

1 Chromosome-level scaffolding of haplotype-resolved 2 assemblies using Hi-C data without reference genomes

3

4 Xiaofei Zeng^{1,*}, Zili Yi², Xingtian Zhang³, Yuhui Du¹, Yu Li¹, Zhiqing Zhou¹, Sijie
5 Chen¹, Huijie Zhao¹, Sai Yang², Yibin Wang³, Guoan Chen^{1,*}

6

7 ¹Department of Human Cell Biology and Genetics, Joint Laboratory of Guangdong-Hong Kong
8 Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of
9 Science and Technology, Shenzhen, Guangdong 508055, China

10 ²College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan
11 410128, China

12 ³National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory
13 for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture,
14 Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen,
15 Guangdong 518120, China

16 *Corresponding authors. Correspondence to Xiaofei Zeng (Email: xiaofei_zeng@whu.edu.cn) or
17 Guoan Chen (Email: cheng@sustech.edu.cn)

18

19 **Abstract**

20 Scaffolding is crucial for constructing most chromosome-level genomes. The high-
21 throughput chromatin conformation capture (Hi-C) technology has become the primary
22 scaffolding strategy due to its convenience and cost-effectiveness. As sequencing
23 technologies and assembly algorithms advance, constructing haplotype-resolved
24 genomes is increasingly preferred because haplotypes can provide additional genetic
25 information on allelic and non-allelic variations. ALLHiC is a widely used allele-aware
26 scaffolding tool designed for this purpose. However, its dependence on chromosome-
27 level reference genomes and a higher chromosome misassignment rate still impede the
28 unraveling of haplotype-resolved genomes. In this paper, we present HapHiC, a
29 reference-independent allele-aware scaffolding tool with superior performance on
30 chromosome assignment as well as contig ordering and orientation. Additionally, we
31 provide new insights into the challenges in allele-aware scaffolding by conducting

32 comprehensive analyses on various adverse factors. Finally, with the help of HapHiC,
33 we constructed the haplotype-resolved allotriploid genome for *Miscanthus × giganteus*,
34 an important lignocellulosic bioenergy crop. HapHiC is available at
35 <https://github.com/zengxiaofei/HapHiC>.

36 **Introduction**

37 The construction of a high-quality reference genome serves as the basis for functional
38 genomics research in a species. Chromosome scaffolding is a necessary step in *de novo*
39 building eukaryotic chromosome-level genomes, except for directly assembling
40 telomere-to-telomere (T2T) genomes¹. Its objective is to determine the chromosome
41 assignment of contigs or scaffolds in the assemblies, as well as the ordering and
42 orientation of these sequences on the chromosomes. In early genome research,
43 chromosome scaffolding was often achieved using the information from linkage groups
44 and genetic distance in genetic maps². However, in recent years, the high-throughput
45 chromatin conformation capture (Hi-C) technology has gradually replaced genetic
46 maps due to its simplicity, short cycle, and low cost, making it the most widely used
47 chromosome scaffolding solution³⁻⁸. Hi-C links are generated by proximity ligation and
48 massively parallel sequencing to indicate the frequency of chromatin interactions
49 between different loci in the genome⁹. This information can be used to infer
50 chromosome territories, as well as the distance and orientation between contigs or
51 scaffolds³. Several Hi-C-based scaffolding tools, including LACHESIS³, HiRise⁴, 3D-
52 DNA⁵, SALSA2⁶, and YaHS⁸, have been developed for haploid and haplotype-
53 collapsed assemblies.

54 For heterozygous diploids or polyploids, a haplotype-resolved assembly consists
55 of two or more sets of haploid sequences. In contrast to a haplotype-collapsed assembly,
56 it provides additional genetic information, such as bi- or multi-alleles, and *cis/trans*
57 configurations among non-allelic variations¹⁰. Recent advances in sequencing
58 technologies and assembly algorithms have propelled the unraveling of haplotype-
59 resolved genomes. HiFi sequencing from Pacific Biosciences (PacBio) and duplex

60 sequencing from Oxford Nanopore Technologies (ONT) have both achieved a base
61 accuracy level of Q30 (99.9%), which provides a solid foundation for more accurate
62 phasing of alleles. Trio binning uses short reads from parental genomes to phase long
63 reads, enabling phasing at the whole-genome level¹¹. More recently, hifiasm takes
64 advantage of Hi-C sequencing data for chromosome-level phasing without parental
65 data¹². These two methods have demonstrated high accuracy in dealing with diploid or
66 diploid-like allopolyploid genomes. Consequently, subsequent chromosome
67 scaffolding can be independently performed on each phased haplotype.

68 Autopolyploidy is prevalent in seed plants, especially in economically important
69 crops¹³. Haplotype phasing in autopolyploid genomes facilitates the study of crop
70 domestication history and genetic breeding¹⁴. It also lays the foundation for analyzing
71 allele expression dominance and genome evolution after whole-genome duplication
72 (WGD)¹⁰. However, assembling haplotype-resolved autopolyploid genomes is more
73 challenging than diploid genomes. Trio binning is unsuitable for autopolyploids¹¹, and
74 the Hi-C-based algorithm in hifiasm produces unbalanced phasing results during the
75 assembly of autopolyploid genomes¹⁵. Therefore, the most common strategy for
76 constructing a haplotype-resolved autopolyploid genome is to perform allele-aware
77 scaffolding, which utilizes Hi-C data to allocate contigs to different haplotypes
78 simultaneously during chromosome scaffolding⁷. On the other hand, scaffolding each
79 phased haplotype separately may result in errors because the Hi-C data from multiple
80 haplotypes are aligned to a single haplotype, disregarding possible chromosomal
81 structural variations between haplotypes. This once again emphasizes the importance
82 of allele-aware scaffolding.

83 ALLHiC is a widely used Hi-C scaffolding tool specifically designed for allele-
84 aware scaffolding⁷. It effectively identifies allelic sequences and removes the Hi-C links
85 between them to reduce interference prior to clustering. ALLHiC has demonstrated
86 robust performance in haplotype phasing and has been applied to resolve the diploid
87 and autotetraploid genomes of several important crops¹⁶⁻²⁰. However, this method
88 requires a chromosome-level reference genome from a closely related species, which

89 may not be available for many species. Although it is feasible to assemble and annotate
90 a haplotype-collapsed genome as the reference¹⁹, it significantly increases the time and
91 cost of genome research. Additionally, ALLHiC has been observed to introduce
92 clustering errors when using the reference genome (as discussed in Results). These
93 limitations and drawbacks have hindered the construction of haplotype-resolved
94 genomes to some extent, especially in autopolyploids.

95 In this study, we introduce HapHiC, a Hi-C-based scaffolding tool that enables
96 allele-aware chromosome scaffolding of autopolyploid assemblies without reference
97 genomes. We conducted a comprehensive investigation into the factors that may impede
98 the allele-aware scaffolding of genomes. Compared to existing methods, HapHiC
99 demonstrated a higher scaffolding contiguity and lower misassignment rates when
100 addressing these challenges. Additionally, HapHiC is fast, resource-efficient, and has
101 been successfully validated in genomes with varying ploidies and taxa. By utilizing
102 HapHiC, we finally constructed the haplotype-resolved genome of *Miscanthus ×*
103 *giganteus*, an important lignocellulosic bioenergy crop.

104 **Results**

105 **Overview of HapHiC**

106 To ensure concision and clarity, we will use the term “contigs” to refer to both contigs
107 and scaffolds input into scaffolding tools. Assembly errors in phased assemblies and
108 strong Hi-C signals between allelic contigs are considered the main obstacles that
109 hinder allele-aware scaffolding. HapHiC addresses these challenges through two
110 strategies. First, HapHiC prioritizes the chromosome assignment of contigs (Fig. 1c,d)
111 before determining their ordering and orientation (Fig. 1e,f), similar to the approach
112 used by LACHESIS³ and ALLHiC⁷. This is because determining scaffold or
113 chromosome boundaries during or after contig ordering and orientation, as done by 3D-
114 DNA⁵, SALSA2⁶, and YaHS⁸, can amplify the negative effects of assembly errors and
115 undesirable inter-allele Hi-C signals on chromosome assignment by disrupting the
116 ordering and orientation of contigs. Therefore, HapHiC employs this “divide-and-

117 “conquer” strategy to isolate their negative impacts between these two steps. Second,
118 HapHiC applies several preprocessing steps before chromosome assignment to correct
119 and filter input contigs and remove Hi-C links between allelic contigs (**Fig. 1b**).
120 Specifically, HapHiC implements an efficient and stringent method to correct chimeric
121 contigs with minimal impact on contig N50. Subsequently, low-information contigs,
122 such as short contigs and those lacking Hi-C links, are temporarily removed before
123 clustering due to their propensity for errors. In addition to the conventional method of
124 identifying collapsed contigs based on Hi-C link density, we introduce a unified “rank-
125 sum” algorithm to further filter out residual chimeric and collapsed contigs. Moreover,
126 undesirable inter-allele Hi-C links are removed based on the distribution pattern of Hi-
127 C links. These innovative approaches significantly enhance HapHiC’s tolerance to
128 assembly errors and enable its capability of allele-aware scaffolding without reliance
129 on reference genomes.

130 The remaining contigs and Hi-C links are then used to construct a contact matrix.
131 HapHiC performs preliminary contig clustering using a Markov cluster algorithm²¹
132 (MCL) and selects the optimal clustering result through automatic parameter tuning
133 (**Fig. 1c**). In the subsequent reassignment step, the filtered-out and potential
134 misassigned contigs are respectively rescued and reassigned to the most suitable
135 clusters (**Fig. 1d**). If the number of clusters exceeds the expected number of
136 chromosomes, HapHiC carries out additional agglomerative hierarchical clustering²² to
137 group them into chromosome-level clusters. After chromosome assignment, HapHiC
138 conducts contig ordering and orientation by integrating the algorithms from 3D-DNA⁵
139 and ALLHiC⁷. Initially, the contigs in each cluster are ordered and oriented using an
140 efficiency-improved 3D-DNA algorithm, which we refer to as “fast sorting” (**Fig. 1e**).
141 The results are further optimized by employing the genetic algorithm in ALLHiC to
142 generate the final chromosome-level pseudomolecules (**Fig. 1f**). This integration
143 enhances the accuracy of contig ordering and orientation while significantly reducing
144 the execution time and the number of iterations compared to ALLHiC.

145 **Factors that may impede the allele-aware scaffolding of phased assemblies**

146 In this section, we evaluated the negative impact of various factors on allele-aware
147 scaffolding of phased assemblies and compares the performance of HapHiC with other
148 mainstream Hi-C-based scaffolding tools, including ALLHiC⁷, LACHESIS³, 3D-
149 DNA⁵, SALSA2⁶, and YaHS⁸. We used the haplotype-resolved autotetraploid genome
150 of *Medicago sativa* XinJiangDaYe¹⁷ to establish a ground truth (**Supplementary Figs.**
151 **1** and **2**) and generated a series of fragmented assemblies by simulating multiple adverse
152 factors of varying degrees (**Supplementary Fig. 3** and **Supplementary Tables 1-10**).

153 Contig contiguity is a crucial factor affecting allele-aware scaffolding. Phased
154 assemblies typically have lower contig contiguity compared to collapsed assemblies.
155 When the contig N50 decreased from 2 Mb to 25 Kb (**Supplementary Fig. 4**), all Hi-
156 C scaffolding tools examined experienced a decline in final scaffold contiguity,
157 anchoring rate, and an increase in misassignment rate between homologous
158 chromosomes (**Fig. 2l**, **Supplementary Fig. 5**, and **Supplementary Data 1**). Among
159 these tools, HapHiC consistently showed the highest scaffold contiguity and extremely
160 low misassignment rates. In contrast, 3D-DNA and SALSA2 tended to produce highly
161 fragmented scaffolds, with the scaffold contiguity values mostly less than 0.5. ALLHiC,
162 LACHESIS, and YaHS exhibited much higher scaffold contiguity than 3D-DNA and
163 SALSA2, but their misassignment rates were also elevated. Furthermore, when the
164 contig N50 dropped below 100 Kb, the memory usage of YaHS became too high to
165 scaffold the assemblies. Additionally, we assessed the impact of contig length
166 distribution on allele-aware scaffolding, with the coefficients of variation (CVs) of the
167 contig length ranging from 0.2 to 3 (**Supplementary Fig. 6**). All scaffolding tools
168 performed stably in this regard, with HapHiC remaining the most outstanding among
169 them (**Fig. 2l**, **Supplementary Fig. 7**, and **Supplementary Data 1**).

170 As the cost of next-generation sequencing decreases, Hi-C sequencing depth seems
171 to no longer be a limiting factor in scaffolding. However, in the context of allele-aware
172 scaffolding of phased assemblies, Hi-C reads can be aligned to multiple allelic loci on
173 homologous chromosomes simultaneously. These reads are often filtered out due to low
174 mapping quality, resulting in a reduction of effective data. To demonstrate this, we

175 simulated effective sequencing depths ranging from 11X to 0.02X (**Supplementary**
176 **Fig. 8**). The results showed that the anchoring rate of 3D-DNA and SALSA2 declined
177 rapidly with decreasing sequencing depth (**Fig. 2l, Supplementary Fig. 9**, and
178 **Supplementary Data 1**). Notably, YaHS and SALSA2 failed to scaffold at depths
179 below 1X and 0.05X, respectively. For other scaffolding tools, scaffold contiguity
180 decreased and misassignment rates increased when the effective Hi-C data dropped
181 below 0.05X. HapHiC performed well even at extremely low depths, exhibiting the
182 highest scaffold contiguity and relatively low misassignment rates.

183 Chimeric contigs, a common assembly error in phased assemblies, result from
184 misjoins between nonadjacent sequences (**Fig. 2a**). These misjoins can occur between
185 homologous or non-homologous chromosomes (**Supplementary Fig. 10**), leading to
186 chromosome misassignments during scaffolding. ALLHiC has been reported to be
187 highly susceptible to chimeric contigs without assembly correction⁷. We evaluated the
188 accuracy and precision of assembly correction for each tool in dealing with chimeric
189 contigs of different lengths (**Supplementary Figs. 11-14**). When the length was below
190 800 Kb and 100 Kb, respectively, neither SALSA2 nor ALLHiC could break any
191 chimeric contigs (**Supplementary Fig. 12**). Moreover, 3D-DNA, SALSA2, and
192 ALLHiC tended to break too many non-chimeric contigs, leading to a significant
193 decrease in contig contiguity (**Supplementary Fig. 13**). HapHiC achieved 84.2% to
194 94.9% of the true positive rate (TPR) of YaHS in identifying chimeric contigs, while
195 maintaining a false positive rate (FPR) that was 0.4 to 7.1 times lower than that of YaHS.
196 This suggests that HapHiC has comparable sensitivity to YaHS in identifying chimeric
197 contigs, but with significantly higher stringency. Additionally, HapHiC consistently
198 demonstrated exceptional precision in determining breakpoints, as evidenced by the
199 highest proportions of breakpoints within 10 Kb of simulated misjoins, ranging from
200 81.0% to 95.7% across varying contig lengths (**Supplementary Fig. 14**).

201 With assembly error correction, some chimeric contigs may still slip through the
202 net. To address this, we introduce a “rank-sum” algorithm in HapHiC for further contig
203 filtering (**Supplementary Fig. 15**). This algorithm is based on the following principles:

204 (1) the one- or three-dimensional neighborhoods of a specific genome region should
205 also be neighborhoods to each other, and (2) this is not applicable to chimeric contigs,
206 which may be misjoined from different regions of the chromosome or even different
207 chromosomes. Thus, potential chimeric contigs can be identified by measuring the
208 density of their respective neighborhoods (**Supplementary Fig. 16**). The receiver
209 operating characteristics (ROC) curve demonstrates the superior performance of the
210 rank-sum algorithm in identifying chimeric contigs, whether formed between
211 homologous chromosomes or non-homologous chromosomes (**Supplementary Fig.**
212 **17**). Although the algorithm is not sensitive to chimeric contigs formed within the
213 chromosome, this type of error does not adversely affect chromosome assignment.
214 Using this algorithm alone, HapHiC can tolerate up to 20% chimeric contigs (**Fig.21**,
215 **Supplementary Fig. 18**, and **Supplementary Data 1**). With assembly correction
216 enabled, HapHiC can accurately assign contigs into chromosomes even when up to 40%
217 of contigs are chimeric. In contrast, other scaffolding tools exhibited significantly
218 higher misassignment rates between homologous chromosomes. We also found that
219 when the proportion of chimeric contigs was below 25%, the performance of ALLHiC
220 with assembly correction was even less effective than without any correction
221 (**Supplementary Fig. 19**). This could be explained by a hypothesis that the negative
222 impact of ALLHiC correction on contig contiguity is more severe compared to a low
223 proportion of chimeric contigs.

224 Another type of assembly error that can lead to misassignments between
225 homologous chromosomes is collapsed contigs. These contigs are consensus sequences
226 collapsed from highly similar allelic regions (**Fig. 2a** and **Supplementary Fig. 20**).
227 LACHESIS³ and ALLHiC⁷ simply identify and filter out collapsed contigs based on
228 Hi-C link density. However, there are two potential issues that can adversely affect the
229 performance of this method (**Supplementary Fig. 21**). First, in phased autopolyploid
230 assemblies, collapse frequently occurs and can involve more than two haplotypes,
231 resulting in a higher average or median Hi-C link density. Using a fixed cutoff for
232 classification is inefficient in such cases. Second, both scaffolding tools neglect intra-

233 contig links when calculating Hi-C link density, leading to bias against contig length.
234 Similar to chimeric contigs, the neighborhoods of collapsed contigs are expected to
235 exhibit a lower density compared to normal contigs. As anticipated, the rank-sum
236 algorithm has proven to be a unified approach that is also effective for identifying
237 collapsed contigs (**Supplementary Fig. 22**). Additionally, the two methods showed
238 complementary trends in relation to the number of collapsed haplotypes
239 (**Supplementary Fig. 23**). Specifically, the link density method exhibited higher
240 sensitivity to four-haplotype collapsed contigs, while the rank-sum algorithm
241 demonstrated greater efficiency in identifying two-haplotype collapsed contigs.
242 Consequently, we integrated these two methods in the preprocessing step of HapHiC.
243 This integration enabled HapHiC to tolerate up to 25% of collapsed contigs in
244 chromosome assignment, significantly surpassing other examined Hi-C scaffolding
245 tools (**Fig. 2l**, **Supplementary Fig. 24**, and **Supplementary Data 1**). In contrast, the
246 pruning process of ALLHiC only partially mitigated the adverse effects of collapsed
247 contigs.

248 One commonly held perspective is that low sequence divergence between
249 haplotypes can hinder allele-aware scaffolding by causing incorrect mapping of Hi-C
250 reads (**Fig. 2a**). In real cases, strong signals of inter-allele Hi-C links are often observed
251 to be diagonally distributed between homologous chromosomes (**Supplementary Fig.**
252 **25**). However, our simulation tests yielded contradictory results. The relative proportion
253 of inter- and intra-homologous chromosome Hi-C links did not change significantly
254 with sequence divergence after filtering with mapping quality and edit distance
255 (**Supplementary Figs. 26 and 27**). Furthermore, most Hi-C scaffolding tools performed
256 well even when the sequence divergence between haplotypes was as low as 0.1% (**Fig.**
257 **2l**, **Supplementary Fig. 28**, and **Supplementary Data 1**).

258 To address this contradiction, we constructed two phased assemblies using the
259 same PacBio HiFi reads but with different genome assemblers, hifiasm¹² and HiCanu²³.
260 We observed stronger signals of inter-allele Hi-C links in the HiCanu assembly
261 (**Supplementary Fig. 29b**) compared to the hifiasm assembly (**Supplementary Fig.**

262 **29a)**. This suggests that the presence of unfavorable inter-allele Hi-C signals is more
263 likely caused by a type of assembly error. Based on their distribution patterns on the
264 Hi-C contact maps (**Supplementary Figs. 29 and 30**), it is evident that these errors are
265 not due to large-scale chimeric or collapsed sequences. Instead, we hypothesize that
266 they could be switch errors at the base level. To verify this hypothesis, we simulated
267 switch errors by randomly shuffling single nucleotide polymorphisms (SNPs) and small
268 insertions/deletions (InDels) between haplotypes. As a result, we were able to
269 reproduce similar inter-allele Hi-C signals along the diagonal (**Supplementary Fig. 31**),
270 which became stronger as the switch error rate increased (**Supplementary Fig. 32**).
271 Our findings indicate that incorrect mapping of Hi-C links is introduced by switch
272 errors rather than the inherent sequence divergence between haplotypes.

273 ALLHiC identifies allelic contigs by examining gene synteny between the
274 assembly and an annotated, chromosome-level reference genome from the same or a
275 closely related species. During the pruning process, Hi-C links between allelic contigs
276 are removed. However, such a reference genome is not always available for all species.
277 As a result, we developed a reference-free method in HapHiC that relies on the
278 distribution pattern of Hi-C links (**Supplementary Figs. 33 and 34**). In simulation tests,
279 our reference-free method allowed HapHiC to tolerate a switch error rate of up to 25%
280 (**Fig. 2l, Supplementary Fig. 35, and Supplementary Data 1**) and exhibited higher
281 efficiency than ALLHiC in identifying allelic contigs of low contiguity (**Fig. 2l,**
282 **Supplementary Figs. 36 and 37**). In contrast, scaffolding tools that are not allele-aware
283 or executed without removing inter-allele Hi-C links were severely disrupted when the
284 switch error rate exceeded 5% (**Supplementary Fig. 35**).

285 While tetraploids constitute the majority of published autopolyploid genomes,
286 species with higher ploidies are prevalent in both wild and cultivated plants. We
287 assessed the impact of genome ploidy on allele-aware scaffolding. In the absence of
288 assembly errors, all Hi-C scaffolding tools, except for 3D-DNA, demonstrated stable
289 performance when handling ploidies ranging from 1 to 16 (**Fig. 2l, Supplementary Fig.**
290 **38, and Supplementary Data 1**). However, when we introduced 5% each of chimeric,

291 collapsed contigs, and switch errors in simulated assemblies of various ploidies, only
292 HapHiC consistently produced perfect chromosome assignment results (**Fig. 2l**,
293 **Supplementary Fig. 39**, and **Supplementary Data 1**). Additionally, the performance
294 of the reassignment process in HapHiC was validated through separate tests
295 (**Supplementary Fig. 40**).

296 Our results confirm that the reference-dependent pruning method in ALLHiC
297 effectively and robustly reduces misassignments between homologous chromosomes,
298 particularly when dealing with collapsed contigs and switch errors (**Fig. 2g-i**). However,
299 the main concern is that the reference genome may not be available or may require
300 significant effort and cost for construction and annotation. Additionally, using reference
301 genomes is a double-edged sword that can increase misassignments between non-
302 homologous chromosomes and exacerbate the adverse effect of chimeric contigs (**Fig.**
303 **2j,k**). Furthermore, substantial parameter tuning is often necessary for ALLHiC to
304 achieve improved chromosome assignment results (**Fig. 2b-f**). HapHiC has addressed
305 these problems, demonstrating stronger tolerance to various assembly errors and
306 unfavorable factors (**Fig. 2l** and **Supplementary Data 1**). These improvements
307 enhance its adaptability and capability in tackling more intricate allele-aware
308 scaffolding problems.

309 **Accuracy of contig ordering and orientation**

310 After chromosome assignment, the contig ordering and orientation of a phased
311 assembly become similar to those of an unphased assembly. To evaluate the accuracy
312 of each Hi-C-based scaffolding tool in contig ordering and orientation, we simulated
313 genome assemblies of rice²⁴ (*Oryza sativa*), *Arabidopsis*²⁵ (*Arabidopsis thaliana*), and
314 human¹ (*Homo sapiens*) with varying contig N50 values (**Supplementary Table 11**).

315 Initially, the performance of HapHiC and ALLHiC was compared using the built-
316 in scoring system of ALLHiC⁷ (**Supplementary Fig. 41** and **Supplementary Data 2**).
317 Even when only fast sorting was employed, the initial scores of HapHiC were already
318 comparable to or even higher than the final scores achieved by ALLHiC. In assemblies

319 with low contig contiguity, these scores were further improved during the subsequent
320 optimization process, resulting in a significant reduction in the number of iterations
321 required for the genetic algorithm to converge.

322 Subsequently, we introduced two objective metrics to assess the accuracy of contig
323 ordering and orientation for all Hi-C-based scaffolding tools (**Fig. 3a**). The first metric,
324 Lin's concordance correlation coefficient²⁶ (CCC), measures the consistency between
325 the results and the reference chromosomes on a large scale. The second metric is the
326 “cost” calculated by DERANGE II²⁷, which approximates the number of moves
327 required to adjust the results for complete consistency with the reference chromosomes
328 via transposition and inversion. This cost can also represent the number of steps needed
329 to achieve optimal results in Juicebox²⁸. As the cost is independent of contig length, it
330 is suitable for quantifying the results on a smaller scale. By employing these two metrics,
331 we can categorize the results into four quadrants based on their distinct tendencies (**Fig.**
332 **3a**).

333 **Fig. 3b,c** and **Supplementary Figs. 42-45** illustrate the performance of each
334 scaffolding tool in terms of contig ordering and orientation (**Supplementary Data 2**).
335 SALSA2 performed poorly with a low contig N50, exhibiting the lowest absolute
336 values of CCC and highest DERANGE costs among the evaluated tools when the contig
337 N50 was less than or equal to 500 Kb. In contrast, LACHESIS struggled with high
338 contig contiguity, exhibiting a trend opposite to that of SALSA2. YaHS primarily
339 generated large-scale errors, as indicated by the relatively high absolute values of CCC,
340 while the small-scale errors it produced were at an average level with moderate
341 DERANGE costs. In line with previous findings, 3D-DNA and ALLHiC outperformed
342 LACHESIS and SALSA2 in all aspects, producing fewer large- and small-scale errors.
343 As expected, HapHiC yielded results similar to 3D-DNA when only fast sorting was
344 applied due to the use of the same algorithm. Furthermore, additional optimization
345 using the genetic algorithm significantly reduced small-scale errors, particularly when
346 the contig contiguity was low. This optimization allowed HapHiC to excel in the
347 ordering and orientation of contigs.

348 **Execution speed and memory usage**

349 HapHiC not only reduces the number of iterations in the genetic algorithm by
350 introducing fast sorting, but it also optimizes the storage and transfer efficiency of Hi-
351 C links. These optimizations result in significant improvements in wall time, CPU time,
352 and peak memory usage during the process of contig ordering and orientation compared
353 to ALLHiC (**Fig. 4a-c** and **Supplementary Data 3**).

354 Additionally, we conducted a comparative analysis of the execution speed and
355 memory usage of all evaluated Hi-C-based scaffolding tools (**Fig. 4d** and
356 **Supplementary Data 3**). Under varying levels of contig contiguity and sequencing
357 depth, LACHESIS emerged as the most efficient tool. YaHS exhibited satisfactory
358 execution speed but demonstrated a significant increase in peak memory usage with
359 decreasing contig N50. When the contig contiguity was high, SALSA2 was several
360 times slower than the scaffolding tools in the highest speed category and showed a
361 higher susceptibility to low sequencing depth. 3D-DNA performed even worse than
362 SALSA2, proving to be the slowest among all. The efficiency of the ordering and
363 orientation process in ALLHiC was significantly hampered by the decline of contig
364 contiguity. As a result, when the contig N50 was 25 Kb, it took more than ten thousand
365 hours to complete the entire ALLHiC pipeline. Furthermore, 3D-DNA and ALLHiC
366 required more time to correct contigs (**Fig. 4e**) and handle data with high sequencing
367 depth (**Fig. 4f**).

368 By exclusively applying fast sorting, HapHiC achieved a remarkably high
369 execution speed, second only to LACHESIS (**Fig. 4d**). With the optimization step,
370 HapHiC only fell behind LACHESIS and SALSA2 at extremely low contig contiguity,
371 significantly outperforming 3D-DNA and ALLHiC. Meanwhile, the cost for correcting
372 contigs, removing inter-allele links, and processing high-depth sequencing data were
373 relatively low in HapHiC (**Fig. 4e,f**). Moreover, HapHiC demonstrated stable and
374 excellent performance in terms of memory usage. We also validated the superior
375 efficiency of HapHiC in numerous published genomes compared to ALLHiC and YaHS
376 (**Fig. 4g,h** and **Supplementary Data 3**). Overall, HapHiC maintains a highly

377 competitive execution speed and memory usage while being capable of dealing with
378 more complex assemblies and providing superior scaffolding results.

379 **Examples of scaffolding published assemblies**

380 We further validated the scaffolding performance of HapHiC in real cases
381 (**Supplementary Data 4**). First, we analyzed several published autopolyploid
382 assemblies and compared the results with those of ALLHiC.

383 *Saccharum spontaneum* AP85-441 ($1n=4x=32$) is the first published haplotype-
384 resolved autotetraploid genome that scaffolded to chromosome level¹⁶. Due to its highly
385 repetitive nature of genome, combined with the use of Illumina short reads and PacBio
386 RS II data, the final assembly has a contig N50 of only 45 Kb and contains numerous
387 collapsed contigs. In our tests, ALLHiC successfully separated contigs from different
388 homologous chromosomes and produced chromosome or near-chromosome level
389 scaffolds (**Supplementary Fig. 46b**). However, it still introduced noticeable
390 misassignments between non-homologous chromosomes, consistent with previous
391 simulation results. In contrast, HapHiC showed significantly fewer misassignments and
392 accurately clustered contigs to 32 complete chromosomes (**Supplementary Fig. 46a**),
393 greatly reducing the need for manual adjustment in Juicebox. Similarly, HapHiC also
394 produced more accurate and contiguous results in scaffolding the autotetraploid
395 genome assemblies of *M. sativa* XinJiangDaYe¹⁷ (**Supplementary Fig. 47**) and
396 Zhongmu-4²⁹ (**Supplementary Fig. 48**).

397 In 2022, the genome of *S. spontaneum* Np-X, another autotetraploid sugarcane with
398 a different basic chromosome number ($x=10$), was published²⁰. Despite its higher
399 contiguity compared to AP85-441, with a contig N50 of 381 Kb, it contains a
400 considerable number of chimeric contigs (**Fig. 5a** and **Supplementary Data 5**).
401 Consequently, we performed assembly correction prior to scaffolding. Although both
402 tools scaffolded contigs into chromosome-level pseudomolecules, ALLHiC produced
403 more misassignments between non-homologous chromosomes (**Supplementary Fig.**
404 **49**). Furthermore, the contig N50 of ALLHiC scaffolds dramatically dropped to only

405 139 Kb after correction, while HapHiC experienced a much milder decrease of 8.7%
406 (**Supplementary Table 12**). We randomly selected a subset of contigs from the first
407 haplotype of chromosome 1 and classified them as non-chimeric contigs, chimeric
408 contigs formed between homologous chromosomes, and chimeric contigs formed
409 between non-homologous chromosomes (**Fig. 5a** and **Supplementary Data 5**). Among
410 the chimeric contigs, HapHiC detected 12 out of 16 (75%) formed between homologous
411 chromosomes and 5 out of 6 (83.3%) formed between non-homologous chromosomes.
412 ALLHiC demonstrated higher sensitivity with a detection rate of 100%. However, it
413 misidentified over 105 out of 112 (93.8%) non-chimeric contigs as chimeric contigs. In
414 contrast, HapHiC exhibited superior stringency, as none of the non-chimeric contigs
415 were mislabeled as chimeric contigs. Furthermore, analysis of the specific breakpoints
416 revealed that ALLHiC tended to break contigs at the positions distant from misjoin
417 points (**Fig. 5b** and **Supplementary Fig. 50**). These issues finally led to a significant
418 reduction in the contig contiguity after ALLHiC correction. In conclusion, HapHiC
419 adopted a more stringent strategy to maintain contig contiguity without sacrificing
420 accuracy of chromosome assignment.

421 We also conducted an analysis of the autotetraploid potato (*Solanum tuberosum*)
422 C88 genome³⁰. In contrast to wild plants, the domestication and breeding history of the
423 cultivated potato has left footprints in its haplotypes, resulting in patchy distribution of
424 large, nearly identical regions. These regions make conventional genome assembly and
425 scaffolding methods unable to accurately represent the haplotypes of C88 genome, even
426 when utilizing ONT ultra-long reads¹⁵. Therefore, the researchers incorporated
427 additional genetic population information to assist in resolving the C88 haplotypes.
428 Another similar case is the autotetraploid potato cultivar Otava³¹. To evaluate the
429 effectiveness of HapHiC and ALLHiC in scaffolding such a complex genome, we first
430 assembled the C88 genome using conventional methods without employing genetic
431 population information. The total length of the assembled unitigs is 3.22 Gb, with an
432 N50 of 730 Kb.

433 There are no large-scale regions of low divergence in the haplotypes of

434 chromosomes 1, 4, 7, and 9 in the C88 genome³⁰. This suggests that these haplotypes
435 can be resolved more easily without relying on genetic population information. HapHiC
436 effectively separated them into chromosome or near-chromosome scaffolds (**Fig. 5c,d**
437 and **Supplementary Fig. 52a**). Additionally, all haplotypes of chromosome 2 and those
438 haplotypes with evenly distributed unique polymorphic loci were accurately
439 represented. Although some haplotypes were not correctly clustered by HapHiC, this
440 issue can be attributed to the existence of large-scale regions of low divergence. In
441 contrast, ALLHiC consistently misassigned contigs from different haplotypes into the
442 same clusters for all C88 chromosomes (**Supplementary Fig. 51** and **Supplementary**
443 **Fig. 52b**), indicating significantly reduced performance compared to HapHiC.

444 In addition to autopolyploids, HapHiC outperformed ALLHiC in allele-aware
445 scaffolding of phased diploid assembly of the *Camellia sinensis* Tieguanyin genome¹⁹.
446 HapHiC exhibited significantly higher scaffold contiguity and fewer misassignments
447 between both homologous and non-homologous chromosomes (**Supplementary Fig.**
448 **53**). Furthermore, HapHiC can also scaffold haplotype-collapsed allopolyploid
449 (**Supplementary Figs. 54-58**) and diploid assemblies (**Supplementary Figs. 59-73**).
450 Importantly, HapHiC is not limited to plants. It has been successfully validated in
451 scaffolding representative genomes from various taxa, including humans, birds,
452 amphibians, fish, insects, mollusks, and annelids (**Supplementary Figs. 59 and 68-73**).
453 In these cases, HapHiC achieved comparable or even better performance than YaHS.

454 The results of real cases demonstrate not only the robustness and reliability of
455 HapHiC in scaffolding various assemblies, but also its potential in overcoming the
456 challenges posed by more complex genomes.

457 **Application of HapHiC in constructing the haplotype-resolved genome of *M. ×***
458 ***giganteus***

459 *M. × giganteus* is widely recognized as a promising lignocellulosic bioenergy crop due
460 to its perennial nature, rapid growth, high productivity, and low input requirements³².
461 It is an allotriploid ($2n=3x=57$, ABB) formed through natural intrageneric hybridization

462 between the diploid *Miscanthus sinensis* (AA) and the autotetraploid *Miscanthus*
463 *sacchariflorus* (BBBB)³³. Additionally, the common ancestor of the *Miscanthus* genus
464 experienced a recent whole-genome duplication (WGD) event prior to this
465 hybridization³⁴, resulting in the hexaploidy nature of the *M. × giganteus* genome.
466 Despite recent publication of genomes for several other *Miscanthus* species³⁴⁻³⁷,
467 decoding the *M. × giganteus* genome is hindered by its complexity. With the help of
468 HapHiC, here we present the first chromosome-level haplotype-resolved genome of *M.*
469 *× giganteus*.

470 A total of 69.4 Gbp of PacBio HiFi reads and 684.1 Gbp of Hi-C reads were
471 generated for genome assembly and scaffolding, respectively. After assembly and
472 contamination filtration, we obtained phased unitigs with a total length of 6.11 GB,
473 which represents 90% coverage of the genome size as determined by flow cytometry.
474 The assembly was then scaffolded using HapHiC and ALLHiC separately. HapHiC
475 outperformed ALLHiC with significantly fewer misassignments (**Supplementary Fig.**
476 **74**). Finally, we anchored contigs accounting for 98.3% of the total assembly onto 57
477 haplotype-resolved chromosomes based on the HapHiC scaffolds. The contig N50
478 reached 2.18 Mb, surpassing all existing genome assemblies within the *Miscanthus*
479 genus (**Supplementary Table 13**).

480 The structural accuracy of the *M. × giganteus* genome was subsequently evaluated
481 through gene synteny analysis. As previously mentioned, the A and B subgenomes of
482 *M. × giganteus* originated from the genomes of *M. sinensis* and *M. sacchariflorus*,
483 respectively. Therefore, it is expected that the A subgenome of *M. × giganteus* (MgiA)
484 would be phylogenetically closer to the *M. sinensis* genome³⁴ (MsIA) than to the B
485 subgenomes of *M. × giganteus* (MgiB1, MgiB2). However, the gene synteny analysis
486 yielded contradictory results, revealing that MgiA shares higher similarity with the B
487 subgenomes, MgiB1 and MgiB2, than MsIA (**Fig. 6a**). The finding was also supported
488 by the *Miscanthus lutetioriparius* genome³⁶ (MluB in **Fig. 6a**), which serves as an
489 alternative B genome of *M. sacchariflorus*³⁵ with higher completeness and contiguity.

490 To determine the authenticity of this observation, we compared the MgiA and MsIA

491 structures using genetic maps and Hi-C contact maps. Five genetic maps of *M. sinensis*
492 and one genetic map of *M. sacchariflorus*³⁸ showed a significantly stronger correlation
493 with MgiA than with MsiA (**Fig. 6b-d** and **Supplementary Data 6**). Additionally, the
494 Hi-C contact maps revealed substantial errors within the MsiA genome, primarily
495 concentrated in the divergence-enriched regions identified through gene synteny
496 analysis and genome alignment (**Fig. 6e**). These findings strongly suggest that the A
497 subgenome of *M. × giganteus* has a more accurate structural organization compared to
498 the previously published *M. sinensis* genome. The construction of the high-quality
499 genome of *M. × giganteus* not only facilitates its genetic breeding but also provides
500 improved reference genomes for its hybridization parents, *M. sinensis* and *M.*
501 *sacchariflorus*. This reaffirms the effectiveness and accuracy of HapHiC as an allele-
502 aware scaffolding tool for handling such a complex polyploid genome.

503 **Discussion**

504 The advancement of sequencing techniques and genome assemblers has ushered in a
505 new era of haplotype-resolved genome research. To tackle the challenges presented by
506 species diversity and varying genome characteristics, there is a pressing need for a
507 robust and efficient allele-aware scaffolding tool with minimal restrictions. One such
508 restriction is the reliance on a reference genome. Although this can be alternatively
509 achieved by assembling and annotating a haplotype-collapsed genome as the
510 reference¹⁹, it greatly increased the time and cost for genome construction. Moreover,
511 our results have shown the drawbacks of using a reference genome. HapHiC overcomes
512 this limitation by achieving allele-aware scaffolding without relying on reference
513 genomes, demonstrating greater tolerance for assembly errors. Our simulations and
514 real-case tests have demonstrated the superior reliability of HapHiC compared to other
515 software, with broad support for a wide range of taxa and ploidies. Additionally, the
516 entire pipeline requires less time and memory resources and reduces the need for
517 parameter tuning and manual adjustment.

518 To effectively address a problem, it is crucial to thoroughly understand it. This

519 study conducted exhaustive simulations and evaluations of the factors that could
520 impede the allele-aware scaffolding of phased assemblies on various widely used Hi-
521 C-based scaffolding tools. In addition to the factors mentioned in the ALLHiC paper⁷,
522 our assessment also considered other factors such as contig length distribution, effective
523 Hi-C sequencing depth, and ploidy. Notably, our analysis revealed that diagonally
524 distributed Hi-C links between haplotypes results from switch errors in the initial
525 genome assemblies rather than inherent attributes such as sequence divergence. These
526 findings offer new insights into the challenges of allele-aware scaffolding and pave the
527 way for the development of improved tools.

528 The formation of collapsed contigs primarily results from extremely low sequence
529 divergence. To mitigate the adverse effects of collapsed contigs, HapHiC has
530 implemented the rank-sum algorithm. However, large-scale collapsed regions still
531 significantly impede subsequent allele-aware scaffolding, as demonstrated in the
532 cultivated potato C88 genome³⁰. Furthermore, unlike chimeric contigs, scaffolding
533 tools typically do not correct collapsed contigs. Therefore, achieving a higher quality
534 assembly remains a fundamental prerequisite for haplotype resolution. Otherwise, the
535 resulting scaffolds will still suffer from the “garbage in, garbage out” phenomenon,
536 which means that flawed input data will produce low-quality output. This holds true
537 even when using a scaffolding tool with a high tolerance for assembly errors.

538 HapHiC still has some limitations. Its accurate clustering in HapHiC relies on prior
539 knowledge of the chromosome number, as well as empirical preferences for length
540 distribution of clusters and chromosomes. To address this, HapHiC provides a
541 straightforward way to understand genome features or manually establish chromosome
542 boundaries through fast sorting without clustering, similar to the intermediate result
543 “0.assembly” in 3D-DNA⁵. Additionally, HapHiC identifies allelic contig pairs based
544 on the distribution pattern of Hi-C links between them. Unlike ALLHiC, this function
545 may not be effective when there are only a few links present. Fortunately, such few
546 links typically do not adversely affect allele-aware chromosome scaffolding.

547 **Methods**

548 **Overall allele-aware scaffolding strategy of HapHiC**

549 Assembly errors are common in the phased assemblies of heterozygous genomes.
550 Genome assemblers may misjoin nonadjacent sequences, forming chimeric contigs, or
551 merge multiple similar regions into a consensus sequence, resulting in collapsed contigs
552 (**Fig. 2a**). These errors often occur between homologous chromosomes, making
553 chromosome assignment challenging. Scaffolding tools such as 3D-DNA⁵, SALSA2⁶,
554 and YaHS⁸ determine scaffold or chromosome boundaries during or after the contig
555 ordering and orientation. Although this approach does not require prior knowledge of
556 the chromosome count, it exacerbates the adverse effects of assembly errors on
557 chromosome assignment by disrupting the contig ordering and orientation. Therefore,
558 HapHiC employs the same divide-and-conquer strategy as LACHESIS³ and ALLHiC⁷,
559 addressing the chromosome assignment problem through clustering before the ordering
560 and orientation of contigs within each chromosome (**Fig. 1**).

561 Additionally, HapHiC implements four optional preprocessing steps (**Fig. 1b**) to
562 enhance clustering: (1) correcting chimeric contigs using Hi-C link spanning coverage;
563 (2) filtering out low-information contigs, such as short contigs and those lacking Hi-C
564 links; (3) discarding potential collapsed contigs and residual chimeric contigs; (4)
565 removing Hi-C links between allelic contig pairs based on the distribution pattern of
566 Hi-C links. These preprocesses enable HapHiC to perform allele-aware clustering and
567 increase its tolerance towards assembly errors.

568 **Correcting chimeric contigs**

569 Similar to other scaffolding tools, HapHiC detects misjoins by analyzing the spanning
570 coverage of Hi-C reads at each contig position (**Supplementary Fig. 11**). To accurately
571 determine breakpoints, this coverage is calculated by counting the number of Hi-C read
572 pairs spanning each contig position with a bin size of 500 bp. HapHiC differs from
573 other tools by applying stricter criteria to ensure contig contiguity. Specifically, HapHiC
574 identifies a low-coverage region bounded by two large high-coverage regions as a

575 reliable misjoin and breaks it. Low- and high-coverage regions are contiguous bins
576 divided by one-fifth of the median coverage. By default, the threshold for a large region
577 is the larger of either one-tenth of a contig or 5000 bp.

578 **Filtering out low-information contigs**

579 Low-information contigs are defined as those that meet one or more of the following
580 criteria: (1) a length shorter than N80, (2) fewer than five restriction sites, or (3) a Hi-
581 C link density below one-fifth of the median value. The Hi-C link density of a contig is
582 calculated by dividing the number of Hi-C links connected to all other contigs by the
583 number of restriction sites within it. These contigs are filtered out before preliminary
584 clustering because they are error-prone and can significantly reduce clustering
585 efficiency.

586 **Discarding collapsed and chimeric contigs**

587 First, contigs with a Hi-C link density exceeding 1.9 times the median value are
588 identified as potential collapsed contigs and removed. Next, the rank-sum algorithm
589 calculates a rank-sum value for each contig by measuring neighborhood density
590 (**Supplementary Fig. 15**). Let $G = (V, E)$ be a network, where V represents the set
591 of contigs as vertices and E represents the set of Hi-C links as edges (**Supplementary**
592 **Fig. 15a**). For any contig $v \in V$, let $N(v, n)$ denote the set of contigs with the top n
593 Hi-C links connected to v . For any two contigs $u, w \in N(v, n)$, let $rank(u, w)$
594 represent the minimum rank of the number of Hi-C links between u and w
595 (**Supplementary Fig. 15b,c**). The final rank-sum value is given by:

596
$$\sum_{u, w \in N(v, n)} rank(u, w)$$

597 By default, n is set to ten. The higher the value, the lower the neighborhood
598 density. Because collapsed and chimeric contigs are respectively merged and misjoined
599 from nonadjacent sequences, their neighborhood densities will be much lower than
600 normal contigs, as reflected by the relatively high rank-sum values (**Supplementary**
601 **Figs. 16 and 22**). Consequently, contigs with a rank-sum value greater than the third

602 quartile (Q3) plus 1.5 times the interquartile range (IQR) are considered remaining
603 collapsed or uncorrected chimeric contigs and are discarded during preliminary
604 clustering.

605 **Identifying allelic contig pairs and removing inter-allele Hi-C links**

606 HapHiC eliminates the need for reference genomes by identifying allelic contigs based
607 on the distribution pattern of Hi-C links (**Supplementary Fig. 33**). Similar to sequence
608 alignment between allelic contigs, the coordinates of inter-allele Hi-C links are
609 distributed along the diagonal with a slope of 1 or -1 (**Supplementary Figs. 30** and
610 **33a,b**), which differs from the pattern within a chromosome. We introduce a
611 “concordance ratio” to quantify the proportion of Hi-C links that conform to this
612 distribution (**Supplementary Fig. 33b**). The algorithm is described in detail below.

613 Given a pair of contigs, we construct a coordinate system using the coordinates of
614 n Hi-C links connecting them, where $20 \leq n \leq 200$ (randomly selected if
615 exceeding 200). We then use two sliding lines with slopes of 1 and -1 (i.e., $y = x +$
616 b and $y = -x + b$, where b is a variable intercept) to calculate the maximum
617 number of coordinate pairs within a certain distance from the lines, denoted as m . The
618 final concordance ratio is $\frac{m}{n}$. The distance is dynamically defined as 1/100 of the length
619 of the shorter contig, with a minimum value of 5 Kb. The higher the value of the
620 concordance ratio, the more it indicates that this pair of contigs conforms to the
621 distribution pattern of Hi-C links between allelic contigs. By default, contig pairs with
622 a concordance ratio greater than 0.2 are considered allelic (**Supplementary Fig. 34**).

623 Next, an undirected weighted graph is constructed, where vertices denote contigs,
624 edges represent the allelic relationships of contigs, and the edge weights indicate the
625 number of Hi-C links between contigs (**Supplementary Fig. 33c**). Maximum cliques
626 are identified in the graph, and weak edges are removed to divide these cliques into
627 subcliques with the known ploidy as the maximum number of vertices. To retain intra-
628 haplotype links while removing unfavorable inter-haplotype Hi-C links, contigs from
629 the same haplotypes are determined by solving the maximum weighted matching

630 problem across subcliques using a Hungarian algorithm. Finally, Hi-C links from both
631 non-maximal matches and allelic contig pairs are removed before preliminary
632 clustering.

633 **Clustering**

634 ALLHiC⁷ and LACHESIS³ use an agglomerative hierarchical clustering algorithm to
635 cluster contigs into chromosomes. However, specifying the number of clusters (k) to
636 be the number of chromosomes in this method often fails to accurately separate
637 homologous chromosomes in phased assemblies^{16, 17}. In such cases, substantial
638 parameter tuning on the k values is necessary to improve the clustering results. On the
639 contrary, HapHiC employs a random walk-based Markov cluster algorithm²¹ (MCL)
640 for the initial clustering process. This robust and scalable unsupervised clustering
641 algorithm has proven effective in constructing protein-protein interaction (PPI)
642 networks³⁹, clustering orthologous gene families⁴⁰, and analyzing gene synteny⁴¹.
643 Unlike agglomerative hierarchical clustering, Markov clustering does not specify k but
644 regulates granularity with different inflation values. Various clustering results of
645 different granularities can be achieved within a limited range of inflation values.
646 HapHiC then determines the optimal inflation based on the known number of
647 chromosomes, the actual number of clusters, and the length distribution of clusters.

648 First, the Markov clusters for each inflation value are sorted in descending order
649 by their cluster length, which is the sum of contig lengths within them. Next, we
650 calculate the length ratio for each adjacent cluster pair. Empirically, if the length ratio
651 between adjacent clusters is far below 1, it could indicate unseparated contigs from
652 different chromosomes. Consequently, we prefer the results with progressively
653 decreasing cluster lengths, where the number of clusters meeting the criterion should
654 be greater than or equal to the known number of chromosomes. The pseudocode of the
655 algorithm can be found in **Supplementary Table 14**. By default, HapHiC initially uses
656 a length ratio threshold of 0.75. If none of the clustering results meets this threshold, it
657 will be gradually lowered to 0.5. This method efficiently reduces clustering errors and
658 eliminates the need for manual tuning of k .

659 HapHiC optimizes the clustering step for assemblies with varying levels of
660 contiguity. The power-law model of Hi-C links exhibits rapid decay within short
661 distances, while showing gradual decay over longer ranges⁷. As a result, longer contigs
662 are more susceptible to long-range background noise. This is because only their ends
663 are adjacent to other contigs and provide useful information for clustering. Recent tools,
664 such as EndHiC⁴², pin_hic⁴³, and YaHS⁸, have addressed this issue primarily by
665 utilizing the Hi-C links from contig ends only. In contrast, HapHiC also considers
666 information from the inner part of each long contig. First, these contigs are split into
667 bins, with a size dynamically defined as 1/30 of the average chromosome length and a
668 maximum value of 2 Mb. These bins are then simply treated as regular contigs during
669 the subsequent construction of the Hi-C link matrix and Markov clustering. The matrix
670 is constructed using links from the ends of contigs or bins with a maximum end length
671 of 500 Kb. After clustering, long contigs are placed in the best clusters based on the
672 total length of bins in each cluster. On the other hand, assemblies of low contiguity
673 often consist of too many contigs, thus remarkably slowing down Markov clustering.
674 To overcome this, we optimize the clustering speed using sparse matrix data structures.

675 **Reassignment**

676 In the reassignment step, previously filtered-out contigs are rescued and assigned to the
677 most suitable clusters. Unlike ALLHiC rescue⁷, this process also allows for the
678 reassignment of misassigned contigs. All contigs that meet the minimum
679 requirements for restriction sites and Hi-C links are traversed in descending order to
680 determine their most suitable clusters. First, Hi-C link densities between each contig
681 and MCL cluster are calculated, defined as the number of Hi-C links between a contig
682 and a cluster, divided by the sum of their restriction site counts. The most suitable
683 cluster for each contig is determined based on two criteria: (1) the Hi-C link density to
684 the best cluster is more than four times the average value to other clusters; (2) the
685 density ratio between the second-best and the best cluster is less than 0.6. By default,
686 reassignment is iterated for up to five rounds to converge, followed by a rescue process
687 for unanchored contigs using only the first criterion.

688 If the number of clusters still exceeds the number of chromosomes, HapHiC
689 performs an additional agglomerative hierarchical clustering²² with average-linkage to
690 obtain the final chromosome-level clusters. To achieve this, a matrix is constructed by
691 calculating the number of Hi-C links between each cluster pair, divided by the product
692 of their restriction site counts. Here, multiplication is used for normalization instead of
693 sum, which differs from the Hi-C link density described above. This approach performs
694 better when cluster lengths differ significantly. The maximum value in the matrix is
695 subtracted from the matrix to obtain the final distance matrix for clustering.

696 **Ordering and orientation**

697 3D-DNA and ALLHiC have demonstrated excellent performance in contig ordering and
698 orientation compared with other Hi-C-based scaffolding tools⁷. However, their
699 disadvantage is that they are very slow when dealing with a large number of contigs.

700 The iterative contig ordering and orientation algorithm of 3D-DNA breaks newly
701 connected scaffolds from their exact midpoints, resulting in the trouble that the density
702 graph should be reconstructed from scratch in each iteration⁵. Besides, the intermediate
703 results are read and written through text files. In HapHiC, we simplify the process and
704 call it “fast sorting”. Specifically, we calculate the distance between the midpoint of
705 each newly connected scaffold and the midpoints of all contigs in it to find the nearest
706 one as the approximate midpoint of the scaffold. As a result, the density graph
707 reconstruction in HapHiC can retrieve necessary data directly from memory,
708 eliminating the need for file reading. This improvement makes the iterative ordering
709 and orientation process significantly faster than the original one without compromising
710 the results.

711 ALLHiC starts contig ordering iterations from randomly shuffled contigs using a
712 genetic algorithm⁷. When handling numerous contigs, the algorithm can be very slow
713 to converge. On the other hand, although the process is parallelized for each cluster, but
714 the Hi-C links between all contigs are stored and processed using a single huge CLM
715 file, leading to a high memory usage. In HapHiC, we use the result of fast sorting as the

716 initial configuration and subsequently employing the ALLHiC algorithm for further
717 optimization. Additionally, the CLM files are split into cluster-specific files, retaining
718 only the Hi-C links within each cluster. This integrated approach allows HapHiC to
719 order and orient contigs more accurately and efficiently than ALLHiC.

720 **Pseudomolecule Building**

721 In pseudomolecule building, the contigs in each cluster are joined together based on the
722 results of contig clustering, ordering, and orientation. By default, the adjacent contigs
723 are separated with 100-bp Ns as gaps. The sequences and scaffolding information of
724 these pseudomolecules are finally output in the FASTA format and AGP format,
725 respectively.

726 **Mapping and filtering of Hi-C reads**

727 Fastp⁴⁴ (version 0.21.0) was used to remove adaptors, trim low-quality sequences, and
728 evaluate the quality of raw Hi-C reads. To evaluate the performance of 3D-DNA, Hi-C
729 reads were aligned to assemblies and filtered using the Juicer pipeline⁴⁵. For other
730 scaffolding tools or purposes, Hi-C reads were processed using a uniform method. First,
731 the reads were aligned to assemblies or published genomes using BWA-MEM⁴⁶
732 (version 0.7.17-r1198-dirty) with the parameter “-5SP”. Next, PCR duplicates,
733 secondary and supplementary alignments were filtered out using SAMBLASTER⁴⁷
734 (version 0.1.26) and SAMtools⁴⁸ (version 1.11). Finally, a custom script “filter_bam.py”
735 was employed to remove alignments with a mapping quality of zero and an edit distance
736 greater than 2.

737 **Simulation of datasets with various adverse factors**

738 In the ALLHiC paper, the authors simulated a haplotype-resolved diploid genome by
739 merging both the genome sequences and Hi-C data of two rice subspecies, *indica* and
740 *japonica*⁷. However, this approach has some limitations. First, in a real diploid, there
741 are background interactions between homologous chromosomes, because they are
742 located in the same nucleus. The artificial merging of data from different subspecies
743 leads to an underestimation of Hi-C links between homologous chromosomes, making

744 it easier to separate them even than those between non-homologous chromosomes
745 (**Supplementary Fig. 2**). Second, the conclusions drawn from experiments on diploids
746 may not apply to polyploids. Third, using only a pair of homologous chromosomes for
747 analysis ignores misassignments between non-homologous chromosomes. Therefore,
748 we constructed a ground truth by manually removing obvious assembly errors based on
749 the published haplotype-resolved autotetraploid genome of *M. sativa* XinJiangDaYe¹⁷
750 (**Supplementary Fig. 1**). We used all 32 chromosomes to construct a ground truth
751 genome of 2.0 Gb.

752 Using this template, we simulated a series of assemblies with various adverse
753 factors through a pipeline of multiple custom scripts (**Supplementary Fig. 3**). The
754 script “sim_contig.py” fragmented the genome into assemblies with different N50
755 values (**Supplementary Fig. 4**) and coefficients of variation (CVs) of length
756 (**Supplementary Fig. 6**). Since the contig N50 of the *M. sativa* genome is less than 500
757 Kb, we retained the gaps represented by Ns in the fragments to simulate higher
758 contiguity. For concision, we always refer to these fragments as contigs, regardless of
759 whether there are gaps in them. Based on these assemblies, we used the script
760 “sim_chimeric_contigs.py” to simulate assemblies with different proportions of
761 chimeric contigs (**Supplementary Fig. 10**). Among them, chimeric contigs simulated
762 between homologous chromosomes, non-homologous chromosomes, and within
763 chromosomes were generated at a ratio of 7:2:1, respectively. To simulate different
764 effective sequencing depths, we used “samtools view -s” with 12345 as the seed for
765 random sampling (**Supplementary Fig. 8**).

766 We simulated haplotypes by introducing single nucleotide polymorphisms (SNPs),
767 insertions, and deletions to the first haplotype in the ground truth genome using the
768 script “sim_haplotypes.py”. By adjusting the proportion of variations and number of
769 haplotypes generated, we obtained genomes with different sequence divergence levels
770 (**Supplementary Fig. 27**) and ploidies. The corresponding Hi-C reads were generated
771 by sim3C⁴⁹, with the parameter “--trans-rate” dynamically adjusted according to
772 different ploidies to maintain a fixed intensity of chromosome interaction. To simulate

773 reality, we introduced SNPs, insertions, and deletions at a ratio of 10:0.5:0.5, with a 2:1
774 ratio of transitions to transversions for SNPs (**Supplementary Fig. 26**). Furthermore,
775 these variations were unevenly distributed in bins with a length of 100 Kb and a CV of
776 0.5.

777 Based on these simulated haplotypes and Hi-C reads, we further generated
778 collapsed contigs (**Supplementary Fig. 20**) and switch errors (**Supplementary Fig.**
779 **31**). We used the script “sim_collapsed_regions.py” to create two-, three-, and four-
780 haplotype collapsed contigs in a ratio of 7:2:1. Switch errors were introduced by
781 randomly shuffling variations between haplotypes using the script
782 “sim_switch_errors.py”. We also incorporated all the custom scripts above to introduce
783 5% each of chimeric, collapsed contigs, and switch errors into assemblies with ploidy
784 ranging from 2 to 16. Each contig in simulated assemblies recorded information such
785 as source chromosome, haplotype, position, and error type for subsequent result
786 evaluation.

787 Three reference genomes of rice (IRGSP-1.0²⁴), *Arabidopsis* (TAIR10.1²⁵), and
788 human (CHM13v2.0_noY¹) were used as ground truths to evaluate the accuracy of Hi-
789 C-based scaffolding tools in contig ordering and orientation. Assemblies with varying
790 contig N50 values were also simulated using the script “sim_contigs.py”. HapHiC,
791 ALLHiC, and LACHESIS perform ordering and orientation for individual
792 chromosomes (clusters), differing from the whole-genome scaffolding of SALSA2, 3D-
793 DNA, and YaHS. Thus, contigs in each simulated assembly were partitioned into
794 corresponding chromosomes and ordered and oriented separately, making the
795 evaluation independent of chromosome assignment. Assembly correction of
796 scaffolding tools was disabled for this experiment.

797 **Scaffolding performance evaluation**

798 We initially evaluated the performance of Hi-C-based scaffolding tools in chromosome
799 assignment using metrics including contiguity, anchoring rate, misassignment rates, and
800 the number of scaffolds using a custom script “result_statistics.py”.

801 In simulated assemblies, all chromosomes were fragmented. Thus, only sequences
802 output by scaffolding tools containing multiple contigs are true scaffolds, while
803 individual contigs are classified as unanchored sequences. The anchoring rate is the
804 ratio of the length of contigs in scaffolds to the total length of all contigs. Ideally, the
805 anchoring rate is 100%, and the number of scaffolds equals the number of chromosomes.

806 We did not use metrics such as N50 to assess scaffold contiguity because
807 incorrectly separated chromosomes could artificially inflate N50 values. Instead, we
808 designed an indicator with a maximum value of one that is independent of the anchoring
809 rate. First, we calculated the cumulative lengths of contigs based on their source
810 chromosomes for each scaffold and identified the longest source chromosome as the
811 dominant chromosome. Subsequently, we divided this length by the total length of
812 dominant chromosome anchored to all scaffolds to obtain a ratio. A ratio of one signifies
813 that the scaffold entirely comprises contigs from a specific chromosome, and all contigs
814 from this chromosome are distributed only within this scaffold. Finally, we calculated
815 the average value of this ratio among all scaffolds to obtain the final contiguity. A
816 contiguity of one indicates that all anchored chromosome sequences correspond
817 perfectly to scaffolds in a one-to-one relationship.

818 For contigs in scaffolds that do not originate from the dominant chromosome, we
819 categorize them as either misassignments between homologous chromosomes or
820 between non-homologous chromosomes, depending on their actual relationship with
821 the dominant chromosome. The misassignment rate is calculated as the proportion of
822 their length to the total length of the anchored genome. If all contigs in the scaffolds
823 originate from the dominant chromosome, the misassignment rate is zero.

824 Chimeric and collapsed contigs are excluded from statistics because they cannot
825 be considered totally correct when placed in any scaffold. During ALLHiC pruning, the
826 genome of a closely related species, *Medicago truncatula* (MtrunA17r5.0-ANR⁵⁰), was
827 used as a reference. However, chromosomes 4 and 8 of *M. truncatula* have some
828 structural differences compared to those of *M. sativa*¹⁷. Therefore, we also calculated
829 the contiguity and misassignment rate after excluding these two chromosomes. Since

830 we manually tuned the parameter k for ALLHiC, we calculated Δk as the difference
831 between optimized k and default k .

832 We also evaluated the accuracy of Hi-C-based scaffolding tools in contig ordering
833 and orientation for assemblies with varying contig N50 values. In preliminary
834 comparisons between HapHiC and ALLHiC, we counted the number of generations for
835 convergence and calculated scores using the “optimize” program of ALLHiC⁷. For a
836 more objective comparison, two metrics were used to evaluate the accuracy of all
837 scaffolding tools. Lin’s concordance correlation coefficients²⁶ (CCCs) were calculated
838 using a custom script “draw_tour_file.py” to measure large-scale consistency between
839 results and reference genomes. “Costs” were also calculated using a modified
840 DERANGE II program²⁷ with the parameters including linear (-L), signed (-S), and a
841 look-ahead value of three. The weights for inversions, transpositions, and transversions
842 were set to one, one, and two, respectively, to simulate the number of steps needed to
843 achieve optimal results in Juicebox²⁸. Costs for both the original order and reverse
844 complementary order were calculated for each scaffolding result, and the minimum of
845 the two values were considered the final cost. For SALSA2 and YaHS, which can output
846 multiple scaffolds for each chromosome, we joined these scaffolds as the result of
847 ordering and orientation. However, for 3D-DNA, the intermediate result “0.assembly”
848 was used to ensure contig completeness and result comparability.

849 **Measurement of execution time and peak memory usage**

850 All tasks were executed on a server running CentOS Linux (release 7.6.1810). The
851 server is equipped with two Intel Xeon Gold 6132 CPUs (a total of 28 cores at 2.6 GHz)
852 and 192 gibibytes (GiB) of memory. The CPU time, wall time, and peak memory usage
853 of each task were measured using the PBS Professional job scheduler (PBS Pro, version
854 18.1.4). A custom script, “pbsperf.py,” was utilized to summarize the records and
855 convert the units to minutes (min) and GiB. However, the measurements of peak
856 memory usage may not be precise because the scheduler measures them at intervals. If
857 a task completes within several seconds, PBS Pro may record a peak memory usage of
858 zero. All steps in ALLHiC were executed in parallel using GNU parallel⁵¹ (version

859 20210922) to optimize the wall time if possible.

860 **Validation of HapHiC in real cases**

861 HapHiC was further validated using real cases. We compared its scaffolding
862 performance and resource usage with those of ALLHiC in published haplotype-
863 resolved autotetraploid and diploid genomes. Additionally, we compared HapHiC
864 with YaHS in haplotype-collapsed allotetraploid and diploid genomes of various taxa.
865 The information of all species used in the validation is listed in **Supplementary Data**
866 **4**. Apart from the potato C88 genome, which was assembled using hifiasm¹² (version
867 0.19.0-r534), the corresponding assemblies of other genomes were generated by
868 breaking the “N” gaps and randomly shuffling the ordering and orientation of contigs
869 using custom scripts “split_fasta.py” and “shuffle_fasta.py”, respectively. All
870 scaffolding results were visualized using Juicebox²⁸ (version 1.11.08) for comparisons.

871 For the potato C88 assembly, we also used a *k*-mer-based method to analyze the
872 scaffolds output by HapHiC and ALLHiC using a script “haplotype_kmers.py”. First,
873 we generated 201-mers from the published haplotype-resolved reference genome of
874 potato C88. These 201-mers were then annotated based on their source chromosomes
875 and used to classify each region of HapHiC and ALLHiC scaffolds with a bin size of
876 500 Kb. Additionally, we aligned these scaffolds to the reference genome using unimap
877 (<https://github.com/lh3/unimap>, version 0.1-r41) and visualized the alignments with a
878 modified version of paf2dotplot (<https://github.com/zengxiaofei/paf2dotplot>).

879 **Sampling, library construction, and genome sequencing of *M. × giganteus***

880 Young leaves of a *M. × giganteus* plant were collected at Hunan Agriculture University
881 in Changsha, Hunan Province, P.R. China and immediately frozen in liquid nitrogen.
882 For HiFi sequencing, DNA was extracted from the leaves using a modified CTAB
883 protocol. The DNA was then qualified and quantified using a NanoDrop 2000
884 Spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA), a Qubit 3.0
885 Fluorometer (Life Technologies, Carlsbad, CA, USA), and 0.8% agarose gel
886 electrophoresis. Three SMRTbell libraries were constructed using sheared DNA and the

887 SMRTbell Express Template Prep Kit 2.0 (Pacific Biosciences, Menlo Park, CA, USA).
888 The libraries were size-selected with a minimum length of ~15 Kb using the BluePippin
889 (Sage Science, Beverly, MA, USA) and sequenced on the PacBio Sequel II System
890 under the circular consensus sequencing (CCS) mode for 30-h movies using 2.0
891 Chemistry. A total of 69.4 Gb of HiFi reads were generated.

892 For Hi-C sequencing, the leaves were fixed with formaldehyde to cross-link
893 chromatin. After cell lysis, the cross-linked chromatin was digested using the MboI
894 restriction enzyme. Sticky ends were repaired, labeled with biotin, and ligated to form
895 chimeric molecules. Proteins were then digested from the chromatin using protease,
896 and DNA was purified using a QIAamp DNA Mini Kit (Qiagen, Hilden, NRW,
897 Germany) and sheared into fragments of 400-600 bp. Biotin-labeled fragments were
898 enriched using streptavidin-coated magnetic beads (Vazyme, Nanjing, JS, P.R. China)
899 for library construction. Hi-C sequencing was performed on the BGI MGISEQ-2000
900 platform under the PE150 mode, generating a total of 684.1 Gb of Hi-C reads.

901 ***De novo* assembly and comparative analysis of *M. × giganteus* genome**

902 The genome of *M. × giganteus* was assembled using hifiasm¹² (version 0.13-r308) with
903 HiFi reads. The parameter “-l0” was employed to disable duplication purging, resulting
904 in the primary unitigs (p_utg) with a size of 6.13 Gb and an N50 of 2.18 Mb. After
905 removing organellar and exogenous DNA sequences from these unitigs, a draft
906 assembly of 6.11 Gb with an N50 of 2.19 Mb was obtained. To identify the source of
907 diagonally distributed inter-allele Hi-C links, the genome was also assembled using
908 HiCanu²³ (version 2.1.1) for comparison with the hifiasm assembly. The hifiasm
909 assembly was scaffolded onto 57 chromosome-level pseudomolecules using HapHiC
910 and ALLHiC separately, both with default parameters. After manual curation in
911 Juicebox²⁸ (version 1.11.08), the final chromosome-level haplotype-resolved genome
912 of *M. × giganteus* was generated based on the HapHiC scaffolds.

913 The genes in each haplotype of *M. × giganteus* were simply annotated by mapping
914 the coding sequences of the *M. sinensis* genome using GMAP⁵² (version 2019-12-01)

915 with the parameter “-n 1”. MCscan⁴¹ in JCVI utility libraries (version 1.1.18) was used
916 to perform gene synteny comparisons between the subgenomes of *Miscanthus* species
917 and to draw the karyotype plot. Genome alignment between chromosomes of *M. ×*
918 *giganteus* and *M. sinensis* was performed using Minimap2⁵³ (version 2.26-r1175).
919 Structural variations were identified using SyRI⁵⁴ (version 1.6.3) and visualized using
920 plotsr⁵⁵ (version 1.1.1). To compare the structural accuracy of the *M. × giganteus* and
921 *M. sinensis* genomes, five genetic maps of *M. sinensis* and one genetic map of *M.*
922 *sacchariflorus* were collected³⁸. The genetic markers of each map were aligned to the
923 two genomes using BWA-ALN and BWA-SAMSE (version 0.7.17-r1198-dirty) with
924 default parameters. The agreements between the genetic maps and the genomes were
925 analyzed and visualized using ALLMAPS² in JCVI utility libraries with the markers
926 shared by all genetic maps.

927 **Program versions and command lines**

928 All program versions and command lines used in this research are available in
929 **Supplementary Information.**

930 **Statistics analysis**

931 Two-sided Wilcoxon signed-rank tests were performed to compare scaffold contiguity
932 values, misassignment rates, ALLHiC scores, Lin’s concordance correlation
933 coefficients (CCCs), DERANGE costs, and time and memory usage. The function
934 “wilcox.test” in R language (version 4.0.2) was used with the “paired” parameter set to
935 “TRUE”. The results of statistical tests were visualized using the ggpubr package in R.
936 The “geom_smooth” function in ggplot2 was used to fit curves with the formula “y ~
937 x” and the method “loess”. Lin’s CCCs were calculated between the corresponding
938 positions on the reference chromosomes and scaffolds to measure their agreements
939 using the following formula:

940

$$CCC = \frac{2\rho\sigma_x\sigma_y}{\sigma_x^2 + \sigma_y^2 + (\mu_x - \mu_y)^2}$$

941 where ρ is the Pearson correlation coefficient between the two variables, σ_x and σ_y
942 are the standard deviations of the two variables, and μ_x and μ_y are the means of the
943 two variables. Additionally, Spearman's correlation coefficients were calculated to
944 quantify the agreements between genetic maps and genomes using ALLMAPS².

945 **Data availability**

946 All raw sequencing data and the final chromosome-level haplotype-resolved genome
947 of *M. × giganteus* will be publicly available after publication. All published raw
948 sequencing data and genome assemblies used for HapHiC validation are listed in
949 **Supplementary Data 4**.

950 **Code availability**

951 HapHiC and all custom scripts for dataset simulation are available on GitHub at
952 <https://github.com/zengxiaofei/HapHiC>. The source code of modified ALLHiC can be
953 found at <https://github.com/zengxiaofei/allhic>.

954 **Acknowledgements**

955 This work was supported by the National Natural Science Foundation of China
956 (32100459), and the fellowship of China Postdoctoral Science Foundation
957 (2020M672695) to Xiaofei Zeng. Additional funding was provided by the Shenzhen
958 Municipal Science and Technology Innovation Commission Foundation
959 (JCYJ20220530114415036, JCYJ20210324104800001), and the National Natural
960 Science Foundation of China (32070625) to G.C.; and the National Natural Science
961 Foundation of China (32222019) to Xingtan Zhang. The Center for Computational
962 Science and Engineering at Southern University of Science and Technology also
963 provided support for this work. We thank Dr. Dong Zhang and Dr. Dafu Ru from
964 Lanzhou University, Mr. Zhigui Bao from the Max Planck Institute for Biology
965 Tübingen, and Dr. Shilin Zhu from Huazhong Agricultural University for their valuable
966 suggestions and contributions to HapHiC.

967 **Author contributions**

968 Xiaofei Zeng designed the algorithms, implemented HapHiC, analyzed the genome of
969 *M. × giganteus*, and wrote the manuscript. Z.Y. and S.Y. managed and provided the
970 plant materials of *M. × giganteus*. Xiaofei Zeng, Y.D., Y.L., Z.Z., S.C., and H.Z.
971 benchmarked HapHiC and other scaffolding tools. G.C., Xingtian Zhang, and Y.W.
972 provided suggestions for the algorithms. G.C. and Xingtian Zhang revised the
973 manuscript.

974 **Competing interests**

975 The authors declare no competing interests.

976 **ORCID**

977 Xiaofei Zeng: <https://orcid.org/0000-0001-8127-3825>

978 Guoan Chen: <https://orcid.org/0000-0001-5608-6761>

979 **References**

- 980 1. Nurk, S. et al. The complete sequence of a human genome. *Science* **376**, 44-53 (2022).
- 981 2. Tang, H. et al. ALLMAPS: robust scaffold ordering based on multiple maps. *Genome Biology* **16**, 3 (2015).
- 982 3. Burton, J.N. et al. Chromosome-scale scaffolding of *de novo* genome assemblies based on chromatin interactions. *Nature Biotechnology* **31**, 1119-1125 (2013).
- 983 4. Putnam, N.H. et al. Chromosome-scale shotgun assembly using an in vitro method for long-
986 range linkage. *Genome Research* **26**, 342-350 (2016).
- 987 5. Dudchenko, O. et al. De novo assembly of the *Aedes aegypti* genome using Hi-C yields
988 chromosome-length scaffolds. *Science* **356**, 92-95 (2017).
- 989 6. Ghurye, J. et al. Integrating Hi-C links with assembly graphs for chromosome-scale assembly.
990 *PLOS Computational Biology* **15**, e1007273 (2019).
- 991 7. Zhang, X., Zhang, S., Zhao, Q., Ming, R. & Tang, H. Assembly of allele-aware, chromosomal-
992 scale autopolyploid genomes based on Hi-C data. *Nature Plants* **5**, 833-845 (2019).
- 993 8. Zhou, C., McCarthy, S.A. & Durbin, R. YaHS: yet another Hi-C scaffolding tool. *Bioinformatics*
994 (*Oxford, England*) **39** (2022).
- 995 9. Lieberman-Aiden, E. et al. Comprehensive Mapping of Long-Range Interactions Reveals
996 Folding Principles of the Human Genome. *Science* **326**, 289-293 (2009).
- 997 10. Yuan, Y., Scheben, A., Edwards, D. & Chan, T.-F. Toward haplotype studies in polyploid plants
998 to assist breeding. *Molecular plant* **14**, 1969-1972 (2021).
- 999 11. Koren, S. et al. *De novo* assembly of haplotype-resolved genomes with trio binning. *Nature*
1000 *Biotechnology* **36**, 1174-1182 (2018).
- 1001 12. Cheng, H. et al. Haplotype-resolved assembly of diploid genomes without parental data. *Nature*
1002 *Biotechnology* **40**, 1332-1335 (2022).
- 1003 13. Meyer, R.S., DuVal, A.E. & Jensen, H.R. Patterns and processes in crop domestication: an
1004 historical review and quantitative analysis of 203 global food crops. *New Phytologist* **196**, 29-
1005 48 (2012).
- 1006 14. Huang, X., Huang, S., Han, B. & Li, J. The integrated genomics of crop domestication and
1007 breeding. *Cell* **185**, 2828-2839 (2022).
- 1008 15. Cheng, H., Asri, M., Lucas, J., Koren, S. & Li, H. Scalable telomere-to-telomere assembly for
1009 diploid and polyploid genomes with double graph. *arXiv preprint arXiv:2306.03399* (2023).
- 1010 16. Zhang, J. et al. Allele-defined genome of the autopolyploid sugarcane *Saccharum spontaneum*
1011 L. *Nature Genetics* **50**, 1565-1573 (2018).
- 1012 17. Chen, H. et al. Allele-aware chromosome-level genome assembly and efficient transgene-free
1013 genome editing for the autotetraploid cultivated alfalfa. *Nature Communications* **11**, 2494

1014 1014 (2020).

1015 1015 18. Wang, P. et al. Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome.
1016 *Horticulture Research* **8** (2021).

1017 1017 19. Zhang, X. et al. Haplotype-resolved genome assembly provides insights into evolutionary
1018 history of the tea plant *Camellia sinensis*. *Nature Genetics* **53**, 1250-1259 (2021).

1019 1019 20. Zhang, Q. et al. Genomic insights into the recent chromosome reduction of autopolyploid
1020 sugarcane *Saccharum spontaneum*. *Nature Genetics* **54**, 885-896 (2022).

1021 1021 21. Dongen, S.V. Graph Clustering Via a Discrete Uncoupling Process. *SIAM Journal on Matrix
1022 Analysis and Applications* **30**, 121-141 (2008).

1023 1023 22. Pedregosa, F. et al. Scikit-learn: Machine learning in Python. *the Journal of machine Learning
1024 research* **12**, 2825-2830 (2011).

1025 1025 23. Nurk, S. et al. HiCanu: accurate assembly of segmental duplications, satellites, and allelic
1026 variants from high-fidelity long reads. *Genome Research* **30**, 1291-1305 (2020).

1027 1027 24. Kawahara, Y. et al. Improvement of the *Oryza sativa* Nipponbare reference genome using next
1028 generation sequence and optical map data. *Rice* **6**, 4 (2013).

1029 1029 25. Berardini, T.Z. et al. The arabidopsis information resource: Making and mining the “gold
1030 standard” annotated reference plant genome. *genesis* **53**, 474-485 (2015).

1031 1031 26. Lawrence, I.K.L. A Concordance Correlation Coefficient to Evaluate Reproducibility.
1032 *Biometrics* **45**, 255-268 (1989).

1033 1033 27. Blanchette, M., Kunisawa, T. & Sankoff, D. Parametric genome rearrangement. *Gene* **172**,
1034 GC11-GC17 (1996).

1035 1035 28. Durand, N.C. et al. Juicebox provides a visualization system for Hi-C contact maps with
1036 unlimited zoom. *Cell systems* **3**, 99-101 (2016).

1037 1037 29. Long, R. et al. Genome Assembly of Alfalfa Cultivar Zhongmu-4 and Identification of SNPs
1038 Associated with Agronomic Traits. *Genomics, Proteomics & Bioinformatics* **20**, 14-28 (2022).

1039 1039 30. Bao, Z. et al. Genome architecture and tetrasomic inheritance of autotetraploid potato.
1040 *Molecular plant* **15**, 1211-1226 (2022).

1041 1041 31. Sun, H. et al. Chromosome-scale and haplotype-resolved genome assembly of a tetraploid
1042 potato cultivar. *Nature Genetics* **54**, 342-348 (2022).

1043 1043 32. Heaton, E.A. et al. in *Advances in Botanical Research*, Vol. 56. (eds. J.-C. Kader & M. Delseny)
1044 75-137 (Academic Press, 2010).

1045 1045 33. Chramiec-Głabik, A., Grabowska-Joachimiak, A., Sliwinska, E., Legutko, J. & Kula, A.
1046 Cytogenetic analysis of *Miscanthus × giganteus* and its parent forms. *Caryologia* **65**, 234-242
1047 (2012).

1048 1048 34. Mitros, T. et al. Genome biology of the paleotetraploid perennial biomass crop *Miscanthus*.
1049 *Nature Communications* **11**, 5442 (2020).

1050 35. De Vega, J., Donnison, I., Dyer, S. & Farrar, K. Draft genome assembly of the biofuel grass
1051 crop *Miscanthus sacchariflorus*. *F1000Research* **10** (2021).

1052 36. Miao, J. et al. Chromosome-scale assembly and analysis of biomass crop *Miscanthus*
1053 *lutarioriparius* genome. *Nature Communications* **12**, 2458 (2021).

1054 37. Zhang, G. et al. The reference genome of *Miscanthus floridulus* illuminates the evolution of
1055 Saccharinae. *Nature Plants* **7**, 608-618 (2021).

1056 38. Dong, H. et al. Winter hardiness of *Miscanthus* (II): Genetic mapping for overwintering ability
1057 and adaptation traits in three interconnected *Miscanthus* populations. *GCB Bioenergy* **11**, 706-
1058 726 (2019).

1059 39. Brohée, S. & van Helden, J. Evaluation of clustering algorithms for protein-protein interaction
1060 networks. *BMC Bioinformatics* **7**, 488 (2006).

1061 40. Li, L., Stoeckert, C.J. & Roos, D.S. OrthoMCL: Identification of Ortholog Groups for
1062 Eukaryotic Genomes. *Genome Research* **13**, 2178-2189 (2003).

1063 41. Tang, H. et al. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps.
1064 *Genome Research* **18**, 1944-1954 (2008).

1065 42. Wang, S. et al. EndHiC: assemble large contigs into chromosome-level scaffolds using the Hi-
1066 C links from contig ends. *BMC Bioinformatics* **23**, 528 (2022).

1067 43. Guan, D. et al. Efficient iterative Hi-C scaffolder based on N-best neighbors. *BMC
1068 Bioinformatics* **22**, 569 (2021).

1069 44. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor.
1070 *Bioinformatics (Oxford, England)* **34**, i884-i890 (2018).

1071 45. Durand, N.C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C
1072 experiments. *Cell systems* **3**, 95-98 (2016).

1073 46. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. *arXiv
1074 preprint arXiv:1303.3997* (2013).

1075 47. Faust, G.G. & Hall, I.M. SAMBLASTER: fast duplicate marking and structural variant read
1076 extraction. *Bioinformatics (Oxford, England)* **30**, 2503-2505 (2014).

1077 48. Li, H. et al. The Sequence Alignment/Map format and SAMtools. *Bioinformatics (Oxford,
1078 England)* **25**, 2078-2079 (2009).

1079 49. DeMaere, M.Z. & Darling, A.E. Sim3C: simulation of Hi-C and Meta3C proximity ligation
1080 sequencing technologies. *GigaScience* **7** (2017).

1081 50. Pecrix, Y. et al. Whole-genome landscape of *Medicago truncatula* symbiotic genes. *Nature
1082 Plants* **4**, 1017-1025 (2018).

1083 51. Tange, O. GNU Parallel 2018. *Zenodo* <https://doi.org/10.5281/zenodo.1146014> (2018).

1084 52. Wu, T.D. & Watanabe, C.K. GMAP: a genomic mapping and alignment program for mRNA
1085 and EST sequences. *Bioinformatics (Oxford, England)* **21**, 1859-1875 (2005).

1086 53. Li, H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics (Oxford, England)* **34**, 3094-3100 (2018).

1088 54. Goel, M., Sun, H., Jiao, W.-B. & Schneeberger, K. SyRI: finding genomic rearrangements and
1089 local sequence differences from whole-genome assemblies. *Genome Biology* **20**, 277 (2019).

1090 55. Goel, M. & Schneeberger, K. plotsr: visualizing structural similarities and rearrangements
1091 between multiple genomes. *Bioinformatics (Oxford, England)* **38**, 2922-2926 (2022).

Main Figures

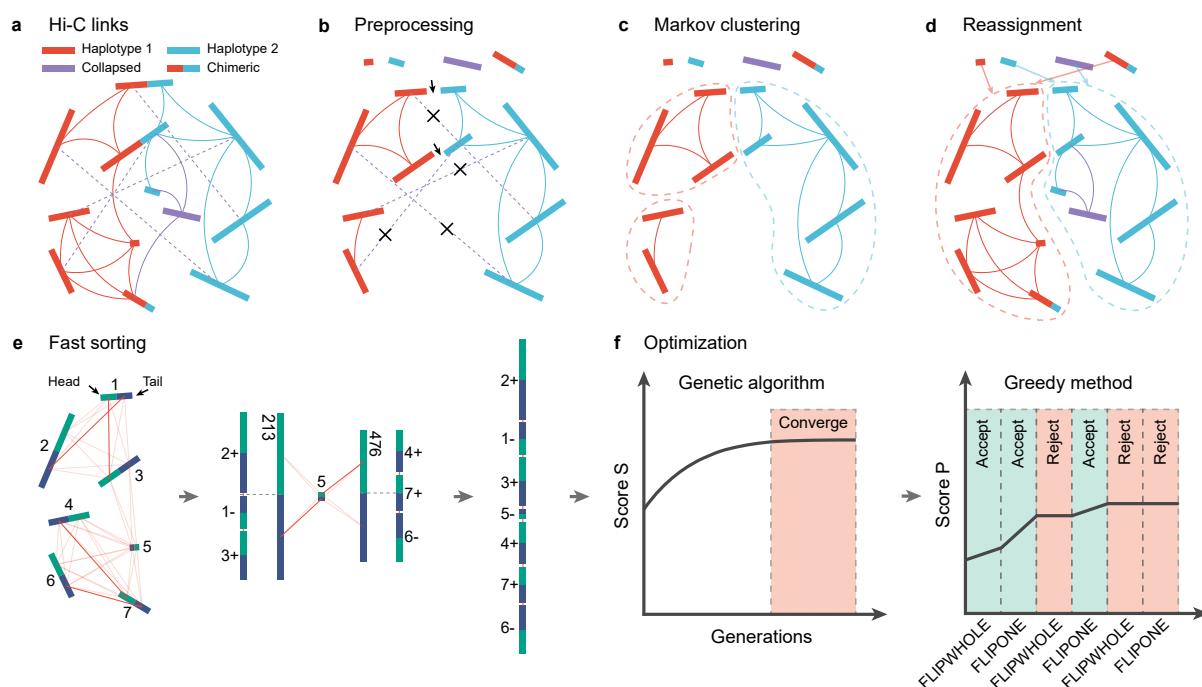


Fig. 1 | Overview of the HapHiC pipeline. **a**, A network graph illustrates contigs connected via Hi-C links. Contigs from haplotype 1 and haplotype 2 are represented by red and blue rectangles, respectively. Collapsed and chimeric contigs are shown as purple and bicolor rectangles, respectively. Hi-C links within haplotype 1, within haplotype 2, and connecting collapsed contigs are depicted as red, blue, and purple curves, respectively. Inter-allele Hi-C links are represented by dashed purple lines. **b**, The preprocessing step involves assembly correction, filtering out low-information contigs, discarding collapsed and chimeric contigs, and removing inter-allele Hi-C links. Breakpoints of assembly correction are represented by black arrows, while crosses indicate the removal of inter-allele Hi-C links. **c**, Preliminary Markov clustering is performed with the remaining contigs and Hi-C links. **d**, The reassignment step rescues and reassigns contigs to the most suitable clusters and performs an additional agglomerative hierarchical clustering if the number of clusters exceeds the expected number of chromosomes. **e**, An efficiency-improved 3D-DNA iterative algorithm is used for contig ordering and orientation, referred to as “fast sorting”. In each round of iteration, a confidence graph is constructed using the hemi-parts (green and blue segments) of contigs or scaffolds. The graph is then filtered to retain only reciprocal best matching (opaque red lines). Unlike the original 3D-DNA algorithm, the hemi-parts of scaffolds are split at the approximate midpoints to eliminate the need for reconstructing graph from scratch. **f**, Optimization of contig ordering and orientation is based on the result of fast sorting using the genetic algorithm and greedy method.

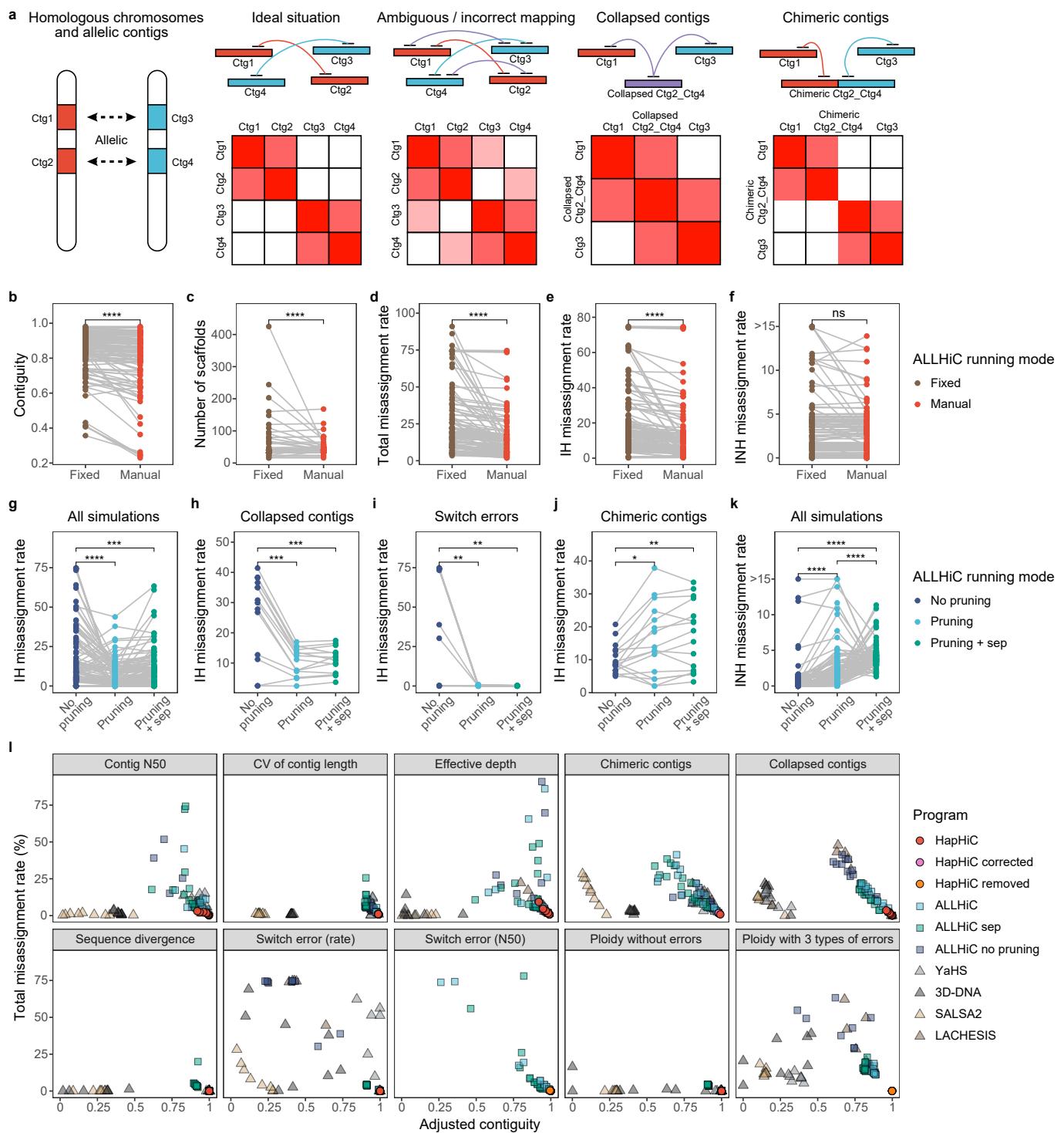


Fig. 2 | Comprehensive performance analysis of Hi-C-based scaffolding tools in chromosome assignment under various adverse conditions. **a**, A schematic diagram illustrating the potential challenges in allele-aware scaffolding, including the presence of collapsed contigs, chimeric contigs, and ambiguous or incorrect mapping. **b-f**, The effect of manually tuning parameter k on ALLHiC performance ($n = 141$). **g-k**, The effect of pruning and separating homologous groups on ALLHiC performance ($n = 152, 14, 14, 16$, and 152 respectively). **l**, Performance analysis of Hi-C-based scaffolding tools on assemblies with various adverse factors of varying degrees. HapHiC was executed in default mode (HapHiC), with assembly corrected (HapHiC corrected) or with inter-allele Hi-C links removed (HapHiC removed). The total misassignment rate includes misassignment rate between both homologous and non-homologous chromosomes. The adjusted contiguity is calculated by multiplying the contiguity by the anchoring rate. P values were derived from two-sided Wilcoxon signed-rank tests.

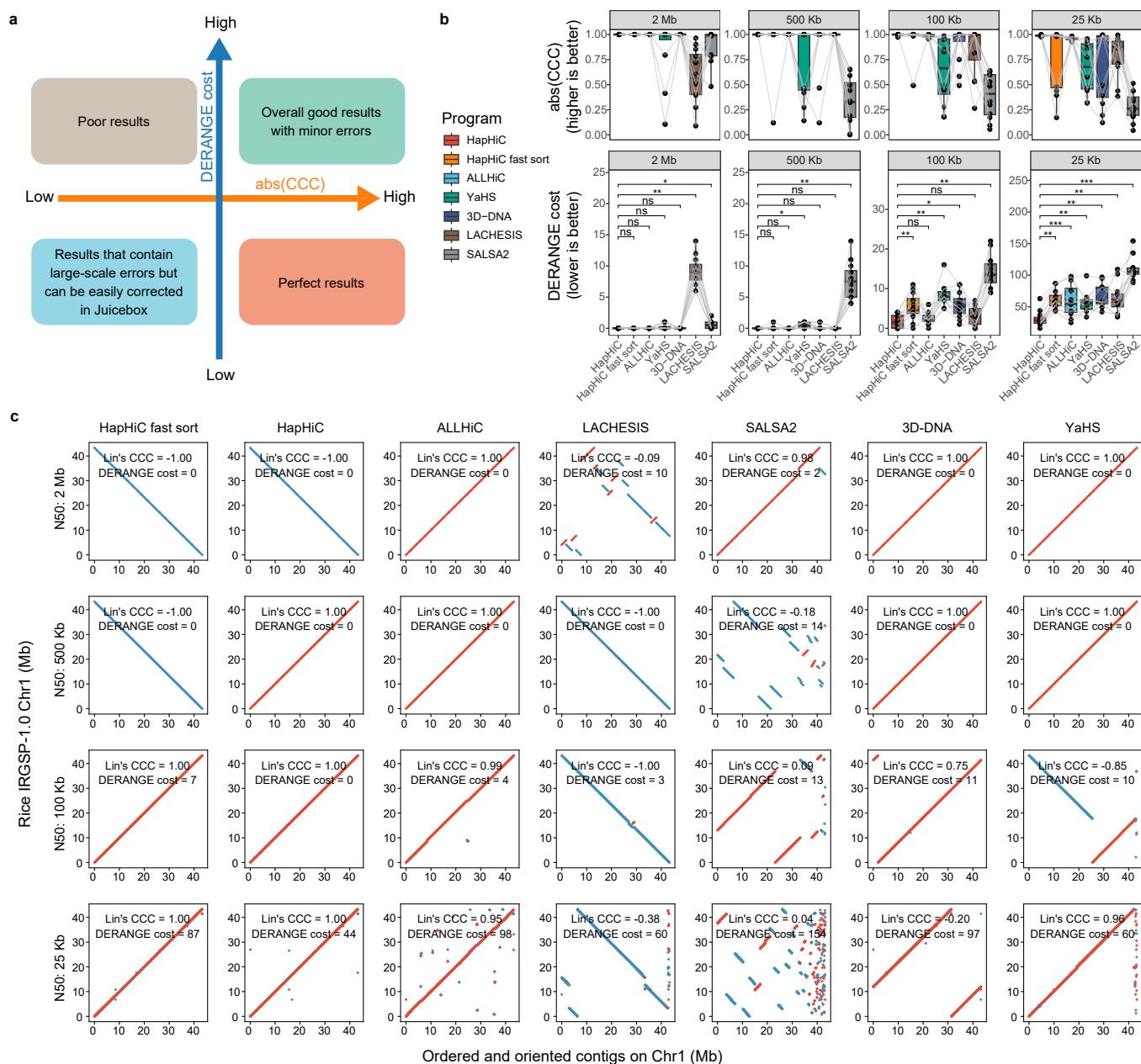


Fig. 3 | Evaluation of Hi-C-based scaffolding tools' performance in contig ordering and orientation across assemblies with varying contig N50 values. **a**, A schematic diagram categorizes the contig ordering and orientation results into four quadrants based on their distinct tendencies, using the absolute value of Lin's concordance correlation coefficient (CCC) and DERANGE cost as metrics. The former metric assesses the large-scale consistency between the results and the reference chromosomes, while the latter one quantifies the agreement on a smaller scale. **b**, The absolute values of Lin's CCC and DERANGE costs for each Hi-C-based scaffolding tool in ordering and orienting the contigs of the rice IRGSP-1.0 chromosomes with varying contig N50 values are presented (*p* value from two-sided Wilcoxon signed-rank tests, $n = 12$). **c**, The dot plots illustrate the concordance between chromosome 1 of the rice IRGSP-1.0 genome and the contig ordering and orientation result produced by each Hi-C-based scaffolding tool. Red and blue dots represent forward and reverse complementary alignments, respectively.

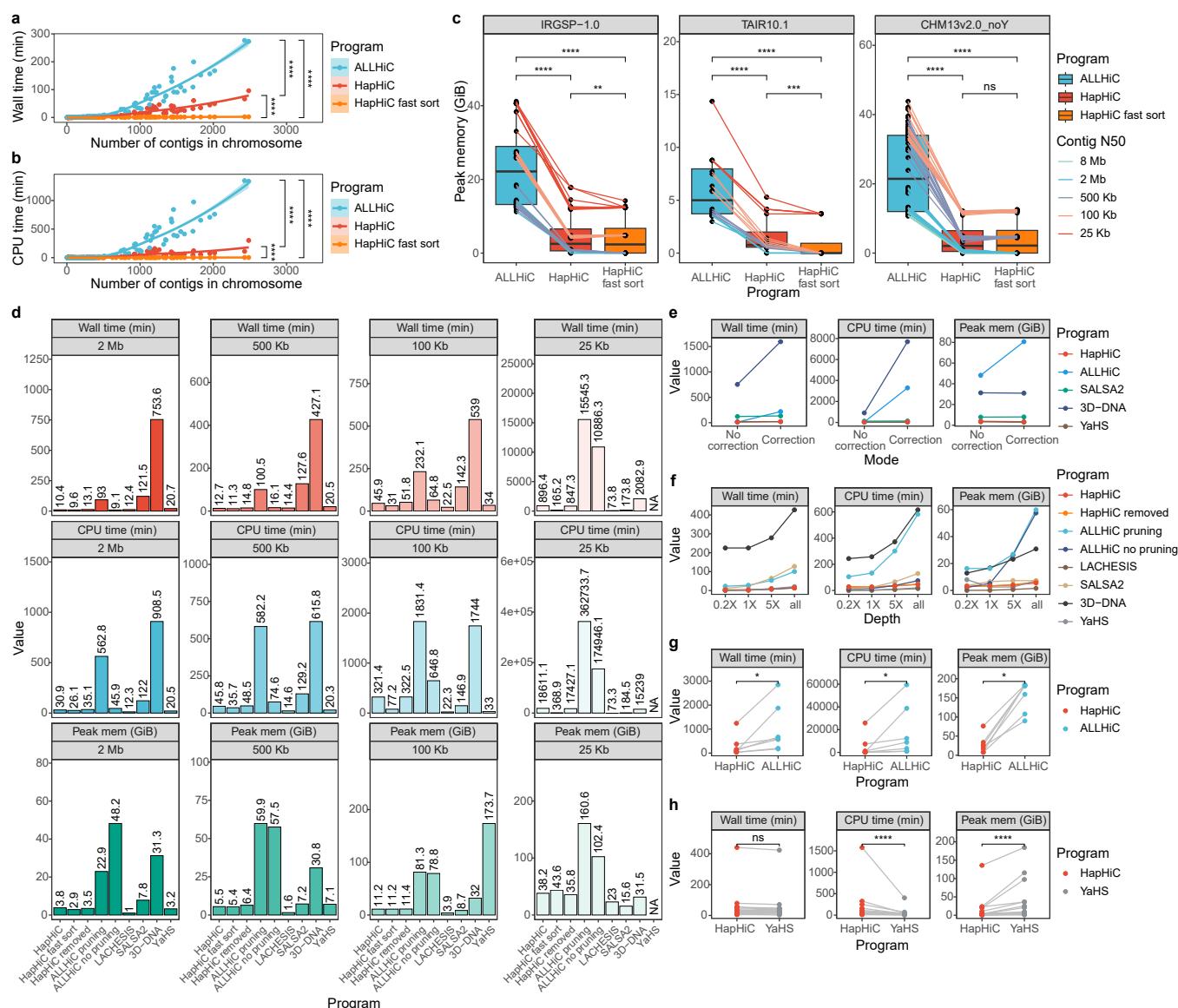


Fig. 4 | Comparative analysis of execution time and memory usage for Hi-C-based scaffolding tools. **a-c**, A comparative analysis of execution time and memory usage between HapHiC and ALLHiC during contig ordering and orientation. The wall time (**a**, $n = 160$), CPU time (**b**, $n = 160$), and peak memory (**c**, $n = 48, 20, 92$, respectively) for HapHiC and ALLHiC were recorded for each chromosome of rice IRGSP-1.0, *Arabidopsis* TAIR10.1, and human CHM13v2.0_noY genomes under varying contig N50 values. **d**, The total time and memory usage of the entire pipeline for each Hi-C-based scaffolding tool while scaffolding genome assemblies with different contig N50 values simulated from the *M. sativa* ground truth. **e**, The time and memory usage of each Hi-C-based scaffolding tool during assembly correction. **f**, The time and memory usage of each Hi-C-based scaffolding tool while processing Hi-C data at different depths. **g**, Comparisons of execution time and memory usage between HapHiC and ALLHiC when scaffolding published haplotype-resolved assemblies ($n = 7$). **h**, Comparisons of execution time and memory usage between HapHiC and YaHS when scaffolding published haplotype-collapsed assemblies ($n = 20$). P values were derived from two-sided Wilcoxon signed-rank tests.

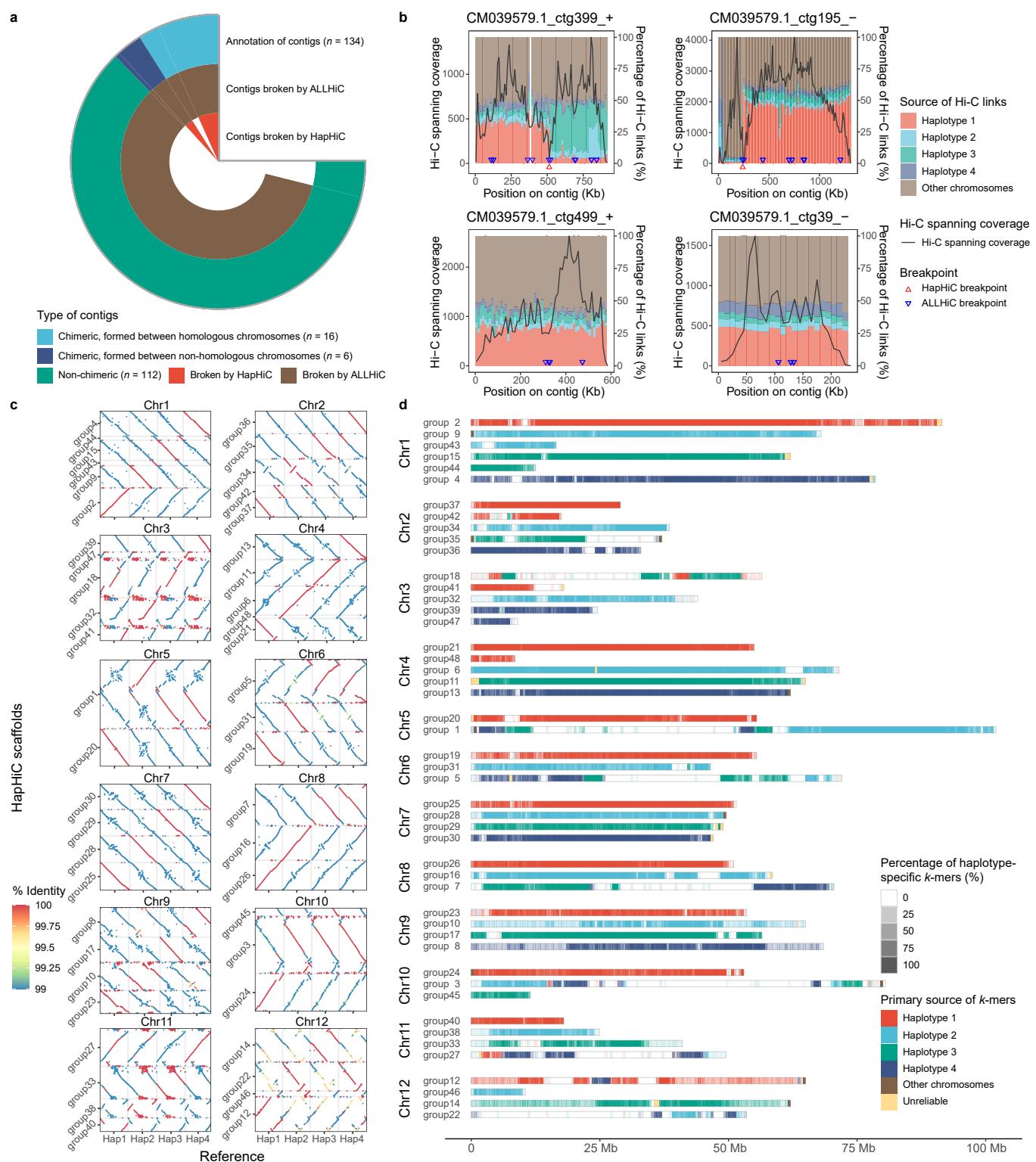


Fig. 5 | Comparative analysis and examples of HapHiC in scaffolding published autotetraploid genomes. **a**, A comparison of assembly correction between HapHiC and ALLHiC for the *S. spontaneum* Np-X genome. **b**, Examples of assembly correction by HapHiC and ALLHiC, including a chimeric contig formed between homologous chromosomes (CM039579.1_ctg399_+), a chimeric contig formed between non-homologous chromosomes (CM039579.1_ctg195_-), and two non-chimeric contigs (CM039579.1_ctg499_+ and CM039579.1_ctg39_-). The line charts depict the Hi-C spanning coverages along contigs (left axes), while histograms represent the percentages of Hi-C links based on their sources along contigs (right axes). The source of each Hi-C link is determined by the mapping position of the other end of the read pair. Red and blue triangles indicate the breakpoints determined by HapHiC and ALLHiC, respectively. **c**, The dot plots illustrate the alignments between the HapHiC scaffolds and the haplotypes of potato C88 genome, with dot colors indicating the sequence identities of alignments. **d**, A *k*-mer-based analysis reveals the primary source of each position along the contigs from the potato C88 haplotypes. The color indicates the primary source of *k*-mers, while the degree of transparency represents the percentage of haplotype-specific *k*-mers.



Fig. 6 | Comparative genomic analysis of *M. × giganteus* and other *Miscanthus* species. **a**, Gene synteny analyses between each subgenome haplotypes of *M. × giganteus* (MgiA, MgiB1, and MgiB2) and the genomes of *M. sinensis* (MsiA) and *M. lutarioriparius* (MluB). Ribbons illustrate gene synteny blocks between orthologous chromosome pairs, with green, blue, and red ribbons representing inversions, translocations, and inverted translocations, respectively. **b**, A comparison between MsiA and MgiA chromosomes based on their alignments with five genetic maps of *M. sinensis* ($n = 94$) and one genetic map of *M. sacchariflorus* ($n = 19$). Spearman's correlation coefficients (ρ) were calculated to quantify the agreements between genetic maps and genomes using ALLMAPS. P values were derived from two-sided Wilcoxon signed-rank tests on the raw p values. **c**, Alignments between the physical positions on the chromosome 2 of MgiA and the positions on the six genetic maps. **d**, A correlation analysis between the physical positions on the chromosome 2 of MgiA and the corresponding map positions using Spearman's correlation coefficients. **e**, A comparison of Hi-C contact maps between the chromosomes 2 of MsiA and MgiA. Genome alignment between the two chromosomes is shown in ribbons, with yellow, green, and blue ribbons representing inversions, translocations, and duplications identified by SyRI. The inconsistent gene synteny blocks identified in the gene synteny analysis (a) are also shown in this plot. Dashed rectangles highlight error-enriched regions in MsiA chromosome 2.