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Abstract

Single-cell DNA methylation measurements reveal genome-scale inter-cellular epi-
genetic heterogeneity, but extreme sparsity and noise challenges rigorous analysis.
Previous methods to detect variably methylated regions (VMRs) have relied on
predefined regions or sliding windows, and report regions insensitive to hetero-
geneity level present in input. We present vmrseq, a statistical method that
overcomes these challenges to detect VMRs with increased accuracy in syn-
thetic benchmarks and improved feature selection in case studies. vmrseq also
highlights context-dependent correlations between methylation and gene expres-
sion, supporting previous findings and facilitating novel hypotheses on epigenetic
regulation. vmrseq is available at https://github.com/nshen7/vmrseq.
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Background

DNA methylation (DNAme) is an epigenetic modification that plays a crucial role in
regulating gene expression and maintaining cellular identity in living organisms [1, 2].
Bisulfite sequencing (BS-seq) [3, 4] has become a widely-used technology to measure
DNA methylation at a single-nucleotide resolution. Traditional bisulfite sequencing
protocols, also referred to as ‘bulk’ BS-seq, allow for measurement of methylation
level on a collection of cells. Though useful in many settings, bulk technology only
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quantifies the average signal seen in a population of cells that may consist of multiple
cell types or states, each with unique methylation patterns. As a result, bulk BS-seq is
not able to detect heterogeneity of inter-cellular methylation or effectively characterize
cell identities. While cell type deconvolution algorithms [5–8] can estimate cell type
compositions for bulk data, they either require reference databases of known cell types
or offer a limited level of resolution and reliability.

To overcome the limitation of bulk technologies, protocols for methylation sequenc-
ing at single-cell resolution such as scBS-seq [9] (Fig. 1a) have been developed. These
protocols have shown that DNAme can be an accurate marker distinguishing individ-
ual cells under different conditions or cell types. However, due to the small amounts
of input genomic DNA in single cells and the destructive nature of bisulfite treat-
ment, these technologies are limited by the sparsity and noisiness of the output data.
Typically the vast majority of CpG dinucleotides are not observed (ranging from
approximately 80% to 95+% in high-throughput studies) [10]. Additional sources of
noise in single-cell data, as compared to bulk data, include increased technical vari-
ability due to amplification applied on limited amounts of materials, which tends to
be uneven, biased, and error-prone [11].

Assessing the cellular heterogeneity of DNAme is already challenging in the pres-
ence of noise and biases intrinsic to single-cell technologies. In addition, a considerable
number of studies have stressed the existence of spatial correlations of DNA methy-
lation across nearby loci; this correlation implies that individual CpGs are not likely
to impact epigenetic function on their own but rather through biochemical interac-
tions with several loci together [12–14]. Variable methylation exhibited by individual
loci might be more likely to arise from technical noise. Moreover, many loci-level dis-
coveries may originate from a single regional discovery hence should not be counted
multiple times.

To reflect these groupings of CpGs, identifying regions with distinctive methyla-
tion levels across cells, referred to as variably methylated regions (VMRs) [15, 16], is
considered one of the main analytical objectives in the analysis of scBS-seq data. The
identified variable regions may serve as epigenetic features of cell types and states and
facilitate integrative analyses of single-cell multi-omics assays. They might also foster
understanding of environmental influence [17, 18], allowing the identification of epige-
netic changes in response to extrinsic stimuli. However, defining the CpG clusters is a
challenging task in itself since they may occur anywhere on the genome with diverse
sizes and in various location contexts.

Efforts have been made for efficient VMR selection and clustering inference through
non-probabilistic methods [19–22]. Smallwood et al. [9] and scbs [23] both rank sliding
windows by cell-to-cell variances of mean methylation levels, but use different statis-
tics to measure variance. A number of probabilistic methods have also been proposed.
Melissa [24] and Epiclomal [25] propose to directly infer cell clusters through proba-
bilistic graphical models hence are not presented as feature selection tools. scMET [26]
models cell-to-cell heterogeneity through a hierarchical Bayesian model and selects
features through ranking a statistic that represents heterogeneity.

All of these feature selection methods share a common drawback that features are
selected from a set of pre-defined genomic regions, for example, gene promoters or
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sliding windows. Such analytical approaches only provide region-level resolution in the
analysis since they operate on aggregated counts of the pre-defined regions without
considering the case where VMRs exist outside the regions or overlap with edge of
region boundaries. While the settings for window width and step size in scbs offer some
flexibility, they have not reached the level of achieving base pair-level resolution. We
reasonably hypothesize that these regions should not be restricted to genomic ranges
specified a priori.

To address the limitations and accurately pinpoint inter-cellular heterogeneity from
single-cell DNAme data, here we present vmrseq, a statistical approach to accurately
and robustly detect VMRs without the need for prior knowledge of their sizes or
location contexts (Fig. 1b). Our results both on simulated and previously published
experimental datasets demonstrate that it outperforms existing methods for detecting
and quantifying DNAme heterogeneity. The reanalysis of two recent studies involving
single-cell bisulfite sequencing data reveals that vmrseq identifies biologically relevant
regions with high variability across cells, leading to significantly enhanced cell cluster-
ing performance. Moreover, vmrseq highlights context-dependent correlation patterns
between gene expression and DNAme that support previous findings and may inform
new biological hypotheses regarding the involvement of epigenetic variability in the
cell cycle.

Results

Pinpoint cell-to-cell DNAm heterogeneity with vmrseq

vmrseq is a two-stage approach that first constructs candidate regions (CRs) and then
determines whether a VMR is present and its location if applicable. The input to
vmrseq is a matrix of binary methylation values where each row is a CpG site and each
column is an individual cell (Fig. 1a). To avoid ambiguities, sites with intermediate
methylation level between 0 and 1 are filtered out for each cell.

Stage 1 of vmrseq (Fig. 1b) scans the genome for regions containing consecutive
CpGs that show evidence of potential cell-to-cell variation (i.e., CRs). As the methyla-
tion levels of neighboring CpGs display strong correlation, vmrseq first uses smoothing
to mitigate the influence of limited coverage and counteract the reduction in statistical
power caused by the inherent noise in single-cell data.

Specifically, the candidate regions are constructed by first applying a kernel
smoother to ‘relative’ methylation levels of individual cells that are in reference to
across-cell average methylation on CpG sites (“Methods”). Next, groups of consecu-
tive loci that exceed some threshold on the variance of smoothed relative methylation
levels are selected. Such a threshold can be computed by taking the 1− α quantile of
an approximate null distribution of variance, where α is the designated significance
level. This distribution of variance is simulated from labeled data while taking the size
of input dataset into account (“Methods” and Additional File 1: Section S1.2). Such
strategy enables control of false positives, showed by substantially reduced number of
detected sites with variable methylation from a homogeneous dataset, compared to
other methods (Fig. 1c).
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Fig. 1 Overview of vmrseq framework. a vmrseq takes processed and filtered single-cell bisulfite
sequencing binary methylation values as input. After processing and filtering, each sequenced CpG
takes a value of methylated or unmethylated in each cell. Missing data indicates a lack of read
coverage. b Detecting heterogeneity in single-cell methylation with vmrseq. In brief, vmrseq first
defines candidate regions as those with consecutive CpG sites exhibiting cell-to-cell variation in
methylation levels above a threshold that represents significantly high variance under a null condition;
then vmrseq detects variably methylated regions by decoding one- and two-group hidden Markov
models fit on sites within candidate regions. c VMRs from vmrseq generated the fewest false positives
in comparison to CRs and other methods. y-axis shows the percentage of variably methylated CpGs
out of all covered sites from a homogeneous cell population. Cells from the subtype mL4 (n=370)
in the annotated single-cell bisulfite sequencing dataset published by Luo et al. [27] were selected
to establish a homogeneous cell population, which served as the input for the analytical methods. d
vmrseq relies on the assumption of M/U groupings. In short, cells can be divided into an M grouping
and a U grouping according to their underlying methylation states, assuming each CR holds at most
one VMR and every cell exhibits uniform hidden states within the VMR if any, i.e., they are either
all methylated or all unmethylated.

The stage 2 of vmrseq (Fig. 1b) optimizes a hidden Markov model (HMM) that
models methylation states of individual CpG sites for each CR (“Methods”). To be
more specific, for each cell, we assume every CpG site has an unobserved methyla-
tion state, modeled as a binary hidden state, where 1 represents methylated and 0
unmethylated. The observed methylation level from bisulfite sequencing is assumed to
be determined by both the hidden state and technical error. The estimation of param-
eters and hidden states in the HMM determines whether groups of cell subpopulations
show distinct epigenetic signals in each region and solves for the precise genomic range
of VMRs.

Since single-cell data usually contains a large and unknown number of cell sub-
populations, we make a critical assumption of the existence of unmethylated (U) and
methylated (M) groupings (Fig. 1d) to reduce model complexity and ease computa-
tional burden. Specifically, we assume that each CR contains at most one VMR, and
every cell has uniform hidden states (i.e., all methylated or all unmethylated) in the
VMR if any. Under this assumption, if cells are heterogeneous in terms of underlying
states within a CR, then they can be partitioned into two groupings (referred to as
the U grouping and M grouping) based on their estimated hidden states within the
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VMR. This partition remains applicable irrespective of the overall number of cell sub-
populations, which is not known or inferred by the model. That is to say, we may infer
the existence of VMRs by detecting the presence of the two groupings. On the other
hand, if the cells are homogeneous, all cells should have identical sequences of hidden
states across CpGs in this CR.

Therefore, to determine whether both U and M groupings exist for each CR, a
one-state and a two-state HMM are optimized for single-grouping and two-grouping
assumptions respectively, followed by decoding the corresponding hidden states.
HMMs are adopted as they can model spatial correlation between CpG sites with
transitions between different hidden states and effectively handle noisy data through
modeling the emission probability with a hierarchical probabilistic structure. Sub-
sequently, we may infer the presence of one or two groupings by comparing the
maximum likelihood of the two models. This comparison of one- and two-grouping
likelihood resembles the idea of statistical hypothesis testing, where one-grouping
case is considered the null hypothesis and is rejected if two-grouping likelihood sur-
passes one-grouping. However, we have not developed formal p-value quantification
due to the biases of CRs towards high variation and the lack of strictly nested HMMs
(detailed in “Discussion”). Finally, in the event that the presence of two groupings
are deemed more likely than single grouping, vmrseq delineates the boundary of a
VMR by removing any CpGs with estimates of hidden states uniform across the two
groupings, effectively acting as a trimming step due to the assumption of at most one
VMR per CR. Evaluation with and without this trimming step are included in the
following sections, and a detailed description of the methodology is provided in the
“Methods” section. vmrseq is implemented as an R package and is freely available at
https://github.com/nshen7/vmrseq.

vmrseq improves accuracy in detecting heterogeneity in synthetic
datasets

To benchmark the performance of vmrseq and alternative methods, synthetic data
were constructed by adding simulated VMRs to scBS-seq data of chromosome 1 in a
homogeneous cell population (with the assumption that they contain no VMRs). A
wide array of simulation settings were included to evaluate the methods across diverse
attributes of input data, including number of cells, sparsity level and number of cell
subpopulations that show distinctive methylation profiles (see “Methods” for details
about the simulation settings). The three levels of sparsity, determined by stratifying
and subsampling cells in experimental data, represent on average 94.9% (high), 92.8%
(medium) and 90.4%(low) unobserved CpGs in a cell. 2000 VMRs of size between 5
and 500 CpGs (600 bp < width < 26,000 bp; Additional File 1: Fig. S1), containing
roughly 5% of total number of CpGs in the chromosome, were added to each dataset
in order to evaluate precision and recall.

Four evaluation metrics were used: precision, recall, F1 score and ratio of relative
areas (RRA) of the precision-recall curve, where RRA is similar to area under curve
but restricted to a region of interest (0.8 ≤ precision ≤ 1 in our case; see “Methods”
for more details). These metrics are computed for two manners of defining a true
positive: 1) an individual CpG correctly detected in VMRs, referred as ‘CpG-based’;
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and 2) an individual detected region with least 3 sites overlap with any true VMR,
referred as ‘region-based’.

For each simulation, we assessed the performance of vmrseq, stage 1 only of vmrseq
(denoted as ‘vmrseq CRs’), and three other previously published methods that also
aim to search genome-wide for regions showing inter-cellular variation in methylation
as measured by scBS-seq data: scbs [23], Smallwood et al. [9] (denoted as ‘Smallwood’)
and scMET [26]. See “Methods” for details about implementation and parameter
settings of the methods.

In general, all methods except scbs seem to benefit from lower sparsity, and in
most cases the number of cells in input did not have strong influence on method
performance (Fig. 2 and Additional File 1: Fig. S2). It may appear that a larger size
of sliding windows (i.e. 3kb used by Smallwood and 20kb used by scMET) results
in reduced performance compared to a smaller smoothing bandwidth or window size
(i.e. 2kb bandwidth used by vmrseq and 2kb windows used by scbs). However, we
conducted an additional set of experiments on both synthetic datasets and the mouse
frontal cortex dataset showing that a smaller window size alone does not seem to

a c

b d

Fig. 2 Region-based metrics evaluated on simulated VMRs, including a precision, b recall, c F1
score and d ratio of relative areas (“Methods”). A region-level true positive is defined as at least
3 sites overlap between detected and true VMR. Each interval consists of points originated from
different number of subpopulations. Dot and boundaries of each interval indicates the maximum,
median and minimum value of metric. Recall, precision and F1 score are computed using default
parameter setting in each method.
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meaningfully improve the accuracy of detecting VMRs (see Additional File 1: Figures
24-28 and Section S2.1 for a detailed discussion).

In terms of comprehensive metrics such as F1 score and RRA, vmrseq rendered
higher scores compared to other methods, suggesting that vmrseq is more accurate
overall in detecting VMRs. In terms of specialized metrics such as precision and recall,
candidate regions were able to achieve similar recall as vmrseq but less precision,
indicating that stage 2 of vmrseq (i.e. decoding the HMM) effectively removed false
positives from CRs. This effect of the HMM model was also shown in the homogeneous
study in Fig. 1d. scbs achieved higher precision than vmrseq in these settings, but this
came at the cost of a substantially lower recall. Presumably this is due to scbs using
an arbitrary ad hoc threshold (top 2% variably methylated windows) to determine
VMRs, which does not correctly reflect the level of heterogeneity present in the data.
Note that we kept the 2% cutoff recommended by original paper because in general
the amount of heterogeneity is not known in an experimental study.

We also conducted a second set of experiments with synthetic chromosomes wherein
methylation levels are entirely simulated from the HMM model to ensure a firmly
known null background. As expected, such simulation contained considerably less noise
compared to the simulations based on experimental data. scMET failed to produce
results in this simulation due to error evaluating probability at the initial value, hence
only four methods were available for evaluation. We observed similar results from this
set of simulations (Additional File 1: Fig. S3-S4). However, difference between CRs and
vmrseq has reduced, suggesting that the full methodology of vmrseq is more suitable
for noisy scBS-seq data, compared to stage 1 of vmrseq only.

vmrseq enhances feature selection for single-cell methylomic
unsupervised analysis

Although the primary objective of our proposed method is not to select features
that optimize clustering performance, VMRs detected by vmrseq render reliable cell
clusters. We applied vmrseq and the other methods to a dataset of 3,069 single-cell
methylomes from mouse frontal cortex [27] to assess their efficacy in unsupervised
cell clustering. This collection of cells spans 2 broad neuronal classes (i.e., excitatory
and inhibitory) and 15 subtypes within those two classes (Fig. 3a). The original study
annotated these groupings based on gene body non-CG methylation depletion in neu-
ronal marker genes, making them suitable as a benchmark for clustering analyses. We
applied vmrseq on this dataset along with the same competing methods that were
evaluated in the simulation study, using their default parameters. In general, though
vmrseq finds moderate number of VMRs compared to the other methods (Additional
File 1: Fig. S5a), it tends to identify smaller regions and hence finds the fewest CpGs
in detected regions (Additional File 1: Fig. S5b-d).

To qualitatively evaluate the ability of each method to identify heterogeneity that
distinguishes annotated cell types, we visualized the cells in a low-dimensional space
by applying UMAP [28] on cell-to-cell dissimilarity matrices computed from regional
average methylation of the detected regions (Fig. 3a for vmrseq, Additional File 1:
Fig. S6 for others; “Methods”). Based on these UMAPs we may observe that vmrseq,
vmrseq CRs and scbs seem to be markedly superior to the other two approaches in
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Fig. 3 vmrseq outperforms other methods in unsupervised clustering analysis of mouse frontal cortex
data. a vmrseq’s UMAP visualization of neuron subpopulations annotated in the mouse frontal cortex
dataset. Coordinates were computed from regional average methylation levels of VMRs. Broad cell
classes are indicated by dashed outlines; subtypes are indicated by colored points and labeled by text.
b Evaluation of clustering performance in terms of nearest neighbor count score. The x-axis is the
number of CpG sites in varying numbers of top-ranked VMRs (log-scaled). We use number of CpGs
instead of number of regions as x-axis because the size of detected regions varies significantly across
methods (Additional File 1: Fig. S5d). Regions were ranked by metrics proposed in each method
respectively (“Methods”). The dot size indicates number of included regions. The top 300, 1000, 3000,
10000, and 30000 regions (if applicable) and all selected regions were extracted from each method
respectively for computing the score. vmrseq CRs do not have rank thus only represented by one
dot. Line and point types distinguish granularity of the cell type labels. The score, ranging from 0 to
1, quantitatively evaluates the quality of clustering by averaging the proportions of neighbors that
share the same label (see “Methods” for details). c Heatmap of regional average methylation level of
top-ranked 500 VMRs from vmrseq. Rows are sorted by hierarchical clustering; dashed red squares
are examples of potential cell-type-specific marker regions; white color indicates missing. d Marker
regions for cell type mL4 detected by vmrseq exhibits more disparity of regional methylation level
between the target and background cell types, compared to alternative methods. Annotated cell type
labels from Luo et al. [27] were used to determine marker regions. Specifically, marker regions of cell
type mL4 among detected regions of each method are defined as those with absolute difference > 0.2
between the average methylation level of targeted cell type and all other cell types. Distribution
of regional average methylation are plotted in violin shapes against cell subtypes; points represent
methylation levels in individual cells.

terms of unsupervised clustering analysis, where Smallwood and scMET were only able
to identify the two broad classes as opposed to subtypes. We also note that Smallwood
and scMET tended to favor genic regions and CpG islands, while vmrseq and scbs
tended to select areas not only in genic regions and CpG islands but also intergenic
and non-island regions (Additional File 1: Fig. S7-S10; “Methods”).

Further, to quantitatively assess the performance of feature selection, we employed
a metric called ‘nearest neighbor count score’ [23]. This metric quantifies the quality
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of clustering by averaging the proportions of neighbors that share the same label
(“Methods”). The scores were evaluated directly from the cell-to-cell dissimilarity
matrix to avoid involving stochasticity introduced by dimension-reduction techniques
or cluster partition methods, hence being a straightforward metric representing the
degree to which the detected regions can distinguish cell types. We computed the
scores in reference to the two sets of aforementioned cell type labels: the broad classes
and the subtypes.

Fig. 3b plots the nearest neighbor count scores against the number of CpG sites
in top-ranked regions. Notably, vmrseq identified significantly fewer CpG sites in
detected regions compared to other methods, while performing better or equally well.
In line with our observations from the UMAP figures (Fig. 3a, Additional File 1:
Fig. S6), scMET and Smallwood effectively discriminated the two broad classes but
were not able to separate subtypes within these classes. On the other hand, vmrseq,
vmrseq CRs and scbs achieved nearly perfect nearest neighbor count scores (i.e., 1)
in clustering the broad classes, and also performed commendably in distinguishing
the subtypes. Similar conclusions were made based on evaluations using an alterna-
tive metric on clustering performance, the Silhouette scores [29] (see Additional File
1: Section S2.2 for a detailed discussion). In addition to genome-wide VMRs, we eval-
uated the clustering performance of VMRs that overlap with specific features such as
histone modifications and gene promoters (Additional File 2: Table S1). All feature
types achieved a perfect nearest neighbor count score for broad class labels. For the
subtypes, distal H3K27ac and H3K4me1 peaks demonstrated superior clustering per-
formance compared to gene promoters, however, none of the targeted regions achieved
a score as high as that obtained by using all VMRs.

Moreover, we conducted experiments contrasting the region selection methods to a
baseline approach where no region selection was performed and principal component
analysis (PCA) is used on genome-wide large-sized bins to perform dimensionality
reduction, similarly as proposed in SINBAD [22]. To ensure a fair comparison, PCA
was also applied to the regions detected by each method. We observe that incorporat-
ing a dimension reduction step results in all methods achieving clustering performance
comparable to that obtained using genome-wide information, despite the consider-
ably smaller number of CpGs included in the detected regions (i.e., <350K CpGs for
vmrseq and >1 million for all other methods). For a detailed discussion, please refer
to Additional File 1: Section S2.3 [30, 31].

Additionally, vmrseq appears to exhibit a more favorable performance in the con-
text of capturing cell type marker regions compared to the alternative methods. VMRs
from vmrseq exhibited higher inter-cell-type variance compared to other methods both
visually (Fig. 3c, Additional File 1: Fig. S11) and numerically (Additional File 1: Fig.
S12). Specifically, some potential marker regions for broad classes or subtypes were
identified visually from the display of 500 top-ranked regions (red dashed boxes in
Fig. 3c). Top regions from scbs also seemed to contain some, but these were largely
subject to sparsity (Additional File 1: Fig. S11a). Meanwhile, top regions from Small-
wood and scMET did not show cell type-specific signals but instead seemed saturated
with fully unmethylated and methylated regions respectively (Additional File 1: Fig.
S11b-c). Fig. 3d shows the top-ranked hypomethylated cell type marker region for
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mL4 (“Methods”) from the four methods respectively, where vmrseq displayed more
extreme difference between the mean methylation of targeted cell type and of the
others in background (vmrseq: diff = 0.62; scbs: 0.50; Smallwood: 0.37; scMET: 0.33).

vmrseq captures heterogeneity associated with embryonic
development and cell cycle states

In a second case study, we reanalyzed a single-cell multi-omics dataset of 939 cells pro-
filed by scNMT-seq [32] (“Methods”). This dataset covers four early developmental
stages of mouse embryos (E4.5-E7.5) and offers insights into dynamics of chromatin
accessibility, DNA methylation, and RNA expression during the onset of gastrulation.
We applied vmrseq on the single-cell DNAme data to pinpoint where methylation
heterogeneity is exhibited across the genome. UMAP coordinates were obtained for
each cell computed solely based on the methylation level of VMRs output by vmrseq
(“Methods”). We did not apply other methods on this dataset due to its prior anal-
ysis in the original publications [23, 26], and its lack of ground truth for assessing
methodological performance.

As found in the original study [32], there is a notable shift in the global methylation
level within cells as developmental time progresses (Additional File 1: Fig. S13a). This
led to heterogeneity observed across a substantial portion of the genome, resulting in
the identification of 205,584 VMRs by vmrseq, which encompass approximately 28%
of all CpGs in the mouse genome. This global shift also resulted in two distinctly
separated groups of cells in the low-dimensional representation (Additional File 1: Fig.
S13b-c).

It is important to note that the low global methylation level of early-stage lineages
does not align with the model assumptions of vmrseq regarding the transition proba-
bility of switching hidden states. In particular, the transition probability trained from
mature tissues is considered constant across cell subpopulations at a given CpG-CpG
distance, and reaches to a plateau at large distances of around 80% global methylation
level (or 1 - global methylation level ≈ 20%; Additional File 1: Fig. S14). However,
despite such violation, we still made interesting discoveries from the regions detected
by vmrseq.

Apart from two prominently separated clusters due to the shift in global methy-
lation level over developmental time, we noticed that the second major source of
heterogeneity uncovered by vmrseq was associated with different time points of the
embryonic developmental stage (Fig. 4a). Stage E6.5 and E7.5 are closely related,
aligning with previous discoveries of gene expression and chromatin accessibility from
Argelaguet et al. [32].

Given previous debate about whether DNAme varies throughout the cell cycle
[33–35], we annotated the cell cycle phases based on solely gene expression (Fig. 4b,
Additional File 1: S15b; “Methods”). Surprisingly, the VMRs seemed to contain some
variation associated with cell cycle, where the cells in G2M phase displayed a more
pronounced clustering tendency than the other two phases. Though cell cycle state
is not observed as a primary driving factor, this suggests that the coupling between
DNAme and cell cycle phases might be more intricate then previously acknowledged
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Fig. 4 vmrseq applied to the multi-omics scNMT-seq gastrulation dataset captures heterogeneity
associated with cell conditions and reveals complex associations between VMR methylation and RNA
expression. a, b UMAP representation derived from regional average methylation levels of VMRs
output by vmrseq, colored by developmental stage and cell cycle phase respectively. c, d Exam-
ple genes whose expression levels are highly correlated with nearby VMR in positive and negative
directions respectively. The x-axis displays developmental stage; the y-axis shows gene expression in
log(x+1) scale (upper panels) and regional average methylation (lower panels). Each point repre-
sents an individual cell. e Comparison between Spearman correlation of gene expression with nearby
VMRs methylation and that of gene expression with corresponding promoter methylation. Each point
represents one VMR. Panels are partitioned by VMR’s position relative to the corresponding gene.
Areas in blue represent where VMRs surpasses promoter in terms of absolute correlation with gene
expression, and vice versa for grey areas. Black dashed line represents the threshold for highly posi-
tive correlation (cor ≥ 0.2). Symbols of genes exceeding this threshold are annotated in boxes. Gene
set enrichment analysis were conducted for annotated genes and boxes with grey background color
indicate genes in the enriched pathways (see Additional File 1: Fig. S16b-c for the pathways).

and deserve further investigation. In addition, we investigated the proportion of inter-
mediate methylation values (i.e., between 0 and 1) in S-phase cells. It is reasonable to
anticipate an increase in the proportion during the S phase of the cell cycle, reflecting
DNA methylation maintenance. However, our analysis did not reveal a significantly
higher proportion compared to the other two phases.

vmrseq reveals bi-directional correlation between transcriptional
and DNAme levels

Owing to the multi-modal nature of the scNMT-seq dataset [32], a valuable opportu-
nity emerges for in-depth investigation into the linkage between inter-cellular variation
in DNA methylation and transcription. Here, we explored correlation of gene expres-
sion to the methylation level of nearby VMRs as well as of corresponding promoters
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(Fig. 4c-e). In order to ensure meaningful correlations, we restricted our analysis to
the genes with top 10% variable expression levels after normalizing with variance sta-
bilization transformation [36] (“Methods”). For each highly variable gene, we linked
VMRs within 1000-bp distance to that specific gene and assigned them into three
mutually exclusive categories according to their relative position with respect to the
gene: overlapping with promoter, overlapping with gene body and outside the gene
(“Methods”).

Fig. 4e presents a comparison between the Spearman correlation of gene expres-
sion with linked VMRs and that of gene expression with corresponding promoters.
Each cross-shaped dot in the figure represents a VMR-gene pair. We first observed
that, in the left-bottom quadrant, there are substantially more dots in the blue tri-
angles comparing with grey ones. This indicates that methylation of VMRs might be
a stronger predictor of transcriptional activity in contrast with promoters, since they
show higher correlation with the gene expression level.

Further, while promoters predominantly demonstrated negative or near-zero cor-
relations, VMRs in gene bodies and outside genes demonstrated both positive and
negative correlation with gene expression (Fig. 4e). Specifically, only 0.7% promoters
exceeded 0.2 in terms of Spearman correlation with gene expression, whilst a more
substantial proportion of VMRs in gene body (3%) and outside gene (4.1%) exhibited
correlation greater than 0.2. For both directions, from the top ten ranked gene-VMR
pairs with the highest absolute correlation, we selected two whose VMRs are ranked
highest in terms of increment in log-likelihood of two-grouping model compared to one-
grouping, and display them in Fig. 4c-d. Such distributions of correlation may imply
the existence of two modes of regulation, supporting previous findings of positive cor-
relation between gene body methylation and expression level [37–39]. Interestingly, we
discovered that the genes highly positively correlated with VMRs (corr ≥ 0.2, labeled
in boxes in Fig. 4e) are mostly significantly enriched in pathways relevant to RNA
processing, gene regulation, and even regulation of cell cycle, suggesting an inter-
play between DNAme and various cellular processes (Additional File 1: Fig. S16b-c;
“Methods”).

Discussion

Single-cell DNAme sequencing assays can readily profile thousands of methylomes,
spurring the need for methods to study cell-to-cell epigenomic heterogeneity across
the entire genome, in addition to specific genic or CpG contexts. To address the chal-
lenges of technical noise and sparsity intrinsic to single-cell technologies, we introduced
vmrseq, a statistical framework useful for detecting and prioritizing VMRs. In contrast
to earlier methods that first define genomic windows for selection and then identify
variation in mean methylation levels [9, 23, 26], vmrseq performs a genome-wide and
context-free scan and directly models CpG sites hence accurately identifies VMRs at
base pair-level resolution.

Through simulation studies, we showed that vmrseq is adaptable to a wide range
of scenarios (Fig. 2). When applied to the mouse frontal cortex dataset, we observed
that regions detected by vmrseq are more effective than those of alternative methods
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in distinguishing annotated cell types (Fig. 3a-b). As opposed to methods that use
an arbitrary threshold for region selection [9, 23], our mechanism of candidate region
construction and probabilistic modeling fosters region selection in accordance with
the level of heterogeneity present in the input datasets. Furthermore, by revisiting the
multi-omic mouse gastrulation dataset, our method detected variation sourced from
embryonic development and cell cycle phases (Fig. 4a-b). Leveraging the multi-modal
nature of the dataset, we found a set of genes that exhibited a positive correlation
with the methylation of VMRs but not promoters, elucidating complex patterns of
epigenetic regulation (Fig. 4c-e). Noteworthily, though only bisulfite sequenced sam-
ples have been included in the case studies, we believe that, with properly trained
parameters, vmrseq is also applicable to the recently published sciEM-seq [40].

Nevertheless, we acknowledge that the evaluation through simulation studies
potentially favors vmrseq, due to the fact that synthetic data were partly or fully
generated according to assumptions of our model. Ideally, we would leverage alterna-
tive data-generative methods for a more unbiased method comparison and assessment.
However, to the best of our knowledge, there are no existing models or functions in the
literature that provide site-level single-cell bisulfite sequencing data. We recommend
further evaluations using alternative methods if and when they become available.

Additionally, vmrseq is limited in that it relies on annotated datasets for parameter
estimation (e.g., the transition probability and the beta priors in emission probability;
see “Methods” and Additional File 1: Section S1.1). Due to lack of publicly available
large-scale single-cell DNAme datasets at present, our training data in these analyses
is concentrated in neuronal cell types. Applying vmrseq on tissues other than brain is
essentially making the assumption that they share similar correlation and error struc-
tures to the neuronal subtypes. Results from Fong et al. [7] to some extent support the
assumption of similarity between cell types in terms of between-CpG correlation dis-
tribution. Specifically, the authors used bulk whole-genome bilsulte sequencing data to
study the autocorrelation of methylation level between CpGs with respect to genomic
distances, and observed no significant difference in autocorrelations of methylation
state across a range of cell types. We do not yet have evidence from single-cell data
that shows consistency between cell types regarding the transition probability and
beta-binomial distribution in emission probability. Future datasets generated on vari-
ous cell types may be input to our package, vmrseq, for training relevant parameters
and fill this gap.

Moreover, similar to scbs [23] and Smallwood et al. [9], vmrseq has limitations in
that formal statistical significance testing (i.e., p-value quantification) is not available
for region detection. This is due to the fact that CRs are already a set biased to high
variability, precluding comparison of VMR statistics to a theoretical null. Further, the
one-grouping HMM is not strictly a nested model of the two-grouping HMM hence
likelihood ratio tests are not applicable. We do not see a straightfoward way to generate
null distribution via either a theoretical or empirical approach. Detected VMRs can
be ranked by the maximum likelihood increment from one- to two-grouping model;
however, multiple testing corrections can not be applied thus false discovery rate is not
strictly controlled. Extensions in this direction would provide a significant advance.
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Last but not least, users of vmrseq should note that our method has only been
experimented with and evaluated on autosomes. Sex chromosomes might have dis-
tinct methylation patterns from autosomes due to cellular processes such as the
X-inactivation. Follow-up work is needed to examine whether model parameters for
sex chromosomes shall differ from autosomes.

Conclusions

We introduced vmrseq, a statistical approach with software implementation designed
to discover variably methylated regions from single-cell bisulfite sequencing data; to
the best of our knowledge this is the first such approach to do so at CpG site-level reso-
lution. This method identifies biologically relevant regions at genome scale, overcoming
extreme sparsity and technical noise inherent in single-cell technologies. Moreover,
vmrseq is uniquely sensitive to the level of heterogeneity in input datasets. We exten-
sively evaluated the performance of vmrseq using synthetic data and re-analyzed
published large-scale studies of single-cell methylomes in mouse frontal cortex and
gastrulation. In the simulation studies, our method outperformed previous approaches
in a spectrum of accuracy metrics, demonstrating its utility in accurate region detec-
tion. In the case study of mouse cortex data, vmrseq was able to distinguish not only
coarse cell classes but also detailed subtypes, outperforming the competing methods
in terms of feature selection for clustering. In the case study of single cell multi-omic
gastrulation, vmrseq identified heterogeneity associated with specific developmental
stages and cell cycle states. Furthermore, our method elucidated intricate patterns
of epigenetic regulation on gene expression that were not evident by looking only
at promoters. In summary, vmrseq offers a reliable framework for pinpointing cell-
to-cell DNA methylation heterogeneity, serving as a useful tool for future single-cell
epigenomic research.

Methods

Overview of vmrseq

vmrseq takes processed and filtered whole-genome bisulfite sequencing data from het-
erogeneous individual-cell samples as input and performs a genome-wide scan for
highly epigenetically variable regions. The methylation level of a CpG site in an indi-
vidual cell is defined as methylated reads divided by total reads covering this site. Let
xkc represent methylation level of CpG site k of cell c. The input to vmrseq is thus
matrix X with element xkc on row k and column c. We assume binary methylation
levels for each cell, i.e., xkc ∈ {0 (unmethylated), 1 (methylated)}. Missing is allowed
in matrix X as vmrseq accommodates sparsity in scBS-seq data.

In practice, hemimethylation and technical error might occur and lead to interme-
diate methylation level between 0 and 1. However, only a small proportion of CpGs
exhibit hemimethylation in most cells such as somatic mouse tissues [41]. In addition,
the typical coverage level of scBS-seq data results in a large proportion of sites per
cell (interquartile range 94.1–97.5% in datasets used in our case studies) only being
observed by 1-2 read, precluding accurate identification of intermediate methylation
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in the first place. As a result, we remove the sites with an intermediate methylation
level from every cell as a filtering step before input to vmrseq, which affects a very
small proportion of sites per cell (interquartile range 0.33%–0.55%) in the datasets
used in our case studies.

Stage 1: construct candidate regions

Smoothing. vmrseq applies a kernel smoother to ‘relative’ methylation levels of indi-
vidual cells to adjust for uneven coverage biases and borrow information from nearby
sites. The relative methylation level of site k in cell c is defined as x∗

kc = xkc − x̄k·,
where x̄k· is the average level across cells on that site and c ∈ {1, 2, ..., C} with C
being the total number of cells. Then for every cell, vmrseq runs a kernel smoother
on x∗

kc, rendering smoothed values x̂kc. We chose to smooth on the relative methyla-
tion levels instead of absolute ones to avoid introducing intermediate smoothed values
unnecessarily in the cases where methylation state transitions between CpGs are con-
sistent across the entire cell population. In all our studies, we adopted a box smoother
to reduce computation time, and a bandwidth of 2,000 base pair (bp) was used since
average correlation between CpG sites were observed to slowly decay as CpG-CpG
distance grows and reach a plateau at around 2,000 bp (Additional File 1: Fig. S17).
scbs [23] also employs relative methylation levels and kernel smoothing but in a differ-
ent manner. In particular, scbs applies a smoother on the cell averages (i.e., x̄k·) and
obtain the relative levels by subtracting individual-cell methylation by the smoothed
average.

Defining candidate regions. Variance of methylation across cells is computed for each
CpG site using the smoothed relative methylation. More formally, the variance is

σ̂2 =

∑C
c=1 x̂

2
kc

nk − 1
=

∑C
c=1( ̂xkc − x̄k·)

2

nk − 1
(1)

CRs are defined through identifying groups of at least 5 adjacent CpG sites whose
variance is consistently greater than some threshold (Fig. 1b). This threshold is deter-
mined by taking the 1−α quantile value of an approximate null distribution of variance
simulated from the beta priors of emission probability from our HMM (see Additional
File 1: Section S1.2 for details). α is the designated significance level and its default
is set to 0.05. The maximum distance between two adjacent CpG sites is set to 2,000
bp for the same reason of determining the default smoothing bandwidth. We also find
that a value of 5 works well in practice as the minimum CpG counts in a CR and
choose this for the default value. Please refer to Additional File 1: Section S2.4 for
a sensitivity analysis on these hyperparameters. However, the specific application at
hand can inform the choice of the minimum CpG count in a region. For example, a
higher threshold (e.g., ≥ 50 CpGs) for capturing broad epigenetic changes in cancer
studies [42], and a lower threshold (e.g., 5-10 CpGs) for detecting fine-scale regulatory
changes in developmental studies [43].
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Stage 2: decode hidden Markov model

In the second stage, vmrseq detects VMRs inside each candidate region through decod-
ing a hidden Markov model under the assumption of U and M groupings (Fig. 1c).
HMMs are well-suited to model DNAme data, for they are in the form of sequences
with the presence of local correlations. The HMM model used in vmrseq is motivated
by the deconvolution method DXM [7]. Though DXM was designed for detecting het-
erogeneity in user-defined regions from bulk samples, we have discovered that a similar
model is particularly relevant for detection of VMRs in single-cell data. We adopt the
general structure of DXM, wherein the total observed methylated counts depends on
the hidden states of CpG loci and association of adjacent CpG loci are modeled by
transition probability between hidden states. But in contrast to DXM, which uses hid-
den states to directly infer cell subpopulations, we have proposed the assumption of
U and M groupings and modeled the underlying methylation states of grouping(s) as
hidden states. This is to accommodate the possibility that single-cell datasets might
contain large number of cell subpopulations. To further adapt the method to single-cell
technology, we adjust the model specification of transition and emission probabili-
ties based on single-cell data characteristics (see later texts and Additional File 1:
Section S1.1). We have also proposed an optimization step to estimate the prevalence
parameter (detailed in later texts), instead of imposing a random choice a priori as in
DXM.

We model the underlying methylation states of a grouping in a CR as a sequence
of latent variables (i.e. hidden states in HMM) where each variable corresponds to a
CpG site. Inference for each CR is made independently which enables the use of paral-
lelization to lower computation time. We first describe the HMM for the one-grouping
scenario (Additional File 1: Fig. S18a), as the two-grouping model (Additional File 1:
Fig. S18b) is build upon the elements thereof.

One-grouping model specification

Hidden states. Denote the hidden states for site k with only one grouping as sk ∈ {0, 1}
where 0 represents an unmethylated underlying state and 1 represents methylated.
These states are considered latent because observed counts from data do not always
align with the true methylation state due to both technical errors and inherent bio-
logical heterogeneity. The consecutive states are interdependent and are incorporated
using transition probabilities to account for spatial correlations.

Transition probability. The transition probability from sk−1 to sk is denoted as
P (sk|sk−1), which represents likelihood that the hidden state either changes or remains
the same from one site to an adjacent site. The initial state probability is set to a
non-informative uniform distribution, P (s1) ∝ 1. The transition probabilities are con-
sidered dependent on the methylation states and distance between two CpGs and
are independent of the prevalence parameter. An empirical transition probability dis-
tribution used as default in vmrseq was trained from annotated single-cell bisulfite
sequencing datasets previously published by Luo et al. [27] and Liu et al. [44] (see
Additional File 1: Section S1.1.2 for training details, [45]).
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Emission probability. For site k, denote its methylated cell count as mk =
∑C

c=1 xkc

and total cell coverage as nk = |ζk|, where ζk is the set of cells with non-missing values
at site k and | · | denote the cardinality of a set. The emission probability of observing
mk methylated cell counts from nk total counts at site k is

P (mk|sk, nk) =

{
pM (nk,mk), when sk = 1, ∀k ∈ {1, ...,K},
pU (nk,mk), when sk = 0, ∀k ∈ {1, ...,K},

(2)

where pM (nk,mk) is a beta-binomial (BB) distribution modeling the mk out of nk

cells observed as methylated given hidden state sk = 1. A separate zero-inflated beta-
binomial (ZIBB) distribution pU (nk,mk) models mk observed as unmethylated under
the hidden state sk = 0. We use ZIBB for unmethylated states due to the fact that
cell subtypes in labeled datasets [27, 35] were observed to exhibit unusually high
proportion of zero counts hence not suitable for modeled as BB distribution. pM (·, ·)
and pU (·, ·) together capture the measurement error that may occur during sequencing
and inherent biological heterogeneity. Empirical prior distributions used as default in
vmrseq was trained from annotated single-cell bisulfite sequencing datasets previously
published by Luo et al. [27] and Liu et al. [44] (see Additional File 1: Section 1.1.3 for
training details, [46, 47]).

Joint likelihood. For the K sites in a CR, denote the state sequence as S =
(s1, s2, ..., sK), methylated cell counts as m = (m1,m2, ...,mK) and total cell count
n = (n1, n2, ..., nK). The likelihood for one grouping is consist of the transition and
emission probability described above:

P (m,S|n) = P (s1)

K∏
k=2

P (sk|sk−1)

K∏
k=1

P (mk|sk, nk), (3)

Two-grouping model specification

Recall the assumption of U and M grouping (Fig. 1d), where we assume that within
a CR that contains a VMR, the cells can be partitioned into two groupings based
on their estimated hidden states within the VMR (referred to as the U grouping
and M grouping respectively). The two-grouping HMM is an extension of the one-
grouping scenario, wherein each site possesses a bivariate hidden state and a prevalence
parameter for depicting the proportion of cells in U and M groupings.

Hidden states. Denote the bi-variate hidden states for the two groupings as sk =

(s
(0)
k , s

(1)
k ) at site k, where s

(l)
k ∈ {0, 1} for l ∈ {0, 1}. Specifically, s

(0)
k represents

the underlying state of the U grouping at site k, and s
(1)
k the underlying state of

the M grouping. The state space is thus S = {(0, 0), (0, 1), (1, 1)}, where sk = (0, 1)
indicates that the site k belongs to a VMR potentially (see later text for how a VMR
is identified). sk = (0, 0) and sk = (1, 1) represents that site k is in the CR but not
in a VMR. The combination (1, 0) is excluded from the state space here since we
assume the M grouping must have a methylated hidden state at sites that are variably
methylated. As a result of this constraint, the one-grouping HMM is not strictly nested
to the two-grouping model.
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Prevalence parameter. The prevalence parameter, i.e., the proportion of cells in the
two groupings, is denoted as π = (π(0), π(1)) with a constraint of π(0) + π(1) = 1.

Transition probability. Given a fixed between-CpG distance, the transition probability
for two-grouping is extended from the one-grouping transition probability. Specifically,

P (sk|sk−1) ∝ P (s
(0)
k |s(0)k−1)P (s

(1)
k |s(1)k−1) (4)

normalized by the constant
∑

sk∈S P (sk|sk−1) so that the sum equals 1. The initial
state probability is also set to a non-informative uniform distribution, P (s1) ∝ 1.

Emission probability. For site k in a given candidate region, denote its methylated cell
count as mk and total cell coverage as nk following the definitions in one-grouping
case. The emission probability of observing mk methylated cell counts from nk total
counts at site k is

P (mk|sk,π, nk)

=

nk∑
i=0

min(mk,i)∑
j=0

P (i|s(0)k , s
(1)
k , nk)P (j|i, s(0)k , s

(1)
k , nk)P (mk|i, j, s(0)k , s

(1)
k , nk)

=

nk∑
i=0

min(mk,i)∑
j=0

(
nk

i

)
(s

(0)
k π(0) + s

(1)
k π(1))i(1− s

(0)
k π(0) − s

(1)
k π(1))nk−ipM (i, j)

pU (nk − i,mk − j).

(5)

The first binomial term is for capturing the binomial sampling error where i cells
came from the M grouping and nk − i come from the U grouping. Assuming cells

are independently and identically distributed within a grouping, for site k, s
(0)
k π(0) +

s
(1)
k π(1) is the success rate in binomial distribution, representing the overall prevalence
of cells with underlying state of methylated. Then, of the i cells, j may be observed as
methylated, and is modeled by the BB distribution pM (i, j). Similarly, pU (nk−i,mk−
j) is the ZIBB distribution representing the probability that mk − j of nk − i cells are
observed as unmethylated. The BB and ZIBB models share the same structure and
estimated parameters as in the one-grouping case.

Joint likelihood. The joint likelihood can be written in the same manner as in the
one-grouping case:

P (m,S|n,π) = P (S)P (m|S,π,n)

= P (s1)

K∏
k=2

P (sk|sk−1)

K∏
k=1

P (mk|sk, π, nk),
(6)

but with two-grouping representations of transition and emission probabilities instead.

Model optimization

In the one-grouping likelihood, the only parameters requiring estimation are the hidden
states, as demonstrated in Eq. 3. Consequently, we can readily utilize the Viterbi
algorithm [48] for HMM decoding. This algorithm is a dynamic programming technique
that has traditionally been employed to obtain the maximum a posteriori probability
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estimate for the most probable sequence of hidden states. It is adopted here because
of its excellent computational performance in terms of time complexity.

For optimizing the two-grouping likelihood, we repeatedly alternate between S and
π to maximize the likelihood function for two groupings (Eq. 6) in a similar way as
proposed by Rahman et al. [49]. We elaborate on these two phases of optimization in
what follows.

1. Initialization of π. Given the potential multimodality of the likelihood (Eq. 6),
we recommend employing multiple initial values for the prevalence parameter. In
practical applications, we have observed that the set {0.2, 0.5, 0.8} serves as an
effective choice for initializing π(0), and as a result, we have adopted it as the
default setting in all experiments presented in this article.

2. Optimizing S while π is fixed. Given the expected prevalence of two groupings,
we solve for the most likely methylation state sequences in Eq. 6 by applying the
Viterbi algorithm.

3. Optimizing π while S is fixed. Maximizing the likelihood function over π is a
constrained optimization problem with π as a probability vector, where π(0), π(1)

are non-negative and π(0) + π(1) = 1. To solve this problem, we use the expo-
nentiated gradient (EG) algorithm. More formally, the optimization problem with
respect to π is as follows:

min
π

−
K∑

k=1

log(P (mk|sk,π, nk)), (7)

in which the objective function is proportional to the logarithm of likelihood
function in Eq. 6. Then, the EG updates are

π(l)
new ∝ π(l) · e−η[∇L(π)](l) , l = 0, 1 (8)

where η is the learning rate. After updating each component of the latent vector π,
the values are normalized so that they sum to one. The derivatives in EG updates
are provided in Additional File 1: Section S1.3.

4. Termination. For each initialization of π(0) (step 1), continue iterating through
steps 2 and 3 until convergence is achieved. The optimization process is considered
complete when both the objective function and π(0) have converged. Select the
parameter estimates with the highest maximum likelihood among the fitted models
generated from all initializations.

When sparsity level in the input dataset is held constant, the observed total cell count
nk should exhibit linear scaling with the total number of cells, C. Consequently, the
time complexity for optimizing the one-grouping Hidden Markov Model (HMM) is
O(KC2), while for the two-grouping HMM, it becomes O(IKC2), where I represents
the total number of iterations.
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Identifying and ranking variably methylated regions

For a candidate region, if the one-grouping HMM achieves a higher maximum like-
lihood than the two-grouping HMM, this CR is not considered to contain VMR.
Otherwise, a VMR is defined for regions with a minimum number of CpG sites exhibit-

ing hidden state (s
(0)
k , s

(1)
k ) = (0, 1). Same as in candidate region construction, we used

5 as the minimum number for all experiments in this study and it can be customized
by the user based on the specific biological question at hand. Should multiple VMRs
be detected in one CR, we merge those VMRs into one to be concordant with the
assumption of U and M groupings. The VMRs can be ranked by the increment in log-
likelihood of two-grouping model compared to one-grouping with a higher increment
indicating a higher rank.

Annotated datasets used for empirical parameter estimation

The single-cell bisulfite sequencing datasets published by Luo et al. [27] and Liu et al.
[44] were used for training the empirical parameters in transition and emission prob-
ability distributions in our model. Originally, Luo et al. [27] profiled over 6,000 single
neuronal nuclei methylomes using the snmC-seq protocol, identifying 16 mouse and
21 human neuronal subtypes in the frontal cortex using gene body non-CG methyla-
tion depletion in neuronal marker genes. We also re-analyzed this dataset in the first
case study. Similarly, Liu et al. [44] profiled more than 100,000 nuclei with snmC-seq2,
including both neurons and non-neuronal cells, from 45 distinct regions of the mouse
brain. They identified 161 cell subtypes with high consistency across different repli-
cates, which are characterized by unique spatial distributions and projection targets,
leveraging both CG and non-CG methylation patterns. Cells from each annotated
subtype were merged into an individual pseudo-bulk sample and these samples are
considered homogeneous during empirical parameter estimation. For specific details of
data processing and parameter training, please refer to Additional File 1: Section S1.1.

Computational scalability of vmrseq

We conducted a scalability analysis using synthetic data to evaluate the running times
of various methods across different settings (Additional File 1: Fig. S19). Due to
the second-order computational complexity with respect to the number of cells, the
running time of vmrseq exhibits a quadratic increase as cell count grows, while vmrseq
CRs, scMET and scbs present a linear increase. Therefore, when dealing with datasets
consisting of a large number of cells, we recommend running only the first stage of
the methodology for users who need a preliminary check or prioritize speed over high
precision in region detection and the ranking of regions. This approach allows for a
faster initial analysis before applying the full methodology.

Method implementations and parameter settings

The alternative methods that were compared with vmrseq were exclusively applied
in the context of a genome-wide search for VMRs, regardless of other functions they
might possess. All analyses were carried out using R version 4.2.0 [50] except for
the application of the scbs which is a stand-alone command-line tool developed from
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Python. We used default parameters as suggested in original publications of the eval-
uated methods in all our experiments. For RRA estimation, the sets of thresholds
were tailored to each method to balance the trade-off between computational time
and a PR-curve with steady and continuous progression. The sites with an intermedi-
ate methylation level were excluded for every cell before input to any of the methods.
In both datasets used in the case studies, 0.44% of sites were removed on average
from each cell (interquartile range 0.33–0.56%). Method-specific implementations and
parameter settings are described as follows.

vmrseq. The vmrseq package (https://github.com/nshen7/vmrseq; version 0.1.0) was
used for analyses in this article with default parameters (smoothing bandwidth =
2000 bp; variance quantile α = 0.05; minimum number of CpGs in CR = 5; minimum
number of CpGs in VMR = 5). For computing RRA of precision-recall curve, α ∈
{.001, .002, ..., .005, .01, .02, ..., .1, .12, .15, .2, .3, .4} were used. α’s that are greater than
0.4 were not included because large values of α might not effectively define candidate
regions that align with our assumption of U and M groupings. For all experiments, we
removed CpGs sites with less than 3 covered cells prior to applying vmrseq.

scbs. scbs [23] first computes cell-to-cell variances of smoothed mean methylation
levels in fixed-size sliding windows, then takes a user-defined percentage of top-
ranked windows in terms of the variance and merges them whenever overlapping
happens. The non-overlapping regions after merging are identified as VMRs and are
re-ranked based on across-cell variance in methylation. The scbs package (https:
//github.com/LKremer/scbs; version 0.4.0) was used for implementation. The default
2000-bp window size, 10-bp step size were used for the all experiments in this arti-
cle. Default 2% variance threshold (i.e. proportion of top-ranked windows) were used
for all experiments except that for computing RRA of precision-recall curve, variance
cutoffs were {.0001, .0005, .001, .005, .01, .015, .02, .025, .03, .04, ..., .09, .1, .2, ..., .9, .99}.
No additional pre-processing steps were used for scbs. On a side note, the scbs method
has been updated and renamed as MethSCAn in its latest version [51], following the
completion of our experiments.

Smallwood. The statistical method used in Smallwood et al. [9] models the aggre-
gated methylation counts from fixed-size sliding windows with a binomial distribution.
Regions are ranked by the confidence lower bound of their maximum likelihood esti-
mator of the cell-to-cell methylation variance and an arbitrary number of top-ranked
regions are defined as variably methylated. Selected windows that overlapped are
merged into non-overlapping regions. Relying on the description provided in Small-
wood et al. [9], we created our own implementation as we were unable to find
a readily available software package to use. As proposed in their study, 3,000-bp
window size with 600-bp step size were applied for the studies in this article. How-
ever, we performed additional experiments using the same 2,000-bp window size as
vmrseq and scbs to assess the impact of varying window size on method perfor-
mance (see Additional File 1: Section S2.1 for a detailed discussion). The article
originally used top 300 windows, which we deemed a too small number for large-
scale datasets, thus top 2% windows were used instead as default (in light of the
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threshold proposed by scbs). For computing RRA of precision-recall curve, variance
cutoffs {.0001, .0005, .001, .005, .01, .015, .02, .025, .03, .04, ..., .09, .1, .2, .3} were used.
No additional pre-processing steps were used.

scMET. scMET [26] leverages the concept of ‘residual overdispersion’ that suppos-
edly removes the confounding of variance by mean methylation and models the
aggregated counts in pre-defined windows with a hierarchical Bayesian model. The
scMET package (https://www.bioconductor.org/packages/release/bioc/html/scMET.
html; version 0.99.11) was used for implementation. As proposed in their study
of genome-wide sliding windows, 20,000-bp window size with 20,000-bp step size
were used for the studies in this article, along with default parameters in scmet

and scmet hvf function of scMET package. In particular, the default thresh-
old used for selecting highly variable windows is expected false discovery rate
(EFDR) = 0.1; and for computing RRA of precision-recall curve, EFDR of values
{.01, .02, .05, .1, .2, ..., .9, 0.99} were used. For all experiments, we followed the recom-
mended processing steps from [26] and removed windows with less than 3 covered sites
for each cell and features that did not have CpG coverage in at least 5 cells.

Statistical analysis

Ratio of relevant areas (RRA). Because the identification of VMRs requires an increase
of likelihood from a one-grouping to a two-grouping model in vmrseq, the precision is
not guaranteed to reach 0 by lowering the variance threshold; hence a precision-recall
curve with precision ranging from 0 to 1 inclusive can not be drawn for VMRs detected
by vmrseq. Therefore, instead of using area under precision-recall curve as the criterion
to comprehensively compare accuracy of the methods, we applied RRA, a metric that
restricts the evaluation of area under curve to a region of interest. Specifically, we set
the region of interest as 0.8 ≤ precision ≤ 1 for the experiments with synthetic data
to assess performance under low-false-discovery-rate (i.e., high-precision) conditions
while accommodating the aforementioned circumstance of vmrseq.

Cell-to-cell dissimilarity matrix. Given a genomic region, for each cell, regional average
methylation was computed by taking the mean observed methylation of all CpGs in
the region. The cell-to-cell dissimilarity matrix was composed of pairwise Manhattan
distances (i.e., L1 distance) between the regional average methylation vectors of every
possible pair of cells. For each cell-cell pair, only regions observed in both cells were
included in calculation of distance. The implementation was performed using daisy

function from cluster package in R (version 2.1.3).

Dimension-reduction visualization. For each method, UMAP [28] was applied directly
to the dissimilarity matrices computed from detected regions to obtain embedded
coordinates in 2-dimensional space. The implementation was performed using the umap
function from the uwot package in R (version 0.1.14) with default parameters. The
same random seed was used for all methods in the studies.

Nearest neighbor count score. For each cell c, let γc represent the count of its g nearest
neighbors (determined by the dissimilarity matrix) that possesses the same label as
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c. A cell was deemed “well-assigned” if γc > θg, where we set g = 100 and θ = 0.7
in the case study. The nearest neighbor count score was defined as the fraction of
cells considered well-assigned. This score assesses the capability of each method to
distinguish between cell types in the detected regions. Each score ranges from 0 to 1,
with higher scores indicating superior separation. Other parameter settings of g and
θ rendered very similar results on the mouse multi-omic dataset (Additional File 1:
Fig. S20).

Generating synthetic datasets

To ensure that the simulated sets closely match the characteristics of the observed
experimental data, we replicated chromosome 1 of subtype ‘IT-L23 Cux1’ from an
scBS-seq mouse brain atlas [44] in terms of genomic coordinates and sparsity distri-
bution. Cells of only one subtypes were used to ensure no known heterogeneity was
present in the dataset. We stratified the total 6,550 cells from this cell subpopulation
into three subsets based on their sparsity levels, where the level of sparsity of a cell
was defined as the percentage of CpG sites not covered by any read. The top and
bottom 2% of cells were excluded to remove potential outliers. 2,096 cells remaining
in each subset and average sparsity levels from the three subsets are 94.9% (high),
92.8% (medium), 90.4% (low) respectively. We randomly subsampled N = 200, 500,
1000, 2000 cells from each of the three subsets, resulting in 12 sets of cells for synthetic
purposes. Additionally, a range of values for number of subpopulations (denoted as ρ;
ρ ∈ {2, 3, 4, 5, 8, 12, 20}) were simulated for each of the 12 sets.

Assuming that these sets are homogeneous and contain no VMRs, we inserted 2000
simulated VMRs into each set. VMR positions were determined by sampling clusters
of between 5 and 500 CpGs with a maximum gap between any two adjacent CpGs of
500 base pairs and maximum cluster width of 10,000 bp. Adjacent VMRs with ≤ 2
CpGs in between are merged. Using a simulation procedure similar to Korthauer et al.
[12], we prioritized the selection of clusters with mean methylation averaged across
all CpGs near 0.5. Mean methylation of a CpG is calculated as the number of methy-
lated cells divided by the total covered cells of a site. This approach was adopted to
more accurately capture observed biological variability, as sample-to-sample variabil-
ity tends to be high at intermediate methylation levels [52, 53]. This preference was
enforced using probability weights wr, r = 1, ..., R when sampling over the possible R
CpG clusters, where wc = 1 −

√
2× |0.5− πr| and πr is the mean methylation over

all sites in cluster r.
According to the assumption of U and M groupings, all sites within VMRs had

two groupings and fixed hidden states (s(0), s(1)) = (0, 1). We sampled the prevalence
parameter based on ρ. Specifically, for each VMR, we took a random number of sub-
populations (denoted as ρr; 0 < ρr < ρ) to be in M grouping and others in U grouping.

Then the prevalence of U grouping for this VMR, π
(0)
r , followed the distribution:

P (π(0)
r =

ρr
ρ
) =

(
ρ
ρr

)∑ρ−1
ρr=1

(
ρ
ρr

) ,
and π

(1)
r = 1− π

(0)
r accordingly.
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For each VMR, we then randomly assigned a proportion of cells to the U and M
groupings according to the sampled prevalence parameter. For each CpG site in U and
M grouping, the methylated cell count (conditional on observed total cell coverage)
was drawn from the beta-binomial components in the emission probability of HMM in
vmrseq stage 2, pU (·, ·) and pM (·, ·), respectively. At last, those methylated cell quotas
were randomly assigned to the cells for each site, excluding the cells missing from this
site due to zero-read coverage.

For the second set of experiments wherein methylation levels of the whole chro-
mosome are entirely simulated from the HMM model, VMRs were generated in the
same manner. Sites outside the VMRs were assumed to only contain a single grouping.
The hidden states of these sites were sampled from the transition probability based
on observed between-CpG distances. Then the cell methylation values were simulated
from the emission probability distribution based on the generated hidden states.

Mouse frontal cortex dataset

Data processing. CpG methylation read counts per cell following alignment to the
mm10 mouse genome are available from the Gene Expression Omnibus repository
under accession number GSE97179. We included the same set of cells as used in
Kapourani et al. [26]. Details on quality control and data pre-processing on raw reads
can be found in Luo et al. [27]. See Additional File 2: Table S2 for sample metadata
of the included cells. Only autosomes were included in this study.

Annotations of detected regions with genic contexts and CpG region types. We anno-
tated detected regions from each method by overlapping with 11 types of gene
contexts and 4 types of CpG region types. The gene context annotations were
obtained using the “genes 1to5kb”, “genes promoters”, “genes cds”, “genes 5UTRs”,
“genes exons”, “genes firstexons”, “genes introns”, “genes intronexonboundaries”,
“genes exonintronboundaries”, “genes 3UTRs” and “genes intergenic” annotations of
genome “mm10” from version 1.22.0 of the annotatr package in Bioconductor [54].
The CpG region type annotations (including islands, shores, shelves and inter-island
areas) were obtained using “cpgs” annotations from the same package. Random-
ized regions were obtained by employing function randomize regions from the same
package.

Multi-omics gastrulation dataset

Data processing. CpG methylation read counts per cell following alignment to
the mm10 mouse genome were downloaded from ftp://ftp.ebi.ac.uk/pub/databases/
scnmt gastrulation/scnmt gastrulation.tar.gz. Raw sequencing reads are available
from the Gene Expression Omnibus repository under accession number GSE121708.
Details on the quality control and data processing can be found in Argelaguet et al.
[32]. In total 939 cells remained after taking the subset of cells with both QC-passed
methylomic and transcriptomic profiles available. See Additional File 2: Table S3 for
sample metadata of the remaining cells. As with the reanalysis on [27] dataset, only
autosomes were included in this study. Genes with fewer than 5 cells of coverage were
excluded, leaving a total of 17,568 genes for downstream analysis.
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Annotation of cell cycle phases. The cell cycle phases of individual cells were annotated
using the CellCycleScoring function from R package Seurat (version 4.3.0), follow-
ing the steps in vignette https://satijalab.org/seurat/articles/cell cycle vignette.html.
The annotation was performed based on the mouse ortholog genes of the human cell
cycle canonical markers used in this vignette. The gorth function from the R package
gprofiler2 (version 0.2.2) was used for the orthology search. See Additional File 1:
Fig. S15a for distribution of S and G2M scores on the annotated cells.

Selection of highly variable genes. Gene expression of individual cells were first nor-
malized with variance stabilizing transformation via vst function from Bioconductor
package sctransform. Genes in the top 10% ranked by variance of normalized gene
expression across cells were selected in the case study. As a sanity check, we performed
gene ontology enrichment analysis using the list of selected highly variable genes. As
expected, most gene pathways associated with these genes are relevant to embryonic
organ development and gastrulation (Additional File 1: Fig. S16a).

Linking VMRs to genes. Only VMRs with any boundary located within a distance of
1,000 bp to a gene (ranging from transcription start site to transcription end site) was
considered linked to that gene. A promoter was defined as 2, 000 bp upstream to the
transcription start site of the corresponding gene. A VMR was assigned to category
“overlapping with promoter” if any of its boundary was in a promoter. A VMR was
assigned to “overlapping with gene body” if any of its boundary was in a gene body
but none of the boundaries was in promoter. At last, a VMR was assigned to “outside
the gene but within 1000-bp distance” if none of its boundary was in promoter or gene
body.

Correlation of regional average methylation and gene expression. For both VMRs and
promoters, the Spearman correlation of regional average methylation and normalized
expression of linked gene was computed using cells with observations of both methy-
lation level and gene expression. VMRs and promoters with less than 10 cells covered
were removed from the analysis to ensure a robust evaluation of correlation. Addi-
tional File 2: Table S4 contains information of all gene-VMR pairs along with the
computed correlations.

Gene ontology enrichment analysis. All enrichment analyses in the experiments were
performed using the enrichGO function from Bioconductor package clusterProfiler
(version 4.4.4) with organism annotation database org.Mm.eg.db (version 3.15.0).
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Additional File 1 (Additional File 1.pdf): Supplementary materials.

Section S1: Supplementary methods.
Section S2: Supplementary results.
Section S3: Supplementary figures

Additional File 2 (Additional File 2.xlsx): Table S1-S9.

Table S1: Performance of clustering cells in Luo et al. [27] data with VMRs over-
lapped with targeted features. Default parameters, g = 100 and θ = 0.7, were used
for calculation of the nearest neighbor score (“Methods”). The ‘broad classes’ refer
to the 2 broad neuronal classes (i.e., excitatory and inhibitory) in Luo et al. [27]
data, and ‘subtypes’ refer to 15 subtypes within those two classes. Gene promot-
ers were defined as ±2-kb windows around the transcription start sites of genes
extracted from ENSEMBL version 80 [62]. Additional File 2: Table S9 lists data
sources of the histone ChIP-seq annotation information.
Table S2: Table with sample metadata from the mouse frontal cortex dataset (Luo
et al. [27]).
Table S3: Table with sample metadata from the multi-omic mouse gastrulation
dataset (Argelaguet et al. [32]).
Table S4: Table with the correlation between gene expression and VMR/promoter
methylation.
Table S5: Table with the subtypes included in training parameters in transition
probability and emission probability used as default in this study.
Table S6: Table with the trained transition probability.
Table S7: Table with the trained beta prior parameters of the emission probability
for methylated grouping.
Table S8: Table with the trained beta prior parameters of the emission probability
for methylated grouping.
Table S9: Table with data sources of histone ChIP-seq annotation information used
in the experiments.

Acronyms

BB beta-binomial. 17, 18
bp base pair. 15, 21, 22, 25
BS-seq bisulfite sequencing. 1

CR candidate region. 3–5, 7, 13, 15, 16, 20, 21

DNAme DNA methylation. 1–3, 10–13, 16

EG exponentiated gradient. 19

HMM hidden Markov model. 4, 5, 7, 13, 15–17, 24

PCA principal component analysis. 9
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RRA ratio of relative areas. 5, 7, 21, 22

VMR variably methylated region. 2–7, 9–13, 16, 20–25

ZIBB zero-inflated beta-binomial. 17, 18

References

[1] Moore LD, Le T, Fan G. DNA Methylation and Its Basic Function. Neuropsy-
chopharmacology. 2013 Jan;38(1):23–38. Number: 1 Publisher: Nature Publishing
Group. https://doi.org/10.1038/npp.2012.112.

[2] Smith ZD, Meissner A. DNA methylation: roles in mammalian development.
Nature Reviews Genetics. 2013 Mar;14(3):204–220. Number: 3 Publisher: Nature
Publishing Group. https://doi.org/10.1038/nrg3354.

[3] Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW,
et al. A genomic sequencing protocol that yields a positive display of 5-
methylcytosine residues in individual DNA strands. Proceedings of the National
Academy of Sciences. 1992;89(5):1827–1831. https://doi.org/10.1073/pnas.89.5.
1827. https://www.pnas.org/doi/pdf/10.1073/pnas.89.5.1827.

[4] Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R.
Reduced representation bisulfite sequencing for comparative high-resolution DNA
methylation analysis. Nucleic Acids Res. 2005;33(18):5868–5877.

[5] Teschendorff AE, Breeze CE, Zheng SC, Beck S. (EpiDISH) A comparison of
reference-based algorithms for correcting cell-type heterogeneity in Epigenome-
Wide Association Studies. BMC Bioinformatics. 2017 Feb;18(1):105. https://doi.
org/10.1186/s12859-017-1511-5.

[6] Lee D, Lee S, Kim S. PRISM: methylation pattern-based, reference-free inference
of subclonal makeup. Bioinformatics. 2019 Jul;35(14):i520–i529. https://doi.org/
10.1093/bioinformatics/btz327.

[7] Fong J, Gardner JR, Andrews JM, Cashen AF, Payton JE, Weinberger KQ, et al.
Determining subpopulation methylation profiles from bisulfite sequencing data of
heterogeneous samples using DXM. Nucleic acids research. 2021 Sep;49(16):e93–
e93. Publisher: Oxford University Press. https://doi.org/10.1093/nar/gkab516.

[8] Cai M, Zhou J, McKennan C, Wang J.: scMD: cell type deconvolution using
single-cell DNA methylation references. bioRxiv. Pages: 2023.08.03.551733
Section: New Results. Available from: https://www.biorxiv.org/content/10.1101/
2023.08.03.551733v1.

[9] Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, et al.
Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity.
Nature Methods. 2014 Jul;11(8):817–820. https://doi.org/10.1038/nmeth.3035.

28

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 12, 2024. ; https://doi.org/10.1101/2023.11.20.567911doi: bioRxiv preprint 

https://doi.org/10.1038/npp.2012.112
https://doi.org/10.1038/nrg3354
https://doi.org/10.1073/pnas.89.5.1827
https://doi.org/10.1073/pnas.89.5.1827
https://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.89.5.1827
https://doi.org/10.1186/s12859-017-1511-5
https://doi.org/10.1186/s12859-017-1511-5
https://doi.org/10.1093/bioinformatics/btz327
https://doi.org/10.1093/bioinformatics/btz327
https://doi.org/10.1093/nar/gkab516
https://www.biorxiv.org/content/10.1101/2023.08.03.551733v1
https://www.biorxiv.org/content/10.1101/2023.08.03.551733v1
https://doi.org/10.1038/nmeth.3035
https://doi.org/10.1101/2023.11.20.567911
http://creativecommons.org/licenses/by-nc/4.0/


[10] Karemaker ID, Vermeulen M. Single-Cell DNA Methylation Profiling: Technolo-
gies and Biological Applications. Trends in Biotechnology. 2018 Sep;36(9):952–
965. https://doi.org/10.1016/j.tibtech.2018.04.002.
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