

1 **Massively parallel mutant selection identifies genetic determinants of**

2 ***Pseudomonas aeruginosa* colonization of *Drosophila melanogaster***

3 **Running Title:** *Pseudomonas aeruginosa* colonization of the fly

4 **Byline:** Jessica Miles^{1,2}, Gabriel L. Lozano^{1,5}, Jeyaprakash Rajendhran^{1,6}, Eric V.

5 Stabb³, Jo Handelsman^{1,7}, and *Nichole A. Broderick⁴

6

7 ¹Department of Molecular, Cellular and Developmental Biology, Yale University, New
8 Haven, CT, USA

9 ²Graduate Program in Microbiology, Yale University, New Haven, CT, USA

10 ³Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, USA

11 ⁴Department of Biology, Johns Hopkins University, Baltimore, MD, USA

12 ⁵Current address: Division of Infectious Diseases and Division of Gastroenterology,
13 Department of Pediatrics, Boston Children's Hospital and Harvard Medical School,
14 Boston, MA, USA

15 ⁶Current address: Department of Genetics, School of Biological Sciences, Madurai
16 Kamaraj University, Madurai, TN, India

17 ⁷Current address: Wisconsin Institute for Discovery and Department of Plant Pathology,
18 University of Wisconsin, Madison, WI, USA

19

20 *To whom correspondence should be addressed: nbroder1@jhu.edu

21

22

23

24 **Abstract**

25 *Pseudomonas aeruginosa* is recognized for its ability to colonize diverse habitats and
26 cause disease in a variety of hosts, including plants, invertebrates, and mammals.
27 Understanding how this bacterium is able to occupy wide-ranging niches is important for
28 deciphering its ecology. We used transposon sequencing (Tn-Seq, also known as INSeq)
29 to identify genes in *P. aeruginosa* that contribute to fitness during colonization of
30 *Drosophila melanogaster*. Our results reveal a suite of critical factors, including those that
31 contribute to polysaccharide production, DNA repair, metabolism, and respiration.
32 Comparison of candidate genes with fitness determinants discovered in previous studies
33 of *P. aeruginosa* identified several genes required for colonization and virulence
34 determinants that are conserved across hosts and tissues. This analysis provides
35 evidence for both the conservation of function of several genes across systems, as well
36 as host-specific functions. These findings, which represent the first use of transposon
37 sequencing of a gut pathogen in *Drosophila*, demonstrate the power of Tn-Seq in the fly
38 model system and advance existing knowledge of intestinal pathogenesis by *D.*
39 *melanogaster*, revealing bacterial colonization determinants that contribute to a
40 comprehensive portrait of *P. aeruginosa* lifestyles across habitats.

41

42 **Importance**

43 *Drosophila melanogaster* is a powerful model for understanding host-pathogen
44 interactions. Research with this system has yielded notable insights into mechanisms of
45 host immunity and defense, many of which emerged from analysis of bacterial mutants
46 defective for well-characterized virulence factors. These foundational studies – and

47 advances in high-throughput sequencing of transposon mutants – support unbiased
48 screens of bacterial mutants in the fly. To investigate mechanisms of host-pathogen
49 interplay and exploit the tractability of this model host, we used a high-throughput,
50 genome-wide mutant analysis to find genes that enable a pathogen, *P. aeruginosa*, to
51 colonize the fly. Our analysis reveals critical mediators of *P. aeruginosa* establishment in
52 its host, some of which are required across fly and mouse systems. These findings
53 demonstrate the utility of massively parallel mutant analysis and provide a platform for
54 aligning the fly toolkit with comprehensive bacterial genomics.

55

56 **Introduction**

57 *Drosophila melanogaster* has long been an effective model organism for investigating
58 bacterial infection and host-microbe interactions. Traditionally, these studies emphasized
59 host responses to pathogens delivered by septic injury, but the more recent identification
60 of microbes that infect flies following ingestion has facilitated the study of enteric
61 pathogens (1,2). Studies of entomopathogens, such as *Pseudomonas entomophila* and
62 *Pectobacterium carotovora*, and broad host-range pathogens, such as *Serratia*
63 *marcescens* and *Pseudomonas aeruginosa*, have elucidated global mechanisms of gut
64 homeostasis and host defense (3-12). Although comprehensive mutant analyses of
65 *Francisella novicida* and *Mycobacterium marinum* demonstrate the potential of *D.*
66 *melanogaster* as a host for forward genetic screens of bacterial pathogens, a genome-
67 wide screen of an ingested pathogen has not been reported (13,14). Recent advances in
68 signature-tagged mutagenesis offer additional methods for a comprehensive genetic

69 dissection of the fitness determinants that enable ingested bacteria to survive within the
70 fly.

71
72 One of these techniques, transposon sequencing (Tn-Seq) has emerged as a powerful
73 tool for identifying genes that enable bacteria to colonize a variety of vertebrate and
74 invertebrate hosts (15-18). This approach combines traditional transposon-mutant
75 analysis with next-generation sequencing in a single-selection, high-throughput screen.
76 Tn-Seq can be used to evaluate changes in the frequency of a mutated gene within a
77 population, providing quantitative data that can be evaluated statistically. As a result, this
78 technique can identify mutants that have either increased or decreased fitness when
79 presented to the host in a pool. Tn-Seq also imparts population-level data on the relative
80 fitness among mutants, which is useful for monitoring subtle phenotypes.

81
82 Here, we used Tn-Seq to identify genes in *P. aeruginosa* that contribute to colonization
83 of the fly during oral infection. We constructed a saturated library of *P. aeruginosa*
84 mutants, administered mutant pools of optimal complexity to flies, and used massively
85 parallel sequencing to reveal mutants that were negatively selected during administration
86 of the library and after consumption by the fly. Some of the putative colonization factors
87 were identified and characterized previously as virulence factors in other infection models,
88 thereby validating this genetic approach. Other putative colonization factors revealed by
89 our screen include genes involved in DNA repair, metabolism, and nutrition. Notably,
90 many determinants of bacterial fitness in the fly are homologs of genes required for *P.*
91 *aeruginosa* viability in other systems. In sum, these findings deepen our understanding

92 of *P. aeruginosa* infection, underscore the utility of the fly model, and validate the use of
93 Tn-Seq in *D. melanogaster*.

94

95 **Results**

96 **Generating an input library for Insertion Sequencing (Tn-Seq).** We generated a
97 transposon-mutant library of *P. aeruginosa* containing over 47,000 independent
98 insertions using a mariner-based transposon (18-20), which were well distributed across
99 the genome (Figure 1A). After excluding insertions in the distal 10% of open reading
100 frames, we identified 520 genes with no insertions (Figure 1B; 21), a set with a high
101 concordance among technical replicates of the library. This transposon library constituted
102 the “input population” for the following experiments in flies.

103

104 **Screening a transposon library in *Drosophila melanogaster* using a capillary
105 feeder.** We fed the input library to flies *ad libitum*, utilizing a capillary feeder (Figure 1B,
106 22), which facilitated monitoring the volume of the library suspension ingested by flies.
107 We assessed *P. aeruginosa* population bottlenecks in pools of wild-type and mutant
108 strains mixed at different ratios to confirm that we could reproducibly recover mutants fed
109 to flies even if they are a small portion of the input. Our goal was to use *P. aeruginosa*
110 mutant pools that enabled establishment of a large number of mutants in the fly ($\sim 10^3$)
111 without severe stochastic loss from colonization bottlenecks. We determined that an
112 inoculum of 10^5 CFU/mL fed to and recovered from 250 flies represented a sufficiently
113 large and complex input pool to screen mutants in the library without significant
114 bottlenecks between the input and cells recovered from the host. We also determined

115 that the timing of our feeding and recovery minimized infection lethality while maximizing
116 the size of the population of *P. aeruginosa* at the time of collection (Figure 1C and D). Six
117 replicates of 250 flies each, were given access to the library for 24 hours followed by
118 access to sterile sucrose solution for an additional 48 hours. For each replicate, *P.*
119 *aeruginosa* mutants established in fly guts (“output population”) were recovered from
120 surface-sterilized homogenized flies by culturing on LB agar (Figure 1B) prior to DNA
121 extraction and Tn-Seq analysis.

122

123 **Identification of genes in *P. aeruginosa* that contribute to fitness during**
124 **colonization of the fly.** We identified 372 candidate genes that contribute to fitness
125 during colonization of the fly (“*in vivo*”) (Table S2 in 21). To distinguish genes that are
126 important for colonization of flies (“*in vivo*”) from genes that are critical for bacterial
127 survival across the feeding portion of the experiment (“*in vitro*”), we also characterized an
128 input population that was maintained in capillary feeders, but not exposed to flies (Table
129 S3 in 21). We identified 379 candidate genes that contribute to fitness in this condition
130 (Table S3 in 21). In comparing these “*in vivo*” and “*in vitro*” datasets, we found 294 genes
131 depleted in both conditions, but also identified candidates unique to each condition,
132 indicating that there are selection pressures that differ between feeding in the capillary
133 and in the fly (Figure 2A, Tables S4 and S5 in 21).

134

135 After categorizing these genes based on Clusters of Orthologous Groups (COG)
136 designations, we discovered that categories representing synthesis of secondary
137 metabolites, nucleotide metabolism and transport, lipid metabolism, and energy

138 production and conversion were underrepresented in the *in vitro* output, whereas genes
139 categorized as contributing to transcription, translation, signal transduction, replication
140 and repair, cell motility, and amino acid metabolism and transport were underrepresented
141 in the *in vivo* output (Figure 2B). However, a number of fitness determinants were shared
142 between the two conditions (Table S6 in 21); based on our observations, this overlap
143 encompasses global requirements for viability (Figure 2A). We interpreted this overlap as
144 suggesting that the feeding apparatus and selection in fly (on sterile sucrose for 48 hours
145 after the 24-hour library feeding period) were likely equally restricted nutritionally and thus
146 these genes are important for colonization in such conditions. As the presence of the host
147 did not expand representation of these *in vitro* depleted genes, we included them in our
148 downstream analysis as putative colonization genes. The annotations of genes that
149 contribute to fitness during colonization of the fly revealed functions that were shared
150 among candidates, including virulence; synthesis of flagella and surface polysaccharides;
151 DNA repair; synthesis of nucleotides, amino acids, and cofactors; and aerobic respiration
152 (Table 1).

153
154 *Virulence factors.* Colonization is vital to the establishment of infection, and we predicted
155 that some of our candidates would have previously characterized roles in pathogenesis.
156 To survey virulence factors, we examined the Virulence Factors of Pathogenic Bacteria
157 Database (<http://www.mgc.ac.cn/cgi-bin/VFs/compvfs.cgi?Genus=Pseudomonas>) and
158 found that several putative colonization factors identified here were also listed in that
159 database, including genes encoding a thioesterase (PchC) and an ABC-type transporter
160 protein (PvdE) required for synthesis of the siderophores pyochelin and pyoverdine (23,

161 24). Other candidates, such as the outer membrane porin OprF, did not appear in this
162 database, but have been reported elsewhere to contribute to virulence (25). The ECF
163 sigma factor *sigX*, which lies directly upstream of *oprF* and modulates its expression, was
164 also important for fitness (26). Insertions in genes encoding RetS, a hybrid sensor
165 kinase/response regulator with known roles in colonization and virulence, and RoxS, one
166 component of the RoxS/RoxR sensor histidine kinase regulator, were similarly depleted
167 in the output (27, 28).

168

169 *Flagella*. Mutants with insertions in several components of the flagellar apparatus were
170 depleted in the output, indicating that flagellar function is critical for fitness in the fly. These
171 mutants mapped in genes that encode structural components of the flagellum – such as
172 the basal-body rod modification protein, FlgD, and the capping protein, FliD
173 (www.pseudomonas.com). Other fitness determinants were regulators of flagella
174 production and assembly, such as sigma factor FliA, synthesis regulator FleN, anti-sigma
175 factor FlgM, and CheY, a global regulator of flagella production and chemotaxis
176 (www.pseudomonas.com).

177

178 *Surface polysaccharides*. Pseudomonads are well-known exopolysaccharide producers,
179 and the role of polysaccharides in *P. aeruginosa* biofilm production has been widely
180 studied. We identified putative colonization factors associated with these functions such
181 as regulators of alginate (*algC*, *algZ/fimS*, *algU*, *clpP*, *clpX*) and psl polysaccharide (*pslD*,
182 *pslE*, *pslF*, *pslI*), two of the three major exopolysaccharides produced by *P. aeruginosa*,
183 as well as the regulators *mucR*, *mucP*, and *mucA* (29, www.pseudomonas.com).

184 *DNA repair factors.* Previous transposon-sequencing analysis of *P. aeruginosa* has
185 demonstrated that its defense against reactive oxygen species (ROS) contributes to
186 survival across environments (30). The ability to withstand ROS is critical for bacterial
187 survival in the fly intestine, where ROS are produced at low levels in response to symbiotic
188 lactobacilli and increased in response to enteric infection (31-33). We identified several
189 factors that mediate DNA repair in our screen, an important response to oxidative stress,
190 including the RuvABC resolvase; the homologous recombination proteins RecA,
191 RecBCD, and RecG; and the survival protein SurE. Mutations in *gshB*, which encodes
192 the antioxidant glutathione synthase; *oxyR*, the gene encoding a potent regulator of
193 oxidative stress response genes; and *xseA*, the gene encoding exonuclease VII, were
194 also negatively selected.

195
196 *Biosynthetic pathways.* Mutants deficient for the synthesis of amino acids, cofactors, and
197 nucleotides were underrepresented in the output. Genes required for the synthesis of
198 aromatic and branched chain amino acids and arginine were especially prominent among
199 this group of candidates, as were genes essential for biotin synthesis.

200
201 *Respiration.* Aerobic respiration is the predominant mechanism of energy production for
202 *P. aeruginosa* (17). Mutants lacking NADH:ubiquinone oxidoreductase (complex I) and
203 cytochrome c oxidase (complex IV) were impaired, a phenotype that has been associated
204 with virulence in other hosts (17). Transposon insertions in genes encoding a precursor
205 of cytochromes c4 and c5 were also depleted.

206

207 **Global regulators of *P. aeruginosa* colonization.** To identify *P. aeruginosa* colonization
208 determinants that were functionally conserved across systems, we compared homologs
209 of putative colonization factors that we identified to those previously reported *P.*
210 *aeruginosa* PA14 and PAO1 fitness determinants in the murine intestine and an acute
211 burn model (Figure 3, [17, 34]). We observed that, although some genes are uniquely
212 important in each system, the loss of certain functions is detrimental in all host systems:
213 we found a shared requirement for surface polysaccharides, DNA repair factors,
214 biosynthetic factors, and respiration genes across habitats (Figure 3A, [17, 34]). The
215 functions of fitness determinants in the fly were largely shared with those in murine
216 environments, whereas each mouse system had its own requirements (Figure 3A).
217 Notably, *cheY*, a response regulator of flagellar rotation whose function is required for
218 chemotaxis, was critical for colonization of the fly and in both mouse infection systems
219 (Figure 3A; [17, 34, 35]). Moreover, mutations in a small number of genes enhanced
220 fitness *in vivo* (Table S7 in 21), including those encoding isocitrate lyase AceA, which was
221 also enriched in the mouse intestine, and the multidrug efflux pump operon MexEF-OprN
222 whose overproduction impairs virulence in *C. elegans* infection (Figure 3B, 17, 36).

223
224 **Validation of putative colonization factors.** To validate the phenotypes associated with
225 our colonization candidates, we screened four mutants in 1:1 competition assays with
226 wild-type *P. aeruginosa* in the fly (Table 1, Figure 4). In all cases, we found that these
227 mutants were underrepresented relative to wild type upon recovery from host flies,
228 thereby indicating that the Tn-Seq screen identified authentic colonization factors.

229

230 **Discussion**

231 Using Tn-Seq, a massively parallel transposon sequencing approach, we identified
232 bacterial mediators of colonization for the model pathogen, *P. aeruginosa*. Functions that
233 have been demonstrated to contribute to colonization and infection of other hosts –
234 including flagella, exopolysaccharides, lipopolysaccharides, siderophores, and other
235 virulence factors – were well-represented among our fly colonization candidates.

236

237 Identifying these fitness determinants yielded several insights into the lifestyle of *P.*
238 *aeruginosa* in the fly. Certain colonization factors may help *P. aeruginosa* tolerate the
239 stresses of the fly gut, including reactive oxygen species, low pH, and digestive
240 peptidases. A role for oxidative stress and DNA repair in mediating bacterial survival was
241 also indicated by a genome-wide analysis of *Francisella novida* virulence factors in the
242 fly (13).

243

244 Our results with regard to alginate production are surprising. We found that mutants in
245 several pathways for polysaccharide synthesis, including alginate, were depleted in the
246 output mixture, suggesting that alginate contributes to colonization. However, mutants in
247 *mucA*, which encodes a negative regulator of alginate synthesis, are underrepresented
248 in the fly, indicating that *mucA* function is important for fitness in the fly. If alginate
249 production contributes to colonization we would have expected that the loss of the
250 negative regulator would improve fitness. For example, MucR, a positive regulator of
251 alginate synthesis, promotes adhesion to solid surfaces and protects *P. aeruginosa* from
252 environmental stressors (www.pseudomonas.com). This unexpected result may

253 indicate that both positive and negative regulators of alginate synthesis are required for
254 homeostasis and optimal function. A similar relationship may explain the colonization
255 defect in the fly associated with loss of FlgM, an anti-sigma factor that regulates flagellin
256 synthesis in *P. aeruginosa* (www.pseudomonas.com).

257

258 The adult fly gut contains regions of low oxygen concentration, specifically an anaerobic
259 core in the crop and a low oxygen core in part of the midgut, which is consistent with the
260 presence of facultative anaerobes among the microbiota (37-39). As such, *P. aeruginosa*
261 would need to adapt to an environment that is limited in oxygen in order to colonize the
262 fly, and the loss of genes that control respiration would be detrimental. It is intriguing that
263 in oxygen-limiting conditions, *P. aeruginosa* relies on the arginine deaminase pathway for
264 the production of ATP (40), which may explain the requirement for arginine synthesis we
265 observe in the fly and provide a role for amino acid synthesis during colonization that is
266 independent of nutrition.

267

268 Amino acids and cofactors have emerged as fitness determinants in Tn-Seq studies in
269 mice, highlighting a high degree of similarity between fly and mouse models. A prior study
270 of *P. aeruginosa* colonization of the mouse intestine demonstrated a role for mediators of
271 amino acid and cofactor production during infection (17). This study showed that,
272 generally, *in vivo* gene expression and mutant fitness were not correlated; however, for
273 genes with these functions, fitness defects were associated with increased *in vivo* gene
274 expression, suggesting that *P. aeruginosa* requires these factors in a host environment
275 (Table 1, [17]). In addition, purine and pyrimidine synthesis pathways have known roles

276 in mediating exploitative competition between *P. aeruginosa* and co-colonizers of the lung
277 and facilitating *E. coli* colonization in germ-free mice, which may explain the contribution
278 of these factors to *P. aeruginosa* fitness (41, 42). By comparing genetic determinants of
279 colonization in the fly to those reported for the murine intestine and in an acute burn
280 model, we identified mediators of *P. aeruginosa* viability across host species. These
281 functions may represent targets for therapeutic intervention (17, 34). Our results are
282 especially notable in light of the differences in study design and statistical analysis
283 between our investigation and these prior reports, indicating that mechanisms of *P.*
284 *aeruginosa* colonization share striking elements across animal models.

285

286 Traditionally, work using *D. melanogaster* has evaluated the innate immune response to
287 known virulence factors. However, with the advent of transposon sequencing techniques,
288 the fly offers an opportunity for sophisticated bacterial mutant analysis in an inexpensive,
289 genetically tractable host with a readily manipulated microbiota. Already, *Drosophila* has
290 emerged as an important model to understand the gut microbiome and its influence on
291 host physiology (43). These studies have revealed the diversity, composition, dynamics,
292 and functions of microbial communities associated with flies. Recent studies have taken
293 advantage of transposon sequencing techniques to identify microbiome factors important
294 for colonization and impacts on the host (44-47). Of note, similar to our study, flagellar
295 genes were identified as important colonization determinants of one microbiome member
296 *Acetobacter fabarum* (47), suggesting this may be a common feature for bacterial
297 persistence in the fly gut. Our previous work and other reports have highlighted a role for
298 the microbiota in modulating enteric infection by bacteria, yeast, and viruses (48-52). We

299 observed that colonization with a single member of the microbiota, *Lactiplantibacillus*
300 *plantarum*, is sufficient to reduce mortality associated with *S. marcescens*, *P. aeruginosa*
301 (41) and *P. entomophila* (51). Although symbiont-mediated augmentation of host defense
302 has been proposed as the mechanism of this protective effect, a potential contribution of
303 microbe-microbe interactions to pathogenesis has not been extensively explored in the
304 fly (31, 53, 54). We envision subsequent Tn-Seq studies in *Drosophila* will employ fly
305 mutants and gnotobiotic animals to interrogate the dynamic interplay among host,
306 pathogen, and microbiota during infection.

307

308 **Materials and Methods**

309 **Bacterial culture conditions.** *P. aeruginosa* PAO1 was cultured overnight (16 h) in LB
310 broth at 37°C with shaking at 225 rpm (50). The culture medium was supplemented with
311 antibiotics when appropriate. *Escherichia coli* SM17-λ-pir was cultured overnight in LB
312 with 100 µg/mL ampicillin at 37°C with shaking at 225 rpm (18).

313

314 **Fly stocks and culture.** The Canton-S line of *D. melanogaster* used for these
315 experiments was maintained on autoclaved food containing 10% dextrose, 5% heat-killed
316 yeast, 7% cornmeal, 0.6% propionic acid, and 0.6% agar.

317

318 **Generation of *P. aeruginosa* mutant library.** To perform mutagenesis, the donor and
319 recipient strains, *E. coli* S17-λ-pir pSAM_BT20 (20) and *P. aeruginosa*, were grown
320 separately overnight at 37°C in LB (with ampicillin (100 µg/ml) added to the *E. coli* donor).
321 Cells from each strain were centrifuged, washed in LB, centrifuged again, and adjusted

322 to an O.D. 600nm of 2.0. Conjugation reactions, each containing a volume of 1:3 of donor
323 to recipient cells, were prepared on LB plates and incubated for 3 hours at 28°C. After
324 this mating period, the conjugation reactions were resuspended in LB broth and plated
325 on LB agar containing 50µg/mL gentamicin and 25µg/mL irgasan for 24 hours at 37°C.
326 The next day, bacterial colonies were recovered from plates, pooled in a volume of
327 phosphate-buffered saline (PBS) and glycerol to adjust the O.D. 600nm to 20, aliquoted,
328 and stored at -80°C.

329

330 **Tn-Seq sample preparation, data collection, and analysis.** Genomic DNA was
331 isolated from libraries and prepared for insertional sequencing (Tn-Seq) as detailed
332 previously (19). Samples were sequenced on an Illumina HiSeq 2000 at the Yale Center
333 for Genome Analysis. Over 10^6 reads per sample were obtained. Sequence analysis
334 proceeded as described by Goodman and colleagues in (19). COG lists were accessed
335 on May 26, 2016 from the Joint Genome Institute's Integrated Microbial Genomes &
336 Microbiomes dataset.

337

338 **Fly colonization for Tn-Seq analysis and characterization of mock output.** To
339 screen Tn-Seq libraries in the fly, 3- to 7-day-old Canton-S females were transferred to
340 capillary feeders (CAFEs) (22). Flies were given access to capillaries containing 10^5
341 CFU/mL of bacteria in 5% sucrose for 24 hours and capillaries containing LB and 5%
342 sucrose for an additional 48 hours. The input consisted of the entire library without
343 selection. Prior to culture, flies were washed with 10% household bleach, 70% ethanol,
344 and PBS in succession. Flies were transferred to tubes with LB broth and 1.0-mm glass

345 beads, and homogenized using a bead beater (BioSpec, Tulsa, OK). The homogenate
346 was plated on LB agar and grown for 24 hours at 37°C. The next day, bacterial colonies
347 were recovered from plates, pooled in a volume of LB and glycerol to adjust the O.D.
348 600nm to 20, aliquoted, and stored at -80°C. Each experimental replication (n=6)
349 consisted of 250 flies. Enriched or depleted mutants were identified as previously
350 described, using a q-value multiple hypothesis testing correction (15-18). Both depleted
351 output conditions were independently compared against the input mutant population
352 using an output:input abundance ratio of <1 and a significant q-value across all six
353 replicates; enriched mutants had a output:input abundance ratio of >1 and a significant
354 q-value across all six replicates. Prior to plating, mock output populations were
355 maintained in capillary feeders without flies for 24 hours at the same temperature,
356 humidity, and light levels as when the library administered to flies. The full list of genes
357 in the library and identified in the Tn-Seq screen are listed in Tables S1-S7 of reference
358 21,https://figshare.com/articles/dataset/Lists_of_genes_from_PAO1_TnSeq_Assay_Miles_Manuscript/24175485.

360
361 **Fly colonization for 1:1 competition assays.** Canton-S females (3- to 7-day-old) were
362 transferred to CAFEs and given access to capillaries containing 10^5 CFU/mL of a 1:1
363 suspension of wild type *P. aeruginosa* and a transposon mutant in 5% sucrose for 24
364 hours, then provided 5% sucrose with no bacteria for an additional 48 hours. Flies were
365 then washed with 10% household bleach, 70% ethanol, and PBS in succession;
366 transferred to tubes with LB broth and 1.0-mm glass beads; homogenized using a bead
367 beater; and cultured on media with and without 10 μ g/mL tetracycline. Cultures were

368 grown overnight at 37°C for enumeration. Mutant strains (PW2175, *trpG-1*; PW2176,
369 *trpG-2*; PW5382, *cysG*; PW9969, *argB*) were obtained from the Seattle *P. aeruginosa*
370 PAO1 transposon mutant library.

371

372 **Acknowledgments**

373 We thank Emily Putnam, Whitman Schofield, Andrew Goodman, Ethan Rundell, and
374 Stephanie Shames for discussion and assistance. We thank Alexander Barron for
375 assistance with figure design. Figures 1 and 3 were created with Biorender.com. This
376 work was supported by the Office of the Provost at Yale University, a National Science
377 Foundation Graduate Research Fellowship, National Institutes of Health grants
378 2T32GM007499-36 and P30 DK089507, and a University Grants Commission Raman
379 Fellowship for Post Doctoral Research.

References

1. **Apidianakis Y, Rahme L.** 2011. *Drosophila melanogaster* as a model for human intestinal infection and pathology. *Dis Models Mech* **4**:21-30.
2. **Fauvarque M-O.** 2014. Small flies to tackle big questions: assaying complex bacterial virulence mechanisms using *Drosophila melanogaster*. *Cell Microbiol* **16**:824-833.
3. **Vodovar N, Vinals M, Liehl P, Basset A, Degrouard J, Spellman P, Boccard F, Lemaitre B.** 2005. *Drosophila* host defense after oral infection by an entomopathogenic *Pseudomonas* species. *Proc Natl Acad Sci U S A* **102**:11414-11419.
4. **Apidianakis Y, Mindrinos MN, Xiao W, Lau GW, Baldini RL, Davis RW, Rahme LG.** 2005. Profiling early infection responses: *Pseudomonas aeruginosa* eludes host defenses by suppressing antimicrobial peptide gene expression. *Proc Natl Acad Sci U S A* **102**:2573-2578.
5. **Apidianakis Y, Pitsouli C, Perrimon N, Rahme L.** 2009. Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. *Proc Natl Acad Sci U S A* **106**:20883-20888.
6. **Limmer S, Haller S, Drenkard E, Lee J, Yu S, Kocks C, Ausubel FM, Ferrandon D.** 2011. *Pseudomonas aeruginosa* RhlR is required to neutralize the cellular immune response in a *Drosophila melanogaster* oral infection model. *Proc Natl Acad Sci U S A* **108**:17378-17383.

7. **Sibley CD, Duan K, Fischer C, Parkins MD, Storey DG, Rabin HR, Surette MG.**
2008. Discerning the complexity of community interactions using a *Drosophila* model of polymicrobial infections. *PLoS Pathog* **4**:e1000184.
8. **Nehme NT, Liégeois S, Kele B, Giammarinaro P, Pradel E, Hoffmann JA, Ewbank JJ, Ferrandon D.** 2007. A model of bacterial intestinal infections in *Drosophila melanogaster*. *PLoS Pathog* **3**:e173.
9. **Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B.** 2009. *Drosophila* intestinal response to bacterial infection: activation of host defense and stem cell proliferation. *Cell Host Microbe* **5**:200-211.
10. **Buchon N, Broderick NA, Chakrabarti S, Lemaitre B.** 2009. Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in *Drosophila*. *Genes Dev* **23**:2333-2344.
11. **Lutter EI, Faria MMP, Rabin HR, Storey DG.** 2008. *Pseudomonas aeruginosa* cystic fibrosis isolates from individual patients demonstrate a range of levels of lethality in two *Drosophila melanogaster* infection models. *Infect Immun* **76**:1877-1888.
12. **Lutter EI, Purighalla S, Duong J, Storey DG.** 2012. Lethality and cooperation of *Pseudomonas aeruginosa* quorum-sensing mutants in *Drosophila melanogaster* infection models. *Microbiology* **158**:2125-2132.
13. **Moule MG, Monack DM, Schneider DS.** 2010. Reciprocal Analysis of *Francisella novicida* infections of a *Drosophila melanogaster* model reveal host-pathogen conflicts mediated by reactive oxygen and *imd*-regulated innate immune response. *PLoS Pathog* **6**:e1001065.

14. **Fuentes E, Sivakumar N, Selvik LK, Arch M, Cardona PJ, Ioerger TR, Singsås Dragset M.** 2022. *Drosophila melanogaster* is a powerful host model to study mycobacterial virulence. bioRxiv 2022.05.12.491628.
15. **Brooks JF, Gyllborg MC, Cronin DC, Quillin SJ, Mallama CA, Foxall R, Whistler C, Goodman AL, Mandel MJ.** 2014. Global discovery of colonization determinants in the squid symbiont *Vibrio fischeri*. Proc Natl Acad Sci USA **111**:17284-17289.
16. **Wang N, Ozer EA, Mandel MJ, Hauser AR.** 2014. Genome-wide identification of *Acinetobacter baumannii* genes necessary for persistence in the lung. mBio **5**.
17. **Skurnik D, Roux D, Aschard H, Cattoir V, Yoder-Himes D, Lory S, Pier GB.** 2013. A comprehensive analysis of *in vitro* and *in vivo* genetic fitness of *Pseudomonas aeruginosa* using high-throughput sequencing of transposon libraries. PLoS Pathog **9**:e1003582.
18. **Goodman AL, McNulty NP, Zhao Y, Leip D, Mitra RD, Lozupone CA, Knight R, Gordon JI.** 2009. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe **6**:279-289.
19. **Goodman AL, Wu M, Gordon JI.** 2011. Identifying microbial fitness determinants by insertion sequencing using genome-wide transposon mutant libraries. Nat Protoc **6**:1969-1980.
20. **Sivakumar R, Ranjani J, Vishnu US, Jayashree S, Lozano GL, Miles J, Broderick NA, Guan C, Gunasekaran P, Handelsman J, Rajendhran J.** 2019. Evaluation of Tn-Seq to identify genes essential for *Pseudomonas aeruginosa* PGPR2 corn root colonization. G3 **9**:651-661.

21. **Miles J, GL Lozano, J Rajendhran, EV Stabb, J Handelsman, Broderick NA.**
2023. Gene tables from *Pseudomonas aeruginosa* PAO1 Tn-Seq screen in *Drosophila melanogaster*. Figshare doi.org/10.6084/m9.figshare.24175485.v1
22. **Ja WW, Carvalho GB, Mak EM, de la Rosa NN, Fang AY, Liong JC, Brummel T, Benzer S.** 2007. Prandiology of *Drosophila* and the CAFE assay. Proc Natl Acad Sci USA **104**:8253-8256.
23. **Reimmann C, Patel HM, Walsh CT, Haas D.** 2004. PchC thioesterase optimizes nonribosomal biosynthesis of the peptide siderophore pyochelin in *Pseudomonas aeruginosa*. J Bacteriol **186**:6367-6373.
24. **McMorran BJ, Merriman ME, Rombel IT, Lamont IL.** 1996. Characterisation of the *pvdE* gene which is required for pyoverdine synthesis in *Pseudomonas aeruginosa*. Gene **176**:55-59.
25. **Fito-Boncompte L, Chapalain A, Bouffartigues E, Chaker H, Lesouhaitier O, Gicquel G, Bazire A, Madi A, Connil N, Véron W, Taupin L, Toussaint B, Cornelis P, Wei Q, Shioya K, Déziel E, Feuilloley MGJ, Orange N, Dufour A, Chevalier S.** 2011. Full virulence of *Pseudomonas aeruginosa* requires OprF. Infect Immun **79**:1176-1186.
26. **Brinkman FSL, Schoofs G, Hancock REW, De Mot R.** 1999. Influence of a putative ECF sigma factor on expression of the major outer membrane protein, OprF, in *Pseudomonas aeruginosa* and *Pseudomonas fluorescens*. J Bacteriol **181**:4746-4754.

27. **Goodman AL, Kulasekara B, Rietsch A, Boyd D, Smith RS, Lory S.** 2004. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in *Pseudomonas aeruginosa*. *Dev Cell* **7**:745-754.
28. **Hurley BP, Goodman AL, Mumy KL, Murphy P, Lory S, McCormick BA.** 2010. The two-component sensor response regulator RoxS/RoxR plays a role in *Pseudomonas aeruginosa* interactions with airway epithelial cells. *Microbes Infect* **12**:190-198.
29. **Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC, Ryder C, Howell PL, Wozniak DJ, Parsek MR.** 2012. The Pel and Psl polysaccharides provide *Pseudomonas aeruginosa* structural redundancy within the biofilm matrix. *Environ Microbiol* **14**:1913-1928.
30. **Lee SA, Gallagher LA, Thongdee M, Staudinger BJ, Lippman S, Singh PK, Manoil C.** 2015. General and condition-specific essential functions of *Pseudomonas aeruginosa*. *Proc Natl Acad Sci USA* **112**:5189-5194.
31. **Jones RM, Luo L, Arditia CS, Richardson AN, Kwon YM, Mercante JW, Alam A, Gates CL, Wu H, Swanson PA, Lambeth JD, Denning PW, Neish AS.** 2013. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. *EMBO J* **32**:3017-3028.
32. **Ha E-M, Oh C-T, Bae YS, Lee W-J.** 2005. A direct role for dual oxidase in *Drosophila* gut immunity. *Science* **310**:847-850.
33. **Derke RM, Barron AJ, Billiot CE, Chaple IF, Lapi SE, Broderick NA, Gray MJ.** 2020. The Cu(II) reductase RclA protects *Escherichia coli* against the combination of hypochlorous acid and intracellular copper. *mBio*. **11**:e01905-20.

34. **Turner KH, Everett J, Trivedi U, Rumbaugh KP, Whiteley M.** 2014. Requirements for *Pseudomonas aeruginosa* acute burn and chronic surgical wound infection. *PLoS Genet* **10**:e1004518.
35. **Sampedro I, Parales RE, Krell T, Hill JE.** 2015. *Pseudomonas* chemotaxis. *FEMS Micro Rev* **39**:17-46.
36. **Olivares J, Alvarez-Ortega C, Linares JF, Rojo F, Köhler T, Martínez JL.** 2012. Overproduction of the multidrug efflux pump MexEF-OprN does not impair *Pseudomonas aeruginosa* fitness in competition tests, but produces specific changes in bacterial regulatory networks. *Environ Microbiol* **14**:1968-1981.
37. **Ren C, Webster P, Finkel SE, Tower J.** 2007. Increased internal and external bacterial load during *Drosophila* aging without life-span trade-off. *Cell Metab* **6**:144-152.
38. **Dutta D, Dobson AJ, Houtz PL, Gläßer C, Revah J, Korzelius J, Patel PH, Edgar Bruce A, Buchon N.** 2015. Regional cell-specific transcriptome mapping reveals regulatory complexity in the adult *Drosophila* midgut. *Cell Rep* **12**:346-358.
39. **Obadia B, Güvener ZT, Zhang V, Ceja-Navarro JA, Brodie EL, Ja WW, Ludington WB.** 2017. Probabilistic invasion underlies natural gut microbiome stability. *Curr Biol* **27**:1999-2006.
40. **Vander Wauven C, Pierard A, Kley-Raymann M, Haas D.** 1984. *Pseudomonas aeruginosa* mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway. *J Bacteriol* **160**:928-934.

41. **Beaume M, Köhler T, Fontana T, Tognon M, Renzoni A, Van Delden C.** 2015. Metabolic pathways of *Pseudomonas aeruginosa* involved in competition with respiratory bacterial pathogens. *Front Microbiol* **6**:321.
42. **Vogel-Scheel J, Alpert C, Engst W, Loh G, Blaut M.** 2010. Requirement of purine and pyrimidine synthesis for colonization of the mouse intestine by *Escherichia coli*. *Appl Environ Microbiol* **76**:5181-5187.
43. **Broderick NA, Buchon N, Lemaitre B.** 2014. Microbiota-induced changes in *Drosophila melanogaster* host gene expression and gut morphology. *mBio* **5**:e01117-01114.
44. **Matos RC, Schwarzer M, Gervais H, Courtin P, Joncour P, Gillet B, Ma D, Bulteau AL, Martino ME, Hughes S, Chapot-Chartier MP, Leulier F.** 2017. D-alanylation of teichoic acids contributes to *Lactobacillus plantarum*-mediated *Drosophila* growth during chronic undernutrition. *Nat Microbiol* **12**:1635-1647.
45. **Arias-Rojas A, Frahm D, Hurwitz R, Brinkmann V, Iatsenko I.** 2023. Resistance to host antimicrobial peptides mediates resilience of gut commensals during infection and aging in *Drosophila*. *Proc Natl Acad Sci U S A* **120**:e2305649120.
46. **White KM, Matthews MK, Hughes RC, Sommer AJ, Griffitts JS, Newell PD, Chaston JM.** 2018. A metagenome-wide association study and arrayed mutant library confirm *Acetobacter* lipopolysaccharide genes are necessary for association with *Drosophila melanogaster*. *G3* **8**:1119-1127.
47. **Morgan SJ, Chaston JM.** 2023. Flagellar genes are associated with the colonization persistence phenotype of the *Drosophila melanogaster* microbiota. *Microbiol Spectr* **11**:e0458522.

48. **Glittenberg MT, Kounatidis I, Christensen D, Kostov M, Kimber S, Roberts I, Ligoxygakis P.** 2011. Pathogen and host factors are needed to provoke a systemic host response to gastrointestinal infection of *Drosophila* larvae by *Candida albicans*. *Dis Models Mech* **4**:515-525.
49. **Sansone Christine L, Cohen J, Yasunaga A, Xu J, Osborn G, Subramanian H, Gold B, Buchon N, Cherry S.** 2015. Microbiota-dependent priming of antiviral intestinal immunity in *Drosophila*. *Cell Host Microbe* **18**:571-581.
50. **Blum JE, Fischer CN, Miles J, Handelsman J.** 2013. Frequent replenishment sustains the beneficial microbiome of *Drosophila melanogaster*. *mBio* **4**:e00860-00813.
51. **Barron AJ, Lesperance DNA, Doucette J, Calle S, Broderick NA.** 2023. Microbiome derived acidity protects against microbial invasion in *Drosophila*. *bioRxiv* 12:2023.01.12.523836.
52. **Fast D, Petkau K, Ferguson M, Shin M, Galenza A, Kostiuk B, Pukatzki S, Foley E.** 2020. *Vibrio cholerae*-symbiont interactions inhibit intestinal repair in *Drosophila*. *Cell Rep* **30**:1088-1100.e5.
53. **Erkosar B, Leulier F.** 2014. Transient adult microbiota, gut homeostasis and longevity: Novel insights from the *Drosophila* model. *FEBS Letters* **588**:4250-4257.
54. **Jones Rheinallt M, Desai C, Darby Trevor M, Luo L, Wolfarth Alexandra A, Scharer Christopher D, Arditia Courtney S, Reedy April R, Keebaugh Erin S, Neish Andrew S.** 2015. Lactobacilli modulate epithelial cytoprotection through the Nrf2 pathway. *Cell Rep* **12**:1217-1225.

55. **Bessman MJ, Walsh JD, Dunn CA, Swaminathan J, Weldon JE, Shen J.** 2001. The gene, *ygdP*, associated with the invasiveness of *Escherichia coli* K1, designates a nudix hydrolase (Orf176) active on adenosine (5') pentaphospho (5') adenosine. *J Biol Chem* **276**:37834-37838.
56. **Laskowski MA, Osborn E, Kazmierczak BI.** 2004. A novel sensor kinase–response regulator hybrid regulates type III secretion and is required for virulence in *Pseudomonas aeruginosa*. *Molec Microbiol* **54**:1090-1103.
57. **Lau GW, Britigan BE, Hassett DJ.** 2005. *Pseudomonas aeruginosa* OxyR Is required for full virulence in rodent and insect models of infection and for resistance to human neutrophils. *Infect Immun* **73**:2550-2553.

Table 1. Annotated functions of colonization factors identified through Tn-Seq screening.

Based on annotation, candidate genes contribute to virulence, production of alginate and psl polysaccharides, DNA repair, biosynthesis of small molecules (nucleotides, amino acids, and B vitamins), and respiration, among other functions.

Role (annotation)	Gene ID	Gene	COG Category	Virulence Factor?	Fly specific
Virulence Factors	PA0336	<i>ygdP</i>	Defense mechanisms [V]	reported (55)	
	PA4229	<i>pchC</i>	Secondary structures [Q]	VFDB	
	PA1776	<i>sigX</i>	Transcription [K]		
	PA1777	<i>oprF</i>	Cell envelope [M]	reported (25)	
	PA2397	<i>pvdE</i>	Inorganic ions[P]	VFDB	
	PA4494	<i>roxS</i>	Signal transduction [T]	reported (28)	
	PA4856	<i>retS</i>	Signal transduction [T]	reported (56)	
Flagella	PA1094	<i>fliD</i>	Cell motility [N]	VFDB	+
	PA1077	<i>flgB</i>	Cell motility [N]	VFDB	+
	PA1078	<i>flgC</i>	Cell motility [N]	VFDB	+
	PA1453	<i>flhF</i>	Cell motility [N]	VFDB	
	PA1454	<i>fleN</i>	Cell motility [N]; Cell division [D]	VFDB	
	PA1455	<i>fliA</i>	Transcription [N]	VFDB	+
	PA1456	<i>cheY</i>	Signal transduction [T]		
	PA1461	<i>motD</i>	Cell motility [N]	VFDB	+
	PA3351	<i>flgM</i>	Transcription [K]	VFDB	
Polysaccharides	PA5322	<i>algC</i>	Carbohydrates [G]	VFDB	
	PA5262	<i>algZ/fimS</i>	Signal transduction [T]	VFDB	
	PA0762	<i>algU</i>	Transcription [K]	VFDB	
	PA0763	<i>mucA</i> *	Signal transduction [T]	VFDB	
	PA1727	<i>mucR</i>	Signal transduction [T]		
	PA3649	<i>mucP</i>	Cell envelope [M]		
	PA1801	<i>clpP</i>	Protein stability [O]	(16)	
	PA1802	<i>clpX</i>	Protein stability [O]	(16)	
	PA2234	<i>pslD</i>	Cell envelope [M]]		+
	PA2235	<i>pslE</i>	Cell envelope [M]		+
	PA2236	<i>pslF</i>	Cell envelope [M]		
	PA2239	<i>pslI</i>	Cell envelope [M]		
DNA repair	PA0965	<i>rvuC</i>	Replication and repair [L]		
	PA0966	<i>rvuA</i>	Replication and repair [L]		
	PA0967	<i>rvuB</i>	Replication and repair [L]		
	PA5344	<i>oxyR</i>	Transcription [K]	reported (57)	
	PA5345	<i>recG</i>	Replication and repair [L]		

Biosynthetic Pathways	PA0407	<i>gshB</i>	Coenzyme metabolism [H]		+
	PA5203	<i>gshA</i>	Coenzyme metabolism [H]		
	PA3625	<i>surE</i>	Replication and repair [L]		+
	PA3777	<i>xseA</i>	Replication and repair [L]		
	PA3617	<i>recA</i>	Replication and repair [L]		
	PA4283	<i>recD</i>	Replication and repair [L]		
	PA4284	<i>recB</i>	Replication and repair [L]		
	PA4285	<i>recC</i>	Replication and repair [L]		
	PA0944	<i>purN</i>	Nucleotide metabolism [F]		+
	PA0945	<i>purM</i>	Nucleotide metabolism [F]		
	PA3108	<i>purF</i>	Nucleotide metabolism [F]		
	PA4854	<i>purH</i>	Nucleotide metabolism [F]		
	PA4855	<i>purD</i>	Nucleotide metabolism [F]		
	PA5425	<i>purK</i>	Nucleotide metabolism [F]		
	PA4756	<i>carB</i>	Nucleotide metabolism [F]		
	PA4758	<i>carA</i>	Nucleotide metabolism [F]		
	PA3527	<i>pyrC'</i>	Nucleotide metabolism [F]		
	PA0402	<i>pyrB</i>	Nucleotide metabolism [F]		
	PA0430	<i>metF</i>	Amino acids [E]		+
	PA3107	<i>metZ</i>	Amino acids [E]		+
	PA3166	<i>pheA</i>	Amino acids [E]		
	PA5277	<i>lysA</i>	Amino acids [E]		
	PA0025	<i>aroE</i>	Amino acids [E]		
	PA5038	<i>aroB</i>	Amino acids [E]		
	PA5039	<i>aroK</i>	Amino acids [E]		
	PA4846	<i>aroQ1</i>	Amino acids [E]		
	PA3165	<i>hisC2</i>	Amino acids [E]		+
	PA5140	<i>hisF1</i>	Amino acids [E]		
	PA5067	<i>hisE</i>	Amino acids [E]		
	PA5066	<i>hisI</i>	Amino acids [E]		
	PA0035	<i>trpA</i>	Amino acids [E]		+
	PA0036	<i>trpB</i>	Amino acids [E]		
	PA0649	<i>trpG</i>	Amino acids [E]		+
	PA0353	<i>ilvD</i>	Amino acids [E]		+
	PA4695	<i>ilvH</i>	Amino acids [E]		+
	PA4694	<i>ilvC</i>	Amino acids [E]		
	PA4696	<i>ilvI</i>	Amino acids [E]		
	PA5013	<i>ilvE</i>	Amino acids [E]		
	PA5204	<i>argA</i>	Amino acids [E]		
	PA5323	<i>argB</i>	Amino acids [E]		+
	PA0662	<i>argC</i>	Amino acids [E]		+
	PA3525	<i>argG</i>	Amino acids [E]		+
	PA3537	<i>argF</i>	Amino acids [E]		
	PA5263	<i>argH</i>	Amino acids [E]		
	PA3118	<i>leuB</i>	Amino acids [E]		+
	PA3121	<i>leuC</i>	Amino acids [E]		
	PA5495	<i>thrB</i>	Amino acids [E]		
	PA3736	<i>hom</i>	Amino acids [E]		+

	PA0316	<i>serA</i>	Amino acids [E]		
	PA4565	<i>proB</i>	Amino acids [E]		+
	PA0381	<i>thiG</i>	Coenzyme metabolism [H]		
	PA5118	<i>thiL</i>	Coenzyme metabolism [H]		+
	PA3975	<i>thiD</i>	Coenzyme metabolism [H]		+
	PA0501	<i>bioF</i>	Coenzyme metabolism [H]		
	PA0500	<i>bioB</i>	Coenzyme metabolism [H]		
	PA0502	<i>bioH</i>	Coenzyme metabolism [H]		
	PA0420	<i>bioA</i>	Coenzyme metabolism [H]		
Respiration	PA1553	<i>ccoO1</i>	Energy [C]		
	PA1556	<i>ccoO2</i>	Energy [C]		
	PA5300	<i>cycB</i>	Energy [C]		
	PA5490	<i>cc4</i>	Carbohydrates [G]		
	PA2637- PA2649	<i>nuoABC</i> <i>DEFGHI</i> <i>JKLMN</i>	Energy [C]		

Figure Legends

Figure 1 : Using the Tn-Seq platform to identify colonization factors of *P. aeruginosa* in the fly. **(A)** A highly saturated *P. aeruginosa* transposon library was constructed, prepared for Tn-Seq, and characterized (“input”). Approximately 62,000 insertions – 47,000 of them unique (37,000 in ORFs and 10,000 in intergenic regions) – were mapped to the *P. aeruginosa* PAO1 genome. Color intensity increases with increasing number of insertion (white < 10 insertions; pink = 11-100 insertions; red = 101-1000 insertions; sites with >1000 insertions are black). GC content is also shown (dark blue: greater than average; light blue: less than average; GC content = 66.56%). **(B)** 3-7-day-old female Canton-S flies housed in capillary feeders (CAFEs; a cartoon is shown above) were fed a population of PAO1 transposon mutants (input) for 24 hours, then were switched to a sucrose-LB broth suspension for an additional 48 hours (n=250 flies). After the input was administered to flies, fly homogenate was cultured and *P. aeruginosa* mutants were recovered, prepared for Tn-Seq, and characterized (“output”). Genes underrepresented after passage through the fly were considered “putative colonization factors.” Genes with no insertions in the input were not analyzed in the output. Flies were sampled 72 hours post-challenge. Six independent replicates were performed. **(C and D)** 3-7-day-old female were fed on a 10⁵ CFU/mL suspension in 5% sucrose for 24 hours. Then, they were transferred to 5% sucrose in LB and remained on the sucrose solution for the duration of the experiment. Flies were sampled daily for the 5-day period. For CFU per fly **(C)**, means and SEM are shown. Limit of detection is at axis (100 CFU per fly). n= 8 flies per group per day sampled. For fly survival **(D)**, n = 20 flies.

Figure 2. Comparison of *P. aeruginosa* fitness determinants *in vitro* and *in vivo*. (A)

After characterizing a mock output population that was subjected to experimental conditions, but not administered to flies, we compared genes depleted in that group (n=379) to the output population recovered from flies (n=372). Eighty-five genes were depleted only *in vitro*; 78 genes were depleted only *in vivo*. Genes that were negatively selected *in vivo*, but not *in vitro* were termed putative “colonization-specific factors.” Nearly 300 genes were negatively selected both while the library was administered to flies (*in vitro*) and during passage through the fly (*in vivo*). **(B)** Genes depleted specifically during administration of the library tended to be categorized as contributing to secondary structure (COG category Q), nucleotide metabolism and transport (F), lipid metabolism (I), and energy production and conversion (C), whereas genes depleted specifically in the fly were tended to be categorized as contributing to transcription, translation, signal transduction, replication and repair, cell motility, and amino acid metabolism and transport. COG categories B (chromatin structure and dynamics), W (extracellular structures), Z (cytoskeleton), and mobile elements were not represented among these genes specifically depleted in either condition. COG = Clusters of Orthologous Groups. Full lists of genes can be found in Tables S2-S5 in reference 21.

Figure 3. Comparison of genetic determinants of *P. aeruginosa* colonization in the fly and mouse from previous studies. (A)

Alginate and psl polysaccharides, purines, pyrimidines, amino acids, cofactors, and respiration genes are critical for establishment of PAO1 and *P. aeruginosa* PA14 in invertebrate and vertebrate hosts, and at different body sites (14, 31). **(B)** Mutants in *aceA*, and *pilM* were positively selected across systems, in both PAO1 and PA14. Most of the genes encoding components of flagella and pili were

positively selected in the mouse, but not the fly. Insertions in the *mexEF oprN* operon, *exsB*, *pagL*, and *bifA*, among others, were overrepresented in the fly.

Figure 4. Validation of fitness determinants identified by Tn-Seq. A 1:1 ratio of wild type PAO1 and the indicated transposon mutant was administered to flies for 24 hours. Flies were then given 5% sucrose for 48 hours and homogenized at 72 hours post-challenge. Bacteria were cultured on selective and non-selective media. Each symbol represents CFU recovered from individual fly, where n= 8 flies per group and one representative replicate is shown. Competitive Index = $\text{Log}_{10}(\text{CFU mutant/ CFU wild type})$, where a competitive index of 0 indicates equal competitive fitness.

Figure 1:

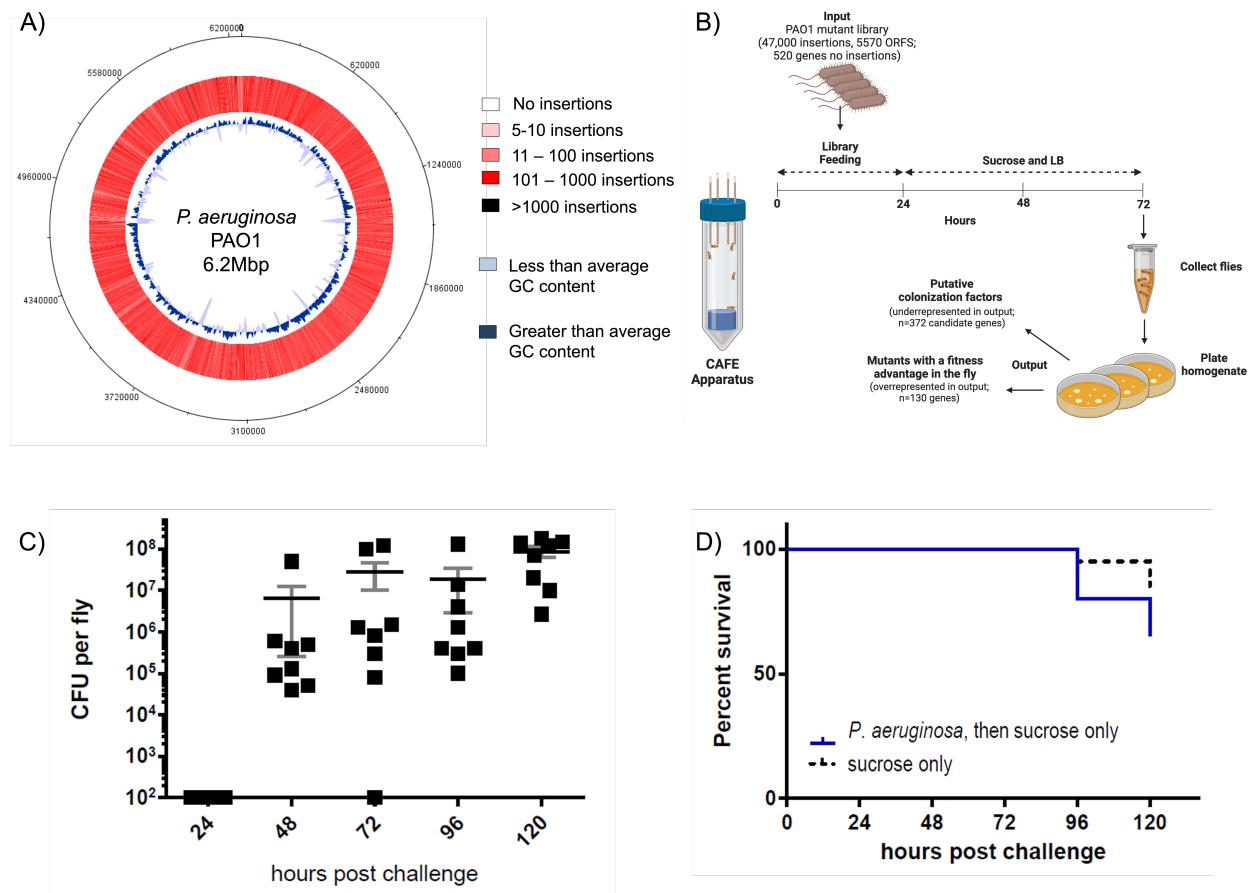


Figure 2:

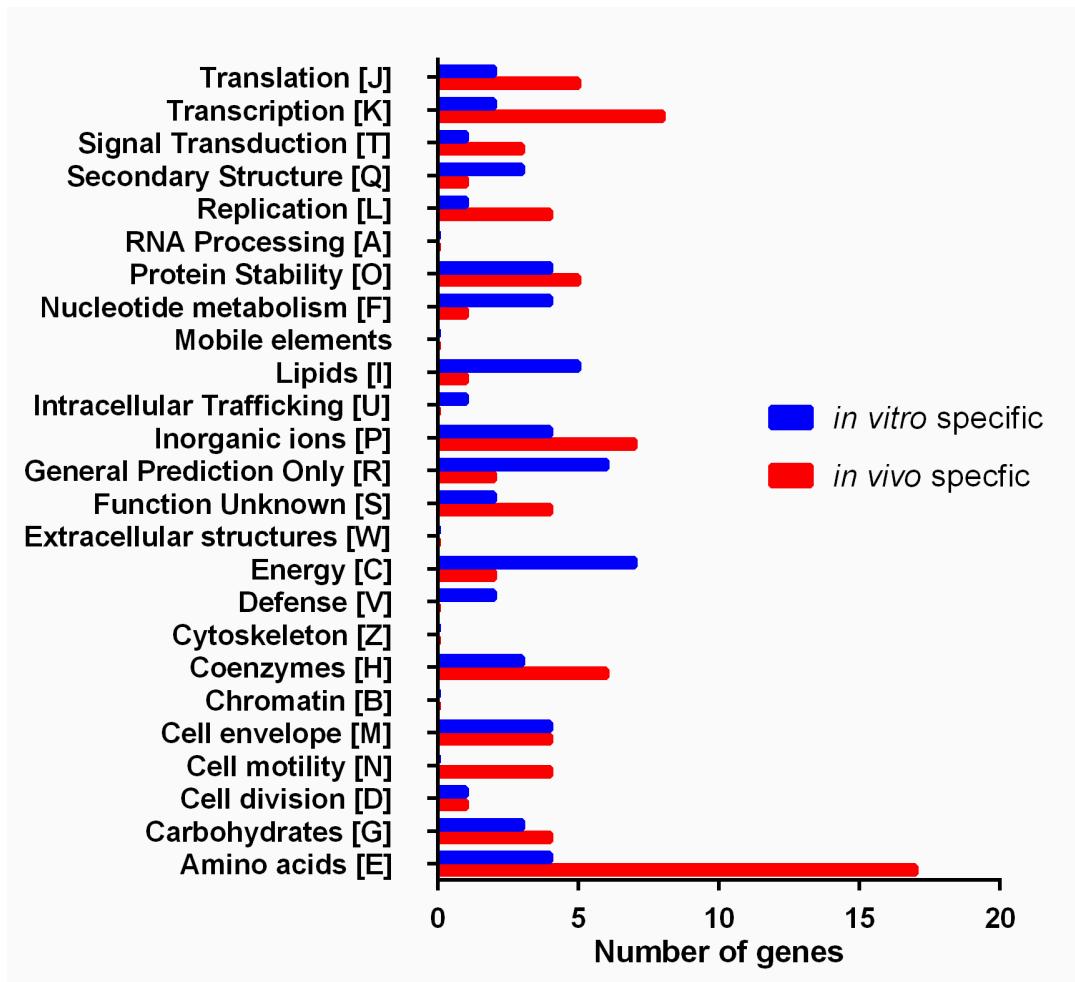
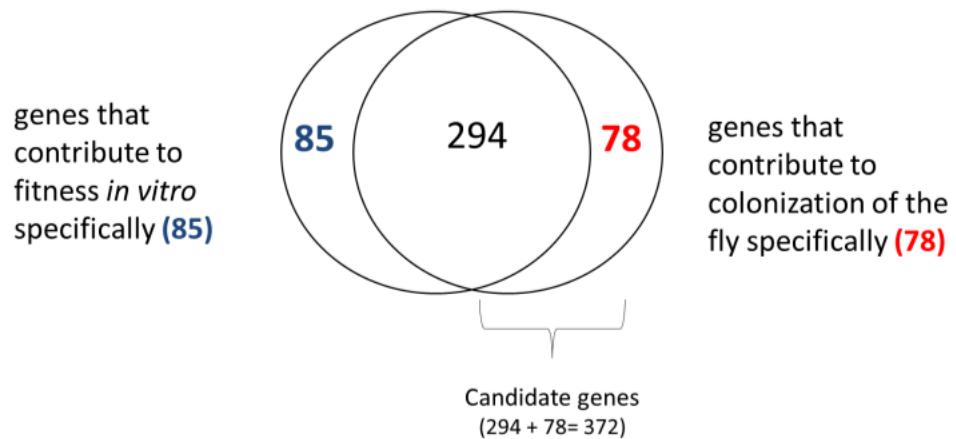



Figure 3:

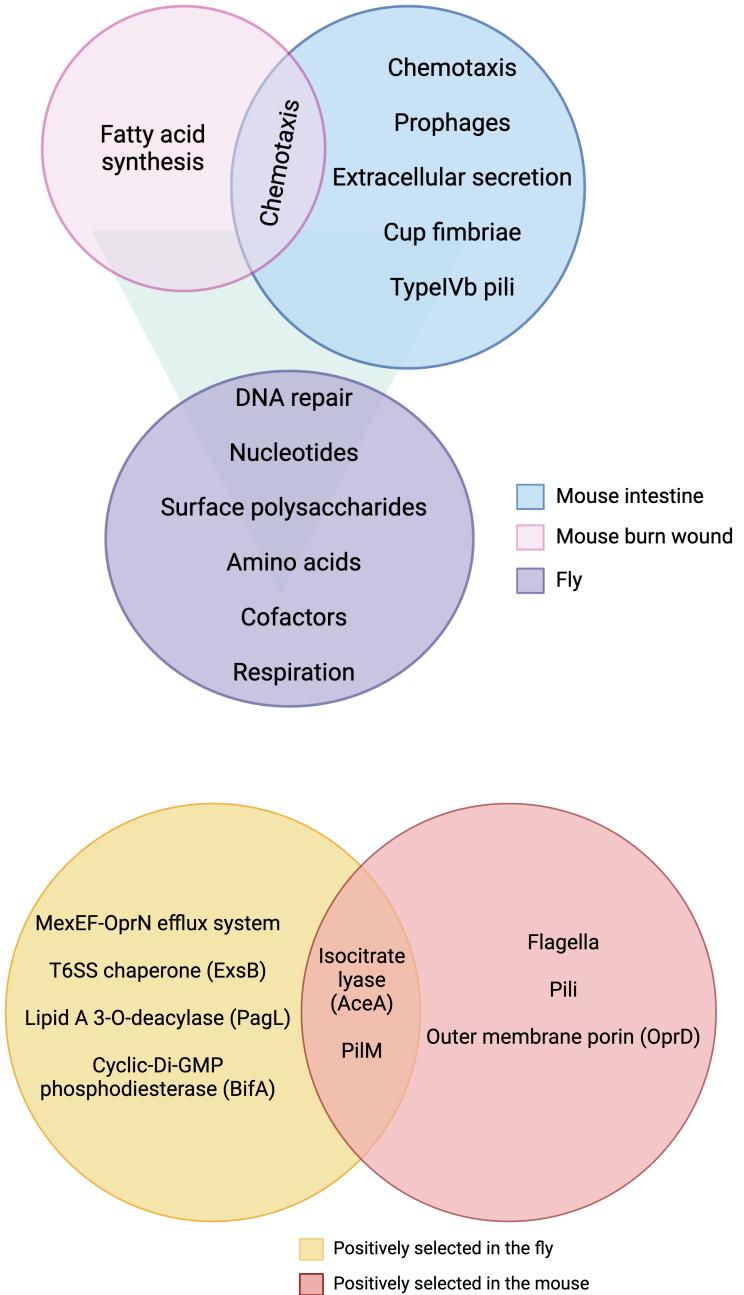
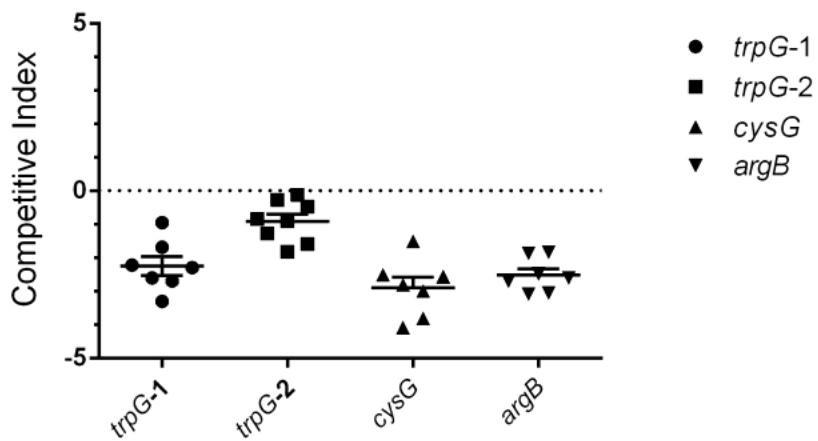



Figure 4:

