pair of genes, then shifted from 

the range [-1,1] to the range [0,1] by a linear transformation �������	 � 
��



, as a similarity 

metric such that negative correlations become close to zero and positive correlations 
remain close to 1. To define transport cost on the network (as utilized below in the 
Wasserstein computation), correlations were transformed into distance-like edge 
weights defined as the inverse of the shifted correlation if that edge was in the given PPI 
network topology. Then, a distance matrix � representing shortest path length between 
each pair of genes was computed using Djikstra’s algorithm34. 
 
Dynamic Network Curvature Analysis 
 Dynamic network curvature analysis was conducted by simulating diffusion over 
the weighted network and measuring geometric changes18, 21. First, the graph Laplacian 

 was determined as  


 � � � ��

�, 
where I is the identity matrix, 
� is the shifted correlation matrix of edges in the network 
and � is the weighted degree or row-sum of  
�. 
 The graph Laplacian represents the divergence of weighted differences in a 
discrete graph and served as a crucial tool to efficiently simulate diffusion at multiple 
pseudotime/scale parameters �. A diffusion distribution matrix � was computed using 
the matrix exponential of 
: 

� � ����. 
Each row of � indicates a probability distribution corresponding to one diffusion process 
with an initial Dirac delta �� concentrated at a single vertex � then diffused over 
pseudotime � to arrive at a diffused distribution. We applied this step for 101 values of � 
ranging in the form log10(�) � [-2,2]. 
 In each diffused graph, Ollivier-Ricci curvature (ORC) � was computed for each 
edge in the graph by first computing the Wasserstein distance �
 between two 
probability distributions: 

�
��� , ��� � inf� � ���,  !d#, 

as the minimum total cost for all couplings $ that satisfy marginals �� and �� signifying 

probability distributions of vertex � and   diffused for the same pseudotime � and 
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transport cost � specified by the shortest path length between each vertex. The 
Wasserstein distance (�
) thus indicates optimal transport distance as a measure of 
closeness between two distributions. Then, ORC subsequently transforms this value by 
the following formula: 

��� � 1 �
�����,���

	��
, 

where ��� is the direct distance between the two vertices defined above. Curvature � 

can indicate positive convergence (clique-like) or negative divergence (tree-like) of the 
probability distributions in the graph, revealing the geometric structures of the graph (i.e. 
clusters, branching). 
 Over the diffusion process, � initially begins at zero, indicating the transport 
distance of concentrated deltas at each vertex is equivalent to the direct edge distance 
between them. As the diffusion process progresses to fully diffused stationary 
distributions, there will be little to no transport distance as the distributions become 
equal, so � will approach 1. It is in the middle of the diffusion process, however, that � 
can become negative for certain edges or remain positive for others, thereby revealing 
critical network edges that point to overarching community structure within the graph. 
After measuring all edge curvature values over the diffusion evolution, we determined a 
threshold ����� as the first pseudotime/scale when the upper 99th percentile of all edges 
exceeded � % 0.75. For each edge, we determine ����� to be the value of � at �����. We 

additionally define ������ as the integral ������ � & ������

�
, to represent a smoothed estimate 

of curvature during diffusion up to �����. 
 
Gene Module Clustering 
 At the critical threshold �����, all edge ������ values were considered as modularity 
weights in a weighted Louvain clustering algorithm, such that the Louvain optimization 
iteratively maximized ������ within clusters and minimized ������ between clusters35. This 
was accomplished using the networkx Python package implementation of  
nx.community.louvain_communities, with the default resolution parameter of 1, which 
ultimately assigned each gene an integer label corresponding to one of six gene 
modules36. 
 With each module, a module score was computed for each patient that could be 
considered to assess how each module score related to clinical characteristics including 
overall survival and therapy response. Scaled gene expression difference was defined 
as the difference in normalized gene expression (on-treatment minus pre-treatment 
condition in each patient with matched data for both conditions), then scaling each gene 
by dividing by standard deviation across all patients (but not shifting the mean, as 
typical for z-score, so as to the preserve positive and negative sign of expression 
change). Gene module scores were then computed for each patient as the average 
scaled gene expression difference over all genes within each module. Given the 
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biological context of the correlation network in melanoma immunotherapy response, we 
applied pathway analysis on each gene module to identify biological processes involved 
in each module. Gene ontology (GO) enrichment was computed using the 
clusterProfiler R package (considering “ALL” pathways of GO BP, CC, and MF 
subontologies) and the enrichplot R package was utilized for visualization of pathway 
analysis results37, 38. 
 
Statistical Analysis 
 An unpaired t-test was used to compare curvature of within-cluster vs between-
cluster edges. Pathway enrichment analysis utilized a hypergeometric test for over-
representation analysis, including multiple hypothesis correction, for which we select a 
cutoff of FDR>0.0539, 40. Multiple Cox proportional hazard test was applied to determine 
the association of all module scores with patient survival. Kaplan-Meier analysis of 
module 6 score split into low/high groups by median was used for visualization. For 
statistical analysis related to therapy response, we removed 1 patient with NE and 
grouped CR (n=3 patients) and PR (n=6 patients) as a single group CR/PR. Kruskal-
Wallis test was used as a non-parametric analysis of variance to assess module score 
association with therapy response. For each of 58 genes in module 6, a two-sample 
Wilcoxon test was applied to compare expression change in CR/PR vs PD groups, 
followed by a significance cutoff of FDR<0.05 after Benjamini-Hochberg multiple-
comparison adjustment40. 
 
Code Availability 
 All analysis code was written in Python and R and has been made publicly 
available in a GitHub repository at the following link: https://github.com/kevin-
murgas/melanoma_dynamic_curvature.  
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