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Abstract

Cryogenic electron microscopy (cryo-EM) has emerged as a central tool for the determination
of structures of complex biological molecules. Accurately characterising the dynamics of such
systems, however, remains a challenge. To address this, we introduce cryoENsemble, a
method that applies Bayesian reweighing to conformational ensembles derived from molecular
dynamics simulations to improve their agreement with cryo-EM data and extract dynamics
information. We illustrate the use of cryoENsemble to determine the dynamics of the
ribosome-bound state of the co-translational chaperone trigger factor (TF). We also show that
cryoENsemble can assist with the interpretation of low-resolution, noisy or unaccounted
regions of cryo-EM maps. Notably, we are able to link an unaccounted part of the cryo-EM
map to the presence of another protein (methionine aminopeptidase, or MetAP), rather than to
the dynamics of TF, and model its TF-bound state. Based on these results, cryoENsemble is
expected to find use for challenging heterogeneous cryo-EM maps for various biomolecular
systems, especially those encompassing dynamic elements.
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Introduction

Describing the dynamics of complex macromolecular systems presents significant challenges1.
The main techniques to achieve this goal are nuclear magnetic resonance (NMR) spectroscopy
and single-molecule fluorescence methods2–5. More recently, technological and methodological
advancements in single-particle cryogenic electron microscopy (cryo-EM), including
improvements in electron detectors, image processing software and motion correction
algorithms, have offered a new means to investigate protein dynamics6–9. By the recording of
millions two-dimensional (2D) projection images of biomolecules captured by flash freezing in
various compositional or conformational states, cryo-EM offers a glimpse into the diverse
conformational landscape of dynamic macromolecular complexes.

A variety of computational methods for fitting and refining atomic models against
single-particle cryo-EM data have been developed10–13. These methods include rigid body
fitting of available X-ray structures into low-resolution cryo-EM maps14, incorporation of protein
flexibility through normal mode analysis15 and flexible fitting16,17, and density-based molecular
dynamics (MD) simulations18–21. Despite these advances, however, characterising the
conformational heterogeneity underlying the dynamics of the systems under observation in
cryo-EM samples remains a significant challenge22–24. Structural regions that display
conformational heterogeneity can be incorrectly aligned and then erroneously averaged with
other images, causing these regions to become blurred, or even invisible, in the reconstruction
and leading to lower final resolution and less detailed or incomplete maps. Separating these
regions into homogeneous subsets during post-processing can be achieved, for example, by
using heterogeneous refinement with maximum likelihood classification methods25. This
approach, however, tends to work better for discrete heterogeneity, when the system can be
characterised by a finite number of states. For continuous conformational heterogeneity, other
methods have been developed, including focus refinement, where a mask is applied to different
regions of the structure26, multi-body refinement27, manifold embedding28 or deep neural
networks29.

Typically, to generate dynamical descriptions, structural models can be fine-tuned with
experimental data30–35. This approach, however, presents significant challenges as the
experimental data are affected by a combination of the experimental errors and approximations
included in post-processing into molecular simulations. As a result, different conformations can
lead to a similar agreement with experimental observables, particularly when the data are
incomplete and noisy, or when the forward model is dependent on many approximations, such
as being based only on distances or angles between atoms to back-calculate experimental
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properties. Solutions that combine structural information from various experimental techniques
(e.g. NMR spectroscopy, cryo-EM, small-angle X-ray scattering (SAXS)30) with computational
methods (e.g. molecular dynamics) and Bayesian inference have been proposed to produce
structural ensembles30–32. This integrative structural biology approach33 has been applied to
many biological systems34,35. Bayesian inference can be applied during MD simulations by
adding a bias energy term to constrain simulations to sample conformations in agreement with
experimental data35, or it can be applied a posteriori when the experimental data are used to
reweight the MD ensemble. The utility of these methods depends on the nature of the system
under study, as well as the available experimental data36.

Here, we describe cryoENsemble, a computational approach that combines molecular
dynamics simulations with Bayesian reweighting utilising cryo-EM maps (Fig. 1). This method
allows the interpretation of discrete and continuous heterogeneity from cryo-EM maps to
describe the underlying structural ensembles accurately. To accomplish this, we adapted and
extended the Bayesian Inference Of ENsembles (BioEn) method37 that uses various
experimental data (e.g. NMR, SAXS, DEER) to refine structural ensembles from MD simulations.
We first validated the cryoENsemble method with synthetic cryo-EM maps from two
well-characterized systems, namely adenylate kinase (ADK) and ribosomal nascent chain
complex (RNC) (Fig. 2). We could effectively reweight the structural ensembles in both cases,
capture important structural features and, at the same time, account for variations in resolution
and noise levels present in the density maps that correspond to discrete and continuous
cryo-EM heterogeneity (see Methods).
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Figure 1. Schematic illustration of the cryoENsemble method. The input includes a
structural ensemble (in grey), typically obtained from molecular dynamics simulations, and a
cryo-EM map of the biological system under investigation. Each model from the structural
ensemble is fitted into the density prior to the cryoENsemble calculations. The prior (P(wN

0)) and
posterior (P(wN)) structural ensembles consist of N structural models with wN

0 and wN weights,
respectively. The parameters and σ are obtained during the reweighting along with theθ, α
posterior average cryo-EM map (in pink).

Next, we applied cryoENsemble to the cryo-EM map of the ribosome-bound state of trigger
factor (TF) stabilised by the presence of peptide deformylase (PDF) and methionine
aminopeptidase (MetAP) (Fig. 2). TF is the only ribosome-associated chaperone in bacteria,
whereas PDF and MetAP are essential enzymes involved in the co-translational removal of
formylated methionine in nascent protein chains, and both bind in the proximity of the
ribosomal exit tunnel38. Despite intensive research39–44, the detailed role of TF in the
co-translational folding process remains incompletely understood due to the experimental
challenges presented by its dynamic nature, even in its ribosome-bound state, and only
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low-resolution or incomplete cryo-EM maps, that often encompass merely the
ribosome-binding domain (RBD)45–47 are available.

Figure 2. Molecular systems used for the development and testing of the cryoENsemble
method. (A) X-ray structures of the E. coli adenylate kinase (ADK) in the open (PDB ID: 4AKE48,
shown in blue) and closed (PDB ID: 1AKE49, shown in red) states. (B) Structural ensemble of
FLN5-6 ribosome nascent chain complex (FLN5-6 RNC) consisting of 100 structures, randomly
selected from the all-atom structure-based MD simulation50 that are used in the reweighting
process. Each structure is depicted in a different colour and combines the N-terminal folded
FLN5 domain followed by 31 amino acid linker consisting of the subsequent FLN6 domain and
a SecM stalling sequence covalently bound to the tRNA at the peptidyl transferase centre. A
cross-section of the 70S ribosome is shown for clarity (in grey ribosomal proteins and in silver
rRNA). (C) Trigger factor (in red) and peptide deformylase (in yellow) bound to the 70S ribosome
(ribosomal proteins in grey, rRNA in silver) (from PDB ID: 7D8038) with cryo-EM density
corresponding to TF bound states. The region of incompletely characterised density is depicted
by a blue circle (from EMDB: 3061138).
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By using all-atom MD simulations combined with cryoENsemble, we provide insights into the
dynamics of TF, as captured within this cryo-EM map and explain the additional density
present around TF. Our findings indicate that an ensemble of TF structures obtained with MD
can better explain cryo-EM maps compared to a single model. Furthermore, using
cryoENsemble, we confirmed that the additional density localised close to TF is not due to the
dynamics of TF, as was initially hypothesised45. Instead, by fitting MetAP to this unaccounted
density, we found a compelling overlap, further confirming that this density stems from a novel
binding site of the MetAP, as suggested recently38.

Overall, we demonstrate that cryoENsemble can extract otherwise elusive information about
macromolecular dynamics from heterogenous cryo-EM data. It also proves valuable in
modelling biomolecular complexes, when it is challenging to assign the regions of density due
to their dynamics or structural changes upon binding, making it a much-needed addition to the
structural biology toolbox.

Results

The cryoENsemble method for Bayesian reweighting with cryo-EM maps
To derive an ensemble of structures, each with a corresponding set of weights that adequately
represent the experimental data, we based cryoENsemble on the BioEn method37,51 and
incorporated a single-particle cryo-EM data framework. The BioEn algorithm uses Bayes’
theorem to define the posterior probability as a function of the statistical weights of each

member of the structural ensemble ( ), where is the index of the member, given the𝑤
𝑖

𝑖

experimental data and the prior knowledge about the system𝐷( ) 𝐼( )

(Eq. 1)𝑃 𝑤|𝐷, 𝐼( )≈𝑃 𝐷|𝑤, 𝐼( )𝑃 𝑤, 𝐼( )

In the context of cryo-EM data, the experimental data points are defined as a set of voxels with
a density exceeding a predetermined threshold value, the latter established based on the noise
levels present in the data (see Methods). The likelihood function, assesses the𝑃 𝐷|𝑤, 𝐼( )
probability of observing a given set of experimental data (D), considering the actual ensemble
of structures and their corresponding statistical weights ( ). The prior probability term, ,𝑤 𝑃 𝑤|𝐼( )
encapsulates the knowledge about the structural ensemble and weights ( ). This knowledge is𝑤
typically derived from the molecular dynamics ensemble prior to the incorporation of the
experimental data. The prior can be constructed in several ways, but keeping in line with the
BioEn methodology, we utilise Kullback-Leibler (KL) divergence ( )𝑆

𝐾𝐿
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(Eq. 2)𝑃 𝑤, 𝐼( )≈𝑒𝑥𝑝 − θ𝑆
𝐾𝐿( )

where is defined as and both reference ( ) and refined weights ( ) are𝑆
𝐾𝐿

𝑆
𝐾𝐿

=
𝑖=1

𝑀

∑ 𝑤
𝑖
𝑙𝑛

𝑤
𝑖

𝑤
𝑖
0 𝑤

𝑖
0 𝑤

𝑖

normalised and positive. Generally, the reference weights of the prior structural ensemble ( )𝑤
𝑖
0

are selected from the uniform distribution, though they can also be set according to
populations derived from biased MD simulations (e.g. from metadynamics52). An additional
hyperparameter, describes our confidence in the initial structural ensemble. A high value ofθ, θ
indicates high confidence in the MD simulations and generated ensemble, causing the refined

weights ( ) to stay close to the initial ones ( ). Conversely, a low value of suggests that the𝑤
𝑖

𝑤
𝑖
0 θ,

initial ensemble may be far from optimal, allowing the weights ( ) to deviate significantly from𝑤
𝑖

the starting one ( ). is automatically selected during optimisation based on the developed𝑤
𝑖
0 θ

automatic L-curve analysis (see below).

The likelihood function is modelled via a Gaussian distribution53

(Eq. 3)𝑃 𝐷|𝑤, 𝐼( )∝𝑒𝑥𝑝(−
𝑛=1

𝑁

∑
[ρ

𝑛
0−α

𝑖=1

𝑀

∑ 𝑤
𝑖
ρ

𝑛
𝑖 (σ)] 2

2σ
𝐿
2 )

where represents the experimental/reference density from the n-th voxel of our map,ρ
𝑛
0

whereas is simulated density from the same voxel generated from the i-th model of theρ
𝑛
𝑖 σ( )

structural ensemble with the use of Gaussian functions with the width equal to , which is aσ
nuisance parameter (see Methods). This likelihood function contains two additional parameters:

the variance of the Gaussian likelihood , which is equivalent to the experimental error, andσ
𝐿
2( )

the scaling factor ( ). We approximate using the variance of noise distribution outside of theα σ
𝐿
2

molecular system density, while and are estimated simultaneously with the weights duringα σ 
the reweighting. To determine the optimal value of , we perform calculations over a range ofθ θ
values and use an automatic L-curve analysis with the Kneedle algorithm54. This allows the

selection of a value that yields good agreement with experimental data (low ) and alsoθ χ2

prevents overfitting (maintaining a small difference from the distribution of the initial weights).

Having defined both the likelihood and prior functions, we can express the log-posterior
function, which we will minimise to find the optimal weights, along with nuisance parameters,
using the log-weights optimisation as encoded in BioEn
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(Eq. 4)𝐿 = θ
𝑖=1

𝑀

∑ 𝑤
𝑖
𝑙𝑛

𝑤
𝑖

𝑤
𝑖
0 +

𝑛=1

𝑁

∑
[ρ

𝑛
0−α

𝑖=1

𝑀

∑ 𝑤
𝑖
ρ

𝑛
𝑖 (σ)] 2

2σ
𝐿
2

The execution of cryoENsemble calculations yields optimal (non-zero) weights for every
structure in our structural ensemble, along with the values of and . A schematic of our θ, σ α
methodology is shown in Fig. 1.

The method has been validated using two extensive synthetic cryo-EM datasets from the
adenylate kinase and ribosomal nascent chain complex (Fig. 2, see Methods) and showed that
it can accurately reproduce the structural properties of the underlying conformational
ensembles from the heterogeneous and noisy cryo-EM data (see Methods).

Dynamics of the ribosome-bound TF complexed with PDF
Upon binding to the ribosome, TF remains highly dynamic, making it a challenging system for
structural studies. We applied the cryoENsemble methodology to the cryo-EM map, which
represents the E. coli 70S ribosome in complex with PDF, TF and MetAP38. PDF and MetAP
also bind around the ribosomal exit tunnel and compete for the same binding site localised at
uL22-uL32 protein region47. MetAP additionally has a secondary binding site, which overlaps
with the TF one38,47. When TF is bound to the ribosome in the presence of PDF or MetAP, it
exhibits reduced dynamics and is, therefore, easier to characterise via cryo-EM.

We exploited this and ran a long all-atom structure-based55 MD simulation with TF bound to the
surface of the 70S ribosome complexed with PDF (Methods). Despite the fact that the
dynamics of TF is restricted in the MD simulations by the presence of the bound PDF, it
remains mobile, in particular within the peptidyl-prolyl cis-trans isomerase (PPI-ase) domain
region (Supplementary Fig. 1). We next reweighed the MD trajectory using cryoENsemble and
the available cryo-EM map (EMDB: 3061138) (Fig. 3B) (Methods). Our initial ensemble was
already in good agreement with the cryo-EM data, with a correlation coefficient (CC) of 0.68
and Fourier shell correlation (FSC05) of 0.058. Upon reweighting, the agreement improved to
CC = 0.71 and FSC05 = 0.091, respectively (Supplementary Fig. 2). Moreover, as the
reweighting process increased the weights of selected members of the ensemble
(Supplementary Fig. 2), we identified the best-fit model within the density map, with CC=0.65
(Fig. 3C). The improvement of the agreement with the experimental data for the MD ensemble,
upon the reweighting, underscores the significance of utilising a structural ensemble instead of
a single model when analysing heterogeneous cryo-EM maps. The most significant change in
the ensemble composition was evident in our clustering analysis (see Methods). We found that,
of the six main clusters encompassing 77% of the total trajectory, only two had an increased
population following the reweighting. The remaining four experienced decreased populations,
particularly apparent for cluster 1 (Fig. 3A), comprising 36% of the MD trajectory.
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Figure 3. CryoENsemble reweighting of the TF dataset. (A) Analysis of the effect of
reweighting on the weights of each cluster obtained from the MD simulations. The orange circle
size is proportional to the population of the cluster upon reweighting. (B) The TF MD ensemble
used for reweighting fitted into the cryo-EM map (EMDB: 3061138). (C) The structural model
with the highest weight selected by cryoENsemble (Supplementary Fig. 2) is visualised in two
different orientations inside the cryo-EM map.

When we analysed each cluster separately, we noticed that clusters 1 and 2 displayed similar
average CC values (0.661±0.017 and 0.659±0.015, respectively), which might have led to
equalising their populations via cryoENsemble reweighting and thereby lowering and raising
their populations, respectively (Supplementary Fig. 3). Both clusters exhibited the highest
average value of CC amongst all main clusters. Among the remaining four clusters, cluster 6
has the highest average agreement with the experimental data (CC=0.649±0.019), and its
population also increased through reweighting. Interestingly, cluster 3 was observed to
experience significant population loss, presenting the lowest CC amongst the main clusters
(CC=0.594±0.026) and a visually poor fit into the cryo-EM density (Supplementary Fig. 3).
Altogether, these findings show that reweighting using cryoENsemble can significantly improve
the quality of the MD ensemble and its agreement with the cryo-EM data. Importantly, the
reweighting process is not a simple increase of weights for structures with high CC, as we
found no correlation between new weights and corresponding CC scores (Supplementary Fig.
4) – supporting our observation that an ensemble explains heterogenous cryo-EM data better
than a single structure.
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Additionally, when we compared the experimental cryo-EM map with the map obtained from
the single best-fit model and the map representing the entire reweighted MD ensemble, the
reweighted map is more similar to the cryo-EM when visualised at different density thresholds
(Supplementary Fig. 5). This emphasises not only the necessity to use an ensemble of
structures instead of a single structure to capture information from highly heterogeneous
cryo-EM maps but also underscores the importance of reweighting.

Figure 4. Unaccounted cryo-EM map with corresponding fitted MetAP structure. (A) The
cryo-EM map (EMDB: 3061138) with unaccounted density coloured in green. (B) The outcome
of fitting the MetAP structure (PDB ID: 1MAT56) into the unaccounted density (from (A)),
presented along the 70S-Trigger factor structure (PDB ID: 7D8038).

Unaccounted cryo-EM density corresponds to a TF-bound methionine aminopeptidase,
not TF dynamics
The initial study of TF, MetAP and PDF assembly on the ribosome provided several
low-resolution cryo-EM maps of the 70S ribosome in various configurations47. Notably, in the
cryo-EM map of MetAP-PDF-TF (12.2 Å, EMDB:9778), the MetAP density was unannotated,
and an additional density near TF was attributed to the dynamics of TF. A subsequent study
obtained a higher resolution cryo-EM map (4.1 Å) of the 70S ribosome with MetAP, PDF and TF
with again additional density near TF, but now annotated as a tertiary binding site for MetAP38.

Seeking to clarify the nature of this additional density, we took advantage of the unique
combination of the MD simulations and cryoENsemble. After accounting for the TF structural
ensemble obtained upon reweighting, we observed that there is still an unaccounted density
present (Fig. 4A), which confirms the suggestion of a tertiary binding site for MetAP38. To
further validate this observation, we fitted the MetAP structure using a rigid-body procedure,
starting with the orientation where the positively charged loops faced the ribosome surface, as
indicated by biochemical studies to be a probable ribosome-binding mode57, and found a
compelling overlap (Fig. 4, Supplementary Fig. 6).
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These findings demonstrate how MD simulations, in combination with cryoENsemble
reweighting, can help explain unmodelled and unaccounted for parts of cryo-EM density maps
corresponding to dynamic regions of biomolecular complexes.

Discussion

Characterising complex biological processes through cryo-EM presents many unique
challenges, especially for systems that are dynamic or exist in multiple conformational states.
We have proposed a method that takes advantage of both the molecular dynamics simulation
and Bayesian methodology to yield accurate representations of these systems. This is achieved
by reweighting the MD structural ensemble in accordance with cryo-EM data. Notably, unlike
most of the existing methods, we do not fit or refine a single structure but adjust the weights of
the pre-existing structural ensembles to improve their agreement with the cryo-EM data.

The effectiveness of our approach depends on the quality of the prior structural ensemble
since our reweighting strategy by construction does not produce new conformations. In this
study, we used all-atom structure-based models55 to sample available conformational space
efficiently. While structure-based potentials have been previously used to fit structures in the
cryo-EM maps via MDFit58, we have instead employed them to generate a prior structural
ensemble. Despite approximations, structure-based models provide the opportunity to explore
the dynamics of large biological complexes, that are inaccessible to more detailed
computational approaches and can produce an accurate description of their functional
dynamics59,60. Coarse-grained simulations, upon initial converting of structures to the all-atom
resolution, could be used in a similar manner to generate prior structural ensembles for
cryoENsemble, thereby further expanding the accessible system size and complexity.

For more detailed systems, the use of more advanced force fields, such as CHARMM36m61 or
DES-AMBER62, may be necessary to generate more apt initial structural ensembles –
potentially even guided by density-driven MD simulations19, where lower resolution map or one
of the half-maps can be used to restrict sampled conformational space. Moreover, to further
increase the capacity to extensively sample the conformational landscape, the structural
ensembles derived from MD simulations with enhanced sampling methods can also be used. In
this scenario, weights obtained from the reweighted MD simulations would serve to define our
initial ensemble. Essentially, any free-energy landscape sampling method, including machine
learning, can be used to generate the prior structural ensembles.

CryoENsemble can also be used to improve or validate molecular dynamics simulations. By
setting up multiple simulations with different force fields, cryoENsemble can assess which of
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the force fields most accurately captures the cryo-EM data. Furthermore, this method could be
integrated into various force field parameterisation schemes, thereby enabling the utilisation of
cryo-EM data63–65.

The cryoENsemble approach is particularly suited for complex biological systems featuring
convoluted dynamics. These systems often yield cryo-EM maps with high-resolution regions
associated with more static components and lower-resolution and ambiguous cryo-EM density
describing dynamic elements. Instances of this include nascent chain polypeptides or
ribosome auxiliary factors bound to the ribosome. In these cases, the rigid and well-resolved
structure of the ribosome contrasts with the low-resolution cryo-EM density of the NC or
auxiliary factor. The dynamic character of these components implies the search for a solution in
the form of a true structural ensemble rather than a selection of structures, which individually fit
into the density or just a single structure35.

While our method is computationally efficient, the reweighting time and memory usage can
depend on the size of both the cryo-EM map (number of voxels) and the structural ensemble.
This can be mitigated by clustering the MD structural ensemble before the reweighting to
eliminate highly similar structures, as each requires calculating and storing a density map. The
largest structural ensemble we tested comprised 1000 structures, which should suffice to
capture the heterogeneity present in the cryo-EM reconstructions for most of the cases. We
used a maximum of ~30,000 voxels from the cryo-EM map; however, one can apply initial
down-sampling of the map to reduce the number of voxels for particularly large datasets. This
method can also be helpful when working with large structural datasets. An iterative
reweighting with a downsampled map can be applied to obtain a minimal set of structures,
which can be subsequently reweighted again using the high-resolution map. In a similar
fashion, the cryo-EM density can be split into sections with varying resolutions and noise levels
or be utilised through separate half-maps. Reweighting the structural ensemble first to the
much more refined density and then subsequently reweighting it with a less resolved map
region could therefore help mitigate some of the challenges with highly heterogeneous maps.

Conclusions

We have reported a Bayesian-based approach that enables fitting structural ensembles of
various complex biomolecules, including proteins, RNA, DNA, lipids or sugars, into cryo-EM
maps to capture both continuous and discrete structural heterogeneity. Through the use of two
synthetic datasets and one experimentally-derived cryo-EM map, we have demonstrated that
cryoENsemble can generate structural ensembles with averaged density maps closely
mirroring the experimental maps, and accurately reproducing the structural properties of the
underlying conformational ensembles. We have demonstrated that a fitted structural ensemble

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2023. ; https://doi.org/10.1101/2023.11.21.567999doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=11939644,13816689,15504094&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=3848682&pre=&suf=&sa=0
https://doi.org/10.1101/2023.11.21.567999
http://creativecommons.org/licenses/by-nc-nd/4.0/


captures experimental data better than a single structure in these cases. We have also shown
how this method can be applied to analyse unaccounted densities. By enabling the analysis of
cryo-EM maps for regions that are more dynamic and therefore have less well-defined density,
our method opens up new avenues for structural studies. Additionally, cryoENsemble can be
extended to utilise other experimental data within the BioEn or similar framework, making it a
potent tool for integrative structural biology.

Materials and Methods

We validated cryoENsemble using two synthetic datasets. The first one is adenylate kinase
(ADK) in both the open and closed conformations, capturing the discrete heterogeneity present
in cryo-EM maps. The second system is a ribosome-bound nascent chain of the
immunoglobulin-like domain (FLN5-6+31), exemplifying continuous heterogeneity.
Characterising ribosome-bound nascent chains using cryo-EM is especially challenging, given
that they combine flexible and predominantly unstructured linkers in the exit tunnel with folded
or partially folded domains outside of the exit tunnel66; the latter only transiently interact with
the ribosome67.

Generating the synthetic reference density maps
In our Bayesian framework under typical circumstances, the reference density map would

correspond to the experimentally derived cryo-EM map . However, to test ourρ𝑟𝑒𝑓 = ρ𝑒𝑥𝑝( )
methodology, we utilised synthetic reference density maps. They were either generated based

on the crystal structures of the open or closed ADK state or on randomlyρ𝑟𝑒𝑓 = ρ𝑋−𝑟𝑎𝑦( )
selected models from the all-atom MD ensemble of the FLN5-6+31 ribosomal nascent chain (

, where i is a density map of the i-th model). These synthetic reference densityρ𝑟𝑒𝑓 =
𝑖=1

𝑁

∑
ρ

𝑖

𝑁 ρ

maps were generated using a protocol that mimics molmap command from ChimeraX with the
bandwidth of the blur kernel σ set at 0.225 × resolution68. Maps were produced at three
differing resolutions (3, 6, and 10 Å) to explore the influence of resolution on the reweighting
process. To further investigate the effect of noise on reweighting, we added different levels of
Gaussian noise to the map. The noise had a mean of 0 and a standard deviation based on
either 1% or 10% of the map’s maximum density.

Generating the density maps for the prior structural ensemble

In addition to the synthetic reference density maps , we generated density maps for every (ρ𝑟𝑒𝑓)

structure from the MD ensemble . If not initially aligned, each structure was aligned to the(ρ𝑖 )

reference density map using Situs14. Following this alignment and using an approach similar to
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one from the modified gmconvert script32, density maps were generated with the same voxel
size, number of voxels and origin as the reference density map. The process involved
positioning a spherical 3D-Gaussian function at each atom position with parameters for the
corresponding atom obtained by fitting the electron atomic scattering factors specific to each
atom type32,69.

Synthetic density map processing
The generated density maps, both the reference and those from the structural ensemble, were
further processed using mrcfile python library70. From our reweighting dataset, we excluded
voxels with negative values and rescaled the remaining ones to a molecular density value of 1,
making the different maps easier to compare. Our reweighting methodology operates only on
the selected voxels, both from the reference density map and the density maps generated
based on the MD ensemble, that have density above the corresponding thresholds. The
reference density map threshold is set up to be equal to , where was either 1% or3 * σ

𝑛𝑜𝑖𝑠𝑒
σ

𝑛𝑜𝑖𝑠𝑒

10% of the maximum density, whereas the threshold for maps generated based on MD was
equal to 3* , where is the standard deviation of the synthetic map (Supplementaryσ

𝑚𝑎𝑝
σ

𝑚𝑎𝑝

Fig. 7)

Generation of adenylate kinase synthetic cryo-EM densities
The adenylate kinase is an enzyme that catalyses the phosphoryl group transfer from ATP to
AMP. It consists of three domains (CORE, NMP and LID) and undergoes a significant
conformational change from open (apo) to closed (holo) conformation upon ligand binding, with
RMSD = 7.16Å (Fig. 2). Both states have been structurally characterised by X-ray
crystallography, with PDB IDs: 1AKE for the closed49 and 4AKE48 for open conformation. In our
study, we generated synthetic density maps based on these X-ray structures, and for the final
reference map, we averaged the different populations of open and closed states maps, starting
from fully open state conformation and changing the population progressively using 10%
intervals until the fully closed conformation was arrived at. In our validation protocol, we
operated under the assumption that during the cryo-EM image processing, these states could
not be separated into individual 3D reconstructions but were averaged into a single one. We
produced 11 averaged reference maps at three different resolutions (3Å, 6Å or 10Å) and with
varying levels of Gaussian noise (with a mean of zero and a standard deviation corresponding
to 1% or 10% of the maximum ADK density) (Fig. 5). In total, we generated 66 synthetic maps
for analysis.

Generation of the prior structural ensemble for adenylate kinase
To perform reweighting, we used an MD ensemble of ADK MD, consisting of structures
obtained from two short (1.5*107 steps) structure-based all-atom MD simulations with native
contacts defined with the Shadow map algorithm71 based on the X-ray structures of either the
open or closed state. These two ensembles encapsulate the local dynamics around the native
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state of the apo or holo form. The structure-based models were generated in SMOG 2.055 using
all-atoms templates72, and the MD simulations were carried out in Gromacs 4.5.773. The
combined structural ensemble consists of a total of 100 ADK conformations, with 50 randomly
selected from each simulation.

CryoENsemble reweighting of adenylate kinase dataset
For each ADK dataset, consisting of a structural ensemble and a selected set of voxels from a
combination of reference map and simulated map, we ran our cryoENsemble reweighting
method. Optimal θ values for each dataset were identified via the L-curve analysis conducted
using the Kneedle algorithm, enabling us to compute new optimal weights (see SI). Initially, we
assessed the effectiveness of our methodology in reproducing the reference population of the
open state used to generate the reference maps (Fig. 6). Our findings indicate consistency
across all density maps, which decreases with both a reduction in resolution (10 Å) and an
increase in the noise level (10%) (Fig. 6). Interestingly, the consistency was lower for reference
maps with a very small (<=0.2) or very large (>=0.8) population of the open state. This disparity
is likely due to our prior structural ensemble equally representing the open and closed states, a
significant deviation from these reference maps. This observation underscores the potential of
our method to prevent overfitting.
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Figure 5. Representative structures and density maps of ADK. ADK X-ray structures in the
open (shown in blue) and closed (shown in red) states, along with their generated density maps.
The reference density maps were generated based on the varied populations of the open and
closed states, different map resolutions, and noise levels. All density maps are depicted at a
threshold level equal to three times the standard deviation of the noise distribution.
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Figure 6. Open state populations calculated from cryoENsemble reweighting of ADK
dataset. The open state populations obtained after structural ensemble reweighting for each
ADK dataset are shown in orange along the target values (circle). The datasets varied in
resolution, noise level, and reference populations of the open state.
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Figure 7. Correlations between reference maps and posterior maps upon cryoENsemble
reweighting of ADK dataset. Correlation coefficients calculated between the reference maps
and the maps generated from the structural ensemble upon reweighting for each ADK dataset.
The datasets varied in resolution, noise level, and reference populations of the open state.

Following these calculations, we generated a reweighted and averaged cryo-EM map for each
dataset and compared it with the reference density map to evaluate the impact of the
reweighting (Fig. 7). For the comparison, we applied three different metrics as recommended
by the 2019 Cryo-EM Model Challenge74. Scores were used based on the correlation
coefficient (CC), Fourier shell correlation (FSC05) and Segment Based Manders’ Overlap
Coefficient (SMOC)75 as they represent the three main clusters of the scoring methods and
therefore capture various aspects of similarity between maps. The correlation coefficient
calculated between the reference maps and posterior densities revealed that the effect of
reweighting is evident across all open state populations in each ADK dataset (Fig. 7). The
correlation coefficient for medium and low-resolution maps reaches values of up to 0.9 or 0.8
for low (1%) and high (10%) noise levels, respectively. Higher resolution maps (3 Å), which
contain more detail, present a more significant challenge in reweighting the structural ensemble
to achieve high correlation coefficients, in particular when high noise levels (10%) are present in
the data (Fig. 7). However, reweighting consistently yields higher correlation coefficients than
those obtained with the prior weights (for 3 Å with high noise levels (10%) on average
CC=0.597 and CC=0.558 for posterior and prior weights, respectively). We also compared our
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reweighting results with the correlation coefficients derived from maps generated based on the
best single structure fit. In the majority of the cases, the entire ensemble obtained after
reweighting provides a more accurate representation of the map than any individual structure
(Fig. 7). Interestingly, when lowering the map resolution, e.g. from 6 to 10 Å, the quality of a
single structure fit increases and in the cases of either entirely open or closed state it is higher
than the CC of the prior ensemble, and can even equal the value of the reweighted ensemble.
The single structure CC deteriorates when maps are close to an equal mixture of open and
closed states. These observations show that cryoENsemble not only can provide a reweighted
structural ensemble but also inform on when a single structure may be sufficient to describe a
cryoEM map satisfactorily.

Using a score based on the model-map FSC curve read at FSC=0.5 (FSC05)76 (another global
score which, unlike CC, increases with the higher resolution of the density map of the target 74)
on the ADK dataset also showed an improvement upon the cryoENsemble reweighting
(Supplementary Fig. 8). As a final validation score, we used SMOC that captures the local
similarity between the reference map and the fitted model. We calculated the average SMOC
score across all residues and models from the MD ensemble and observed that it improved
after reweighting, in particular for the entirely open and closed states (Supplementary Fig. 9).
Altogether, for both global and local metrics, we see a clear effect of the reweighting on the
quality of the ADK structural ensemble. We subsequently analysed how the weights of each
model from the structural ensemble were updated during the reweighting. We found that
cryoENsemble shifted the weights from the uniform prior distribution to correctly capture the
reference map open/closed state population (Supplementary Fig. 10-15). Finally, a visual
comparison of the prior and posterior average density maps alongside the reference maps
shows the impact of the reweighting, especially pronounced for the open state maps where
posterior maps combine only the open state conformations (Supplementary Fig. 16-18).

Overall, we have demonstrated the effectiveness of cryoENsemble in characterising discrete
heterogeneity in cryo-EM maps. We derived weights that can generate a map in good
agreement with the experimental data (Supplementary Fig. 16-18) and are able to describe the
correct populations of each state (Fig. 6). Our reweighted structural ensemble better explains
the experimental data, using both global (Fig. 6, Supplementary Fig. 9) and local metrics
(Supplementary Fig. 9), than the starting ensemble. Furthermore, our method can also
suggest when a single structure fitted into the reference map is insufficient, highlighting the
necessity of using a structural ensemble for heterogeneous cryo-EM map fitting.

Generation of the prior structural ensemble and synthetic cryo-EM densities for the
FLN5-6+31 RNCs

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 21, 2023. ; https://doi.org/10.1101/2023.11.21.567999doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=5779457&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10416921&pre=&suf=&sa=0
https://doi.org/10.1101/2023.11.21.567999
http://creativecommons.org/licenses/by-nc-nd/4.0/


The FLN5-6 ribosome nascent chain complex encompasses the immunoglobulin-like domain
(FLN5 protein), captured during its biosynthesis on the bacterial 70S ribosome. The FLN5-6
nascent chain sequence also consists of the 31 amino-acid linker comprising the fragment of
the subsequent filamin domain (FLN6) and the SecM stalling sequence77. The FLN5 is the fifth
filamin domain (residues 646-750) of the Dictyostelium discoideum gelation factor, and its
co-translational folding has been extensively studied through a combination of experimental
and computational techniques66,67,78,79. For our study, we generated a starting ensemble by
randomly selecting 100 conformations of the NC from the FLN5-6 structural ensemble obtained
from the previous all-atom structure-based MD simulation 50 (Fig. 2 and Fig. 8). This ensemble
exhibits significant structural heterogeneity, with RMSD values up to 28Å (Supplementary Fig.
19), reflecting the dynamic nature of the RNCs. To obtain the reference density maps, we
randomly selected ten structures from this starting ensemble, generated an average density
map and repeated this procedure 100 times with Gaussian noise, corresponding to either 1%
or 10% of the main density added (Fig. 8). This system enables us to evaluate our
methodology in the case of continuous heterogeneity present in the cryo-EM maps.

Reweighting the structural ensemble of the ribosome-bound nascent chain of FLN5-6
We applied cryoENsemble protocol to the prior structural ensemble and optimised the
log-posterior function (Eq. 4), using the combined data from the reference map and maps
generated from the structural ensemble.
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Figure 8. Representative structures and densities of the FLN5-6 nascent chains.
Examples of ten random FLN5-6 nascent chain structures chosen from the MD ensemble (Fig.
1B) used to generate the reference density map at different resolutions (3, 6, and 10 Å) and
noise levels (1% or 10%). Each structure is depicted in a different colour and combines the
FLN5-6 nascent chain that is composed of N-terminal folded FLN5 followed by 31 amino acids
of the subsequent FLN6 domain and a C-terminal SecM stalling sequence that is covalently
attached to the tRNA at peptidyl transferase centre of 70S ribosome. All maps are depicted at a
level equal to three times the standard deviation of the noise distribution.

We used the entire structural ensemble (100 models) for the reweighting, including the ten
conformations used to generate the reference density maps. Average density maps were
generated based on the prior and posterior weights, and their correlation coefficients with the
reference density maps were calculated (Fig. 9). The prior ensemble, despite its significant
structural heterogeneity, already displayed a good agreement with the reference density maps
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with average CC varying between 0.8 (3 Å maps) and 0.95 (10 Å maps) for 1% noise and from
0.47 (3 Å maps) to 0.84 (10 Å maps) for 10% noise (Fig. 9). After reweighting, the correlation
increased in all cases, reaching a value close to 1.0 for low noise levels (1%) and 0.9 for high
noise levels (10%), with the only exception of the 3 Å maps, which, as in the ADK case, present
a more significant challenge in reweighting the structural ensemble, in particular at the higher
noise levels (10%) where CC reached 0.54 vs 0.47 with the prior weights. This difficulty is
further apparent upon examining the extent of density in this highly noisy system (Fig. 8). A
comparison with maps generated based on a single structure shows that, in contrast to the
ADK system, a single structure cannot represent the dynamic heterogeneity present in the
nascent chain cryo-EM maps for any of the systems we tested (Fig. 9). We also evaluated the
reweighted ensemble using FSC05 and SMOC metrics (Supplementary Fig. 20 and 21),
finding that the reweighting improved the agreement with experimental data both globally and
locally in all cases. Additionally, in order to assess the structural similarity between the
obtained reweighted ensemble and the ten structures used to generate the reference map, we
used the Jensen-Shannon (JS) divergence. We found significantly closer matching values upon
reweighting. For the prior ensemble, the JS divergence was equal to 0.112±0.042 whereas for
the posterior ensemble, it varied in 1% noise maps from 0.039±0.016 (3 Å) to 0.065±0.024 (10
Å) and in 10% noise maps from 0.058±0.02 (3 Å) to 0.068±0.026 (10 Å) (Supplementary Fig.
22).
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Figure 9. Correlations between the reference maps and posterior maps upon
cryoENsemble reweighting of the FLN5-6 nascent chain dataset. Correlation coefficients
calculated between the FLN5-6 nascent chain reference density maps and maps obtained
before and after the reweighting, as well as the maps derived from the best single structure
fitted into the reference density map. The 100 reference density maps (at resolutions of 3, 6,
and 10 Å, and with noise levels of 1% and 10%) were generated based on ten randomly
selected structures from the MD ensemble.
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Figure 10. Weights obtained upon cryoENsemble reweighting of the FLN5-6 nascent
chain dataset. Examples of the reweighting process for FLN5-6 nascent chain based on the
reference map (at resolutions of 3, 6, and 10 Å, and with noise levels of 1% and 10%). Weights
are calculated with different theta (θ) values ranging from 0 to 107, and with black lines, we
depict optimal weights selected based on the L-curve analysis. Additionally, weights
corresponding to the ten models used to generate the reference map are circled.
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The high initial correlation between the prior ensemble and reference map can result in
relatively minor changes to the correlation coefficients after reweighting (Fig. 9). However, we
observed significant shifts from the uniform distribution of the weights of the prior structural
ensembles due to reweighting (Fig. 10). The weights of the ten models used for reference map
generation (circled in Fig. 10) are substantially higher than those of the remaining structures
(e.g. 5.6% vs 0.5% on average for 3 Å maps with 1% noise), a trend not significantly affected
by the resolution of the density map or its noise level. This observation highlights the sensitivity
of our method, which became particularly apparent when we analysed the entire dataset to
determine how many of the ten models used to generate the reference map received the
highest weight after the reweighting (Supplementary Fig. 23). For high- and medium-resolution
maps (3 and 6 Å), our method assigned the highest weights to the correct models in all
datasets. While lower-resolution maps (10 Å) posed greater challenges, over half of the
reference models were correctly identified to receive the top ten highest weights.

Preparation of the trigger factor cryo-EM map for reweighting
For the final system, we used an experimentally derived cryo-EM map capturing the dynamics
of the ribosome-associated chaperone (trigger factor) bound to the ribosome in the presence of
the peptide deformylase and excess of methionine aminopeptidase (Fig. 2)38. The obtained
cryo-EM map had a clear density for the 70S ribosome, TF and PDF, which enabled authors to
fit and refine models. However, the presence of the incomplete MetAP density suggested a
novel tertiary binding site but did not allow for modelling the bound state. To create a reference
map for the reweighting process, we used ChimeraX to select only the density that
corresponds to either the Trigger Factor (TF) or the unmodeled MetAP (Fig. 2), subsequently
saving it as a smaller, cropped map. This map was then normalised using the same
methodology that we previously outlined for the synthetic reference map. We used the map
threshold suggested by the authors (0.005) to select significant voxels for the reweighting.

Generation of the Prior Structural Ensemble for the TF System
Using the available structure of the 70S ribosome from E.coli with bound TF and PDF (from
PDB ID: 7D8038), we prepared a starting structure for the MD simulation that encompassed the
surface of the 70S ribosome around the ribosomal exit tunnel and bound both TF and PDF
(Supplementary Fig. 24). We used an all-atom structure-based model generated with SMOG
2.4.455,80 with bond lengths and angles based on the AMBER03 force field81,82. Native contacts
that are used in structure-based potential were defined based on TF cryo-EM structure with the
use of the Shadow Map71. For the structure-based MD simulations set up in SMOG, reduced
units were applied with length, time, mass and energy scale all set to 1, except for the
Boltzmann constant, which is kB = 0.00831451 (kJmol−1K−1, default in GROMACS). Simulations
were performed for 5*108 steps in GROMACS 2021.283 in NVT ensemble at a reduced
temperature of 0.5 (60 in GROMACS units), which is slightly below the temperature for this
model to capture physiological conditions (0.582 reduced unit81). The constant temperature
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was maintained via the Langevin Dynamics protocol. Taking advantage of a recent comparison
of diffusion coefficients in the SMOG model and an all-atom explicit-solvent model84, we
estimated the effective simulated time to be in a range of hundreds of microseconds. During
simulations, we kept the atoms of the ribosome surface frozen. We sampled the trajectory
every 5*105 steps generating 1000 structures, and clustered them based on the RMSD using
the gmx cluster method from GROMACS (Fig. 3). Obtained structural ensemble, we used as a
prior during the reweighting process carried out in cryoENsemble.

Fitting of the MetAP
To isolate the MetAP cryo-EM density, we utilized the ChimeraX68 command 'volume subtract'
to create a difference map between the original (EMDB: 3061138) and the posterior map derived
from cryoENsemble reweighting of the TF MD trajectory. The E.coli methionine aminopeptidase
structure (PDB ID: 1MAT56) was fitted into the obtained density using ChimeraX, orienting
positively charged loops towards the ribosome, in accordance with previous studies57. For
subsequent rigid-body fitting, we utilized the 'Fit in Map' command, setting the simulated map
resolution to 8Å.

Code Availability
The source code of CryoENsemble, accompanied by a basic tutorial, is freely available on
GitHub at: https://github.com/dydymos/cryoBioEN.
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