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19 Abstract

20  Scaffolding is crucial for constructing most chromosome-level genomes. The high-
21  throughput chromatin conformation capture (Hi-C) technology has become the primary
22  scaffolding strategy due to its convenience and cost-effectiveness. As sequencing
23 technologies and assembly algorithms advance, constructing haplotype-resolved
24 genomes is increasingly preferred because haplotypes can provide additional genetic
25 information on allelic and non-allelic variations. ALLHiC is a widely used allele-aware
26  scaffolding tool designed for this purpose. However, its dependence on chromosome-
27  level reference genomes and a higher chromosome misassignment rate still impede the
28 unraveling of haplotype-resolved genomes. In this paper, we present HapHiC, a
29  reference-independent allele-aware scaffolding tool with superior performance on
30 chromosome assignment as well as contig ordering and orientation. Additionally, we

31 provide new insights into the challenges in allele-aware scaffolding by conducting
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32  comprehensive analyses on various adverse factors. Finally, with the help of HapHiC,
33  we constructed the haplotype-resolved allotriploid genome for Miscanthus % giganteus,
34 an important lignocellulosic bioenergy crop. HapHiC is available at

35  https://github.com/zengxiaofei/HapHiC.

36 Introduction

37  The construction of a high-quality reference genome serves as the basis for functional
38  genomics research in a species. Chromosome scaffolding is a necessary step in de novo
39  building eukaryotic chromosome-level genomes, except for directly assembling
40  telomere-to-telomere (T2T) genomes'. Its objective is to determine the chromosome
41  assignment of contigs or scaffolds in the assemblies, as well as the ordering and
42  orientation of these sequences on the chromosomes. In early genome research,
43  chromosome scaffolding was often achieved using the information from linkage groups
44  and genetic distance in genetic maps’. However, in recent years, the high-throughput
45  chromatin conformation capture (Hi-C) technology has gradually replaced genetic
46 maps due to its simplicity, short cycle, and low cost, making it the most widely used
47 chromosome scaffolding solution®®. Hi-C links are generated by proximity ligation and
48  massively parallel sequencing to indicate the frequency of chromatin interactions
49  between different loci in the genome’. This information can be used to infer
50 chromosome territories, as well as the distance and orientation between contigs or
51  scaffolds’. Several Hi-C-based scaffolding tools, including LACHESIS?, HiRise*, 3D-
52  DNA®, SALSA2° and YaHS?®, have been developed for haploid and haplotype-

53  collapsed assemblies.

54 For heterozygous diploids or polyploids, a haplotype-resolved assembly consists
55  of'two or more sets of haploid sequences. In contrast to a haplotype-collapsed assembly,
56 it provides additional genetic information, such as bi- or multi-alleles, and cis/trans
57  configurations among non-allelic variations!®. Recent advances in sequencing
58  technologies and assembly algorithms have propelled the unraveling of haplotype-

59 resolved genomes. HiFi sequencing from Pacific Biosciences (PacBio) and duplex
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60  sequencing from Oxford Nanopore Technologies (ONT) have both achieved a base
61  accuracy level of Q30 (99.9%), which provides a solid foundation for more accurate
62  phasing of alleles. Trio binning uses short reads from parental genomes to phase long
63  reads, enabling phasing at the whole-genome level'!. More recently, hifiasm takes
64  advantage of Hi-C sequencing data for chromosome-level phasing without parental
65  data'?. These two methods have demonstrated high accuracy in dealing with diploid or
66  diploid-like allopolyploid genomes. Consequently, subsequent chromosome

67  scaffolding can be independently performed on each phased haplotype.

68 Autopolyploidy is prevalent in seed plants, especially in economically important
69  crops'>. Haplotype phasing in autopolyploid genomes facilitates the study of crop
70  domestication history and genetic breeding'. It also lays the foundation for analyzing
71  allele expression dominance and genome evolution after whole-genome duplication
72 (WGD)!°. However, assembling haplotype-resolved autopolyploid genomes is more
73 challenging than diploid genomes. Trio binning is unsuitable for autopolyploids'!, and
74 the Hi-C-based algorithm in hifiasm produces unbalanced phasing results during the
75  assembly of autopolyploid genomes'>. Therefore, the most common strategy for
76  constructing a haplotype-resolved autopolyploid genome is to perform allele-aware
77  scaffolding, which utilizes Hi-C data to allocate contigs to different haplotypes
78  simultaneously during chromosome scaffolding’. On the other hand, scaffolding each
79  phased haplotype separately may result in errors because the Hi-C data from multiple
80  haplotypes are aligned to a single haplotype, disregarding possible chromosomal
81  structural variations between haplotypes. This once again emphasizes the importance

82  of allele-aware scaffolding.

83 ALLHiC is a widely used Hi-C scaffolding tool specifically designed for allele-
84  aware scaffolding’. It effectively identifies allelic sequences and removes the Hi-C links
85  between them to reduce interference prior to clustering. ALLHiC has demonstrated
86  robust performance in haplotype phasing and has been applied to resolve the diploid
87  and autotetraploid genomes of several important crops'®?°. However, this method

88  requires a chromosome-level reference genome from a closely related species, which
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89  may not be available for many species. Although it is feasible to assemble and annotate
90  a haplotype-collapsed genome as the reference'?, it significantly increases the time and
91 cost of genome research. Additionally, ALLHiC has been observed to introduce
92  clustering errors when using the reference genome (as discussed in Results). These
93 limitations and drawbacks have hindered the construction of haplotype-resolved

94  genomes to some extent, especially in autopolyploids.

95 In this study, we introduce HapHiC, a Hi-C-based scaffolding tool that enables
96 allele-aware chromosome scaffolding of autopolyploid assemblies without reference
97  genomes. We conducted a comprehensive investigation into the factors that may impede
98 the allele-aware scaffolding of genomes. Compared to existing methods, HapHiC
99  demonstrated a higher scaffolding contiguity and lower misassignment rates when
100  addressing these challenges. Additionally, HapHiC is fast, resource-efficient, and has
101  been successfully validated in genomes with varying ploidies and taxa. By utilizing
102  HapHiC, we finally constructed the haplotype-resolved genome of Miscanthus %

103  giganteus, an important lignocellulosic bioenergy crop.

104 Results

105  Overview of HapHiC

106  To ensure concision and clarity, we will use the term “contigs” to refer to both contigs
107  and scaffolds input into scaffolding tools. Assembly errors in phased assemblies and
108  strong Hi-C signals between allelic contigs are considered the main obstacles that
109  hinder allele-aware scaffolding. HapHiC addresses these challenges through two
110  strategies. First, HapHiC prioritizes the chromosome assignment of contigs (Fig. 1¢,d)
111 before determining their ordering and orientation (Fig. 1e,f), similar to the approach
112 used by LACHESIS® and ALLHiC’. This is because determining scaffold or
113 chromosome boundaries during or after contig ordering and orientation, as done by 3D-
114  DNAJ, SALSA2S, and YaHS?, can amplify the negative effects of assembly errors and
115  undesirable inter-allele Hi-C signals on chromosome assignment by disrupting the

116  ordering and orientation of contigs. Therefore, HapHiC employs this “divide-and-
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117 conquer” strategy to isolate their negative impacts between these two steps. Second,
118  HapHiC applies several preprocessing steps before chromosome assignment to correct
119  and filter input contigs and remove Hi-C links between allelic contigs (Fig. 1b).
120  Specifically, HapHiC implements an efficient and stringent method to correct chimeric
121 contigs with minimal impact on contig N50. Subsequently, low-information contigs,
122 such as short contigs and those lacking Hi-C links, are temporarily removed before
123 clustering due to their propensity for errors. In addition to the conventional method of
124 identifying collapsed contigs based on Hi-C link density, we introduce a unified “rank-
125  sum” algorithm to further filter out residual chimeric and collapsed contigs. Moreover,
126  undesirable inter-allele Hi-C links are removed based on the distribution pattern of Hi-
127 C links. These innovative approaches significantly enhance HapHiC’s tolerance to
128  assembly errors and enable its capability of allele-aware scaffolding without reliance

129  on reference genomes.

130 The remaining contigs and Hi-C links are then used to construct a contact matrix.
131  HapHiC performs preliminary contig clustering using a Markov cluster algorithm?!
132 (MCL) and selects the optimal clustering result through automatic parameter tuning
133  (Fig. 1c¢). In the subsequent reassignment step, the filtered-out and potential
134  misassigned contigs are respectively rescued and reassigned to the most suitable
135  clusters (Fig. 1d). If the number of clusters exceeds the expected number of
136 chromosomes, HapHiC carries out additional agglomerative hierarchical clustering®* to
137  group them into chromosome-level clusters. After chromosome assignment, HapHiC
138 conducts contig ordering and orientation by integrating the algorithms from 3D-DNA?
139  and ALLHiC’. Initially, the contigs in each cluster are ordered and oriented using an
140  efficiency-improved 3D-DNA algorithm, which we refer to as “fast sorting” (Fig. 1e).
141 The results are further optimized by employing the genetic algorithm in ALLHiC to
142 generate the final chromosome-level pseudomolecules (Fig. 1f). This integration
143 enhances the accuracy of contig ordering and orientation while significantly reducing

144 the execution time and the number of iterations compared to ALLHiC.

145  Factors that may impede the allele-aware scaffolding of phased assemblies
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146  In this section, we evaluated the negative impact of various factors on allele-aware
147  scaffolding of phased assemblies and compares the performance of HapHiC with other
148  mainstream Hi-C-based scaffolding tools, including ALLHiC’, LACHESIS?, 3D-
149 DNAS, SALSA2°, and YaHS®. We used the haplotype-resolved autotetraploid genome
150  of Medicago sativa XinJiangDaYe!” to establish a ground truth (Supplementary Figs.
151 1 and?2)and generated a series of fragmented assemblies by simulating multiple adverse

152 factors of varying degrees (Supplementary Fig. 3 and Supplementary Tables 1-10).

153 Contig contiguity is a crucial factor affecting allele-aware scaffolding. Phased
154  assemblies typically have lower contig contiguity compared to collapsed assemblies.
155  When the contig N50 decreased from 2 Mb to 25 Kb (Supplementary Fig. 4), all Hi-
156  C scaffolding tools examined experienced a decline in final scaffold contiguity,
157  anchoring rate, and an increase in misassignment rate between homologous
158  chromosomes (Fig. 21, Supplementary Fig. 5, and Supplementary Data 1). Among
159  these tools, HapHiC consistently showed the highest scaffold contiguity and extremely
160  low misassignment rates. In contrast, 3D-DNA and SALSA2 tended to produce highly
161  fragmented scaffolds, with the scaffold contiguity values mostly less than 0.5. ALLHiC,
162  LACHESIS, and YaHS exhibited much higher scaffold contiguity than 3D-DNA and
163  SALSA2, but their misassignment rates were also elevated. Furthermore, when the
164  contig N50 dropped below 100 Kb, the memory usage of YaHS became too high to
165  scaffold the assemblies. Additionally, we assessed the impact of contig length
166  distribution on allele-aware scaffolding, with the coefficients of variation (CVs) of the
167  contig length ranging from 0.2 to 3 (Supplementary Fig. 6). All scaffolding tools
168  performed stably in this regard, with HapHiC remaining the most outstanding among

169  them (Fig. 21, Supplementary Fig. 7, and Supplementary Data 1).

170 As the cost of next-generation sequencing decreases, Hi-C sequencing depth seems
171  to no longer be a limiting factor in scaffolding. However, in the context of allele-aware
172 scaffolding of phased assemblies, Hi-C reads can be aligned to multiple allelic loci on
173 homologous chromosomes simultaneously. These reads are often filtered out due to low

174  mapping quality, resulting in a reduction of effective data. To demonstrate this, we
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175  simulated effective sequencing depths ranging from 11X to 0.02X (Supplementary
176  Fig. 8). The results showed that the anchoring rate of 3D-DNA and SALSA2 declined
177  rapidly with decreasing sequencing depth (Fig. 21, Supplementary Fig. 9, and
178  Supplementary Data 1). Notably, YaHS and SALSA2 failed to scaffold at depths
179  below 1X and 0.05X, respectively. For other scaffolding tools, scaffold contiguity
180  decreased and misassignment rates increased when the effective Hi-C data dropped
181  below 0.05X. HapHiC performed well even at extremely low depths, exhibiting the

182  highest scaffold contiguity and relatively low misassignment rates.

183 Chimeric contigs, a common assembly error in phased assemblies, result from
184  misjoins between nonadjacent sequences (Fig. 2a). These misjoins can occur between
185  homologous or non-homologous chromosomes (Supplementary Fig. 10), leading to
186  chromosome misassignments during scaffolding. ALLHiC has been reported to be
187  highly susceptible to chimeric contigs without assembly correction’. We evaluated the
188  accuracy and precision of assembly correction for each tool in dealing with chimeric
189  contigs of different lengths (Supplementary Figs. 11-14). When the length was below
190 800 Kb and 100 Kb, respectively, neither SALSA2 nor ALLHIiC could break any
191  chimeric contigs (Supplementary Fig. 12). Moreover, 3D-DNA, SALSA2, and
192 ALLHIC tended to break too many non-chimeric contigs, leading to a significant
193  decrease in contig contiguity (Supplementary Fig. 13). HapHiC achieved 84.2% to
194 94.9% of the true positive rate (TPR) of YaHS in identifying chimeric contigs, while
195  maintaining a false positive rate (FPR) that was 0.4 to 7.1 times lower than that of YaHS.
196  This suggests that HapHiC has comparable sensitivity to YaHS in identifying chimeric
197  contigs, but with significantly higher stringency. Additionally, HapHiC consistently
198  demonstrated exceptional precision in determining breakpoints, as evidenced by the
199  highest proportions of breakpoints within 10 Kb of simulated misjoins, ranging from

200  81.0% to 95.7% across varying contig lengths (Supplementary Fig. 14).

201 With assembly error correction, some chimeric contigs may still slip through the
202  net. To address this, we introduce a “rank-sum” algorithm in HapHiC for further contig

203 filtering (Supplementary Fig. 15). This algorithm is based on the following principles:
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204 (1) the one- or three-dimensional neighborhoods of a specific genome region should
205  also be neighborhoods to each other, and (2) this is not applicable to chimeric contigs,
206  which may be misjoined from different regions of the chromosome or even different
207  chromosomes. Thus, potential chimeric contigs can be identified by measuring the
208  density of their respective neighborhoods (Supplementary Fig. 16). The receiver
209  operating characteristics (ROC) curve demonstrates the superior performance of the
210  rank-sum algorithm in identifying chimeric contigs, whether formed between
211  homologous chromosomes or non-homologous chromosomes (Supplementary Fig.
212 17). Although the algorithm is not sensitive to chimeric contigs formed within the
213 chromosome, this type of error does not adversely affect chromosome assignment.
214 Using this algorithm alone, HapHiC can tolerate up to 20% chimeric contigs (Fig.2l,
215  Supplementary Fig. 18, and Supplementary Data 1). With assembly correction
216  enabled, HapHiC can accurately assign contigs into chromosomes even when up to 40%
217 of contigs are chimeric. In contrast, other scaffolding tools exhibited significantly
218  higher misassignment rates between homologous chromosomes. We also found that
219  when the proportion of chimeric contigs was below 25%, the performance of ALLHiC
220 with assembly correction was even less effective than without any correction
221  (Supplementary Fig. 19). This could be explained by a hypothesis that the negative
222 impact of ALLHiC correction on contig contiguity is more severe compared to a low

223  proportion of chimeric contigs.

224 Another type of assembly error that can lead to misassignments between
225  homologous chromosomes is collapsed contigs. These contigs are consensus sequences
226  collapsed from highly similar allelic regions (Fig. 2a and Supplementary Fig. 20).
227  LACHESIS?® and ALLHiC’ simply identify and filter out collapsed contigs based on
228  Hi-C link density. However, there are two potential issues that can adversely affect the
229  performance of this method (Supplementary Fig. 21). First, in phased autopolyploid
230 assemblies, collapse frequently occurs and can involve more than two haplotypes,
231  resulting in a higher average or median Hi-C link density. Using a fixed cutoff for

232 classification is inefficient in such cases. Second, both scaffolding tools neglect intra-
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233 contig links when calculating Hi-C link density, leading to bias against contig length.
234  Similar to chimeric contigs, the neighborhoods of collapsed contigs are expected to
235  exhibit a lower density compared to normal contigs. As anticipated, the rank-sum
236  algorithm has proven to be a unified approach that is also effective for identifying
237  collapsed contigs (Supplementary Fig. 22). Additionally, the two methods showed
238 complementary trends in relation to the number of collapsed haplotypes
239  (Supplementary Fig. 23). Specifically, the link density method exhibited higher
240  sensitivity to four-haplotype collapsed contigs, while the rank-sum algorithm
241  demonstrated greater efficiency in identifying two-haplotype collapsed contigs.
242  Consequently, we integrated these two methods in the preprocessing step of HapHiC.
243 This integration enabled HapHiC to tolerate up to 25% of collapsed contigs in
244 chromosome assignment, significantly surpassing other examined Hi-C scaffolding
245  tools (Fig. 21, Supplementary Fig. 24, and Supplementary Data 1). In contrast, the
246  pruning process of ALLHiC only partially mitigated the adverse effects of collapsed

247  contigs.

248 One commonly held perspective is that low sequence divergence between
249  haplotypes can hinder allele-aware scaffolding by causing incorrect mapping of Hi-C
250  reads (Fig. 2a). In real cases, strong signals of inter-allele Hi-C links are often observed
251  to be diagonally distributed between homologous chromosomes (Supplementary Fig.
252 25). However, our simulation tests yielded contradictory results. The relative proportion
253  of inter- and intra-homologous chromosome Hi-C links did not change significantly
254  with sequence divergence after filtering with mapping quality and edit distance
255  (Supplementary Figs. 26 and 27). Furthermore, most Hi-C scaffolding tools performed
256  well even when the sequence divergence between haplotypes was as low as 0.1% (Fig.

257 21, Supplementary Fig. 28, and Supplementary Data 1).

258 To address this contradiction, we constructed two phased assemblies using the
259  same PacBio HiFi reads but with different genome assemblers, hifiasm'? and HiCanu®*.
260 We observed stronger signals of inter-allele Hi-C links in the HiCanu assembly

261  (Supplementary Fig. 29b) compared to the hifiasm assembly (Supplementary Fig.
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262  29a). This suggests that the presence of unfavorable inter-allele Hi-C signals is more
263  likely caused by a type of assembly error. Based on their distribution patterns on the
264  Hi-C contact maps (Supplementary Figs. 29 and 30), it is evident that these errors are
265 not due to large-scale chimeric or collapsed sequences. Instead, we hypothesize that
266  they could be switch errors at the base level. To verify this hypothesis, we simulated
267  switch errors by randomly shuffling single nucleotide polymorphisms (SNPs) and small
268 insertions/deletions (InDels) between haplotypes. As a result, we were able to
269  reproduce similar inter-allele Hi-C signals along the diagonal (Supplementary Fig. 31),
270  which became stronger as the switch error rate increased (Supplementary Fig. 32).
271 Our findings indicate that incorrect mapping of Hi-C links is introduced by switch

272 errors rather than the inherent sequence divergence between haplotypes.

273 ALLHiC identifies allelic contigs by examining gene synteny between the
274 assembly and an annotated, chromosome-level reference genome from the same or a
275  closely related species. During the pruning process, Hi-C links between allelic contigs
276  are removed. However, such a reference genome is not always available for all species.
277  As a result, we developed a reference-free method in HapHiC that relies on the
278  distribution pattern of Hi-C links (Supplementary Figs. 33 and 34). In simulation tests,
279  our reference-free method allowed HapHiC to tolerate a switch error rate of up to 25%
280  (Fig. 21, Supplementary Fig. 35, and Supplementary Data 1) and exhibited higher
281  efficiency than ALLHiC in identifying allelic contigs of low contiguity (Fig. 2l,
282  Supplementary Figs. 36 and 37). In contrast, scaffolding tools that are not allele-aware
283  or executed without removing inter-allele Hi-C links were severely disrupted when the

284  switch error rate exceeded 5% (Supplementary Fig. 35).

285 While tetraploids constitute the majority of published autopolyploid genomes,
286  species with higher ploidies are prevalent in both wild and cultivated plants. We
287  assessed the impact of genome ploidy on allele-aware scaffolding. In the absence of
288  assembly errors, all Hi-C scaffolding tools, except for 3D-DNA, demonstrated stable
289  performance when handling ploidies ranging from 1 to 16 (Fig. 21, Supplementary Fig.

290 38, and Supplementary Data 1). However, when we introduced 5% each of chimeric,

10
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291  collapsed contigs, and switch errors in simulated assemblies of various ploidies, only
292  HapHiC consistently produced perfect chromosome assignment results (Fig. 2I,
293  Supplementary Fig. 39, and Supplementary Data 1). Additionally, the performance
294  of the reassignment process in HapHiC was validated through separate tests

295  (Supplementary Fig. 40).

296 Our results confirm that the reference-dependent pruning method in ALLHiC
297  effectively and robustly reduces misassignments between homologous chromosomes,
298  particularly when dealing with collapsed contigs and switch errors (Fig. 2g-i). However,
299  the main concern is that the reference genome may not be available or may require
300 significant effort and cost for construction and annotation. Additionally, using reference
301 genomes is a double-edged sword that can increase misassignments between non-
302 homologous chromosomes and exacerbate the adverse effect of chimeric contigs (Fig.
303  2j,k). Furthermore, substantial parameter tuning is often necessary for ALLHIiC to
304  achieve improved chromosome assignment results (Fig. 2b-f). HapHiC has addressed
305 these problems, demonstrating stronger tolerance to various assembly errors and
306 unfavorable factors (Fig. 21 and Supplementary Data 1). These improvements
307 enhance its adaptability and capability in tackling more intricate allele-aware

308 scaffolding problems.
309  Accuracy of contig ordering and orientation

310  After chromosome assignment, the contig ordering and orientation of a phased
311  assembly become similar to those of an unphased assembly. To evaluate the accuracy
312  of each Hi-C-based scaffolding tool in contig ordering and orientation, we simulated
313 genome assemblies of rice’* (Oryza sativa), Arabidopsis® (Arabidopsis thaliana), and

314  human' (Homo sapiens) with varying contig N50 values (Supplementary Table 11).

315 Initially, the performance of HapHiC and ALLHiC was compared using the built-
316  in scoring system of ALLHiC’ (Supplementary Fig. 41 and Supplementary Data 2).
317  Even when only fast sorting was employed, the initial scores of HapHiC were already

318  comparable to or even higher than the final scores achieved by ALLHiC. In assemblies

11
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319  with low contig contiguity, these scores were further improved during the subsequent
320  optimization process, resulting in a significant reduction in the number of iterations

321  required for the genetic algorithm to converge.

322 Subsequently, we introduced two objective metrics to assess the accuracy of contig
323  ordering and orientation for all Hi-C-based scaffolding tools (Fig. 3a). The first metric,
324  Lin’s concordance correlation coefficient’® (CCC), measures the consistency between
325  the results and the reference chromosomes on a large scale. The second metric is the
326  “cost” calculated by DERANGE II?’, which approximates the number of moves
327  required to adjust the results for complete consistency with the reference chromosomes
328  viatransposition and inversion. This cost can also represent the number of steps needed
329  to achieve optimal results in Juicebox®®. As the cost is independent of contig length, it
330 s suitable for quantifying the results on a smaller scale. By employing these two metrics,
331  we can categorize the results into four quadrants based on their distinct tendencies (Fig.

332 3a).

333 Fig. 3b,c and Supplementary Figs. 42-45 illustrate the performance of each
334  scaffolding tool in terms of contig ordering and orientation (Supplementary Data 2).
335 SALSA2 performed poorly with a low contig N50, exhibiting the lowest absolute
336  values of CCC and highest DERANGE costs among the evaluated tools when the contig
337  NS50 was less than or equal to 500 Kb. In contrast, LACHESIS struggled with high
338 contig contiguity, exhibiting a trend opposite to that of SALSA2. YaHS primarily
339  generated large-scale errors, as indicated by the relatively high absolute values of CCC,
340  while the small-scale errors it produced were at an average level with moderate
341 DERANGE costs. In line with previous findings, 3D-DNA and ALLHiC outperformed
342 LACHESIS and SALSAZ2 in all aspects, producing fewer large- and small-scale errors.
343  As expected, HapHiC yielded results similar to 3D-DNA when only fast sorting was
344  applied due to the use of the same algorithm. Furthermore, additional optimization
345  using the genetic algorithm significantly reduced small-scale errors, particularly when
346  the contig contiguity was low. This optimization allowed HapHiC to excel in the

347  ordering and orientation of contigs.
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348  Execution speed and memory usage

349  HapHiC not only reduces the number of iterations in the genetic algorithm by
350 introducing fast sorting, but it also optimizes the storage and transfer efficiency of Hi-
351  Clinks. These optimizations result in significant improvements in wall time, CPU time,
352  and peak memory usage during the process of contig ordering and orientation compared

353 to ALLHIiC (Fig. 4a-c and Supplementary Data 3).

354 Additionally, we conducted a comparative analysis of the execution speed and
355 memory usage of all evaluated Hi-C-based scaffolding tools (Fig. 4d and
356  Supplementary Data 3). Under varying levels of contig contiguity and sequencing
357  depth, LACHESIS emerged as the most efficient tool. YaHS exhibited satisfactory
358 execution speed but demonstrated a significant increase in peak memory usage with
359  decreasing contig N50. When the contig contiguity was high, SALSA2 was several
360 times slower than the scaffolding tools in the highest speed category and showed a
361  higher susceptibility to low sequencing depth. 3D-DNA performed even worse than
362 SALSA2, proving to be the slowest among all. The efficiency of the ordering and
363  orientation process in ALLHiIC was significantly hampered by the decline of contig
364  contiguity. As a result, when the contig N50 was 25 Kb, it took more than ten thousand
365  hours to complete the entire ALLHiC pipeline. Furthermore, 3D-DNA and ALLHiC
366  required more time to correct contigs (Fig. 4e) and handle data with high sequencing

367  depth (Fig. 4f).

368 By exclusively applying fast sorting, HapHiC achieved a remarkably high
369  execution speed, second only to LACHESIS (Fig. 4d). With the optimization step,
370  HapHiC only fell behind LACHESIS and SALSA?2 at extremely low contig contiguity,
371  significantly outperforming 3D-DNA and ALLHiC. Meanwhile, the cost for correcting
372 contigs, removing inter-allele links, and processing high-depth sequencing data were
373  relatively low in HapHiC (Fig. 4e,f). Moreover, HapHiC demonstrated stable and
374  excellent performance in terms of memory usage. We also validated the superior
375  efficiency of HapHiC in numerous published genomes compared to ALLHiC and YaHS
376  (Fig. 4g,h and Supplementary Data 3). Overall, HapHiC maintains a highly
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377  competitive execution speed and memory usage while being capable of dealing with

378  more complex assemblies and providing superior scaffolding results.
379  Examples of scaffolding published assemblies

380 We further validated the scaffolding performance of HapHiC in real cases
381  (Supplementary Data 4). First, we analyzed several published autopolyploid

382  assemblies and compared the results with those of ALLHiC.

383 Saccharum spontaneum AP85-441 (1n=4x=32) is the first published haplotype-
384  resolved autotetraploid genome that scaffolded to chromosome level'®. Due to its highly
385  repetitive nature of genome, combined with the use of Illumina short reads and PacBio
386 RS II data, the final assembly has a contig N50 of only 45 Kb and contains numerous
387  collapsed contigs. In our tests, ALLHiC successfully separated contigs from different
388 homologous chromosomes and produced chromosome or near-chromosome level
389  scaffolds (Supplementary Fig. 46b). However, it still introduced noticeable
390 misassignments between non-homologous chromosomes, consistent with previous
391  simulation results. In contrast, HapHiC showed significantly fewer misassignments and
392  accurately clustered contigs to 32 complete chromosomes (Supplementary Fig. 46a),
393  greatly reducing the need for manual adjustment in Juicebox. Similarly, HapHiC also
394  produced more accurate and contiguous results in scaffolding the autotetraploid
395 genome assemblies of M. sativa XinJiangDaYe'’ (Supplementary Fig. 47) and

396  Zhongmu-4°° (Supplementary Fig. 48).

397 In 2022, the genome of S. spontaneum Np-X, another autotetraploid sugarcane with
398 a different basic chromosome number (x=10), was published®’. Despite its higher
399  contiguity compared to AP85-441, with a contig N50 of 381 Kb, it contains a
400  considerable number of chimeric contigs (Fig. 5Sa and Supplementary Data 5).
401  Consequently, we performed assembly correction prior to scaffolding. Although both
402  tools scaffolded contigs into chromosome-level pseudomolecules, ALLHiC produced
403  more misassignments between non-homologous chromosomes (Supplementary Fig.

404  49). Furthermore, the contig N50 of ALLHiC scaffolds dramatically dropped to only
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405 139 Kb after correction, while HapHiC experienced a much milder decrease of 8.7%
406  (Supplementary Table 12). We randomly selected a subset of contigs from the first
407  haplotype of chromosome 1 and classified them as non-chimeric contigs, chimeric
408  contigs formed between homologous chromosomes, and chimeric contigs formed
409  between non-homologous chromosomes (Fig. 5a and Supplementary Data 5). Among
410  the chimeric contigs, HapHiC detected 12 out of 16 (75%) formed between homologous
411  chromosomes and 5 out of 6 (83.3%) formed between non-homologous chromosomes.
412 ALLHiC demonstrated higher sensitivity with a detection rate of 100%. However, it
413  misidentified over 105 out of 112 (93.8%) non-chimeric contigs as chimeric contigs. In
414  contrast, HapHiC exhibited superior stringency, as none of the non-chimeric contigs
415  were mislabeled as chimeric contigs. Furthermore, analysis of the specific breakpoints
416  revealed that ALLHiIC tended to break contigs at the positions distant from misjoin
417  points (Fig. Sb and Supplementary Fig. 50). These issues finally led to a significant
418  reduction in the contig contiguity after ALLHiC correction. In conclusion, HapHiC
419  adopted a more stringent strategy to maintain contig contiguity without sacrificing

420  accuracy of chromosome assignment.

421 We also conducted an analysis of the autotetraploid potato (Solanum tuberosum)
422 C88 genome®’. In contrast to wild plants, the domestication and breeding history of the
423  cultivated potato has left footprints in its haplotypes, resulting in patchy distribution of
424 large, nearly identical regions. These regions make conventional genome assembly and
425  scaffolding methods unable to accurately represent the haplotypes of C88 genome, even
426 when utilizing ONT ultra-long reads'>. Therefore, the researchers incorporated
427  additional genetic population information to assist in resolving the C88 haplotypes.
428  Another similar case is the autotetraploid potato cultivar Otava’!. To evaluate the
429  effectiveness of HapHiC and ALLHiC in scaffolding such a complex genome, we first
430  assembled the C88 genome using conventional methods without employing genetic
431  population information. The total length of the assembled unitigs is 3.22 Gb, with an
432 N50 of 730 Kb.

433 There are no large-scale regions of low divergence in the haplotypes of
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434 chromosomes 1, 4, 7, and 9 in the C88 genome®’. This suggests that these haplotypes
435  can be resolved more easily without relying on genetic population information. HapHiC
436  effectively separated them into chromosome or near-chromosome scaffolds (Fig. Sc,d
437  and Supplementary Fig. 52a). Additionally, all haplotypes of chromosome 2 and those
438  haplotypes with evenly distributed unique polymorphic loci were accurately
439  represented. Although some haplotypes were not correctly clustered by HapHiC, this
440  issue can be attributed to the existence of large-scale regions of low divergence. In
441  contrast, ALLHiC consistently misassigned contigs from different haplotypes into the
442  same clusters for all C88 chromosomes (Supplementary Fig. 51 and Supplementary

443  Fig. 52b), indicating significantly reduced performance compared to HapHiC.

444 In addition to autopolyploids, HapHiC outperformed ALLHIiC in allele-aware
445  scaffolding of phased diploid assembly of the Camellia sinensis Tieguanyin genome'®.
446  HapHiC exhibited significantly higher scaffold contiguity and fewer misassignments
447  between both homologous and non-homologous chromosomes (Supplementary Fig.
448  53). Furthermore, HapHiC can also scaffold haplotype-collapsed allopolyploid
449  (Supplementary Figs. 54-58) and diploid assemblies (Supplementary Figs. 59-73).
450  Importantly, HapHiC is not limited to plants. It has been successfully validated in
451  scaffolding representative genomes from various taxa, including humans, birds,

452  amphibians, fish, insects, mollusks, and annelids (Supplementary Figs. 59 and 68-73).

453  In these cases, HapHiC achieved comparable or even better performance than YaHS.

454 The results of real cases demonstrate not only the robustness and reliability of
455  HapHiC in scaffolding various assemblies, but also its potential in overcoming the

456  challenges posed by more complex genomes.

457  Application of HapHiC in constructing the haplotype-resolved genome of M. x

458  giganteus

459 M. x giganteus is widely recognized as a promising lignocellulosic bioenergy crop due
460  to its perennial nature, rapid growth, high productivity, and low input requirements*2.

461  Itis an allotriploid (2n=3x=57, ABB) formed through natural intrageneric hybridization
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462  between the diploid Miscanthus sinensis (AA) and the autotetraploid Miscanthus
463  sacchariflorus (BBBB)**. Additionally, the common ancestor of the Miscanthus genus
464  experienced a recent whole-genome duplication (WGD) event prior to this
465  hybridization®*, resulting in the hexaploidy nature of the M. X giganteus genome.
466  Despite recent publication of genomes for several other Miscanthus species**’,
467  decoding the M. x giganteus genome is hindered by its complexity. With the help of

468  HapHiC, here we present the first chromosome-level haplotype-resolved genome of M.

469 X giganteus.

470 A total of 69.4 Gbp of PacBio HiFi reads and 684.1 Gbp of Hi-C reads were
471  generated for genome assembly and scaffolding, respectively. After assembly and
472 contamination filtration, we obtained phased unitigs with a total length of 6.11 GB,
473 which represents 90% coverage of the genome size as determined by flow cytometry.
474  The assembly was then scaffolded using HapHiC and ALLHiC separately. HapHiC
475  outperformed ALLHiC with significantly fewer misassignments (Supplementary Fig.
476 74). Finally, we anchored contigs accounting for 98.3% of the total assembly onto 57
477  haplotype-resolved chromosomes based on the HapHiC scaffolds. The contig N50
478  reached 2.18 Mb, surpassing all existing genome assemblies within the Miscanthus

479  genus (Supplementary Table 13).

480 The structural accuracy of the M. x giganteus genome was subsequently evaluated
481  through gene synteny analysis. As previously mentioned, the A and B subgenomes of
482 M. x giganteus originated from the genomes of M. sinensis and M. sacchariflorus,
483  respectively. Therefore, it is expected that the A subgenome of M. x giganteus (MgiA)
484  would be phylogenetically closer to the M. sinensis genome* (MsiA) than to the B
485  subgenomes of M. x giganteus (MgiB1, MgiB2). However, the gene synteny analysis
486  yielded contradictory results, revealing that MgiA shares higher similarity with the B
487  subgenomes, MgiB1 and MgiB2, than MsiA (Fig. 6a). The finding was also supported
488 by the Miscanthus lutarioriparius genome®® (MIuB in Fig. 6a), which serves as an

489  alternative B genome of M. sacchariflorus® with higher completeness and contiguity.

490 To determine the authenticity of this observation, we compared the MgiA and MsiA
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491  structures using genetic maps and Hi-C contact maps. Five genetic maps of M. sinensis
492 and one genetic map of M. sacchariflorus®® showed a significantly stronger correlation
493  with MgiA than with MsiA (Fig. 6b-d and Supplementary Data 6). Additionally, the
494  Hi-C contact maps revealed substantial errors within the MsiA genome, primarily
495  concentrated in the divergence-enriched regions identified through gene synteny
496  analysis and genome alignment (Fig. 6e). These findings strongly suggest that the A
497  subgenome of M. x giganteus has a more accurate structural organization compared to
498  the previously published M. sinensis genome. The construction of the high-quality
499  genome of M. X giganteus not only facilitates its genetic breeding but also provides
500 improved reference genomes for its hybridization parents, M. sinensis and M.
501  sacchariflorus. This reaffirms the effectiveness and accuracy of HapHiC as an allele-

502  aware scaffolding tool for handling such a complex polyploid genome.

503 Discussion

504  The advancement of sequencing techniques and genome assemblers has ushered in a
505 new era of haplotype-resolved genome research. To tackle the challenges presented by
506  species diversity and varying genome characteristics, there is a pressing need for a
507  robust and efficient allele-aware scaffolding tool with minimal restrictions. One such
508  restriction is the reliance on a reference genome. Although this can be alternatively
509 achieved by assembling and annotating a haplotype-collapsed genome as the
510  reference!”, it greatly increased the time and cost for genome construction. Moreover,
511  our results have shown the drawbacks of using a reference genome. HapHiC overcomes
512  this limitation by achieving allele-aware scaffolding without relying on reference
513  genomes, demonstrating greater tolerance for assembly errors. Our simulations and
514  real-case tests have demonstrated the superior reliability of HapHiC compared to other
515  software, with broad support for a wide range of taxa and ploidies. Additionally, the
516  entire pipeline requires less time and memory resources and reduces the need for

517  parameter tuning and manual adjustment.

518 To effectively address a problem, it is crucial to thoroughly understand it. This
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519  study conducted exhaustive simulations and evaluations of the factors that could
520 impede the allele-aware scaffolding of phased assemblies on various widely used Hi-
521  C-based scaffolding tools. In addition to the factors mentioned in the ALLHiC paper’,
522  our assessment also considered other factors such as contig length distribution, effective
523  Hi-C sequencing depth, and ploidy. Notably, our analysis revealed that diagonally
524  distributed Hi-C links between haplotypes results from switch errors in the initial
525 genome assemblies rather than inherent attributes such as sequence divergence. These
526  findings offer new insights into the challenges of allele-aware scaffolding and pave the

527  way for the development of improved tools.

528 The formation of collapsed contigs primarily results from extremely low sequence
529  divergence. To mitigate the adverse effects of collapsed contigs, HapHiC has
530 implemented the rank-sum algorithm. However, large-scale collapsed regions still
531  significantly impede subsequent allele-aware scaffolding, as demonstrated in the
532  cultivated potato C88 genome®®. Furthermore, unlike chimeric contigs, scaffolding
533  tools typically do not correct collapsed contigs. Therefore, achieving a higher quality
534  assembly remains a fundamental prerequisite for haplotype resolution. Otherwise, the
535  resulting scaffolds will still suffer from the “garbage in, garbage out” phenomenon,
536  which means that flawed input data will produce low-quality output. This holds true

537  even when using a scaffolding tool with a high tolerance for assembly errors.

538 HapHiC still has some limitations. Its accurate clustering in HapHiC relies on prior
539  knowledge of the chromosome number, as well as empirical preferences for length
540  distribution of clusters and chromosomes. To address this, HapHiC provides a
541  straightforward way to understand genome features or manually establish chromosome
542  boundaries through fast sorting without clustering, similar to the intermediate result
543  “0.assembly” in 3D-DNA°. Additionally, HapHiC identifies allelic contig pairs based
544  on the distribution pattern of Hi-C links between them. Unlike ALLHiC, this function
545 may not be effective when there are only a few links present. Fortunately, such few

546  links typically do not adversely affect allele-aware chromosome scaffolding.
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547  Methods

548  Overall allele-aware scaffolding strategy of HapHiC

549  Assembly errors are common in the phased assemblies of heterozygous genomes.
550  Genome assemblers may misjoin nonadjacent sequences, forming chimeric contigs, or
551  merge multiple similar regions into a consensus sequence, resulting in collapsed contigs
552  (Fig. 2a). These errors often occur between homologous chromosomes, making
553  chromosome assignment challenging. Scaffolding tools such as 3D-DNA3, SALSA2°,
554  and YaHS?® determine scaffold or chromosome boundaries during or after the contig
555  ordering and orientation. Although this approach does not require prior knowledge of
556  the chromosome count, it exacerbates the adverse effects of assembly errors on
557  chromosome assignment by disrupting the contig ordering and orientation. Therefore,
558  HapHiC employs the same divide-and-conquer strategy as LACHESIS® and ALLHiC’,
559  addressing the chromosome assignment problem through clustering before the ordering

560  and orientation of contigs within each chromosome (Fig. 1).

561 Additionally, HapHiC implements four optional preprocessing steps (Fig. 1b) to
562  enhance clustering: (1) correcting chimeric contigs using Hi-C link spanning coverage;
563  (2) filtering out low-information contigs, such as short contigs and those lacking Hi-C
564  links; (3) discarding potential collapsed contigs and residual chimeric contigs; (4)
565 removing Hi-C links between allelic contig pairs based on the distribution pattern of
566  Hi-C links. These preprocesses enable HapHiC to perform allele-aware clustering and

567  increase its tolerance towards assembly errors.
568  Correcting chimeric contigs

569  Similar to other scaffolding tools, HapHiC detects misjoins by analyzing the spanning
570  coverage of Hi-C reads at each contig position (Supplementary Fig. 11). To accurately
571  determine breakpoints, this coverage is calculated by counting the number of Hi-C read
572  pairs spanning each contig position with a bin size of 500 bp. HapHiC differs from
573  other tools by applying stricter criteria to ensure contig contiguity. Specifically, HapHiC

574  identifies a low-coverage region bounded by two large high-coverage regions as a
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575 reliable misjoin and breaks it. Low- and high-coverage regions are contiguous bins
576  divided by one-fifth of the median coverage. By default, the threshold for a large region

577  is the larger of either one-tenth of a contig or 5000 bp.
578  Filtering out low-information contigs

579  Low-information contigs are defined as those that meet one or more of the following
580 criteria: (1) a length shorter than N80, (2) fewer than five restriction sites, or (3) a Hi-
581  C link density below one-fifth of the median value. The Hi-C link density of a contig is
582  calculated by dividing the number of Hi-C links connected to all other contigs by the
583  number of restriction sites within it. These contigs are filtered out before preliminary
584  clustering because they are error-prone and can significantly reduce clustering

585 efficiency.
586  Discarding collapsed and chimeric contigs

587  First, contigs with a Hi-C link density exceeding 1.9 times the median value are
588 identified as potential collapsed contigs and removed. Next, the rank-sum algorithm
589  calculates a rank-sum value for each contig by measuring neighborhood density
590  (Supplementary Fig. 15). Let G = (V,E) be a network, where V represents the set
591  of contigs as vertices and E represents the set of Hi-C links as edges (Supplementary
592  Fig. 15a). For any contig v € V,let N(v,n) denote the set of contigs with the top n
593  Hi-C links connected to v. For any two contigs u,w € N(v,n), let rank(u,w)
594  represent the minimum rank of the number of Hi-C links between u and w

595  (Supplementary Fig. 15b,c). The final rank-sum value is given by:

596 Z rank(u, w)
uU,WEN (v,n)
597 By default, n is set to ten. The higher the value, the lower the neighborhood

598  density. Because collapsed and chimeric contigs are respectively merged and misjoined
599  from nonadjacent sequences, their neighborhood densities will be much lower than
600 normal contigs, as reflected by the relatively high rank-sum values (Supplementary

601  Figs. 16 and 22). Consequently, contigs with a rank-sum value greater than the third
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602  quartile (Q3) plus 1.5 times the interquartile range (IQR) are considered remaining
603  collapsed or uncorrected chimeric contigs and are discarded during preliminary

604  clustering.
605 Identifying allelic contig pairs and removing inter-allele Hi-C links

606  HapHiC eliminates the need for reference genomes by identifying allelic contigs based
607  on the distribution pattern of Hi-C links (Supplementary Fig. 33). Similar to sequence
608 alignment between allelic contigs, the coordinates of inter-allele Hi-C links are
609  distributed along the diagonal with a slope of 1 or -1 (Supplementary Figs. 30 and
610 33a,b), which differs from the pattern within a chromosome. We introduce a
611  “concordance ratio” to quantify the proportion of Hi-C links that conform to this

612  distribution (Supplementary Fig. 33b). The algorithm is described in detail below.

613 Given a pair of contigs, we construct a coordinate system using the coordinates of
614 n Hi-C links connecting them, where 20 <n <200 (randomly selected if
615  exceeding 200). We then use two sliding lines with slopes of 1 and -1 (i.e., y = x +
616 b and y = —x + b, where b is a variable intercept) to calculate the maximum

617  number of coordinate pairs within a certain distance from the lines, denoted as m. The

618  final concordance ratio is % The distance 1s dynamically defined as 1/100 of the length

619  of the shorter contig, with a minimum value of 5 Kb. The higher the value of the
620  concordance ratio, the more it indicates that this pair of contigs conforms to the
621  distribution pattern of Hi-C links between allelic contigs. By default, contig pairs with

622  aconcordance ratio greater than 0.2 are considered allelic (Supplementary Fig. 34).

623 Next, an undirected weighted graph is constructed, where vertices denote contigs,
624  edges represent the allelic relationships of contigs, and the edge weights indicate the
625 number of Hi-C links between contigs (Supplementary Fig. 33¢). Maximum cliques
626  are identified in the graph, and weak edges are removed to divide these cliques into
627  subcliques with the known ploidy as the maximum number of vertices. To retain intra-
628  haplotype links while removing unfavorable inter-haplotype Hi-C links, contigs from

629  the same haplotypes are determined by solving the maximum weighted matching
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630  problem across subcliques using a Hungarian algorithm. Finally, Hi-C links from both
631 non-maximal matches and allelic contig pairs are removed before preliminary

632  clustering.
633  Clustering

634  ALLHiC’ and LACHESIS® use an agglomerative hierarchical clustering algorithm to
635 cluster contigs into chromosomes. However, specifying the number of clusters (k) to
636 be the number of chromosomes in this method often fails to accurately separate

16 17 In such cases, substantial

637  homologous chromosomes in phased assemblies
638  parameter tuning on the k values is necessary to improve the clustering results. On the
639  contrary, HapHiC employs a random walk-based Markov cluster algorithm?! (MCL)
640  for the initial clustering process. This robust and scalable unsupervised clustering
641  algorithm has proven effective in constructing protein-protein interaction (PPI)
642  networks®, clustering orthologous gene families*®, and analyzing gene synteny*!.
643  Unlike agglomerative hierarchical clustering, Markov clustering does not specify k& but
644  regulates granularity with different inflation values. Various clustering results of
645  different granularities can be achieved within a limited range of inflation values.

646  HapHiC then determines the optimal inflation based on the known number of

647  chromosomes, the actual number of clusters, and the length distribution of clusters.

648 First, the Markov clusters for each inflation value are sorted in descending order
649 by their cluster length, which is the sum of contig lengths within them. Next, we
650  calculate the length ratio for each adjacent cluster pair. Empirically, if the length ratio
651  between adjacent clusters is far below 1, it could indicate unseparated contigs from
652  different chromosomes. Consequently, we prefer the results with progressively
653  decreasing cluster lengths, where the number of clusters meeting the criterion should
654  be greater than or equal to the known number of chromosomes. The pseudocode of the
655  algorithm can be found in Supplementary Table 14. By default, HapHiC initially uses
656  a length ratio threshold of 0.75. If none of the clustering results meets this threshold, it
657  will be gradually lowered to 0.5. This method efficiently reduces clustering errors and

658 eliminates the need for manual tuning of k.
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659 HapHiC optimizes the clustering step for assemblies with varying levels of
660  contiguity. The power-law model of Hi-C links exhibits rapid decay within short
661  distances, while showing gradual decay over longer ranges’. As a result, longer contigs
662  are more susceptible to long-range background noise. This is because only their ends
663  are adjacent to other contigs and provide useful information for clustering. Recent tools,
664 such as EndHiC*, pin_hic*, and YaHS® have addressed this issue primarily by
665 utilizing the Hi-C links from contig ends only. In contrast, HapHiC also considers
666  information from the inner part of each long contig. First, these contigs are split into
667  bins, with a size dynamically defined as 1/30 of the average chromosome length and a
668  maximum value of 2 Mb. These bins are then simply treated as regular contigs during
669  the subsequent construction of the Hi-C link matrix and Markov clustering. The matrix
670 is constructed using links from the ends of contigs or bins with a maximum end length
671  of 500 Kb. After clustering, long contigs are placed in the best clusters based on the
672  total length of bins in each cluster. On the other hand, assemblies of low contiguity
673  often consist of too many contigs, thus remarkably slowing down Markov clustering.

674  To overcome this, we optimize the clustering speed using sparse matrix data structures.
675  Reassignment

676  Inthe reassignment step, previously filtered-out contigs are rescued and assigned to the
677 most suitable clusters. Unlike ALLHIiC rescue’, this process also allows for the
678  reassignment of misassigned contigs. All contigs that meeting the minimum
679  requirements for restriction sites and Hi-C links are traversed in descending order to
680  determine their most suitable clusters. First, Hi-C link densities between each contig
681  and MCL cluster are calculated, defined as the number of Hi-C links between a contig
682 and a cluster, divided by the sum of their restriction site counts. The most suitable
683  cluster for each contig is determined based on two criteria: (1) the Hi-C link density to
684  the best cluster is more than four times the average value to other clusters; (2) the
685  density ratio between to the second-best and the best cluster is less than 0.6. By default,
686  reassignment is iterated for up to five rounds to converge, followed by a rescue process

687  for unanchored contigs using only the first criterion.
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688 If the number of clusters still exceeds the number of chromosomes, HapHiC
689  performs an additional agglomerative hierarchical clustering?? with average-linkage to
690  obtain the final chromosome-level clusters. To achieve this, a matrix is constructed by
691  calculating the number of Hi-C links between each cluster pair, divided by the product
692  of their restriction site counts. Here, multiplication is used for normalization instead of
693  sum, which differs from the Hi-C link density described above. This approach performs
694  Dbetter when cluster lengths differ significantly. The maximum value in the matrix is

695  subtracted from the matrix to obtain the final distance matrix for clustering.
696  Ordering and orientation

697 3D-DNA and ALLHiC have demonstrated excellent performance in contig ordering and
698  orientation compared with other Hi-C-based scaffolding tools’. However, their

699  disadvantage is that they are very slow when dealing with a large number of contigs.

700 The iterative contig ordering and orientation algorithm of 3D-DNA breaks newly
701  connected scaffolds from their exact midpoints, resulting in the trouble that the density
702 graph should be reconstructed from scratch in each iteration®. Besides, the intermediate
703  results are read and written through text files. In HapHiC, we simplify the process and
704 call it “fast sorting”. Specifically, we calculate the distance between the midpoint of
705  each newly connected scaffold and the midpoints of all contigs in it to find the nearest
706  one as the approximate midpoint of the scaffold. As a result, the density graph
707  reconstruction in HapHiC can retrieve necessary data directly from memory,
708  eliminating the need for file reading. This improvement makes the iterative ordering
709  and orientation process significantly faster than the original one without compromising

710  the results.

711 ALLHiC starts contig ordering iterations from randomly shuffled contigs using a
712 genetic algorithm’. When handling numerous contigs, the algorithm can be very slow
713 to converge. On the other hand, although the process is parallelized for each cluster, but
714 the Hi-C links between all contigs are stored and processed using a single huge CLM

715 file, leading to a high memory usage. In HapHiC, we use the result of fast sorting as the
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716  initial configuration and subsequently employing the ALLHiC algorithm for further
717 optimization. Additionally, the CLM files is split into cluster-specific files, retaining
718  only the Hi-C links within each cluster. This integrated approach allows HapHiC to

719  order and orient contigs more accurately and efficiently than ALLHiC.
720  Pseudomolecule Building

721 Inpseudomolecule building, the contigs in each cluster are joined together based on the
722  results of contig clustering, ordering, and orientation. By default, the adjacent contigs
723 are separated with 100-bp Ns as gaps. The sequences and scaffolding information of
724 these pseudomolecules are finally output in the FASTA format and AGP format,

725  respectively.
726  Mapping and filtering of Hi-C reads

727  Fastp™ (version 0.21.0) was used to remove adaptors, trim low-quality sequences, and
728  evaluate the quality of raw Hi-C reads. To evaluate the performance of 3D-DNA, Hi-C
729  reads were aligned to assemblies and filtered using the Juicer pipeline®. For other
730  scaffolding tools or purposes, Hi-C reads were processed using a uniform method. First,
731  the reads were aligned to assemblies or published genomes using BWA-MEM*
732 (version 0.7.17-r1198-dirty) with the parameter “-5SP”. Next, PCR duplicates,
733 secondary and supplementary alignments were filtered out using SAMBLASTER*
734 (version 0.1.26) and SAMtools* (version 1.11). Finally, a custom script “filter_bam.py”
735  was employed to remove alignments with a mapping quality of zero and an edit distance

736  greater than 2.
737 Simulation of datasets with various adverse factors

738  In the ALLHIiC paper, the authors simulated a haplotype-resolved diploid genome by
739  merging both the genome sequences and Hi-C data of two rice subspecies, indica and
740 japonica’. However, this approach has some limitations. First, in a real diploid, there
741  are background interactions between homologous chromosomes, because they are
742 located in the same nucleus. The artificial merging of data from different subspecies

743 leads to an underestimation of Hi-C links between homologous chromosomes, making
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744 it easier to separate them even than those between non-homologous chromosomes
745  (Supplementary Fig. 2). Second, the conclusions drawn from experiments on diploids
746 may not apply to polyploids. Third, using only a pair of homologous chromosomes for
747  analysis ignores misassignments between non-homologous chromosomes. Therefore,
748  we constructed a ground truth by manually removing obvious assembly errors based on
749  the published haplotype-resolved autotetraploid genome of M. sativa XinJiangDaYe'’
750  (Supplementary Fig. 1). We used all 32 chromosomes to construct a ground truth

751  genome of 2.0 Gb.

752 Using this template, we simulated a series of assemblies with various adverse
753  factors through a pipeline of multiple custom scripts (Supplementary Fig. 3). The
754 script “sim_contig.py” fragmented the genome into assemblies with different N50
755  values (Supplementary Fig. 4) and coefficients of variation (CVs) of length
756  (Supplementary Fig. 6). Since the contig N50 of the M. sativa genome is less than 500
757 Kb, we retained the gaps represented by Ns in the fragments to simulate higher
758  contiguity. For concision, we always refer to these fragments as contigs, regardless of
759  whether there are gaps in them. Based on these assemblies, we used the script
760  “sim_chimeric_contigs.py” to simulate assemblies with different proportions of
761  chimeric contigs (Supplementary Fig. 10). Among them, chimeric contigs simulated
762  between homologous chromosomes, non-homologous chromosomes, and within
763  chromosomes were generated at a ratio of 7:2:1, respectively. To simulate different
764  effective sequencing depths, we used “samtools view -s” with 12345 as the seed for

765  random sampling (Supplementary Fig. 8).

766 We simulated haplotypes by introducing single nucleotide polymorphisms (SNPs),
767  insertions, and deletions to the first haplotype in the ground truth genome using the
768  script “sim_haplotypes.py”. By adjusting the proportion of variations and number of
769  haplotypes generated, we obtained genomes with different sequence divergence levels
770  (Supplementary Fig. 27) and ploidies. The corresponding Hi-C reads were generated

(13

771 by sim3C*, with the parameter “--trans-rate” dynamically adjusted according to

772 different ploidies to maintain a fixed intensity of chromosome interaction. To simulate
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773 reality, we introduced SNPs, insertions, and deletions at a ratio of 10:0.5:0.5, with a 2:1
774 ratio of transitions to transversions for SNPs (Supplementary Fig. 26). Furthermore,
775  these variations were unevenly distributed in bins with a length of 100 Kb and a CV of

776 0.5.

777 Based on these simulated haplotypes and Hi-C reads, we further generated
778  collapsed contigs (Supplementary Fig. 20) and switch errors (Supplementary Fig.
779  31). We used the script “sim_collapsed regions.py” to create two-, three-, and four-
780  haplotype collapsed contigs in a ratio of 7:2:1. Switch errors were introduced by
781 randomly shuffling variations between haplotypes using the  script
782  “sim_switch_errors.py”. We also incorporated all the custom scripts above to introduce
783 5% each of chimeric, collapsed contigs, and switch errors into assemblies with ploidy
784  ranging from 2 to 16. Each contig in simulated assemblies recorded information such
785 as source chromosome, haplotype, position, and error type for subsequent result

786  evaluation.

787 Three reference genomes of rice (IRGSP-1.0?*), Arabidopsis (TAIR10.1%), and
788  human (CHM13v2.0 noY') were used as ground truths to evaluate the accuracy of Hi-
789  C-based scaffolding tools in contig ordering and orientation. Assemblies with varying
790  contig N50 values were also simulated using the script “sim_contigs.py”. HapHiC,
791  ALLHiC, and LACHESIS perform ordering and orientation for individual
792  chromosomes (clusters), differing from the whole-genome scaffolding of SALSA2, 3D-
793 DNA, and YaHS. Thus, contigs in each simulated assembly were partitioned into
794  corresponding chromosomes and ordered and oriented separately, making the
795  evaluation independent of chromosome assignment. Assembly correction of

796  scaffolding tools was disabled for this experiment.
797  Scaffolding performance evaluation

798  We initially evaluated the performance of Hi-C-based scaffolding tools in chromosome
799  assignment using metrics including contiguity, anchoring rate, misassignment rates, and

800 the number of scaffolds using a custom script “result_statistics.py”.
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801 In simulated assemblies, all chromosomes were fragmented. Thus, only sequences
802  output by scaffolding tools containing multiple contigs are true scaffolds, while
803 individual contigs are classified as unanchored sequences. The anchoring rate is the
804  ratio of the length of contigs in scaffolds to the total length of all contigs. Ideally, the

805  anchoring rate is 100%, and the number of scaffolds equals the number of chromosomes.

806 We did not use metrics such as N50 to assess scaffold contiguity because
807  incorrectly separated chromosomes could artificially inflate N50 values. Instead, we
808  designed an indicator with a maximum value of one that is independent of the anchoring
809 rate. First, we calculated the cumulative lengths of contigs based on their source
810  chromosomes for each scaffold and identified the longest source chromosome as the
811  dominant chromosome. Subsequently, we divided this length by the total length of
812  dominant chromosome anchored to all scaffolds to obtain a ratio. A ratio of one signifies
813 that the scaffold entirely comprises contigs from a specific chromosome, and all contigs
814  from this chromosome are distributed only within this scaffold. Finally, we calculated
815  the average value of this ratio among all scaffolds to obtain the final contiguity. A
816  contiguity of one indicates that all anchored chromosome sequences correspond

817  perfectly to scaffolds in a one-to-one relationship.

818 For contigs in scaffolds that do not originate from the dominant chromosome, we
819  categorize them as either misassignments between homologous chromosomes or
820  between non-homologous chromosomes, depending on their actual relationship with
821  the dominant chromosome. The misassignment rate is calculated as the proportion of
822 their length to the total length of the anchored genome. If all contigs in the scaffolds

823  originate from the dominant chromosome, the misassignment rate is zero.

824 Chimeric and collapsed contigs are excluded from statistics because they cannot
825  be considered totally correct when placed in any scaffold. During ALLHiC pruning, the
826  genome of a closely related species, Medicago truncatula (MtrunA17r5.0-ANR>), was
827 used as a reference. However, chromosomes 4 and 8 of M. truncatula have some
828  structural differences compared to those of M. sativa'’. Therefore, we also calculated

829 the contiguity and misassignment rate after excluding these two chromosomes. Since

29


https://doi.org/10.1101/2023.11.18.567668
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.18.567668; this version posted November 18, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

830  we manually tuned the parameter k for ALLHIC, we calculated Ak as the difference

831  between optimized k and default k.

832 We also evaluated the accuracy of Hi-C-based scaffolding tools in contig ordering
833 and orientation for assemblies with varying contig N50 values. In preliminary
834  comparisons between HapHiC and ALLHiC, we counted the number of generations for
835  convergence and calculated scores using the “optimize” program of ALLHiC’. For a
836  more objective comparison, two metrics were used to evaluate the accuracy of all
837  scaffolding tools. Lin’s concordance correlation coefficients?® (CCCs) were calculated
838  using a custom script “draw_tour file.py” to measure large-scale consistency between
839 results and reference genomes. “Costs” were also calculated using a modified
840 DERANGE II program?’ with the parameters including linear (-L), signed (-S), and a
841  look-ahead value of three. The weights for inversions, transpositions, and transversions
842  were set to one, one, and two, respectively, to simulate the number of steps needed to
843  achieve optimal results in Juicebox?®. Costs for both the original order and reverse
844  complementary order were calculated for each scaffolding result, and the minimum of
845  the two values were considered the final cost. For SALSA?2 and YaHS, which can output
846  multiple scaffolds for each chromosome, we joined these scaffolds as the result of
847  ordering and orientation. However, for 3D-DNA, the intermediate result “0.assembly”

848  was used to ensure contig completeness and result comparability.
849  Measurement of execution time and peak memory usage

850  All tasks were executed on a server running CentOS Linux (release 7.6.1810). The
851  server is equipped with two Intel Xeon Gold 6132 CPUs (a total of 28 cores at 2.6 GHz)
852  and 192 gibibytes (GiB) of memory. The CPU time, wall time, and peak memory usage
853  of each task were measured using the PBS Professional job scheduler (PBS Pro, version
854  18.1.4). A custom script, “pbsperf.py,” was utilized to summarize the records and
855  convert the units to minutes (min) and GiB. However, the measurements of peak
856  memory usage may not be precise because the scheduler measures them at intervals. If
857  atask completes within several seconds, PBS Pro may record a peak memory usage of

858  zero. All steps in ALLHiC were executed in parallel using GNU parallel®! (version
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859  20210922) to optimize the wall time if possible.
860  Validation of HapHiC in real cases

861 HapHiC was further validated using real cases. We compared its scaffolding
862  performance and resource usage with those of ALLHiC in published haplotype-
863  resolved autotetrapolyploid and diploid genomes. Additionally, we compared HapHiC
864  with YaHS in haplotype-collapsed allotetraploid and diploid genomes of various taxa.
865  The information of all species used in the validation is listed in Supplementary Data
866 4. Apart from the potato C88 genome, which was assembled using hifiasm!? (version
867  0.19.0-r534), the corresponding assemblies of other genomes were generated by
868  breaking the “N” gaps and randomly shuffling the ordering and orientation of contigs
869 using custom scripts “split fasta.py” and “shuffle fasta.py”, respectively. All

870  scaffolding results were visualized using Juicebox?® (version 1.11.08) for comparisons.

871 For the potato C88 assembly, we also used a k-mer-based method to analyze the
872  scaffolds output by HapHiC and ALLHiC using a script “haplotype kmers.py”. First,
873  we generated 201-mers from the published haplotype-resolved reference genome of
874  potato C88. These 201-mers were then annotated based on their source chromosomes
875  and used to classify each region of HapHiC and ALLHiC scaffolds with a bin size of
876 500 Kb. Additionally, we aligned these scaffolds to the reference genome using unimap
877  (https://github.com/Ih3/unimap, version 0.1-r41) and visualized the alignments with a

878  modified version of paf2dotplot (https://github.com/zengxiaofei/paf2dotplot).
879  Sampling, library construction, and genome sequencing of M. x giganteus

880  Young leaves of a M. x giganteus plant were collected at Hunan Agriculture University
881  in Changsha, Hunan Province, P.R. China and immediately frozen in liquid nitrogen.
882  For HiFi sequencing, DNA was extracted from the leaves using a modified CTAB
883  protocol. The DNA was then qualified and quantified using a NanoDrop 2000
884  Spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA), a Qubit 3.0
885  Fluorometer (Life Technologies, Carlsbad, CA, USA), and 0.8% agarose gel

886  electrophoresis. Three SMRTbell libraries were constructed using sheared DNA and the
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887  SMRTbell Express Template Prep Kit 2.0 (Pacific Biosciences, Menlo Park, CA, USA).
888  The libraries were size-selected with a minimum length of ~15 Kb using the BluePippin
889  (Sage Science, Beverly, MA, USA) and sequenced on the PacBio Sequel II System
890  under the circular consensus sequencing (CCS) mode for 30-h movies using 2.0

891  Chemistry. A total of 69.4 Gb of HiFi reads were generated.

892 For Hi-C sequencing, the leaves were fixed with formaldehyde to cross-link
893  chromatin. After cell lysis, the cross-linked chromatin was digested using the Mbol
894  restriction enzyme. Sticky ends were repaired, labeled with biotin, and ligated to form
895  chimeric molecules. Proteins were then digested from the chromatin using protease,
896 and DNA was purified using a QIAamp DNA Mini Kit (Qiagen, Hilden, NRW,
897  Germany) and sheared into fragments of 400-600 bp. Biotin-labeled fragments were
898  enriched using streptavidin-coated magnetic beads (Vazyme, Nanjing, JS, P.R. China)
899  for library construction. Hi-C sequencing was performed on the BGI MGISEQ-2000
900 platform under the PE150 mode, generating a total of 684.1 Gb of Hi-C reads.

901  De novo assembly and comparative analysis of M. x giganteus genome

902  The genome of M. x giganteus was assembled using hifiasm'? (version 0.13-r308) with
903  HiFireads. The parameter “-10” was employed to disable duplication purging, resulting
904  in the primary unitigs (p_utg) with a size of 6.13 Gb and an N50 of 2.18 Mb. After
905 removing organellar and exogenous DNA sequences from these unitigs, a draft
906 assembly of 6.11 Gb with an N50 of 2.19 Mb was obtained. To identify the source of
907  diagonally distributed inter-allele Hi-C links, the genome was also assembled using
908  HiCanu®® (version 2.1.1) for comparison with the hifiasm assembly. The hifiasm
909 assembly was scaffolded onto 57 chromosome-level pseudomolecules using HapHiC
910 and ALLHiC separately, both with default parameters. After manual curation in
911  Juicebox?® (version 1.11.08), the final chromosome-level haplotype-resolved genome

912  of M. x giganteus was generated based on the HapHiC scaffolds.

913 The genes in each haplotype of M. x giganteus were simply annotated by mapping

914  the coding sequences of the M. sinensis genome using GMAP>? (version 2019-12-01)
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915  with the parameter “-n 1. MCscan*! in JCVI utility libraries (version 1.1.18) was used
916  to perform gene synteny comparisons between the subgenomes of Miscanthus species
917 and to draw the karyotype plot. Genome alignment between chromosomes of M. X
918  giganteus and M. sinensis was performed using Minimap2>® (version 2.26-r1175).

919  Structural variations were identified using SyRI>*

(version 1.6.3) and visualized using
920  plotsr>® (version 1.1.1). To compare the structural accuracy of the M. x giganteus and
921 M. sinensis genomes, five genetic maps of M. sinensis and one genetic map of M.
922 sacchariflorus were collected®®. The genetic markers of each map were aligned to the
923  two genomes using BWA-ALN and BWA-SAMSE (version 0.7.17-r1198-dirty) with
924  default parameters. The agreements between the genetic maps and the genomes were

925  analyzed and visualized using ALLMAPS? in JCVI utility libraries with the markers

926  shared by all genetic maps.
927  Program versions and command lines

928  All program versions and command lines used in this research are available in

929  Supplementary Information.
930  Statistics analysis

931  Two-sided Wilcoxon signed-rank tests were performed to compare scaffold contiguity
932  values, misassignment rates, ALLHiC scores, Lin’s concordance correlation
933  coefficients (CCCs), DERANGE costs, and time and memory usage. The function
934  “wilcox.test” in R language (version 4.0.2) was used with the “paired” parameter set to
935  “TRUE”. The results of statistical tests were visualized using the ggpubr package in R.
936 The “geom smooth” function in ggplot2 was used to fit curves with the formula “y ~
937  x” and the method “loess”. Lin’s CCCs were calculated between the corresponding
938  positions on the reference chromosomes and scaffolds to measure their agreements

939  using the following formula:

2poy0y
0_9? + 0_3% + (:ux - .uy)z

940 CCC =
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941  where p is the Pearson correlation coefficient between the two variables, o, and g,
942  are the standard deviations of the two variables, and p, and p, are the means of the
943  two variables. Additionally, Spearman’s correlation coefficients were calculated to

944  quantify the agreements between genetic maps and genomes using ALLMAPS?.

945  Data availability

946  All raw sequencing data and the final chromosome-level haplotype-resolved genome
947  of M. x giganteus will be publicly available after publication. All published raw
948  sequencing data and genome assemblies used for HapHiC validation are listed in

949  Supplementary Data 4.

950 Code availability

951  HapHiC and all custom scripts for dataset simulation are available on GitHub at

952  https://github.com/zengxiaofei/HapHiC. The source code of modified ALLHiC can be

953  found at https://github.com/zengxiaofei/allhic.
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Fig. 1 | Overview of the HapHiC pipeline. a, A network graph illustrates contigs connected via Hi-C
links. Contigs from haplotype 1 and haplotype 2 are represented by red and blue rectangles, respectively.
Collapsed and chimeric contigs are shown as purple and bicolor rectangles, respectively. Hi-C links within
haplotype 1, within haplotype 2, and connecting collapsed contigs are depicted as red, blue, and purple
curves, respectively. Inter-allele Hi-C links are represented by dashed purple lines. b, The preprocessing
step involves assembly correction, filtering out low-information contigs, discarding collapsed and chimeric
contigs, and removing inter-allele Hi-C links. Breakpoints of assembly correction are represented by black
arrows, while crosses indicate the removal of inter-allele Hi-C links. ¢, Preliminary Markov clustering
is performed with the remaining contigs and Hi-C links. d, The reassignment step rescues and reassigns
contigs to the most suitable clusters and performs an additional agglomerative hierarchical clustering if the
number of clusters exceeds the expected number of chromosomes. e, An efficiency-improved 3D-DNA
iterative algorithm is used for contig ordering and orientation, referred to as “fast sorting”. In each round
of iteration, a confidence graph is constructed using the hemi-parts (green and blue segments) of contigs or
scaffolds. The graph is then filtered to retain only reciprocal best matching (opaque red lines). Unlike the
original 3D-DNA algorithm, the hemi-parts of scaffolds are split at the approximate midpoints to eliminate
the need for reconstructing graph from scratch. f, Optimization of contig ordering and orientation is based
on the result of fast sorting using the genetic algorithm and greedy method.
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Fig. 2 | Comprehensive performance analysis of Hi-C-based scaffolding tools in chromosome assignment
under various adverse conditions. a, A schematic diagram illustrating the potential challenges in allele-

aware scaffolding, including the presence of collapsed contigs, chimeric contigs, and ambiguous or incor-

rect mapping. b-f, The effect of manually tuning parameter £ on ALLHiC performance (n = 141). g-k, The

effect of pruning and separating homologous groups on ALLHiC performance (n = 152, 14, 14, 16, and
152 respectively). i, Performance analysis of Hi-C-based scaffolding tools on assemblies with various ad-

verse factors of varying degrees. HapHiC was executed in default mode (HapHiC), with assembly corrected

(HapHiC corrected) or with inter-allele Hi-C links removed (HapHiC removed). The total misassignment

rate includes misassignment rate between both homologous and non-homologous chromosomes. The ad-

justed contiguity is calculated by multiplying the contiguity by the anchoring rate. P values were derived
from two-sided Wilcoxon signed-rank tests.
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Fig. 3 | Evaluation of Hi-C-based scaffolding tools’ performance in contig ordering and orientation across
assemblies with varying contig N50 values. a, A schematic diagram categorizes the contig ordering and
orientation results into four quadrants based on their distinct tendencies, using the absolute value of Lin’s
concordance correlation coefficient (CCC) and DERANGE cost as metrics. The former metric assesses the
large-scale consistency between the results and the reference chromosomes, while the latter one quantifies
the agreement on a smaller scale. b, The absolute values of Lin’s CCC and DERAGE costs for each Hi-
C-based scaffolding tool in ordering and orienting the contigs of the rice IRGSP-1.0 chromosomes with
varying contig N50 values are presented (p value from two-sided Wilcoxon signed-rank tests, n = 12). ¢,
The dot plots illustrate the concordance between chromosome 1 of the rice IRGSP-1.0 genome and the contig
ordering and orientation result produced by each Hi-C-based scaffolding tool. Red and blue dots represent
forward and reverse complementary alignments, respectively.
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Fig. 4 | Comparative analysis of execution time and memory usage for Hi-C-based scaffolding tools. a-e,
A comparative analysis of execution time and memory usage between HapHiC and ALLHiC during contig
ordering and orientation. The wall time (a, n = 160), CPU time (b, n = 160), and peak memory (c, n =
48, 20, 92, respectively) for HapHiC and ALLHiC were recorded for each chromosome of rice IRGSP-1.0,
Arabidopsis TAIR10.1, and human CHM13v2.0 noY genomes under varying contig N50 values. d, The
total time and memory usage of the entire pipeline for each Hi-C-based scaffolding tool while scaffolding
genome assemblies with different contig N50 values simulated from the M. sativa ground truth. e, The time
and memory usage of each Hi-C-based scaffolding tool during assembly correction. f, The time and memory
usage of each Hi-C-based scaffolding tool while processing Hi-C data at different depths. g, Comparisons
of execution time and memory usage between HapHiC and ALLHiC when scaffolding published haplotype-
resolved assemblies (n = 7). h, Comparisons of execution time and memory usage between HapHiC and
YaHS when scaffolding published haplotype-collapsed assemblies (n = 20). P values were derived from
two-sided Wilcoxon signed-rank tests.
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Fig. 5| Comparative analysis and examples of HapHiC in scaffolding published autotetraploid genomes. a,
A comparison of assembly correction between HapHiC and ALLHiC for the S. spontaneum Np-X genome.
b, Examples of assembly correction by HapHiC and ALLHiC, including a chimeric contig formed between
homologous chromosomes (CM039579.1 ctg399 +), a chimeric contig formed between non-homologous
chromosomes (CM039579.1 ctgl95 —), and two non-chimeric contigs (CM039579.1 ctg499 + and
CMO039579.1 ctg39 —). The line charts depict the Hi-C spanning coverages along contigs (left axes), while
histograms represent the percentages of Hi-C links based on their sources along contigs (right axes). The
source of each Hi-C link is determined by the mapping position of the other end of the read pair. Red and
blue triangles indicate the breakpoints determined by HapHiC and ALLHIiC, respectively. ¢, The dot plots
illustrate the alignments between the HapHiC scaffolds and the haplotypes of potato C88 genome, with
dot colors indicating the sequence identities of alignments. d, A k-mer-based analysis reveals the primary
source of each position along the contigs from the potato C88 haplotypes. The color indicates the primary
source of k-mers, while the degree of transparency represents the percentage of haplotype-specific k-mers.
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Fig. 6 | Comparative genomic analysis of M. X giganteus and other Miscanthus species. a, Gene syn-
teny analyses between each subgenome haplotypes of M. x giganteus (MgiA, MgiB1, and MgiB2) and
the genomes of M. sinensis (MsiA) and M. lutarioriparius (MIluB). Ribbons illustrate gene synteny blocks
between orthologous chromosome pairs, with green, blue, and red ribbons representing inversions, translo-
cations, and inverted translocations, respectively. b, A comparison between MsiA and MgiA chromosomes
based on their alignments with five genetic maps of M. sinensis (n = 94) and one genetic map of M. sacchar-
iflorus (n =19). Spearman’s correlation coefficients (p) were calculated to quantify the agreements between
genetic maps and genomes using ALLMAPS. P values were derived from two-sided Wilcoxon signed-rank
tests on the raw p values. ¢, Alignments between the physical positions on the chromosome 2 of MgiA
and the positions on the six genetic maps. d, A correlation analysis between the physical positions on the
chromosome 2 of MgiA and the corresponding map positions using Spearman’s correlation coefficients. e
A comparison of Hi-C contact maps between the chromosomes 2 of MsiA and MgiA. Genome alignment
between the two chromosomes is shown in ribbons, with yellow, green, and blue ribbons representing inver-
sions, translocations, and duplications identified by SyRI. The inconsistent gene synteny blocks identified in
the gene synteny analysis (a) are also shown in this plot. Dashed rectangles highlight error-enriched regions
in MsiA chromosome 2.
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