

1 Neutrophil subsets play dual roles in tuberculosis by producing 2 inflammasome dependent-IL-1 β or suppressing T-cells via PD-L1

3
4 Emilie Doz-Deblauwe^{1*}, Badreddine Bounab^{1*}, Florence Carreras¹, Julia Silveira-Fahel^{1,5}, Sergio
5 C. Oliveira^{4,5}, Mohamed Lamkanfi⁶, Yves Le Vern¹, Pierre Germon¹, Julien Pichon¹, Florent
6 Kempf¹, Christophe Paget^{2,3}, Aude Remot¹, and Nathalie Winter^{1†}

7
8
9 ¹INRAE, Université de Tours, ISP, F-37380 Nouzilly, France
10 ²INSERM, U1100, Centre d'Étude des Pathologies Respiratoires, Tours, France.
11 ³Faculté de Médecine, Université de Tours, Tours, France
12 ⁴Department of Immunology, University of Sao Paolo, Sao Paulo, Brazil
13 ⁵ Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo
14 Horizonte; Brazil
15 ⁶Laboratory of Medical Immunology, Department of Internal Medicine and Pediatrics, Ghent
16 University, B-9000 Ghent, Belgium

17
18 * These authors contributed equally to this work
19 †Corresponding author: nathalie.winter@inrae.fr. Mailing address: INRAE Centre Val de Loire,
20 UMR Infectiologie et Sante Publique N°1282, F-37380 Nouzilly, France. Tel +33 2 47 42 73 14

22 Abstract:

23 Neutrophils can be beneficial or deleterious during tuberculosis (TB). Based on the
24 expression of MHC-II and programmed death ligand 1 (PD-L1), we distinguished two
25 functionally and transcriptionally distinct neutrophil subsets in the lungs of mice infected
26 with mycobacteria. Inflammatory [MHC-II⁻, PD-L1^{lo}] neutrophils produced
27 inflammasome-dependent IL-1 β in the lungs in response to virulent mycobacteria and
28 “accelerated” deleterious inflammation, which was highly exacerbated in IFN- γ R^{-/-} mice.
29 Regulatory [MHC-II⁺, PD-L1^{hi}] neutrophils “brake” inflammation by suppressing T-cell
30 proliferation and IFN- γ production. Such beneficial regulation, which depends on PD-L1,
31 is controlled by IFN- γ R signaling in neutrophils. The hypervirulent HN878 strain from
32 the Beijing genotype curbed PD-L1 expression by regulatory neutrophils, abolishing the
33 braking function and driving deleterious hyper-inflammation in the lungs. These findings
34 add a layer of complexity to the roles played by neutrophils in TB and may explain the
35 reactivation of this disease observed in cancer patients treated with anti-PD-L1.

36
37 **One Sentence Summary:** Regulatory and inflammatory neutrophil subsets play inverse roles in
38 tuberculosis.

40 **INTRODUCTION**

41 Tuberculosis (TB) is among the principal causes of death due to infectious diseases in the world.
42 This situation was worsened by the recent burden imposed on healthcare systems by the COVID-
43 19 crisis, which severely affected TB management programs (1). Almost all human cases of TB
44 are due to *Mycobacterium tuberculosis* (Mtb). The first laboratory strain sequenced in 1998 by
45 Cole et al. was H37Rv (2). It was long believed that genetic diversity among Mtb strains was
46 limited. The recent development of whole genome sequencing uncovered the complex
47 geographical distribution of nine different phylogenetic lineages (L) of Mtb circulating in
48 different regions of the world (3). The L2 and L4 strains are the most highly distributed
49 worldwide, with the L2 strain dominating in East-Asia, with high transmission rates. Most
50 experimental TB physiopathology studies have been conducted using the laboratory-adapted L4
51 strain H37Rv. However, strains from different lineages induce different pathological spectra in
52 humans and animal models (4). HN878, the prototype L2 “Beijing” hypervirulent strain, causes
53 an exacerbated immunopathology. However, the immune mechanisms underlying such severe
54 disease are not fully understood.

55 Following infection with Mtb, most people do not develop immediate signs of disease but may
56 remain latently infected for decades. During this period, a *status quo* between the host and the
57 bacilli involves several immune mechanisms to regulate host defense and inflammation. The role
58 of the programmed death 1/programmed death ligand 1 (PD-1/PD-L1) axis in restricting T-cell
59 function has been recently highlighted. Blockade of these immune check-points has brought
60 considerable progress to cancer treatment in recent years (5). However, concerns are now
61 emerging about an increase in active TB cases following such treatment (5, 6). Experimentally
62 Mtb-infected PD-1-deficient mice quickly die (7) due to the detrimental overproduction of
63 pathogenic IFN- γ by CD4 $^{+}$ T cells in the lung parenchyma (8). Mtb-infected rhesus macaques
64 treated with anti-PD-1 develop exacerbated disease, which is linked to caspase-1 activation (9).
65 Inherited PD-1 deficiency in humans is linked to decreased self-tolerance and anti-mycobacterial
66 immunity (10).

67 The hallmark of TB is the formation of granulomas in the lung; in these organized pluricellular
68 structures, a delicate balance between the containment of Mtb replication and host inflammation
69 takes place. The fate of Mtb, from eradication to active multiplication, may vary depending on
70 the granuloma microenvironment, where multiple immune mechanisms are at play to maintain or
71 disrupt immunoregulation (11). Among innate cells, neutrophils play dual roles in TB (12). At
72 early stages, they halt Mtb infection and shape early formation of the TB granuloma (13, 14). At
73 later stages, their highly destructive arsenal is critical for TB reactivation; they represent the first
74 expectorated cells of active TB patients (15). In the mouse, we have shown that neutrophils reach
75 the lungs in two waves during the establishment of the immune response, with the adaptive wave
76 playing no role in Mtb growth restriction (16). There is now extensive evidence that neutrophils
77 represent a heterogeneous and plastic cellular compartment (17). Some neutrophils are endowed
78 with classical phagocytic and pathogen-killing functions, whereas others are able to cross talk
79 with a variety of immune cells, taking full part in the adaptive immune response (12). Although
80 the dual roles played by neutrophils are recognized in TB, the possibility that distinct subsets
81 play divergent roles is still underexplored (18). In this context, we have recently characterized a
82 subset of regulatory neutrophils that can be functionally distinguished from classic neutrophils in
83 healthy cattle and mice by their ability to suppress T-cell proliferation (19).

84 IL-1 β is a cornerstone cytokine in TB. It is essential for constraining Mtb infection in the early
85 stages, as unequivocally demonstrated in mouse models, but may also become deleterious at later

86 stages of the full-blown adaptive immune response. Cross-regulatory pathways of IL-1 β
87 production during TB include that of type I IFN, which directly downregulates pro-IL-1 β gene
88 transcription (20). Bioactive IL-1 β needs to be processed from immature pro-IL-1 β via
89 inflammasome assembly, to which macrophages (MPs) are the major contributor. *In vitro*, in
90 response to *Mtb* infection, bone marrow-derived MPs assemble the NLRP3 inflammasome and
91 activate caspase-1 to trigger canonical inflammasome activation and the release of mature IL-1 β
92 (21). Beyond MPs, recent studies suggest a role for NLRP3 inflammasome-dependent IL-1 β
93 production by neutrophils *in vivo* (22). However, the contribution of neutrophils to IL-1 β
94 production during TB appears to be much less than that of MPs (23) and it is assumed that
95 caspase-1-independent mechanisms account for pro-IL-1 β cleavage by these cells (24).
96 As neutrophils shape the fate and full development of granulomas during TB disease, we
97 revisited the role of these heterogeneous plastic cells (17, 19) during mycobacterial infection. We
98 compared the recruitment and functions of neutrophil subsets during infection with the avirulent
99 live vaccine BCG and the two virulent *Mtb* strains, H37Rv (L4, lab-adapted) and HN878 (L2,
100 Beijing prototype). We used the IFN- γ R $^{-/-}$ mouse model, in which extensive neutrophil-driven
101 inflammation was described (25) before distinct subsets were known. We also analyzed the
102 potential for inflammasome-dependent mature IL-1 β production by neutrophils *in vitro*, as well
103 as *in vivo*, taking advantage of a new mouse model in which caspase-1-dependent IL-1 β
104 secretion is specifically abrogated in neutrophils (26). We provide evidence that distinct subsets
105 play opposite roles in TB physiopathology by contributing to IL-1 β -driven inflammation in the
106 lungs or regulating neutrophilia via the immune checkpoint inhibitor PD-L1.

107

108 RESULTS

109 The neutrophil NLRP3 inflammasome contributes to IL-1 β production during 110 mycobacterial infection

111 We infected neutrophils from mouse bone marrow with the avirulent vaccine strain BCG and the
112 virulent H37Rv and HN878 *Mtb* strains. Different MOIs for the BCG (10:1) virulent *Mtb* (1:1)
113 were used to preserve neutrophil viability. This induced comparable release of TNF (Fig. S1A).
114 Neutrophils also released mature IL-1 β in response to infection by all strains (Fig. 1A), albeit to
115 a lesser extent than following LPS plus nigericin stimulation. We next prepared neutrophils from
116 the bone marrow of various genetically deficient mice to test the role of the inflammasome. IL-
117 1 β secretion by mycobacteria-infected or LPS/nigericin stimulated neutrophils from *Nlrp3* $^{-/-}$ (Fig.
118 1B), *Csp1/11* $^{-/-}$ (Fig. 1B), and *Gsdmd* $^{-/-}$ (Fig. 1C) mice was severely impaired relative to that of
119 WT neutrophils. This was not due to activation issues, as these genetically deficient neutrophils
120 released similar levels of TNF (Fig. S1B). Canonical assembly of the inflammasome and
121 pyroptosis appear to be involved in the IL-1 β maturation process in neutrophils. This was
122 confirmed with neutrophils from *Csp1/11* $^{-/-}$ mice, which secreted similar levels of mature IL-1 β as
123 WT mice in response to BCG infection (Fig. S1C). Of note, neutrophils from *Aim2* $^{-/-}$ or WT mice
124 produced similar levels of mature IL-1 β (Fig. 1C). We observed the cleavage of pro-IL1 β into
125 mature IL-1 β of 17kDa in neutrophils infected with BCG (MOI 20:1) by western blotting (Fig.
126 1D), confirming inflammasome assembly. MPs secreted more mature IL-1 β into the supernatant
127 than neutrophils (Fig. 1E), regardless of the stimulus. On a cell-to-cell basis, MPs secreted 47
128 times more mature IL-1 β than neutrophils after infection with virulent *Mtb* H37Rv and 35 times
129 more than after BCG stimulation (Fig. 1E). We assessed the contribution of neutrophils to IL-1 β

130 production *in vivo* by infecting mice with virulent Mtb H37Rv and injecting the anti-Ly6G
131 antibody at the onset of recruitment of the second wave of neutrophils, i.e., between day 17 and
132 21 (16). This treatment markedly reduced the number of neutrophils in the lungs (Fig. 2A and
133 Fig. S2A for gating strategy). Lesions were more extensive in anti-Ly-6G than isotype treated
134 mice (Fig. 2B), with a two-fold greater total lung surface occupied by the lesions (Fig. 2C).
135 Production of IL-1 β in the lung tissue of anti-Ly-6G treated mice was 2.3-fold less than that in
136 the lung tissue of mice injected with the isotype control antibody (Fig. 2D). These data thus
137 confirm the role of neutrophils in the formation of lung lesions during Mtb infection (12) and
138 indicate their direct participation in IL-1 β production *in vivo*. We confirmed this using the
139 recently obtained *MRP8*^{Cre+}*Csp1*^{flx} mouse strain (26), in which IL-1 β production is specifically
140 abolished in neutrophils. We first validated this tool *in vitro* using purified neutrophils and bone
141 marrow-derived MPs from *MRP8*^{Cre+}*Csp1*^{flx} mice and their *MRP8*^{WT}*Csp1*^{flx} littermates
142 stimulated with LPS and nigericin. As expected, neutrophils from *MRP8*^{Cre+}*Csp1*^{flx} mice did
143 not produce IL-1 β , whereas *MRP8*^{WT}*Csp1*^{flx} neutrophils did (Fig. 2E). In addition, MPs from
144 *MRP8*^{Cre+}*Csp1*^{flx} and *MRP8*^{WT}*Csp1*^{flx} mice equally produced IL-1 β , as expected (Fig. 2F).
145 Next, we intranasally infected *MRP8*^{Cre+}*Csp1*^{flx} mice and their *MRP8*^{WT}*Csp1*^{flx} littermates with
146 Mtb H37Rv and observed significantly lower IL-1 β production in the lungs of the
147 *MRP8*^{Cre+}*Csp1*^{flx} than those of the *MRP8*^{WT}*Csp1*^{flx} animals (Fig. 2G). This result confirms the
148 direct participation of neutrophils in IL-1 β production after inflammasome assembly in the lungs
149 in response to Mtb infection.

150 **Mycobacteria attract inflammatory and regulatory neutrophil subsets to the lung**

151 We recently discovered that [Ly-6G $^+$, MHC-II $^-$, PD-L1 lo] neutrophils, akin to classic neutrophils,
152 and [Ly-6G $^+$, MHC-II $^+$, PD-L1 hi] regulatory neutrophils circulate in blood as two functionally
153 different subsets at steady state in healthy mice and cattle. Only regulatory neutrophils are able to
154 suppress T-cell proliferation (19). Thus, we first assessed the recruitment of these two neutrophil
155 subsets to the lungs following intranasal infection with 5 \times 10 6 CFUs of avirulent BCG. Surface
156 MHC-II was used to discriminate between classic and regulatory neutrophils by flow cytometry
157 (Fig. S2A). As previously observed (16), total [CD45 $^+$, CD11b hi ; Ly-6G hi , Ly-6C $^+$] neutrophils
158 peaked in the lungs 21 days following BCG infection (Fig. 3A), together with T cells. This cell
159 population was composed of a balanced mix of [Ly-6G $^+$, MHC-II $^-$] classic neutrophils and [Ly-
160 6G $^+$, MHC-II $^+$] regulatory neutrophils (Fig. 3B), which showed similar morphology (Fig. S2B).
161 PD-L1 also clearly distinguished [Ly-6G $^+$, MHC-II $^-$, PD-L1 lo] from [Ly-6G $^+$, MHC-II $^+$, PD-L1 hi]
162 neutrophils (Fig. S2A). Overall, 90% of [Ly-6G $^+$, MHC-II $^+$] regulatory neutrophils were PD-L1 hi
163 and 10% of [Ly-6G $^+$, MHC-II $^-$] classic neutrophils were PD-L1 lo (Fig. 3C). Moreover, the MFI
164 of [Ly-6G $^+$, MHC-II $^+$, PD-L1 hi] neutrophils was 26 times higher than that of [Ly-6G $^+$, MHC-II $^-$,
165 PD-L1 lo] neutrophils (Fig. 3D). We then performed single-cell RNAseq analysis of the total Ly-
166 6G $^+$ neutrophil population purified from the lungs 21 days after BCG infection and observed
167 distinct transcriptional profiles (Fig 3E). SEURAT software classified RNA expression into
168 clusters numbered 0 to 10 (Fig 3E, first panel) that formed two main groups: clusters 0, 2, 3, 4,
169 and 5 formed part of one pool (Fig. 3E, right pool), whereas clusters 1, 6, 7, 8, 9, and 10 formed
170 another (Fig. 3E, left pool). Of note the SingleR software, trained on the Immunologic Genome
171 Project database of mRNA profiles, identified cells from the right pool as “neutrophils”, whereas
172 cells from the left pool were identified as “monocytes/macrophages”, probably due to the
173 expression of genes such as *Mhc-II* and *Cd274* (encoding PD-L1). Certain genes, such as *Itgam*
174 (Fig. 3E), were similarly expressed in clusters from the two pools, in agreement with the

175 neutrophil signature. However, differential expression of the *H2-Eb1* and *H2-Ab1* genes from
176 the MHC-II complex or *Il1b* and *Il1r2* inflammatory genes clearly segregated between the two
177 pools (Fig. 3E). We confirmed the differential gene expression between classic and regulatory
178 neutrophils by performing qRT-PCR targeting genes involved in general neutrophil-driven
179 inflammation, as well as pro-IL-1 β synthesis and inflammasome assembly. *Mhc-II* genes were
180 expressed in regulatory neutrophils only (Fig. 3F). We observed full differential clustering of the
181 two subsets based on the expression of *Il1b*, *Ilr2*, *Mmp9*, *Ifngr*, *Il18rap*, and *S100a9*; the
182 expression of all these genes was higher in [Ly-6G $^+$, MHC-II $^+$, PD-L1 lo] classic neutrophils than
183 [Ly-6G $^+$, MHC-II $^+$, PD-L1 hi] regulatory neutrophils (Fig. 3F). We separated the two subsets from
184 H37Rv-infected mice using magnetic beads and observed higher *Il1b* and *Ilr2* gene expression
185 by classic than regulatory neutrophils (Fig. S2C). We then analyzed intracellular mature IL-1 β
186 production in the lungs *ex vivo* by flow cytometry three weeks following H37Rv infection (Fig.
187 S2D). The MFI for IL-1 β was 25 times higher in [Ly-6G $^+$, MHC-II $^+$] classic than [Ly-6G $^+$,
188 MHC-II $^+$] regulatory neutrophils (Fig. 3G). Based on these data, we considered classic
189 neutrophils to be “inflammatory” during mycobacterial infection, as documented both by their
190 transcriptional profile and their ability to produce mature IL-1 β *in vivo*.
191 As the immune inhibitory checkpoint PD-L1 is involved in T-cell suppression (27), we assessed
192 its role in lung regulatory neutrophils recruited in response to mycobacterial infection. We
193 separated regulatory from inflammatory neutrophils from the lungs of BCG- or Mtb H37Rv-
194 infected mice on day 21 and tested their suppressive function *ex vivo* on splenocytes from OT-II
195 mice (Fig S2E and (19). Only the [Ly-6G $^+$, MHC-II $^+$, PD-L1 hi] regulatory neutrophils were able
196 to decrease OT-II cell proliferation (by 50%, Fig. 3H) and IFN- γ production (by 87%, Fig. 3I).
197 We observed similar levels of T-cell suppression by lung regulatory neutrophils obtained from
198 BCG- (Fig. S2F) or Mtb H37Rv-infected mice (Fig. 3H). Moreover, addition of the anti-PD-L1
199 antibody atezolizumab (28) to the wells with regulatory neutrophils obtained from H37Rv- (Fig.
200 3H) or BCG- (Fig. S2F) infected mice fully restored proliferation and IFN- γ production by OT-II
201 cells. Thus, only regulatory neutrophils were able to dampen T-cell function and PD-L1 played a
202 major role in this effect.
203

204 **The two neutrophil subsets are modulated by *M. tuberculosis* virulence**

205 We next sought information on the role of the neutrophil subsets in TB physiopathology by
206 comparing lung infection by H37Rv and HN878 on day 21. The number of bacilli in the lungs
207 was 1.1 log₁₀ higher (Fig. 4A) and the lesions (Fig. 4B) occupied 4.7 times more lung surface
208 (Fig. 4C) in HN878 than H37Rv-infected animals, in agreement with the hypervirulence of the
209 Beijing strains (29, 30). However, all mice were clinically stable until the end of our study, i.e.,
210 day 21 (data not shown). An analysis of differentially expressed genes (Fig. 4D) showed higher
211 expression of *Sting1*, *Irf3*, *Ifnar1*, and *Ifnar2* from the type I IFN pathway in H37Rv than HN878
212 infected animals. On the contrary, expression of the neutrophil marker genes *S100a8* and *S100a9*
213 was higher in the lungs of HN878- than those of H37Rv-infected mice. However, the genes
214 involved in inflammasome assembly and the IL-1 β production pathway were not distinctly
215 induced by the two virulent Mtb strains. At the protein level, TNF, IFN- γ , and IL-1 β levels were
216 higher in the lungs of HN878 than those of H37Rv-infected mice (Fig. 4E), in agreement with
217 the strong inflammatory profile of the strain. CXCL-10 levels, a promising biomarker of Mtb
218 infection (31),

219 immunohistochemistry and the hypervirulence of HN878 linked to strong neutrophilia (32).
220 However, although the total neutrophil influx was composed of 59% inflammatory and 41%

221 regulatory neutrophils after H37Rv infection, HN878 resulted in an opposite balance of 71%
222 regulatory and 29% inflammatory neutrophils (Fig. 4G). Moreover, infection with HN878
223 induced a mean MFI for PD-L1 on lung regulatory neutrophils that was 3.8 times lower than that
224 for those of H37Rv-infected animals (Fig. 4H).

225

226 **Caspase-dependent production of IL-1 β by inflammatory neutrophils sustains lung** 227 **inflammation**

228 Inflammatory neutrophils produced mature IL-1 β after NLRP3 inflammasome assembly *in vivo*.
229 We next addressed their contribution to IL-1 β -mediated physiopathology in *MRP8^{Cre+}Csp1^{fl}*
230 mice. We intranasally infected *MRP8^{Cre+}Csp1^{fl}* mice and *MRP8^{WT}Csp1^{fl}* littermates with
231 avirulent BCG and the two virulent H37Rv and HN878 Mtb strains and analyzed their response
232 in the lungs three weeks later. We first observed that, in response to BCG, IL-1 β levels in whole
233 lung tissue homogenates were low and comparable in *MRP8^{Cre+}Csp1^{fl}* and *MRP8^{WT}Csp1^{fl}*
234 animals (Fig. S3A). On the contrary, IL-1 β production by the lungs was lower in
235 *MRP8^{Cre+}Csp1^{fl}* than *MRP8^{WT}Csp1^{fl}* animals in response to the two virulent Mtb strains.
236 While the response to H37Rv in terms of the amount of IL-1 β in the lungs of *MRP8^{Cre+}Csp1^{fl}*
237 mice was only 30% lower than that of *MRP8^{WT}Csp1^{fl}* control mice, it was reduced by 64% in
238 response to HN878 (Fig. 5A). Neutrophil-derived IL-1 β had no impact on the number of CFUs
239 after infection with BCG (Fig. S3B), H37Rv, or HN878 (Fig 5B) at the time point examined. We
240 next examined the differential lung gene expression profile between *MRP8^{Cre+}Csp1^{fl}* and
241 *MRP8^{WT}Csp1^{fl}* mice after infection with BCG (Fig. S3C) or the virulent Mtb strains (Fig. 5C)
242 on day 21. In response to the three strains, *Cxcl5*, a critical gene for neutrophil recruitment to the
243 lungs (16, 33), as well as *Cxcl10*, were more highly expressed when inflammatory neutrophils
244 were able to produce IL-1 β than when they were defective. In addition, HN878 induced higher
245 transcription of *Il-10* and *Cxcr1* when inflammatory neutrophils were defective for IL-1 β
246 production.

247 After BCG instillation, total leukocyte numbers in the lungs were not significantly different
248 between *MRP8^{Cre+}Csp1^{fl}* and *MRP8^{WT}Csp1^{fl}* mice (Fig. S3D), which correlated with no
249 difference in IL-1 β production. In response to H37Rv, total lung leukocyte numbers were 24%
250 lower for *MRP8^{Cre+}Csp1^{fl}* than the *MRP8^{WT}Csp1^{fl}* controls (Fig 5D). In response to HN878
251 the decrease was 46%. This result confirms the direct role of neutrophilic Nlrp3 inflammasome
252 activation in lung inflammation. Among leukocytes, 3.2 times fewer neutrophils (Fig. 5E) were
253 recruited to the lungs of *MRP8^{Cre+}Csp1^{fl}* than *MRP8^{WT}Csp1^{fl}* mice in response to H37Rv and
254 6.3 times fewer were recruited in response to HN878. In H37Rv-infected mice, we observed
255 five-fold fewer inflammatory neutrophils in the lungs of *MRP8^{Cre+}Csp1^{fl}* mice than the
256 *MRP8^{WT}Csp1^{fl}* controls and approximately twofold - but not statistically significant- fewer
257 regulatory neutrophils (Fig. 5F). On the contrary, in HN878-infected mice, the number of
258 inflammatory neutrophils was 16 times lower in *MRP8^{Cre+}Csp1^{fl}* than *MRP8^{WT}Csp1^{fl}* mice,
259 whereas the number of regulatory neutrophils was only 2.3 times lower (Fig. 5F). Thus, the
260 absence of neutrophilic inflammasome activation had a greater impact on inflammatory
261 neutrophils than regulatory neutrophils, which was even more marked in response to HN878
262 infection. Again, we observed much lower expression of PD-L1 on the surface of regulatory
263 neutrophils in response to HN878 (MFI 2256) than H37Rv infection (MFI 6158) (Fig. S3E).
264 However, the levels were similar in *MRP8^{Cre+}Csp1^{fl}* and *MRP8^{WT}Csp1^{fl}* mice, indicating that
265 the ability of inflammatory neutrophils to produce IL-1 β did not have an impact on PD-L1
266 expression of regulatory neutrophils. CD4 T-cell numbers were 2.7 times lower for

267 *MRP8*^{Cre+}*Csp1*^{fl/fl} than *MRP8*^{WT}*Csp1*^{fl/fl} mice in response to H37Rv and 2.3 times lower in
268 response to HN878 (Fig. 5G). There was no statistically significant difference in the recruitment
269 of lung interstitial and alveolar MPs between *MRP8*^{Cre+}*Csp1*^{fl/fl} and *MRP8*^{WT}*Csp1*^{fl/fl} mice in
270 response to H37Rv or HN878 (Fig. 5H). Despite the greater impact on cell recruitment on day 21
271 after infection with HN878, we did not observe differences in the surface area of the lung
272 occupied by lesions between *MRP8*^{Cre+}*Csp1*^{fl/fl} and *MRP8*^{WT}*Csp1*^{fl/fl} mice (Fig. 5I), indicating
273 that other regulatory circuits control lesions.
274

275 **Extremely susceptible IFN- γ R^{-/-} mice show dysregulation of both neutrophil subsets**

276 Mendelian inherited susceptibility to mycobacteria involves IFN- γ R and its signaling cascade
277 (34). IFN γ -R^{-/-} mice are extremely susceptible to Mtb infection and this is linked to strong
278 recruitment and dysregulated cell death of neutrophils (25). We infected IFN- γ R^{-/-} mice with
279 virulent H37Rv or avirulent BCG. We did not infect these extremely susceptible animals with
280 hypervirulent HN878 for ethical reasons. As we did not observe any clinical condition in IFN-
281 γ R^{-/-} mice infected with BCG (data not shown), we did not pursue neutrophil analysis in these
282 animals. Three weeks after infection with H37Rv, we observed macroscopic lesions in the lungs
283 and livers of IFN- γ R^{-/-} mice that were not seen in their WT counterparts (data not shown). The
284 lungs of IFN- γ R^{-/-} mice showed 2.3 times more CFUs than those of WT mice (Fig. 6A). In
285 accordance with the high number of macroscopic lesions, histological analysis of the lungs of
286 IFN- γ R^{-/-} infected mice showed extensive, disorganized inflammatory cell infiltrates (Fig. 6B).
287 The total surface occupied by lesions was 2.6 times higher for the IFN- γ R^{-/-} than WT mice (Fig.
288 6C). As expected, (25) we observed twofold greater recruitment of total leukocytes to the lungs
289 of IFN- γ R^{-/-} than WT mice (Fig. 6D). This difference was mainly due to total neutrophils, which
290 were 6.5 times more abundant in IFN γ -R^{-/-} than WT mice. The number of CD4⁺ T cells was also
291 twofold higher in the lungs of IFN γ -R^{-/-} mice, whereas there was no difference in the number of
292 CD8⁺ T cells (Fig. S4). Of note, inflammatory neutrophils represented 70% and regulatory
293 neutrophils 30% of the total neutrophil influx in IFN- γ R^{-/-} mice (Fig. 6D), whereas the neutrophil
294 influx in WT controls was balanced between the inflammatory (41%) and regulatory (59%)
295 subsets. The threefold higher level of IL-1 β detected in the lungs of IFN- γ R^{-/-} than WT mice (Fig.
296 6E) is consistent with the higher influx of inflammatory neutrophils. Higher inflammation was
297 also indicated by the presence of 2.6 times more TNF (Fig. 6F) and 1.7 times more IL-6 (Fig.
298 6G) in the lungs of IFN- γ R^{-/-} than WT mice. Lung tissue from the two mouse strains showed
299 highly different transcriptional profiles in response to H37Rv infection (Fig. 6H). Genes such as
300 *Cxcl1*, *Cxcr1*, *Cxcr2*, *Mmp7*, *Mmp8*, *Mmp9*, *Mpo*, and *S100a8*, were more highly expressed in
301 IFN- γ R^{-/-} than WT mice (Fig. 6I). Many genes, such as *Ilr1* and *Ilr2*, which are highly expressed
302 during inflammation, including by the neutrophils themselves, were also more highly expressed
303 in IFN- γ R^{-/-} than WT mice. By contrast, the expression of type I IFN-related genes was higher in
304 WT than IFN- γ R^{-/-} mice.
305

306 **Hyperinflammation in IFN- γ R^{-/-} mice is relieved by IFN- γ R⁺ regulatory neutrophils**

307 The genes for which the expression was higher in the lungs of WT than those of IFN- γ R^{-/-} mice in
308 response to H37Rv infection included *Mhc-II*, *CD274*, *Cd86*, and *Cd40* (Fig. 6I), which are all
309 involved in the synapse between antigen-presenting cells and T cells. As these mice show a
310 hyperinflammatory profile, we investigated the impact of the IFN- γ R on regulatory neutrophils.
311 The level of MHC-II expression was not affected by the absence of the IFN- γ R (Fig. 7A).

312 However regulatory neutrophils from IFN- γ R $^{-/-}$ mice lost PD-L1 surface expression, showing
313 levels similar to those of inflammatory MHC-II $^{+}$ neutrophils from WT animals (Fig. 7B).
314 Moreover, the proportion of MHC-II $^{+}$ neutrophils that expressed low levels of PD-L1 in IFN- γ R $^{-/-}$
315 mice dropped to 30%, whereas 90% of MHC-II $^{+}$ neutrophils highly expressed PD-L1 in WT
316 animals (Fig. 7C). We enriched for lung regulatory neutrophils from IFN- γ R $^{-/-}$ or WT mice 21
317 days after H37Rv infection by magnetic sorting. Strikingly, IFN- γ R $^{-/-}$ regulatory neutrophils
318 completely lost the ability to suppress OT-II-cell proliferation (Fig. 7D) and IFN- γ production
319 *ex-vivo* (Fig. 7E), showing that the control exerted by regulatory neutrophils on T cells is
320 dependent on the IFN- γ R. Thus, we hypothesized that lethal inflammation in Mtb-infected IFN- γ R $^{-/-}$
321 mice was linked to strong recruitment of inflammatory neutrophils and less efficient control
322 of inflammation by regulatory neutrophils due to PD-L1 downregulation. We tested this
323 hypothesis by harvesting PD-L1 $^{\text{hi}}$ regulatory neutrophils from BCG-infected WT mice and
324 transferring them into H37Rv-infected IFN- γ R $^{-/-}$ mice on day 18 post-infection. On day 21, we
325 euthanized these mice, as well as the two control groups, H37Rv-infected WT and mock-treated
326 IFN- γ R $^{-/-}$ mice (Fig. 7F), and assessed the TB physiopathology in the lungs. We did not observe
327 any significative differences in CFU counts between the groups at this time point (Fig. S5A).
328 However, transfer of PD-L1 $^{\text{hi}}$ regulatory neutrophils relieved inflammation in the lung tissue
329 from IFN- γ R $^{-/-}$ mice (Fig. 7G), although the difference in total lung-surface occupied by lesions
330 among mock-treated and regulatory neutrophil transferees did not reach statistical significance
331 (Fig. 7H). Nonetheless, the dampening of inflammation was also indicated by a significant
332 reduction in total leukocyte numbers (Fig. 7I), in particular, those of neutrophils (Fig. 7J) and T
333 cells (Fig 7K), including both CD8 $^{+}$ (Fig. S5B) and CD4 $^{+}$ T cells (Fig. S5C). The transfer of
334 regulatory neutrophils to IFN- γ R $^{-/-}$ infected mice dampened the strong recruitment of
335 inflammatory neutrophils observed in mock-treated animals (Fig. 7L) and the PD-L1 MFI of
336 MHC-II $^{+}$ neutrophils increased significantly (Fig. 7M). Consistent with these results, we
337 measured 1.4-fold less IL-1 β production in the lung tissue from transferees than mock-treated
338 animals (Fig. 7N). IFN- γ levels were also 1.8-fold lower (Fig. 7O) and those of TNF remained
339 unchanged at this time point (Fig. S5D).
340

341 DISCUSSION

342 TB physiopathology in the lung is characterized by a delicate balance between pro- and anti-
343 inflammatory mechanisms controlled both by the host and bacilli. Neutrophils play key roles in
344 this balance. Here, we show that two distinct subsets are recruited to the lungs in response to
345 mycobacterial infection in a mouse model. The inflammatory neutrophil subset produces caspase
346 1-dependent IL-1 β and acts as an accelerator of local inflammation in response to virulent
347 mycobacteria by maintaining a vicious circle of inflammatory neutrophils and CD4 T cells. The
348 regulatory neutrophil subset is able to dampen inflammation by blocking T-cell proliferation and
349 IFN- γ production. IFN γ -R-dependent expression of PD-L1 on regulatory neutrophils is critical
350 for the braking function. Regulatory neutrophils are less affected than inflammatory neutrophils
351 by the absence of neutrophil-derived IL-1 β , suggesting differential regulation mechanisms. We
352 propose (Fig. 8) that these two subsets are involved in a “brake/accelerator” inflammation circuit
353 in the lungs during TB infection. Moreover, the two brake and accelerator pedals could represent
354 a means for hypervirulent Mtb strains to manipulate the host’s immune system and establish a
355 successful infection.

356 IL-1 β is a double-edged sword during TB infection that must be tightly controlled. It is involved
357 in strong neutrophil recruitment to the lungs during severe TB (12, 35, 36) and is a target for
358 host-directed therapies (37). Neutrophils produce IL-1 β during Mtb infections and we
359 demonstrated here that caspase-1 dependent cleavage of pro-IL1 β occurs in neutrophils, in
360 addition to protease-dependent mechanisms (38). Avirulent BCG can trigger caspase-1-
361 dependent IL-1 β production by neutrophils *in vitro*, showing that the major virulence factor
362 ESAT-6, which is present in Mtb and absent from BCG and required to trigger NLRP3 in MPs
363 (39), is dispensable in neutrophils. However, *in vivo*, caspase-1 dependent IL-1 β production by
364 neutrophils was only induced by Mtb and not BCG, indicating that other regulatory pathways are
365 involved in inflammasome activation in the lungs. Three weeks following Mtb infection of mice
366 bearing caspase-1 defective neutrophils, we observed a 30% to 64% reduction of IL-1 β levels in
367 the lungs depending on the virulence of the strain and a coincident 3.2-to-6.3-fold reduction in
368 total neutrophil recruitment, underlining the importance of the caspase-1-dependent pathway for
369 the inflammatory loop involving neutrophils in the lung. In our study, restricted to one timepoint
370 corresponding to early orchestration of the adaptive T-cell response in the lungs (16, 40), we
371 observed that caspase-dependent IL-1 β production mainly affected the recruitment of
372 inflammatory neutrophils and CD4 T cells. The link between IFN- γ -producing CD4 T cells and
373 excessive neutrophilia during clinical manifestations of TB has been clearly established (41) and
374 we observed unrestricted recruitment of IL-1 β -producing inflammatory neutrophils in IFN- γ R $^{-/-}$
375 mice that correlated with elevated levels of CD4 T cells and IFN- γ and highly lesioned lungs.
376 Thus, IL-1 β -producing inflammatory neutrophils are more involved than regulatory neutrophils
377 in severe forms of TB. Although we did not observe a major impact of caspase-dependent IL-1 β
378 production by inflammatory neutrophils on control of the bacilli or lesion formation at the early
379 timepoint of our studies, we believe that other timepoints should be examined in
380 *MRP8*^{Cre+}*Csp1*^{fl/fl} mice to gain a better understanding of caspase-1- versus protease-dependent
381 mechanisms of IL-1 β production by neutrophils.
382 In highly susceptible IFN- γ R $^{-/-}$ mice, we observed that the strong neutrophilia was driven by two
383 conjugated paths, dysregulated recruitment of IL-1 β -producing inflammatory neutrophils and
384 dysfunction of PD-L1 hi regulatory neutrophils, which could be alleviated by the transfer of
385 competent WT regulatory neutrophils. The immune checkpoint inhibitor PD-L1 was critical for
386 the function of regulatory neutrophils, akin to neutrophils present in cancer (42), which foster
387 immune suppression in hepatocellular carcinoma (43, 44) and gastric cancer (45). Competent
388 PD-L1 hi regulatory neutrophils were also recruited to the lungs in response to avirulent BCG-
389 infection, indicating that the acquisition of this function did not fully depend on mycobacterial
390 virulence. Recently, PD-L1 $^{+}$ neutrophils were described in two acute disorders, sepsis (46, 47)
391 and cutaneous burn injury (48), as well as during chronic infections in cutaneous (49) or visceral
392 (50) leishmaniasis. During *Candida albicans* infection, PD-L1 $^{+}$ neutrophils decrease antifungal
393 immunity by retaining the pool of microbiocidal neutrophils in the bone marrow (51). We found
394 that the IFN- γ R was required for PD-L1 expression and suppression of CD4 T cells. Similarly,
395 human (52) and mouse neutrophils need to be exposed to IFN- γ to express PD-L1 and suppress
396 T-cells during endotoxemia (46). Moreover, we found that the transfer of WT regulatory
397 neutrophils that expressed PD-L1 into Mtb-infected IFN- γ R $^{-/-}$ mice alleviated exuberant lung
398 neutrophilia and lesions in these extremely susceptible animals.

399 The tremendous success of Mtb as a pathogen can be explained by its co-evolution with that of
400 the host. Strains from the Beijing family are among the most successful, as demonstrated by their
401 global distribution and the recurrent outbreaks they cause (53). This success is partially due to
402 their exquisite ability to manipulate the host's immune system. The peculiar cell-wall
403 composition allows the Beijing strains to immunosuppress the innate immune response (54),
404 especially in microaerophilic or anaerobic environments (55), such as that encountered in the
405 granuloma. Here, we confirm the hypervirulence of Beijing prototype strain HN878 in C57BL/6
406 mice, with neutrophil-driven lung inflammation (29, 30). A neutrophil-driven type I IFN
407 response has been shown to lead to a poor prognosis for TB patients (56) and mice (57). Our
408 data, restricted to one timepoint in C57BL/6 mice, indicate better induction of the type I IFN
409 pathway in the lungs by the less virulent H37Rv strain than hypervirulent HN878. However,
410 unlike H37Rv, HN878 was able to fuel the neutrophil influx towards recruitment of the
411 regulatory subset, with diminished PD-L1 expression. Mtb Beijing strains induce regulatory T-
412 cell expansion (58, 59) better than lab-adapted strains. They also favor recruitment of myeloid-
413 derived suppressor cells producing IL-10, which could limit excessive lung damage (29). Of
414 note, we also observed higher expression of *Il10* and *Arg1* in the lungs of mice infected with
415 HN878 than those infected with H37Rv. Our most striking finding was the ability of HN878 to
416 recruit a neutrophil compartment biased towards regulatory neutrophils, which expressed three-
417 to five-fold less PD-L1 on their surface than less virulent lab-adapted strains. We observed a
418 similar difference at the transcriptional level in lung tissue. As PD-L1 is widely expressed both
419 by myeloid and non-hematopoietic cells (60), it is possible that control of this important immune
420 checkpoint by HN878 occurs at several levels at the site of infection. Further studies are required
421 to better dissect the mechanisms used by diverse Mtb strains to finely tune PD-L1 expression and
422 how they relate to the functional consequences of infection. We believe that regulatory
423 neutrophils acting as a “brake pedal” represent yet another weapon in the arsenal of Beijing
424 strains to manipulate the immune system and establish successful infection.

425 Our study had two principal limitations. First, the function of regulatory neutrophils was not
426 assessed in TB patients. Although PD-L1⁺ neutrophils have been found in TB patients (61), this
427 subset is yet to be investigated in the lungs of humans and non-human primates. Second,
428 although the C57BL/6 mouse model is the most widely used because it allows mechanistic
429 studies in genetically modified mice, granulomas are not well-formed in the lungs in response to
430 Mtb infection in this model. Therefore, our next step will be to examine the contribution of the
431 two neutrophil subsets to granuloma formation in C3HeB/FeJ mice (18).

432 In conclusion, our results add a new layer of complexity to the multiple functions exerted by
433 different neutrophil subsets during TB and emphasize their key role as partners of the immune
434 response. Inflammatory neutrophils are certainly “foes”, worsening TB pathogenesis in the lung.
435 It is yet to be determined whether regulatory neutrophils are “friends” and associated with a good
436 prognosis for TB patients. Recent demonstration of the importance of the PD-1/PD-L1 axis in
437 the control of TB (6) and the data we report here on regulatory PD-L1^{hi} neutrophils open new
438 avenues to explore the role of this subset in the granuloma microenvironment in humans. As
439 neutrophils, in general, are an important target for the development of new host-directed
440 therapies (62, 63), it is urgent to reconsider the complexity of these cells to better target
441 pharmaceutical and immune interventions in TB.

442

443 MATERIALS AND METHODS

444 **Experimental design and justification of the sample size**

445 Mice were bred at the specific pathogen-free animal (SPF) facility Plateforme Infectiologie
446 Experimentale (PFIE, U1277, INRAE, Center Val de Loire). One week before *in vivo*
447 experiments, mice were moved from the SPF breeding area to the ABSL3 area to acclimate
448 them. For infections with Mtb, mice were placed in biological safety cabinets. Mice were housed
449 in groups of 4 to 5 per cage and randomly distributed. *MRP8*^{Cre+}*Csp1*^{fl}^{ox} and *MRP8*^{WT}*Csp1*^{fl}^{ox}
450 mice were littermates. Groups always contained at least four individuals to allow statistical
451 assessment of the data using non-parametric Mann Whitney tests. Results were not blinded for
452 analysis excepted for the RNAseq analysis. The number of biological replicates and experiments
453 are indicated in the figure legends.

454 **Ethics statement**

455 Experimental protocols complied with French law (Décret: 2001-464 29/05/01) and European
456 directive 2010/63/UE for the care and use of laboratory animals and were carried out under
457 Authorization for Experimentation on Laboratory Animals Number D-37-175-3 (Animal facility
458 UE-PFIE, INRAE Centre Val de Loire). Animal protocols were approved both by the “Val de
459 Loire” Ethics Committee for Animal Experimentation and the French Minister of Higher
460 Education, Research and Innovation. They were registered with the French National Committee
461 for Animal Experimentation under N° APAFIS #35838-2022031011022458.v5.

462 **Mice**

463 *MRP8*^{Cre+}*Csp1*^{fl}^{ox} mice have been previously described (26). Because introduction of the *cre*
464 gene encoding the recombinase under control of the *MRP8* promoter in both alleles of the
465 C57BL/6 mouse chromosome was lethal, we bred and screened mice to obtain *MRP8*^{Cre+}*Csp1*^{fl}^{ox}
466 mice in which one allele carried the CRE recombinase while the other did not. In these animals,
467 expression of the recombinase under the *MRP8* promoter induced excision of the *Csp1*-encoding
468 genes in 100% of the neutrophils. Control *MRP8*^{WT}*Csp1*^{fl}^{ox} mice did not carry the recombinase
469 under the control of the *MRP8* promoter and neutrophils were able to cleave pro IL-1 β . All mice
470 were bred in-house, except OT-II mice, which were purchased from Janvier Biolabs.

471 **Bacterial strains and growth conditions**

472 All mycobacterial strains (*M. bovis* BCG strain WT 1173P2 Pasteur, Mtb strains H37Rv and
473 HN878) were cultivated for 12 days in Middlebrook 7H9 broth (Becton Dickinson, USA)
474 supplemented with 10% BBL™ Middlebrook ADC enrichment (BD, USA) and 0.05% Tween 80
475 (Sigma-Aldrich, USA), aliquoted, and frozen at -80°C in 7H9 medium containing 10% glycerol.
476 Bacterial suspensions for infection were prepared in PBS from quantified glycerol stock
477 solutions. To enumerate the number of CFUs from the middle right lung lobe, tissue was
478 homogenized, and serial dilutions were plated on supplemented 7H11 plates as previously
479 described (16).

480 **Intranasal infection and treatments**

481 Mice anesthetized by i.p. injection of a ketamine/xylazine cocktail received 5 \times 10⁶ CFUs of BCG
482 Pasteur or 10³ CFUs of Mtb H37Rv or HN878 in 20 μ L in each nostril. For total neutrophil
483 depletion experiments, C57BL/6 mice received 200 μ g anti-Ly6G antibody (clone 1A8,
484 Biologend) via the i.p. route on days 15, 17, and 19 following BCG inoculation. Control mice
485 were injected with the same quantity of IgG2b Ab (Biologend). For neutrophil transfer

486 experiments, MHC-II⁺ neutrophils were isolated from the lungs of BCG-infected mice harvested
487 on day 21. IFN- γ R^{-/-} and control C57BL/6 mice that were infected with H37Rv 18 days before
488 were injected i.v. with 1.5×10^5 MHC-II⁺ neutrophils. Mice were euthanized on day 21 for
489 analysis of the lungs. All mice were euthanized by pentobarbital administration at the time post-
490 infection indicated in the figure legends.

491 **Preparation of neutrophils and macrophages from bone marrow**

492 Femurs were harvested from six-week-old mice (WT, *MRP8*^{WT}*Csp1*^{flox} and *MRP8*^{Cre+}*Csp1*^{flox})
493 bred at the PFIE animal facility. Femurs from *Aim2*^{-/-}, *Gsdmd*^{-/-}, *Nlrp3*^{-/-}, and *Csp1/11*^{-/-} mice
494 were kindly donated by Valérie Quesniaux (INEM UMR7355 CNRS, University of Orleans,
495 France) and the of *Csp1*^{-/-} mice by Sergio Costa (Universidade Federal de Minas Gerais, Belo
496 Horizonte, Brazil). Neutrophils were directly purified from bone marrow by anti-Ly-6G
497 magnetic positive selection (Miltenyi Biotec), as previously described (64). Neutrophils of >
498 95% purity were obtained as assessed by microscopy after May-Grünwald-Giemsa staining.
499 Viability by trypan blue exclusion was 98%. MPs were obtained after culture with 30% L929
500 cell-conditioned medium as a source of macrophage colony-stimulating factor. Cells used on day
501 10 for infectivity and cytokine assays were suspended in complete medium without antibiotics,
502 as previously described (64). Macrophages (1×10^5 /well) or neutrophils (1×10^6 /well) were plated
503 in P96 plates and infected overnight with BCG at an MOI of 10 or Mtb at an MOI of 1 or
504 stimulated overnight with 100 ng LPS (from *E. Coli* 011: B4, Sigma) and 10 μ M nigericin
505 sodium salt (Sigma) added 1 h before harvesting the cells and supernatants.

506 **Lung cell preparation and flow cytometry**

507 Briefly, euthanized mice were perfused with PBS and the left lung lobes digested for 1 h with
508 collagenase D (1.5 mg/ml, Roche) and DNase A (40 U/ml, Roche) before filtering cells through
509 a 100 μ M nylon cell strainer (BD Falcon). For extracellular staining, cells were incubated 20 min
510 with 2% total mouse serum and labeled in PBS supplemented with 5% FCS and 0.1% total
511 mouse serum with antibodies against the surface markers, all from BD Biosciences (listed in
512 Supplementary Table 1). Intracellular mature IL-1 β production was measured using anti IL-1 β
513 biotin conjugated antibody (Rockland) after treatment for 2 h at 37°C with 5 μ g/ml brefeldin A
514 (Sigma-Aldrich). Cells were washed and fixed with BD cell fix diluted 4X in PBS. Data were
515 acquired on a LSR FortessaTM X-20 Flow cytometer (Becton Dickinson) and the results analyzed
516 using Kaluza software (Beckman Coulter).

517 Lung regulatory or inflammatory neutrophils were prepared from the lungs of C57BL/6 mice on
518 day 21 post-infection with Mtb or BCG. For Mtb, lungs were digested and the neutrophils
519 isolated by magnetic bead selection using the untouched neutrophil isolation kit according to the
520 manufacturer's instructions (Miltenyi). MHC-II-positive magnetic bead selection was performed
521 on the unlabeled neutrophil-rich fraction. MHC-II⁺ regulatory neutrophils were separated from
522 MHC-II⁻ inflammatory-neutrophils using anti-MHC-II PE conjugated Ab (BD Biosciences) and
523 anti-PE beads (Miltenyi). Viability by trypan blue exclusion was 95%. For BCG, total
524 neutrophils [CD11b⁺, Ly-6C⁺, Ly-6G⁺], classic neutrophils [CD11b⁺, Ly-6C⁺, Ly-6G⁺, MHCII⁺],
525 or regulatory neutrophils [CD11b⁺, Ly-6C⁺, Ly-6G⁺, MHC-II⁺] were sorted on a MoFlo
526 AstriosEQ high speed cell sorter (Beckman Coulter) as previously described (19). Neutrophil
527 subsets of > 99% purity were obtained in each fraction. Neutrophils were recovered in complete
528 medium and immediately processed for single-cell RNAseq analysis (total neutrophils) or
529 transcriptomic analysis or neutrophil transfer (neutrophil subsets).

530 **Measurement of T-cell suppressive activity of neutrophils**
531 The T-cell suppressive activity of neutrophils was measured as previously published (19).
532 Briefly, total splenocytes from OT-II mice were collected, homogenized to single-cell
533 suspensions through nylon screens, and resuspended in RPMI medium (Gibco) supplemented
534 with 10% decomplemented fetal bovine serum (Gibco), 2 mM L-glutamine (Gibco), 100 U
535 penicillin, and 100 µg/ml streptomycin (Gibco). Then 10⁵ cells/well were distributed in a 96-well
536 round bottom plate (BD Falcon). OT-II splenocyte proliferation was induced by the addition of 2
537 µg/ml of the OVA peptide 323-339 (PolyPeptide Group). Purified neutrophils were added to the
538 cultured splenocytes at a ratio of 1:10 in a final volume of 200 µl. Wells without neutrophils
539 were used as a reference for maximal proliferation. Cell proliferation was quantified after three
540 days of culture using CyQUANT Cell Proliferation Assay tests (Thermo Fisher) according to the
541 manufacturer's instructions. The role of PD-L1 in the suppression mechanism was assessed by
542 incubating sorted neutrophils for 1 h with 50 µg/ml anti-PD-L1 Ab (Tecentriq®, atezolizumab)
543 or a human IgG1 isotype control before mixing with OT-II splenocytes. Cell proliferation was
544 quantified after three days of culture using CyQUANT Cell Proliferation Assay tests (Thermo
545 Fisher) according to the manufacturer's instructions.

546 **Medium-throughput and single-cell RNA sequencing of neutrophils**
547 For medium-throughput analysis of gene expression in neutrophils, total RNA was extracted
548 from FACS-sorted neutrophils from the right accessory lung lobe homogenized using Lysing
549 matrix D tubes from MP Biomedicals and a Precellys® using a NucleoSpin RNA kit with DNase
550 treatment (Macherey Nagel). Total RNA was reverse transcribed using an iScript™ Reverse
551 Transcriptase mix (Biorad) and gene expression assessed using a BioMark HD (Fluidigm)
552 according to the manufacturer's instructions or a LightCycler® 480 Real-Time PCR System
553 (Roche). The annealing temperature was 62°C. All primers are listed in Supplementary Table 2.
554 Data were analyzed using Fluidigm RealTime PCR software or Lc480 software to determine the
555 cycle threshold (Ct) values. Messenger RNA (mRNA) expression was normalized against the
556 mean expression of three housekeeping genes for each sample to obtain the ΔCt value. Infected
557 samples were normalized against uninfected samples (ΔΔCt). Relative gene expression was
558 calculated according to the formula $RQ = 2^{-\Delta\Delta Ct}$. Dot plots were created using Rstudio for
559 differentially expressed genes between two groups (Mann Whitney) by normalizing the fold
560 change of each group to the total fold expression for each gene [normalized-rate = fold change
561 group 1 / (foldchange group 1 + foldchange group 2)]. This normalized rate is represented as spot
562 plots when the transcriptomes of two groups are compared.

563 For single-cell analysis, viable total Ly6G⁺ neutrophils were sorted using a MoFlowAstrios high-
564 speed cell sorter. Within 1 h after sorting, cells were encapsulated with barcoded Single Cell
565 3' v3.1 Gel Beads and a Master Mix to form a Gel Beads-in-emulsion using the 10X Genomics
566 Chromium technology. Approximately 12,000 cells were used. The Single Cell 3' libraries were
567 then generated as recommended by the manufacturer (10x Genomics). The libraries were
568 equimolarly pooled and sequenced (paired-end sequencing) using one lane of an Illumina
569 NovaSeq6000 device (IntegraGen, France), yielding a total of 640 million reads. Raw
570 sequencing data are available under the following BioProject accession number PRJNA1026083.
571 Fastq files were analyzed the sequences and aligned against those of the *Mus musculus* genome
572 mm10 (GRCm38- release 98) using the cellrangercount pipeline of CellRanger software (v6.0.2).
573 Downstream analyses were performed using R (v4.3.0), Rstudio and the following packages:
574 Seurat (v4.4.0), SingleR (v2.2.0), celldex(v1.10.1). Quality controls first included empty droplets
575 and doublets removal. Then, only droplets with at least 100 features and 1000 counts were

576 retained. Normalization was done using the LogNormalize method and the 3000 most variable
577 features.

578 Dimension reduction method was performed by Principal Component Analysis (PCA) retaining
579 the first 9 principal components with a resolution of 0.8 to identify the clusters with
580 FindClusters.

581 Cell-type inference was performed using SingleR and the Immunologic Genome Project
582 database retrieved through celldex package.

583 **ELISA**

584 Cell culture supernatants or right caudal lung lobe tissue, homogenized as above and
585 supplemented with anti-proteases (ROCHE), were passed through 0.2 μ m filters and either
586 processed immediately or frozen at -20°C. Cytokine levels were measured by ELISA using kits
587 (R&D Systems) according to the manufacturer's instructions. Absorbance was measured on a
588 Multiskan C plate reader (ThermoFisher).

589 **Histology**

590 The right cranial lung lobe was fixed in 4% paraformaldehyde for 48 h. Subsequently, the tissue
591 was dehydrated and stored in 70% ethanol before being embedded in paraffin. Five micrometer
592 sections were cut and stained with hematoxylin and eosin (H&E) using a slide stainer (ST5020;
593 Leica Biosystems, Nußloch, Germany). All slides were scanned on a slide scanner (AxioScan
594 Z1; Zeiss, Oberkochen, Germany). Morphological analyses were performed using QuPath
595 software (65); available at <https://qupath.github.io/>, version 0.4. Briefly, airway lesions were
596 quantified using a semi-automated macro. The total area of tissue was automatically measured
597 using a threshold and the lesions blindly measured manually for all slides. Data for each mouse
598 consist of the mean of eight sections, cut every 100 μ m, to accurately represent the whole lung.

599 **Western blots**

600 Neutrophils (5×10^6) s were seeded in six-well plates in Opti-MEM Glutamax medium (Gibco) at
601 37°C. Cells were infected for 5 h with BCG at a MOI of 10 or 20 or stimulated with 500 ng LPS
602 from *E. coli* 011: B4 (Sigma) and 10 μ M nigericin sodium salt (Sigma) added 45 min before the
603 end of the incubation. Then, 1.5 mM AEBSF anti-protease (Sigma) was added to the wells and
604 the supernatants clarified by centrifugation at 1500 x g, 10 min. Neutrophil lysates were
605 prepared as previously described (66). For western blotting, whole cell lysates and supernatants
606 were heated for 5 min at 95°C with 4X Laemmli buffer (Biorad) and the samples loaded on a
607 12% SDS-PAGE gel before transfer onto a nitrocellulose membrane using a TransBlot Turbo
608 System (Biorad). After saturation in 5% non-fat milk/ TBS-0.1% Tween, membranes were
609 incubated overnight at 4°C with the primary antibodies listed in Supplementary Table 2. After
610 washing, the membranes were incubated 1 h at room temperature with secondary antibodies.
611 Bands were visualized using Clarity Max ECL (Biorad) on a Fusion FX imaging system (Vilber
612 Lourmat). Total proteins were measured after stripping for 12 min with Restore WB Stripping
613 Buffer (Thermo), using GAPDH (D16H11) XP rabbit mAb (Cell Signaling Technology).

614 **Statistical analysis**

615 Individual data and medians are presented in the Figures. Statistical analyses were performed
616 using Prism 6.0 software (GraphPad). Analyses were performed on data from 2 to 6 independent
617 experiments. Mann Whitney non-parametric tests or two-way ANOVA tests were used. For

618 figure 6H, principal component analysis was performed using R studio with the factoMineR
619 package. For figure 7H, the Rcmd plugin was used to analyze data as a stratified test. A paired
620 non-parametric two tailed K-Sample Fisher-Pitman Permutation test was used to analyze data,
621 with a Monte Carlo resampling approximation. Represented p-values are: * $p < 0.05$, ** $p < 0.01$,
622 and *** $p < 0.001$.

623

624 References and Notes

625

- 626 1. M. Shariq, J. A. Sheikh, N. Quadir, N. Sharma, S. E. Hasnain, N. Z. Ehtesham, COVID-19 and
627 tuberculosis: the double whammy of respiratory pathogens. *European respiratory review : an official
628 journal of the European Respiratory Society* **31**, (2022).
- 629 2. S. T. Cole *et al.*, Deciphering the biology of *Mycobacterium tuberculosis* from the complete genome
630 sequence. *Nature* **393**, 537-544 (1998).
- 631 3. R. D. Kanabalan *et al.*, Human tuberculosis and *Mycobacterium tuberculosis* complex: A review on genetic
632 diversity, pathogenesis and omics approaches in host biomarkers discovery. *Microbiological research* **246**,
633 126674 (2021).
- 634 4. M. Coscolla, S. Gagneux, Consequences of genomic diversity in *Mycobacterium tuberculosis*. *Seminars in
635 Immunology* **26**, 431-444 (2014).
- 636 5. S. Bagchi, R. Yuan, E. G. Engleman, Immune checkpoint inhibitors for the treatment of cancer: clinical
637 impact and mechanisms of response and resistance. *Annual review of pathology* **16**, 223-249 (2021).
- 638 6. K. Liu *et al.*, Increased tuberculosis incidence due to immunotherapy based on PD-1 and PD-L1 blockade:
639 a systematic review and meta-analysis. *Front Immunol* **13**, 727220 (2022).
- 640 7. E. Lázár-Molnár *et al.*, Programmed death-1 (PD-1)-deficient mice are extraordinarily sensitive to
641 tuberculosis. *Proceedings of the National Academy of Sciences of the United States of America* **107**, 13402-
642 13407 (2010).
- 643 8. S. Sakai *et al.*, CD4 T cell-derived IFN- γ plays a minimal role in control of pulmonary *Mycobacterium
644 tuberculosis* infection and must be actively repressed by PD-1 to prevent lethal disease. *PLoS pathogens*
645 **12**, e1005667 (2016).
- 646 9. K. D. Kauffman *et al.*, PD-1 blockade exacerbates *Mycobacterium tuberculosis* infection in rhesus
647 macaques. *Science immunology* **6**, (2021).
- 648 10. M. Ogishi *et al.*, Inherited PD-1 deficiency underlies tuberculosis and autoimmunity in a child. *Nature
649 medicine* **27**, 1646-1654 (2021).
- 650 11. S. Ashenafi, S. Brightenti, Reinventing the human tuberculosis (TB) granuloma: Learning from the cancer
651 field. *Front Immunol* **13**, 1059725 (2022).
- 652 12. R. R. Borkute, S. Woelke, G. Pei, A. Dorhoi, Neutrophils in tuberculosis: cell biology, cellular networking
653 and multitasking in host defense. *International journal of molecular sciences* **22**, (2021).
- 654 13. M. Umemura *et al.*, IL-17-mediated regulation of innate and acquired immune response against pulmonary
655 *Mycobacterium bovis* Bacille Calmette-Guerin infection. *J Immunol* **178**, 3786-3796 (2007).
- 656 14. P. Seiler *et al.*, Early granuloma formation after aerosol *Mycobacterium tuberculosis* infection is regulated
657 by neutrophils via CXCR3-signaling chemokines. *Eur. J. Immunol.* **33**, 2676-2686 (2003).
- 658 15. S. Y. Eum *et al.*, Neutrophils are the predominant infected phagocytic cells in the airways of patients with
659 active pulmonary TB. *Chest* **137**, 122-128 (2010).
- 660 16. R. Lombard *et al.*, IL-17RA in non-hematopoietic cells controls CXCL-1 and 5 critical to recruit
661 neutrophils to the lung of mycobacteria-infected mice during the adaptive immune response. *PloS one* **11**,
662 e0149455 (2016).
- 663 17. I. V. Lyadova, Neutrophils in tuberculosis: heterogeneity shapes the way? *Mediators of Inflammation* **2017**,
664 8619307 (2017).
- 665 18. A. Lenaerts, C. E. Barry, 3rd, V. Dartois, Heterogeneity in tuberculosis pathology, microenvironments and
666 therapeutic responses. *Immunological reviews* **264**, 288-307 (2015).
- 667 19. M. Rambault *et al.*, Neutrophils encompass a regulatory subset suppressing T cells in apparently healthy
668 cattle and mice. *Front Immunol* **12**, 625244 (2021).

669 20. D. Silvério, R. Gonçalves, R. Appelberg, M. Saraiva, Advances on the role and applications of interleukin-
670 1 in tuberculosis. *mBio* **12**, e0313421-e0313421 (2021).

671 21. V. Briken, S. E. Ahlbrand, S. Shah, Mycobacterium tuberculosis and the host cell inflammasome: a
672 complex relationship. *Frontiers in cellular and infection microbiology* **3**, 62 (2013).

673 22. M. Hassane *et al.*, Neutrophilic NLRP3 inflammasome-dependent IL-1 β secretion regulates the $\gamma\delta$ T17 cell
674 response in respiratory bacterial infections. *Mucosal immunology* **10**, 1056-1068 (2017).

675 23. A. M. Cooper, K. D. Mayer-Barber, A. Sher, Role of innate cytokines in mycobacterial infection. *Mucosal
676 immunology* **4**, 252-260 (2011).

677 24. F. R. Greten *et al.*, NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and
678 pharmacological inhibition of IKKbeta. *Cell* **130**, 918-931 (2007).

679 25. B. Nandi, S. M. Behar, Regulation of neutrophils by interferon- γ limits lung inflammation during
680 tuberculosis infection. *The Journal of experimental medicine* **208**, 2251-2262 (2011).

681 26. K. Santoni *et al.*, Caspase-1-driven neutrophil pyroptosis and its role in host susceptibility to *Pseudomonas
682 aeruginosa*. *PLoS pathogens* **18**, e1010305 (2022).

683 27. L. Dyck, K. H. G. Mills, Immune checkpoints and their inhibition in cancer and infectious diseases.
684 *European journal of immunology* **47**, 765-779 (2017).

685 28. R. Deng *et al.*, Preclinical pharmacokinetics, pharmacodynamics, tissue distribution, and tumor penetration
686 of anti-PD-L1 monoclonal antibody, an immune checkpoint inhibitor. *mAbs* **8**, 593-603 (2016).

687 29. F. M. Almeida *et al.*, Hypervirulent Mycobacterium tuberculosis strain triggers necrotic lung pathology
688 associated with enhanced recruitment of neutrophils in resistant C57BL/6 mice. *PloS one* **12**, e0173715
689 (2017).

690 30. B. López *et al.*, A marked difference in pathogenesis and immune response induced by different
691 Mycobacterium tuberculosis genotypes. *Clinical and experimental immunology* **133**, 30-37 (2003).

692 31. N. N. Chegou, J. Heyckendorf, G. Walzl, C. Lange, M. Ruhwald, Beyond the IFN- γ horizon: biomarkers
693 for immunodiagnosis of infection with *Mycobacterium tuberculosis*. *The European respiratory journal* **43**,
694 1472-1486 (2014).

695 32. A. Gopalakrishnan, J. Dietzold, S. Verma, M. Bhagavathula, P. Salgame, Toll-like Receptor 2 prevents
696 neutrophil-driven immunopathology during infection with *Mycobacterium tuberculosis* by curtailing
697 CXCL5 production. *Infection and immunity* **87**, (2019).

698 33. G. Nouailles *et al.*, CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic
699 inflammation in tuberculosis. *The Journal of clinical investigation* **124**, 1268-1282 (2014).

700 34. J. Bustamante, S. Boisson-Dupuis, L. Abel, J.-L. Casanova, Mendelian susceptibility to mycobacterial
701 disease: Genetic, immunological, and clinical features of inborn errors of IFN- γ immunity. *Semin Immunol*
702 **26**, 454-470 (2014).

703 35. J. N. Hilda, S. D. Das, TLR stimulation of human neutrophils lead to increased release of MCP-1, MIP-1 α ,
704 IL-1 β , IL-8 and TNF during tuberculosis. *Human immunology* **77**, 63-67 (2016).

705 36. I. V. Lyadova *et al.*, In mice, tuberculosis progression is associated with intensive inflammatory response
706 and the accumulation of Gr-1 cells in the lungs. *PloS one* **5**, e10469 (2010).

707 37. C. G. Winchell *et al.*, Evaluation of IL-1 blockade as an adjunct to linezolid therapy for tuberculosis in
708 mice and macaques. *Front Immunol* **11**, 891 (2020).

709 38. K. D. Mayer-Barber *et al.*, Caspase-1 independent IL-1beta production is critical for host resistance to
710 mycobacterium tuberculosis and does not require TLR signaling in vivo. *J Immunol* **184**, 3326-3330
711 (2010).

712 39. K. S. Beckwith *et al.*, Plasma membrane damage causes NLRP3 activation and pyroptosis during
713 *Mycobacterium tuberculosis* infection. *Nat Commun* **11**, 2270 (2020).

714 40. C. R. Shaler, C. Horvath, R. Lai, Z. Xing, Understanding delayed T-cell priming, lung recruitment, and
715 airway luminal T-cell responses in host defense against pulmonary tuberculosis. *Clinical & developmental
716 immunology* **2012**, 628293 (2012).

717 41. P. Kumar, IFN γ -producing CD4(+) T lymphocytes: the double-edged swords in tuberculosis. *Clinical and
718 translational medicine* **6**, 21 (2017).

719 42. S. Jaillon, A. Ponzetta, D. Di Mitri, A. Santoni, R. Bonecchi, A. Mantovani, Neutrophil diversity and
720 plasticity in tumour progression and therapy. *Nature reviews. Cancer* **20**, 485-503 (2020).

721 43. Y. Cheng *et al.*, Cancer-associated fibroblasts induce PDL1+ neutrophils through the IL6-STAT3 pathway
722 that foster immune suppression in hepatocellular carcinoma. *Cell death & disease* **9**, 422 (2018).

723 44. G. He *et al.*, Peritumoural neutrophils negatively regulate adaptive immunity via the PD-L1/PD-1
724 signalling pathway in hepatocellular carcinoma. *Journal of experimental & clinical cancer research : CR*
725 **34**, 141 (2015).

726 45. T. T. Wang *et al.*, Tumour-activated neutrophils in gastric cancer foster immune suppression and disease
727 progression through GM-CSF-PD-L1 pathway. *Gut* **66**, 1900-1911 (2017).

728 46. J. D. Langereis, P. Pickkers, S. de Kleijn, J. Gerretsen, M. I. de Jonge, M. Kox, Spleen-derived IFN- γ
729 induces generation of PD-L1(+) suppressive neutrophils during endotoxemia. *Journal of leukocyte biology*
730 **102**, 1401-1409 (2017).

731 47. J. F. Wang *et al.*, Up-regulation of programmed cell death 1 ligand 1 on neutrophils may be involved in
732 sepsis-induced immunosuppression: an animal study and a prospective case-control study. *Anesthesiology*
733 **122**, 852-863 (2015).

734 48. A. Thanabalasuriar *et al.*, PD-L1(+) neutrophils contribute to injury-induced infection susceptibility.
735 *Science advances* **7**, (2021).

736 49. A. M. da Fonseca-Martins *et al.*, Leishmania parasites drive PD-L1 expression in mice and human
737 neutrophils with suppressor capacity. *Front Immunol* **12**, (2021).

738 50. S. Sharma, R. E. Davis, S. Srivastva, S. Nylén, S. Sundar, M. E. Wilson, A subset of neutrophils expressing
739 markers of antigen-presenting cells in human visceral leishmaniasis. *The Journal of infectious diseases* **214**,
740 1531-1538 (2016).

741 51. Y. Yu *et al.*, PD-L1 negatively regulates antifungal immunity by inhibiting neutrophil release from bone
742 marrow. *Nature Communications* **13**, 6857 (2022).

743 52. S. de Kleijn *et al.*, IFN- γ -stimulated neutrophils suppress lymphocyte proliferation through expression of
744 PD-L1. *PloS one* **8**, e72249 (2013).

745 53. C. Zhu *et al.*, The global success of *Mycobacterium tuberculosis* modern Beijing family is driven by a few
746 recently emerged strains. *Microbiology spectrum*, e0333922 (2023).

747 54. M. B. Reed *et al.*, A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune
748 response. *Nature* **431**, 84-87 (2004).

749 55. M. B. Reed, S. Gagneux, K. Deriemer, P. M. Small, C. E. Barry, 3rd, The W-Beijing lineage of
750 *Mycobacterium tuberculosis* overproduces triglycerides and has the DosR dormancy regulon constitutively
751 upregulated. *Journal of bacteriology* **189**, 2583-2589 (2007).

752 56. M. P. Berry *et al.*, An interferon-inducible neutrophil-driven blood transcriptional signature in human
753 tuberculosis. *Nature* **466**, 973-977 (2010).

754 57. L. Moreira-Teixeira *et al.*, Type I IFN exacerbates disease in tuberculosis-susceptible mice by inducing
755 neutrophil-mediated lung inflammation and NETosis. *Nat Commun* **11**, 5566 (2020).

756 58. W. S. Kim *et al.*, Virulence-dependent alterations in the kinetics of immune cells during pulmonary
757 infection by *Mycobacterium tuberculosis*. *PloS one* **10**, e0145234 (2015).

758 59. S. Shang *et al.*, Increased Foxp3 expression in guinea pigs infected with W-Beijing strains of *M.*
759 *tuberculosis*. *Tuberculosis (Edinburgh, Scotland)* **91**, 378-385 (2011).

760 60. R. J. Greenwald, G. J. Freeman, A. H. Sharpe, The B7 family revisited. *Annual review of immunology* **23**,
761 515-548 (2005).

762 61. F. W. McNab *et al.*, Programmed death ligand 1 is over-expressed by neutrophils in the blood of patients
763 with active tuberculosis. *European journal of immunology* **41**, 1941-1947 (2011).

764 62. T. Dallenga, L. Linnemann, B. Paudyal, U. Repnik, G. Griffiths, U. E. Schaible, Targeting neutrophils for
765 host-directed therapy to treat tuberculosis. *International journal of medical microbiology : IJMM* **308**, 142-
766 147 (2018).

767 63. A. Remot, E. Doz, N. Winter, Neutrophils and close relatives in the hypoxic environment of the
768 tuberculous granuloma: new avenues for host-directed therapies? *Front Immunol* **10**, 417 (2019).

769 64. É. Doz-Deblauwe *et al.*, CR3 Engaged by PGL-I Triggers Syk-Calcineurin-NFATc to Rewire the Innate
770 Immune Response in Leprosy. *Front Immunol* **10**, 2913 (2019).

771 65. P. Bankhead *et al.*, QuPath: Open source software for digital pathology image analysis. *Scientific reports* **7**,
772 16878 (2017).

773 66. R. Planès, K. Santoni, E. Meunier, Analysis of Bacteria-Triggered Inflammasome: Activation in
774 Neutrophils by Immunoblot. *Methods Mol Biol* **2523**, 265-279 (2022).

775
776 **Acknowledgments:**

777 The mouse team of the PFIE (INRAE, Nouzilly), especially Corinne Beaugé, Jérôme Pottier,
778 Emilie Lortscher and Laetitia Mérat, is warmly acknowledged for attentive mouse care and
779 prompt reply to all our requests for mouse experiments. We thank Valérie Quesniaux (INEM,
780 UMR7355 CNRS, Université d'Orléans, France) who generously provided bone marrow from
781 *Aim2*^{-/-}, *Gsdmd*^{-/-}, *Nlrp3*^{-/-}, *Csp1/11*^{-/-} mice, and for helpful discussions. Alix Sausset and
782 Christelle Rossignol, from the IMI team (ISP, INRAE, Nouzilly) are acknowledged for their
783 assistance respectively with neutrophil cell sorting and histology. Warm thanks to Sonia Lacroix-
784 Lamandé and the AIM team (ISP, INRAE, Nouzilly) for primers for the Fluidigm Biomark. We
785 thank Roland Brosch (Institut Pasteur, Paris) who kindly provided the HN878 Mtb strain, and
786 Sébastien Leclercq (ISP, INRAE, Nouzilly, France) who verified its genome sequence. Anti-PD-
787 L1 Ab (Tecentriq®, atezolizumab) was graciously given by André Rieutord and Hail Aboudagga
788 (Gustave Roussy Cancer Campus, Villejuif, France). Finally, we deeply thank Mustapha Si-
789 Tahar and Hervé Watier (CEPR, UMR 1100, INSERM, Université de Tours, France) for helpful
790 discussions.

791

792 **Funding:**

793 This work was supported by a FEDER/Region Centre Val de Loire EuroFéRI grant (FEDER-
794 FSE Centre Val de Loire 2014-2020, N° EX 010233) and IMAG'ISP (FEDER-FSE Centre Val
795 de Loire 2019-2023, N° EX 004654)

796 Travel between France and Brazil for JSF, EDD, and NW was supported by the Program Hubert
797 Curien CAPES-COFECUB.

798

799 **Author contributions:**

800 Conceptualization: NW, EDD, AR, BB, and CP

801 Methodology: EDD, BB, FK, and JP

802 Software: FK

803 Validation, BB, FC, and JSF

804 Formal Analysis: EDD, BB, AR, PG, JP, and FK

805 Investigation: EDD, BB, FC, JSF, and JP

806 Visualization: NW, EDD, BB, AR, FC, and JSF

807 Writing-original draft: NW, EDD, BB, and AR

808 Writing-review and editing: NW, EDD, BB, AR, SCO, PG, and CP

809 Resources: ML and SCO

810 Funding acquisition: NW

811 Project administration: NW, EDD, and AR

812 Supervision: NW, EDD, and SCO

813

814 **Competing interests:** All authors declare that they have no competing interests.

815 **Data and material availability:** All data are available in the main text or supplementary
816 materials. Transcriptomic data are available using the BioProject accession
817 number PRJNA1026083.

818

819

820 **Figure legends:**

821

822 **Fig. 1. The neutrophil NLRP3 inflammasome contributes to IL-1 β production after**
823 **mycobacterial infection.** Mature IL-1 β produced by WT (A), *Nlrp3*^{-/-}, *Csp1/11*^{-/-} (B),
824 *Aim2*^{-/-}, and *Gsdmd*^{-/-} (C) bone marrow neutrophils was determined by ELISA after
825 overnight stimulation with LPS/nigericin or infection with BCG (MOI 10) or Mtb
826 (H37Rv or HN878, MOI 1). (D) Immunoblotting of pro-IL-1 β , mature IL-1 β , and
827 GAPDH in supernatants and lysates from bone marrow neutrophils infected for 5 h with
828 BCG (MOI 10 or 20) or stimulated with LPS/nigericin. (E) Mature IL-1 β produced by
829 WT bone marrow-derived MPs was determined by ELISA after overnight stimulation
830 with LPS/nigericin or infection with BCG (MOI 10) or Mtb H37Rv (MOI 1). (A) Pooled
831 data from three independent experiments, n = 6 mice; (B) data are representative of three
832 independent experiments, n = 3; (C) data are representative of two independent
833 experiments, n = 3; (D) data are representative of two independent experiments, n = pool
834 of 10 mice; (E) pooled data from two independent experiments, n = 4. Graphs show
835 medians with ranges. *p < 0.05, **p < 0.01, and ***p < 0.001 001 by the Mann-Whitney
836 test (A, E) and two-way ANOVA with a Bonferroni post-test (B, C).

837

838 **Fig. 2. Neutrophils directly contribute to IL-1 β production in the lungs during H37Rv**
839 **infection.** (A-C) C57BL/6 mice were infected with 10³ CFUs of Mtb H37Rv and
840 neutrophils depleted by intraperitoneal administration of anti-Ly6G or isotype control
841 antibody on days 15, 17, and 19. Lungs were harvested on day 21 for analysis. (A) Total
842 lung neutrophils were identified by flow cytometry as CD11b⁺ Ly6G⁺ Ly6C⁺ cells (see
843 Fig S2a for gating strategy). (B) Representative image of hematoxylin/eosin staining of
844 lung sections. (C) Total lung surface occupied by lesions in lung sections from anti-Ly-
845 6G or isotype control antibody-treated mice. (D) IL-1 β production in lung tissue from
846 C57BL/6 mice or in the supernatants after overnight stimulation with LPS/nigericin of
847 bone marrow neutrophils (E) or MPs (F) from *MRP8*^{Cre+}*Csp1*^{fl/fl} or *MRP8*^{WT}*Csp1*^{fl/fl} mice
848 measured by ELISA. (G) IL-1 β production in lung tissue from *MRP8*^{Cre+}*Csp1*^{fl/fl} or
849 *MRP8*^{WT}*Csp1*^{fl/fl} mice 21 days post-infection with H37Rv measured by ELISA. (A-D)
850 One experiment, n = 4-5 mice per group; (E, F) two independent experiments, n = 4
851 mice; (G) data representative of two independent experiments, n = 5-6 per group.
852 Medians with ranges (C, E, F) and individual data points with medians for A, D, and G).
853 *p < 0.05, **p < 0.01 by the Mann-Whitney test (A-D) and two-way ANOVA with a
854 Bonferroni post-test (E-F).

855

856 **Fig. 3. Mycobacteria attract inflammatory and regulatory neutrophil subsets to the lung.**
857 (A-E) C57BL/6 WT mice were infected with BCG and the lungs processed for following
858 analysis. (A) Kinetics of total lung neutrophils recruited to the lungs at days 1, 3, 10, and
859 21 post-infection assessed by flow cytometry (Fig. S2A for gating strategy). (B-F) Lung
860 neutrophils were further characterized on day 21 post-infection. (B) Proportion of MHC-
861 II⁺ and MHC-II⁻ neutrophils among total lung neutrophils. (C) Percentage of PD-L1

expression among neutrophils in each subset. (D) PD-L1 mean fluorescence intensity in each subset. (E) Single-cell RNAseq analysis of Ly6G⁺ neutrophils purified from a pool of lung cells from 10 mice. Identification of 11 cell clusters using the SEURAT package on Uniformed Manifold Approximation and Projections (UMAP). Each dot represents one cell. Visualization of *Itgam*, *Il-1b*, *Il-1R2*, *H2-Eb1*, and *H2-Ab1* gene expression in the clusters as analyzed by the SEURAT package. (F) Heatmap representation of differential gene expression between MHC-II⁻ and MHC-II⁺ neutrophils. (G) C57BL/6 WT mice were infected with Mtb H37Rv and mean fluorescence intensity of intracellular IL-1 β measured by flow cytometry in both MHC-II⁻ and MHC-II⁺ lung neutrophil subsets on day 21. (H) MHC-II⁻ and MHC-II⁺ neutrophil subsets were enriched by magnetic beads from the lungs of H37Rv-infected mice on day 21 and mixed with OT-II cells. The percentage of OT-II splenocyte proliferation in the presence of each neutrophil subset was calculated based on proliferation with the Ova peptide only. Neutrophils were treated 1 h before incubation with anti PD-L1 Ab (atezolizumab) or an isotype control. (I) IFN- γ production in supernatants of OT-II splenocytes measured by ELISA. (A) Pooled data from two independent experiments ($n = 8-10$ per group); (B-D) pooled data from two independent experiments ($n = 8$ per group); (E) one experiment, pool of 10 mice; (F) four cell sorting experiments were performed from a pool of five infected animals each time; (G-I) pooled data from two independent experiments ($n = 4$). Data are presented as individual data points and medians. * $p < 0.05$, ** $p < 0.01$, and *** $p < 0.001$ by the Mann-Whitney test (A-D, G) and two-way ANOVA with a Bonferroni post-test (H-I).

Fig. 4. The two neutrophil subsets are modulated by *M. tuberculosis* virulence. (A-G) All data ($n = 6$ mice per group, two independent experiments) were obtained for the lungs of C57BL/6 WT mice at 21 days post-infection with Mtb H37Rv or HN878. (A) Number of Mtb CFUs in the lungs. (B) Representative image of hematoxylin/eosin staining of lung sections for each infected group and (C) the mean percentage of lung surface occupied by lesions. (D) Differential gene expression between the two infected groups of a panel of 48 genes normalized against uninfected controls. The dot plot represents the normalized expression of significantly deregulated genes, expressed as the normalized rate to compare the two groups. Data are presented as the mean of $n = 4$ mice per group from one experiment. (E) Cytokine production as analyzed by ELISA in lung tissue homogenates. (F) Total neutrophils, (G) neutrophil subsets, and (H) PD-L1 surface expression by MHCII⁺ neutrophils from the two groups measured by flow cytometry. Data are presented as individual data points and medians (B, median with range). (A-H) Two independent experiments, $n = 6$ mice per group. * $p < 0.05$, ** $p < 0.01$, and *** $p < 0.001$ by the Mann-Whitney test (A-E, F, H) and two-way ANOVA with a Bonferroni post-test (G).

Fig. 5. Caspase-dependent production of IL-1 β by inflammatory neutrophils sustains lung inflammation (A-I) *MRP8*^{Cre+}*Csp1*^{fl/fl} or *MRP8*^{WT}*Csp1*^{fl/fl} mice were infected with H37Rv or HN878 and the lungs harvested at 21 days. (A) IL-1b production quantified by ELISA in lung tissue homogenates. (B) Number (\log_{10}) of CFUs for each animal. (C) Differential gene expression of a panel of 48 genes between *MRP8*^{Cre+}*Csp1*^{fl/fl} and

907 *MRP8^{WT}Csp1^{flx}* mice infected with H37Rv or HN878. The dot plot represents the
908 normalized expression of significantly deregulated genes expressed as a normalized rate
909 to compare the two groups. **(D-H)** Cells were analyzed by flow cytometry and the
910 number of **(D)** CD45⁺ total leukocytes, **(E)** Ly6G⁺ total neutrophils, **(F)** MHC-II and
911 MHC-II⁺ neutrophil subsets, **(G)** CD4⁺ T-cells, and **(H)** CD11c⁺ or CD11b⁺ MPs were
912 compared between *MRP8^{Cre+}Csp1^{flx}* and *MRP8^{WT}Csp1^{flx}* mice. **(I)** Representative
913 section of hematoxylin/eosin lung staining for each group. Data are presented as
914 individual data points and medians. (A-I) n = 5-7 mice per group; (A, B, D-I) two
915 independent experiments; (C) one experiment. *p < 0.05, **p < 0.01, and ***p < 0.001
916 by the Mann-Whitney test (A-E, G-H) and two-way ANOVA with a Bonferroni post-test
917 (F).

918

919 **Fig. 6. Extremely susceptible IFN- γ R^{-/-} mice display dysregulation of both neutrophil**
920 **subsets.** C56BL/6 WT or IFN- γ R^{-/-} mice were infected with H37Rv and the lungs
921 harvested on day 21 for analysis. **(A)** Number (Log₁₀) of CFUs for each animal. **(B)**
922 Representative section of hematoxylin/eosin lung staining for each group and **(C)** mean
923 percentage of lung surface occupied by lesions. **(D)** Cells were analyzed by flow
924 cytometry and the number of CD45⁺ total leukocytes, Ly6G⁺ total neutrophils, and MHC-
925 II and MHC-II⁺ neutrophil subsets were compared between the two groups of mice. **(E-
926 G)** Cytokine production analyzed by ELISA in lung tissue homogenates. **(H-I)** Gene
927 expression of a panel of 48 genes in the lungs assessed by Fluidigm Biomark. **(H)** mRNA
928 expression was normalized to the expression of three housekeeping genes and to the
929 uninfected group to calculate the $\Delta\Delta Ct$. Principal component analysis (PCA) was
930 performed on the $\Delta\Delta Ct$ values. The two first dimensions of the PCA plot are depicted. **(I)**
931 The dot plot represents the normalized expression of significantly deregulated genes
932 expressed as a normalized rate to compare the C56BL/6 WT and IFN- γ R^{-/-} mice. (A-I)
933 Data are presented as the mean of n = 5-7 mice per group; (A-G) pooled data from two
934 independent experiments; (G-H) analysis of one experiment. Graphs are presented as
935 individual data points and medians (C, median with range). (G) Data are presented as the
936 mean of n = 6 mice per group. *p < 0.05, **p < 0.01, and ***p < 0.001 by the Mann-
937 Whitney test (A-I) and two-way ANOVA with a Bonferroni post-test (D, neutrophil
938 subsets).

939

940

941 **Fig. 7. Hyperinflammation in IFN- γ R^{-/-} mice is relieved by IFN- γ R⁺ regulatory neutrophils.**
942 C56BL/6 WT or IFN- γ R^{-/-} mice were infected with H37Rv and the lungs harvested on
943 day 21 for analysis. Neutrophil subsets analyzed by flow cytometry for **(A)** MHC-II and
944 **(B)** PD-L1 surface expression. **(C)** Percentage of neutrophils expressing PD-L1 on the
945 surface among the two MHC-II⁺ and MHC-II⁺ neutrophil subsets in the two mouse
946 groups. **(D-E)** On day 21, MHC-II⁺ and MHC-II⁺ neutrophil subsets were enriched by
947 magnetic beads from the lungs of the two groups of mice and mixed with OT-II cells.
948 **(D)** Percentage of OT-II splenocyte proliferation and **(E)** IFN- γ production in the
949 presence of each neutrophil subset calculated based on the response of OT-II
950 splenocytes to the Ova peptide only. **(F)** Schematic representation of the transfer of

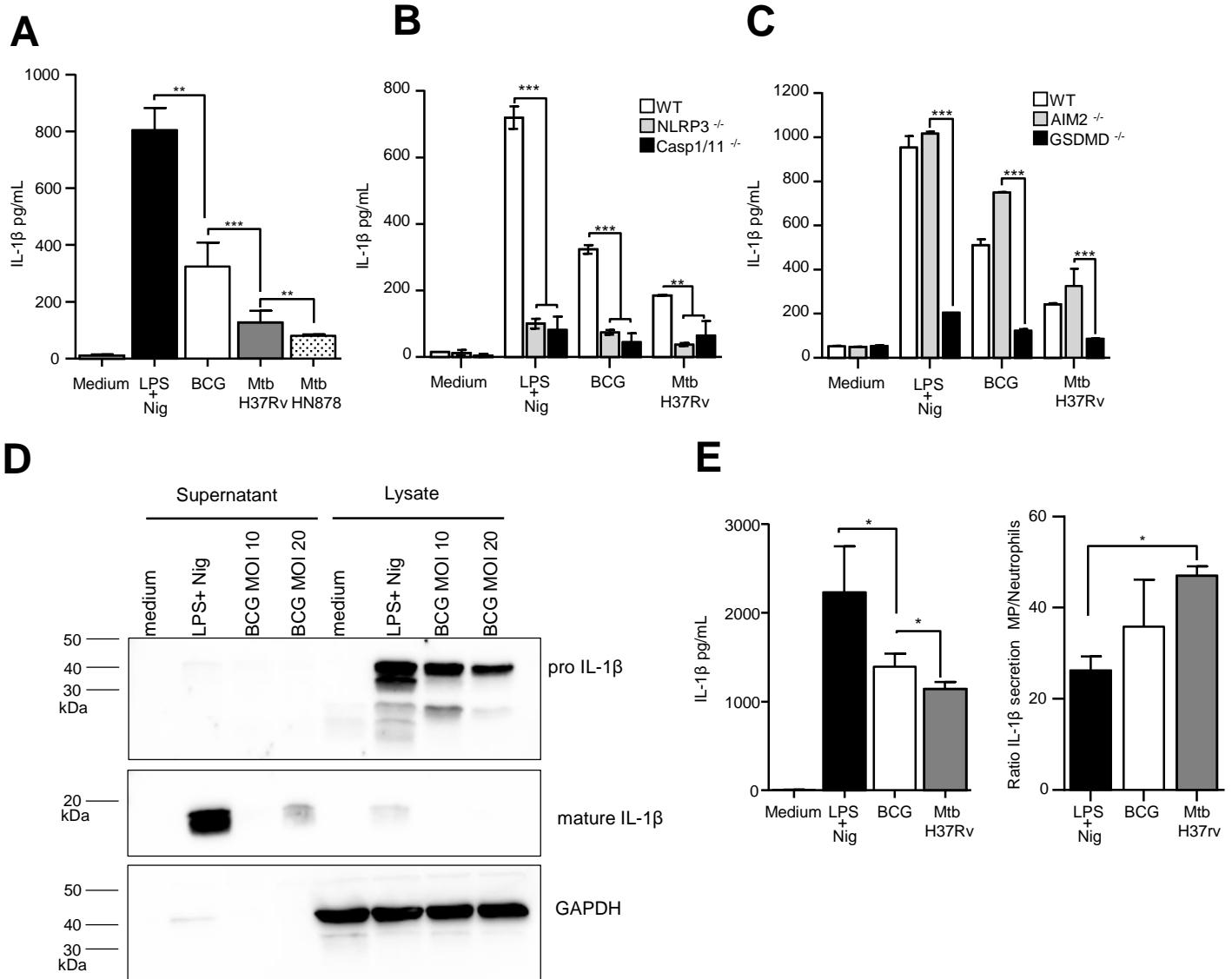
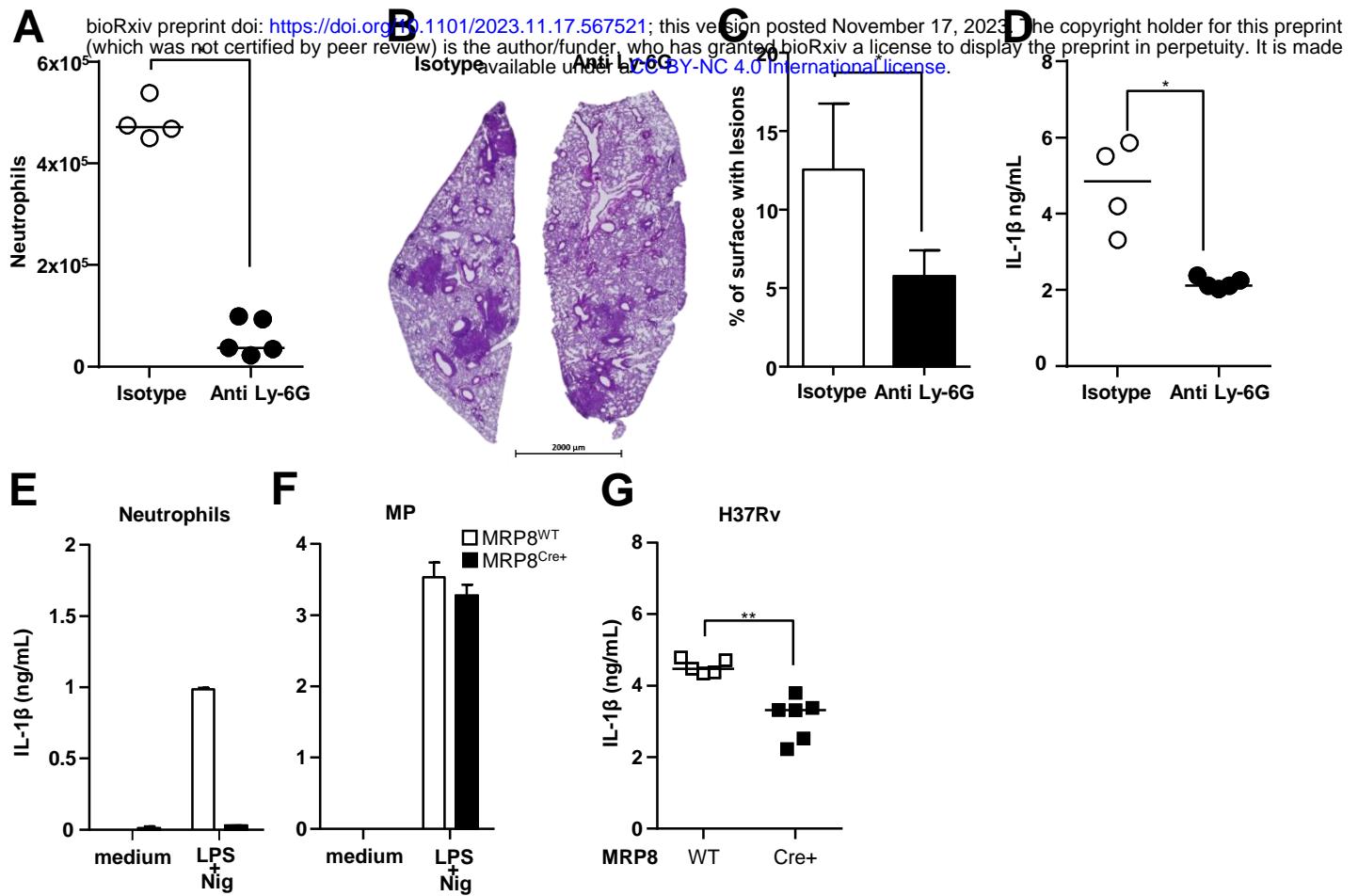
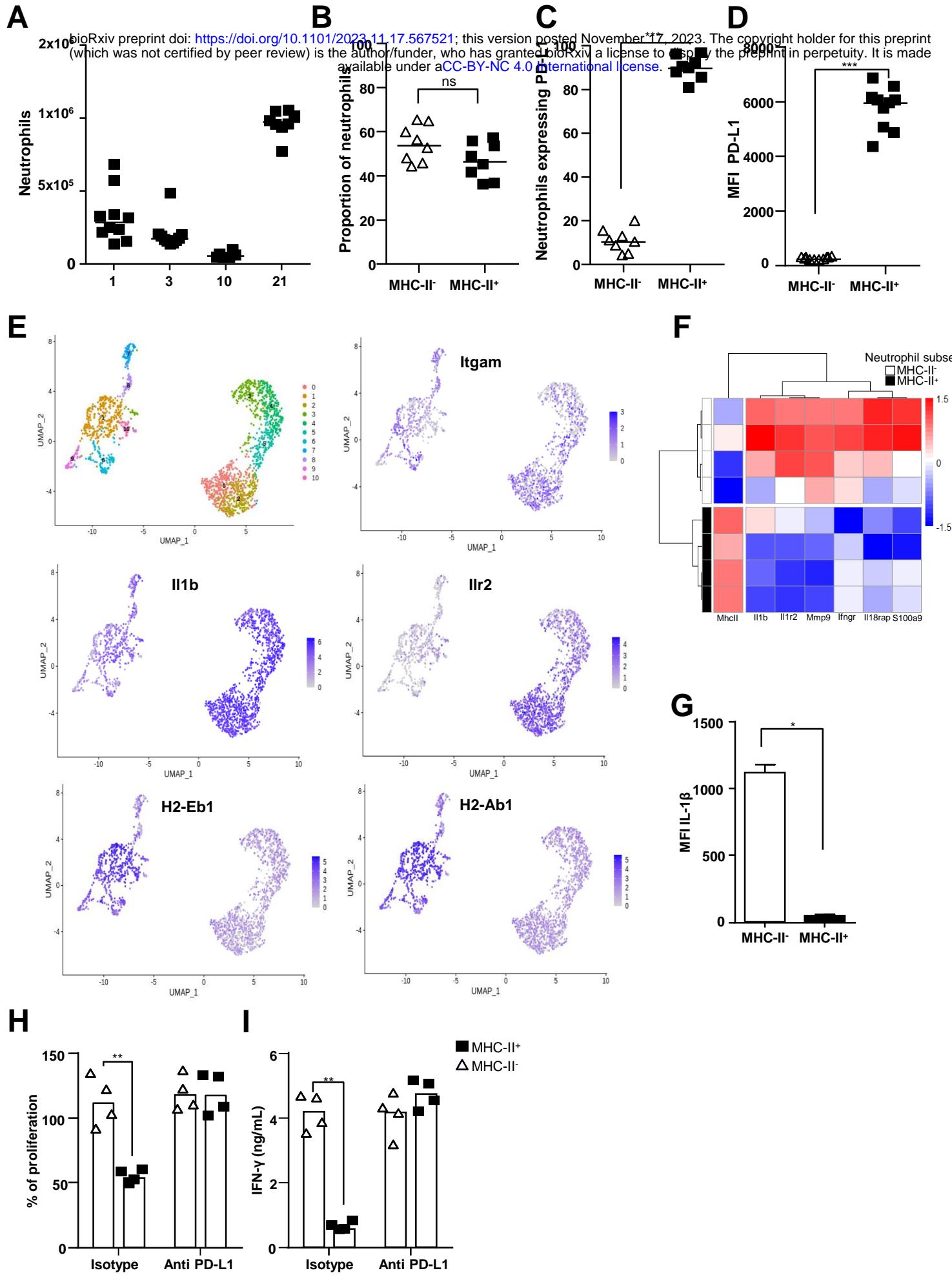
951 [MHC-II⁺, PD-L1^{hi}] regulatory neutrophils purified from the lungs of BCG-infected WT
952 mice into IFN- γ R^{-/-} mice infected with H37Rv 18 days before. The three H37Rv-
953 infected groups harvested on day 21 were WT control mice and IFN- γ R^{-/-} mice that
954 were mock-treated or to which WT regulatory neutrophils were transferred. (G)
955 Representative section of hematoxylin/eosin lung staining for each group and (H) the
956 percentage of lung surface occupied by lesions analyzed. (I-O) Cells were analyzed by
957 flow cytometry to determine the number of (I) CD45⁺ total leukocytes, (J) Ly6G⁺ total
958 neutrophils, (K) T-cells, and (L) MHC-II⁺ inflammatory neutrophils. (M) Comparison
959 of the PD-L1 mean fluorescence intensity on MHC-II⁺ regulatory neutrophils between
960 the three groups analyzed by flow cytometry. (N) IL-1 β and (O) IFN- γ production
961 measured in lung tissue homogenates by ELISA. (A-B) Histograms are representative of
962 two independent experiments, n = 6 or 4; (C) pooled data from two independent
963 experiments, n = 10; (D-E) pooled data from two independent experiments (n = 4); (G-O)
964 data from one experiment, n = 4-5. Data are presented as individual data points and
965 medians (H, with range). *p < 0.05, **p < 0.01, and ***p < 0.001 by two-way ANOVA
966 with a Bonferroni posttest (C-E) and the Mann-Whitney test (G-O).

967
968
969 Fig. 8. Graphical abstract of the dual “brake” and “accelerator” functions exerted by the
970 two neutrophil subsets on Mtb infection in the lung.

971 Two functionally distinct neutrophil subsets are recruited to the lungs in response to
972 mycobacterial infection. Classic [MHC-II⁺, PD-L1^{lo}] neutrophils produce high levels of
973 inflammasome-dependent IL-1 β in the lungs in response to virulent mycobacteria and act
974 as an “accelerator” of deleterious inflammation, which is highly exacerbated in IFN- γ R^{-/-}
975 mice. Conversely, regulatory [MHC-II⁺, PD-L1^{hi}] neutrophils act as a “brake” of
976 inflammation by suppressing T-cell proliferation and IFN- γ production. This regulation
977 depends on PD-L1 surface expression, controlled by IFN- γ R signaling in neutrophils. The
978 hypervirulent HN878 strain from the Beijing genotype curbs PD-L1 expression by
979 regulatory neutrophils, which abolishes the brake pedal and drives deleterious
980 hyperinflammation in the lungs.

Figure 1

bioRxiv preprint doi: <https://doi.org/10.1101/2023.11.17.567521>; this version posted November 17, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

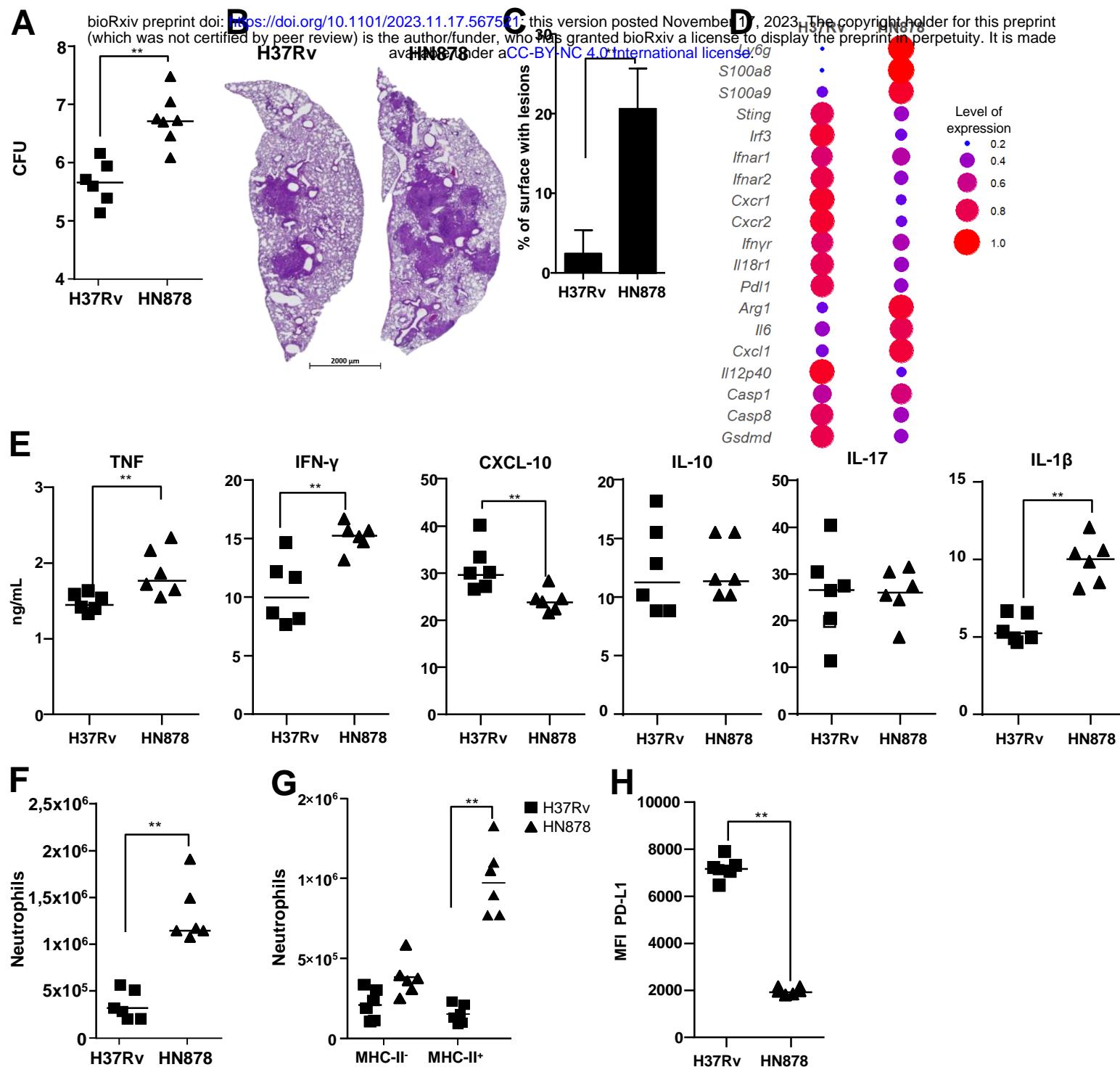

Figure 2

Figure 3

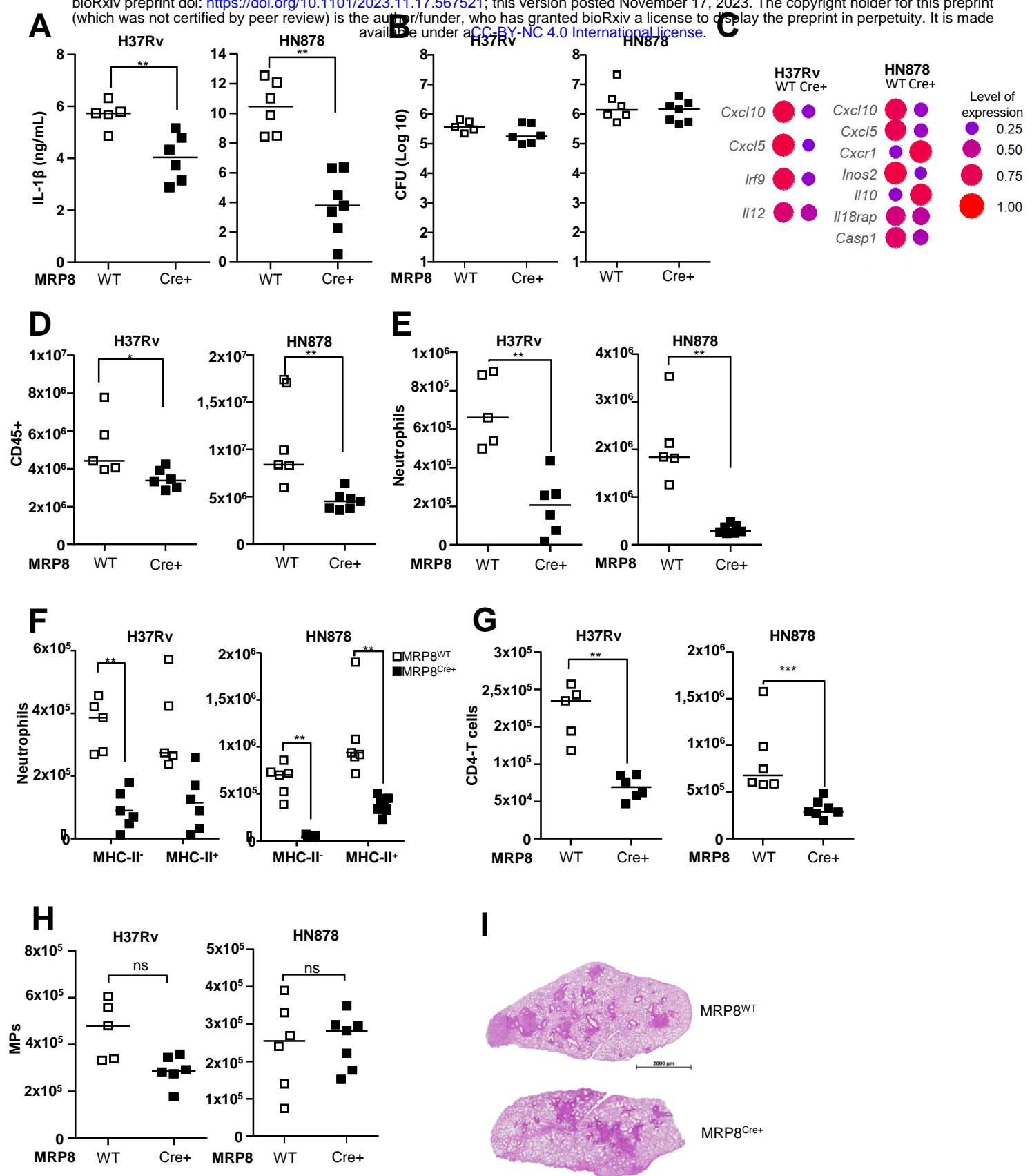


Figure 4

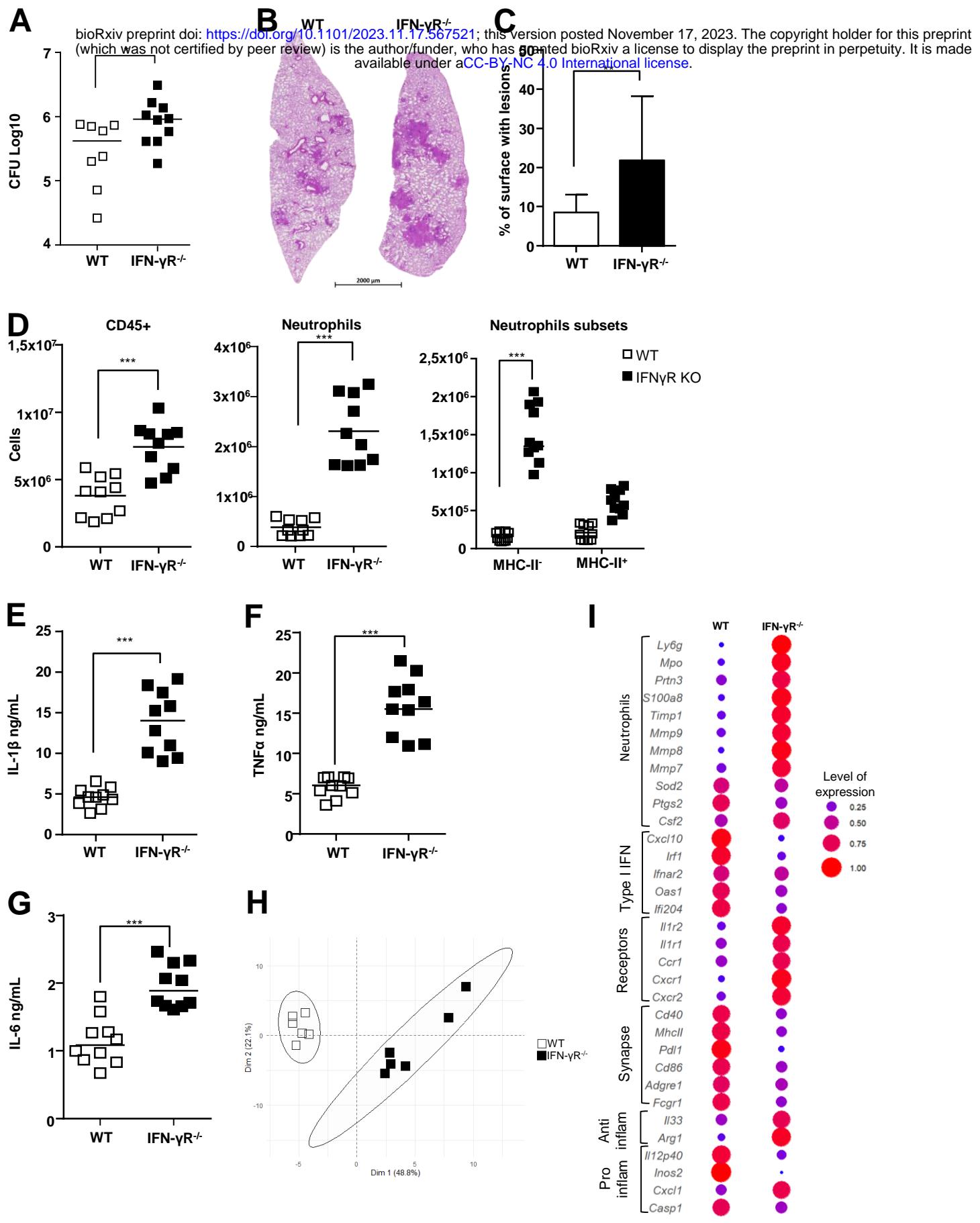


Figure 5

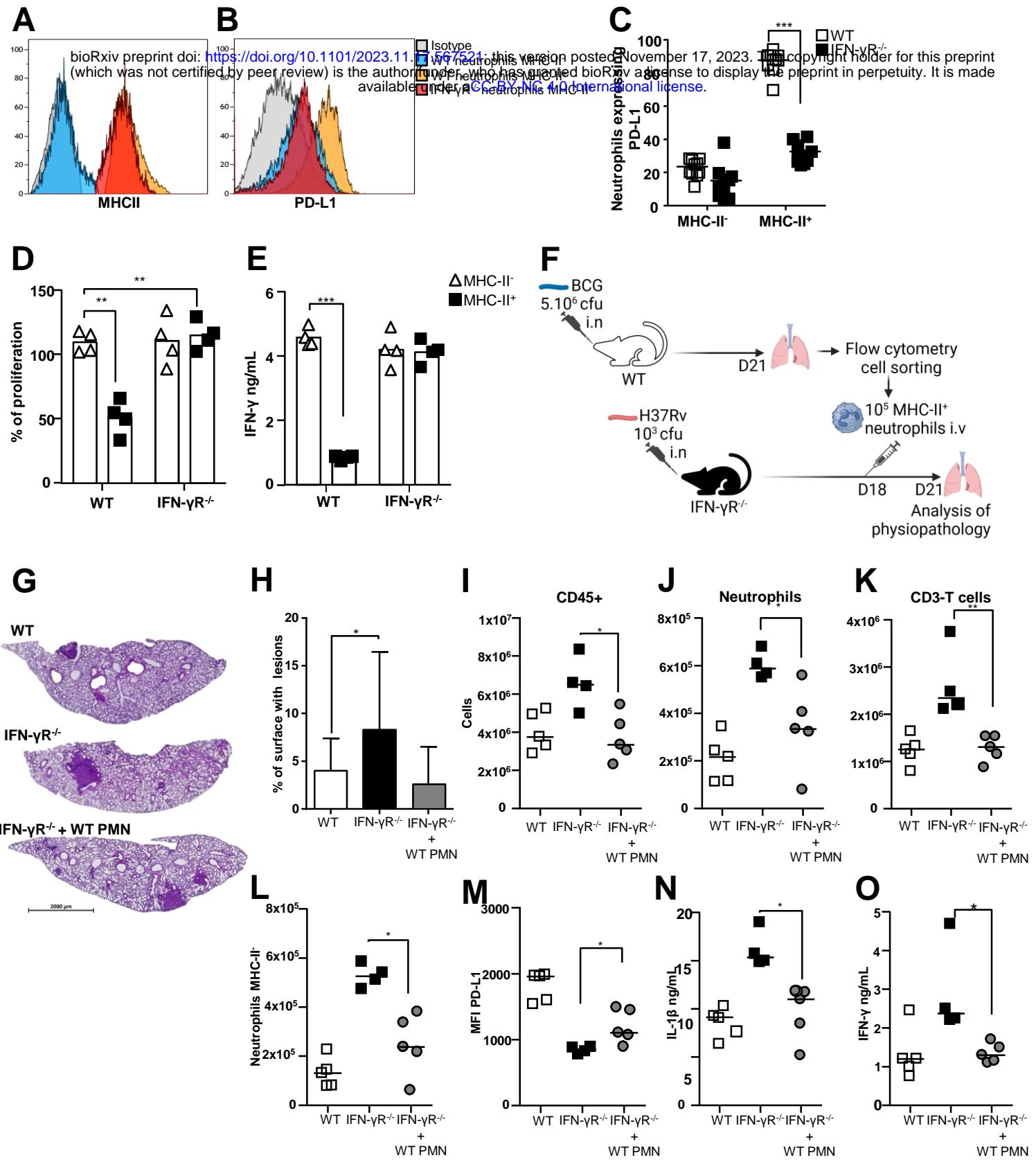

bioRxiv preprint doi: <https://doi.org/10.1101/2023.11.17.567521>; this version posted November 17, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Figure 6

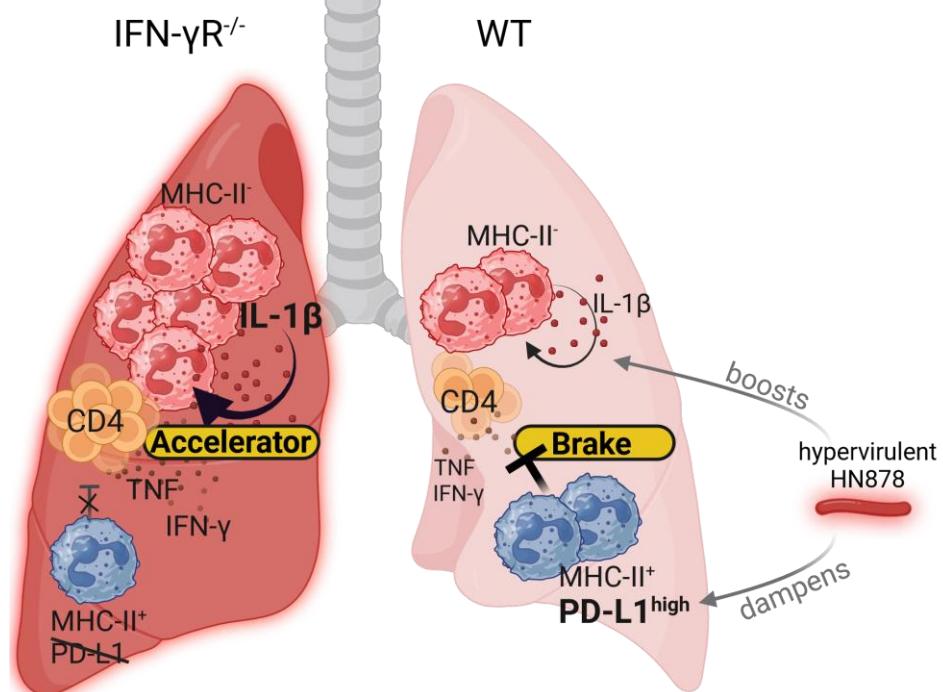

Figure 7

Figure 8

H37Rv

bioRxiv preprint doi: <https://doi.org/10.1101/2023.11.17.567521>; this version posted November 17, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

