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ABSTRACT

Minimum Inhibitory Concentrations (MICs) are the gold standard for quantitatively
measuring antibiotic resistance. However, lab-based MIC determination can be time-
consuming and suffers from low reproducibility, and interpretation as sensitive or resistant
relies on guidelines which change over time.

Genome sequencing and machine learning promise to allow in-silico MIC prediction as an
alternative approach which overcomes some of these difficulties, albeit the interpretation of

MIC is still needed. Nevertheless, precisely how we should handle MIC data when dealing


https://doi.org/10.1101/2023.11.20.567835
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.20.567835; this version posted November 21, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

with predictive models remains unclear, since they are measured semi-quantitatively, with
varying resolution, and are typically also left- and right-censored within varying ranges.

We therefore investigated genome-based prediction of MICs in the pathogen Klebsiella
pneumoniae using 4367 genomes with both simulated semi-quantitative traits and real MICs.
As we were focused on clinical interpretation, we used interpretable rather than black-box
machine learning models, namely, Elastic Net, Random Forests, and linear mixed models.
Simulated traits were generated accounting for oligogenic, polygenic, and homoplastic
genetic effects with different levels of heritability. Then we assessed how model prediction
accuracy was affected when MICs were framed as regression and classification.

Our results showed that treating the MICs differently depending on the number of
concentration levels of antibiotic available was the most promising learning strategy.
Specifically, to optimise both prediction accuracy and inference of the correct causal variants,
we recommend considering the MICs as continuous and framing the learning problem as a
regression when the number of observed antibiotic concentration levels is large, whereas with
a smaller number of concentration levels they should be treated as a categorical variable and
the learning problem should be framed as a classification.

Our findings also underline how predictive models can be improved when prior biological
knowledge is taken into account, due to the varying genetic architecture of each antibiotic
resistance trait. Finally, we emphasise that incrementing the population database is pivotal for
the future clinical implementation of these models to support routine machine-learning based

diagnostics.
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Data Summary

The scripts wused to run and fit the models can be found at
https://github.com/gbatbiff/Kpneu MIC prediction. The Illumina sequences from Thorpe et
al. are available from the European Nucleotide Archive under accession PRIEB27342. All
the other genomes are available on https://www.bv-brc.org/ database.
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Impact statement

Klebsiella pneumoniae i1s a leading cause of hospital and community acquired infections
worldwide, highly contributing to the global burden of antimicrobial resistance (AMR).
Ordinary methods to assess antibiotic resistance are not always satisfactory, and may not be
effective in terms of costs and delays, so robust methods able to accurately predict AMR are
increasingly needed. Genome-based prediction of minimum inhibitory concentrations
(MICs) through machine learning methods is a promising tool to assist clinical diagnosis, also
offsetting phenotypic MIC discordance between the different culture-based assays.

However, benchmarking predictive models against phenotypic data is problematic due to
inconsistencies in the way these data are generated and how they should be handled remains
unclear.

In this work, we focused on genome-based prediction of MIC and evaluated the performance
of interpretable machine learning models across different genetic architectures and data
encodings. Our workflow highlighted how MICs need to be treated as different types of data
depending on the method used to measure them, in particular considering each antibiotic
separately. Our findings shed further light on the factors affecting model performance, paving

the way to future improvements of antibiotic resistance prediction.

Introduction

Antimicrobial resistance (AMR), a major threat to human health worldwide , estimating
around one million deaths are directly attributable to bacterial AMR every year [1]. AMR can
be caused by single genes, or multiple loci can be involved [2]. For example, carbapenem
non-susceptibility can be conferred by the production of a single carbapenemase enzyme
encoded by single genes (eg blaxrc). However, synergistic effects such as the inactivation of
an outer membrane protein or overexpression of efflux pumps can occur, in resistance
associated to polygenic traits [3], where effect sizes greatly vary across the involved genes.
Another example of synergistic effects is the epistatic interaction between pbp loci encoding
for the penicillin-binding proteins (pbp2x, pbpla, and pbp2b) modulates beta-lactam

resistance in pneumococci [4, 5].
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Indeed, antibiotic resistance is not strictly binary — different degrees of antibiotic resistance
exist. Microbiologists measure the degree of resistance using the Minimum Inhibitory
Concentration (MIC), a measure of the concentration at which the antibiotic inhibits bacterial
growth in standard culture conditions. Several MIC measuring methods exist, differing by the
antibiotics and range of concentrations tested. For example, solid-based methods have an
extended range of MICs compared to broth dilution, but are long and costly, and are limited
to testing for one antibiotic at a time . MIC interpretation is based on threshold values called
breakpoints, typically decided for each pathogen-antibiotic combination by experts at

international organisations such as EUCAST (http://www.eucast.org) in Europe or CLSI

(https://clsi.org/) in North America. This interpretation changes over time due to the guideline

updates, making some time-series analyses inconsistent.

Whole genome sequencing (WGS) is a mature technology that can quickly and reliably
provide information about complete genomes, allowing to build models to predict resistance
based on the genomic variants [6, 7]. WGS can also resolve phenotypic discordance between
different MIC assays [8—11] even showing predicted MIC as more reliable in some contexts
[12-14]. WGS-based AMR prediction typically requires specific manually-curated
catalogues of mutations produced by carefully designed bottom-up literature searches [15—
17]. However, Genome Wide Association Studies (GWAS) have also been used for

producing such catalogues [17, 18].

The application of supervised-machine learning has been introduced in genome-based
diagnostics to build more accurate, although potentially less interpretable, predictors of
antimicrobial susceptibility [19, 20]. However, model interpretability is key in the clinical
context where the detection of specific genetic determinants of resistance is expected in order
to provide confidence in the results’ accuracy. Therefore, the use of black-box algorithms has
received only limited practical interest in clinical settings. Indeed, prediction of resistance has
exploited several interpretable machine learning models such as Gradient Boosting [19, 21],
Random Forests [22] and regularised linear regression [14]. These models already achieved
promising results in the prediction of quantitative traits in several bacterial species such as M.
tuberculosis (>93% accuracy for first-line drugs) [23], K. pneumoniae (92% accuracy)[24],
and nontyphoidal Salmonella (95% accuracy) [21]. Somewhat less accurate predictive

models have also been built for 4. baumannii, S. aureus, S. pneumoniae (accuracy range 88-

99%) [19, 22].
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However, benchmarking these models is challenging since their accuracy can be affected by
population structure and the different genetic architecture of each resistance trait [25],
potentially leading to false positive associations in highly clonal populations [26-29].
Another limitation in these studies is caused by the specifics of MIC measurement and
interpretation, which may affect the prediction accuracy and genotype-phenotype correlation
[30]. Due to the semi-quantitative nature of MICs and the limits on varying antibiotic-step
concentrations, they can be considered censored, specifically right-censored (MICs greater
than the last concentration tested) and left-censored (growth inhibition at the lowest
concentration tested). Furthermore, even within the range tested, the actual MIC value is not
known precisely, as it lies between two consecutively tested concentrations (dilutions).
Therefore, how to handle MIC data for training models has not been fully addressed, limiting

predictive model accuracy.

The aim of our work is to investigate the effect of MIC encoding (categorical or numerical,
censored or not) on machine learning’s ability to predict them from WGS data. More
specifically, we investigated the effects of the number of dilutions tested and the encoding of
MICs as numeric or categorical/ordinal data on the prediction. We used Klebsiella
pneumoniae as a case study, and tested the accuracy of machine learning predictions in
several simulated phenotypic scenarios and on a real MIC dataset, highlighting the

importance of MICs measurement representation in such analyses.
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Methods

A combined dataset of MICs in Klebsiella pneumoniae

To ensure a realistic and representative basis for the quantitative trait simulation, a total of
4367 K. pneumoniae genomes were collated using three publicly available datasets [24, 31,
32]. These datasets include MIC phenotypes, with measurements for four antibiotics on the
strains from Thorpe et al reported here for the first time. The MICs for all three collections
have been determined by broth microdilution; those for the Thorpe et al. and Nguyen et al.
collections, using the BD-Phoenix system (BD Diagnostics, Sparks, MD, USA), and those for
David et al, using lyophilized custom plates (Thermofisher Scientific). The full dataset
includes isolates sampled between 2011 and 2018 worldwide from human, livestock, and
environmental samples, obtaining a collection representative of K. pneumoniae diversity.

The core and accessory distances between bacterial genomes were calculated using the
PopPUNK v2.4.0 [33] software, choosing the DBSCAN clustering option to fit the model.
The 347 clusters defined by PopPUNK v2.4.0 were used to adjust for population structure in
the downstream analyses. Two major clusters, PP1 and PP2, contained about 30% of the

dataset.

Genotype data for quantitative phenotype simulation

To preserve the complex genetic architecture of the K. pneumoniae species, we simulated
quantitative traits based on real observed genotypes. To generate the data for the gene-based
trait simulation, gene sequences were annotated using Prokka v1.14.6 [34] and then clustered
with Panaroo v1.2.8 [35] in moderate mode, giving a pan-genome with a total of 35380
genes. The presence absence matrix obtained from Panaroo v1.2.8 was converted to a VCF
format by selecting the loci with minor allele frequency (MAF) > 0.5% (11961 genes) using
PLINK v1.90 [36].

SNP calling was performed as follows: the core SNPs were called using Purple v1.22.2 [37]
using the K. pneumoniae strain 30660/NJST258 1 as reference, and an annotated VCF file

was generated.
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To generate the input data for the GWAS simulation using SNPs, only biallelic (core-SNPs)
in the VCF file with MAF>0.5% and Linkage Disequilibrium (LD) < 0.6 were selected as
input for the phenotype simulation using BCFtools (6295 SNPs). Since linkage
disequilibrium can span long genomic distances in bacteria [29], the LD window was
calculated on the entire genome (~5Mb), as recommended for highly-recombinant species
[38]. This filtering step prevents strongly associated loci from being included in the

phenotype simulation as causal markers.

Simulating phenotype data from real genotypes

To evaluate the predictive performance of each statistical model, quantitative MIC
phenotypes were generated from the real genotypes in four different ways. Both genes and
SNPs were used in the simulations. Simulated phenotypes were generated via the Genome-
wide Complex Trait Analysis (GCTA) v1.93.3 [39]. Separate simulations for oligogenic,
polygenic and homoplastic traits were carried out, as detailed below. Four different
simulations were performed, using different values for the effect sizes (ES) — the
contribution of a specific locus to the genetic variance of the trait - and narrow-sense
heritability (42 - the total proportion of variance of a trait explained by additive genetic
effects.

To observe how the simulated phenotypes were affected by the presence/absence of the trait
over different 42 and ES levels, two preliminary simulations were performed using two
known causal markers of beta-lactam resistance (KPC and CTX-M). The presence/absence of
beta-lactamase genes predicted by Panaroo were manually compared with Kleborate v2.1
[40] and corrected if necessary. The obtained quantitative phenotypes were then rescaled to

the [-1,1] interval.

After the preliminary simulations, a total of four different GWAS simulations were
performed. 1) An oligogenic simulation selected three truly causal genes each with equal
effect sizes 1.5, 2.5, 10, 30 and 100 [26, 41, 42]. Three genetic markers blaCTX-M, blaOXA
and blaKPC involved in beta-lactam resistance were chosen to be causative of the trait.

i1) A polygenic simulation selected 1000 random SNPs across the genome with same [43];
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ii1) A homoplastic simulation [44] selected one causal SNP exhibiting homoplasy.
Homoplastic sites were detected with HomoplasyFinder v0.9 [45]. The SNP-based phylogeny
required as input to HomoplasyFinder was inferred with 1Q-tree v2.2.0 [46], choosing the
General Time Reversible (GTR) model with ascertainment bias with the Lewis [47]
correction and 1000 ultrafast bootstraps. The causative homoplastic SNP within the maoA
gene which encodes a positive regulator of the monoamine oxidase (see Supplementary
Figure 1 for SNP distribution across the phylogeny), was chosen according to the consistency
index (CI=0.023), indicating high homoplasy;

iv) An oligogenic simulation [48] selected eight different SNPs with varying effect sizes
(range -0.39:8.18) and homoplasy (CI range 0.008:0.66) between the two groups. The

homoplastic sites were detected as described above in the homoplasy simulation.

Converting simulated phenotypes to MIC values

The output of the phenotype simulations is a quantitative, continuous trait. However, in
reality the MIC is measured semi-quantitatively, resulting in the measurement of MIC as an
approximation of the exact inhibitory concentration of the antibiotic due to the limited
precision of double dilutions. Furthermore, left and right censoring of the true MIC occurs at
the ends of the testing range. The range of concentrations tested by the broth-based
instrument typically includes between 3 and 7 doublings. We therefore empirically binned the
simulated continuous traits into 4 or 6 equal intervals. In addition, we also resemble the E-test
method to be used when testing the regression model binning the quantitative traits into 4, 6,
8 and 10 categories.

The censoring can improve the class balance e.g. by incorporating the minimum and

maximum at the end of testing range values within the nearest bin (Supplementary Figure 2).

In addition, the midpoint of each bin (not converted to log) was used as the phenotype with
both a classification and regression problem. In case of regression the bins were also

censored, incorporating the values upstream and downstream using the quantile intervals
(0.025,0.975). Lastly, when dealing with the real MICs, the >, <, =  and < symbols

were removed and the values converted to log, values, as previously shown [24,

30]. The log, values of the filtered MICs were used as labels for all machine learning tasks.
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Machine learning models

We used two machine learning models: Elastic Net and Random Forests. These were chosen
due to their interpretability and scalability as well as accuracy [[28, 49], 20]. In addition, both
these models allow us to apply population structure correction, as explained below.

To evaluate the performance of statistical models in detecting the causal markers, Elastic Net
and Random Forest were tested on the simulated data, using independently two presence-
absence matrices as input, coreSNPs- and genes-based respectively. Both regression and
classification setups were used, allowing us to highlight how the framing of statistical
problems affected the predictive accuracy of the models.

All the analyses run using Elastic Net and Random Forest were performed by splitting the

dataset randomly into 70% training and 30% testing.

Regression and multinomial classification performance was assessed using the proportion of
variance explained (R?*) and the balanced accuracy (bACC), respectively. Classification
accuracy was also evaluated using a & 1 two-fold dilution factor [30] a more flexible measure

of accuracy especially when there are many ordered classes (concentrations).

Elastic Net

Elastic Net [50] is a penalized linear regression model that includes both the L1 (LASSO)
and L2 (Ridge) penalties to the loss function during training. The L1 penalty shrinks the
coefficients towards zero, which removes many predictors from the model. The L2 penalty
instead minimises the Euclidean norm of the coefficient vector, but typically produces
models that use all the predictors. Elastic Net can successfully manage dependent variables,
expected due to a strong linkage disequilibrium in bacterial populations [26]. The model was
tested using o = 0.01 [28], A = lambda.lse, indicating the largest value of 4 whose cross-
validated error falls within 1 standard error of the minimum such error. A 10-fold cross-
validation was used on the training data. The model was run using the “glmnet” package [51]

in R software v4.1.3.
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Random Forest

Random Forest is a tree ensemble method that provides an improvement over bagged trees by
decorrelating the trees, reducing the variance. We expected Random Forest to successfully
handle both multiclass problems and multicollinearity [52]. The Random Forest model was
trained using 500 trees, and the Gini index for classification and the variance of the responses
for regression as the impurity measure, respectively. The Random Forest model was run

using the “ranger” library [53].

Computation time

We also compared the performances of the two models in terms of computational resources
(Supplementary Figure 16) using 30 threads on a server with 504Gb memory and an Intel
Xeon CPU E5-2699 v4 2.20GHz.

GWAS

GWAS is a tool frequently used to unveil the genetic causes associated with a phenotype of
interest, as well as to study the heritability of complex traits such as antibiotic resistance.
Whereas using machine learning approaches use all genetic variants to fit a model predicting
the phenotype, GWAS analysis infers individual associations between genotype and
phenotype. To turn GWAS results into a phenotype predictor, we used the standard approach
of polygenic risk scores. We selected all the variants with a statistically significant
association, and obtained the predictor by weighting them by the coefficients obtained from
the regression.

GWAS was run using the Pyseer software [28], selecting the Linear Mixed Model of fixed
and random effects. This model is based on the FaST-LMM’s [54] likelihood calculation in
linear time for each variant, therefore the variant effects are calculated as marginal effects,
rather than in a joint model as for the above two methods.

Also, we assessed a prediction with FaST-LMM exploiting the GWAS results by selecting
the significant variants at threshold 0=0.05 after adjusting for multiple testing using

Bonferroni correction (adjusted p-value threshold = 5.5E-06), using as number of tests the

10
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amount of SNPs detected. Although Bonferroni is a highly conservative method that
potentially suffers from false negative rate when variants are not independent, it works

properly when the selected loci are not in strong linkage disequilibrium i.e. LD<0.6.

Population structure correction

Due to the complex dynamics of bacterial populations (e.g. lineage effects), the models were
tested adjusting for population structure. Sequence reweighting [28] was used when running
the Elastic Net and Random Forest with the clusters assessed by PopPUNK to incorporate the
effects of bacterial strains. This gives a weight inversely proportional to the cluster size to
each observation within a cluster. The reweighting therefore allows the model to account for

all observations by giving less importance to those belonging to the same lineages.
The adjustment for population structure in the FastLMM used for GWAS was performed

through the kinship matrix (calculated from SNPs). This matrix accounts for genetic

relatedness between strains and is included in the regression as a random effect.

11
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Results

Simulating semi-quantitative traits with varying genetic architecture

In order to generate multiple realistic quantitative traits which account for different genetic
scenarios, a total of four simulations were carried out, accounting for oligogenic, homoplastic
and polygenic effects (See methods).

To observe the distributions of the simulated phenotype across different levels of 4% and
effect sizes, an initial phenotype simulation was performed (Figure 1; Supplementary Figure
2) using two genes with fixed effect sizes (effect size = 2.5), as in the oligogenic simulation.
The genes CTX-M-15 and KPC were selected as the causal variants according to clinical
relevance due to their involvement in resistance to beta-lactams and carbapenems.
Heritability related to AMR traits has been estimated to range between 0.4 to 0.9 depending
on the genetic background of organisms, resistance traits and the model chosen [55]. Due to
lack of knowledge about heritability in K. pneumoniae associated to AMR, we relied on
previous studies on other organisms like N. gonorrhoeae and S. pneumoniae whether
heritabilities of the different antibiotics resistance were high (e.g. 422> 0.6), both using binary
or continuous phenotypes [56]. We noted that different effect sizes used in this simulation do
not significantly affect the density distributions of the simulated phenotypes, with heritability
having a more important effect over this range. Since this preliminary analysis on our dataset
confirmed that the separation of the trait by marker started at #’=~0.6, the quantitative traits

through the four simulations were generated starting from high levels of 42

12
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Figure 1) Simulated phenotype distribution using (a) non-homoplastic blaKPC gene as causal variants
at different levels of 42 The areas are coloured according to the presence-absence of the causal

variant.

Benchmark models using simulated MICs data

Most machine learning methods rely on the assumption that observations and predictors are
identically and independently distributed, which is rarely the case with genomic data,
particularly highly structured bacterial populations. Therefore, accounting for population
structure when using these models is recommended to avoid false positive and spurious

associations [26].

In this work, we benchmarked Elastic Net, Random Forest, interpretable and flexible

machine learning methods able to handle high dimensional data where p >> N, both with the

13
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capability for regression and classification. In addition, Fast-LMM (through Pyseer) was used

for regression analysis only, since it does not deal with multinomial classification.

The simulated quantitative traits were binned into classes of equal length using either two —
to simulate both the binary (resistant and sensitive) interpretation of the MIC — four and six
bins, resembling a realistic partition of MIC classes in reality. Also, the performances of the
models were evaluated on both uncensored and censored data from the simulations. The
censoring was applied because when measuring MIC by serial dilution, we have start and end

dilutions, without testing concentrations at levels beyond these limits.

We first tested the models on multiple bins to assess the effect of MIC measurement
resolution, highlighting whether treating the simulated traits as categorical variables can lead
to gains in prediction accuracy (Figure 2; Supplementary Figure 4-11). Our analysis showed a
decrease of the accuracy, with further decreases with more bins. For this reason, we also
assessed the off-by-one prediction accuracy — discussed below — allowing us to improve

the models interpretability whether the range of antibiotic-step concentrations is broader.

Specifically, when the binned quantitative simulated traits without applying the censoring
were used (Figure 2), the Elastic Net and Random Forest perform similarly in the homoplasic
simulation, where bACC range of Elastic Net was 0.55-0.88 (h*=0.6); 0.53-0.98 (h?>=0.9) and
the bACC range of Random Forest was 0.58-0.97 (h?>=0.6); 0.60-0.99 (h*=0.9). A similar
result was observed into the two oligogenic simulations where the Random Forest average
bACC was slightly better in all the settings (range 0.68-0.87) compared to the Elastic Net
(range 0.61-0.85) at h>=0.9. The prediction accuracy in polygenic simulation highlighted how
Random Forest better handled the number of classes across the simulations (average bACC =

0.78) compared to the Elastic Net (average bACC = 0.68).

Since the true minimum inhibitory concentration may occur at the ends of the testing range in
reality, we also assessed how censoring the simulated traits affected the accuracy of the
models. The application of censoring can group classes that contain fewer observations by
their incorporation within the nearest bin (Supplementary Figure 3) increasing class balance.
However, this method may reduce the amount of information available to the model.

Indeed, in this section we observe the capability to assess the prediction in the polygenic

simulation with six bins (4%=0.9) for both Elastic Net and Random Forest, not applicable in

14
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the first comparison without the censoring (Figure 2). Although we observed a increasing in
accuracy only at #%=0.6, especially in case of two bins in the oligogenic (different effect size /
homoplasy) (bACC = 0.76) and polygenic (bACC = 0.8), the accuracy was overall low when

the number of the classes increased.
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Figure 2) Performance of the classification models (effect size = 2.5 except for the oligogenic
simulation) measured using balanced accuracy (bACC), indicating the arithmetic mean of sensitivity
and specificity. The models were benchmarked over two levels of /42 considering both the censored

and not censored binned simulated traits.

Since the accuracy was affected as the number of the bins increased, we also used a more

flexible measurement of accuracy measuring how prediction deviates from the correct class,
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specifically allowing one class higher or lower as correct, as was previously suggested [30].
This measure allowed us to assess a more interpretable measure of accuracy, particularly

when the number of classes increased.

In this setting (Figure 3; Supplementary Figure 8-11), we observed that the Random Forest
achieved a higher accuracy in all simulations (range bACC = 0.86-1) regardless of the A’
levels and in the presence of censoring (Figure 3). Albeit also the Elastic Net gained an
improvement of the prediction accuracy where the traits were not censored (bACC range
0.88-0.99), its accuracy was consistently lower when the censoring was applied (bACC range

0.5-1).
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Figure 3) Performance of the classification models (effect size = 2.5 except for the oligogenic
simulation) when the accuracy (need to correct y-axis label) was adjusted to consider one-either-side
predicted class as correct (accuracy within =1 two-fold dilution factor). The models were
benchmarked over two levels of /2 considering both the censored and not censored binned simulated

traits.
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Dealing with ordinal/categorical data usually adversely affects the accuracy of predictive
models as the number of classes increase, as more misclassification categories become
possible. As a large number of bins approaches a continuously distributed variable, we also
assess how the performance of the models were affected when treating the simulated MICs as
real numbers rather than categories (Figure 4; Supplementary Figure 12-15), as previous
studies have already assessed [21, 24, 30].

In this setting, we considered 4, 6, 8 and 10 binned phenotypes of the simulations (see above)
using the midpoint of each bin as a continuous trait instead of as categories (Figure 4). Here,
we calculated the performance using the R? value. Simultaneously we estimated the 42, since
it represents the proportion of variance that can be attributed to the variation of genetic

effects and thus the equivalent to the R? in regression analysis.

Figure 4 shows the performance of the two methods over the two levels of /2 where the
dashed lines indicated the /° levels used to generate the quantitative simulated MICs. We
pinpointed that the R? achieved by both the models increased overall proportionally with the

number of the bins up to continuous distribution, as expected.

There was an overlapping trend between the models in the homoplasic and oligogenic
(different effect size / homoplasy) simulations at both the levels of 42 and we observed only
one exception where Elastic Net outperformed Random Forest in the oligogenic simulation
with the same effect size (R? range 0.64-0.67; h*=0.6 and 0.76-0.84; h*=0.9). However,
Elastic Net suffers more in cases of polygenic effects where the regression was performed on

the bins, especially at £%=0.6.
About the /42 estimation, an overlapping trend between the models was observed (Figure 4),

albeit the Random Forests exhibited an overall better fit compared with Elastic Net except for

the oligogenic simulation (genes with same effect sizes).
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Figure 4) Performance of regression model (effect size = 2.5 except for the oligogenic simulation)
between Elastic Net and Random Forest when dealing with simulated MICs. The bins obtained from
the simulation were binned into multiple intervals and treated as numeric. Also, the simulated
quantitative traits without binning were used. Since the %7 is the proportion of phenotypic variance
explained by genotype, and thus an equivalent of the R? in regression, the dashed lines are used to

assess the capability of the models to estimate the /2.

To summarise, the results on simulated data showed that for classification the overall
performance on binary classification achieves better results, while the performance decreases
as the number of classes increases, as expected due to the increased difficulty of exact
classification. In addition, the accuracy was slightly better when the censoring was not
applied to the simulated traits. The Random Forest resulted to be more reliable by handling
predictions in the vast majority of the simulations, highlighting this algorithm as more

suitable when tackling with class imbalance.
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Computational and memory requirements

The Random Forest model handled the classification better, showing no significant difference
in time among the different scenarios (Supplementary Figure 16).
Both models were faster on regression than on classification, ranging between 5-10Gb of

memory used.

Selection of true causal variants in GWAS and machine learning models of MICs

We performed three GWAS using Elastic Net, Random Forests and FastLMM benchmarking
them by the detection of true and false positives across the SNPs-based simulations.

When running Elastic Net and Random Forests we accounted for population structure using
sequence reweighting whilst a kinship matrix calculated from SNPs was used for the
FastLMM.

In addition, we retrieved the predictors using the beta (effect size) values from Fast-LMM
GWAS output to assess a prediction of the simulated traits (as performed above with the
other two models), since Pyseer does not implement prediction mode for the Fast-LMM
mode.

The obtained prediction showed how in all the simulations the accuracy was lower compared

to the previously tested model (R? range 0.27-0.43; 7°=0.9 and 0.18-0.30; /#°=0.6).

However, through the tuning of parameters such as the @ in Elastic Net (e.g. L1
regularization), the variable importance in Random Forest and p-value in Pyseer, we assessed
the overlap between the significant SNPs detected and the causal variants set in the
simulations.

Supplementary Figures 17-19 show the performance of the Elastic Net, Random Forest and
Pyseer according to the values used for @, importance and p-value respectively.

Considering the ability to detect the True Positive (TP) variants, all the models were able to
correctly predict the causative SNP in the homoplasic simulation despite the level of 4? and
the different tuning of the parameters, underlining how a sparser model does not affect the
power accuracy when dealing with monogenic traits. In addition, the Random Forest
achieved the lower rate of FP even with low importance cut-off, with a maximum of 22

(h=0.6) and 17 SNPs (h°=0.9).
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In the Polygenic simulation, an overlapping trend was observed for Elastic Net and Pyseer,
albeit the latter was more able to maintain a higher detection of causative SNPs regardless of
the p-value cut-off, especially when the 4°=0.9.

The detection rate of true positives in Random Forest was more affected when increasing the
cut-off related to the importance of coefficients, though it allows more reliability to handle
the False Positive (FP) compared to the other two models. Notably, when the Elastic Net was
shifted from 0=0 (equivalent to a Ridge regression) to a=0.07, the number of TP was
drastically reduced, indicating how even introducing small sparsity in the model can shrink a

large amount of putatively related loci [28].

FaST-LMM maintained a higher number of true positives detected despite the increasing p-
value threshold in the polygenic simulation, highlighting how LMM models handle polygenic
effects, as previously described [57]. However, the number of false positives was consistently
high, possibly due to that kinship matrix obtained from SNPs can suffer from spurious
associations in presence of high clonality compared to the use of a phylogenetic tree to
compute relatedness between samples [26, 58].

Lastly, regarding the oligogenic traits where a few loci with different effect size and
homoplasy were involved, Elastic Net accounted for more true positives avoiding spurious

associations as the L1 penalty increased, suggesting Elastic Net as preferable in this scenario.

Model performance and /7 estimation on real MIC data

Hereafter, we applied our testing framework to real MICs data (Supplementary Table 1),
since we cannot vary the genetic effects such as effect size distribution and homoplasy.

Therefore, we assessed the model performances in terms of accuracy by cross validation.

Since the K. pneumoniae strains were not always tested for the same antibiotics across the
three datasets, we selected three antibiotic classes of interest where the MICs were largely
available (Figure 5). Thus, Fluoroquinolones, Aminoglycosides and Beta-lactams were
considered and a representative drug for each class was selected by including Gentamicin
(GEN), Ciprofloxacin (CPFX) Piperacillin/Tazobactam (TZP) and Meropenem (MEM). The

number of the strains tested for the chosen antibiotics were the following: Meropenem
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(4220/4367), Gentamicin (3161/4367), Ciprofloxacin (3158/4367) and
Piperacillin/Tazobactam (3276/4367). For each antibiotic we observed a different range of
step-concentrations (range 4-10) that we treated both as continuous and unordered

classifications (Figure 5).

Frequency

1500
1000 i
ATB
M Ciprofloxacin
. [ Gentamicin
¥ Meropenem
B Piperacillin/Tazobactam
500 l
O . L L J L
0.5 1 2 4 8 16 32 64

0.06 0.125 0.25
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Figure 5) MIC values distribution among the different antibiotic classes

Dealing with MICs framed as classification (Table 1), Elastic Net and Random Forest
showed comparable balanced accuracy when dealing with Gentamicin, Meropenem and
Piperacillin/Tazobactam, while in case of Ciprofloxacin the accuracy was higher when using
Elastic Net model. However, once the accuracy of classification prediction was measured by
allowing one predicted class higher or lower as correct, we observed an increased
performance in the accuracy of Elastic Net while the Random Forest did not exhibit any
significant improvement, in contrast with what we observed in the simulations (Figure 3).
When the MICs were framed as regression (Table 1), the Random Forest showed a better
performance compared to the Elastic Net for all the antibiotics (R? range 0.51-0.72 vs 0.19-
0.59), although it was overall low except in Ciprofloxacin (R*=0.72).

In addition, both the Random Forest and Elastic Net showed better performance on the R’
train set compared to the R? test set (Table 1), suggesting that these models are prone to

overfitting.
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ATB Model bACC ACC1 Prediction Train/test ATB R? R? Prediction Train/test
error-side  time (s) time concentration train test time (s) time (s)
interval
(s)
CPFX  Elastic 0.93 1 0.62 332 4 0.82 0.59 0.13 25.9
Net
CPFX Random 0.74 0.58 0.91 7.90 4 0.73 0.72 0.92 9.01
Forest
GEN Elastic  0.78 1 0.87 50.8 5 0.77 0.34 0.28 24.0
Net
GEN Random 0.69 0.40 0.85 7.87 5 0.53 0.51 0.89 8.73
Forest
MEM  Elastic 0.70 0.89 3.46 2.97 10 0.51 0.21 0.39 314
Net
MEM Random 0.58 0.10 1.03 9.80 10 0.50 0.48 0.87 10.1
Forest
TZP Elastic  0.62 0.99 1.43 5.02 6 0.70 0.19 0.28 304
Net
TZP  Random 0.64 0.99 0.62 7.47 6 0.59 0.57 0.93 8.61
Forest

Table 1) Summary of the performances of the Elastic Net and Random Forest models using real MICs
treated as unordered class and numerics. Four antibiotics (ATB), Ciprofloxacin (CPFX), Gentamicin
(GEN), Piperacillin-Tazobactam (TZP) and Meropenem (MEM) were tested. Balanced accuracy
(bACC) and the 1-tier accuracy (the inclusion of classes one-either-side as correct) were used for
classification, and R? for regression, including also the one related to the train set. In addition, the
computational performances in terms of time and the number of antibiotic concentration intervals
were included.

The results on real MICs highlighted how the classification model outperforms the regression
one, with the only exemption of Random Forest when the prediction of Ciprofloxacin was

assessed, showing an overlapping accuracy between the two cases.
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We also benchmark Elastic Net, Random Forest and Pyseer for the /42 estimation (Figure 6).

The h? associated with antibiotic resistance is expected to be high, on the basis that the trait is

largely determined by highly penetrant additive genetic variants directly causal for the

resistance mechanism [26]. Indeed, the /47 estimation of the three models on Ciprofloxacin,

Gentamicin and Piperacillin/Tazobactam indicates these traits as highly and moderately

penetrant, whilst the estimated 4? for Meropenem exhibits a lower level. These results

suggested how the different intervals of estimated /2 can be associated with the location of

genetic causative variants of the antibiotic resistance. Indeed, when the resistance is mainly

associated with genes carried on plasmids, the genetic variation can be poorly accounted (e.g.

for in a kinship matrix), since information of causal variants is not always located in core

positions.
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Figure 6) Heritability estimation of antibiotic resistances using real MICs. Four antibiotics

Ciprofloxacin (CPFX), Gentamicin (GEN), Piperacillin/Tazobactam (TZP) and Meropenem (MEM)

were tested.
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Discussion

Machine learning based prediction of MIC starting from genomic data offers an attractive
supplement to the traditional phenotypic methods. However, how to specifically handle MICs
data is still not addressed due to their semi-quantitatively measurement, including the left-

and right-censoring within varying ranges.

In this work, we sought to investigate how the encoding of semi-quantitative resistance traits
as MIC values affects the accuracy of machine learning predictions, including GWAS, across
several simulated genomic scenarios mimicking homoplasic, oligogenic and polygenic traits
with varying effect sizes and heritability, using as test organism K. pneumoniae. Although we
mostly tested our framework on simulated quantitative traits, we also applied it to real MICs
of four representative antibiotics Ciprofloxacin, Gentamicin, Piperacillin-Tazobactam and

Meropenem.

The results on simulated data showed that for classification the overall performance decreases
as the number of classes increases, as expected due to the increased difficulty of exact
classification. For this reason, we also tested the performance of the models by 1-tier
accuracy, allowing one-either-side predicted class to be considered as correct. The Random
Forest method resulted in more reliable handling predictions in the vast majority of the
simulations (1-tier accuracy range 0.86-1), highlighting this algorithm as more suitable when
dealing with class imbalance. We also addressed how the application of censoring decreases
the accuracy of the models, suggesting how it should be avoided as it prevents them from
having the total amount of information available. Dealing with the regression model, the
Elastic Net and Random Forest achieved overall similar results over different levels of 42,

increasing the performances when the MIC were not binned but treated as numerical values.

Concerning the prediction of real MICs, including estimation of heritability reported for the
first time in K. pneumoniae, we observed how both the heritability and performances of the

models varied across different antibiotics, showing a better fit of the classification model.

Additionally, to evaluate the reliability of the model for detection of causal variants set in the
simulations we performed multiple GWAS analysis, showing Elastic Net, Random Forest and
FaST-LMM as able to detect the causative variant used in the homoplastic simulation, albeit

the number of false negatives was highly influenced by the tuning of the parameters. Whether
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multiple causative loci are involved, the Random Forest exhibited a more conservative
behaviour reducing the total false positive compared to Elastic Net and FaST-LMM,

prioritising only variants with higher effects.

We therefore recommend that a practical solution to handle MICs data is to consider each
case separately, evaluating the genetic architecture of each resistance trait (which causative
variants are already known), the number of antibiotic-step concentrations available, and
accounting for the balance of the MIC bins when they are treated as categories. When a small
number of antibiotic-step concentrations is available (3-7), considering the MICs as
categorical is preferrable, and is also valuable to binarize prediction in case of few
concentrations. Alternatively, as the number of classes increases, the regression-based
approach represents a valid option as well as off-by-one errors in classification accuracy,

depending on what false positive/false negative trade-off is desired.

Our work presents some limitations. Firstly, we only relied on genes and SNPs, and did not
consider additional more general genetic features such as unitigs, which may improve the
performance of the models, as they provide more genomic information than SNPs [28, 49].
Moreover, using SNPs can result in a higher number of false negatives when the causal
variants are not located in core positions but in plasmids, suggesting that SNPs may not be
ideal for gene based resistance prediction. Moreover, there can be a lack of single SNPs able
to discriminate between adjacent MICs concentrations [24]. While our simulations covered a
broad range of scenarios, we only used a single real dataset focusing only on one species and
four antibiotics. Furthermore, we did not consider prior information (e.g. distribution of effect
sizes of variants / previously known relations with resistance traits) in our model [24, 28, 30],

as possible implementation within a Bayesian framework via an ordinal regression model.

In conclusion, collections of high-quality genomes are increasingly populating global
databases, and availability of MIC data would be equally recommended, possibly specifying
details of the phenotypic test used. Subsequently, laboratory tests able to increase the range of
antibiotic-step concentrations (e.g. E-test) should be considered — reducing the level of
censored data — when building these models. Indeed, while it is easier to indicate a binary
phenotype, this interpretation is not consistent over time, and results in permanent

information loss. Having more information-rich phenotype data would allow more modelling
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possibilities, and especially as datasets grow may help improve prediction accuracy in future,

as the number of samples increases far beyond what we have been able to study here.
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