

1 **Vaccination of cattle with a virus-vectored vaccine against a major membrane protein of**
2 ***Mycobacterium a. subsp. paratuberculosis* elicits CD8 cytotoxic T cells that kill intracellular**
3 **bacteria**

4 Asmaa H. Mahmoud^a, Gaber S. Abdellrazeq^a, Valentina Franceschi^b, David A. Schneider^{ac},
5 John P. Bannantine^d, Lindsay M. Fry^{a,c}, Victoria Hulubei^a, Giovanna De Matteis^e, Kun Taek
6 Park^f, William C. Davis^{a*}, Gaetano Donofrio^{b,*}

7

8 ^aDepartment of Veterinary Microbiology and Pathology, Washington State University, Pullman,
9 Washington, USA

10 ^bDepartment of Medical-Veterinary Science, University of Parma, Parma, Italy

11 ^cAnimal Disease Research Unit, ARS, USDA, Pullman, Washington, USA

12 ^dNational Animal Disease Center, ARS, USDA, Ames, Iowa, USA

13 ^eCREA-Council for Agricultural Research and Economics Research - Centre for Animal
14 Production and Aquaculture, 00015 - Monterotondo, Italy

15 ^fDepartment of Biotechnology, Inje University, Gishie, Republic of Korea

16

17 ^{*}Co-corresponding authors

18

19 William C. Davis davisw@wsu.edu

20 Gaetano Donofrio gaetano.donofrio@unipr.it,

21

22

23 **Running Head:** Peptide vaccine for *Mycobacterium a. subsp. paratuberculosis*

24 **Abstract**

25 Infection of cattle with *Mycobacterium a.* subsp. *Paratuberculosis* (*Map*), the causative agent of
26 paratuberculosis, induces an immune response directed toward a 35 kD major membrane protein
27 (MMP) of *Map*. CD8 cytotoxic T cells (CTL) are elicited when peripheral blood mononuclear
28 cells from healthy cattle are incubated ex vivo with antigen-presenting cells (APC) primed with
29 bacterial recombinant MMP. Ex vivo development of CTL was MHC-restricted and required the
30 presence of both CD4 and CD8 T cells. The gene *MAP2121c*, encoding MMP, was modified to
31 express a modified form of MMP (p35NN) in a mammalian cell line, also capable of eliciting an
32 ex vivo CTL response. In the present study, the modified gene for p35NN was placed into a
33 BoHV4 vector to determine the potential use of BoHV-4AΔTK-p35NN as a peptide-based
34 vaccine. Subcutaneous vaccination of healthy cattle with BoHV-4AΔTK-p35NN elicited a CTL
35 recall response, as detected ex vivo. Further studies are warranted to conduct a challenge study to
36 determine if CD8 CTL elicited by vaccination with BoHV-4AΔTK-p35NN prevents the
37 establishment of a persistent infection by *Map*.

38

39

40 **Key words:** *Mycobacterium a.* subsp. *paratuberculosis*, cattle, bovine, virus vectored vaccine,
41 peptide vaccine, CD8 cytotoxic T cells,

42 1. Introduction

43 *Mycobacterium a. subsp. paratuberculosis (Map)* is one of multiple lineages of mycobacteria
44 that have evolved over the millennia, that have acquired the ability to infect and cause disease in
45 multiple species, including humans (1) (reviewed in Bachmann et al. (2)). It is one of the major
46 mycobacterial pathogens impacting the livestock industry and human health. Like other
47 mycobacterial pathogens, it has been difficult to control. Initial infection induces an immune
48 response that can control but not clear the pathogen, which results in a persistent infection. The
49 lack of understanding of how a pathogen can establish a persistent infection in the presence of an
50 immune response has, until now, impeded progress in developing a vaccine for *Map* and other
51 mycobacterial pathogens. However, a seminal observation made by investigators studying the
52 role of the stringent response in survival of *Mycobacterium tuberculosis (Mtb)* in a mouse
53 model, discovered that the gene *rel*, regulator of the stringent response, is essential for survival
54 in the mammalian host (3). When the gene is present, *Mtb* can establish a persistent infection.
55 When the gene is deleted, the mutant *Mtb* can only establish a transient infection despite the
56 initial formation of characteristic granulomas. The potential importance of this finding to other
57 mycobacterial infections was revealed when the same effect on persistent infection was observed
58 with a *rel* deletion mutant of *Mycobacterium a. paratuberculosis (Maprel)* in cattle and goats,
59 natural hosts of *Map* (4, 5).
60 Analysis of the recall response ex vivo revealed vaccination with the mutant elicited the
61 development of CD8 cytotoxic T cells (CTL) that could kill intracellular *Map* (6). Further
62 analysis demonstrated one of the targets of the response is a 35 kD major membrane protein
63 (MMP) (6). Comparison of the recall responses elicited with APC primed with *Maprel* or with
64 MMP demonstrated both methods elicited comparable proliferative responses of CD4 and CD8

65 T cells, and development of CD8 T cells with similar CTL activity. No proliferative or CTL
66 activity was detected in natural killer cells (NK) or $\gamma\delta$ T cells also present in the preparations of
67 PBMC.

68 Subsequent studies revealed ex vivo stimulation of PBMC with MMP elicited primary immune
69 responses in CD4 and CD8 T cells with CD8 T cells acquiring CTL activity (6). This suggested
70 it might be possible to develop a MMP-based vaccine against *Map*. The gene encoding MMP,
71 *MAP2121c*, was modified for expression in mammalian cells to explore this possibility. The
72 modified gene was placed in an expression cassette to produce modified MMP for analysis.

73 Stimulation of PBMC with APC primed with a tPA-MMP-2mut expressed peptide, elicited CD4
74 and CD8 T cell proliferative responses, and CTL activity in CD8 T cells that was comparable to
75 that elicited by the *Map* deletion mutant and MMP expressed in *E. coli* (eMMP).

76 As reported in the present study, the synthetic ORF tPA-MMP-2mut was used to develop and
77 test a virus vectored vaccine using the expression vector, BoHV-4A Δ TK, developed by Donofrio
78 et al. (7). The results show the modified MMP is expressed and elicits development of CD8
79 CTL, as detected by analysis of the recall response ex vivo with APC primed with either *Maprel*
80 or eMMP.

81

82 **2. Materials and methods**

83 **2.1 Generation of constructs to develop a virus vectored MMP candidate vaccine**

84 The synthetic ORF tPA-MMP-2mut, now called p35NN, was previously described (8). In this
85 synthetic ORF, the Kozak consensus sequence and human tissue plasminogen activator signal
86 peptide (tPA) was added to the 5' terminus, and an AU1 peptide tag was added to the 3'
87 terminus. In addition, the first two predicted N-glycosylation sites were mutated to generate

88 p35NN. The primer pair NheI-p35-sense (5'-
89 CCCCCGCTAGCCCACCATGGACGCTATGAAGAGGGGCCTGTGCTGC-3') and SmaI-p35-
90 antisense (5'-CCCCCCCAGGGTTAGATGTACCGGTAGGTGTCCTTGTACTC-3') was used to
91 insert a NheI restriction site at the 5' end and a SmaI restriction site at the 3'end of the ORF. The
92 NheI/SmaI cut amplicon was cloned into the shuttle vector pINT2EGFP (9) and cut with the
93 same enzymes, generating pTK-CMV-p35NN-TK; thereby placing the p35NN ORF under the
94 transcriptional control of the immediate early gene promoter of human cytomegalovirus (CMV),
95 followed by the bovine growth hormone polyadenylation signal (pA) and flanked by BoHV-4
96 TK sequences.

97

98 **2.2 Transient transfection and secretion of p35NN from HEK 293T cells**

99 Cells were seeded at 3×10^5 cells/well in 6-well plates and incubated overnight at 37°C and 5%
100 CO₂ in a humidified incubator. Cells were then incubated for 6 hours with a transfection mix
101 containing 3 µg plasmid DNA and PEI (ratio 1:2.5 DNA-PEI) in Dulbecco's Modified Essential
102 Medium (DMEM) high glucose (Euroclone) without serum. After incubation, the transfection
103 mix was replaced by fresh complete Eagle's Modified Essential Medium (cEMEM: 100 IU/mL
104 of penicillin, 100 µg/mL of streptomycin, 0.25 µg/mL of amphotericin B, 1 mM of sodium
105 pyruvate and 2 mM of L-glutamine), with 10% Fetal Bovine Serum (FBS), and incubated for 24
106 hours at 37°C and 5% CO₂ in a humidified incubator. To test supernatant protein expression, the
107 transfection solution was replaced with fresh DMEM/F12 (ratio 1:1) medium without FBS and
108 incubated for 72 hours at 37°C and 5% CO₂ in a humidified incubator. Cell supernatant was then
109 collected and analyzed by immunoblot. Cell supernatants, obtained from HEK 293T cells
110 transfected pTK-CMV-p35NN-TK or pEGFP-C1, were collected after 72 hours in serum free

111 medium DMEM-F12 secretion condition and analyzed through 10% SDS-PAGE gel
112 electrophoresis. Proteins were then transferred to PVDF membranes by electroblotting, and
113 membranes were incubated with anti-AU1 rabbit polyclonal antibody (A190-125A, Bethyl
114 laboratories Inc.) diluted 1:10,000, washed, and then incubated with a goat anti-rabbit secondary
115 antibody labelled with horse radish peroxidase (Sigma), diluted 1:15,000 and visualized by
116 enhanced chemiluminescence (Clarity Max western ECL substrate, Bio-Rad).

117

118 **2.3 Bacterial Artificial Chromosome (BAC) Recombineering and Selection**

119 The *Pvu*I linearized pTK-CMV-p35NN-TK expression cassettes was used for heat-inducible
120 homologous recombination in SW102 *E. coli*, containing the BAC-BoHV-4-A-TK-KanaGalK-
121 TK genome and targeted into the TK locus with KanaGalK selector cassette. After
122 recombineering, only those colonies that were kanamycin resistant and chloramphenicol positive
123 were isolated and grown overnight in 5 mL of LB (Luria-Bertani) liquid medium broth
124 containing 12.5 mg/mL of chloramphenicol. BAC-DNA was purified and analyzed through
125 HindIII restriction enzyme digestion. DNA was separated by electrophoresis in a 1% agarose gel.
126 Original detailed protocols for recombineering can also be found at the recombineering website
127 (<https://redrecombineering.ncifcrf.gov/>). Non-isotopic Southern blotting was performed with a
128 probe specific for the p35NN sequence. DNA from 1% agarose gel was capillary transferred to a
129 positively charged nylon membrane (Roche) and cross-linked by UV irradiation by standard
130 procedures. The membrane was pre-hybridized in 50 mL of hybridization solution (7% SDS, 0.5
131 M phosphate, pH 7.2) for 1 hour at 65°C in a rotating hybridization oven. P35NN probe labeled
132 with digoxigenin was generated by PCR with primers described **above**. The PCR amplification
133 reaction was carried out in a final volume of 50 μL, containing 10 mM Tris-hydrochloride pH

134 8.3, 5% dimethyl sulfoxide (DMSO), 0.2 mM deoxynucleotide triphosphates, 2.5 mM MgSO₄,
135 50 mM KCl, 0.02 mM alkaline labile digoxigenin-dUTP (Roche) and 0.25 μM of each primer.
136 100 ng of DNA was amplified over 35 cycles, as follows: 1 min denaturation at 94°C, 1 min
137 annealing at 60°C, and 2 minutes elongation with 1U of Taq DNA polymerase (Thermo Fisher
138 Scientific) in addition to 1 μl of Digoxigenin-11-dUTP, alkali-labile (Roche) at 72°C.

139

140 **2.4 Cell Culture Electroporation and Recombinant Virus Reconstitution**

141 BEK or BEK^{cre} cells were maintained as a monolayer with cEMEM + 10% FBS. When cells
142 were sub-confluent (70-90%) they were split to a fresh culture flask and incubated at 37°C, 5%
143 CO₂. BAC-DNA (~5 μg) was electroporated in 600 μL DMEM without serum (Bio-Rad Gene
144 pulser Xcell, 270 V, 1500 μF, 4-mm gap cuvettes) into BEK and BEK^{cre} cells. Cells were left to
145 grow until the appearance of syncytia of infected cells (CPE).

146

147 **2.5 Virus and Viral amplification**

148 BoHV-4-A-CMV-p35NNΔTK was propagated by infecting confluent monolayers of BEK cells
149 at a multiplicity of infection (MOI) of 0.5 tissue culture infectious doses 50 (TCID₅₀) per cell and
150 maintained in medium with only 2% FBS for 2 hours. Medium was replaced with fresh cEMEM
151 with 10% FBS. When the majority of the cell monolayer displayed the CPE (~72 hours post
152 infection), the virus was harvested by freezing and thawing cells three times and pelleting the
153 virions through a 30% sucrose cushion. Virus pellets were then resuspended in cold DMEM
154 without FBS. The tissue culture infectious dose (TCID₅₀) was determined on BEK or MDBK
155 cells by limiting dilution.

156

157 **2.6 Virus Growth Curves**

158 BEK cells were infected with BoHV-4-A-CMV-p35NN Δ TK and BoHV-4-A at a MOI of 0.1 and
159 incubated at 37°C for 4 hours. Infected cells were washed with serum-free cEMEM and then
160 overlaid with cEMEM. The supernatants of infected cultures were harvested daily, and the
161 amount of infectious virus was determined by limiting dilution on BEK cells. Viral titer
162 differences between each time point are the average of triplicate measurements \pm standard errors
163 of the mean ($P > 0.05$ for all time points as measured by Student's t-test).

164

165 **2.7 Animals**

166 A total of ten naïve Holstein steers were obtained from the Knott Dairy, a *Map*-free
167 facility at Washington State University (WSU). All animal care and experimental procedures
168 were conducted in compliance with the protocols approved by the Institutional Animal Care and
169 Use Committee, WSU (ASAF 6542). Animals were grouped and treated as follows: One group
170 of four steers was immunized with a subcutaneous (SC) injection of 10^7 TCID₅₀ of the virus
171 vectored MMP (BoHV-4-A-CMV-p35NN Δ TK). The second group of four steers was inoculated
172 SC with 10^7 TCID₅₀ of the vector containing eGFP (BoHV-4-A-eGFP Δ TK). The third group of
173 two age-matched (1 yr) steers were left without inoculation. The steers were kept in an open
174 feedlot and maintained by the WSU animal care staff and used as a source of blood throughout
175 the duration of the study.

176

177 **2.8 Preparation and culture of bacteria**

178 The *Maprel* deletion mutant used in this study was developed from *Map* K-10 strain (*MapK10*)
179 using a site-directed allelic exchange, as previously described (10). The *MapK10* and *Maprel* were

180 grown as described in (6). When needed, master stocks were prepared and the optical density at
181 600 nm (OD₆₀₀) was used to estimate the final bacterial number (10). Bacteria were diluted to a
182 multiplicity of infection (MOI) needed to conduct each experiment as described below.

183

184 **2.9 Cell separation and culture**

185 Blood (~ 200 mL) was collected from steers at two- and six-weeks postvaccination to
186 analyze recall responses of isolated peripheral blood mononuclear cells (PBMC) as previously
187 described (6). In brief, PBMC were suspended in a complete culture medium with and without
188 antibiotics (cRPMI-1640) and then distributed in 6-well culture plates (2×10^6 /mL in 5 mL of
189 RPMI/well) in duplicate to achieve two technical replicates. Live *Maprel* (1×10^6 /mL/well, MOI
190 0.5:1) or *E. coli* expressed MMP (eMMP, 5 G/ml) (11) were added to each of the two PBMC
191 wells respectively. Two wells of PBMC were left unstimulated (mock) as negative controls. Two
192 identical sets of PBMC cultures were prepared for analysis of the recall response; one set to
193 analyze the proliferative response by flow cytometry (FC) and one to analyze the killing of
194 intracellular bacteria by CD8 T cells by qPCR.

195 One portion of PBMC was used to generate monocyte-derived macrophages (MoMac) for
196 use as target cells in the killing assay as described in (12).

197

198 **2.10 Analysis of the recall response**

199 **2.10.1 Flow cytometric analysis of the memory recall response to *Maprel* and eMMP
200 stimulated PBMC.**

201 PBMC were cultured for 6 days in presence of either *Maprel* or eMMP or left unstimulated
202 (mock). The cells were washed and labeled for the FC analysis as described in (6). In brief, after

203 the cells were washed twice with first wash buffer (FWB: PBS containing 0.01% w/v sodium
204 azide, 0.02% v/v horse serum, and 10% v/v acid citrate dextrose) the cells were incubated with
205 mAbs listed in Table 1 (1 µg of mAb/10⁶ cells) for 15 min in the dark on ice. Cells were then
206 washed twice using FWB and re-suspended in 100 µL of fluorochrome conjugated goat anti-
207 mouse isotype-specific secondary mAbs. Specific isotype controls were used in the
208 experiment. Cells were incubated for 15 min in the dark on ice, then washed twice with a second
209 wash buffer SWB, as FWB but without horse serum. After the final wash, cells were re-
210 suspended in 2% PBS-buffered formaldehyde and stored at 4°C until examined by FC.

211 Data were acquired with a BD FACS Calibur flow cytometer (BD, Immunocytometry Systems,
212 USA). Approximately 5 × 10⁵ events were collected for each sample. A
213 sequential gating strategy was used to isolate CD4 and CD8 T cells for analysis as illustrated in
214 Fig. 1A. A side light scatter (SSC) vs forward light scatter (FSC) gate was used to isolate
215 lymphocytes for analysis. The proportions of activated memory CD45R0 CD4 and CD45R0 CD8
216 T cells in the total CD4 or CD8T-cell pools were determined by using electronic gates as shown
217 in Fig. 1B. FCS Express software (De Novo Software, Pasadena, CA) was used to analyze all FC
218 data.

219

220 **2.10.2 Intracellular killing assay for determination the cytotoxic activities of *Maprel* and**
221 **eMMP-stimulated PBMC**

222 The intracellular killing assay was used as previously described (6) to determine the
223 proportion of bacteria killed by CD8 CTL generated in the recall response to BoHV-4-A-CMV-
224 p35NNΔTK in comparison to the eGFP containing vector and unvaccinated controls. PBMC
225 stimulated 6 days with *Maprel* or eMMP were collected and cocultured for an additional 24 hrs

226 with MoMac target cells infected with live *Map_{k10}* at MOI of 10:1 (2×10^7 *Map_{k10}* to $\sim 2 \times$
227 10^6 MoMac/well). On the following day, coculture wells were collected individually and
228 permeabilized with 1× saponin solution (0.5% w/v in PBS 10×, Thermo Fisher Scientific, CA,
229 USA) for 15 minutes at 37°C in a humidified incubator. A set of controls (100% live, 50%
230 live/50% killed, and 100% killed) were prepared from known mixtures of live and dead *Map_{k10}*
231 as described in (6) to cover the dynamic range of bacteria live/dead variable proportions in the
232 infected target cells. All saponin treated cultures were washed twice in DNase-free dH₂O, treated
233 with a photoreactive propidium monoazide dye (PMA, Biotium, Fremont, CA, USA) in a final
234 dye concentration of 50 µM, and then DNA was extracted (6). A preparation of *Map_{k10}* grown to
235 log phase (4×10^7) was included during DNA extraction to obtain pure *Map_{k10}* gDNA for use to
236 generate a standard curve. The single-copy *F57* gene is specific for *Map* and was used in the
237 TaqMan qRT-PCR to determine the proportions of live *Map_{k10}* within each culture as described
238 by Kralik et al. (13) and Abdellrazeq et al.(6). All PCR reagents including primers, TaqMan
239 probe, and TaqMan universal master mix were supplied by Applied Biosystems (Thermo Fisher
240 Scientific, CA). The qRT-PCR reaction and cycling parameters were performed according to
241 Schönenbrücher et al. (14) using a StepOnePlus Real-Time PCR System machine (Applied
242 Biosystems, CA). Each sample was run in triplicate. The mean cycle threshold (C_T) values of the
243 3 replicates were determined using StepOne Software v2.1 (Applied Biosystems, CA) and used
244 to calculate the relative proportion of viable bacteria in each sample. Data were considered valid
245 if the following criteria were met: PCR efficiency between 90 and 110%, regression coefficient
246 (R^2) > 0.99 , and standard deviation ≤ 0.250 .

247

248 **2.11 Statistical analysis**

249 A generalized linear mixed model analysis was conducted on each dataset using the SAS
250 software procedure PROC GLIMMIX (SAS Institute Inc., Cary, NC, USA). Each model
251 included the main effects terms for vaccination group (none, eGFP, p35NN) and ex vivo antigen
252 stimulus (mock, eMMP, *Maprel*), the interaction term, and a random intercept for the subjects
253 (steers nested within vaccination groups). Separate analyses were conducted for each T cell type
254 (CD4 or CD8) at postvaccination weeks two and six. The memory recall response measured as
255 proportion of activated (CD45R0) T cells was modeled as a beta distribution whereas the
256 intracellular bacterial killing response (C_T value) was best modeled as a Gaussian distribution.
257 Specific linear contrasts were constructed to compare responses to ex vivo mock stimulation
258 (baseline) between vaccination groups. Similarly, specific linear contrasts were constructed to
259 compare responses to each ex vivo antigen stimulus (eMMP and *Maprel*) to mock stimulation
260 within each vaccination group. The improved method of Kenward and Roger (DDFM=KR2) was
261 used to compute denominator degrees of freedom. Significance values were adjusted for
262 multiplicity using the technique of Holm (step-down Bonferroni; $P_{Holm} < 0.05$). The modeled
263 responses are summarized in figures as the predicted least squares means and 95% confidence
264 limits.

265 **3.. Results**

266 **3.1 Development of a recombinant BoHV-4 expressing p35NN**

267 A recombinant BoHV-4 virus expressing a secreted mutant form of p35 (tPA-MMP-2mut) was
268 used in the present study (8) to develop an expression cassette, CMV-p35NN. Expression was
269 assessed by transient transfection in HEK 293T cells. Transfected cells secreted p35NN in the
270 supernatant as detected by western immunoblotting (Fig. 2A). A recombinant BoHV-4
271 delivering CMV-p35NN, BoHV-4-A-CMV-p35NN Δ TK, was generated starting with the

272 genome of an apathogenic BoHV-4 strain (BoHV-4-A) (15) cloned as a BAC. The TK BoHV-4-
273 A genome locus was used as the integration site for the CMV-p35NN expression cassette. The
274 BoHV-4 TK genomic region is strongly conserved among BoHV- 4 isolates (16), ensuring the
275 stability of the genomic locus from potential recombination. The TK locus does not interfere
276 with viral replication in vitro and heterologous protein expression is maintained (9, 17) (9, 17-
277 21) (22-24). Restriction enzyme linearized pTK-CMV-p35NN-TK was used for heat-inducible
278 homologous recombination in SW102 *E. coli* containing pBAC-BoHV-4-A-KanaGalK Δ TK
279 (15.1016/j.vaccine.2008.09.023) (Fig. 2B) to generate pBAC-BoHV-4-A-CMV-p35NN Δ TK.
280 Selected clones were first analyzed by *HindIII* restriction enzyme digestion and Southern
281 blotting (Fig. 2B, C). Because heat-inducible recombination in SW102 *E. coli* and repeated
282 passages could establish altered bacterial phenotypes, due to aberrant recombinase transcription,
283 SW102 *E. coli* carrying pBAC-BoHV-4-A-CMV-p35NN Δ TK were serially cultured for over 20
284 passages and checked by *HindIII* restriction enzyme digestion. No differences were detected
285 among restriction patterns at various passages (data not shown), thus ensuring the stability of the
286 clones. To reconstitute infectious BAC-BoHV-4-A-CMV-p35NN Δ TK, pBAC-BoHV-4-A-
287 CMV-p35NN Δ TK DNA was electroporated into BEK and BEK cre cells (15). The recombinant
288 viruses reconstituted from electroporated BEK cre resulted in depletion of the BAC plasmid
289 backbone containing the GFP expression cassette, as shown by the loss of GFP expression (Fig.
290 2D). Next, the growth characteristics of BoHV-4-A-CMV-p35NN Δ TK were compared with that
291 of the parent virus, BoHV-4-A. BoHV-4-A-CMV-p35NN Δ TK demonstrated slightly slower
292 replication kinetics compared to BoHV-4-A (Fig. 2E). Transgene expression was detected in the
293 supernatant of BoHV-4-A-CMV-p35NN Δ TK infected cells (Fig. 2F).
294

295 **3.2 Recall response to vaccination with BoHV-4-A-CMV-p35NNΔTK**

296 Preliminary studies revealed the virus vectored MMP could not be used ex vivo to prime
297 APC to elicit a recall response. Therefore, eMMP and *Maprel* were used for eliciting a recall
298 response. Although initial studies with the gene encoding MMP, modified for expression in a
299 virus vector, indicated the modifications did not alter immunogenicity, it was not known if the
300 epitopes expressed by the modified MMP were the same as those expressed in eMMP. It was
301 also not known if the retained epitopes would elicit a recall response to the epitopes present in
302 native MMP. Previous studies with eMMP had provided data indicating epitopes processed and
303 presented concurrently by MHC I and MHC II were essential for eliciting a proliferative CTL
304 response (25). *Maprel* was included to determine if vectored MMP used to vaccinate steers elicit
305 a recall response to epitopes conserved on eMMP and native MMP expressed by *Maprel*.

306

307 **3.3 Flow cytometric analysis of the recall response**

308 The proportions of CD4 T and CD8 T cells expressing CD45R0 after six days culture of
309 PBMC in the absence (mock) or presence of eMMP or *Maprel* are summarized in Figs. 1 and 3.
310 The flow cytometric profiles in Fig. 1 illustrate how numerical data of memory CD4 and CD8 T
311 cells were obtained. Fig. 3 provides a summary of the data. The baseline proportions of memory
312 CD4 and CD8 T cells that expressed CD45R0 after PBMC from unvaccinated steers were
313 cultured alone or in the presence of eMMP or *Maprel* were minimal but, relative to unvaccinated
314 steers, significantly increased in comparison with both groups of vaccinated steers at two and six
315 weeks post-vaccination (Fig. 3, # indicates $0.001 \leq P_{Holm} < 0.05$ for differences in baseline
316 proportions between vaccination groups). In contrast, robust increases from baseline were
317 observed at both time points when PBMC from steers vaccinated with virus-vectored p35NN

318 were cultured with eMMP or *Maprel* (Fig. 3, ** and *** respectively indicate $P_{Holm} < 0.001$ and
319 < 0.0001).

320 **3.4 Analysis of the cytotoxic T cell recall response**

321 Figure 4 shows an example of the *F57* gene C_T values measured for PBMC collected
322 from a steer 2 and 6 weeks after vaccination with the virus-vectored p35NN. A summary of the
323 *F57* gene C_T results for all vaccination groups and culture conditions at each time point is shown
324 in Figure 5. There were no significant differences between vaccination groups in the baseline
325 measures of C_T values (Fig. 5, mock). PBMC from unvaccinated steers cultured in the presence
326 of eMMP or *Maprel* did not significantly change C_T values from baseline at either time point.
327 For steers vaccinated with virus-vectored eGFP, culture in the presence of eMMP or *Maprel* did
328 result in increased C_T values for PBMC collected at two-weeks post vaccination, but which were
329 not sustained in PBMC collected at six-weeks (Fig. 5, * indicates $0.001 \leq P_{Holm} < 0.05$ for
330 differences relative to the corresponding baseline value). For steers vaccinated with virus-
331 vectored p35NN, C_T values were increased when PBMC collected at two-weeks post-
332 vaccination were cultured in the presence of eMMP or *Maprel*, which was sustained in PBMC
333 collected at six-weeks only in response to eMMP. (Fig. 5, * and ** respectively indicate $P_{Holm} <$
334 0.05 and < 0.001 for differences relative to the corresponding baseline value).

335

336 **4. Discussion**

337 The development of methods to use cattle as a model species to study the immune
338 response to mycobacterial pathogens has afforded an opportunity to follow up on observations
339 made with a mouse model which showed that deletion of *rel* abrogates the ability of *Mtb* to
340 establish a persistent infection (26, 27). Similarly, a *Maprel* deletion mutant could not establish a

341 persistent infection in cattle or goats (5). Furthermore, ex vivo studies with *rel* deletion mutants
342 in *Map* and BCG demonstrated immediate CD4 and CD8 T cell responses were elicited with
343 APC primed with the mutants, and CD8 CTL developed the ability to kill intracellular bacteria
344 (6, 28). The 35 kD membrane protein, MMP, was shown to be one of the targets of in the *Maprel*
345 mutant (6).

346 A comparable immune response is also obtained when APCs are primed with either eMMP or
347 *Maprel* (6). Stimulation of naïve PBMC ex vivo with APC primed with eMMP elicited a CD8
348 CTL response. This response required simultaneous recognition of eMMP epitopes (presented
349 in context MHC I and II molecules) to elicit primary and recall CTL responses (25). These
350 findings indicate any peptide considered for developing a peptide-based vaccine must contain
351 epitopes that will be presented in context of MHC I and II molecules (6). In all, the findings
352 indicate the eMMP protein fulfilled the requirements for developing a peptide-based vaccine.
353 The epitopes recognized by MHC I and MHC II were retained in the modified MMP expressed
354 by the virus vectored p35NN.

355 An early attempt to develop a nano particle-based vaccine incorporating eMMP was not
356 successful (29). Initial studies demonstrated eMMP could be encapsulated in a nano particle lipid
357 carrier and elicit a recall response. However, follow up studies revealed it was not possible to
358 develop a stable eMMP nanoparticle based vaccine. In the present study, we turned to a virus-
359 vectored vaccine approach. The question posed was whether modification of the gene encoding
360 eMMP for expression in a mammalian cell would retain MHC I and II restricted epitopes
361 required for eliciting CTL. Modification of the gene was required to incorporate it into a shuttle
362 vector, but the expressed modified-gene products still elicited a CTL response comparable to
363 eMMP. Further modification and incorporation of the gene encoding MMP into the BoHV-4

364 vector was successful (BoHV-4-A-CMV-p35NN Δ TK) and resulted in a post-vaccination
365 response in steers that included a CTL response within two weeks. Further studies are planned to
366 determine whether the immune response elicited by BoHV-4-A-CMV-p35NN Δ TK is sufficient
367 to block establishment of a persistent infection by *Map*. Similar studies are also planned to
368 determine if the broader immune response elicited by the *Maprel* mutant elicits an immune
369 response with similar or different protective activity.

370

371 **Conflicts of Interest:** The authors declare that they have no competing interests.

372 **Author Contributions:** AHM, GSA, LMF, JPB, and WCD conceived the study. KTP developed
373 the *rel* deletion mutants used to conduct the studies. GD developed the MMP BoHV-4 vectored
374 vaccine, AHM, GSA, and WCD participated in the design of the protocol to conduct the studies.
375 AHM and GSA conducted the studies. AHM, GSA and DAS participated in statistical analysis of
376 the data. AHM, GSA, WCD, LMF, VF, GDM, VH, KTP, JPD, GD, and DAS participated in the
377 writing and interpretation of the results. WCD obtained the funding for the project. WCD
378 oversaw and participated in all aspects of the study. All authors read and approved the final
379 manuscript.

380 **Acknowledgments:** The authors wish to acknowledge the excellent technical support and animal
381 care provided by Emma Karol and her staff. WCD would like to recognize Sidney Raffel,
382 Standford University School of Medicine, mentor and early pioneer studying mechanisms of
383 pathogenesis of mycobacterial pathogens (1911-2013).

384 **Funding:** This work was supported in part by the USDA National Institute of Food and
385 Agriculture-Agriculture and Food Research Initiative Competitive Grant 2018-67015-28744 (W.
386 C. Davis) and 1020620. Mention of trade names, proprietary products, or specified equipment do

387 not constitute a guarantee or warranty by the USDA and does not imply approval to the
388 exclusion of other products that may be suitable. USDA is an Equal Opportunity Employer. This
389 study was also supported in part by the WSU Monoclonal Antibody Center.

390 **References**

- 391 1. Kuenstner JT, Potula R, Bull TJ, Grant IR, Foddai A, Naser SA, Bach H, Zhang P, Yu D, Lu X, Shafran I. 2020. Presence of Infection by *Mycobacterium avium* subsp. paratuberculosis in the Blood of Patients with Crohn's Disease and Control Subjects Shown by Multiple Laboratory Culture and Antibody Methods. *Microorganisms* 8.
- 395 2. Bachmann NL, Salamzade R, Manson AL, Whittington R, Sintchenko V, Earl AM, Marais BJ. 2019. Key Transitions in the Evolution of Rapid and Slow Growing 396 Mycobacteria Identified by Comparative Genomics. *Front Microbiol* 10:3019.
- 398 3. Dahl JL, Kraus CN, Boshoff HIM, Doan B, Foley K, Avarbock D, Kaplan G, Mizrahi V, Rubin H, Barry CEI. 2003. The role of RelMtb-mediated adaptation to 400 stationary phase in long-term persistence of *Mycobacterium tuberculosis* in mice. *Proc Natl Acad Sci USA* 100:10026-10031.
- 402 4. Park KT, Allen AJ, Bannantine JP, Seo KS, Hamilton MJ, Abdellrazeq GS, Rihan HM, Grimm A, Davis WC. 2011. Evaluation of two mutants of *Mycobacterium avium* subsp. paratuberculosis as candidates for a live attenuated vaccine for Johne's disease. 404 *Vaccine* 29:4709-19.
- 406 5. Park KT, ElNaggar MM, Abdellrazeq GS, Bannantine JP, Mack V, Fry LM, Davis WC. 2016. Phenotype and Function of CD209+ Bovine Blood Dendritic Cells, 407 Monocyte-Derived-Dendritic Cells and Monocyte-Derived Macrophages. *PLoS One* 408 11:e0165247.

410 6. Abdellrazeq GS, Elnaggar MM, Bannantine JP, Park KT, Souza CD, Backer B,
411 Hulubei V, Fry LM, Khaliel SA, Torky HA, Schneider DA, Davis WC. 2018. A
412 *Mycobacterium avium* subsp. *paratuberculosis* *relA* deletion mutant and a 35 kDa major
413 membrane protein elicit development of cytotoxic T lymphocytes with ability to kill
414 intracellular bacteria. *Vet Res* 49:53.

415 7. Capocefalo A, Mangia C, Franceschi V, Jacca S, van Santen VL, Donofrio G.
416 2013. Efficient heterologous antigen gene delivery and expression by a replication-
417 attenuated BoHV-4-based vaccine vector. *Vaccine* 31:3906-14.

418 8. Franceschi V, Mahmoud AH, Abdellrazeq GS, Tebaldi G, Macchi F, Russo L,
419 Fry LM, Elnaggar MM, Bannantine JP, Park KT, Hulubei V, Cavirani S, Davis WC,
420 Donofrio G. 2019. Capacity to Elicit Cytotoxic CD8 T Cell Activity Against
421 *Mycobacterium avium* subsp. *paratuberculosis* Is Retained in a Vaccine Candidate 35
422 kDa Peptide Modified for Expression in Mammalian Cells. *Front Immunol* 10:2859.

423 9. Donofrio G, Cavirani S, Simone T, van Santen VL. 2002. Potential of bovine
424 herpesvirus 4 as a gene delivery vector. *J Virol Methods* 101:49-61.

425 10. Park KT, Dahl JL, Bannantine JP, Barletta RG, Ahn J, Allen AJ, Hamilton MJ,
426 Davis WC. 2008. Demonstration of allelic exchange in the slow-growing bacterium
427 *Mycobacterium avium* subsp. *paratuberculosis*, and generation of mutants with deletions
428 at the *pknG*, *relA*, and *lsr2* loci. *Appl Environ Microbiol* 74:1687-1695.

429 11. Bannantine JP, Huntley JFJ, Miltner E, Stabel JR, Bermudez LE. 2003. The
430 *Mycobacterium avium* subsp. *paratuberculosis* 35 kDa protein plays a role in invasion of
431 bovine epithelial cells. *Microbiology* 149:2061-2069.

432 12. Abdellrazeq GS, Elnaggar MM, Bannantine JP, Schneider DA, Souza CD, Hwang
433 J, Mahmoud AHA, Hulubei V, Fry LM, Park KT, Davis WC. 2019. A peptide-based
434 vaccine for *Mycobacterium avium* subspecies paratuberculosis. *Vaccine* 37:2783-2790.

435 13. Kralik P, Nocker A, Pavlik I. 2010. *Mycobacterium avium* subsp.
436 paratuberculosis viability determination using F57 quantitative PCR in combination with
437 propidium monoazide treatment. *Int J Food Microbiol* 141 Suppl 1:S80-S86.

438 14. Schonenbrucher H, Abdulmawjood A, Failing K, Bulte M. 2008. New triplex
439 real-time PCR assay for detection of *Mycobacterium avium* subsp. paratuberculosis in
440 bovine feces. *Appl Environ Microbiol* 74:2751-8.

441 15. Donofrio G, Sartori C, Franceschi V, Capocefalo A, Cavarani S, Taddei S,
442 Flammini CF. 2008. Double immunization strategy with a BoHV-4-vectorialized secreted
443 chimeric peptide BVDV-E2/BoHV-1-gD. *Vaccine* 26:6031-42.

444 16. Donofrio G, Cavarani S, Flammini CF, Scatozza F. 2000. Molecular typing of a
445 BHV-4 (bovine herpesvirus 4) field isolate. *Vet Res Commun* 24:411-22.

446 17. Donofrio G, Sartori C, Ravanetti L, Cavarani S, Gillet L, Vanderplasschen A,
447 Taddei S, Flammini CF. 2007. Establishment of a bovine herpesvirus 4 based vector
448 expressing a secreted form of the bovine viral diarrhoea virus structural glycoprotein E2
449 for immunization purposes. *BMC Biotechnol* 7:68.

450 18. Donofrio G, Franceschi V, Capocefalo A, Taddei S, Sartori C, Bonomini S,
451 Cavarani S, Cabassi CS, Flammini CF. 2009. Cellular targeting of engineered
452 heterologous antigens is a determinant factor for bovine herpesvirus 4-based vaccine
453 vector development. *Clin Vaccine Immunol* 16:1675-86.

454 19. Redaelli M, Franceschi V, Capocefalo A, D'Avella D, Denaro L, Cavirani S,

455 Mucignat-Caretta C, Donofrio G. 2012. Herpes simplex virus type 1 thymidine kinase-

456 armed bovine herpesvirus type 4-based vector displays enhanced oncolytic properties in

457 immunocompetent orthotopic syngenic mouse and rat glioma models. *Neuro Oncol*

458 14:288-301.

459 20. Franceschi V, Capocefalo A, Ravanetti L, Vanderplasschen A, Gillet L, Cavirani

460 S, van Santen VL, Donofrio G. 2011. Bovine herpesvirus 4 immediate early 2 (Rta) gene

461 is an essential gene and is duplicated in bovine herpesvirus 4 isolate U. *Vet Microbiol*

462 148:219-31.

463 21. Donofrio G, Franceschi V, Lovero A, Capocefalo A, Camero M, Losurdo M,

464 Cavirani S, Marinaro M, Grandolfo E, Buonavoglia C, Tempesta M. 2013. Clinical

465 protection of goats against CpHV-1 induced genital disease with a BoHV-4-based vector

466 expressing CpHV-1 gD. *PLoS One* 8:e52758.

467 22. Franceschi V, Parker S, Jacca S, Crump RW, Doronin K, Hembrador E, Pompilio

468 D, Tebaldi G, Estep RD, Wong SW, Buller MR, Donofrio G. 2015. BoHV-4-Based

469 Vector Single Heterologous Antigen Delivery Protects STAT1(-/-) Mice from

470 Monkeypoxvirus Lethal Challenge. *PLoS Negl Trop Dis* 9:e0003850.

471 23. Jacca S, Rolih V, Quaglino E, Franceschi V, Tebaldi G, Bolli E, Rosamilia A,

472 Ottonello S, Cavallo F, Donofrio G. 2016. Bovine herpesvirus 4-based vector delivering a

473 hybrid rat/human HER-2 oncoantigen efficiently protects mice from autochthonous Her-

474 2(+) mammary cancer. *Oncoimmunology* 5:e1082705.

475 24. Donofrio G, Tebaldi G, Lanzardo S, Ruiu R, Bolli E, Ballatore A, Rolih V,

476 Macchi F, Conti L, Cavallo F. 2018. Bovine herpesvirus 4-based vector delivering the

477 full length xCT DNA efficiently protects mice from mammary cancer metastases by
478 targeting cancer stem cells. *Oncoimmunology* 7:e1494108.

479 25. Abdellrazeq GS, Fry LM, Elnaggar MM, Bannantine JP, Schneider DA,
480 Chamberlin WM, Mahmoud AHA, Park KT, Hulubei V, Davis WC. 2020. Simultaneous
481 cognate epitope recognition by bovine CD4 and CD8 T cells is essential for primary
482 expansion of antigen-specific cytotoxic T-cells following ex vivo stimulation with a
483 candidate *Mycobacterium avium* subsp. *paratuberculosis* peptide vaccine. *Vaccine*
484 38:2016-2025.

485 26. Davis WC, Mahmoud AH, Abdellrazeq GS, Elnaggar MM, Dahl JL, Hulubei V,
486 Fry LM. 2022. Ex vivo Platforms to Study the Primary and Recall Immune Responses to
487 Intracellular Mycobacterial Pathogens and Peptide-Based Vaccines. *Front Vet Sci*
488 9:878347.

489 27. Davis WC, Abdellrazeq GS, Mahmoud AH, Park KT, Elnaggar MM, Donofrio G,
490 Hulubei V, Fry LM. 2021. Advances in Understanding of the Immune Response to
491 Mycobacterial Pathogens and Vaccines through Use of Cattle and *Mycobacterium avium*
492 subsp. *paratuberculosis* as a Prototypic Mycobacterial Pathogen. *Vaccines (Basel)* 9.

493 28. Abdellrazeq GS, Mahmoud AH, Park KT, Fry LM, Elnaggar MM, Schneider DA,
494 Hulubei V, Davis WC. 2020. *relA* is Achilles' heel for mycobacterial pathogens as
495 demonstrated with deletion mutants in *Mycobacterium avium* subsp. *paratuberculosis* and
496 *mycobacterium bovis* bacillus Calmette-Guerin (BCG). *Tuberculosis (Edinb)*
497 120:101904.

498 29. Souza CD, Bannantine JP, Brown WC, Norton MG, Davis WC, Hwang JK, Ziae
499 P, Abdellrazeq GS, Eren MV, Deringer JR, Laws E, Cardieri MCD. 2017. A nano

500 particle vector comprised of poly lactic-co-glycolic acid and monophosphoryl lipid A and
501 recombinant *Mycobacterium avium* subsp *paratuberculosis* peptides stimulate a pro-
502 immune profile in bovine macrophages. *J Appl Microbiol* 123:54-65.

503

504
505
506

Table 1 List of monoclonal antibodies used in this study

mAb clone	Isotype	Specificity	Source	Fluorochrome	507
7C2B	IgG2a	CD8	WSUMAC, USA	PE	508
CACT138A	IgG1	CD4	WSUMAC, USA	PE CY5.5	509
ILA116A	IgG3	CD45R0	WSUMAC, USA	Alexa Fluor™ 488	510

511
512
513
514

515 Figure legends

516

517

518 Fig. 1. Flow cytometric profiles illustrating gating strategy used to obtain data. **A)** First gate
519 placed on lymphocytes. **B)** Selective gates were placed on CD4 and CD8 T cells labeled with
520 mAbs specific for CD4, CD8, and CD45R0 conjugated with different fluorochromes. The
521 labeled CD4 and CD8 are displayed in forward light scatter (FSC) vs CD45R0 to visualize
522 memory cell response to eGPF and BoHV-4-p35MMΔTK.

523

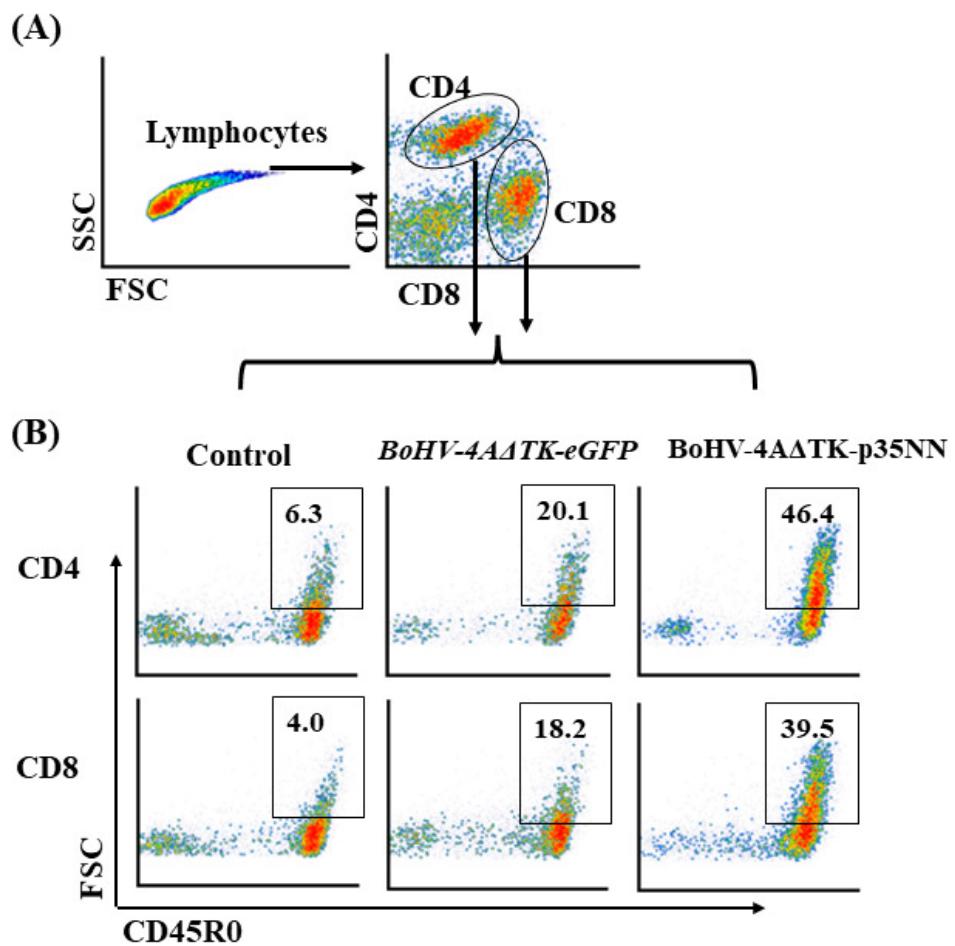
524 Fig. 2. Summary characterization of BoHV-4-p35MMΔTK constructs and. **A)** Immunoblotting
525 analyses conducted on supernatant from pEGFP-C1 (1) and pTK-CMV-p35NN-TK transfected
526 HEK 293T cells **B)** Diagram (not to scale) illustrating the re-targeting event (i.e., replacement of
527 the Kana/GalK cassette with the CMV- p35NN cassette) obtained by heat-inducible homologous
528 recombination in SW102 *E.coli* cells containing pBAC-BoHV-4-A-TK-KanaGalK-TK. **C)**
529 Representative, 2-deoxy-galactose resistant colonies, tested by *Hind* III restriction enzyme
530 analysis and southern blotting performed with a specific probe for p35NN ORF. The 2,650 bp
531 band corresponding to the non-retargeted pBAC-BoHV-4-A-TK-KanaGalK-TK control (lane A)
532 is replaced by 2,300 bp band in pBAC-BoHV-4-p35NNΔTK (lanes 1, 2 and 3). **D)** Phase contrast
533 and fluorescent microscopy images of the plaques formed by viable, reconstituted recombinant
534 BoHV-4-p35NNΔTK after electroporation of the corresponding BAC DNA clones into BEK or
535 BEK^{cre} cells (magnification, $\times 10$). **E)** Replication kinetics of BoHV-4-A and BoHV-4-
536 p35NNΔTK. **F)** Immunoblotting analyses conducted on supernatant from BBMC cells (lane 1
537 and 2) and MDBK cells (lanes 3 and 4) infected with BoHV-4-tPA-MMP-2mutΔTK (lanes 1 and

538 3) or BoHV-4-A parental virus (lanes 2 and 4). Each lane was loaded with 15 μ ls of supernatant
539 incubated for 72 hours post infection.

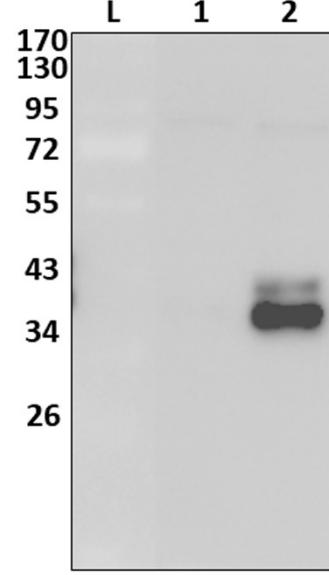
540

541 Fig. 3. Comparison of the proliferative recall response to vaccination of steers with virus-
542 vectored p35NN and virus-vectored eGFP at two and six weeks postvaccination. Only p35NN
543 elicited a consistent proliferative recall response.

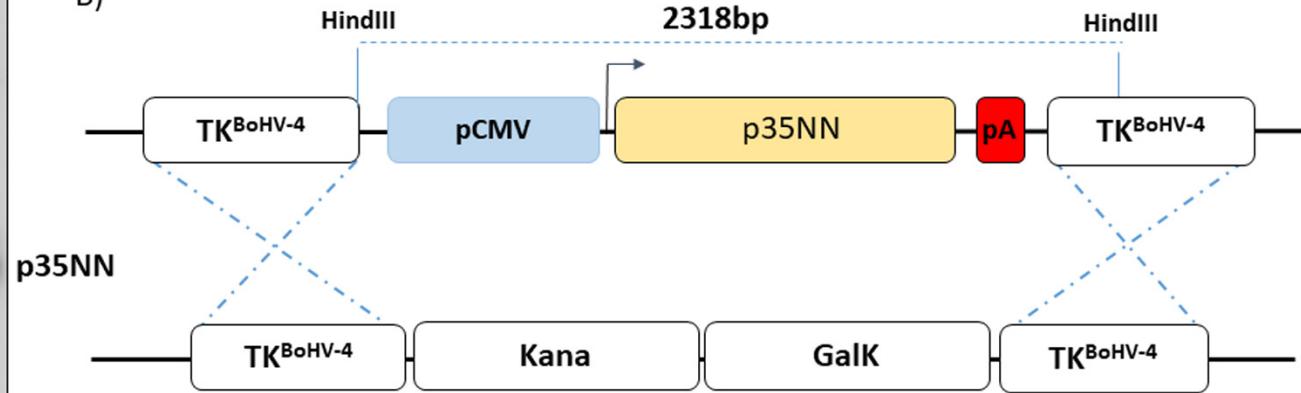
544

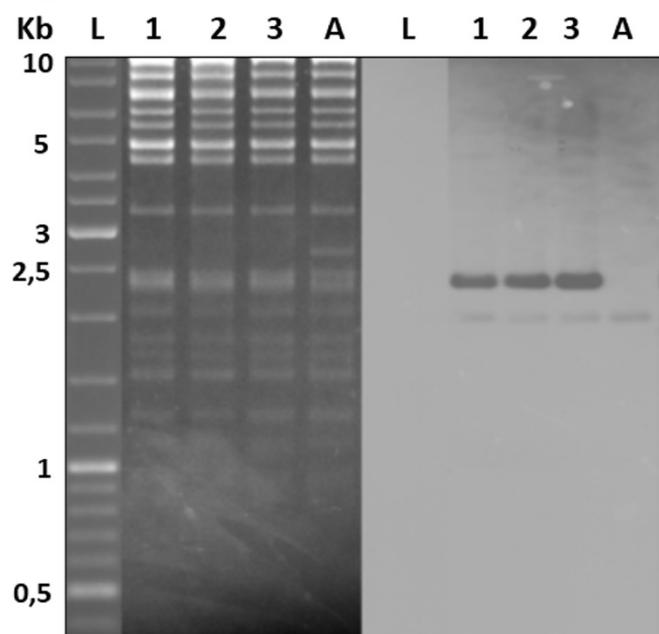

545 Fig. 4. Illustration of a quantitative PCR curve set up with serial dilutions of DNA from live
546 *Map*. DNA standards prepared from a single copy gene, F57, present in 100% live, 50% live,
547 and 100% dead are placed on the DNA curve to plot the DNA dynamic range for quantifying the
548 number of live bacteria remaining after incubation of infected target cells with memory CD8 T
549 cells primed with vectored p35NN or controls.

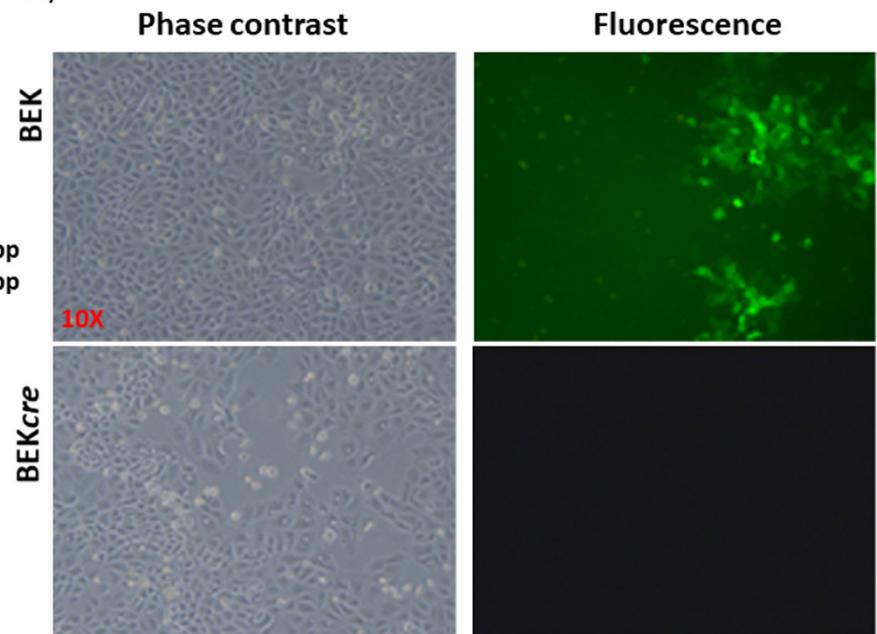
550 Figure 5. Comparison of live *Map* remaining in macrophage target cells after co-culture with
551 CD8 CTL from steers vaccinated with virus-vectored p35NN or virus-vectored eGFP controls.
552 Vaccination of steers with virus-vectored p35NN, but not virus-vectored eGFP, resulted in
553 consistent killing of intracellular bacteria.

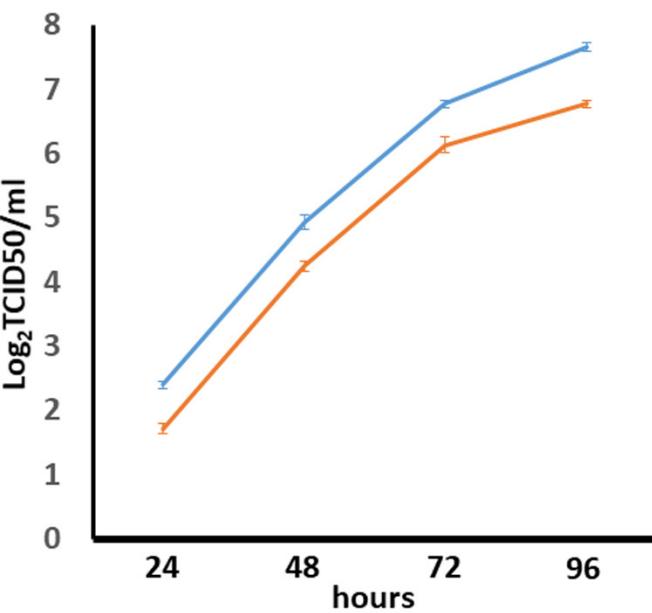

554

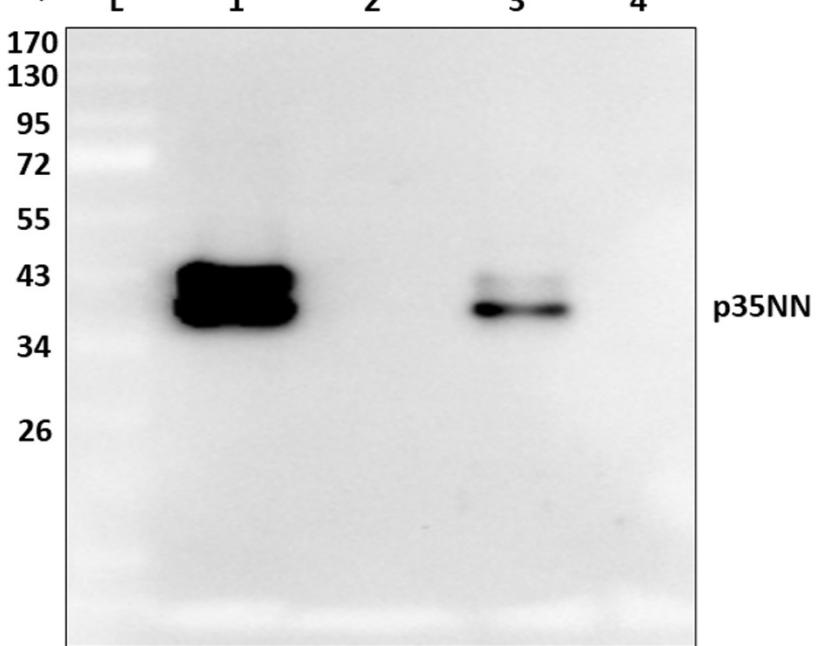
555

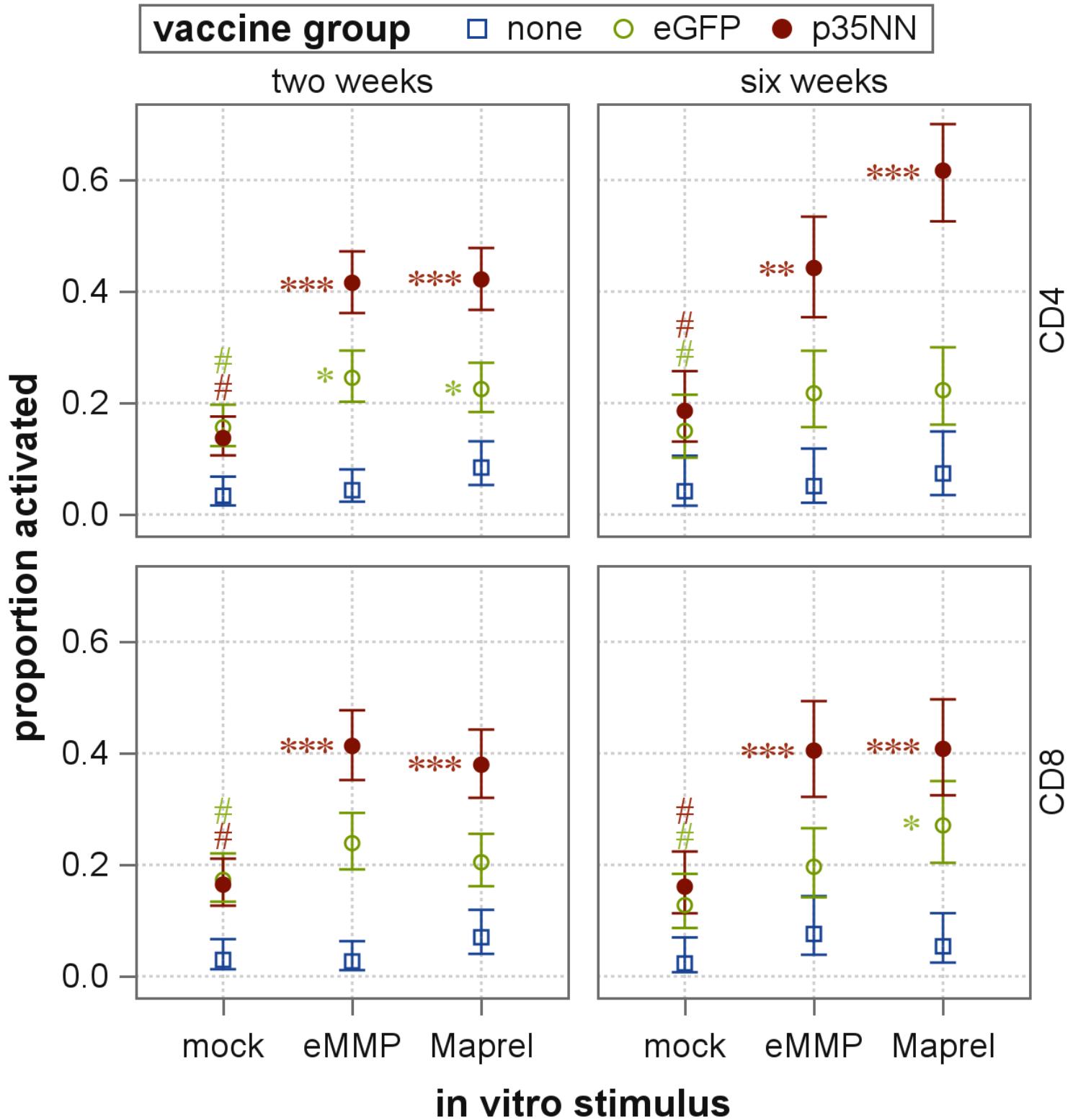

Fig. 1.


A)

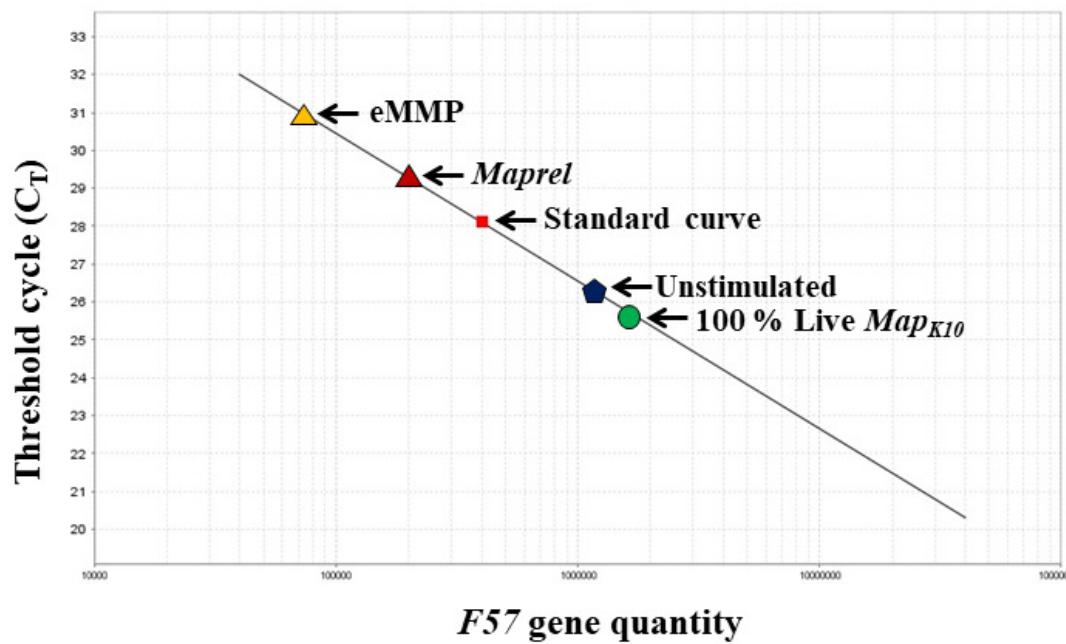

B)


C)


D)



E)



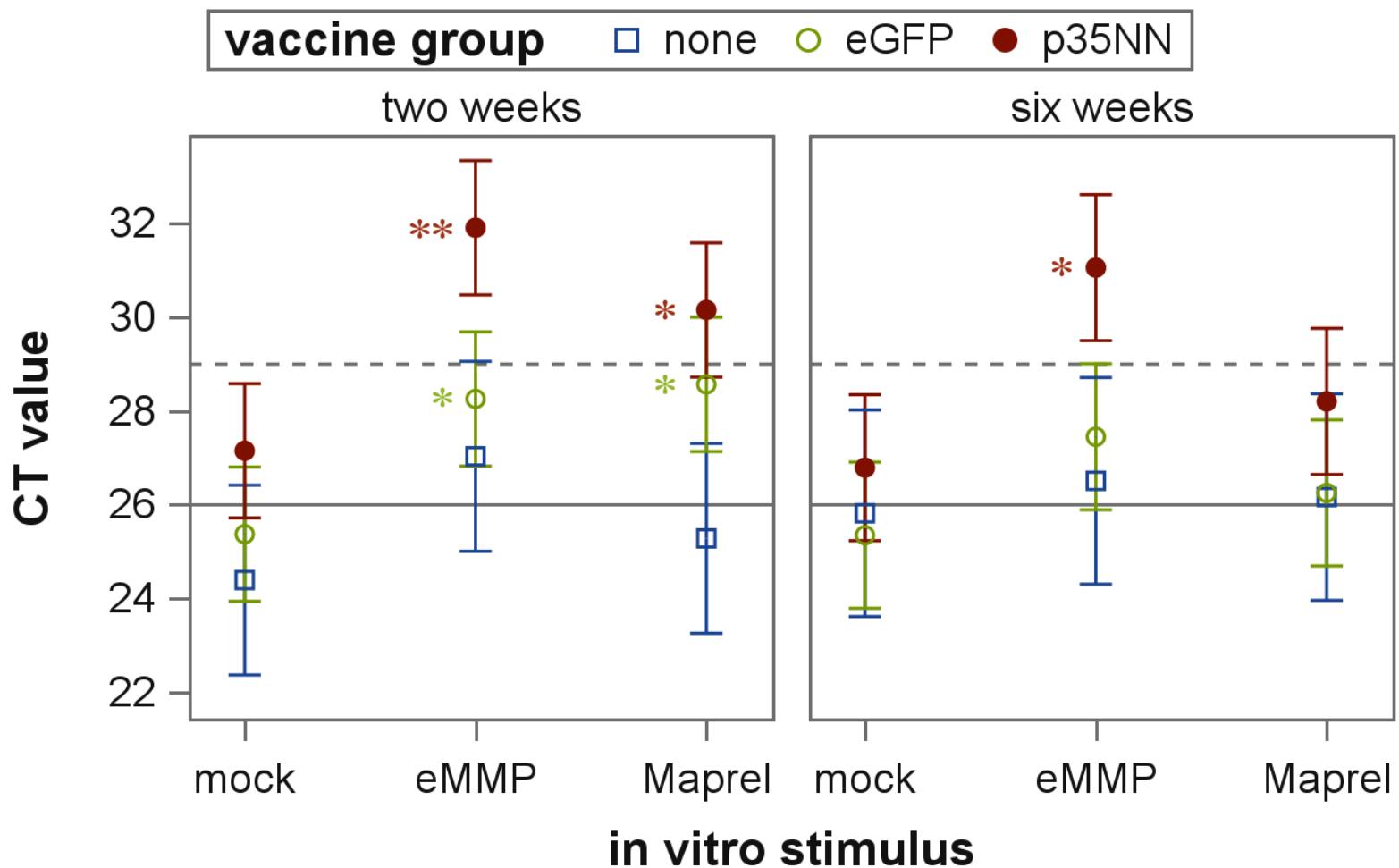

F)

Fig. 4 *Map_{K10}* viability assay

