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Abstract 19 

Scaffolding is crucial for constructing most chromosome-level genomes. The high-20 

throughput chromatin conformation capture (Hi-C) technology has become the primary 21 

scaffolding strategy due to its convenience and cost-effectiveness. As sequencing 22 

technologies and assembly algorithms advance, constructing haplotype-resolved 23 

genomes is increasingly preferred because haplotypes can provide additional genetic 24 

information on allelic and non-allelic variations. ALLHiC is a widely used allele-aware 25 

scaffolding tool designed for this purpose. However, its dependence on chromosome-26 

level reference genomes and a higher chromosome misassignment rate still impede the 27 

unraveling of haplotype-resolved genomes. In this paper, we present HapHiC, a 28 

reference-independent allele-aware scaffolding tool with superior performance on 29 

chromosome assignment as well as contig ordering and orientation. Additionally, we 30 

provide new insights into the challenges in allele-aware scaffolding by conducting 31 
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comprehensive analyses on various adverse factors. Finally, with the help of HapHiC, 32 

we constructed the haplotype-resolved allotriploid genome for Miscanthus × giganteus, 33 

an important lignocellulosic bioenergy crop. HapHiC is available at 34 

https://github.com/zengxiaofei/HapHiC. 35 

Introduction 36 

The construction of a high-quality reference genome serves as the basis for functional 37 

genomics research in a species. Chromosome scaffolding is a necessary step in de novo 38 

building eukaryotic chromosome-level genomes, except for directly assembling 39 

telomere-to-telomere (T2T) genomes1. Its objective is to determine the chromosome 40 

assignment of contigs or scaffolds in the assemblies, as well as the ordering and 41 

orientation of these sequences on the chromosomes. In early genome research, 42 

chromosome scaffolding was often achieved using the information from linkage groups 43 

and genetic distance in genetic maps2. However, in recent years, the high-throughput 44 

chromatin conformation capture (Hi-C) technology has gradually replaced genetic 45 

maps due to its simplicity, short cycle, and low cost, making it the most widely used 46 

chromosome scaffolding solution3-8. Hi-C links are generated by proximity ligation and 47 

massively parallel sequencing to indicate the frequency of chromatin interactions 48 

between different loci in the genome9. This information can be used to infer 49 

chromosome territories, as well as the distance and orientation between contigs or 50 

scaffolds3. Several Hi-C-based scaffolding tools, including LACHESIS3, HiRise4, 3D-51 

DNA5, SALSA26, and YaHS8, have been developed for haploid and haplotype-52 

collapsed assemblies. 53 

For heterozygous diploids or polyploids, a haplotype-resolved assembly consists 54 

of two or more sets of haploid sequences. In contrast to a haplotype-collapsed assembly, 55 

it provides additional genetic information, such as bi- or multi-alleles, and cis/trans 56 

configurations among non-allelic variations10. Recent advances in sequencing 57 

technologies and assembly algorithms have propelled the unraveling of haplotype-58 

resolved genomes. HiFi sequencing from Pacific Biosciences (PacBio) and duplex 59 
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sequencing from Oxford Nanopore Technologies (ONT) have both achieved a base 60 

accuracy level of Q30 (99.9%), which provides a solid foundation for more accurate 61 

phasing of alleles. Trio binning uses short reads from parental genomes to phase long 62 

reads, enabling phasing at the whole-genome level11. More recently, hifiasm takes 63 

advantage of Hi-C sequencing data for chromosome-level phasing without parental 64 

data12. These two methods have demonstrated high accuracy in dealing with diploid or 65 

diploid-like allopolyploid genomes. Consequently, subsequent chromosome 66 

scaffolding can be independently performed on each phased haplotype. 67 

Autopolyploidy is prevalent in seed plants, especially in economically important 68 

crops13. Haplotype phasing in autopolyploid genomes facilitates the study of crop 69 

domestication history and genetic breeding14. It also lays the foundation for analyzing 70 

allele expression dominance and genome evolution after whole-genome duplication 71 

(WGD)10. However, assembling haplotype-resolved autopolyploid genomes is more 72 

challenging than diploid genomes. Trio binning is unsuitable for autopolyploids11, and 73 

the Hi-C-based algorithm in hifiasm produces unbalanced phasing results during the 74 

assembly of autopolyploid genomes15. Therefore, the most common strategy for 75 

constructing a haplotype-resolved autopolyploid genome is to perform allele-aware 76 

scaffolding, which utilizes Hi-C data to allocate contigs to different haplotypes 77 

simultaneously during chromosome scaffolding7. On the other hand, scaffolding each 78 

phased haplotype separately may result in errors because the Hi-C data from multiple 79 

haplotypes are aligned to a single haplotype, disregarding possible chromosomal 80 

structural variations between haplotypes. This once again emphasizes the importance 81 

of allele-aware scaffolding. 82 

ALLHiC is a widely used Hi-C scaffolding tool specifically designed for allele-83 

aware scaffolding7. It effectively identifies allelic sequences and removes the Hi-C links 84 

between them to reduce interference prior to clustering. ALLHiC has demonstrated 85 

robust performance in haplotype phasing and has been applied to resolve the diploid 86 

and autotetraploid genomes of several important crops16-20. However, this method 87 

requires a chromosome-level reference genome from a closely related species, which 88 
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may not be available for many species. Although it is feasible to assemble and annotate 89 

a haplotype-collapsed genome as the reference19, it significantly increases the time and 90 

cost of genome research. Additionally, ALLHiC has been observed to introduce 91 

clustering errors when using the reference genome (as discussed in Results). These 92 

limitations and drawbacks have hindered the construction of haplotype-resolved 93 

genomes to some extent, especially in autopolyploids. 94 

In this study, we introduce HapHiC, a Hi-C-based scaffolding tool that enables 95 

allele-aware chromosome scaffolding of autopolyploid assemblies without reference 96 

genomes. We conducted a comprehensive investigation into the factors that may impede 97 

the allele-aware scaffolding of genomes. Compared to existing methods, HapHiC 98 

demonstrated a higher scaffolding contiguity and lower misassignment rates when 99 

addressing these challenges. Additionally, HapHiC is fast, resource-efficient, and has 100 

been successfully validated in genomes with varying ploidies and taxa. By utilizing 101 

HapHiC, we finally constructed the haplotype-resolved genome of Miscanthus × 102 

giganteus, an important lignocellulosic bioenergy crop. 103 

Results 104 

Overview of HapHiC 105 

To ensure concision and clarity, we will use the term “contigs” to refer to both contigs 106 

and scaffolds input into scaffolding tools. Assembly errors in phased assemblies and 107 

strong Hi-C signals between allelic contigs are considered the main obstacles that 108 

hinder allele-aware scaffolding. HapHiC addresses these challenges through two 109 

strategies. First, HapHiC prioritizes the chromosome assignment of contigs (Fig. 1c,d) 110 

before determining their ordering and orientation (Fig. 1e,f), similar to the approach 111 

used by LACHESIS3 and ALLHiC7. This is because determining scaffold or 112 

chromosome boundaries during or after contig ordering and orientation, as done by 3D-113 

DNA5, SALSA26, and YaHS8, can amplify the negative effects of assembly errors and 114 

undesirable inter-allele Hi-C signals on chromosome assignment by disrupting the 115 

ordering and orientation of contigs. Therefore, HapHiC employs this “divide-and-116 
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conquer” strategy to isolate their negative impacts between these two steps. Second, 117 

HapHiC applies several preprocessing steps before chromosome assignment to correct 118 

and filter input contigs and remove Hi-C links between allelic contigs (Fig. 1b). 119 

Specifically, HapHiC implements an efficient and stringent method to correct chimeric 120 

contigs with minimal impact on contig N50. Subsequently, low-information contigs, 121 

such as short contigs and those lacking Hi-C links, are temporarily removed before 122 

clustering due to their propensity for errors. In addition to the conventional method of 123 

identifying collapsed contigs based on Hi-C link density, we introduce a unified “rank-124 

sum” algorithm to further filter out residual chimeric and collapsed contigs. Moreover, 125 

undesirable inter-allele Hi-C links are removed based on the distribution pattern of Hi-126 

C links. These innovative approaches significantly enhance HapHiC’s tolerance to 127 

assembly errors and enable its capability of allele-aware scaffolding without reliance 128 

on reference genomes. 129 

The remaining contigs and Hi-C links are then used to construct a contact matrix. 130 

HapHiC performs preliminary contig clustering using a Markov cluster algorithm21 131 

(MCL) and selects the optimal clustering result through automatic parameter tuning 132 

(Fig. 1c). In the subsequent reassignment step, the filtered-out and potential 133 

misassigned contigs are respectively rescued and reassigned to the most suitable 134 

clusters (Fig. 1d). If the number of clusters exceeds the expected number of 135 

chromosomes, HapHiC carries out additional agglomerative hierarchical clustering22 to 136 

group them into chromosome-level clusters. After chromosome assignment, HapHiC 137 

conducts contig ordering and orientation by integrating the algorithms from 3D-DNA5 138 

and ALLHiC7. Initially, the contigs in each cluster are ordered and oriented using an 139 

efficiency-improved 3D-DNA algorithm, which we refer to as “fast sorting” (Fig. 1e). 140 

The results are further optimized by employing the genetic algorithm in ALLHiC to 141 

generate the final chromosome-level pseudomolecules (Fig. 1f). This integration 142 

enhances the accuracy of contig ordering and orientation while significantly reducing 143 

the execution time and the number of iterations compared to ALLHiC. 144 

Factors that may impede the allele-aware scaffolding of phased assemblies 145 
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In this section, we evaluated the negative impact of various factors on allele-aware 146 

scaffolding of phased assemblies and compares the performance of HapHiC with other 147 

mainstream Hi-C-based scaffolding tools, including ALLHiC7, LACHESIS3, 3D-148 

DNA5, SALSA26, and YaHS8. We used the haplotype-resolved autotetraploid genome 149 

of Medicago sativa XinJiangDaYe17 to establish a ground truth (Supplementary Figs. 150 

1 and 2) and generated a series of fragmented assemblies by simulating multiple adverse 151 

factors of varying degrees (Supplementary Fig. 3 and Supplementary Tables 1-10). 152 

Contig contiguity is a crucial factor affecting allele-aware scaffolding. Phased 153 

assemblies typically have lower contig contiguity compared to collapsed assemblies. 154 

When the contig N50 decreased from 2 Mb to 25 Kb (Supplementary Fig. 4), all Hi-155 

C scaffolding tools examined experienced a decline in final scaffold contiguity, 156 

anchoring rate, and an increase in misassignment rate between homologous 157 

chromosomes (Fig. 2l, Supplementary Fig. 5, and Supplementary Data 1). Among 158 

these tools, HapHiC consistently showed the highest scaffold contiguity and extremely 159 

low misassignment rates. In contrast, 3D-DNA and SALSA2 tended to produce highly 160 

fragmented scaffolds, with the scaffold contiguity values mostly less than 0.5. ALLHiC, 161 

LACHESIS, and YaHS exhibited much higher scaffold contiguity than 3D-DNA and 162 

SALSA2, but their misassignment rates were also elevated. Furthermore, when the 163 

contig N50 dropped below 100 Kb, the memory usage of YaHS became too high to 164 

scaffold the assemblies. Additionally, we assessed the impact of contig length 165 

distribution on allele-aware scaffolding, with the coefficients of variation (CVs) of the 166 

contig length ranging from 0.2 to 3 (Supplementary Fig. 6). All scaffolding tools 167 

performed stably in this regard, with HapHiC remaining the most outstanding among 168 

them (Fig. 2l, Supplementary Fig. 7, and Supplementary Data 1). 169 

As the cost of next-generation sequencing decreases, Hi-C sequencing depth seems 170 

to no longer be a limiting factor in scaffolding. However, in the context of allele-aware 171 

scaffolding of phased assemblies, Hi-C reads can be aligned to multiple allelic loci on 172 

homologous chromosomes simultaneously. These reads are often filtered out due to low 173 

mapping quality, resulting in a reduction of effective data. To demonstrate this, we 174 
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simulated effective sequencing depths ranging from 11X to 0.02X (Supplementary 175 

Fig. 8). The results showed that the anchoring rate of 3D-DNA and SALSA2 declined 176 

rapidly with decreasing sequencing depth (Fig. 2l, Supplementary Fig. 9, and 177 

Supplementary Data 1). Notably, YaHS and SALSA2 failed to scaffold at depths 178 

below 1X and 0.05X, respectively. For other scaffolding tools, scaffold contiguity 179 

decreased and misassignment rates increased when the effective Hi-C data dropped 180 

below 0.05X. HapHiC performed well even at extremely low depths, exhibiting the 181 

highest scaffold contiguity and relatively low misassignment rates. 182 

Chimeric contigs, a common assembly error in phased assemblies, result from 183 

misjoins between nonadjacent sequences (Fig. 2a). These misjoins can occur between 184 

homologous or non-homologous chromosomes (Supplementary Fig. 10), leading to 185 

chromosome misassignments during scaffolding. ALLHiC has been reported to be 186 

highly susceptible to chimeric contigs without assembly correction7. We evaluated the 187 

accuracy and precision of assembly correction for each tool in dealing with chimeric 188 

contigs of different lengths (Supplementary Figs. 11-14). When the length was below 189 

800 Kb and 100 Kb, respectively, neither SALSA2 nor ALLHiC could break any 190 

chimeric contigs (Supplementary Fig. 12). Moreover, 3D-DNA, SALSA2, and 191 

ALLHiC tended to break too many non-chimeric contigs, leading to a significant 192 

decrease in contig contiguity (Supplementary Fig. 13). HapHiC achieved 84.2% to 193 

94.9% of the true positive rate (TPR) of YaHS in identifying chimeric contigs, while 194 

maintaining a false positive rate (FPR) that was 0.4 to 7.1 times lower than that of YaHS. 195 

This suggests that HapHiC has comparable sensitivity to YaHS in identifying chimeric 196 

contigs, but with significantly higher stringency. Additionally, HapHiC consistently 197 

demonstrated exceptional precision in determining breakpoints, as evidenced by the 198 

highest proportions of breakpoints within 10 Kb of simulated misjoins, ranging from 199 

81.0% to 95.7% across varying contig lengths (Supplementary Fig. 14). 200 

With assembly error correction, some chimeric contigs may still slip through the 201 

net. To address this, we introduce a “rank-sum” algorithm in HapHiC for further contig 202 

filtering (Supplementary Fig. 15). This algorithm is based on the following principles: 203 
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(1) the one- or three-dimensional neighborhoods of a specific genome region should 204 

also be neighborhoods to each other, and (2) this is not applicable to chimeric contigs, 205 

which may be misjoined from different regions of the chromosome or even different 206 

chromosomes. Thus, potential chimeric contigs can be identified by measuring the 207 

density of their respective neighborhoods (Supplementary Fig. 16). The receiver 208 

operating characteristics (ROC) curve demonstrates the superior performance of the 209 

rank-sum algorithm in identifying chimeric contigs, whether formed between 210 

homologous chromosomes or non-homologous chromosomes (Supplementary Fig. 211 

17). Although the algorithm is not sensitive to chimeric contigs formed within the 212 

chromosome, this type of error does not adversely affect chromosome assignment. 213 

Using this algorithm alone, HapHiC can tolerate up to 20% chimeric contigs (Fig.2l, 214 

Supplementary Fig. 18, and Supplementary Data 1). With assembly correction 215 

enabled, HapHiC can accurately assign contigs into chromosomes even when up to 40% 216 

of contigs are chimeric. In contrast, other scaffolding tools exhibited significantly 217 

higher misassignment rates between homologous chromosomes. We also found that 218 

when the proportion of chimeric contigs was below 25%, the performance of ALLHiC 219 

with assembly correction was even less effective than without any correction 220 

(Supplementary Fig. 19). This could be explained by a hypothesis that the negative 221 

impact of ALLHiC correction on contig contiguity is more severe compared to a low 222 

proportion of chimeric contigs. 223 

Another type of assembly error that can lead to misassignments between 224 

homologous chromosomes is collapsed contigs. These contigs are consensus sequences 225 

collapsed from highly similar allelic regions (Fig. 2a and Supplementary Fig. 20). 226 

LACHESIS3 and ALLHiC7 simply identify and filter out collapsed contigs based on 227 

Hi-C link density. However, there are two potential issues that can adversely affect the 228 

performance of this method (Supplementary Fig. 21). First, in phased autopolyploid 229 

assemblies, collapse frequently occurs and can involve more than two haplotypes, 230 

resulting in a higher average or median Hi-C link density. Using a fixed cutoff for 231 

classification is inefficient in such cases. Second, both scaffolding tools neglect intra-232 
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contig links when calculating Hi-C link density, leading to bias against contig length. 233 

Similar to chimeric contigs, the neighborhoods of collapsed contigs are expected to 234 

exhibit a lower density compared to normal contigs. As anticipated, the rank-sum 235 

algorithm has proven to be a unified approach that is also effective for identifying 236 

collapsed contigs (Supplementary Fig. 22). Additionally, the two methods showed 237 

complementary trends in relation to the number of collapsed haplotypes 238 

(Supplementary Fig. 23). Specifically, the link density method exhibited higher 239 

sensitivity to four-haplotype collapsed contigs, while the rank-sum algorithm 240 

demonstrated greater efficiency in identifying two-haplotype collapsed contigs. 241 

Consequently, we integrated these two methods in the preprocessing step of HapHiC. 242 

This integration enabled HapHiC to tolerate up to 25% of collapsed contigs in 243 

chromosome assignment, significantly surpassing other examined Hi-C scaffolding 244 

tools (Fig. 2l, Supplementary Fig. 24, and Supplementary Data 1). In contrast, the 245 

pruning process of ALLHiC only partially mitigated the adverse effects of collapsed 246 

contigs. 247 

One commonly held perspective is that low sequence divergence between 248 

haplotypes can hinder allele-aware scaffolding by causing incorrect mapping of Hi-C 249 

reads (Fig. 2a). In real cases, strong signals of inter-allele Hi-C links are often observed 250 

to be diagonally distributed between homologous chromosomes (Supplementary Fig. 251 

25). However, our simulation tests yielded contradictory results. The relative proportion 252 

of inter- and intra-homologous chromosome Hi-C links did not change significantly 253 

with sequence divergence after filtering with mapping quality and edit distance 254 

(Supplementary Figs. 26 and 27). Furthermore, most Hi-C scaffolding tools performed 255 

well even when the sequence divergence between haplotypes was as low as 0.1% (Fig. 256 

2l, Supplementary Fig. 28, and Supplementary Data 1). 257 

To address this contradiction, we constructed two phased assemblies using the 258 

same PacBio HiFi reads but with different genome assemblers, hifiasm12 and HiCanu23. 259 

We observed stronger signals of inter-allele Hi-C links in the HiCanu assembly 260 

(Supplementary Fig. 29b) compared to the hifiasm assembly (Supplementary Fig. 261 
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29a). This suggests that the presence of unfavorable inter-allele Hi-C signals is more 262 

likely caused by a type of assembly error. Based on their distribution patterns on the 263 

Hi-C contact maps (Supplementary Figs. 29 and 30), it is evident that these errors are 264 

not due to large-scale chimeric or collapsed sequences. Instead, we hypothesize that 265 

they could be switch errors at the base level. To verify this hypothesis, we simulated 266 

switch errors by randomly shuffling single nucleotide polymorphisms (SNPs) and small 267 

insertions/deletions (InDels) between haplotypes. As a result, we were able to 268 

reproduce similar inter-allele Hi-C signals along the diagonal (Supplementary Fig. 31), 269 

which became stronger as the switch error rate increased (Supplementary Fig. 32). 270 

Our findings indicate that incorrect mapping of Hi-C links is introduced by switch 271 

errors rather than the inherent sequence divergence between haplotypes. 272 

ALLHiC identifies allelic contigs by examining gene synteny between the 273 

assembly and an annotated, chromosome-level reference genome from the same or a 274 

closely related species. During the pruning process, Hi-C links between allelic contigs 275 

are removed. However, such a reference genome is not always available for all species. 276 

As a result, we developed a reference-free method in HapHiC that relies on the 277 

distribution pattern of Hi-C links (Supplementary Figs. 33 and 34). In simulation tests, 278 

our reference-free method allowed HapHiC to tolerate a switch error rate of up to 25% 279 

(Fig. 2l, Supplementary Fig. 35, and Supplementary Data 1) and exhibited higher 280 

efficiency than ALLHiC in identifying allelic contigs of low contiguity (Fig. 2l, 281 

Supplementary Figs. 36 and 37). In contrast, scaffolding tools that are not allele-aware 282 

or executed without removing inter-allele Hi-C links were severely disrupted when the 283 

switch error rate exceeded 5% (Supplementary Fig. 35). 284 

While tetraploids constitute the majority of published autopolyploid genomes, 285 

species with higher ploidies are prevalent in both wild and cultivated plants. We 286 

assessed the impact of genome ploidy on allele-aware scaffolding. In the absence of 287 

assembly errors, all Hi-C scaffolding tools, except for 3D-DNA, demonstrated stable 288 

performance when handling ploidies ranging from 1 to 16 (Fig. 2l, Supplementary Fig. 289 

38, and Supplementary Data 1). However, when we introduced 5% each of chimeric, 290 
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collapsed contigs, and switch errors in simulated assemblies of various ploidies, only 291 

HapHiC consistently produced perfect chromosome assignment results (Fig. 2l, 292 

Supplementary Fig. 39, and Supplementary Data 1). Additionally, the performance 293 

of the reassignment process in HapHiC was validated through separate tests 294 

(Supplementary Fig. 40). 295 

Our results confirm that the reference-dependent pruning method in ALLHiC 296 

effectively and robustly reduces misassignments between homologous chromosomes, 297 

particularly when dealing with collapsed contigs and switch errors (Fig. 2g-i). However, 298 

the main concern is that the reference genome may not be available or may require 299 

significant effort and cost for construction and annotation. Additionally, using reference 300 

genomes is a double-edged sword that can increase misassignments between non-301 

homologous chromosomes and exacerbate the adverse effect of chimeric contigs (Fig. 302 

2j,k). Furthermore, substantial parameter tuning is often necessary for ALLHiC to 303 

achieve improved chromosome assignment results (Fig. 2b-f). HapHiC has addressed 304 

these problems, demonstrating stronger tolerance to various assembly errors and 305 

unfavorable factors (Fig. 2l and Supplementary Data 1). These improvements 306 

enhance its adaptability and capability in tackling more intricate allele-aware 307 

scaffolding problems. 308 

Accuracy of contig ordering and orientation 309 

After chromosome assignment, the contig ordering and orientation of a phased 310 

assembly become similar to those of an unphased assembly. To evaluate the accuracy 311 

of each Hi-C-based scaffolding tool in contig ordering and orientation, we simulated 312 

genome assemblies of rice24 (Oryza sativa), Arabidopsis25 (Arabidopsis thaliana), and 313 

human1 (Homo sapiens) with varying contig N50 values (Supplementary Table 11). 314 

Initially, the performance of HapHiC and ALLHiC was compared using the built-315 

in scoring system of ALLHiC7 (Supplementary Fig. 41 and Supplementary Data 2). 316 

Even when only fast sorting was employed, the initial scores of HapHiC were already 317 

comparable to or even higher than the final scores achieved by ALLHiC. In assemblies 318 
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with low contig contiguity, these scores were further improved during the subsequent 319 

optimization process, resulting in a significant reduction in the number of iterations 320 

required for the genetic algorithm to converge. 321 

Subsequently, we introduced two objective metrics to assess the accuracy of contig 322 

ordering and orientation for all Hi-C-based scaffolding tools (Fig. 3a). The first metric, 323 

Lin’s concordance correlation coefficient26 (CCC), measures the consistency between 324 

the results and the reference chromosomes on a large scale. The second metric is the 325 

“cost” calculated by DERANGE II27, which approximates the number of moves 326 

required to adjust the results for complete consistency with the reference chromosomes 327 

via transposition and inversion. This cost can also represent the number of steps needed 328 

to achieve optimal results in Juicebox28. As the cost is independent of contig length, it 329 

is suitable for quantifying the results on a smaller scale. By employing these two metrics, 330 

we can categorize the results into four quadrants based on their distinct tendencies (Fig. 331 

3a). 332 

Fig. 3b,c and Supplementary Figs. 42-45 illustrate the performance of each 333 

scaffolding tool in terms of contig ordering and orientation (Supplementary Data 2). 334 

SALSA2 performed poorly with a low contig N50, exhibiting the lowest absolute 335 

values of CCC and highest DERANGE costs among the evaluated tools when the contig 336 

N50 was less than or equal to 500 Kb. In contrast, LACHESIS struggled with high 337 

contig contiguity, exhibiting a trend opposite to that of SALSA2. YaHS primarily 338 

generated large-scale errors, as indicated by the relatively high absolute values of CCC, 339 

while the small-scale errors it produced were at an average level with moderate 340 

DERANGE costs. In line with previous findings, 3D-DNA and ALLHiC outperformed 341 

LACHESIS and SALSA2 in all aspects, producing fewer large- and small-scale errors. 342 

As expected, HapHiC yielded results similar to 3D-DNA when only fast sorting was 343 

applied due to the use of the same algorithm. Furthermore, additional optimization 344 

using the genetic algorithm significantly reduced small-scale errors, particularly when 345 

the contig contiguity was low. This optimization allowed HapHiC to excel in the 346 

ordering and orientation of contigs. 347 
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Execution speed and memory usage 348 

HapHiC not only reduces the number of iterations in the genetic algorithm by 349 

introducing fast sorting, but it also optimizes the storage and transfer efficiency of Hi-350 

C links. These optimizations result in significant improvements in wall time, CPU time, 351 

and peak memory usage during the process of contig ordering and orientation compared 352 

to ALLHiC (Fig. 4a-c and Supplementary Data 3). 353 

Additionally, we conducted a comparative analysis of the execution speed and 354 

memory usage of all evaluated Hi-C-based scaffolding tools (Fig. 4d and 355 

Supplementary Data 3). Under varying levels of contig contiguity and sequencing 356 

depth, LACHESIS emerged as the most efficient tool. YaHS exhibited satisfactory 357 

execution speed but demonstrated a significant increase in peak memory usage with 358 

decreasing contig N50. When the contig contiguity was high, SALSA2 was several 359 

times slower than the scaffolding tools in the highest speed category and showed a 360 

higher susceptibility to low sequencing depth. 3D-DNA performed even worse than 361 

SALSA2, proving to be the slowest among all. The efficiency of the ordering and 362 

orientation process in ALLHiC was significantly hampered by the decline of contig 363 

contiguity. As a result, when the contig N50 was 25 Kb, it took more than ten thousand 364 

hours to complete the entire ALLHiC pipeline. Furthermore, 3D-DNA and ALLHiC 365 

required more time to correct contigs (Fig. 4e) and handle data with high sequencing 366 

depth (Fig. 4f). 367 

By exclusively applying fast sorting, HapHiC achieved a remarkably high 368 

execution speed, second only to LACHESIS (Fig. 4d). With the optimization step, 369 

HapHiC only fell behind LACHESIS and SALSA2 at extremely low contig contiguity, 370 

significantly outperforming 3D-DNA and ALLHiC. Meanwhile, the cost for correcting 371 

contigs, removing inter-allele links, and processing high-depth sequencing data were 372 

relatively low in HapHiC (Fig. 4e,f). Moreover, HapHiC demonstrated stable and 373 

excellent performance in terms of memory usage. We also validated the superior 374 

efficiency of HapHiC in numerous published genomes compared to ALLHiC and YaHS 375 

(Fig. 4g,h and Supplementary Data 3). Overall, HapHiC maintains a highly 376 
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competitive execution speed and memory usage while being capable of dealing with 377 

more complex assemblies and providing superior scaffolding results. 378 

Examples of scaffolding published assemblies 379 

We further validated the scaffolding performance of HapHiC in real cases 380 

(Supplementary Data 4). First, we analyzed several published autopolyploid 381 

assemblies and compared the results with those of ALLHiC. 382 

Saccharum spontaneum AP85-441 (1n=4x=32) is the first published haplotype-383 

resolved autotetraploid genome that scaffolded to chromosome level16. Due to its highly 384 

repetitive nature of genome, combined with the use of Illumina short reads and PacBio 385 

RS II data, the final assembly has a contig N50 of only 45 Kb and contains numerous 386 

collapsed contigs. In our tests, ALLHiC successfully separated contigs from different 387 

homologous chromosomes and produced chromosome or near-chromosome level 388 

scaffolds (Supplementary Fig. 46b). However, it still introduced noticeable 389 

misassignments between non-homologous chromosomes, consistent with previous 390 

simulation results. In contrast, HapHiC showed significantly fewer misassignments and 391 

accurately clustered contigs to 32 complete chromosomes (Supplementary Fig. 46a), 392 

greatly reducing the need for manual adjustment in Juicebox. Similarly, HapHiC also 393 

produced more accurate and contiguous results in scaffolding the autotetraploid 394 

genome assemblies of M. sativa XinJiangDaYe17 (Supplementary Fig. 47) and 395 

Zhongmu-429 (Supplementary Fig. 48). 396 

In 2022, the genome of S. spontaneum Np-X, another autotetraploid sugarcane with 397 

a different basic chromosome number (x=10), was published20. Despite its higher 398 

contiguity compared to AP85-441, with a contig N50 of 381 Kb, it contains a 399 

considerable number of chimeric contigs (Fig. 5a and Supplementary Data 5). 400 

Consequently, we performed assembly correction prior to scaffolding. Although both 401 

tools scaffolded contigs into chromosome-level pseudomolecules, ALLHiC produced 402 

more misassignments between non-homologous chromosomes (Supplementary Fig. 403 

49). Furthermore, the contig N50 of ALLHiC scaffolds dramatically dropped to only 404 
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139 Kb after correction, while HapHiC experienced a much milder decrease of 8.7% 405 

(Supplementary Table 12). We randomly selected a subset of contigs from the first 406 

haplotype of chromosome 1 and classified them as non-chimeric contigs, chimeric 407 

contigs formed between homologous chromosomes, and chimeric contigs formed 408 

between non-homologous chromosomes (Fig. 5a and Supplementary Data 5). Among 409 

the chimeric contigs, HapHiC detected 12 out of 16 (75%) formed between homologous 410 

chromosomes and 5 out of 6 (83.3%) formed between non-homologous chromosomes. 411 

ALLHiC demonstrated higher sensitivity with a detection rate of 100%. However, it 412 

misidentified over 105 out of 112 (93.8%) non-chimeric contigs as chimeric contigs. In 413 

contrast, HapHiC exhibited superior stringency, as none of the non-chimeric contigs 414 

were mislabeled as chimeric contigs. Furthermore, analysis of the specific breakpoints 415 

revealed that ALLHiC tended to break contigs at the positions distant from misjoin 416 

points (Fig. 5b and Supplementary Fig. 50). These issues finally led to a significant 417 

reduction in the contig contiguity after ALLHiC correction. In conclusion, HapHiC 418 

adopted a more stringent strategy to maintain contig contiguity without sacrificing 419 

accuracy of chromosome assignment. 420 

We also conducted an analysis of the autotetraploid potato (Solanum tuberosum) 421 

C88 genome30. In contrast to wild plants, the domestication and breeding history of the 422 

cultivated potato has left footprints in its haplotypes, resulting in patchy distribution of 423 

large, nearly identical regions. These regions make conventional genome assembly and 424 

scaffolding methods unable to accurately represent the haplotypes of C88 genome, even 425 

when utilizing ONT ultra-long reads15. Therefore, the researchers incorporated 426 

additional genetic population information to assist in resolving the C88 haplotypes. 427 

Another similar case is the autotetraploid potato cultivar Otava31. To evaluate the 428 

effectiveness of HapHiC and ALLHiC in scaffolding such a complex genome, we first 429 

assembled the C88 genome using conventional methods without employing genetic 430 

population information. The total length of the assembled unitigs is 3.22 Gb, with an 431 

N50 of 730 Kb. 432 

There are no large-scale regions of low divergence in the haplotypes of 433 
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chromosomes 1, 4, 7, and 9 in the C88 genome30. This suggests that these haplotypes 434 

can be resolved more easily without relying on genetic population information. HapHiC 435 

effectively separated them into chromosome or near-chromosome scaffolds (Fig. 5c,d 436 

and Supplementary Fig. 52a). Additionally, all haplotypes of chromosome 2 and those 437 

haplotypes with evenly distributed unique polymorphic loci were accurately 438 

represented. Although some haplotypes were not correctly clustered by HapHiC, this 439 

issue can be attributed to the existence of large-scale regions of low divergence. In 440 

contrast, ALLHiC consistently misassigned contigs from different haplotypes into the 441 

same clusters for all C88 chromosomes (Supplementary Fig. 51 and Supplementary 442 

Fig. 52b), indicating significantly reduced performance compared to HapHiC. 443 

In addition to autopolyploids, HapHiC outperformed ALLHiC in allele-aware 444 

scaffolding of phased diploid assembly of the Camellia sinensis Tieguanyin genome19. 445 

HapHiC exhibited significantly higher scaffold contiguity and fewer misassignments 446 

between both homologous and non-homologous chromosomes (Supplementary Fig. 447 

53). Furthermore, HapHiC can also scaffold haplotype-collapsed allopolyploid 448 

(Supplementary Figs. 54-58) and diploid assemblies (Supplementary Figs. 59-73). 449 

Importantly, HapHiC is not limited to plants. It has been successfully validated in 450 

scaffolding representative genomes from various taxa, including humans, birds, 451 

amphibians, fish, insects, mollusks, and annelids (Supplementary Figs. 59 and 68-73). 452 

In these cases, HapHiC achieved comparable or even better performance than YaHS. 453 

The results of real cases demonstrate not only the robustness and reliability of 454 

HapHiC in scaffolding various assemblies, but also its potential in overcoming the 455 

challenges posed by more complex genomes. 456 

Application of HapHiC in constructing the haplotype-resolved genome of M. × 457 

giganteus 458 

M. × giganteus is widely recognized as a promising lignocellulosic bioenergy crop due 459 

to its perennial nature, rapid growth, high productivity, and low input requirements32. 460 

It is an allotriploid (2n=3x=57, ABB) formed through natural intrageneric hybridization 461 
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between the diploid Miscanthus sinensis (AA) and the autotetraploid Miscanthus 462 

sacchariflorus (BBBB)33. Additionally, the common ancestor of the Miscanthus genus 463 

experienced a recent whole-genome duplication (WGD) event prior to this 464 

hybridization34, resulting in the hexaploidy nature of the M. × giganteus genome. 465 

Despite recent publication of genomes for several other Miscanthus species34-37, 466 

decoding the M. × giganteus genome is hindered by its complexity. With the help of 467 

HapHiC, here we present the first chromosome-level haplotype-resolved genome of M. 468 

× giganteus. 469 

A total of 69.4 Gbp of PacBio HiFi reads and 684.1 Gbp of Hi-C reads were 470 

generated for genome assembly and scaffolding, respectively. After assembly and 471 

contamination filtration, we obtained phased unitigs with a total length of 6.11 GB, 472 

which represents 90% coverage of the genome size as determined by flow cytometry. 473 

The assembly was then scaffolded using HapHiC and ALLHiC separately. HapHiC 474 

outperformed ALLHiC with significantly fewer misassignments (Supplementary Fig. 475 

74). Finally, we anchored contigs accounting for 98.3% of the total assembly onto 57 476 

haplotype-resolved chromosomes based on the HapHiC scaffolds. The contig N50 477 

reached 2.18 Mb, surpassing all existing genome assemblies within the Miscanthus 478 

genus (Supplementary Table 13). 479 

The structural accuracy of the M. × giganteus genome was subsequently evaluated 480 

through gene synteny analysis. As previously mentioned, the A and B subgenomes of 481 

M. × giganteus originated from the genomes of M. sinensis and M. sacchariflorus, 482 

respectively. Therefore, it is expected that the A subgenome of M. × giganteus (MgiA) 483 

would be phylogenetically closer to the M. sinensis genome34 (MsiA) than to the B 484 

subgenomes of M. × giganteus (MgiB1, MgiB2). However, the gene synteny analysis 485 

yielded contradictory results, revealing that MgiA shares higher similarity with the B 486 

subgenomes, MgiB1 and MgiB2, than MsiA (Fig. 6a). The finding was also supported 487 

by the Miscanthus lutarioriparius genome36 (MluB in Fig. 6a), which serves as an 488 

alternative B genome of M. sacchariflorus35 with higher completeness and contiguity. 489 

To determine the authenticity of this observation, we compared the MgiA and MsiA 490 
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structures using genetic maps and Hi-C contact maps. Five genetic maps of M. sinensis 491 

and one genetic map of M. sacchariflorus38 showed a significantly stronger correlation 492 

with MgiA than with MsiA (Fig. 6b-d and Supplementary Data 6). Additionally, the 493 

Hi-C contact maps revealed substantial errors within the MsiA genome, primarily 494 

concentrated in the divergence-enriched regions identified through gene synteny 495 

analysis and genome alignment (Fig. 6e). These findings strongly suggest that the A 496 

subgenome of M. × giganteus has a more accurate structural organization compared to 497 

the previously published M. sinensis genome. The construction of the high-quality 498 

genome of M. × giganteus not only facilitates its genetic breeding but also provides 499 

improved reference genomes for its hybridization parents, M. sinensis and M. 500 

sacchariflorus. This reaffirms the effectiveness and accuracy of HapHiC as an allele-501 

aware scaffolding tool for handling such a complex polyploid genome. 502 

Discussion 503 

The advancement of sequencing techniques and genome assemblers has ushered in a 504 

new era of haplotype-resolved genome research. To tackle the challenges presented by 505 

species diversity and varying genome characteristics, there is a pressing need for a 506 

robust and efficient allele-aware scaffolding tool with minimal restrictions. One such 507 

restriction is the reliance on a reference genome. Although this can be alternatively 508 

achieved by assembling and annotating a haplotype-collapsed genome as the 509 

reference19, it greatly increased the time and cost for genome construction. Moreover, 510 

our results have shown the drawbacks of using a reference genome. HapHiC overcomes 511 

this limitation by achieving allele-aware scaffolding without relying on reference 512 

genomes, demonstrating greater tolerance for assembly errors. Our simulations and 513 

real-case tests have demonstrated the superior reliability of HapHiC compared to other 514 

software, with broad support for a wide range of taxa and ploidies. Additionally, the 515 

entire pipeline requires less time and memory resources and reduces the need for 516 

parameter tuning and manual adjustment. 517 

To effectively address a problem, it is crucial to thoroughly understand it. This 518 
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study conducted exhaustive simulations and evaluations of the factors that could 519 

impede the allele-aware scaffolding of phased assemblies on various widely used Hi-520 

C-based scaffolding tools. In addition to the factors mentioned in the ALLHiC paper7, 521 

our assessment also considered other factors such as contig length distribution, effective 522 

Hi-C sequencing depth, and ploidy. Notably, our analysis revealed that diagonally 523 

distributed Hi-C links between haplotypes results from switch errors in the initial 524 

genome assemblies rather than inherent attributes such as sequence divergence. These 525 

findings offer new insights into the challenges of allele-aware scaffolding and pave the 526 

way for the development of improved tools. 527 

The formation of collapsed contigs primarily results from extremely low sequence 528 

divergence. To mitigate the adverse effects of collapsed contigs, HapHiC has 529 

implemented the rank-sum algorithm. However, large-scale collapsed regions still 530 

significantly impede subsequent allele-aware scaffolding, as demonstrated in the 531 

cultivated potato C88 genome30. Furthermore, unlike chimeric contigs, scaffolding 532 

tools typically do not correct collapsed contigs. Therefore, achieving a higher quality 533 

assembly remains a fundamental prerequisite for haplotype resolution. Otherwise, the 534 

resulting scaffolds will still suffer from the “garbage in, garbage out” phenomenon, 535 

which means that flawed input data will produce low-quality output. This holds true 536 

even when using a scaffolding tool with a high tolerance for assembly errors. 537 

HapHiC still has some limitations. Its accurate clustering in HapHiC relies on prior 538 

knowledge of the chromosome number, as well as empirical preferences for length 539 

distribution of clusters and chromosomes. To address this, HapHiC provides a 540 

straightforward way to understand genome features or manually establish chromosome 541 

boundaries through fast sorting without clustering, similar to the intermediate result 542 

“0.assembly” in 3D-DNA5. Additionally, HapHiC identifies allelic contig pairs based 543 

on the distribution pattern of Hi-C links between them. Unlike ALLHiC, this function 544 

may not be effective when there are only a few links present. Fortunately, such few 545 

links typically do not adversely affect allele-aware chromosome scaffolding. 546 
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Methods 547 

Overall allele-aware scaffolding strategy of HapHiC 548 

Assembly errors are common in the phased assemblies of heterozygous genomes. 549 

Genome assemblers may misjoin nonadjacent sequences, forming chimeric contigs, or 550 

merge multiple similar regions into a consensus sequence, resulting in collapsed contigs 551 

(Fig. 2a). These errors often occur between homologous chromosomes, making 552 

chromosome assignment challenging. Scaffolding tools such as 3D-DNA5, SALSA26, 553 

and YaHS8 determine scaffold or chromosome boundaries during or after the contig 554 

ordering and orientation. Although this approach does not require prior knowledge of 555 

the chromosome count, it exacerbates the adverse effects of assembly errors on 556 

chromosome assignment by disrupting the contig ordering and orientation. Therefore, 557 

HapHiC employs the same divide-and-conquer strategy as LACHESIS3 and ALLHiC7, 558 

addressing the chromosome assignment problem through clustering before the ordering 559 

and orientation of contigs within each chromosome (Fig. 1). 560 

Additionally, HapHiC implements four optional preprocessing steps (Fig. 1b) to 561 

enhance clustering: (1) correcting chimeric contigs using Hi-C link spanning coverage; 562 

(2) filtering out low-information contigs, such as short contigs and those lacking Hi-C 563 

links; (3) discarding potential collapsed contigs and residual chimeric contigs; (4) 564 

removing Hi-C links between allelic contig pairs based on the distribution pattern of 565 

Hi-C links. These preprocesses enable HapHiC to perform allele-aware clustering and 566 

increase its tolerance towards assembly errors. 567 

Correcting chimeric contigs 568 

Similar to other scaffolding tools, HapHiC detects misjoins by analyzing the spanning 569 

coverage of Hi-C reads at each contig position (Supplementary Fig. 11). To accurately 570 

determine breakpoints, this coverage is calculated by counting the number of Hi-C read 571 

pairs spanning each contig position with a bin size of 500 bp. HapHiC differs from 572 

other tools by applying stricter criteria to ensure contig contiguity. Specifically, HapHiC 573 

identifies a low-coverage region bounded by two large high-coverage regions as a 574 
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reliable misjoin and breaks it. Low- and high-coverage regions are contiguous bins 575 

divided by one-fifth of the median coverage. By default, the threshold for a large region 576 

is the larger of either one-tenth of a contig or 5000 bp. 577 

Filtering out low-information contigs 578 

Low-information contigs are defined as those that meet one or more of the following 579 

criteria: (1) a length shorter than N80, (2) fewer than five restriction sites, or (3) a Hi-580 

C link density below one-fifth of the median value. The Hi-C link density of a contig is 581 

calculated by dividing the number of Hi-C links connected to all other contigs by the 582 

number of restriction sites within it. These contigs are filtered out before preliminary 583 

clustering because they are error-prone and can significantly reduce clustering 584 

efficiency. 585 

Discarding collapsed and chimeric contigs 586 

First, contigs with a Hi-C link density exceeding 1.9 times the median value are 587 

identified as potential collapsed contigs and removed. Next, the rank-sum algorithm 588 

calculates a rank-sum value for each contig by measuring neighborhood density 589 

(Supplementary Fig. 15). Let 𝐺 = (𝑉, 𝐸) be a network, where 𝑉 represents the set 590 

of contigs as vertices and 𝐸 represents the set of Hi-C links as edges (Supplementary 591 

Fig. 15a). For any contig 𝑣 ∈ 𝑉, let 𝑁(𝑣, 𝑛) denote the set of contigs with the top 𝑛 592 

Hi-C links connected to 𝑣 . For any two contigs 𝑢, 𝑤 ∈ 𝑁(𝑣, 𝑛) , let 𝑟𝑎𝑛𝑘(𝑢, 𝑤) 593 

represent the minimum rank of the number of Hi-C links between 𝑢  and 𝑤 594 

(Supplementary Fig. 15b,c). The final rank-sum value is given by: 595 

∑ 𝑟𝑎𝑛𝑘(𝑢, 𝑤)

𝑢,𝑤∈𝑁(𝑣,𝑛)

 596 

By default, 𝑛  is set to ten. The higher the value, the lower the neighborhood 597 

density. Because collapsed and chimeric contigs are respectively merged and misjoined 598 

from nonadjacent sequences, their neighborhood densities will be much lower than 599 

normal contigs, as reflected by the relatively high rank-sum values (Supplementary 600 

Figs. 16 and 22). Consequently, contigs with a rank-sum value greater than the third 601 
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quartile (Q3) plus 1.5 times the interquartile range (IQR) are considered remaining 602 

collapsed or uncorrected chimeric contigs and are discarded during preliminary 603 

clustering. 604 

Identifying allelic contig pairs and removing inter-allele Hi-C links 605 

HapHiC eliminates the need for reference genomes by identifying allelic contigs based 606 

on the distribution pattern of Hi-C links (Supplementary Fig. 33). Similar to sequence 607 

alignment between allelic contigs, the coordinates of inter-allele Hi-C links are 608 

distributed along the diagonal with a slope of 1 or -1 (Supplementary Figs. 30 and 609 

33a,b), which differs from the pattern within a chromosome. We introduce a 610 

“concordance ratio” to quantify the proportion of Hi-C links that conform to this 611 

distribution (Supplementary Fig. 33b). The algorithm is described in detail below. 612 

Given a pair of contigs, we construct a coordinate system using the coordinates of 613 

𝑛  Hi-C links connecting them, where 20 ≤ 𝑛 ≤ 200  (randomly selected if 614 

exceeding 200). We then use two sliding lines with slopes of 1 and -1 (i.e., 𝑦 =  𝑥 +615 

 𝑏  and 𝑦 =  −𝑥 +  𝑏 , where 𝑏  is a variable intercept) to calculate the maximum 616 

number of coordinate pairs within a certain distance from the lines, denoted as 𝑚. The 617 

final concordance ratio is 
𝑚

𝑛
. The distance is dynamically defined as 1/100 of the length 618 

of the shorter contig, with a minimum value of 5 Kb. The higher the value of the 619 

concordance ratio, the more it indicates that this pair of contigs conforms to the 620 

distribution pattern of Hi-C links between allelic contigs. By default, contig pairs with 621 

a concordance ratio greater than 0.2 are considered allelic (Supplementary Fig. 34). 622 

Next, an undirected weighted graph is constructed, where vertices denote contigs, 623 

edges represent the allelic relationships of contigs, and the edge weights indicate the 624 

number of Hi-C links between contigs (Supplementary Fig. 33c). Maximum cliques 625 

are identified in the graph, and weak edges are removed to divide these cliques into 626 

subcliques with the known ploidy as the maximum number of vertices. To retain intra-627 

haplotype links while removing unfavorable inter-haplotype Hi-C links, contigs from 628 

the same haplotypes are determined by solving the maximum weighted matching 629 
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problem across subcliques using a Hungarian algorithm. Finally, Hi-C links from both 630 

non-maximal matches and allelic contig pairs are removed before preliminary 631 

clustering. 632 

Clustering 633 

ALLHiC7 and LACHESIS3 use an agglomerative hierarchical clustering algorithm to 634 

cluster contigs into chromosomes. However, specifying the number of clusters (𝑘) to 635 

be the number of chromosomes in this method often fails to accurately separate 636 

homologous chromosomes in phased assemblies16, 17. In such cases, substantial 637 

parameter tuning on the 𝑘 values is necessary to improve the clustering results. On the 638 

contrary, HapHiC employs a random walk-based Markov cluster algorithm21 (MCL) 639 

for the initial clustering process. This robust and scalable unsupervised clustering 640 

algorithm has proven effective in constructing protein-protein interaction (PPI) 641 

networks39, clustering orthologous gene families40, and analyzing gene synteny41. 642 

Unlike agglomerative hierarchical clustering, Markov clustering does not specify k but 643 

regulates granularity with different inflation values. Various clustering results of 644 

different granularities can be achieved within a limited range of inflation values. 645 

HapHiC then determines the optimal inflation based on the known number of 646 

chromosomes, the actual number of clusters, and the length distribution of clusters. 647 

First, the Markov clusters for each inflation value are sorted in descending order 648 

by their cluster length, which is the sum of contig lengths within them. Next, we 649 

calculate the length ratio for each adjacent cluster pair. Empirically, if the length ratio 650 

between adjacent clusters is far below 1, it could indicate unseparated contigs from 651 

different chromosomes. Consequently, we prefer the results with progressively 652 

decreasing cluster lengths, where the number of clusters meeting the criterion should 653 

be greater than or equal to the known number of chromosomes. The pseudocode of the 654 

algorithm can be found in Supplementary Table 14. By default, HapHiC initially uses 655 

a length ratio threshold of 0.75. If none of the clustering results meets this threshold, it 656 

will be gradually lowered to 0.5. This method efficiently reduces clustering errors and 657 

eliminates the need for manual tuning of 𝑘. 658 
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HapHiC optimizes the clustering step for assemblies with varying levels of 659 

contiguity. The power-law model of Hi-C links exhibits rapid decay within short 660 

distances, while showing gradual decay over longer ranges7. As a result, longer contigs 661 

are more susceptible to long-range background noise. This is because only their ends 662 

are adjacent to other contigs and provide useful information for clustering. Recent tools, 663 

such as EndHiC42, pin_hic43, and YaHS8, have addressed this issue primarily by 664 

utilizing the Hi-C links from contig ends only. In contrast, HapHiC also considers 665 

information from the inner part of each long contig. First, these contigs are split into 666 

bins, with a size dynamically defined as 1/30 of the average chromosome length and a 667 

maximum value of 2 Mb. These bins are then simply treated as regular contigs during 668 

the subsequent construction of the Hi-C link matrix and Markov clustering. The matrix 669 

is constructed using links from the ends of contigs or bins with a maximum end length 670 

of 500 Kb. After clustering, long contigs are placed in the best clusters based on the 671 

total length of bins in each cluster. On the other hand, assemblies of low contiguity 672 

often consist of too many contigs, thus remarkably slowing down Markov clustering. 673 

To overcome this, we optimize the clustering speed using sparse matrix data structures. 674 

Reassignment 675 

In the reassignment step, previously filtered-out contigs are rescued and assigned to the 676 

most suitable clusters. Unlike ALLHiC rescue7, this process also allows for the 677 

reassignment of misassigned contigs. All contigs that meeting the minimum 678 

requirements for restriction sites and Hi-C links are traversed in descending order to 679 

determine their most suitable clusters. First, Hi-C link densities between each contig 680 

and MCL cluster are calculated, defined as the number of Hi-C links between a contig 681 

and a cluster, divided by the sum of their restriction site counts. The most suitable 682 

cluster for each contig is determined based on two criteria: (1) the Hi-C link density to 683 

the best cluster is more than four times the average value to other clusters; (2) the 684 

density ratio between to the second-best and the best cluster is less than 0.6. By default, 685 

reassignment is iterated for up to five rounds to converge, followed by a rescue process 686 

for unanchored contigs using only the first criterion. 687 
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If the number of clusters still exceeds the number of chromosomes, HapHiC 688 

performs an additional agglomerative hierarchical clustering22 with average-linkage to 689 

obtain the final chromosome-level clusters. To achieve this, a matrix is constructed by 690 

calculating the number of Hi-C links between each cluster pair, divided by the product 691 

of their restriction site counts. Here, multiplication is used for normalization instead of 692 

sum, which differs from the Hi-C link density described above. This approach performs 693 

better when cluster lengths differ significantly. The maximum value in the matrix is 694 

subtracted from the matrix to obtain the final distance matrix for clustering. 695 

Ordering and orientation 696 

3D-DNA and ALLHiC have demonstrated excellent performance in contig ordering and 697 

orientation compared with other Hi-C-based scaffolding tools7. However, their 698 

disadvantage is that they are very slow when dealing with a large number of contigs. 699 

The iterative contig ordering and orientation algorithm of 3D-DNA breaks newly 700 

connected scaffolds from their exact midpoints, resulting in the trouble that the density 701 

graph should be reconstructed from scratch in each iteration5. Besides, the intermediate 702 

results are read and written through text files. In HapHiC, we simplify the process and 703 

call it “fast sorting”. Specifically, we calculate the distance between the midpoint of 704 

each newly connected scaffold and the midpoints of all contigs in it to find the nearest 705 

one as the approximate midpoint of the scaffold. As a result, the density graph 706 

reconstruction in HapHiC can retrieve necessary data directly from memory, 707 

eliminating the need for file reading. This improvement makes the iterative ordering 708 

and orientation process significantly faster than the original one without compromising 709 

the results. 710 

ALLHiC starts contig ordering iterations from randomly shuffled contigs using a 711 

genetic algorithm7. When handling numerous contigs, the algorithm can be very slow 712 

to converge. On the other hand, although the process is parallelized for each cluster, but 713 

the Hi-C links between all contigs are stored and processed using a single huge CLM 714 

file, leading to a high memory usage. In HapHiC, we use the result of fast sorting as the 715 
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initial configuration and subsequently employing the ALLHiC algorithm for further 716 

optimization. Additionally, the CLM files is split into cluster-specific files, retaining 717 

only the Hi-C links within each cluster. This integrated approach allows HapHiC to 718 

order and orient contigs more accurately and efficiently than ALLHiC. 719 

Pseudomolecule Building 720 

In pseudomolecule building, the contigs in each cluster are joined together based on the 721 

results of contig clustering, ordering, and orientation. By default, the adjacent contigs 722 

are separated with 100-bp Ns as gaps. The sequences and scaffolding information of 723 

these pseudomolecules are finally output in the FASTA format and AGP format, 724 

respectively. 725 

Mapping and filtering of Hi-C reads 726 

Fastp44 (version 0.21.0) was used to remove adaptors, trim low-quality sequences, and 727 

evaluate the quality of raw Hi-C reads. To evaluate the performance of 3D-DNA, Hi-C 728 

reads were aligned to assemblies and filtered using the Juicer pipeline45. For other 729 

scaffolding tools or purposes, Hi-C reads were processed using a uniform method. First, 730 

the reads were aligned to assemblies or published genomes using BWA-MEM46 731 

(version 0.7.17-r1198-dirty) with the parameter “-5SP”. Next, PCR duplicates, 732 

secondary and supplementary alignments were filtered out using SAMBLASTER47 733 

(version 0.1.26) and SAMtools48 (version 1.11). Finally, a custom script “filter_bam.py” 734 

was employed to remove alignments with a mapping quality of zero and an edit distance 735 

greater than 2. 736 

Simulation of datasets with various adverse factors 737 

In the ALLHiC paper, the authors simulated a haplotype-resolved diploid genome by 738 

merging both the genome sequences and Hi-C data of two rice subspecies, indica and 739 

japonica7. However, this approach has some limitations. First, in a real diploid, there 740 

are background interactions between homologous chromosomes, because they are 741 

located in the same nucleus. The artificial merging of data from different subspecies 742 

leads to an underestimation of Hi-C links between homologous chromosomes, making 743 
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it easier to separate them even than those between non-homologous chromosomes 744 

(Supplementary Fig. 2). Second, the conclusions drawn from experiments on diploids 745 

may not apply to polyploids. Third, using only a pair of homologous chromosomes for 746 

analysis ignores misassignments between non-homologous chromosomes. Therefore, 747 

we constructed a ground truth by manually removing obvious assembly errors based on 748 

the published haplotype-resolved autotetraploid genome of M. sativa XinJiangDaYe17 749 

(Supplementary Fig. 1). We used all 32 chromosomes to construct a ground truth 750 

genome of 2.0 Gb.  751 

Using this template, we simulated a series of assemblies with various adverse 752 

factors through a pipeline of multiple custom scripts (Supplementary Fig. 3). The 753 

script “sim_contig.py” fragmented the genome into assemblies with different N50 754 

values (Supplementary Fig. 4) and coefficients of variation (CVs) of length 755 

(Supplementary Fig. 6). Since the contig N50 of the M. sativa genome is less than 500 756 

Kb, we retained the gaps represented by Ns in the fragments to simulate higher 757 

contiguity. For concision, we always refer to these fragments as contigs, regardless of 758 

whether there are gaps in them. Based on these assemblies, we used the script 759 

“sim_chimeric_contigs.py” to simulate assemblies with different proportions of 760 

chimeric contigs (Supplementary Fig. 10). Among them, chimeric contigs simulated 761 

between homologous chromosomes, non-homologous chromosomes, and within 762 

chromosomes were generated at a ratio of 7:2:1, respectively. To simulate different 763 

effective sequencing depths, we used “samtools view -s” with 12345 as the seed for 764 

random sampling (Supplementary Fig. 8). 765 

We simulated haplotypes by introducing single nucleotide polymorphisms (SNPs), 766 

insertions, and deletions to the first haplotype in the ground truth genome using the 767 

script “sim_haplotypes.py”. By adjusting the proportion of variations and number of 768 

haplotypes generated, we obtained genomes with different sequence divergence levels 769 

(Supplementary Fig. 27) and ploidies. The corresponding Hi-C reads were generated 770 

by sim3C49, with the parameter “--trans-rate” dynamically adjusted according to 771 

different ploidies to maintain a fixed intensity of chromosome interaction. To simulate 772 
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reality, we introduced SNPs, insertions, and deletions at a ratio of 10:0.5:0.5, with a 2:1 773 

ratio of transitions to transversions for SNPs (Supplementary Fig. 26). Furthermore, 774 

these variations were unevenly distributed in bins with a length of 100 Kb and a CV of 775 

0.5. 776 

Based on these simulated haplotypes and Hi-C reads, we further generated 777 

collapsed contigs (Supplementary Fig. 20) and switch errors (Supplementary Fig. 778 

31). We used the script “sim_collapsed_regions.py” to create two-, three-, and four-779 

haplotype collapsed contigs in a ratio of 7:2:1. Switch errors were introduced by 780 

randomly shuffling variations between haplotypes using the script 781 

“sim_switch_errors.py”. We also incorporated all the custom scripts above to introduce 782 

5% each of chimeric, collapsed contigs, and switch errors into assemblies with ploidy 783 

ranging from 2 to 16. Each contig in simulated assemblies recorded information such 784 

as source chromosome, haplotype, position, and error type for subsequent result 785 

evaluation. 786 

Three reference genomes of rice (IRGSP-1.024), Arabidopsis (TAIR10.125), and 787 

human (CHM13v2.0_noY1) were used as ground truths to evaluate the accuracy of Hi-788 

C-based scaffolding tools in contig ordering and orientation. Assemblies with varying 789 

contig N50 values were also simulated using the script “sim_contigs.py”. HapHiC, 790 

ALLHiC, and LACHESIS perform ordering and orientation for individual 791 

chromosomes (clusters), differing from the whole-genome scaffolding of SALSA2, 3D-792 

DNA, and YaHS. Thus, contigs in each simulated assembly were partitioned into 793 

corresponding chromosomes and ordered and oriented separately, making the 794 

evaluation independent of chromosome assignment. Assembly correction of 795 

scaffolding tools was disabled for this experiment. 796 

Scaffolding performance evaluation 797 

We initially evaluated the performance of Hi-C-based scaffolding tools in chromosome 798 

assignment using metrics including contiguity, anchoring rate, misassignment rates, and 799 

the number of scaffolds using a custom script “result_statistics.py”. 800 
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In simulated assemblies, all chromosomes were fragmented. Thus, only sequences 801 

output by scaffolding tools containing multiple contigs are true scaffolds, while 802 

individual contigs are classified as unanchored sequences. The anchoring rate is the 803 

ratio of the length of contigs in scaffolds to the total length of all contigs. Ideally, the 804 

anchoring rate is 100%, and the number of scaffolds equals the number of chromosomes. 805 

We did not use metrics such as N50 to assess scaffold contiguity because 806 

incorrectly separated chromosomes could artificially inflate N50 values. Instead, we 807 

designed an indicator with a maximum value of one that is independent of the anchoring 808 

rate. First, we calculated the cumulative lengths of contigs based on their source 809 

chromosomes for each scaffold and identified the longest source chromosome as the 810 

dominant chromosome. Subsequently, we divided this length by the total length of 811 

dominant chromosome anchored to all scaffolds to obtain a ratio. A ratio of one signifies 812 

that the scaffold entirely comprises contigs from a specific chromosome, and all contigs 813 

from this chromosome are distributed only within this scaffold. Finally, we calculated 814 

the average value of this ratio among all scaffolds to obtain the final contiguity. A 815 

contiguity of one indicates that all anchored chromosome sequences correspond 816 

perfectly to scaffolds in a one-to-one relationship. 817 

For contigs in scaffolds that do not originate from the dominant chromosome, we 818 

categorize them as either misassignments between homologous chromosomes or 819 

between non-homologous chromosomes, depending on their actual relationship with 820 

the dominant chromosome. The misassignment rate is calculated as the proportion of 821 

their length to the total length of the anchored genome. If all contigs in the scaffolds 822 

originate from the dominant chromosome, the misassignment rate is zero. 823 

Chimeric and collapsed contigs are excluded from statistics because they cannot 824 

be considered totally correct when placed in any scaffold. During ALLHiC pruning, the 825 

genome of a closely related species, Medicago truncatula (MtrunA17r5.0-ANR50), was 826 

used as a reference. However, chromosomes 4 and 8 of M. truncatula have some 827 

structural differences compared to those of M. sativa17. Therefore, we also calculated 828 

the contiguity and misassignment rate after excluding these two chromosomes. Since 829 
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we manually tuned the parameter 𝑘 for ALLHiC, we calculated Δ𝑘 as the difference 830 

between optimized 𝑘 and default 𝑘. 831 

We also evaluated the accuracy of Hi-C-based scaffolding tools in contig ordering 832 

and orientation for assemblies with varying contig N50 values. In preliminary 833 

comparisons between HapHiC and ALLHiC, we counted the number of generations for 834 

convergence and calculated scores using the “optimize” program of ALLHiC7. For a 835 

more objective comparison, two metrics were used to evaluate the accuracy of all 836 

scaffolding tools. Lin’s concordance correlation coefficients26 (CCCs) were calculated 837 

using a custom script “draw_tour_file.py” to measure large-scale consistency between 838 

results and reference genomes. “Costs” were also calculated using a modified 839 

DERANGE II program27 with the parameters including linear (-L), signed (-S), and a 840 

look-ahead value of three. The weights for inversions, transpositions, and transversions 841 

were set to one, one, and two, respectively, to simulate the number of steps needed to 842 

achieve optimal results in Juicebox28. Costs for both the original order and reverse 843 

complementary order were calculated for each scaffolding result, and the minimum of 844 

the two values were considered the final cost. For SALSA2 and YaHS, which can output 845 

multiple scaffolds for each chromosome, we joined these scaffolds as the result of 846 

ordering and orientation. However, for 3D-DNA, the intermediate result “0.assembly” 847 

was used to ensure contig completeness and result comparability. 848 

Measurement of execution time and peak memory usage 849 

All tasks were executed on a server running CentOS Linux (release 7.6.1810). The 850 

server is equipped with two Intel Xeon Gold 6132 CPUs (a total of 28 cores at 2.6 GHz) 851 

and 192 gibibytes (GiB) of memory. The CPU time, wall time, and peak memory usage 852 

of each task were measured using the PBS Professional job scheduler (PBS Pro, version 853 

18.1.4). A custom script, “pbsperf.py,” was utilized to summarize the records and 854 

convert the units to minutes (min) and GiB. However, the measurements of peak 855 

memory usage may not be precise because the scheduler measures them at intervals. If 856 

a task completes within several seconds, PBS Pro may record a peak memory usage of 857 

zero. All steps in ALLHiC were executed in parallel using GNU parallel51 (version 858 
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20210922) to optimize the wall time if possible. 859 

Validation of HapHiC in real cases 860 

HapHiC was further validated using real cases. We compared its scaffolding 861 

performance and resource usage with those of ALLHiC in published haplotype-862 

resolved autotetrapolyploid and diploid genomes. Additionally, we compared HapHiC 863 

with YaHS in haplotype-collapsed allotetraploid and diploid genomes of various taxa. 864 

The information of all species used in the validation is listed in Supplementary Data 865 

4. Apart from the potato C88 genome, which was assembled using hifiasm12 (version 866 

0.19.0-r534), the corresponding assemblies of other genomes were generated by 867 

breaking the “N” gaps and randomly shuffling the ordering and orientation of contigs 868 

using custom scripts “split_fasta.py” and “shuffle_fasta.py”, respectively. All 869 

scaffolding results were visualized using Juicebox28 (version 1.11.08) for comparisons. 870 

For the potato C88 assembly, we also used a 𝑘-mer-based method to analyze the 871 

scaffolds output by HapHiC and ALLHiC using a script “haplotype_kmers.py”. First, 872 

we generated 201-mers from the published haplotype-resolved reference genome of 873 

potato C88. These 201-mers were then annotated based on their source chromosomes 874 

and used to classify each region of HapHiC and ALLHiC scaffolds with a bin size of 875 

500 Kb. Additionally, we aligned these scaffolds to the reference genome using unimap 876 

(https://github.com/lh3/unimap, version 0.1-r41) and visualized the alignments with a 877 

modified version of paf2dotplot (https://github.com/zengxiaofei/paf2dotplot). 878 

Sampling, library construction, and genome sequencing of M. × giganteus 879 

Young leaves of a M. × giganteus plant were collected at Hunan Agriculture University 880 

in Changsha, Hunan Province, P.R. China and immediately frozen in liquid nitrogen. 881 

For HiFi sequencing, DNA was extracted from the leaves using a modified CTAB 882 

protocol. The DNA was then qualified and quantified using a NanoDrop 2000 883 

Spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA), a Qubit 3.0 884 

Fluorometer (Life Technologies, Carlsbad, CA, USA), and 0.8% agarose gel 885 

electrophoresis. Three SMRTbell libraries were constructed using sheared DNA and the 886 
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SMRTbell Express Template Prep Kit 2.0 (Pacific Biosciences, Menlo Park, CA, USA). 887 

The libraries were size-selected with a minimum length of ~15 Kb using the BluePippin 888 

(Sage Science, Beverly, MA, USA) and sequenced on the PacBio Sequel II System 889 

under the circular consensus sequencing (CCS) mode for 30-h movies using 2.0 890 

Chemistry. A total of 69.4 Gb of HiFi reads were generated. 891 

For Hi-C sequencing, the leaves were fixed with formaldehyde to cross-link 892 

chromatin. After cell lysis, the cross-linked chromatin was digested using the MboI 893 

restriction enzyme. Sticky ends were repaired, labeled with biotin, and ligated to form 894 

chimeric molecules. Proteins were then digested from the chromatin using protease, 895 

and DNA was purified using a QIAamp DNA Mini Kit (Qiagen, Hilden, NRW, 896 

Germany) and sheared into fragments of 400-600 bp. Biotin-labeled fragments were 897 

enriched using streptavidin-coated magnetic beads (Vazyme, Nanjing, JS, P.R. China) 898 

for library construction. Hi-C sequencing was performed on the BGI MGISEQ-2000 899 

platform under the PE150 mode, generating a total of 684.1 Gb of Hi-C reads. 900 

De novo assembly and comparative analysis of M. × giganteus genome 901 

The genome of M. × giganteus was assembled using hifiasm12 (version 0.13-r308) with 902 

HiFi reads. The parameter “-l0” was employed to disable duplication purging, resulting 903 

in the primary unitigs (p_utg) with a size of 6.13 Gb and an N50 of 2.18 Mb. After 904 

removing organellar and exogenous DNA sequences from these unitigs, a draft 905 

assembly of 6.11 Gb with an N50 of 2.19 Mb was obtained. To identify the source of 906 

diagonally distributed inter-allele Hi-C links, the genome was also assembled using 907 

HiCanu23 (version 2.1.1) for comparison with the hifiasm assembly. The hifiasm 908 

assembly was scaffolded onto 57 chromosome-level pseudomolecules using HapHiC 909 

and ALLHiC separately, both with default parameters. After manual curation in 910 

Juicebox28 (version 1.11.08), the final chromosome-level haplotype-resolved genome 911 

of M. × giganteus was generated based on the HapHiC scaffolds. 912 

The genes in each haplotype of M. × giganteus were simply annotated by mapping 913 

the coding sequences of the M. sinensis genome using GMAP52 (version 2019-12-01) 914 
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with the parameter “-n 1”. MCscan41 in JCVI utility libraries (version 1.1.18) was used 915 

to perform gene synteny comparisons between the subgenomes of Miscanthus species 916 

and to draw the karyotype plot. Genome alignment between chromosomes of M. × 917 

giganteus and M. sinensis was performed using Minimap253 (version 2.26-r1175). 918 

Structural variations were identified using SyRI54 (version 1.6.3) and visualized using 919 

plotsr55 (version 1.1.1). To compare the structural accuracy of the M. × giganteus and 920 

M. sinensis genomes, five genetic maps of M. sinensis and one genetic map of M. 921 

sacchariflorus were collected38. The genetic markers of each map were aligned to the 922 

two genomes using BWA-ALN and BWA-SAMSE (version 0.7.17-r1198-dirty) with 923 

default parameters. The agreements between the genetic maps and the genomes were 924 

analyzed and visualized using ALLMAPS2 in JCVI utility libraries with the markers 925 

shared by all genetic maps. 926 

Program versions and command lines 927 

All program versions and command lines used in this research are available in 928 

Supplementary Information. 929 

Statistics analysis 930 

Two-sided Wilcoxon signed-rank tests were performed to compare scaffold contiguity 931 

values, misassignment rates, ALLHiC scores, Lin’s concordance correlation 932 

coefficients (CCCs), DERANGE costs, and time and memory usage. The function 933 

“wilcox.test” in R language (version 4.0.2) was used with the “paired” parameter set to 934 

“TRUE”. The results of statistical tests were visualized using the ggpubr package in R. 935 

The “geom_smooth” function in ggplot2 was used to fit curves with the formula “y ~ 936 

x” and the method “loess”. Lin’s CCCs were calculated between the corresponding 937 

positions on the reference chromosomes and scaffolds to measure their agreements 938 

using the following formula: 939 

𝐶𝐶𝐶 =
2𝜌𝜎𝑥𝜎𝑦

𝜎𝑥
2 + 𝜎𝑦

2 + (𝜇𝑥 − 𝜇𝑦)2
 940 
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where 𝜌 is the Pearson correlation coefficient between the two variables, 𝜎𝑥 and 𝜎𝑦 941 

are the standard deviations of the two variables, and 𝜇𝑥 and 𝜇𝑦 are the means of the 942 

two variables. Additionally, Spearman’s correlation coefficients were calculated to 943 

quantify the agreements between genetic maps and genomes using ALLMAPS2. 944 

Data availability 945 

All raw sequencing data and the final chromosome-level haplotype-resolved genome 946 

of M. × giganteus will be publicly available after publication. All published raw 947 
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Supplementary Data 4. 949 

Code availability 950 

HapHiC and all custom scripts for dataset simulation are available on GitHub at 951 

https://github.com/zengxiaofei/HapHiC. The source code of modified ALLHiC can be 952 

found at https://github.com/zengxiaofei/allhic. 953 
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Fig. 1 | Overview of the HapHiC pipeline. a, A network graph illustrates contigs connected via Hi-C
links. Contigs from haplotype 1 and haplotype 2 are represented by red and blue rectangles, respectively.
Collapsed and chimeric contigs are shown as purple and bicolor rectangles, respectively. Hi-C links within
haplotype 1, within haplotype 2, and connecting collapsed contigs are depicted as red, blue, and purple
curves, respectively. Inter-allele Hi-C links are represented by dashed purple lines. b, The preprocessing
step involves assembly correction, filtering out low-information contigs, discarding collapsed and chimeric
contigs, and removing inter-allele Hi-C links. Breakpoints of assembly correction are represented by black
arrows, while crosses indicate the removal of inter-allele Hi-C links. c, Preliminary Markov clustering
is performed with the remaining contigs and Hi-C links. d, The reassignment step rescues and reassigns
contigs to the most suitable clusters and performs an additional agglomerative hierarchical clustering if the
number of clusters exceeds the expected number of chromosomes. e, An efficiency-improved 3D-DNA
iterative algorithm is used for contig ordering and orientation, referred to as “fast sorting”. In each round
of iteration, a confidence graph is constructed using the hemi-parts (green and blue segments) of contigs or
scaffolds. The graph is then filtered to retain only reciprocal best matching (opaque red lines). Unlike the
original 3D-DNA algorithm, the hemi-parts of scaffolds are split at the approximate midpoints to eliminate
the need for reconstructing graph from scratch. f, Optimization of contig ordering and orientation is based
on the result of fast sorting using the genetic algorithm and greedy method.
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Fig. 2 | Comprehensive performance analysis of Hi-C-based scaffolding tools in chromosome assignment
under various adverse conditions. a, A schematic diagram illustrating the potential challenges in allele-
aware scaffolding, including the presence of collapsed contigs, chimeric contigs, and ambiguous or incor-
rect mapping. b-f, The effect of manually tuning parameter k on ALLHiC performance (n = 141). g-k, The
effect of pruning and separating homologous groups on ALLHiC performance (n = 152, 14, 14, 16, and
152 respectively). i, Performance analysis of Hi-C-based scaffolding tools on assemblies with various ad-
verse factors of varying degrees. HapHiC was executed in default mode (HapHiC), with assembly corrected
(HapHiC corrected) or with inter-allele Hi-C links removed (HapHiC removed). The total misassignment
rate includes misassignment rate between both homologous and non-homologous chromosomes. The ad-
justed contiguity is calculated by multiplying the contiguity by the anchoring rate. P values were derived
from two-sided Wilcoxon signed-rank tests.
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Fig. 3 | Evaluation of Hi-C-based scaffolding tools’ performance in contig ordering and orientation across
assemblies with varying contig N50 values. a, A schematic diagram categorizes the contig ordering and
orientation results into four quadrants based on their distinct tendencies, using the absolute value of Lin’s
concordance correlation coefficient (CCC) and DERANGE cost as metrics. The former metric assesses the
large-scale consistency between the results and the reference chromosomes, while the latter one quantifies
the agreement on a smaller scale. b, The absolute values of Lin’s CCC and DERAGE costs for each Hi-
C-based scaffolding tool in ordering and orienting the contigs of the rice IRGSP-1.0 chromosomes with
varying contig N50 values are presented (p value from two-sided Wilcoxon signed-rank tests, n = 12). c,
The dot plots illustrate the concordance between chromosome 1 of the rice IRGSP-1.0 genome and the contig
ordering and orientation result produced by each Hi-C-based scaffolding tool. Red and blue dots represent
forward and reverse complementary alignments, respectively.
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Fig. 4 | Comparative analysis of execution time and memory usage for Hi-C-based scaffolding tools. a-c,
A comparative analysis of execution time and memory usage between HapHiC and ALLHiC during contig
ordering and orientation. The wall time (a, n = 160), CPU time (b, n = 160), and peak memory (c, n =
48, 20, 92, respectively) for HapHiC and ALLHiC were recorded for each chromosome of rice IRGSP-1.0,
Arabidopsis TAIR10.1, and human CHM13v2.0_noY genomes under varying contig N50 values. d, The
total time and memory usage of the entire pipeline for each Hi-C-based scaffolding tool while scaffolding
genome assemblies with different contig N50 values simulated from theM. sativa ground truth. e, The time
andmemory usage of each Hi-C-based scaffolding tool during assembly correction. f, The time andmemory
usage of each Hi-C-based scaffolding tool while processing Hi-C data at different depths. g, Comparisons
of execution time and memory usage between HapHiC and ALLHiC when scaffolding published haplotype-
resolved assemblies (n = 7). h, Comparisons of execution time and memory usage between HapHiC and
YaHS when scaffolding published haplotype-collapsed assemblies (n = 20). P values were derived from
two-sided Wilcoxon signed-rank tests.
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Fig. 5 | Comparative analysis and examples of HapHiC in scaffolding published autotetraploid genomes. a,
A comparison of assembly correction between HapHiC and ALLHiC for the S. spontaneum Np-X genome.
b, Examples of assembly correction by HapHiC and ALLHiC, including a chimeric contig formed between
homologous chromosomes (CM039579.1_ctg399_+), a chimeric contig formed between non-homologous
chromosomes (CM039579.1_ctg195_−), and two non-chimeric contigs (CM039579.1_ctg499_+ and
CM039579.1_ctg39_−). The line charts depict the Hi-C spanning coverages along contigs (left axes), while
histograms represent the percentages of Hi-C links based on their sources along contigs (right axes). The
source of each Hi-C link is determined by the mapping position of the other end of the read pair. Red and
blue triangles indicate the breakpoints determined by HapHiC and ALLHiC, respectively. c, The dot plots
illustrate the alignments between the HapHiC scaffolds and the haplotypes of potato C88 genome, with
dot colors indicating the sequence identities of alignments. d, A k-mer-based analysis reveals the primary
source of each position along the contigs from the potato C88 haplotypes. The color indicates the primary
source of k-mers, while the degree of transparency represents the percentage of haplotype-specific k-mers.

44 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 18, 2023. ; https://doi.org/10.1101/2023.11.18.567668doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.18.567668
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

20

40

60

80

100

120

140

160

Position (Mb)
Differential gene
synteny blocks

Genome
MsiA Chr02
MgiA Chr02

syntenic region

inversion
translocation
duplication

Genome alignment

Alignment

Hi-C
 co

nta
ct 

map
 of

 M
siA

 C
hr0

2
Hi-C contact map of MgiA Chr02

inv
ers

ion

tra
ns

loc
ati

on

inv
ert

ed
 tra

ns
loc

ati
on

M
ap

A.
M

-2
M

ap
A.

P-
2

M
ap

B.
M

-2
M

ap
B.

P-
2

M
ap

C
.M

-2
M

ap
C

.P
-2

0 cM

141 cM

M
ap

A.
P-

2

0 cM

127 cM

M
ap

C
.P

-2

0 cM

109 cM

M
ap

B.
P-

2

0 cM

139 cM

M
ap

A.
M

-2

0 cM

131 cM

M
ap

B.
M

-2

0 cM

106 cM

M
ap

C
.M

-2

MgiA Chr02 (170 Mb) 0 20 40 60 80 100 120 140 160 Mb

0

100 ρ = 0.998

0

100 ρ = 0.999

0

100 ρ = 0.997

0

200
ρ = 0.997

0

200
ρ = 0.993

0

100 ρ = 0.998

error-enriched region
Manually marked region

****

1

2

3

MsiA MgiA

b

**

1.5

2.0

2.5

3.0

MsiA MgiA

−l
og

10
(1

 −
 S

pe
ar

m
an

’s
 ρ

)

Genome
MsiA

MgiA

a

c d e

Five Msi (A) genetic maps One Msa (B) genetic map
MsiA

MgiA

MgiB1

MgiB2

MluB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2 4 3 6 5 7 8 10 9 12 11 13 15 14 17 16 19 18

−l
og

10
(1

 −
 S

pe
ar

m
an

’s
 ρ

)

Fig. 6 | Comparative genomic analysis of M. × giganteus and other Miscanthus species. a, Gene syn-
teny analyses between each subgenome haplotypes of M. × giganteus (MgiA, MgiB1, and MgiB2) and
the genomes of M. sinensis (MsiA) and M. lutarioriparius (MluB). Ribbons illustrate gene synteny blocks
between orthologous chromosome pairs, with green, blue, and red ribbons representing inversions, translo-
cations, and inverted translocations, respectively. b, A comparison between MsiA and MgiA chromosomes
based on their alignments with five genetic maps ofM. sinensis (n = 94) and one genetic map ofM. sacchar-
iflorus (n = 19). Spearman’s correlation coefficients (ρ) were calculated to quantify the agreements between
genetic maps and genomes using ALLMAPS. P values were derived from two-sided Wilcoxon signed-rank
tests on the raw ρ values. c, Alignments between the physical positions on the chromosome 2 of MgiA
and the positions on the six genetic maps. d, A correlation analysis between the physical positions on the
chromosome 2 of MgiA and the corresponding map positions using Spearman’s correlation coefficients. e,
A comparison of Hi-C contact maps between the chromosomes 2 of MsiA and MgiA. Genome alignment
between the two chromosomes is shown in ribbons, with yellow, green, and blue ribbons representing inver-
sions, translocations, and duplications identified by SyRI. The inconsistent gene synteny blocks identified in
the gene synteny analysis (a) are also shown in this plot. Dashed rectangles highlight error-enriched regions
in MsiA chromosome 2.
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