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ABSTRACT

Minimum  Inhibitory  Concentrations  (MICs)  are  the  gold  standard  for  quantitatively

measuring  antibiotic  resistance.  However,  lab-based  MIC  determination  can  be  time-

consuming and suffers from low reproducibility, and interpretation as sensitive or resistant

relies on guidelines which change over time.

Genome sequencing and machine learning promise to allow in-silico MIC prediction as an

alternative approach which overcomes some of these difficulties, albeit the interpretation of

MIC is still needed. Nevertheless, precisely how we should handle MIC data when dealing
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with predictive models remains unclear, since they are measured semi-quantitatively, with

varying resolution, and are typically also left- and right-censored within varying ranges.

We  therefore  investigated  genome-based  prediction  of  MICs  in  the  pathogen  Klebsiella

pneumoniae using 4367 genomes with both simulated semi-quantitative traits and real MICs.

As we were focused on clinical interpretation, we used interpretable rather than black-box

machine learning models, namely, Elastic Net, Random Forests, and linear mixed models.

Simulated  traits  were  generated  accounting  for  oligogenic,  polygenic,  and  homoplastic

genetic effects with different levels of heritability. Then we assessed how model prediction

accuracy was affected when MICs were framed as regression and classification.

Our  results  showed  that  treating  the  MICs  differently  depending  on  the  number  of

concentration levels of antibiotic available was the most promising learning strategy.

Specifically, to optimise both prediction accuracy and inference of the correct causal variants,

we recommend considering the MICs as continuous and framing the learning problem as a

regression when the number of observed antibiotic concentration levels is large, whereas with

a smaller number of concentration levels they should be treated as a categorical variable and

the learning problem should be framed as a classification. 

Our findings also underline how predictive models can be improved when prior biological

knowledge is taken into account, due to the varying genetic architecture of each antibiotic

resistance trait. Finally, we emphasise that incrementing the population database is pivotal for

the future clinical implementation of these models to support routine machine-learning based

diagnostics.
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Data Summary

The  scripts  used  to  run  and  fit  the  models  can  be  found  at
https://github.com/gbatbiff/Kpneu_MIC_prediction  .   The Illumina sequences from Thorpe et
al. are available from the European Nucleotide Archive under accession  PRJEB27342.  All
the other genomes are available on https://www.bv-brc.org/ database.
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Impact statement

Klebsiella  pneumoniae  is  a  leading cause of  hospital  and community  acquired  infections

worldwide, highly contributing to the global burden of antimicrobial resistance (AMR). 

Ordinary methods to assess antibiotic resistance are not always satisfactory, and may not be

effective in terms of costs and delays, so robust methods able to accurately predict AMR are

increasingly  needed.   Genome-based  prediction  of  minimum  inhibitory  concentrations

(MICs) through machine learning methods is a promising tool to assist clinical diagnosis, also

offsetting phenotypic MIC discordance between the different culture-based assays. 

However,  benchmarking predictive  models  against  phenotypic data  is  problematic  due to

inconsistencies in the way these data are generated and how they should be handled remains

unclear.

In this work, we focused on genome-based prediction of MIC and evaluated the performance

of  interpretable  machine  learning  models  across  different  genetic  architectures  and  data

encodings. Our workflow highlighted how MICs need to be treated as different types of data

depending on the method used to measure them, in particular  considering each antibiotic

separately. Our findings shed further light on the factors affecting model performance, paving

the way to future improvements of antibiotic resistance prediction.

Introduction

Antimicrobial  resistance  (AMR),  a  major  threat  to  human  health  worldwide  ,  estimating

around one million deaths are directly attributable to bacterial AMR every year [1]. AMR can

be caused by single genes, or multiple loci can be involved  [2]. For example, carbapenem

non-susceptibility  can be conferred by the production of a single carbapenemase enzyme

encoded by single genes (eg blaKPC). However, synergistic effects such as the inactivation of

an  outer  membrane  protein  or  overexpression  of  efflux  pumps  can  occur,  in  resistance

associated to polygenic traits  [3], where effect sizes greatly vary across the involved genes.

Another example of synergistic effects is the epistatic interaction between pbp loci encoding

for  the  penicillin-binding  proteins  (pbp2x,  pbp1a,  and  pbp2b)  modulates  beta-lactam

resistance in pneumococci [4, 5].
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Indeed, antibiotic resistance is not strictly binary – different degrees of antibiotic resistance

exist.  Microbiologists  measure  the  degree  of  resistance  using  the  Minimum  Inhibitory

Concentration (MIC), a measure of the concentration at which the antibiotic inhibits bacterial

growth in standard culture conditions. Several MIC measuring methods exist, differing by the

antibiotics  and range of concentrations  tested.  For example,  solid-based methods have an

extended range of MICs compared to broth dilution, but are long and costly, and are limited

to testing for one antibiotic at a time . MIC interpretation is based on threshold values called

breakpoints,  typically  decided  for  each  pathogen-antibiotic  combination  by  experts  at

international  organisations  such  as  EUCAST (http://www.eucast.org)  in  Europe  or  CLSI

(https://clsi.org/) in North America. This interpretation changes over time due to the guideline

updates, making some time-series analyses inconsistent. 

Whole  genome sequencing  (WGS) is  a  mature  technology  that  can  quickly  and  reliably

provide information about complete genomes, allowing to build models to predict resistance

based on the genomic variants [6, 7]. WGS can also resolve phenotypic discordance between

different MIC assays [8–11] even showing predicted MIC as more reliable in some contexts

[12–14].  WGS-based  AMR  prediction  typically  requires  specific  manually-curated

catalogues of mutations produced by carefully designed bottom-up literature searches  [15–

17].  However,  Genome  Wide  Association  Studies  (GWAS)  have  also  been  used  for

producing such catalogues [17, 18].

The  application  of  supervised-machine  learning  has  been  introduced  in  genome-based

diagnostics  to  build  more  accurate,  although  potentially  less  interpretable,  predictors  of

antimicrobial susceptibility  [19, 20]. However, model interpretability is key in the clinical

context where the detection of specific genetic determinants of resistance is expected in order

to provide confidence in the results’ accuracy. Therefore, the use of black-box algorithms has

received only limited practical interest in clinical settings. Indeed, prediction of resistance has

exploited several interpretable machine learning models such as Gradient Boosting [19, 21],

Random Forests [22] and regularised linear regression [14]. These models already achieved

promising results in the prediction of quantitative traits in several bacterial species such as M.

tuberculosis (>93% accuracy for first-line drugs) [23],  K. pneumoniae (92% accuracy)[24],

and  nontyphoidal  Salmonella  (95%  accuracy)  [21].  Somewhat  less  accurate  predictive

models have also been built for A. baumannii, S. aureus, S. pneumoniae (accuracy range 88-

99%) [19, 22].
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However, benchmarking these models is challenging since their accuracy can be affected by

population  structure  and  the  different  genetic  architecture  of  each  resistance  trait  [25],

potentially  leading  to false  positive  associations  in  highly  clonal  populations [26–29].

Another  limitation  in  these  studies  is  caused  by the  specifics  of  MIC measurement  and

interpretation, which may affect the prediction accuracy and genotype-phenotype correlation

[30]. Due to the semi-quantitative nature of MICs and the limits on varying antibiotic-step

concentrations, they can be considered censored, specifically right-censored (MICs greater

than  the  last  concentration  tested)  and  left-censored  (growth  inhibition  at  the  lowest

concentration tested). Furthermore, even within the range tested, the actual MIC value is not

known  precisely,  as  it  lies  between  two  consecutively  tested  concentrations  (dilutions).

Therefore, how to handle MIC data for training models has not been fully addressed, limiting

predictive model accuracy. 

The aim of our work is to investigate the effect of MIC encoding (categorical or numerical,

censored  or  not)  on  machine  learning’s  ability  to  predict  them  from  WGS  data.  More

specifically, we investigated the effects of the number of dilutions tested and the encoding of

MICs  as  numeric  or  categorical/ordinal  data  on  the  prediction.  We  used  Klebsiella

pneumoniae as  a  case  study,  and tested  the  accuracy of  machine  learning predictions  in

several  simulated  phenotypic  scenarios  and  on  a  real  MIC  dataset,  highlighting  the

importance of MICs measurement representation in such analyses.
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Methods

A combined dataset of MICs in Klebsiella pneumoniae

To ensure a realistic and representative basis for the quantitative trait simulation, a total of

4367 K. pneumoniae genomes were collated using three publicly available datasets  [24, 31,

32]. These datasets include MIC phenotypes, with measurements for four antibiotics on the

strains from Thorpe et al reported here for the first time. The MICs for all three collections

have been determined by broth microdilution; those for the Thorpe et al. and Nguyen et al.

collections, using the BD-Phoenix system (BD Diagnostics, Sparks, MD, USA), and those for

David  et  al,  using  lyophilized  custom  plates  (Thermofisher  Scientific).  The  full  dataset

includes isolates sampled between 2011 and 2018 worldwide from human, livestock,  and

environmental samples, obtaining a collection representative of K. pneumoniae diversity. 

The  core  and  accessory  distances  between  bacterial  genomes  were  calculated  using  the

PopPUNK v2.4.0  [33] software, choosing the DBSCAN clustering option to fit the model.

The 347 clusters defined by PopPUNK v2.4.0 were used to adjust for population structure in

the downstream analyses. Two major clusters, PP1 and PP2, contained about 30% of the

dataset. 

Genotype data for quantitative phenotype simulation

To preserve the complex genetic architecture of the  K. pneumoniae species, we simulated

quantitative traits based on real observed genotypes. To generate the data for the gene-based

trait simulation, gene sequences were annotated using Prokka v1.14.6 [34] and then clustered

with Panaroo v1.2.8  [35] in moderate  mode, giving a pan-genome with a total  of 35380

genes. The presence absence matrix obtained from Panaroo v1.2.8 was converted to a VCF

format by selecting the loci with minor allele frequency (MAF) > 0.5% (11961 genes) using

PLINK v1.90 [36]. 

SNP calling was performed as follows: the core SNPs were called using Purple v1.22.2 [37]

using the  K. pneumoniae strain  30660/NJST258_1 as reference, and an annotated VCF file

was generated. 
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To generate the input data for the GWAS simulation using SNPs, only biallelic (core-SNPs)

in the VCF file  with MAF>0.5% and Linkage Disequilibrium (LD) < 0.6  were selected as

input  for  the  phenotype  simulation  using  BCFtools  (6295 SNPs).  Since  linkage

disequilibrium  can  span  long  genomic  distances  in  bacteria  [29],  the  LD  window  was

calculated on the entire genome (~5Mb), as recommended for highly-recombinant species

[38].  This filtering  step  prevents  strongly  associated  loci  from  being  included  in  the

phenotype simulation as causal markers.

Simulating phenotype data from real genotypes 

To  evaluate  the  predictive  performance  of  each  statistical  model,  quantitative  MIC

phenotypes were generated from the real genotypes in four different ways. Both genes and

SNPs were used in the simulations. Simulated phenotypes were generated via the Genome-

wide Complex Trait  Analysis  (GCTA) v1.93.3  [39].  Separate  simulations  for  oligogenic,

polygenic  and  homoplastic  traits  were  carried  out,  as  detailed  below.  Four  different

simulations  were  performed,  using different  values  for  the  effect  sizes  (ES)  —  the

contribution  of  a  specific  locus  to  the  genetic  variance  of  the  trait -  and  narrow-sense

heritability  (h²) -  the total  proportion of variance  of a trait  explained by additive genetic

effects. 

To observe how the simulated phenotypes were affected by the presence/absence of the trait

over  different  h² and  ES  levels,  two  preliminary  simulations  were  performed  using  two

known causal markers of beta-lactam resistance (KPC and CTX-M). The presence/absence of

beta-lactamase genes predicted by Panaroo were manually compared with Kleborate  v2.1

[40] and corrected if necessary. The obtained quantitative phenotypes were then rescaled to

the [-1,1] interval.

After  the  preliminary  simulations,  a  total  of  four  different  GWAS  simulations  were

performed.  i) An oligogenic simulation  selected three truly causal genes each with equal

effect sizes 1.5, 2.5, 10, 30 and 100 [26, 41, 42]. Three genetic markers blaCTX-M, blaOXA

and blaKPC involved in beta-lactam resistance were chosen to be causative of the trait.

ii) A polygenic simulation selected 1000 random SNPs across the genome with same [43]; 
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iii)  A  homoplastic  simulation  [44] selected  one  causal  SNP  exhibiting  homoplasy.

Homoplastic sites were detected with HomoplasyFinder v0.9 [45]. The SNP-based phylogeny

required as input to HomoplasyFinder was inferred with IQ-tree v2.2.0  [46], choosing the

General  Time  Reversible  (GTR)  model  with  ascertainment  bias  with  the  Lewis  [47]

correction and  1000 ultrafast bootstraps. The causative homoplastic SNP within the  maoA

gene  which  encodes  a  positive  regulator  of  the  monoamine  oxidase  (see  Supplementary

Figure 1 for SNP distribution across the phylogeny), was chosen according to the consistency

index (CI=0.023), indicating high homoplasy; 

iv) An oligogenic simulation  [48] selected eight  different  SNPs with varying effect  sizes

(range  -0.39:8.18)  and  homoplasy  (CI  range  0.008:0.66)  between  the  two  groups.  The

homoplastic sites were detected as described above in the homoplasy simulation.

Converting simulated phenotypes to MIC values

The output  of  the  phenotype simulations  is  a  quantitative,  continuous  trait.  However,  in

reality the MIC is measured semi-quantitatively, resulting in the measurement of MIC as an

approximation  of  the  exact  inhibitory  concentration  of  the  antibiotic  due  to  the  limited

precision of double dilutions. Furthermore, left and right censoring of the true MIC occurs at

the  ends  of  the  testing  range.  The  range  of  concentrations  tested  by  the  broth-based

instrument typically includes between 3 and 7 doublings. We therefore empirically binned the

simulated continuous traits into 4 or 6 equal intervals. In addition, we also resemble the E-test

method to be used when testing the regression model  binning the quantitative traits into 4, 6,

8 and 10 categories. 

The  censoring  can  improve  the  class  balance  e.g.  by  incorporating  the  minimum  and

maximum at the end of testing range values within the nearest bin (Supplementary Figure 2).

In addition, the midpoint of each bin (not converted to log) was used as the phenotype with

both  a  classification  and  regression  problem.  In  case  of  regression  the  bins  were  also

censored,  incorporating  the  values  upstream and downstream using  the  quantile  intervals

(0.025,0.975). Lastly, when dealing with the real MICs, the >, <, ≥, and ≤ symbols
were removed and the values converted to log2 values, as previously shown  [24,

30]. The log2 values of the filtered MICs were used as labels for all machine learning tasks.
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Machine learning models

We used two machine learning models: Elastic Net and Random Forests. These were chosen

due to their interpretability and scalability as well as accuracy [[28, 49], 20]. In addition, both

these models allow us to apply population structure correction, as explained below. 

To evaluate the performance of statistical models in detecting the causal markers, Elastic Net

and Random Forest were tested on the simulated data, using independently two presence-

absence  matrices  as  input,  coreSNPs-  and  genes-based respectively.  Both  regression  and

classification  setups  were  used,  allowing  us  to  highlight  how  the  framing  of  statistical

problems affected the predictive accuracy of the models. 

All the analyses run using Elastic Net and Random Forest were performed by splitting the

dataset randomly into 70% training and 30% testing.

Regression and multinomial classification performance was assessed using the proportion of

variance  explained  (R²)  and  the  balanced  accuracy  (bACC),  respectively.  Classification

accuracy was also evaluated using a ± 1 two-fold dilution factor [30] a more flexible measure

of accuracy especially when there are many ordered classes (concentrations). 

Elastic Net 

Elastic Net  [50] is  a penalized linear regression model that includes both the L1 (LASSO)

and L2 (Ridge) penalties to the loss function during training.  The L1 penalty shrinks the

coefficients towards zero, which removes many predictors from the model. The L2 penalty

instead  minimises  the  Euclidean  norm  of  the  coefficient  vector,  but  typically  produces

models that use all the predictors. Elastic Net can successfully manage dependent variables,

expected due to a strong linkage disequilibrium in bacterial populations [26]. The model was

tested using  α  = 0.01  [28],  λ = lambda.1se, indicating the largest value of  λ whose cross-

validated error falls within 1 standard error of the minimum such error. A  10-fold cross-

validation was used on the training data. The model was run using the “glmnet” package [51]

in R software v4.1.3.
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Random Forest

Random Forest is a tree ensemble method that provides an improvement over bagged trees by

decorrelating the trees, reducing the variance. We expected Random Forest to successfully

handle both multiclass problems and multicollinearity  [52]. The Random Forest model was

trained using 500 trees, and the Gini index for classification and the variance of the responses

for regression as the impurity  measure,  respectively.  The Random Forest  model  was run

using the “ranger” library [53].

Computation time

We also compared the performances of the two models in terms of computational resources

(Supplementary Figure 16) using 30 threads on a server with 504Gb memory and an Intel

Xeon CPU E5-2699 v4 2.20GHz. 

GWAS 

GWAS is a tool frequently used to unveil the genetic causes associated with a phenotype of

interest, as well as to study the heritability of complex traits such as antibiotic resistance. 

Whereas using machine learning approaches use all genetic variants to fit a model predicting

the  phenotype,  GWAS  analysis  infers  individual  associations  between  genotype  and

phenotype. To turn GWAS results into a phenotype predictor, we used the standard approach

of  polygenic  risk  scores.  We  selected  all  the  variants  with  a  statistically  significant

association, and obtained the predictor by weighting them by the coefficients obtained from

the regression. 

GWAS was run using the Pyseer software [28], selecting the Linear Mixed Model of fixed

and random effects. This model is based on the FaST-LMM’s [54] likelihood calculation in

linear time for each variant, therefore  the variant effects are calculated as marginal effects,

rather than in a joint model as for the above two methods. 

Also, we assessed a prediction with FaST-LMM exploiting the GWAS results by selecting

the  significant  variants  at  threshold α=0.05  after  adjusting  for  multiple  testing  using

Bonferroni correction (adjusted p-value threshold = 5.5E-06), using as number of tests the
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amount  of  SNPs  detected.  Although  Bonferroni  is  a  highly  conservative  method  that

potentially  suffers  from false  negative  rate  when  variants  are  not  independent,  it  works

properly when the selected loci are not in strong linkage disequilibrium i.e. LD<0.6.

Population structure correction

Due to the complex dynamics of bacterial populations (e.g. lineage effects), the models were

tested adjusting for population structure. Sequence reweighting [28] was used when running

the Elastic Net and Random Forest with the clusters assessed by PopPUNK to incorporate the

effects of bacterial strains. This gives a weight inversely proportional to the cluster size to

each observation within a cluster. The reweighting therefore allows the model to account for

all observations by giving less importance to those belonging to the same lineages. 

The adjustment  for population structure in the FastLMM used for GWAS was performed

through  the  kinship  matrix  (calculated  from  SNPs).  This  matrix  accounts  for genetic

relatedness between strains and is included in the regression as a random effect. 
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Results

Simulating semi-quantitative traits with varying genetic architecture 

In order to generate multiple realistic quantitative traits which account for different genetic

scenarios, a total of four simulations were carried out, accounting for oligogenic, homoplastic

and polygenic effects (See methods). 

To observe the distributions  of the simulated  phenotype across different  levels  of  h²  and

effect sizes, an initial phenotype simulation was performed (Figure 1; Supplementary Figure

2) using two genes with fixed effect sizes (effect size = 2.5), as in the oligogenic simulation.

The genes CTX-M-15 and KPC were selected as the causal variants according to clinical

relevance due to their involvement in resistance to beta-lactams and carbapenems. 

Heritability related to AMR traits has been estimated to range between 0.4 to 0.9 depending

on the genetic background of organisms, resistance traits and the model chosen [55]. Due to

lack of knowledge about  heritability  in  K. pneumoniae  associated  to AMR, we relied  on

previous  studies  on  other  organisms  like  N.  gonorrhoeae and  S.  pneumoniae whether

heritabilities of the different antibiotics resistance were high (e.g. h² > 0.6), both using binary

or continuous phenotypes [56]. We noted that different effect sizes used in this simulation do

not significantly affect the density distributions of the simulated phenotypes, with heritability

having a more important effect over this range.  Since this preliminary analysis on our dataset

confirmed that the separation of the trait by marker started at h²=~0.6,  the quantitative traits

through the four simulations were generated starting from high levels of h².
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Figure 1) Simulated phenotype distribution using (a) non-homoplastic blaKPC gene as causal variants

at  different  levels  of  h².  The areas  are  coloured according to  the  presence-absence of  the  causal

variant. 

Benchmark models using simulated MICs data  

Most machine learning methods rely on the assumption that observations and predictors are

identically  and  independently  distributed,  which  is  rarely  the  case  with  genomic  data,

particularly  highly  structured  bacterial  populations.  Therefore,  accounting  for  population

structure  when  using  these  models  is  recommended  to  avoid  false  positive  and spurious

associations [26].

In  this  work,  we  benchmarked  Elastic  Net,  Random  Forest,  interpretable  and  flexible

machine learning methods able to handle high dimensional data where p >> N, both with the
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capability for regression and classification. In addition, Fast-LMM (through Pyseer) was used

for regression analysis only, since it does not deal with multinomial classification. 

The simulated quantitative traits were binned into classes of equal length using either two  —

to simulate both the binary (resistant and sensitive) interpretation of the MIC — four and six

bins, resembling a realistic partition of MIC classes in reality. Also, the performances of the

models  were evaluated  on both uncensored and censored data  from the simulations.  The

censoring was applied because when measuring MIC by serial dilution, we have start and end

dilutions, without testing concentrations at levels beyond these limits.

We  first  tested  the  models  on  multiple  bins  to  assess  the  effect  of  MIC  measurement

resolution, highlighting whether treating the simulated traits as categorical variables can lead

to gains in prediction accuracy (Figure 2; Supplementary Figure 4-11). Our analysis showed a

decrease of the accuracy, with further decreases with more bins. For this reason, we also

assessed the off-by-one prediction accuracy — discussed below — allowing us to improve

the models interpretability whether the range of antibiotic-step concentrations is broader.

Specifically,  when the binned quantitative simulated traits  without applying the censoring

were used (Figure 2), the Elastic Net and Random Forest perform similarly in the homoplasic

simulation, where bACC range of Elastic Net was 0.55-0.88 (h²=0.6); 0.53-0.98 (h²=0.9) and

the bACC range of Random Forest  was 0.58-0.97 (h²=0.6);  0.60-0.99 (h²=0.9). A similar

result was observed into the two oligogenic simulations where the Random Forest average

bACC was slightly better in all the settings (range 0.68-0.87) compared to the Elastic Net

(range 0.61-0.85) at h²=0.9. The prediction accuracy in polygenic simulation highlighted how

Random Forest better handled the number of classes across the simulations (average bACC =

0.78) compared to the Elastic Net (average bACC = 0.68). 

Since the true minimum inhibitory concentration may occur at the ends of the testing range in

reality,  we also assessed how censoring the  simulated  traits  affected  the accuracy of  the

models. The application of censoring can group classes that contain fewer observations by

their incorporation within the nearest bin (Supplementary Figure 3) increasing class balance.

However, this method may reduce the amount of information available to the model.  

Indeed, in this section we observe the capability to assess the prediction in the polygenic

simulation with six bins (h²=0.9) for both Elastic Net and Random Forest, not applicable in
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the first comparison without the censoring (Figure 2). Although we observed a increasing in

accuracy only at h²=0.6, especially in case of two bins in the oligogenic (different effect size /

homoplasy) (bACC = 0.76) and polygenic (bACC = 0.8), the accuracy was overall low when

the number of the classes increased. 

Figure  2)  Performance  of  the  classification  models  (effect  size  =  2.5  except  for  the  oligogenic

simulation) measured using balanced accuracy (bACC), indicating the arithmetic mean of sensitivity

and specificity. The models were benchmarked over two levels of h², considering both the censored

and not censored binned simulated traits. 

Since the accuracy was affected as the number of the bins increased, we also used a more

flexible measurement of accuracy measuring how prediction deviates from the correct class,
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specifically allowing one class higher or lower as correct, as was previously suggested [30].

This measure allowed us to assess a more interpretable  measure of accuracy,  particularly

when the number of classes increased. 

In this setting (Figure 3; Supplementary Figure 8-11), we observed that the Random Forest

achieved a higher accuracy in all simulations (range bACC = 0.86-1) regardless of the  h²

levels and in the presence of censoring (Figure 3).  Albeit  also the Elastic  Net gained an

improvement  of the prediction accuracy where the traits  were not censored (bACC range

0.88-0.99), its accuracy was consistently lower when the censoring was applied (bACC range

0.5-1).

Figure  3)  Performance  of  the  classification  models  (effect  size  =  2.5  except  for  the  oligogenic

simulation) when the accuracy (need to correct y-axis label) was adjusted to consider one-either-side

predicted  class  as  correct  (accuracy  within  ± 1  two-fold  dilution  factor).  The  models  were

benchmarked over two levels of h², considering both the censored and not censored binned simulated

traits.  
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Dealing  with ordinal/categorical  data  usually  adversely  affects  the  accuracy of  predictive

models  as  the  number  of  classes  increase,  as  more  misclassification  categories  become

possible. As a large number of bins approaches a continuously distributed variable, we also

assess how the performance of the models were affected when treating the simulated MICs as

real  numbers  rather  than categories  (Figure  4;  Supplementary  Figure 12-15),  as  previous

studies have already assessed [21, 24, 30].

In this setting, we considered 4, 6, 8 and 10 binned phenotypes of the simulations (see above)

using the midpoint of each bin as a continuous trait instead of as categories (Figure 4). Here,

we calculated the performance using the R² value. Simultaneously we estimated the h², since

it  represents  the proportion  of  variance  that  can be attributed  to  the variation  of  genetic

effects and thus the equivalent to the R² in  regression analysis.

Figure 4 shows the performance of the two methods over the two levels of  h², where the

dashed lines indicated the  h² levels used to generate the quantitative simulated MICs. We

pinpointed that the R² achieved by both the models increased overall proportionally with the

number of the bins up to continuous distribution, as expected.

There  was  an  overlapping  trend  between  the  models  in  the  homoplasic  and  oligogenic

(different effect size / homoplasy) simulations at both the levels of h², and we observed only

one exception where Elastic Net outperformed Random Forest in the oligogenic simulation

with  the  same effect  size  (R² range  0.64-0.67;  h²=0.6  and  0.76-0.84;  h²=0.9).  However,

Elastic Net suffers more in cases of polygenic effects where the regression was performed on

the bins, especially at h²=0.6. 

About the h² estimation, an overlapping trend between the models was observed (Figure 4),

albeit the Random Forests exhibited an overall better fit compared with Elastic Net except for

the oligogenic simulation (genes with same effect sizes). 
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Figure 4) Performance of regression model (effect size = 2.5 except for the oligogenic simulation)

between Elastic Net and Random Forest when dealing with simulated MICs. The bins obtained from

the  simulation  were  binned  into  multiple  intervals  and  treated  as  numeric.  Also,  the  simulated

quantitative traits without binning were used. Since the  h² is the proportion of phenotypic variance

explained by genotype, and thus an equivalent of the  R² in regression, the dashed lines are used to

assess the capability of the models to estimate the h². 

 

To  summarise,  the  results  on  simulated  data  showed  that  for  classification  the  overall

performance on binary classification achieves better results, while the performance decreases

as  the  number  of  classes  increases,  as  expected  due  to  the  increased  difficulty  of  exact

classification.  In  addition,  the  accuracy  was  slightly  better  when  the  censoring  was  not

applied to the simulated traits. The Random Forest resulted to be more reliable by handling

predictions  in  the  vast  majority  of  the  simulations,  highlighting  this  algorithm  as  more

suitable when tackling with class imbalance. 
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Computational and memory requirements

The Random Forest model handled the classification better, showing no significant difference

in time among the different scenarios (Supplementary Figure 16). 

Both models were faster on regression than on classification,  ranging between 5-10Gb of

memory used. 

Selection of true causal variants in GWAS and machine learning models of MICs

We performed three GWAS using Elastic Net, Random Forests and FastLMM benchmarking

them by the detection of true and false positives across the SNPs-based simulations.

When running Elastic Net and Random Forests we accounted for population structure using

sequence  reweighting  whilst  a  kinship  matrix  calculated  from  SNPs was  used  for  the

FastLMM. 

In addition, we retrieved the predictors using the beta (effect size) values from Fast-LMM

GWAS output to assess a prediction of the simulated traits  (as performed above with the

other  two models),  since  Pyseer  does  not  implement  prediction  mode for  the  Fast-LMM

mode. 

The obtained prediction showed how in all the simulations the accuracy was lower compared

to the previously tested model (R² range 0.27-0.43; h²=0.9 and 0.18-0.30; h²=0.6).

  

However,  through  the  tuning  of  parameters  such  as  the  α in  Elastic  Net  (e.g.  L1

regularization), the variable importance in Random Forest and p-value in Pyseer, we assessed

the  overlap  between  the  significant  SNPs  detected  and  the  causal  variants  set  in  the

simulations. 

Supplementary Figures 17-19 show the performance of the Elastic Net, Random Forest and

Pyseer according to the values used for α, importance and p-value respectively. 

Considering the ability to detect the True Positive (TP) variants, all the models were able to

correctly predict the causative SNP in the homoplasic simulation despite the level of h² and

the different tuning of the parameters, underlining how a sparser model does not affect the

power  accuracy  when  dealing  with  monogenic  traits.  In  addition,  the  Random  Forest

achieved the lower rate of FP even with low importance cut-off, with a maximum of 22

(h²=0.6) and 17 SNPs (h²=0.9). 
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In the Polygenic simulation, an overlapping trend was observed for Elastic Net and Pyseer,

albeit the latter was more able to maintain a higher detection of causative SNPs regardless of

the p-value cut-off, especially when the h²=0.9. 

The detection rate of true positives in Random Forest was more affected when increasing the

cut-off related to the importance of coefficients, though it allows more reliability to handle

the False Positive (FP) compared to the other two models. Notably, when the Elastic Net was

shifted  from  α=0  (equivalent  to  a  Ridge  regression)  to  α=0.07,  the  number  of  TP  was

drastically reduced, indicating how even introducing small sparsity in the model can shrink a

large amount of putatively related loci [28]. 

FaST-LMM maintained a higher number of true positives detected despite the increasing p-

value threshold in the polygenic simulation, highlighting how LMM models handle polygenic

effects, as previously described [57]. However, the number of false positives was consistently

high,  possibly  due  to  that  kinship  matrix  obtained  from SNPs  can  suffer  from spurious

associations  in  presence  of  high clonality  compared to  the  use of  a  phylogenetic  tree  to

compute relatedness between samples [26, 58].

Lastly,  regarding  the  oligogenic  traits  where  a  few  loci  with  different  effect  size  and

homoplasy were involved, Elastic Net accounted for more true positives avoiding spurious

associations as the L1 penalty increased, suggesting Elastic Net as preferable in this scenario. 

Model performance and h² estimation on real MIC data

Hereafter,  we applied our testing framework to real MICs data (Supplementary Table 1),

since  we cannot  vary  the  genetic  effects  such as  effect  size  distribution  and homoplasy.

Therefore, we assessed the model performances in terms of accuracy by cross validation.

Since the  K. pneumoniae  strains were not always tested for the same antibiotics across the

three datasets, we selected three antibiotic classes of interest where the MICs were largely

available  (Figure  5).  Thus,  Fluoroquinolones,  Aminoglycosides  and  Beta-lactams  were

considered and a representative drug for each class was selected by including Gentamicin

(GEN), Ciprofloxacin (CPFX) Piperacillin/Tazobactam (TZP) and Meropenem (MEM). The

number  of  the  strains  tested  for  the  chosen  antibiotics  were  the  following:  Meropenem
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(4220/4367),  Gentamicin  (3161/4367),  Ciprofloxacin  (3158/4367)  and

Piperacillin/Tazobactam (3276/4367). For each antibiotic we observed a different range of

step-concentrations  (range  4-10)  that  we  treated  both  as  continuous  and  unordered

classifications (Figure 5). 

Figure 5) MIC values distribution among the different antibiotic classes 

Dealing  with  MICs  framed  as  classification  (Table  1),  Elastic  Net  and  Random  Forest

showed  comparable  balanced  accuracy  when  dealing  with  Gentamicin,  Meropenem  and

Piperacillin/Tazobactam, while in case of Ciprofloxacin the accuracy was higher when using

Elastic Net model. However, once the accuracy of classification  prediction was measured by

allowing  one  predicted  class  higher  or  lower  as  correct,  we  observed  an  increased

performance in the accuracy of Elastic Net while the Random Forest  did not exhibit  any

significant improvement, in contrast with what we observed in the simulations (Figure 3).

When the MICs were framed as regression (Table 1), the Random Forest showed a better

performance compared to the Elastic Net for all the antibiotics (R² range 0.51-0.72 vs 0.19-

0.59), although it was overall low except in Ciprofloxacin (R²=0.72).

In addition, both the Random Forest and Elastic Net showed better performance on the  R²

train set compared to the  R² test set (Table 1), suggesting that these models are prone to

overfitting.
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ATB Model bACC ACC 1
error-side

Prediction
time (s)

Train/test
time

(s)

ATB
concentration

interval

R²
train

R²
test

Prediction
time (s)

Train/test
time (s)

CPFX Elastic
Net

0.93 1 0.62 33.2 4 0.82 0.59 0.13 25.9

CPFX Random
Forest

0.74 0.58 0.91 7.90 4 0.73 0.72 0.92 9.01

GEN Elastic
Net

0.78 1 0.87 50.8 5 0.77 0.34 0.28 24.0

GEN Random
Forest

0.69 0.40 0.85 7.87 5 0.53 0.51 0.89 8.73

MEM Elastic
Net

0.70 0.89 3.46 2.97 10 0.51 0.21 0.39 31.4

MEM Random
Forest

0.58 0.10 1.03 9.80 10 0.50 0.48 0.87 10.1

TZP Elastic
Net

0.62 0.99 1.43 5.02 6 0.70 0.19 0.28 30.4

TZP Random
Forest

0.64 0.99 0.62 7.47 6 0.59 0.57 0.93 8.61

Table 1) Summary of the performances of the Elastic Net and Random Forest models using real MICs
treated as unordered class and numerics. Four antibiotics (ATB), Ciprofloxacin (CPFX), Gentamicin
(GEN),  Piperacillin-Tazobactam  (TZP)  and  Meropenem  (MEM)  were  tested.  Balanced  accuracy
(bACC) and the 1-tier accuracy (the  inclusion of classes one-either-side as correct) were used for
classification, and  R² for regression, including also the one related to the train set. In addition, the
computational performances in terms of time and the number of antibiotic concentration intervals
were included.   

The results on real MICs highlighted how the classification model outperforms the regression

one, with the only exemption of Random Forest when the prediction of Ciprofloxacin was

assessed, showing an overlapping accuracy between the two cases.
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We also benchmark Elastic Net, Random Forest and Pyseer for the h² estimation (Figure 6).

The h² associated with antibiotic resistance is expected to be high, on the basis that the trait is

largely  determined  by  highly  penetrant  additive  genetic  variants  directly  causal  for  the

resistance mechanism [26]. Indeed, the  h²  estimation of the three models on Ciprofloxacin,

Gentamicin  and  Piperacillin/Tazobactam  indicates  these  traits  as  highly  and  moderately

penetrant,  whilst  the  estimated  h² for  Meropenem  exhibits  a  lower  level. These  results

suggested how the different intervals of estimated  h² can be associated with the location of

genetic causative variants of the antibiotic resistance. Indeed, when the resistance is mainly

associated with genes carried on plasmids, the genetic variation can be poorly accounted (e.g.

for in a kinship matrix), since information of causal variants is not always located in core

positions.

Figure  6)  Heritability  estimation  of  antibiotic  resistances  using  real  MICs.  Four  antibiotics

Ciprofloxacin (CPFX), Gentamicin (GEN), Piperacillin/Tazobactam (TZP) and Meropenem (MEM)

were tested. 
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Discussion

Machine learning based prediction of MIC starting from genomic data offers an attractive

supplement to the traditional phenotypic methods. However, how to specifically handle MICs

data is still not addressed due to their semi-quantitatively measurement, including the left-

and right-censoring within varying ranges.

In this work, we sought to investigate how the encoding of semi-quantitative resistance traits

as MIC values affects the accuracy of machine learning predictions, including GWAS, across

several simulated genomic scenarios mimicking homoplasic, oligogenic and polygenic traits

with varying effect sizes and heritability, using as test organism K. pneumoniae. Although we

mostly tested our framework on simulated quantitative traits, we also applied it to real MICs

of  four  representative  antibiotics  Ciprofloxacin,  Gentamicin,  Piperacillin-Tazobactam and

Meropenem. 

The results on simulated data showed that for classification the overall performance decreases

as  the  number  of  classes  increases,  as  expected  due  to  the  increased  difficulty  of  exact

classification.  For  this  reason,  we  also  tested  the  performance  of  the  models  by  1-tier

accuracy, allowing one-either-side predicted class to be considered as correct. The Random

Forest  method  resulted  in  more  reliable  handling  predictions  in  the  vast  majority  of  the

simulations (1-tier accuracy range 0.86-1), highlighting this algorithm as more suitable when

dealing with class imbalance. We also addressed how the application of censoring decreases

the accuracy of the models, suggesting how it should be avoided as it prevents them from

having the total  amount  of information  available.  Dealing with the regression model,  the

Elastic Net and Random Forest achieved overall similar results over different levels of  h²,

increasing the performances when the MIC were not binned but treated as numerical values. 

Concerning the prediction of real MICs, including estimation of heritability reported for the

first time in K. pneumoniae, we observed how both the heritability and performances of the

models varied across different antibiotics, showing a better fit of the classification model.

Additionally, to evaluate the reliability of the model for detection of causal variants set in the

simulations we performed multiple GWAS analysis, showing Elastic Net, Random Forest and

FaST-LMM as able to detect the causative variant used in the homoplastic simulation, albeit

the number of false negatives was highly influenced by the tuning of the parameters. Whether
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multiple  causative  loci  are  involved,  the  Random  Forest  exhibited  a  more  conservative

behaviour  reducing  the  total  false  positive  compared  to  Elastic  Net  and  FaST-LMM,

prioritising only variants with higher effects. 

We therefore recommend that a practical solution to handle MICs data is to consider each

case separately, evaluating the genetic architecture of each resistance trait (which causative

variants  are  already  known),  the  number  of  antibiotic-step  concentrations  available,  and

accounting for the balance of the MIC bins when they are treated as categories. When a small

number  of  antibiotic-step  concentrations  is  available  (3-7),  considering  the  MICs  as

categorical  is  preferrable,  and  is  also  valuable  to  binarize  prediction  in  case  of  few

concentrations.  Alternatively,  as  the  number  of  classes  increases,  the  regression-based

approach represents a valid option as well as off-by-one errors in classification accuracy,

depending on what false positive/false negative trade-off is desired. 

Our work presents some limitations. Firstly, we only relied on genes and SNPs, and did not

consider additional more general genetic features such as unitigs, which may improve the

performance of the models, as they provide more genomic information than SNPs [28, 49].

Moreover,  using SNPs can result  in  a  higher  number of false  negatives  when the causal

variants are not located in core positions but in plasmids, suggesting that SNPs may not be

ideal for gene based resistance prediction. Moreover, there can be a lack of single SNPs able

to discriminate between adjacent MICs concentrations [24]. While our simulations covered a

broad range of scenarios, we only used a single real dataset focusing only on one species and

four antibiotics. Furthermore, we did not consider prior information (e.g. distribution of effect

sizes of variants / previously known relations with resistance traits) in our model [24, 28, 30],

as possible implementation within a Bayesian framework via an ordinal regression model.

In  conclusion,  collections  of  high-quality  genomes  are  increasingly  populating  global

databases, and availability of MIC data would be equally recommended, possibly specifying

details of the phenotypic test used. Subsequently, laboratory tests able to increase the range of

antibiotic-step concentrations  (e.g.  E-test)   should be considered — reducing the level  of

censored data — when building these models. Indeed, while it is easier to indicate a binary

phenotype,  this  interpretation  is  not  consistent  over  time,  and  results  in  permanent

information loss. Having more information-rich phenotype data would allow more modelling
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possibilities, and especially as datasets grow may help improve prediction accuracy in future,

as the number of samples increases far beyond what we have been able to study here.
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