

1 Comparative and Integrative Single Cell Analysis Reveals New Insights into the Transcriptional  
2 Immaturity of Stem Cell-Derived  $\beta$  Cells

3 Mason D. Schmidt<sup>1</sup>, Matthew Ishahak<sup>1</sup>, Punn Augsornworawat<sup>1,2</sup>, and Jeffrey R. Millman<sup>1,2\*</sup>

4

5 <sup>1</sup>Division of Endocrinology, Metabolism and Lipid Research

6 Washington University School of Medicine

7 MSC 8127-057-08

8 660 South Euclid Avenue

9 St. Louis, MO 63110

10 USA

11

12 <sup>2</sup>Department of Biomedical Engineering

13 Washington University in St. Louis

14 1 Brookings Drive

15 St. Louis, MO 63130

16 USA

17

18 \*To whom correspondence should be addressed:

19 Jeffrey R. Millman, [jmillman@wustl.edu](mailto:jmillman@wustl.edu)

20

21 **Summary**

22 Diabetes cell replacement therapy has the potential to be transformed by human pluripotent stem  
23 cell-derived  $\beta$  cells (SC- $\beta$  cells). However, the precise identity of SC- $\beta$  cells in relationship to primary  
24 fetal and adult  $\beta$ -cells remains unclear. Here, we used single-cell sequencing datasets to characterize the  
25 transcriptional identity of islets from in vitro differentiation, fetal islets, and adult islets. Our analysis  
26 revealed that SC- $\beta$  cells share a core  $\beta$ -cell transcriptional identity with human adult and fetal  $\beta$ -cells,  
27 however SC- $\beta$  cells possess a unique transcriptional profile characterized by the persistent expression and  
28 activation of progenitor and neural-biased gene networks. These networks are present in SC- $\beta$  cells,  
29 irrespective of the derivation protocol used. Notably, fetal  $\beta$ -cells also exhibit this neural signature at the  
30 transcriptional level. Our findings offer insights into the transcriptional identity of SC- $\beta$  cells and  
31 underscore the need for further investigation of the role of neural transcriptional networks in their  
32 development.

33

34

35 **Introduction**

36       Pancreatic  $\beta$ -cells are the primary insulin-producing cells and therefore play a crucial role in  
37       maintaining blood glucose levels. Dysfunction or autoimmune destruction of these cells leads to diabetes  
38       mellitus, a chronic metabolic disease that is currently incurable. Directed differentiation of human  
39       pluripotent stem cells (hPSCs) into insulin-producing stem cell-derived  $\beta$  (SC- $\beta$ ) cells holds immense  
40       promise as a potentially unlimited supply of functional  $\beta$ -cells to treat insulin-dependent diabetes through  
41       cell replacement therapy<sup>1-3</sup>. This process involves a stepwise combination of small molecules, growth  
42       factors, and microenvironmental cues to drive cells through several intermediate progenitor cell types<sup>4-7</sup>.  
43       The resulting hPSC-derived islets (SC-islets) possess many features of primary human islets, such as a  
44       similar cell composition consisting of SC- $\beta$  cells along with other islet cell types and, most notably, the  
45       ability to secrete insulin in response to glucose and restore normoglycemia in animal models. Several  
46       protocols for producing SC-islets via *in vitro* differentiation have been published<sup>4-7</sup>. These methods differ  
47       in many significant process parameters, including the composition of factors in the media, the types of  
48       culture vessels, and formation of the final three-dimensional aggregates. However, all of these protocols  
49       produce 3D cellular constructs that are uncontrollably heterogeneous, resulting in off-target cell  
50       populations, and are transcriptionally and functionally immature compared to their primary islet  
51       counterparts. This suggests that current *in vitro* differentiation methodologies do not fully replicate  
52       normal *in vivo* pancreatic development.

53       Understanding the specific pattern of gene expression that directs differentiation and maintains  
54       cell identity is critical to improving the efficiency of SC- $\beta$  cell generation protocols. Recently, single-cell  
55       RNA sequencing (scRNASeq) has been applied to characterize the transcriptomic profile of SC-islets and  
56       primary human islets in various contexts<sup>8-10</sup>. Notably, this technology led to the identification of a  
57       substantial off-target population in SC-islets consisting of serotonin producing-cells that express genes  
58       associated with intestinal enterochromaffin cells<sup>8</sup>. Additionally, scRNASeq of SC-islets after  
59       transplantation into mice demonstrated that cellular identity and maturation state changes significantly *in*

60 *vivo*<sup>10-12</sup>. While these studies have provided a comprehensive characterization of cellular identities  
61 generated by their respective protocols, no prior study has thoroughly compared cellular identities of SC-  
62 islets across different protocols. Further, the transcriptional profile of SC-islets generated by current state-  
63 of-the-art protocols has not been robustly benchmarked against the transcriptional profile of both primary  
64 adult islets and fetal islets. As a result, there is a gap in knowledge of how the transcriptional profile of  
65 SC-islets compares to that of normal human development<sup>8,13</sup>.

66 Here, we leverage published scRNASeq datasets of SC-islets from multiple protocols, both before  
67 and after transplantation, and datasets from both human adult and fetal islets to perform a novel  
68 comparative analysis of  $\beta$ -cell transcriptional profile across maturation states. The results provide robust  
69 definitions of the cell types produced across *in vitro* differentiation protocols and uncover commonalities  
70 and discrepancies between SC-islet development and human pancreatic development. Collectively, these  
71 data provide a resource that improves the characterization of cell identities found within SC-islets,  
72 facilitating the discovery of misexpressed genes and gene regulatory networks that can be targeted to  
73 further improve SC- $\beta$  cell differentiation strategies.

74 **Results**

75 **Identification of pancreatic endocrine cell types using integrated transcriptomic atlas**

76 To understand the transcriptional maturation state of SC-islets in direct comparison to their  
77 human adult and fetal counterparts, we collected published scRNASeq datasets of human pancreatic islets  
78 from a variety of sources for comparative analysis. This included SC-islets cultured to their endpoint<sup>8-11</sup>,  
79 SC-islets transplanted into the kidney capsules of mice for 1 or 6 months<sup>10,11</sup>, primary adult islets from  
80 healthy, male and female donors age 19 to 56<sup>14-16</sup>, and primary fetal islets from 110 to 122 days post-  
81 conception (dpc)<sup>17,18</sup> (Fig. 1a). Raw data was processed, and quality control measures were performed to  
82 remove dead cells and sequencing doublets (see Methods and Table S1). We performed unsupervised  
83 clustering on each individual dataset to generate Uniform Manifold Approximation and Projection

84 (UMAP) plots to visualize dimensional reductions in 2D. For each dataset, clusters expressing high levels  
85 of chromogranin A (*CHGA*) were isolated as probable endocrine cell types<sup>19,20</sup>, narrowing down our  
86 analysis from 128,204 total pancreatic islet cells to 60,197 *CHGA*+ pancreatic islet cells.

87 All *CHGA*+ cells were integrated to identify shared cell populations present across each dataset.  
88 This led to the identification of 10 unique endocrine cell populations (Fig. 1b) of which the top  
89 differentially expressed genes (DEGs) are listed in Table S1. The only identifiable cell populations in the  
90 adult islets were  $\beta$ ,  $\alpha$ , PP,  $\delta$ ,  $\varepsilon$ , and proliferating endocrine, and these cell populations were also present in  
91 fetal and SC-islets (Fig. 1c-d). High expression of hormones *INS*, *GCG*, *SST*, *PPY*, and *GHRL*, along with  
92 enrichment of other cell-specific markers assisted in the identification and validation of these endocrine  
93 cell populations (Fig. 1e-f). An endocrine progenitor (Prog) cell population with enriched expression of  
94 transcription factors *NKX2-2*, *SOX4*, and *NGN3* was found to be present in both fetal and SC-islets.  
95 Consistent with previous findings<sup>8</sup>, a population resembling enterochromaffin-like cells (EC), marked by  
96 expression of *TPH1*, *FEV*, and *DDC* was only identifiable in SC-islets. Interestingly, a population of cells  
97 with neuroendocrine (NE) features, marked by enrichment of *GAP43*, *RTN1*, and *CNTNAP2*, was found  
98 to be present in both SC-islets and fetal islets. The identity and role of these endocrine cells with neuronal  
99 properties in the developing human islet has not been previously characterized. Finally, a cluster of  
100 polyhormonal (Poly) cells was identified and enriched in the fetal islets. This population is consistent  
101 with previous studies which show that cells expressing multiple hormones arise early in islet development  
102 and eventually give rise to  $\alpha$ -cells<sup>21,22</sup>. This suggests the utility of this dataset to more precisely identify  
103 islet endocrine cell types than what can be surmised from the individual clustering of SC-islet scRNAseq  
104 datasets.

105 A universal definition of  $\beta$ -cell identity would not only serve as a useful resource in research, but  
106 also a potentially important attribute of cells to be used for therapy<sup>23</sup>. This can be particularly difficult in  
107 SC-islets, as SC- $\beta$  cell identity can lack distinctiveness compared to other cell types in the tissue,  
108 particularly the SC-EC cells<sup>8,10,24</sup>. To establish a universal definition of healthy  $\beta$ -cell identity, we

109 identified genes enriched in  $\beta$ -cells compared to all other endocrine cells and identified the genes whose  
110 expression is shared across all tissue sources (Fig. 1g). The  $\beta$ -cell genes that were most highly conserved  
111 across all sources were *INS*, *IAPP*, *DLK1*, *PDX1*, *HADH*, and *PCSK1*. We also define core identity gene  
112 lists for  $\alpha$ ,  $\delta$ , and EC cells which can be found in Table S2. These gene lists provide an important  
113 definition of cell-specific islet markers that arise early in development and whose expression persists over  
114 time and across unique conditions. The strongest conserved gene signature was seen in  $\alpha$ -cells which had  
115 a total of 32 genes that were enriched across all sources including *ARX*, *GC*, *GCG*, *IRX2*, *TTR*, and many  
116 others, while  $\delta$ -cells only possessed 5 conserved identity genes (*HHEX*, *LEPR*, *SEC11C*, *SST*, and  
117 *TSHZ2*). Taken together, the assembly of an integrated pancreatic islet scRNASeq dataset with islets from  
118 human adult, fetal, and SC sources led to the precise definition of islet endocrine cell types. This dataset  
119 can serve as a tool for researchers to understand transcriptomic differences between islet cell types across  
120 unique maturation states.

121 **Directed differentiation protocols produce transcriptionally similar SC-islets**

122 While several protocols for producing SC-islets have been described<sup>25</sup>, commonalities and  
123 differences in their transcriptional profiles are not well understood. To explore cellular heterogeneity and  
124 benchmark maturation across protocols, SC- $\beta$  cells, adult- $\beta$  cells, and fetal- $\beta$  cells were isolated from the  
125 combined dataset and re-clustered (Fig. 2a). A detailed summary of the four differentiation protocols  
126 explored in this analysis and their associated datasets is available in Table S1. Based on clustering and  
127 Pearson correlation analysis, SC- $\beta$  cells, regardless of the protocol they were derived from, appear to be  
128 transcriptionally similar when compared to adult and fetal  $\beta$  cells (Fig. 2b). Furthermore, SC- $\beta$  cells from  
129 all protocols expressed significantly less *G6PC2*, *IAPP*, *HADH*, *UCN3*, *CHGB*, *ADCYAP1* and *SIX3* than  
130 adult- $\beta$  cells (Fig. 2c). Despite their overall transcriptional similarities, unique transcriptional profiles of  
131 SC- $\beta$  cells from differing protocols was still observed (Fig. 2d and Table S3). This includes SC- $\beta$  cells  
132 generated by Augsornworawat, et al. expressing higher levels of *TTR*, *F10*, and *C1QL1*, while those

133 generated by Veres, et al. express higher levels of *POTEE*, *CHGA*, and *ONECUT2*. SC- $\beta$  cells generated  
134 by Weng, et al. had higher expression of *NEFM*, *AMBP*, and *NCL*, while those derived from the protocol  
135 reported by Balboa, et al. have high expression of *RPL39*, *CRYBA2*, and *CALB2*. Further work is needed  
136 to decipher if these observed differences from each protocol is important for SC- $\beta$  cell function. It is  
137 important to note that Augsornworawat and Veres employed Hues8 hESC in their differentiation protocol,  
138 while Balboa and Weng employed the H1 hESC line. It is unclear whether these transcriptional  
139 differences are due to different genetic background of hESCs, culture conditions, cell preparations, and/or  
140 sequencing platforms. Despite these minute differences, the SC- $\beta$  cells analyzed from these four unique  
141 datasets appear to be very similar at the transcriptional level.

142 A similar comparative analysis was performed on SC-EC cells from each SC-islet dataset, which  
143 are marked by high expression of *TPH1*. From the combined dataset, SC-EC cells were isolated and re-  
144 clustered (Fig. 2e). The expression of key SC-EC marker genes and Pearson correlation analysis  
145 suggested that the overall transcriptional profile of SC-EC was similar across protocols (Fig. 2f-g).  
146 Analysis of DEGs revealed key differences between the SC-EC cells from different protocols (Fig. 2h).  
147 Notably, cells derived by Augsornworawat, et al. had increased expression of  $\alpha$ -cell markers *GCG*, *TTR*,  
148 and *GC*; while SC-EC cells from Veres, et al. had the highest expression of the canonical EC-identity  
149 markers *SLC18A1*, *DDC*, and *FEV*. Interestingly, the SC-EC cells generated by Weng, et al. had the  
150 lowest expression of these SC-EC cell markers, and SC-EC cells generated by Balboa, et al. were unique  
151 for having high expression of ribosomal genes, similar to the SC- $\beta$  cells from this study.

152 We also explored other SC-islet endocrine cell types across protocols. DEGs for SC- $\alpha$ , SC- $\delta$ , and  
153 SC-EC from each protocol are highlighted in Table S3. We observed few major differences in the  
154 transcriptome of SC- $\alpha$  and SC- $\delta$  cells from the different protocols (Fig. S1). Of note, SC- $\alpha$  cells from all  
155 four protocols expressed equivalent amounts of *GCG* and *TTR* to their human counterparts (Fig. S1d).  
156 Furthermore, SC- $\delta$  cells from each protocol were greatly lacking expression of *RBP4* compared to adult- $\delta$   
157 cells (Fig. S1h). In conclusion, these results indicate that SC-endocrine cells derived from different SC-

158 islet protocols all have similar gene expression profiles to one another, with a few notable differences.  
159 Further studies will be necessary to decipher if these transcriptional similarities in SC-islet cell types are  
160 translated to their functionality, and if the minor transcriptional differences are due in fact to differences  
161 in the differentiation protocol itself or other experimentally uncontrolled factors evident in this analysis of  
162 published datasets.

163 **SC- $\beta$  cells are transcriptionally more mature than fetal  $\beta$  cells**

164 Previous single-cell sequencing studies have shown that SC- $\beta$  cells are transcriptionally  
165 immature<sup>8-10</sup>. We first characterized maturation in SC- $\beta$  cells by comparing their global transcriptional  
166 landscape to adult and fetal  $\beta$ -cells (Fig. 3a). Pearson correlation of the 2000 most variably expressed  $\beta$ -  
167 cell genes revealed that SC- $\beta$  cells had a correlation coefficient of 0.6 compared to adult  $\beta$ -cells and  
168 increased slightly after transplantation (Fig. 3b). Meanwhile the Pearson correlation coefficient of fetal  $\beta$ -  
169 cells compared to adult  $\beta$ -cells was just 0.33. To gain a better understanding of the unique transcriptional  
170 profile associated with SC- $\beta$  cells, we performed pairwise comparisons with their primary adult and fetal  
171 counterparts. DEGs previously characterized in the context of  $\beta$ -cells, as well as genes with no previously  
172 identified role in  $\beta$ -cell identity or function were found to be enriched in either SC- $\beta$ , adult- $\beta$ , or fetal- $\beta$   
173 cells (Fig. 3c-d and Table S4). Interestingly, among the DEGs with  $\log_2(\text{fold change}) > 2$  enrichment in  
174 SC- $\beta$  cells were the genes *NEFM*, *CALB2*, *NEFL*, and *STMN1*, which all serve an important role in  
175 neurons.

176 We characterized the maturation state of SC- $\beta$  cells to their mature, adult counterpart by  
177 comparing the expression level of well-known  $\beta$ -cell maturation markers. This included *INS*, *IAPP*,  
178 *FAM159B*, *CHGB*, *G6PC2*, *ADCYAPI*, *MAFA*, and *HADH* which were all expressed at lower levels in  
179 SC- $\beta$  cells compared to adult  $\beta$ -cells, yet most of these genes were non-existent in fetal  $\beta$ -cells (Fig. 3e).  
180 Transplantation of SC-islets into mice for an extended period led to the increase in expression of these  
181 maturation markers, as previously reported<sup>10,11</sup>. These findings show that human  $\beta$ -cells sourced from in-

182 vitro differentiation of hPSCs and those sourced from primary adult and fetal islets differ in expression of  
183 a large number of genes<sup>8,26-29</sup>, including genes well-established to be associated with  $\beta$ -cell identity<sup>30,31</sup>.  
184 Altogether, SC- $\beta$  cells lack transcriptional maturation due not only to global transcriptional disparities,  
185 but also lower expression of important  $\beta$  cell-maturation genes.

186 Our analysis also revealed that fetal  $\beta$ -cells possess a uniquely immature transcriptional profile.  
187 We revealed that while fetal  $\beta$ -cells have high expression of *INS*, they lack expression of many important  
188  $\beta$ -maturation markers-and have high expression of genes important for the exocrine pancreas, including  
189 *CLPS*, *CEL*, *CPA1*, and *CPA2* (Fig. 3e-f). Further, fetal  $\beta$ -cells have low expression ribosomal genes that  
190 are likely necessary for the production of peptides (Fig. 3g). Lastly, they have a lower fraction of cells  
191 expressing genes important for the insulin secretion mechanism (GO: 0032024) and  $\beta$ -cell identity<sup>32</sup>  
192 compared to SC- $\beta$  and adult  $\beta$ -cells (Fig. S2). This data supports the notion that fetal  $\beta$ -cells represent a  
193 transcriptional state that is less mature than SC- $\beta$  cells.

194 **SC- $\beta$  cells have persistent activity of progenitor transcription factors**

195 Next, we set out to determine if the immature transcriptional state of SC- $\beta$  cells was closely  
196 related to a  $\beta$ -cell progenitor state, and if we could find evidence of this progenitor state by analyzing the  
197 expression and activation of transcription factors. Therefore, we filtered our previously defined DEGs for  
198 genes that encode transcription factors and observed that both SC- $\beta$  and fetal- $\beta$  cells have a significantly  
199 larger enrichment of transcription factors compared to adult- $\beta$  cells (Fig. 4a-b). To decipher which of  
200 these transcription factors have a role in specifying progenitor states, we filtered all expressed  
201 transcription factors for those with a previously characterized role in  $\beta$ -cell development. This revealed  
202 that nearly all transcription factors expressed in  $\beta$  cell-progenitor states are expressed in a higher  
203 percentage of SC- $\beta$  cells than adult or fetal  $\beta$ -cells (Fig. 4c). The only exception for this was *MEIS2*  
204 which is expressed in a higher percentage of fetal and adult  $\beta$ -cells. To validate this observation, we

205 generated SC-islets<sup>33</sup> and compared their expression of known progenitor transcription factor to cadaveric  
206 human islets using RT-qPCR, this revealed similar trends as seen in the single-cell analysis (Fig. S3a).

207 We further explored these transcription factors by using regulon analysis<sup>34</sup> to deduce and rank  
208 inferred gene regulatory networks. The most highly enriched gene regulatory networks between SC- $\beta$ ,  
209 adult- $\beta$ , and fetal- $\beta$  cells were identified (Fig. 4d and Table S5). Consistent with gene expression data,  
210 transcription factors associated with  $\beta$ -cell progenitor states were most highly active in SC- $\beta$  cells, this  
211 includes but is not limited to: *FOXA1*, *FOXA2*, *ONECUT2*, *PAX4*, *PBX1*, *SOX4*, and *SOX11* (Fig. 4e-g).  
212 To validate the results of this regulatory gene network analysis, the expression level of the most active  
213 transcription factors and their proposed downstream targets were evaluated (Fig. S3b-c).

214 Next, we sought to determine if the transplantation of SC- $\beta$  cells into the kidney capsule of mice  
215 for 1-month or 6-months would reduce the expression of transcription factors associated with  $\beta$ -  
216 progenitor states, and more closely mirror what is seen in adult- $\beta$  cells. To our surprise, every  
217 transcription factor associated with  $\beta$ -cell development had a significantly lower expression after  
218 transplantation (Fig. S4a). To ascertain whether transcription factor activity was also reduced, we again  
219 ran transcription factor regulon analysis on SC- $\beta$  and transplanted SC- $\beta$  cells, and the most highly  
220 enriched regulons between both conditions were identified (Fig. S4b and Table S5). The average activity  
221 of transcription factors associated with  $\beta$ -progenitor states *FOXA2*, *ISL1*, *ONECUT2*, *PAX4*, *PBX1*,  
222 *PDX1*, *SOX4*, and *SOX11* all significantly decreased after transplantation (Fig. S4c). Furthermore, the  
223 decrease in expression and activity of these genes after transplantation was correlated (Fig. S4d).  
224 Collectively, these results indicate that SC- $\beta$  cells have persistent expression of transcription factors  
225 associated with  $\beta$ -progenitor states which are reduced after transplantation. Additionally, this analysis  
226 supports that these transcription factors, especially *PAX4*, *PBX1*, *SOX4*, and *SOX11*, are still actively  
227 regulating their downstream targets.

228 **Dysregulated transcription factor activity drives neuronal gene program in SC- $\beta$  cells**

229 Finally, we sought to ascertain the major gene programs enriched in SC- $\beta$  cells that account for  
230 their transcriptional immaturity. We employed gene set enrichment analysis (GSEA) between SC- $\beta$  cells  
231 and adult  $\beta$ -cells and found that the top gene ontology (GO) terms enriched in SC- $\beta$  cells were closely  
232 associated with neuronal morphology and function (Fig. 5a-b).  $\beta$ -cells have been shown to share a variety  
233 of similarities with neurons including exocytotic machinery<sup>35</sup>, GABA containing microvesicles<sup>36,37</sup>,  $\text{Ca}^{2+}$   
234 stimulated excitation<sup>38</sup>, neurofilament extensions<sup>39,40</sup>, and adhesion molecules<sup>41</sup>. However, the functional  
235 role these neuronal traits play in the development and function of SC- $\beta$  and to the extent that they are  
236 expressed has not been previously considered.

237 Exocytosis of insulin-containing granules in  $\beta$ -cells is essential to their function, and many of the  
238 genes involved in this process have a similar role in neurotransmission. Therefore, we investigated the  
239 expression of *VAMP2*, *VAMP3*, *STX1A*, *STXBP1*, *SNAP25*, and *SYT7*, which are the essential components  
240 of the insulin-exocytosis machinery, yet we saw no differences in their expression between SC and adult  
241  $\beta$ -cells (Fig. 5c). To further investigate the neuronal traits enriched in SC- $\beta$  cells, we analyzed the  
242 expression level of large gene sets associated with axonal, synaptic, and dendritic morphology and  
243 observed their broad overexpression in SC- $\beta$  cells compared to adult  $\beta$ -cells (Fig. S5a). Our analysis also  
244 revealed that, compared to both adult and fetal  $\beta$ -cells, SC- $\beta$  cells overexpress genes encoding for  
245 neurofilaments and their associated proteins involved in axon guidance, genes needed in neural migration,  
246 genes essential for neurotransmission, and genes necessary for generating and maintaining action  
247 potentials (Fig. 5d). Of interest, SC- $\beta$  had significant enrichment in the expression of genes that play a  
248 major role in neuronal development including *GTF2I*, *ASCL1*, *SOX4*, and *SOX11*. These genes were  
249 compiled into a curated list which defines the neuronal program that is overly enriched in SC- $\beta$  cells  
250 (Table S6). We validated this observation by generating SC-islets<sup>33</sup> and compared their expression of  
251 neuronal markers to cadaveric human islets using RT-qPCR, confirming that SC-islets expressed neuronal  
252 genes at a significantly higher level than adult islets (Fig 5e).

253 To decipher if these neuronal traits expressed widely in SC- $\beta$  cells are biologically relevant or  
254 simply the effect of their *in-vitro* differentiation environment, we examined the neuronal gene program  
255 present in fetal  $\beta$ -cells. Similarly, when compared to adult  $\beta$ -cells, fetal  $\beta$ -cells are enriched for GO terms  
256 associated with neuronal morphology and function (Fig. S5b-c). Furthermore, they also contain higher  
257 expression of genes necessary for the formation of synapses, axons, and dendrites when compared to  
258 adult  $\beta$ -cells. We also found that SC- $\beta$  cells that had been transplanted into mice showed loss of these  
259 previously described neuronal properties. To further validate that this neural gene program was not a  
260 result of cell-lines used, differentiation protocol, or sequencing platform we analyzed three additional  
261 datasets. These additional analyses showed that SC- $\beta$  derived with induced pluripotent stem cells (iPSC)<sup>10</sup>  
262 and other cell-lines<sup>42</sup>, as well as the use of the single-nuclei sequencing method<sup>12</sup> all shared the same  
263 neural gene program when compared to human adult  $\beta$ -cells (Fig. S6). Furthermore, we discovered that  
264 this neural gene program is also active in SC-EC cells (Fig. S5d-f). Despite the fact that neonatal and  
265 adolescent  $\beta$ -cells produce serotonin<sup>43,44</sup>, we confirmed that SC- $\beta$  cells do not express any genes  
266 associated with serotonin production. Therefore, we concluded that the population of SC- $\beta$  used  
267 throughout the analysis were not contaminated with enterochromaffin-like cells. Yet, the fact that this  
268 neural gene program is shared between SC- $\beta$  and SC-EC cells is an important finding and suggests that  
269 this dysfunctional neuronal gene program in SC- $\beta$  cell development may be relevant to the generation of  
270 EC cells during directed differentiation. All of this suggests that a neuronal gene program is a biologically  
271 relevant phenomenon of immature  $\beta$ -cells, and its removal is essential for the maturation of the SC- $\beta$  cell  
272 transcriptional landscape.

273 Several transcription factors and gene regulatory networks are shared in both  $\beta$ -cells and neurons  
274 during development<sup>45</sup>. We found that the transcription factors shared in both pancreas and neuron  
275 development are more highly expressed in SC- $\beta$  cells than fetal or adult  $\beta$ -cells, especially genes of  
276 interest *PBX1*, *SOX4*, and *SOX11* (Fig. 6a). To see if persistent activity of progenitor associated  
277 transcription factors are activating neural gene programs in SC- $\beta$  cells, we systematically analyzed the

278 target genes of those transcription factors that are conserved in both pancreas and neuron development  
279 looking to see if they were enriched in SC- $\beta$  cells. We found that the transcription factors *PBX1*, *SOX4*,  
280 *PAX4*, *ISL1*, *SOX11*, *SMAD1*, *NKX2-2*, and *DNMT3A* all possessed gene targets involved in neuronal  
281 gene programs which were highly active in SC- $\beta$  cells and not present in adult  $\beta$ -cells (Fig. 6b).  
282 Furthermore, for *PBX1*, *SOX4*, *SOX11*, and other transcription factors, we isolated their top 50 most  
283 expressed targets in SC- $\beta$  cells. When these 50 genes were analyzed with EnrichR<sup>46-48</sup>, the most common  
284 GO terms include axonal growth cone, synaptic vesicle membrane, neurofibrillary tangle, synaptic  
285 membrane, dopamine secretion, dendritic transport, and other cellular and biological processes in neurons  
286 (Fig. S7). Lastly, the previously curated list of genes defining the neuronal program enriched in SC- $\beta$  was  
287 cross referenced with the target genes of all active transcription factors in  $\beta$ -cells to determine likely  
288 transcription factors that are involved in activating this neural program. The transcription factors with the  
289 most predicted targets were nearly all enriched in SC- $\beta$  cells and previously implicated *PAX4*, *SOX11*,  
290 *SOX4*, and *PBX1* shared some of the most target genes with our newly defined SC- $\beta$  neuronal gene  
291 program (Fig. 6c). We are not surprised to find that  $\beta$ -cells express neural transcription factors that play a  
292 role in pancreas development, however we find it interesting that these transcription factors are highly  
293 enriched in SC- $\beta$  cells and are likely contributing to gene regulatory networks that drive a neuronal  
294 transcriptional program in SC- $\beta$  cells.

295 **Discussion**

296 As SC-islets have the potential to functionally cure diabetes and move into clinic trials, the  
297 importance of understanding what defines islet and  $\beta$ -cell identity and maturation has become  
298 increasingly important<sup>25</sup>. Improving our understanding of the differences and commonalities in lineage  
299 specification could enhance the differentiation of hPSCs into islet cells, thereby boosting the efficacy of  
300 SC-islet therapy. The present study aimed to integrate multiple publicly available datasets to identify and  
301 characterize islet endocrine cell types, including  $\beta$ ,  $\alpha$ , and  $\delta$  cells from SC-islets, fetal islets, and adult

302 islets. This integrated dataset provides a detailed characterization of  $\beta$ -cell and all other islet cellular  
303 identities across a wide range of contexts. This not only distinguishes each cellular identity but also  
304 provides this information across tissue sources. The genetic programs described here could be targeted to  
305 better understand the acquisition of  $\beta$ -cell identity and to improve differentiation and maturation of SC- $\beta$   
306 cells during *in vitro* differentiation.

307 This analysis demonstrated that SC- $\beta$  cells were transcriptionally more similar to adult rather than  
308 fetal  $\beta$ -cells. This finding is consistent with prior microarray and flow cytometry based-analysis<sup>26,29</sup> but  
309 provides much greater detail and rigor for  $\beta$ -cell and other cell types. Although fetal  $\beta$ -cells express *INS*,  
310 they lack other important  $\beta$ -cell machinery and ribosomal genes, as the cells used here are only from  
311 around 100 dpc. Prior work has identified that fetal  $\beta$ -cells have higher expression of *ISL1*, *NEUROG3*,  
312 and genes associated with immune function compared to adult  $\beta$ -cells<sup>49</sup>, and fetal islet maturation is  
313 marked by loss of polyhormonal state and decreased proliferative capacity, which occurs at approximately  
314 15 weeks post-conception (wpc)<sup>50</sup>. Like SC- $\beta$  cells<sup>11,33</sup>, fetal  $\beta$ -cells are functionally immature compared  
315 to adult  $\beta$ -cells<sup>26</sup>, consistent with the immature gene expression signature observed in this study. Despite  
316 the heterogeneity observed in  $\beta$ -cells, we were able to discover that  $\beta$ -cells possess a core  $\beta$ -cell identity  
317 when compared to other endocrine cell types, consisting of expression of *INS*, *IAPP*, *DLK1*, *PDX1*,  
318 *HADH*, and *PCSK1*. We believe the  $\beta$ -cell and other identities defined here will be helpful for cellular  
319 identification in the field and complements prior efforts that have provided definitions of  $\beta$ -cells in  
320 primary tissues<sup>32,51</sup>.

321 Several groups have reported differentiation protocols that produce SC-islets<sup>25</sup>. This study is  
322 focused on publicly available scRNASeq datasets<sup>8-11</sup> based on protocols first published by the  
323 Rezania/Kieffer<sup>28</sup>, Melton<sup>29</sup>, Millman<sup>52</sup>, and Otonkoski<sup>11</sup> groups. While there are considerable differences  
324 in the reported *in vitro* and *in vivo* function of cells produced by these protocols, the comparability of  
325 transcriptional identities of the final cellular populations was unclear in the literature. Our analysis reveals  
326 that in general the transcriptional identities of all major cell types, including SC- $\beta$  cells, was largely

327 similar among all the protocols. This includes very low expression of *MAFA* and *UCN3*, indicating that  
328 development of protocols that can generate cells expressing high levels of these maturation markers *in*  
329 *vitro* is still lacking in the field. All differentiation protocols also produced enterochromaffin-like cells  
330 that were absent in fetal and adult primary tissue samples. Furthermore, there may indeed still be  
331 differences in the chromatin accessibility signature of cells produced from different *in vitro* differentiation  
332 protocols, which we expect to be answered in the near future as this line of investigation is gaining in  
333 attention<sup>12,42</sup>.

334 This study also found that that SC- $\beta$  cells differed from adult  $\beta$ -cells through expression of  
335 neuronal and progenitor transcriptional programs. While a substantial fraction of genes are normally  
336 expressed by both  $\beta$ -cells and neurons<sup>53</sup>, such as synaptic-like microvesicles<sup>36</sup> and gamma aminobutyric  
337 acid (GABA)<sup>54</sup>, the extent of expression of these genes is greatly elevated in SC- $\beta$  and fetal  $\beta$ -cells.  
338 Furthermore, SC- $\beta$  cells had enriched expression of progenitor-associated transcription factors<sup>55-57</sup>, such  
339 as *PAX4*, *PBX1*, *SOX4*, and *SOX11*, and these transcription factors were predicted to be among the most  
340 active in SC- $\beta$  cells. Interestingly, *SOX4* and *SOX11* are also of critical importance in pan-neuronal  
341 protein expression<sup>58</sup>. Future studies could look at the relationship of these transcriptional identities to  
342 epigenetic states, as recent papers have demonstrated the importance of chromatin accessibility on SC- $\beta$   
343 cell identity<sup>12,42</sup> and another prior study has shown that that pancreatic  $\beta$ -cells exhibit an active chromatin  
344 signature similar to neural tissues that appear to be dynamically regulated by Polycomb repression  
345 programs<sup>59</sup>.

346 This resource will serve as a tool for hypothesis generation in hopes of further optimizing  
347 protocols for the generation of SC- $\beta$  cells. Future studies should work to understand the effects of  
348 perpetual expression and activation of progenitor transcription factors on SC- $\beta$  cell function and if it is  
349 possible to enhance the maturation of SC- $\beta$  cells by inhibition of these progenitor transcriptional  
350 networks. Furthermore, persistent activity of progenitor transcription factors in SC- $\beta$  cells should be  
351 investigated to determine if they are responsible for the abnormal neural gene network identified in this

352 study. To this point, further studies are needed to understand to what extent this neural gene program,  
353 ever present in SC- $\beta$  cells, is translated to their functional properties. In addition, our finding that SC-EC  
354 and SC- $\beta$  cells, despite being distinct cell types, share commonalities in this irregular neural gene  
355 program is interesting and presents the hypothesis that this dysregulated neural transcriptional profile  
356 present in SC- $\beta$  development may contribute to the generation of SC-EC cells. Lastly, while  
357 transplantation of SC- $\beta$  cells greatly refines the transcriptional profile of these cells, the mechanisms by  
358 which this is achieved still needs to be worked out.

359 Our analysis provides novel insights into the identity and characteristics of islet endocrine cells  
360 and highlights the importance of SC- $\beta$  cells in understanding development and function. The findings  
361 contribute to a better understanding of the differences and similarities between SC, fetal, and adult islet  
362 cells and shed light on the potential of SC- $\beta$  cells in diabetes treatment. We hope that these findings will  
363 allow for future studies using more robust hypothesis impacted by our novel findings.

364 **Limitations of Study**

365 A limitation of this study is that we relied on published datasets for our analysis. This was done  
366 because we believed that a comprehensive and rigorous analysis and comparison of the best-in-class  
367 single-cell RNA sequencing data would lead to novel insights into islet identity and transcriptional  
368 regulation.

369

370 **Resource Availability**

371 **Lead Contact**

372 Further information and requests for resources and reagents should be directed to and will be  
373 fulfilled by the lead contact, Jeffrey R. Millman (jmillman@wustl.edu).

374 **Material Availability**

375 This study did not generate new unique reagents.

376 **Data and Code Availability**

377 This paper analyzes existing, publicly available data. These accession numbers for the  
378 datasets are listed in Table S1. The Seurat object containing the integrated CHGA+ cell populations from  
379 all datasets, which is required to reproduce figures, is deposited at the Washington University Research  
380 Data (WURD) repository in standard RDS format. All other data supporting the findings of this study are  
381 available from the corresponding author on reasonable request. Codes used for integrating and analyzing  
382 scRNAseq datasets are available on <https://github.com/mschmidt22>. Any additional information required  
383 to reanalyze the data reported in this paper is available from the lead contact upon request.

384

385 **Experimental Procedures**

386 **scRNAseq Datasets**

387 Healthy pancreatic islet scRNAseq datasets from primary adult, primary fetal, stem-cell derived  
388 islets, and transplanted stem-cell derived islets, were compiled from multiple published sources<sup>8-11,14-18</sup>.  
389 Primary adult islet datasets from 19 donors, 15 male and 4 female aged between 19 and 56 years of age  
390 were obtained from GSE84133, GSE101207, and GSE114297. Primary fetal islets datasets from 9  
391 donors, 3 male and 6 female aged between 110 and 122 days post conception were obtained from of the  
392 Human Gene Expression Development Atlas (dbGaP accession number phs002003), generated and  
393 analyzed by the laboratories of Drs. Ian Glass, Jay Shendure, and Cole Trapnell, supported by funding  
394 from the National Institutes of Health to Dr. Glass (HD000836), Brotman Baty Institute for Precision  
395 Medicine to Dr. Shendure and Dr. Trapnell, the Paul G. Allen Frontiers Foundation to Dr. Shendure and  
396 Dr. Trapnell, and the Howard Hughes Medical Institute to Dr. Shendure. SC-islet datasets, in-vitro and  
397 those transplanted, were obtained from GSE151117, GSE114412, GSE143783, and GSE167880. All SC-

398 islet datasets employed were accumulated from SC-islets that had been cultured to their mature endpoint.  
399 All other information pertaining to the raw data employed in this analysis can be found in Table S1.

400 **Quality Control of Single-cell Datasets**

401 RStudio [v1.3.1093] running R [v4.0.3] and the Seurat [v4.3.0]<sup>60</sup> package were used to perform  
402 all initial analyses. Imported datasets were aligned and annotated with the reference human genome  
403 (hg38) from the EnsDb.Hsapeins.v86 database<sup>61</sup>. Poor quality cells including dead cells, doublets and  
404 poorly sequenced cells were excluded from this study. Briefly, dead, or apoptotic cells were excluded by  
405 filtering out cells containing high mitochondrial counts. Doublets were excluded by removing cells with  
406 exceedingly high RNA counts. Poorly sequenced cells were removed by excluding cells with low unique  
407 RNA features and low total RNA features. Thresholds for filtering poor quality cells of each individual  
408 dataset can be found in Table S1. Datasets obtained from SC-islet cells transplanted into mice required an  
409 additional removal of host cells via exclusion of cells expressing TTC36, a kidney gene that aligns to both  
410 the mouse and human genome. When applicable, meta data information including original dataset, donor  
411 age, donor BMI, and donor gender were added.

412 **Integration of Datasets and Identification of Endocrine Cell Types**

413 Subsequently, we performed integration and normalization using the Seurat [v4.3.0]<sup>60</sup> package.  
414 Gene expression data was processed using *ScaleData* and *NormalizeData* to adjust gene counts. Each  
415 scRNAseq dataset was individually clustered employing the standard workflow. Briefly, clustering was  
416 performed using *FindNeighbors* and *FindClusters* with 20 dimensions and resolutions ranging from 0.4 -  
417 4.5 to determine clusters. Cell types were identified by performing differential gene expression analysis  
418 using *FindAllMarkers*. Clusters of cells with high expression of endocrine marker gene *CHGA* were  
419 isolated using *subset* for further analysis. Fetal islets contained a population of acinar cells with  
420 expression of *CHGA*, these cells were not included in further analysis.

421 Some datasets did not contain mitochondrial genes, therefore mitochondrial genes were removed  
422 from all datasets, prior to integration and downstream analysis. Integration of endocrine cells from each  
423 dataset was performed by combining subset endocrine datasets into a single Seurat object using  
424 *FindIntegrationAnchors*. Cell types from multiple datasets were assigned based on the 2000 most  
425 variably expressed genes. Clustering was performed using *RunPCA* and *FindClusters* with parameters  
426 adjusted to a resolution of 2 and dimensions of 30. The top genes that separate each cluster within the  
427 integrated islet UMAP were identified with *FindMarkers* and these gene lists, included in Table S1, were  
428 used to designate the different islet endocrine cell types. Endocrine cell type identifiers were added to  
429 metadata.

#### 430 **Comparative Expression Analysis**

431 Differential gene expression analyses comparing cell types of various conditions were computed  
432 using the wilcox test method of *FindMarkers*. The expression level of differentially expressed genes were  
433 visualized using *FeaturePlot*, *DoHeatmap*, *VlnPlot*, and *DotPlot*. Volcano plots were generated by  
434 performing differential gene expression analysis across two conditions and using *EnhancedVolcano* of the  
435 EnhancedVolcano [v1.8.0]<sup>62</sup> package. Heatmaps indicating average expression were generated by  
436 computing the average values across two or more conditions using *AverageExpression* and visualized  
437 with the *heatmap.2* function of gplots [v3.1.3] package.

#### 438 **Inferred Gene Regulatory Network Analysis**

439 To perform inferred regulatory gene network analysis, we employed the SCENIC [v0.9.18]  
440 command line interface (CLI) to construct gene regulatory networks from our scRNAseq data<sup>34</sup>. A loom  
441 object was created from the Seurat object which includes raw RNA counts and the assigned metadata of  
442 each cell. This loom object was used as input for the CLI workflow to score network activity. Candidate  
443 regulons, which includes a list of transcription factors for hg38 along with motif annotations and  
444 rankings, were downloaded from cisTargetDB (<https://resources.aertslab.org/cistarget/>). The activity of

445 each regulon was calculated using area under the curve (AUC) calculations to assess significant recovery  
446 of a set of genes for individual cells. To generate regulons enriched in one group of cells a regulon  
447 specificity score (RSS) was computed. RSS and scaled expression of regulon activity was visualized in R  
448 using the *plotRSS\_oneSet* and *ComplexHeatmap* functions.

449 **Gene Set Enrichment Analysis**

450 Gene set enrichment analyses were performed using the singleseqgset [v0.1.2.9000] package  
451 (<https://github.com/arc85/singleseqgset>) and the EnrichR interactive website<sup>46</sup>. For singleseqgset package,  
452 we used variance inflated Wilcoxon rank sum testing to determine enrichment of gene sets across  
453 specified conditions. All ontology gene sets in the Human MSigDB Collection<sup>63-65</sup> were tested. For  
454 analysis using EnrichR, combined enrichment scores were computed and visualized based on Gene  
455 ontology gene sets. Combined enrichment scores were computed using Fisher exact test and multiplying  
456 that by the z-score of the deviation from the expected rank.

457 **SC-islet Differentiation**

458 The HUES8 (RRID: CVCL\_B207) human embryonic stem cell (hESC) line (authenticated  
459 August 2022) was provided by Douglas Melton (Harvard University)<sup>29</sup>. All hESC work was approved by  
460 the Washington University Embryonic Stem Cell Research Oversight Committee (approval no. 15-002)  
461 with appropriate conditions and consent. Hues8 cells (passage 78) were removed from liquid nitrogen,  
462 unthawed, and plated with mTeSR1 (StemCell Technologies; 05850) which was used for the culture of  
463 undifferentiated stem cells. All cell culture was maintained in a humidified incubator at 5% CO<sub>2</sub> and  
464 37°C. Cells were passaged every 4 days by washing cell with phosphate-buffered saline (PBS) and  
465 incubating with TrypLE at 0.2 ml/cm<sup>2</sup> (Gibco; 12-604-013) for 10 min or less at 37°C. Dispersed  
466 cells were then mixed with an equal volume of mTeSR1 supplemented with 10 µM Y-27632 (Pepro  
467 Tech; 129382310MG). Cells were counted on Vi-Cell XR (Beckman Coulter) and spun at 300g for  
468 3 min at room temperature (RT). The supernatant was aspirated, and cells were seeded at a density of

469  $0.8 \times 10^5 \text{ cm}^{-2}$  for propagation onto Matrigel (Corning; 356230)-coated plates in mTeSR1  
470 supplemented with  $10 \mu\text{M}$  Y-27632. After 24 h, medium was replaced daily with mTeSR1 without Y-  
471 27632. SC-islet differentiation was performed as described previously<sup>33</sup>. Briefly, hESCs were seeded at a  
472 density of  $6.3 \times 10^5 \text{ cells cm}^{-2}$ . Twenty-four hours later, the mTeSR1 was replaced with differentiation  
473 medium supplemented with small molecules and growth factors.

474 **SC-islet and primary islet culture**

475 After 7 days in stage 6 of the differentiation protocol, cells were dispersed from the culture plate  
476 with TrypLE (Gibco; 12-604-013) for up to 10 min at 37 °C. The cells were mixed with an equal  
477 volume of stage 6 enriched serum-free medium (ESFM), centrifuged at 300g, and resuspended in ESFM  
478 at a concentration of 1 million cells ml<sup>-1</sup>. Five milliliters of this solution were pipetted in each well of a  
479 six-well plate and placed on an orbital shaker (Orbi-Shaker CO2, Benchmark Scientific) at 115 r.p.m. to  
480 form SC-islet clusters. These clusters were maintained by aspirating and replacing 4 ml of ESFM every  
481 2 days. Primary human islets were acquired as clusters and shipped from Prodo Laboratories, which  
482 required consent from the donor's relatives for use in research. Consent information can be found on their  
483 website (<https://prodolabs.com/human-islets-for-research>). These islets have been refused for human islet  
484 transplants and meet specific criteria for research use. Our study consists of six donors. Upon arrival,  
485 islets were transferred into a six-well plate on an orbital shaker at 115 r.p.m. and maintained with 4 ml  
486 per well of CMRL1066 Supplemented medium (Corning; 99-603-CV) with 10% heat-inactivated fetal  
487 bovine serum (Gibco; 26140-079).

488 **Real-Time qPCR**

489 RNA was extracted from primary islets 2 days after arrival and from SC-islets (Hues8 passage  
490 80) at s6d7 with the RNeasy Mini Kit (74016, Qiagen). Samples were treated with a DNase kit (79254,  
491 Qiagen) during extraction. The High Capacity cDNA Reverse Transcriptase Kit (4368814, Applied  
492 Biosystems) was used to synthesize cDNA on a thermocycler (A37028, Applied Biosystems). The

493 PowerUp SYBR Green Master Mix (A25741, Applied Biosystems) was used on a QuantStudio™ 6 Pro  
494 Real-Time PCR System (A43180, Applied Biosystems), and real-time qPCR results were analyzed using  
495 a  $\Delta\Delta Ct$  methodology. TBP was used as a housekeeping gene. Primer sequences were as follows:  
496

| NCBI GENE SYMBOL | NCBI GeneID | GenBank Accession | FWD Sequence                | REV Sequence              |
|------------------|-------------|-------------------|-----------------------------|---------------------------|
| TBP              | 6908        | NM_003194         | GCCATAAGGCATCATTG<br>GAC    | AACAAACAGCCTGCCAC<br>CTTA |
| FOXA2            | 3170        | NM_153675         | GGAGCAGCTACTATGCA<br>GAGC   | CGTGTTCATGCCGTT<br>ATCC   |
| SOX4             | 6659        | NM_003107         | AGCGACAAGATCCCTTT<br>CATTC  | CGTTGCCGGACTTCAC<br>CTT   |
| PAX4             | 5078        | NM_006193         | ATACCCGGCAGCAGATT<br>GTG    | AAGACACCTGTGCGGT<br>AGTAA |
| ONECUT2          | 9480        | NM_004852         | GGAATCCAAAACCGTGG<br>AGTAA  | CTCTTGCGTTGCAC<br>GCTG    |
| PBX1             | 5087        | NM_002585         | CATGCTGTTAGCGGAAG<br>GC     | CTCCACTGAGTTGTCT<br>GAACC |
| NEFL             | 4747        | NM_006158         | ATGAGTTCCCTTCAGCTA<br>CGAGC | CTGGGCATCAACGATC<br>CAGA  |
| STMN1            | 3925        | NM_203401         | TCAGCCCTCGGTAAAAA<br>GAAT   | TTCTCGTGCTCTCGTT<br>CTCA  |
| BASP1            | 10409       | NM_006317         | AGGGGAACCCAAAAAG<br>ACTGA   | GGTGTGGAACTAGGCG<br>CTTC  |

|       |     |           |                           |                          |
|-------|-----|-----------|---------------------------|--------------------------|
| CALB2 | 794 | NM_001740 | ACTTTGACGCAGACGGA<br>AATG | GAAGTTCTCTCGGTT<br>GGCAG |
|-------|-----|-----------|---------------------------|--------------------------|

497

498 **Statistics**

499 Statistical analysis was performed by 2-tailed unpaired t test calculated by GraphPad Prism  
500 (8.0.1). All data are presented mean  $\pm$  SEM.  $p < 0.05$  was considered statistically significant. Data  
501 analysis was not blinded.

502 **Acknowledgements**

503 This work was funded by the NIH (R01DK127497), JDRF (3-SRA-2023-1295-S-B), a Human  
504 Islet Research Network (HIRN) Catalyst Award, the Edward J. Mallinckrodt Foundation, and startup  
505 funds from the Washington University School of Medicine Department of Medicine. M.I. was supported  
506 by Rita Levi-Montalcini Postdoctoral Fellowship in Regenerative Medicine and the NIH  
507 (T32DK007120).

508 **Author Contributions**

509 M.D.S. and J.R.M. conceived of all computational analysis. M.D.S. performed all computational  
510 analysis. M.I. and P.A. provided vital information on all aspects of the project. M.D.S., M.I., and J.R.M.  
511 wrote the manuscript. All authors revised and approved the manuscript.

512 **Declaration of Interests**

513 J.R.M. is an inventor on related patents and patent applications, employed by Sana  
514 Biotechnology, and has stock or stock options in Sana Biotechnology. M.I. has stocks for Vertex  
515 Pharmaceuticals. M.D.S. and P.A. have no interests to disclose.

516

517 **References**

- 518 1. Lanzoni, G., and Ricordi, C. (2021). Transplantation of stem cell-derived pancreatic islet cells.  
519 Nat Rev Endocrinol 17, 7-8. 10.1038/s41574-020-00430-9.
- 520 2. Millman, J.R., and Pagliuca, F.W. (2017). Autologous Pluripotent Stem Cell-Derived beta-Like  
521 Cells for Diabetes Cellular Therapy. Diabetes 66, 1111-1120. 10.2337/db16-1406.
- 522 3. Aguayo-Mazzucato, C., and Bonner-Weir, S. (2010). Stem cell therapy for type 1 diabetes  
523 mellitus. Nat Rev Endocrinol 6, 139-148. 10.1038/nrendo.2009.274.
- 524 4. Velazco-Cruz, L., Goedegebuure, M.M., and Millman, J.R. (2020). Advances Toward  
525 Engineering Functionally Mature Human Pluripotent Stem Cell-Derived beta Cells. Frontiers in  
526 bioengineering and biotechnology 8, 786. 10.3389/fbioe.2020.00786.
- 527 5. Tremmel, D.M., Mitchell, S.A., Sackett, S.D., and Odorico, J.S. (2019). Mimicking nature-made  
528 beta cells: recent advances towards stem cell-derived islets. Current opinion in organ  
529 transplantation 24, 574-581. 10.1097/mot.0000000000000687.
- 530 6. Siehler, J., Blöchinger, A.K., Meier, M., and Lickert, H. (2021). Engineering islets from stem  
531 cells for advanced therapies of diabetes. Nature reviews. Drug discovery 20, 920-940.  
532 10.1038/s41573-021-00262-w.
- 533 7. Melton, D. (2021). The promise of stem cell-derived islet replacement therapy. Diabetologia 64,  
534 1030-1036. 10.1007/s00125-020-05367-2.
- 535 8. Veres, A., Faust, A.L., Bushnell, H.L., Engquist, E.N., Kenty, J.H., Harb, G., Poh, Y.C., Sintov,  
536 E., Gurtler, M., Pagliuca, F.W., et al. (2019). Charting cellular identity during human in vitro  
537 beta-cell differentiation. Nature 569, 368-373. 10.1038/s41586-019-1168-5.
- 538 9. Weng, C., Xi, J., Li, H., Cui, J., Gu, A., Lai, S., Leskov, K., Ke, L., Jin, F., and Li, Y. (2020).  
539 Single-cell lineage analysis reveals extensive multimodal transcriptional control during directed  
540 beta-cell differentiation. Nature metabolism 2, 1443-1458. 10.1038/s42255-020-00314-2.

541 10. Augsornworawat, P., Maxwell, K.G., Velazco-Cruz, L., and Millman, J.R. (2020). Single-Cell  
542 Transcriptome Profiling Reveals beta Cell Maturation in Stem Cell-Derived Islets after  
543 Transplantation. *Cell Rep* 32, 108067. 10.1016/j.celrep.2020.108067.

544 11. Balboa, D., Barsby, T., Lithovius, V., Saarimäki-Vire, J., Omar-Hmeadi, M., Dyachok, O.,  
545 Montaser, H., Lund, P.E., Yang, M., Ibrahim, H., et al. (2022). Functional, metabolic and  
546 transcriptional maturation of human pancreatic islets derived from stem cells. *Nature  
547 biotechnology* 40, 1042-1055. 10.1038/s41587-022-01219-z.

548 12. Augsornworawat, P., Hogrebe, N.J., Ishahak, M., Schmidt, M.D., Marquez, E., Maestas, M.M.,  
549 Veronese-Paniagua, D.A., Gale, S.E., Miller, J.R., and Velazco-Cruz, L. (2023). Single-nucleus  
550 multi-omics of human stem cell-derived islets identifies deficiencies in lineage specification.  
551 *Nature Cell Biology*, 1-13.

552 13. Augsornworawat, P., and Millman, J.R. (2020). Single-cell RNA sequencing for engineering and  
553 studying human islets. *Curr Opin Biomed Eng* 16, 27-33. 10.1016/j.cobme.2020.06.003.

554 14. Baron, M., Veres, A., Wolock, S.L., Faust, A.L., Gaujoux, R., Vetere, A., Ryu, J.H., Wagner,  
555 B.K., Shen-Orr, S.S., Klein, A.M., et al. (2016). A Single-Cell Transcriptomic Map of the Human  
556 and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. *Cell systems* 3, 346-360  
557 e344. 10.1016/j.cels.2016.08.011.

558 15. Xin, Y., Kim, J., Okamoto, H., Ni, M., Wei, Y., Adler, C., Murphy, A.J., Yancopoulos, G.D., Lin,  
559 C., and Gromada, J. (2016). RNA Sequencing of Single Human Islet Cells Reveals Type 2  
560 Diabetes Genes. *Cell Metab* 24, 608-615. 10.1016/j.cmet.2016.08.018.

561 16. Fang, Z., Weng, C., Li, H., Tao, R., Mai, W., Liu, X., Lu, L., Lai, S., Duan, Q., Alvarez, C., et al.  
562 (2019). Single-Cell Heterogeneity Analysis and CRISPR Screen Identify Key  $\beta$ -Cell-Specific  
563 Disease Genes. *Cell Rep* 26, 3132-3144.e3137. 10.1016/j.celrep.2019.02.043.

564 17. Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D.M., Hill, A.J., Zhang, F., Mundlos, S.,  
565 Christiansen, L., Steemers, F.J., et al. (2019). The single-cell transcriptional landscape of  
566 mammalian organogenesis. *Nature* 566, 496-502. 10.1038/s41586-019-0969-x.

567 18. Cao, J., O'Day, D.R., Pliner, H.A., Kingsley, P.D., Deng, M., Daza, R.M., Zager, M.A., Aldinger,  
568 K.A., Blecher-Gonen, R., Zhang, F., et al. (2020). A human cell atlas of fetal gene expression.  
569 *Science* (New York, N.Y.) 370. 10.1126/science.aba7721.

570 19. Deftos, L.J. (1991). Chromogranin A: its role in endocrine function and as an endocrine and  
571 neuroendocrine tumor marker. *Endocrine reviews* 12, 181-187. 10.1210/edrv-12-2-181.

572 20. Portela-Gomes, G.M., Gayen, J.R., Grimelius, L., Stridsberg, M., and Mahata, S.K. (2008). The  
573 importance of chromogranin A in the development and function of endocrine pancreas.  
574 *Regulatory peptides* 151, 19-25. 10.1016/j.regpep.2008.07.005.

575 21. Riedel, M.J., Asadi, A., Wang, R., Ao, Z., Warnock, G.L., and Kieffer, T.J. (2012).  
576 Immunohistochemical characterisation of cells co-producing insulin and glucagon in the  
577 developing human pancreas. *Diabetologia* 55, 372-381. 10.1007/s00125-011-2344-9.

578 22. De Krijger, R.R., Aanstoot, H.J., Kranenburg, G., Reinhard, M., Visser, W.J., and Bruining, G.J.  
579 (1992). The midgestational human fetal pancreas contains cells coexpressing islet hormones.  
580 *Developmental biology* 153, 368-375. 10.1016/0012-1606(92)90121-v.

581 23. Lipsitz, Y.Y., Timmins, N.E., and Zandstra, P.W. (2016). Quality cell therapy manufacturing by  
582 design. *Nature biotechnology* 34, 393-400. 10.1038/nbt.3525.

583 24. Kitamura, R.A., Maxwell, K.G., Ye, W., Kries, K., Brown, C.M., Augsornworawat, P., Hirsch,  
584 Y., Johansson, M.M., Weiden, T., Ekstein, J., et al. (2022). Multidimensional analysis and  
585 therapeutic development using patient iPSC-derived disease models of Wolfram syndrome. *JCI*  
586 *Insight* 7, e156549. 10.1172/jci.insight.156549.

587 25. Hogrebe, N.J., Ishahak, M., and Millman, J.R. (2023). Developments in stem cell-derived islet  
588 replacement therapy for treating type 1 diabetes. *Cell Stem Cell* 30, 530-548.

589 26. Hrvatin, S., O'Donnell, C.W., Deng, F., Millman, J.R., Pagliuca, F.W., DiIorio, P., Rezania, A.,  
590 Gifford, D.K., and Melton, D.A. (2014). Differentiated human stem cells resemble fetal, not  
591 adult, beta cells. *Proceedings of the National Academy of Sciences of the United States of*  
592 *America* *111*, 3038-3043. 10.1073/pnas.1400709111.

593 27. Velazco-Cruz, L., Song, J., Maxwell, K.G., Goedegebuure, M.M., Augsornworawat, P., Hogrebe,  
594 N.J., and Millman, J.R. (2019). Acquisition of Dynamic Function in Human Stem Cell-Derived  
595 beta Cells. *Stem cell reports* *12*, 351-365. 10.1016/j.stemcr.2018.12.012.

596 28. Rezania, A., Bruin, J.E., Arora, P., Rubin, A., Batushansky, I., Asadi, A., O'Dwyer, S.,  
597 Quiskamp, N., Mojibian, M., Albrecht, T., et al. (2014). Reversal of diabetes with insulin-  
598 producing cells derived in vitro from human pluripotent stem cells. *Nature biotechnology* *32*,  
599 1121-1133. 10.1038/nbt.3033.

600 29. Pagliuca, F.W., Millman, J.R., Gurtler, M., Segel, M., Van Dervort, A., Ryu, J.H., Peterson, Q.P.,  
601 Greiner, D., and Melton, D.A. (2014). Generation of functional human pancreatic beta cells in  
602 vitro. *Cell* *159*, 428-439. 10.1016/j.cell.2014.09.040.

603 30. Hang, Y., and Stein, R. (2011). MafA and MafB activity in pancreatic  $\beta$  cells. *Trends in*  
604 *Endocrinology & Metabolism* *22*, 364-373.

605 31. Blum, B., Hrvatin, S., Schuetz, C., Bonal, C., Rezania, A., and Melton, D.A. (2012). Functional  
606 beta-cell maturation is marked by an increased glucose threshold and by expression of urocortin  
607 3. *Nature biotechnology* *30*, 261-264. 10.1038/nbt.2141.

608 32. van Gurp, L., Fodoulian, L., Oropeza, D., Furuyama, K., Bru-Tari, E., Vu, A.N., Kaddis, J.S.,  
609 Rodríguez, I., Thorel, F., and Herrera, P.L. (2022). Generation of human islet cell type-specific  
610 identity genesets. *Nature communications* *13*, 2020. 10.1038/s41467-022-29588-8.

611 33. Hogrebe, N.J., Maxwell, K.G., Augsornworawat, P., and Millman, J.R. (2021). Generation of  
612 insulin-producing pancreatic beta cells from multiple human stem cell lines. *Nat Protoc* *16*, 4109-  
613 4143. 10.1038/s41596-021-00560-y.

614 34. Aibar, S., González-Blas, C.B., Moerman, T., Huynh-Thu, V.A., Imrichova, H., Hulselmans, G.,  
615 Rambow, F., Marine, J.C., Geurts, P., Aerts, J., et al. (2017). SCENIC: single-cell regulatory  
616 network inference and clustering. *Nature methods* 14, 1083-1086. 10.1038/nmeth.4463.

617 35. Wheeler, M.B., Sheu, L., Ghai, M., Bouquillon, A., Grondin, G., Weller, U., Beaudoin, A.R.,  
618 Bennett, M.K., Trimble, W.S., and Gaisano, H.Y. (1996). Characterization of SNARE protein  
619 expression in beta cell lines and pancreatic islets. *Endocrinology* 137, 1340-1348.  
620 10.1210/endo.137.4.8625909.

621 36. Thomas-Reetz, A.C., and De Camilli, P. (1994). A role for synaptic vesicles in non-neuronal  
622 cells: clues from pancreatic beta cells and from chromaffin cells. *FASEB journal : official*  
623 *publication of the Federation of American Societies for Experimental Biology* 8, 209-216.  
624 10.1096/fasebj.8.2.7907072.

625 37. Braun, M., Wendt, A., Birnir, B., Broman, J., Eliasson, L., Galvanovskis, J., Gromada, J.,  
626 Mulder, H., and Rorsman, P. (2004). Regulated exocytosis of GABA-containing synaptic-like  
627 microvesicles in pancreatic beta-cells. *The Journal of general physiology* 123, 191-204.  
628 10.1085/jgp.200308966.

629 38. Henquin, J.C., and Meissner, H.P. (1984). Significance of ionic fluxes and changes in membrane  
630 potential for stimulus-secretion coupling in pancreatic B-cells. *Experientia* 40, 1043-1052.  
631 10.1007/bf01971450.

632 39. Teitelman, G. (1990). Insulin cells of pancreas extend neurites but do not arise from the  
633 neuroectoderm. *Developmental biology* 142, 368-379. 10.1016/0012-1606(90)90357-o.

634 40. Polak, M., Scharfmann, R., Seilheimer, B., Eisenbarth, G., Dressler, D., Verma, I.M., and Potter,  
635 H. (1993). Nerve growth factor induces neuron-like differentiation of an insulin-secreting  
636 pancreatic beta cell line. *Proceedings of the National Academy of Sciences of the United States of*  
637 *America* 90, 5781-5785. 10.1073/pnas.90.12.5781.

638 41. Langley, O.K., Aletsee-Utrecht, M.C., Grant, N.J., and Gratzl, M. (1989). Expression of the  
639 neural cell adhesion molecule NCAM in endocrine cells. *The journal of histochemistry and*  
640 *cytochemistry : official journal of the Histochemistry Society* *37*, 781-791.  
641 10.1177/37.6.2723399.

642 42. Zhu, H., Wang, G., Nguyen-Ngoc, K.V., Kim, D., Miller, M., Goss, G., Kovsky, J., Harrington,  
643 A.R., Saunders, D.C., Hopkirk, A.L., et al. (2023). Understanding cell fate acquisition in stem-  
644 cell-derived pancreatic islets using single-cell multiome-inferred regulomes. *Developmental cell*.  
645 10.1016/j.devcel.2023.03.011.

646 43. Castell, A.-L., Goubault, C., Ethier, M., Fergusson, G., Tremblay, C., Baltz, M., Dal Soglio, D.,  
647 Ghislain, J., and Poitout, V. (2022).  $\beta$  Cell mass expansion during puberty involves serotonin  
648 signaling and determines glucose homeostasis in adulthood. *JCI insight* *7*.

649 44. Moon, J.H., Kim, Y.G., Kim, K., Osonoi, S., Wang, S., Saunders, D.C., Wang, J., Yang, K., Kim,  
650 H., and Lee, J. (2020). Serotonin regulates adult  $\beta$ -cell mass by stimulating perinatal  $\beta$ -cell  
651 proliferation. *Diabetes* *69*, 205-214.

652 45. Arntfield, M.E., and van der Kooy, D. (2011).  $\beta$ -Cell evolution: How the pancreas borrowed from  
653 the brain: The shared toolbox of genes expressed by neural and pancreatic endocrine cells may  
654 reflect their evolutionary relationship. *BioEssays : news and reviews in molecular, cellular and*  
655 *developmental biology* *33*, 582-587. 10.1002/bies.201100015.

656 46. Chen, E.Y., Tan, C.M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G.V., Clark, N.R., and Ma'ayan,  
657 A. (2013). Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. *BMC*  
658 *bioinformatics* *14*, 128. 10.1186/1471-2105-14-128.

659 47. Kuleshov, M.V., Jones, M.R., Rouillard, A.D., Fernandez, N.F., Duan, Q., Wang, Z., Koplev, S.,  
660 Jenkins, S.L., Jagodnik, K.M., Lachmann, A., et al. (2016). Enrichr: a comprehensive gene set  
661 enrichment analysis web server 2016 update. *Nucleic acids research* *44*, W90-97.  
662 10.1093/nar/gkw377.

663 48. Xie, Z., Bailey, A., Kuleshov, M.V., Clarke, D.J.B., Evangelista, J.E., Jenkins, S.L., Lachmann,  
664 A., Wojciechowicz, M.L., Kropiwnicki, E., Jagodnik, K.M., et al. (2021). Gene Set Knowledge  
665 Discovery with Enrichr. *Current protocols I*, e90. 10.1002/cpz1.90.

666 49. Blodgett, D.M., Nowosielska, A., Afik, S., Pechhold, S., Cura, A.J., Kennedy, N.J., Kim, S.,  
667 Kucukural, A., Davis, R.J., Kent, S.C., et al. (2015). Novel Observations From Next-Generation  
668 RNA Sequencing of Highly Purified Human Adult and Fetal Islet Cell Subsets. *Diabetes* 64,  
669 3172-3181. 10.2337/db15-0039.

670 50. Bocian-Sobkowska, J., Zabel, M., Wozniak, W., and Surdyk-Zasada, J. (1999). Polyhormonal  
671 aspect of the endocrine cells of the human fetal pancreas. *Histochemistry and cell biology* 112,  
672 147-153. 10.1007/s004180050401.

673 51. Tritschler, S., Thomas, M., Böttcher, A., Ludwig, B., Schmid, J., Schubert, U., Kemter, E., Wolf,  
674 E., Lickert, H., and Theis, F.J. (2022). A transcriptional cross species map of pancreatic islet  
675 cells. *Molecular metabolism* 66, 101595. 10.1016/j.molmet.2022.101595.

676 52. Hogrebe, N.J., Augsornworawat, P., Maxwell, K.G., Velazco-Cruz, L., and Millman, J.R. (2020).  
677 Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells.  
678 *Nature biotechnology* 38, 460-470. 10.1038/s41587-020-0430-6.

679 53. Martens, G.A., Jiang, L., Hellemans, K.H., Stangé, G., Heimberg, H., Nielsen, F.C., Sand, O.,  
680 Van Helden, J., Van Lommel, L., Schuit, F., et al. (2011). Clusters of conserved beta cell marker  
681 genes for assessment of beta cell phenotype. *PloS one* 6, e24134. 10.1371/journal.pone.0024134.

682 54. Hagan, D.W., Ferreira, S.M., Santos, G.J., and Phelps, E.A. (2022). The role of GABA in islet  
683 function. *Frontiers in endocrinology* 13, 972115. 10.3389/fendo.2022.972115.

684 55. Lioubinski, O., Müller, M., Wegner, M., and Sander, M. (2003). Expression of Sox transcription  
685 factors in the developing mouse pancreas. *Developmental dynamics : an official publication of*  
686 *the American Association of Anatomists* 227, 402-408. 10.1002/dvdy.10311.

687 56. Kim, S.K., Selleri, L., Lee, J.S., Zhang, A.Y., Gu, X., Jacobs, Y., and Cleary, M.L. (2002). Pbx1  
688 inactivation disrupts pancreas development and in *Ipf1*-deficient mice promotes diabetes mellitus.  
689 *Nature genetics* 30, 430-435. 10.1038/ng860.

690 57. Sosa-Pineda, B., Chowdhury, K., Torres, M., Oliver, G., and Gruss, P. (1997). The Pax4 gene is  
691 essential for differentiation of insulin-producing beta cells in the mammalian pancreas. *Nature*  
692 386, 399-402. 10.1038/386399a0.

693 58. Bergsland, M., Werme, M., Malewicz, M., Perlmann, T., and Muhr, J. (2006). The establishment  
694 of neuronal properties is controlled by Sox4 and Sox11. *Genes & development* 20, 3475-3486.  
695 10.1101/gad.403406.

696 59. van Arensbergen, J., García-Hurtado, J., Moran, I., Maestro, M.A., Xu, X., Van de Casteele, M.,  
697 Skoudy, A.L., Palassini, M., Heimberg, H., and Ferrer, J. (2010). Derepression of Polycomb  
698 targets during pancreatic organogenesis allows insulin-producing beta-cells to adopt a neural gene  
699 activity program. *Genome research* 20, 722-732. 10.1101/gr.101709.109.

700 60. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck III, W.M., Zheng, S., Butler, A., Lee, M.J., Wilk,  
701 A.J., Darby, C., and Zager, M. (2021). Integrated analysis of multimodal single-cell data. *Cell*  
702 184, 3573-3587. e3529.

703 61. Rainer, J. (2017). EnsDb. *Hsapiens*. v75: Ensembl based annotation package. R package version  
704 2.99. 0.

705 62. Blighe, K., Rana, S., and Lewis, M. (2018). EnhancedVolcano: Publication-ready volcano plots  
706 with enhanced colouring and labeling.

707 63. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A.,  
708 Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., and Mesirov, J.P. (2005). Gene set  
709 enrichment analysis: A knowledge-based approach for interpreting genome-wide expression  
710 profiles. *Proceedings of the National Academy of Sciences* 102, 15545-15550.  
711 doi:10.1073/pnas.0506580102.

712 64. Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tamayo, P., and Mesirov, J.P.  
713 (2011). Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739-1740.

714 10.1093/bioinformatics/btr260.

715 65. Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J.P., and Tamayo, P. (2015).

716 The molecular signatures database hallmark gene set collection. Cell systems 1, 417-425.

717

718

719

720 **Figures**

721

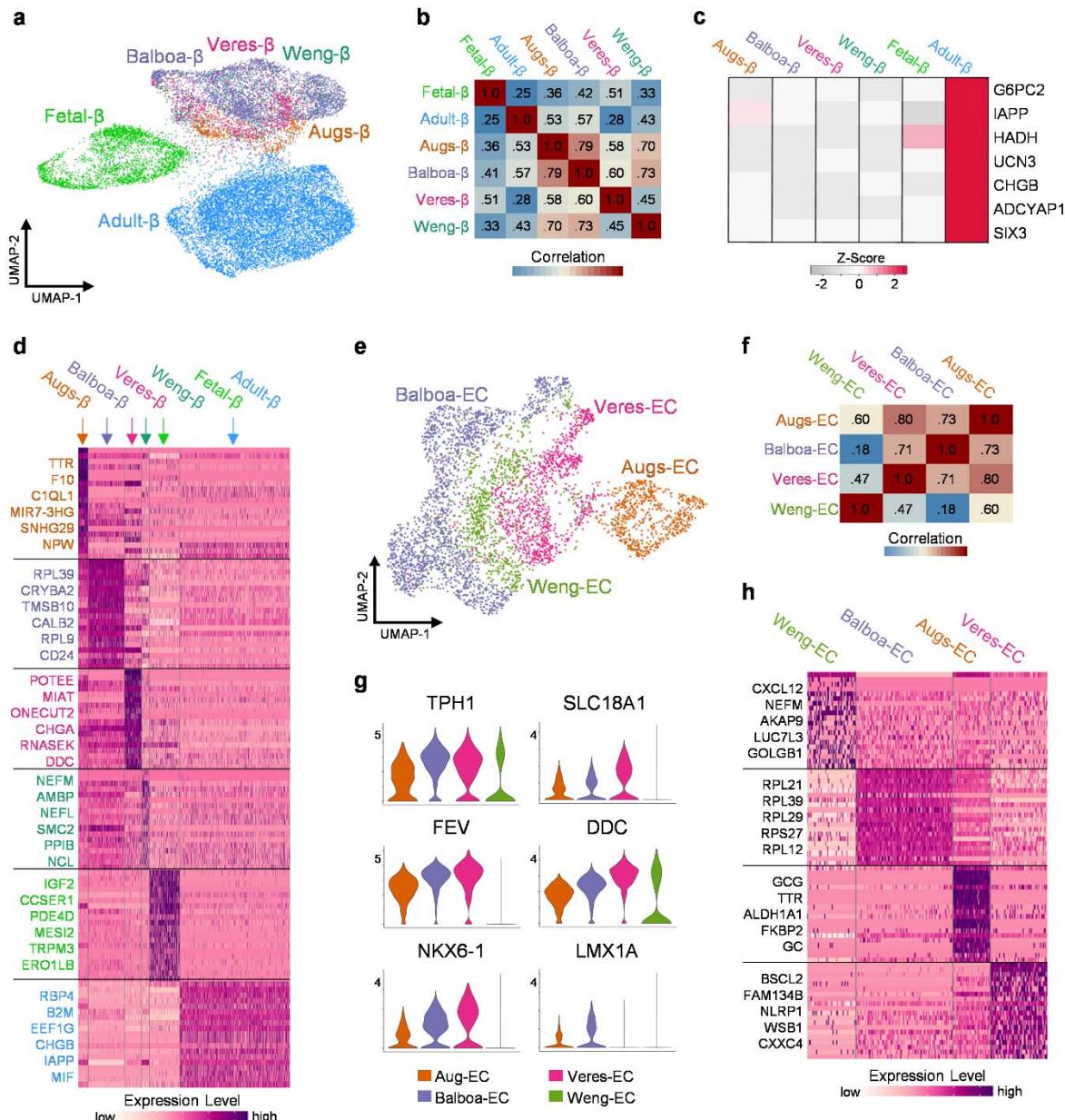


722

723 **Fig. 1 | SC-islets share endocrine cell types with fetal and adult islets, see also Table S1 & Table S2.**

724 (a) Schematic of 19 human adult islets, male and female, age 19-56; 9 human fetal pancreases, male and

725 female, 110-122 dpc; SC-islets derived from 4 unique protocols; and SC-islets derived from 2 unique


726 protocols and transplanted into the kidney capsules of mice for 1-6 months. Each individual dataset is

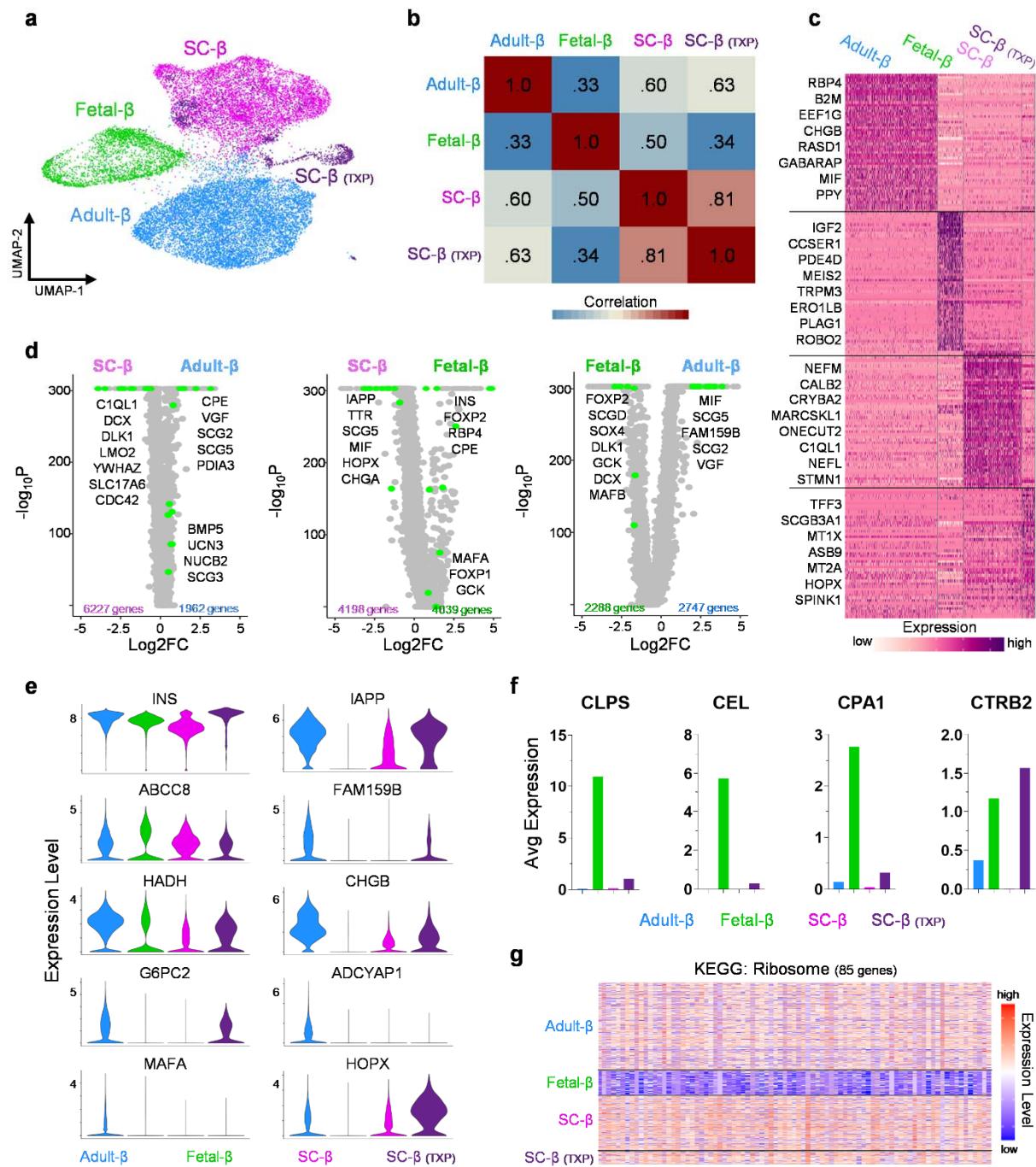
727 plotted onto a UMAP which indicates scaled expression of *CHGA* after quality control filtering. (b)

728 UMAP of all endocrine cells integrated from each published dataset with 10 unique cell types identified.

729 Polyhormonal (Poly), Endocrine Progenitor (Prog), Proliferating Endocrine (Prolif), Enterochromaffin-  
730 like (EC), Neuroendocrine (NE). (c) Proportion of identified cell-types from SC, SC-TXP, adult, and fetal  
731 islet sources. (d) Integrated endocrine UMAP split between SC, SC-TXP, adult, and fetal sources. (e)  
732 Feature plots indicating scaled expression level of various islet cell hormones. (f) Heatmap indicating top  
733 differentially expressed genes for each endocrine cell population. (g) Pairwise analysis indicating  
734 differentially expressed genes ( $\log_{2}FC > 0.3$ ) between  $\beta$ -cells and all other endocrine cells shared  
735 between SC, SC-TXP, fetal, and adult islets. DEGs enriched in  $\beta$ -cells from all four sources make up core  
736  $\beta$ -cell identity.

737

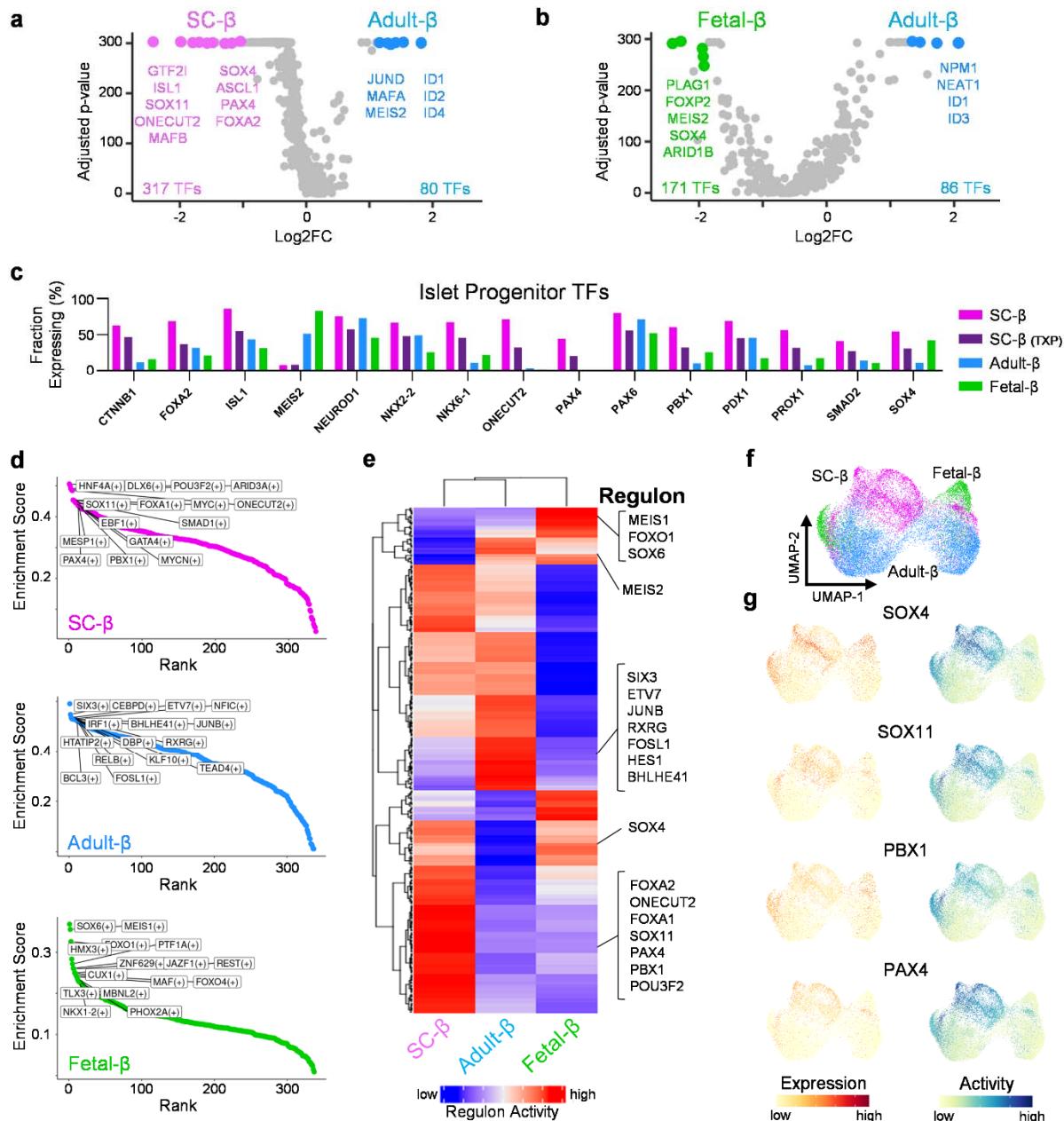



738

739 **Fig. 2 | SC- $\beta$  cells derived from different protocols possess similar transcriptional profiles relative to**  
 740 **adult  $\beta$  cells, see also Fig. S1 & Table S3.** (a) UMAP of adult  $\beta$ -cells, fetal  $\beta$ -cells, and SC  $\beta$ -cells  
 741 clustered and split by their derivation protocol. (b) Heatmap of Pearson correlation coefficient for 1000  
 742 most variable expressed genes in  $\beta$ -cells. (c) Heatmap indicating average expression of  $\beta$ -cell maturation  
 743 markers. (d) Heatmap of scaled RNA expression indicating top 20 most differentially expressed genes for

744 β-cells derived by unique protocols, fetal β-cells, and adult β-cells. (e) UMAP of SC-EC cells clustered  
745 and split by their derivation protocol. (f) Heatmap of Pearson correlation coefficient for 1000 most  
746 variable expressed genes in SC-EC cells. (g) Violin plots indicating expression level of SC-EC identity  
747 markers across derivation protocols. (h) Heatmap of scaled RNA expression indicating top 20 most  
748 differentially expressed genes for SC-EC cells across protocols.

749


750

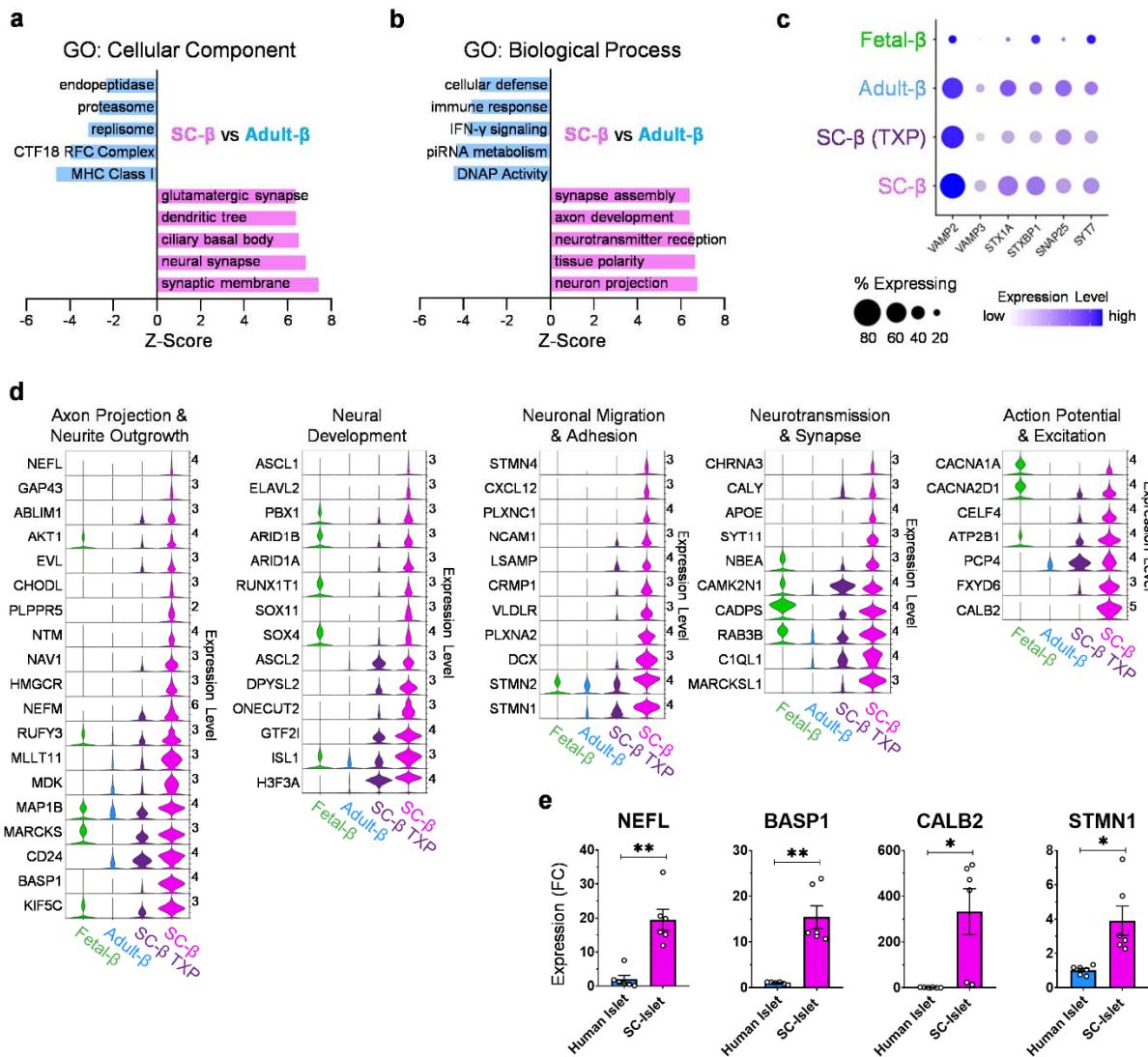


751

752 **Fig. 3 | SC- $\beta$  and fetal- $\beta$  cells lack expression of key transcripts, see also Fig. S2 & Table S4.** (a)  
753 UMAP of adult  $\beta$ -cells, fetal  $\beta$ -cells, SC  $\beta$ -cells, and TXP SC  $\beta$ -cells clustered. (b) Pearson correlation  
754 coefficient for 2000 most variable expressed genes. (c) Heatmap of scaled RNA expression indicating top  
755 50 most differentially expressed genes for adult- $\beta$ , fetal- $\beta$ , SC- $\beta$  cells, and TXP SC- $\beta$  cells. (d) Volcano

756 plots indicating all differentially expressed genes in SC- $\beta$  vs adult- $\beta$ , SC- $\beta$  vs fetal- $\beta$ , and fetal- $\beta$  vs adult-  
757  $\beta$  cells. (Adjusted p-value <0.05) (e) Violin plots indicating expression level of  $\beta$ -cell maturation  
758 associated genes in adult- $\beta$ , fetal- $\beta$ , SC- $\beta$  cells, and TXP SC- $\beta$  cells. (f) Bar graphs indicating average  
759 RNA counts of various exocrine markers in adult- $\beta$ , fetal- $\beta$ , SC- $\beta$  cells, and TXP SC- $\beta$  cells. (g) Heatmap  
760 indicating the scaled expression level of ribosomal genes in adult- $\beta$ , fetal- $\beta$ , SC- $\beta$  cells, and TXP SC- $\beta$   
761 cells.  
762  
763




764

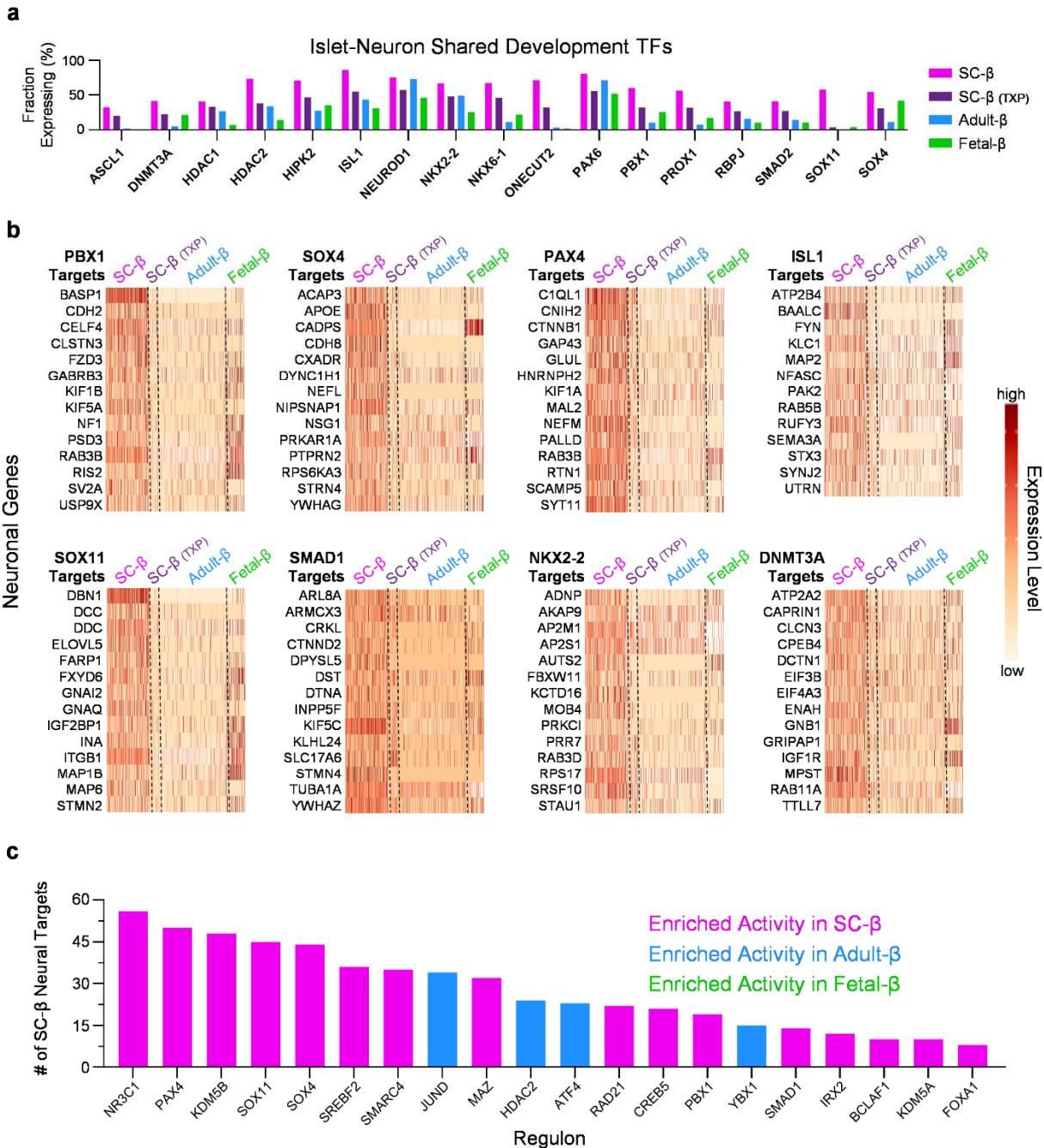
765 **Fig. 4 | SC-β cells have high expression and activity of transcription factors associated with**  
 766 **progenitor states, see also Fig. S3, Fig. S4, & Table S5.** (a) Volcano plot indicating all expressed  
 767 transcription factors between SC-β and adult-β cells (Adjusted p-value <0.05). (b) Volcano plot indicating  
 768 all expressed transcription factors between fetal-β and adult-β cells (Adjusted p-value <0.05). (c) Bar  
 769 plots indicating percent of cells expressing known islet developmental transcription factors in SC-β, TXP

770 SC- $\beta$ , adult- $\beta$ , and fetal- $\beta$  cells. (d) Chart indicating most highly enriched regulons in SC- $\beta$ , adult- $\beta$ , and  
771 fetal- $\beta$  cells. (e) Heatmap indicating scaled regulon activity of transcription factors expressed in SC- $\beta$ ,  
772 adult- $\beta$ , and fetal- $\beta$  cells. (f) UMAP of SC- $\beta$ , adult- $\beta$ , and fetal- $\beta$  clustered by regulon activity. (g) Feature  
773 plots indicating expression and activity of  $\beta$ -progenitor transcription factors.

774

775




776

777 **Fig. 5 | Transcripts involved in neuronal development and morphology are enriched in SC and fetal**  
 778 **β-cells, see also Fig. S5, Fig. S6, & Table S6.** (a) Bar chart indicating gene ontology: cellular component  
 779 enrichment scoring of differentially expressed genes between SC-β and adult-β cells. (b) Bar chart  
 780 indicating gene ontology: biological process enrichment scoring of differentially expressed genes between  
 781 SC-β and adult-β cells. (c) Dotplot indicating expression level of genes associated with insulin granule  
 782 exocytosis. (d) Panel of violin plots indicating expression level of genes (>1 log2FC of SC vs adult β)  
 783 associated with various neuronal traits between SC, SC-TXP, adult, and fetal β-cells. (e) RT-qPCR of SC-

784 islets (n=6) at s6d7 and human cadaveric islets (n=6) indicating fold change (FC) expression relative to  
785 TBP. All data are represented as the mean, and all error bars represent the s.e.m. Individual data points  
786 are shown for all bar graphs. ns, not significant; \*P<0.05, \*\*P<0.01.

787

788



789

790 **Fig. 6 | Transcription factors involved in progenitor  $\beta$ -cell states drive neuronal gene programs, see**  
 791 **also Fig. S6 & Table S6.** (a) Bar plots indicating percent of cells expressing transcription factors that  
 792 have a role in both islet and neuron development in SC- $\beta$ , TXP SC- $\beta$ , adult- $\beta$ , and fetal- $\beta$  cells. (b) Panel  
 793 of heatmaps indicating expression level of genes that are associated with neuronal traits and are targets of

794 SC- $\beta$  enriched regulons. (c) Bar plot indicates transcription factors active in  $\beta$ -cells with the most targets

795 of SC- $\beta$  neural genes (65 genes in total).

796